### 2020 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

## ALABAMA POWER COMPANY PLANT GORGAS GYPSUM POND

**January 31, 2021** 

Prepared for

Alabama Power Company Birmingham, Alabama

By

Southern Company Services
Earth Science and Environmental Engineering



#### **CERTIFICATION STATEMENT**

This Annual Groundwater Monitoring and Corrective Action Report, Alabama Power Company - Plant Gorgas Gypsum Pond has been prepared in accordance with the United States Environmental Protection Agency's coal combustion residual rule (40 CFR Part 257, Subpart D) and ADEM Admin. Code Ch. 335-13-15 under the supervision of a licensed professional engineer in the State of Alabama. As such, I certify that the information contained herein is true and accurate to the best of my knowledge.

Rolf J. Syl. f. TE 1/31/2021

Robert F. Singleton, III Geologist Date

Sug Metstreen Professional & English & Whether Street & Constitution of the Constituti

1/31/2021

Date

Gregory Whetstone, PE

AL Registered Professional Engineer No. 27885

#### **EXECUTIVE SUMMARY**

In accordance with the United States Environmental Protection Agency (EPA) coal combustion residual (CCR) rule (40 CFR Part 257, Subpart D) and the State of Alabama Department of Environmental Management (ADEM) Admin. Code Ch. 335-13-15, this 2020 Semi-Annual Groundwater Monitoring and Corrective Action Report has been prepared to document 2020 semi-annual assessment groundwater monitoring activities at the Plant Gorgas Gypsum Pond and to satisfy the requirements of § 257.90(e) and ADEM Admin. Code r. 335-13-15-.06(1)(f). Semi-annual assessment monitoring and associated reporting for Plant Gorgas Gypsum Pond is performed in accordance with the monitoring requirements § 257.90 through § 257.95 and ADEM Admin. Code r. 335-13-15-.06(1) through r. 335-13-15-.06(6).

The CCR unit began the monitoring period in assessment monitoring pursuant to § 257.95 and ADEM Admin. Code r. 335-13-15-.06(6). Statistically significant increases (SSI) of Appendix III constituents over background were identified in the results of the first detection monitoring event and assessment monitoring was initiated in January 2018. Statistically significant levels (SSL) of Appendix IV parameters above groundwater protection standards (GWPS) were identified while in assessment monitoring. Consequently, an assessment of corrective measures (ACM) was initiated on January 13, 2019 and completed on June 12, 2019 according to the requirements of § 257.96, ADEM Admin. Code r. 335-13-15-.06(7), and ADEM Administrative Order AO 18-096-GW.

The following summarizes results and activities conducted during the first and second semi-annual monitoring events of 2020:

- Submitted the Semi-Annual Progress Report for Groundwater Delineation Activities on March 30, 2020.
- Submitted the revised Groundwater Monitoring Plan on April 15, 2020; responded to ADEM comments and resubmitted the Groundwater Monitoring Plan on August 24, 2020.
- Conducted the installation, development, and sampling of Phase III delineation wells and additional Site piezometers in May through August 2020.
- Submitted the Semi-Annual Remedy Selection and Design Progress Report on June 8, 2020.
- Submitted 2020 Semi-Annual Groundwater Monitoring and Corrective Action Report on July 31, 2020.
- Submitted Semi-Annual Progress and Groundwater Delineation Report on September 30, 2020.

- Continued the evaluation of monitored natural attenuation (MNA) and geochemical manipulation as
  potential groundwater remediation technologies for the Site as described in the Semi-Annual Remedy
  Selection and Design Progress Reports for the Assessment of Corrective Measures submitted in June
  and December 2020.
- Submitted the Semi-Annual Remedy Selection and Design Progress Report on December 12, 2020.
- Pursuant to 40 CFR 257.90(e)(6), Executive Summary Table Monitoring Period Summary, describes the status of groundwater monitoring and corrective action during the monitoring period for this report.

The CCR unit concluded the monitoring period in assessment monitoring, and Alabama Power Company (APC) is evaluating potential groundwater remedies identified in the Assessment of Corrective Measures (ACM) report submitted to ADEM in June 2019. The following monitoring-related activities are planned for the CCR Unit during the first 2021 semi-annual monitoring period:

- Collect additional data to further evaluate remedies selected as feasible for the remediation of lithium as described in the ACM.
- Perform a conceptual-level feasibility study of potentially viable corrective actions (January to June 2021).
  - o Show where the viable corrective actions could be applied on Site maps and on geologic sections.
  - Compare Site-specific corrective actions to the evaluation criteria in the CCR Rule, with emphasis
    on deficiencies that could eliminate a corrective action from further consideration.
  - o Determine how corrective actions could be integrated with pond closure.
  - o Determine data gaps and develop plans to collect additional data as needed.
- Submit the next Semi-Annual Progress Report to ADEM by March 30, 2021.
- Submit the next Semi-Annual Remedy Selection and Design Progress Report by June 12, 2021.
- Conduct the next semi-annual assessment monitoring event in the Spring of 2021 and submit the annual groundwater monitoring and corrective action report summarizing the findings to ADEM by July 31, 2021.

## Executive Summary Table. Monitoring Period Summary Plant Gorgas - Gypsum Pond

|                                                  | oring Inintiated: January 15, 2018                                                   |                 |  |  |  |
|--------------------------------------------------|--------------------------------------------------------------------------------------|-----------------|--|--|--|
| Monitoring Period: January 1 - December 31, 2020 |                                                                                      |                 |  |  |  |
| Beginning Status:                                | Assessment                                                                           |                 |  |  |  |
| Ending Status:                                   | Assessment                                                                           |                 |  |  |  |
|                                                  |                                                                                      |                 |  |  |  |
|                                                  | Statistical Analysis Results *                                                       |                 |  |  |  |
|                                                  | Appendix III SSIs                                                                    |                 |  |  |  |
| Parameter                                        | Wells                                                                                |                 |  |  |  |
| Boron                                            | GS-GSA-MW-3, GS-GSA-MW-4, GS-GSA-MW-8                                                |                 |  |  |  |
| Calcium                                          | GS-GSA-MW-3, GS-GSA-MW-8                                                             |                 |  |  |  |
| Chloride                                         | GS-GSA-MW-3, GS-GSA-MW-4, GS-GSA-MW-8                                                |                 |  |  |  |
| Fluoride                                         | NA                                                                                   |                 |  |  |  |
| рН                                               | MW-1 (upgradient)                                                                    |                 |  |  |  |
| Sulfate                                          | NA                                                                                   |                 |  |  |  |
| TDS                                              | NA                                                                                   |                 |  |  |  |
|                                                  | Appendix IV SSLs                                                                     |                 |  |  |  |
| Parameter                                        | Wells                                                                                |                 |  |  |  |
| Lithium                                          | GS-GSA-MW-3                                                                          |                 |  |  |  |
| * See the attached                               | ed report for further details regarding statistical exceedances and alternate source | demonstrations. |  |  |  |
|                                                  | Assessment of Corrective Measures & Groundwater Remedy                               |                 |  |  |  |
|                                                  | Assessment of Corrective Measures                                                    |                 |  |  |  |
|                                                  | Date Initiated: January 13, 2019                                                     |                 |  |  |  |
|                                                  | Date Complete: June 12, 2019                                                         |                 |  |  |  |
|                                                  | Public Meeting Date: July 1, 2020                                                    |                 |  |  |  |
|                                                  | Groundwater Remedy                                                                   |                 |  |  |  |
|                                                  | Selected During Period: No                                                           |                 |  |  |  |
|                                                  | Selection Date: Not yet selected                                                     |                 |  |  |  |
| Initiated During Period: No                      |                                                                                      |                 |  |  |  |
| Ongoing During Period: No                        |                                                                                      |                 |  |  |  |

#### TABLE OF CONTENTS

| EXE | ECUTIVE                                              | E SU  | MMARY                                         | i  |
|-----|------------------------------------------------------|-------|-----------------------------------------------|----|
| 1.0 | Intro                                                | ducti | ion                                           | 1  |
| 2.0 | Site 1                                               | ocat  | ion and description                           | 2  |
| 2.  | .1 Site                                              | e Geo | ology and Hydrogeology                        | 2  |
|     | 2.1.1                                                | Ph    | ysical Setting                                | 2  |
|     | 2.1.2                                                |       | eology and Hydrogeology                       |    |
|     | 2.1.3                                                |       | ttsville Formation – Rock Chemistry           |    |
|     | 2.1.4                                                |       | ppermost Aquifer                              |    |
|     | 2.1.5                                                | Flo   | ow Interpretation                             | 6  |
| 2   | .2 Gro                                               | ound  | water Monitoring System                       | 6  |
|     | 2.2.1                                                | Mo    | onitoring Wells                               | 7  |
|     | 2.2.                                                 | 1.1   | Upgradient Wells                              | 7  |
|     | 2.2.                                                 | 1.2   | Downgradient Wells                            | 7  |
|     | 2.2.                                                 | 1.3   | Delineation Wells                             | 7  |
|     | 2.2.                                                 | 1.4   | Piezometers                                   | 8  |
|     | 2.2.                                                 | 1.5   | Monitoring Variance                           | 8  |
|     | 2.2.2                                                | Gr    | oundwater Monitoring History                  | 9  |
|     | 2.2.2                                                | 2.1   | Available Monitoring Data                     | 9  |
|     | 2.2.2                                                | 2.2   | Historical Groundwater Flow                   | 9  |
|     | 2.2.3                                                | Gr    | oundwater Sampling and Analysis               | 10 |
|     | 2.2.3                                                | 3.1   | Sampling Event Summary                        | 10 |
|     | 2.2.3                                                | 3.2   | Groundwater Sample Collection                 | 10 |
|     | 2.2.3                                                | 3.3   | Sample Preservation and Handling              | 11 |
|     | 2.2.3                                                | 3.4   | Chain of Custody                              | 11 |
|     | 2.2.3                                                | 3.5   | Laboratory Analysis                           | 11 |
| 3.0 | Grou                                                 | ndw   | ater Data Evaluation                          | 12 |
| 3.  | .1 Gro                                               | ound  | water Elevation Data Evaluation               | 12 |
| 3.  | 3.2 Horizontal Groundwater Flow Velocity Calculation |       |                                               |    |
| 4.0 |                                                      |       | on of Groundwater Quality Data                |    |
| 4.  | .1 Dat                                               | ta Va | alidation – Quality Assurance/Quality Control | 14 |
|     |                                                      |       | cal Methodology and Tests                     |    |
|     |                                                      |       |                                               |    |

|     | 4.2.1                        | Appendix III Evaluation                       | 15 |
|-----|------------------------------|-----------------------------------------------|----|
|     | 4.2.2                        | Appendix IV Evaluation                        | 15 |
| 4   | .3 Stat                      | istical Exceedances                           | 16 |
|     | 4.3.1                        | Appendix III Constituents                     | 17 |
|     | 4.3.2                        | Appendix IV Constituents                      | 17 |
|     | 4.3.2                        | 2.1 Semi-Annual Groundwater Monitoring Events | 17 |
| 5.0 | .0 Monitoring Program Status |                                               | 19 |
| 6.0 | Summary and Conclusions      |                                               |    |
| 7.0 | References                   |                                               | 24 |

#### **FIGURES**

Appendix D

Appendix E

Leachate Data

| Figure 1      | Site Location Map                                                                  |  |
|---------------|------------------------------------------------------------------------------------|--|
| Figure 2      | Site Topographic Map                                                               |  |
| Figure 3      | Site Geologic Map                                                                  |  |
| Figure 4A     | Geologic Cross-Section A-A'                                                        |  |
| Figure 4B     | Geologic Cross-Section B-B'                                                        |  |
| Figure 4C     | Geologic Cross-Section C-C'                                                        |  |
| Figure 4D     | Geologic Cross-Section D-D'                                                        |  |
| Figure 4E     | Geologic Cross-Section E-E'                                                        |  |
| Figure 5      | Monitoring Well Location Map                                                       |  |
| Figure 6A     | Potentiometric Surface Contour Map (February 3, 2020)                              |  |
| Figure 6B     | Potentiometric Surface Contour Map – Vertical Delineation Wells (February 3, 2020) |  |
| Figure 7A     | Potentiometric Surface Contour Map – Water Table (August 3, 2020)                  |  |
| Figure 7B     | Potentiometric Surface Contour Map – Mid Interval (August 3, 2020)                 |  |
| Figure 7C     | Potentiometric Surface Contour Map – Deep Interval (August 3, 2020)                |  |
| <b>FABLES</b> |                                                                                    |  |
| Table 1       | Groundwater Monitoring Network Details                                             |  |
| Table 2       | Monitoring Parameters and Reporting Limits                                         |  |
| Table 3       | Groundwater Elevation Summary                                                      |  |
| Table 4       | Horizontal Groundwater Flow Velocity Calculations                                  |  |
| Table 5       | Relative Percent Difference Calculations                                           |  |
| Table 6       | Summary of Background Levels and Groundwater Protection Standards                  |  |
| Table 7       | First Semi-Annual Monitoring Event Analytical Summary                              |  |
| Table 8       | Second Semi-Annual Monitoring Event Analytical Summary                             |  |
| APPENDICE     | ES                                                                                 |  |
| Appendix A    | Groundwater Analytical Data                                                        |  |
| Appendix B    | Laboratory and Field Records                                                       |  |
| Appendix C    | Statistical Analysis                                                               |  |

MNA Evaluation – Geochemical Lab Data

#### ABBREVIATIONS

ACM Assessment of Corrective Measures
ADEM Alabama Department of Environmental

AL Alabama

APC Alabama Power Company
APCEL APC Environmental Laboratory
ASD Alternate Source Demonstration

ASTM Alabama Power Company Environmental

BGS below ground surface
CCR Coal Combustion Residual
CEC cation exchange capacity
CFR Code of Federal Regulations

COC chain of custody
COI constituents of interest
CSM conceptual site model
DO dissolved oxygen

EPA United States Environmental Protection Agency

ft feet

GW groundwater

GWPS Groundwater Protection Standard(s)

LCL Lower Confidence Limit(s)

m meter

mg/L milligram per liter

MNA monitored natural attenuation

MSL mean sea level

MW- denotes "Monitoring Well"
NCDS National Coal Data System

NELAP National Environmental Laboratory

NTU nephelometric turbidity unit
ORP oxidation reduction potential

pCi/L picocuries per liter
PE Professional Engineer
PG Professional Geologist

PL prediction limits

PQL practical quantitation limit
PVC polymerizing vinyl chloride
QA/QC quality assurance/quality control

RL reporting limit

RPD relative percent difference SEM scanning electron microscopy

SM Standard Method(s)

SSE selective sequential extraction

| SSI | statistically significant increase |
|-----|------------------------------------|
| SSL | statistically significant level    |

TAL Test America, Inc.
TOC top of casing

TDS total dissolved solids

USGS Unites States Geological Survey

UTLs Upper Tolerance Limits

#### 1.0 INTRODUCTION

In accordance with the United States Environmental Protection Agency (EPA) coal combustion residual (CCR) rule (40 CFR Part 257, Subpart D) and the State of Alabama Department of Environmental Management (ADEM) Admin. Code Ch. 335-13-15, this 2020 Annual Groundwater Monitoring and Corrective Action Report has been prepared to document 2020 semi-annual assessment groundwater monitoring activities at the Plant Gorgas Gypsum Pond (Gypsum Pond) and to satisfy the requirements of § 257.90(e) and ADEM Admin. Code r. 335-13-15-.06(1)(f). Semi-annual assessment monitoring and associated reporting for the Gypsum Pond is performed in accordance with the monitoring requirements § 257.90 through § 257.95 and ADEM Admin. Code r. 335-13-15-.06(1) through r. 335-13-15-.06(6).

#### 2.0 SITE LOCATION AND DESCRIPTION

The Alabama Power Company (APC) William Crawford Gorgas Electric Generating Plant (Plant Gorgas) is located in southeastern Walker County, Alabama, approximately 15 miles south of Jasper, at 460 Gorgas Road, Parrish, AL 35580. Plant Gorgas lies in portions of Sections 7, 8, 9, 16, 17, 18, 19, 20, 21, 28, and 29, Township 16 South, Range 6 West and Section 12, 13, and 24, Township 16 South, Range 7 West. Section/Township/Range data are based on visual inspection of USGS topographic quadrangle maps (USGS, 1975; USGS, 1983) and GIS project boundary files provided by SCS.

The Gypsum Pond is located west-northwest of the main plant and to the north of the Black Warrior River. **Figure 1**, **Site Location Map**, depicts the location of the Plant and Gypsum Pond with respect to the surrounding area.

#### 2.1 SITE GEOLOGY AND HYDROGEOLOGY

#### 2.1.1 Physical Setting

Plant Gorgas is in the Black Warrior River basin, an area typified by moderate relief, with river and stream valleys having dendritic drainage patterns. Elevations at the Site range from approximately 260 feet above mean sea level (MSL) near the Mulberry Fork and Baker Creek to over 500 feet above MSL along a northwest-trending ridge approximately 1,000 feet northwest of the plant and in upland areas on the western part of the property. Generally, the land surface slopes from north to south and towards the Mulberry Fork of the Black Warrior River. **Figure 2**, **Site Topographic Map**, provides the topography of the Site.

Two natural surface water bodies drain Plant Gorgas property. Baker Creek flows from northwest to southeast through the central portion of the plant before draining into the Mulberry Fork of the Black Warrior River. Mulberry Fork flows from east to west as it bends around the southern border of the plant property.

#### 2.1.2 Geology and Hydrogeology

Plant Gorgas lies in the Warrior Basin physiographic region (Sapp and Emplaincourt, 1975), a late Paleozoic basin formed as a result of flexure and sediment loading associated with Appalachian and Ouachita orogenies. The bedrock geology is dominated by clastic sedimentary rocks of the Upper Pottsville Formation. Deeper stratigraphy is marked by carbonates, shales, chert, and sandstones of Mississippian to Cambrian in age (Raymond et al., 1988). Plant Gorgas is directly underlain by rocks belonging to the Pratt

Coal Group (Ward II et al., 1989) of the Upper Pottsville Formation. In general, the Pratt Group consists of mudstone, shale, fine-grained sandstone, and interbedded coal in fining-upward sequences. The Pratt Coal Group generally contains three named coal seams, each separated by 25 to 50 feet of intra-burden. In descending order, they are the Pratt, Nickel Plate, and American coal seams. Locally, Pratt Coal Group strata gently dip (0.5-1.0 degrees) to the south and south-southwest. **Figure 3**, **Site Geologic Map**, illustrates the surface geology at the Site and neighboring areas.

Strip mining was conducted over a large portion of the area down to the American seam. As a result, the overburden around the Gypsum Pond is dominated by backfilled mine overburden (mine spoils) and is characterized by weathered shale and sandstone boulders with lenses of fine sediments and small amounts of coal fragments and coarse sediments. Geologic logs generated during various on-site investigations indicate that the depth to rock varies significantly, ranging from as little as 20 feet (un-mined areas) to as much as 155 feet below ground surface (BGS). Beneath the Gypsum Pond, subsurface geology is likely characterized by thin remnants of mine backfill and un-mined portions of the Pratt Coal Group consisting predominantly of mudstone and sandstone. **Figures 4A-4E**, **Geologic Cross-Sections**, illustrate the geologic layering beneath the Site.

Two water-bearing zones are present beneath the Site: (1) the mine overburden/top-of-rock interface, and (2) the underlying Pottsville aquifer system. The mine overburden/top of rock interface is usually a thin zone of saturation overlying rock and is not laterally continuous across all portions of the Site. Depth to this zone generally ranges from 100 to 115 feet beneath the Site.

The Pottsville aquifer system is the primary aquifer in Walker County. Although on a regional scale there are other aquifer systems in the vicinity of Plant Gorgas, the Pottsville aquifer system is the most significant. The nearest exposure of the Valley and Ridge aquifer system occurs in central Jefferson County, approximately 25 miles east of Plant Gorgas. The nearest exposure of the Tuscaloosa aquifer system occurs in northwesternmost Walker County, approximately 30 miles northwest of Plant Gorgas. The Tuscaloosa aquifer system is not considered a primary source of groundwater in Walker County (Stricklin, 1989).

The Pottsville aquifer system is composed primarily of Pennsylvanian-aged sandstones, shales, conglomerates, and coal. Groundwater flow primarily occurs through coal seams or rock fabric discontinuities such as bedding planes and fractures. Groundwater in the Pottsville aquifer system is commonly regarded as confined due to large permeability contrasts within the aquifer (Stricklin, 1989).

Recharge to the Pottsville aquifer system is largely through infiltration of precipitation and to a lesser extent, downward seepage of river water at hydraulically favored locations. Recharge is accommodated largely by fracture-enhanced permeability. Major recharge zones to the Pottsville aquifer system are related to major geologic structures such as large fault zones or along systematic fold axes (Pashin, 2007). Although the Pottsville aquifer system is the primary aquifer in Walker County, groundwater use is relatively limited. According to O'Rear et al., 1972, groundwater use accounted for approximately 15% of total water use in Walker County in 1966. By 2005, groundwater use had declined to less than 1% of total water use in Walker County, or 1.14 million gallons per day (mgd) of groundwater out of a total water use of 969.5 mgd (USGS, 2005).

#### 2.1.3 Pottsville Formation – Rock Chemistry

Published data indicate that elevated arsenic concentrations occur in the Southern Appalachian coal strata where Site monitoring wells are screened. Numerous publications document elevated trace metals in Pottsville and Pottsville coal strata (Kolker et al., 1999, Diehl et al., 2004, Goldhaber et al., 2002). For instance, according to the USGS National Coal Data System (NRCDS), the average concentration of arsenic (72 parts per million (ppm)) in the Pottsville coal strata is three times the average of other coal basins (Bragg et al., 1997). Of the U.S. coal analyses for arsenic where there are at least three standard deviations above the mean, approximately 90% are from the coal fields of Alabama (Diehl et al., 2004). The United States Geological Survey (USGS) maintains an inventory of coal quality that includes trace metal concentration data. It shows arsenic concentrations range from 1.08 milligrams per kilograms (mg/kg) to 611.0 mg/kg with a mean of 47 mg/kg for Walker County (USGS Coal Quality Database).

Similarly, 75 Pratt Coal Group samples from the Pratt, Nickel Plate, and American coal seams analyzed by the USGS and inventoried in the USGS National Coal Data System (NRCDS) showed the following ranges of other trace metals:

- Boron 6.3 to 83.6 ppm (average of 35 ppm).
- Cobalt 1.6 to 19.8 ppm (average of 8 ppm).
- Molybdenum 0.8 to 22.2 ppm (average of 5 ppm).
- Lithium 1.4 to 128 ppm (average of 28 ppm).

Bulk geochemical analyses of Pottsville stratigraphy from the Site and of the Pratt and American coal seams from Plant Gorgas were conducted on recovered core. The data reflect arsenic concentrations between 4.9 mg/kg and 32.6 mg/kg in siltstone/mudstones and concentrations of 28.9 and 384.4 mg/kg in two coal seams analyzed. The average arsenic concentration was roughly 34 mg/kg in these samples tested, which is in good agreement with data observed in the USGS Coal Quality Database.

Similarly, 17 Pratt Coal Group samples collected from the Site provided the following ranges of other trace metals:

- Arsenic -0 to 384.1 ppm (average of 43.8 ppm).
- Boron 20.8 to 114 ppm (average of 49 ppm).
- Cobalt 2.79 to 31.2 ppm (average of 18.6 ppm).
- Molybdenum 0 to 4.38 ppm (average of 1.06 ppm).

Trace metal enrichment and pyrite origins have been linked to post-depositional (post-coalification) deformation and trace metal laden hydrothermal fluids upwelling during Alleghanian tectonism. Diehl et al., (2004) and Goldhaber et al., (2002) describe "high-pyrite" coals as a source of elevated arsenic and other trace metals. In these publications, pyrite occurrence is observed within coal banding, woody cellular fill structures, mineral overgrowths and structural fills such as veins and microfaults.

#### 2.1.4 Uppermost Aquifer

The principal aquifer system from a local and regional perspective is the Pottsville aquifer system. The Pottsville aquifer system is the uppermost aquifer beneath the Site. In the Pottsville aquifer system, two types of secondary porosity were observed to yield groundwater: (1) fractured intervals and (2) bedding plane weaknesses associated with fissile, siderite-banded, iron-claystone sequences. Fractured intervals are sporadic across the Site and tend to occur with greater density in the upper 100 feet of rock. The upper portions of the Pottsville aquifer system beneath the proposed disposal facilities indicate unconfined to confined, fractured, and extremely anisotropic conditions. The Pottsville aquifer system functions as a series of confined to semi-confined water producing zones (aquifers) because of the large permeability contrasts within the strata (Stricklin, 1989). Depth to groundwater varies significantly across the Site and is wholly dependent on encountering a fractured interval or zone of fissile iron-claystone.

Monitoring wells installed at the mine overburden/top of rock interface monitor the quality of water passing to the Pottsville Formation. This water quality itself can be highly variable and enriched in trace metals owing to the heterogeneity of mine backfill deposits and mineralogy (e.g., clay minerals and sulfides). Based on published data, groundwater quality produced from the Pottsville Formation can be characterized by high concentrations of sulfate, iron, and other trace metals (Jennings and Cook, 2010). Trace metals in Pottsville Formation groundwater are associated with sulfide minerals contained in organic-rich strata (e.g., mudstones and coal seams) and siliceous/carbonate healed fractures and joints. Trace element enrichment is likely the result of migrating hydrothermal fluids generated during the late Paleozoic Allegheny orogeny (Diehl et al., 2004). Arsenic, antimony, molybdenum, selenium, copper, thallium, and mercury are elevated in Warrior Basin coal strata (Goldhaber et al., 2002).

#### 2.1.5 Flow Interpretation

Groundwater flow at the Site is a subdued replica of the natural topography where gravity is the dominant force driving flow. Groundwater flows from higher topographic elevations north of the Site to lower topographic elevations to the south and generally towards the Mulberry Fork of the Black Warrior River. Mine spoil layering and complex Pottsville Formation lithofacies contribute to the vertical and horizontal heterogeneity within the aquifer system and overlying saturated mine spoils. This heterogeneity focuses groundwater flow along more permeable pathways, such as parallel to coal seams and bedding plains, or along vertical or sub-vertical discontinuities in the rock fabric. A potentiometric surface map for the Site is presented in a later section.

#### 2.2 GROUNDWATER MONITORING SYSTEM

Pursuant to § 257.91 and ADEM Admin. Code r. 335-13-15-.06(2), Plant Gorgas has installed a groundwater monitoring system to monitor groundwater within the uppermost aquifer. The certified groundwater monitoring system for the Plant Gorgas Gypsum Pond is designed to monitor groundwater passing the waste boundary of the CCR unit within the uppermost aquifer. Wells were located to serve as upgradient or downgradient monitoring locations based on groundwater flow direction as determined by the potentiometric surface elevation contour maps. All groundwater monitoring wells were designed and constructed using "Design and Installation of Groundwater Monitoring Wells in Aquifers," ASTM Subcommittee D18.21, as a guideline.

#### 2.2.1 Monitoring Wells

Groundwater bearing zones are not easily found at the site. A total of 30 well or exploratory boring locations were attempted around the perimeter of the Gypsum Pond to depths between 26 and 307 feet BGS. Geophysical, hydrogeophysical, and purging were employed at locations to further assess hydrogeological conditions and identify water-bearing zones. The groundwater monitoring network comprises 7 monitoring wells and 11 piezometers. Monitoring well locations are presented on **Figure 5**, **Monitoring Well Location Map. Table 1**, **Groundwater Monitoring Well Network Details**, summarizes the monitoring well construction details and design purpose for the Plant Gorgas Gypsum Pond.

#### 2.2.1.1 Upgradient Wells

Attempts at installing upgradient well locations west, north, and east of the Gypsum Pond were unsuccessful because water-bearing zones were not encountered. Therefore, four locations upgradient of the nearby Plant Gorgas landfills were selected to provide background groundwater quality data. These locations were selected based on the facts that the wells are proximal to the site, have not been affected by a CCR unit release, and are installed in similar geology. Each of these sites is located within the same coal group sequence of the Pottsville and contains backfilled mine material overburden. Monitoring well locations MW-1, MW-2, MW-3, and MW-4 serve as upgradient locations for the Gypsum Pond.

#### 2.2.1.2 Downgradient Wells

The absence of water-bearing zones at the site during site investigation influenced the number and location of downgradient monitoring wells. Monitoring well locations GS-GSA-MW-3, GS-GSA-MW-4, and GS-GSA-MW-8 are used as downgradient locations for the Gypsum Pond. The three downgradient monitoring well locations were installed in the valley south of the Gypsum Pond and at lower elevations. These locations capture groundwater draining through the valley occupied by the Gypsum Pond. Because the valley is narrow from west to east (approximately 800 to 1,200 feet across), these wells intercept preferential draining for the site and are sufficient to monitor groundwater downgradient of the Gypsum Pond.

#### 2.2.1.3 Delineation Wells

Pursuant to § 257.95(g)(1), ADEM Admin. Code r. 335-13-15-.06(6)(g)2., and AO 18-096-GW, additional wells were installed to characterize the horizontal and vertical extent of groundwater protection standard (GWPS) exceedances identified during assessment monitoring. Three phases of field investigation have

occurred since late 2018 to explore potential impacts to groundwater. Field work for Phase III efforts concluded in early July 2020.

Delineation wells are identified on **Figure 5**. All delineation wells are sampled semi-annually as part of the semi-annual assessment groundwater monitoring program. **Table 1 Groundwater Monitoring Well Network Details**, summarizes construction details.

#### 2.2.1.4 Piezometers

Horizontal delineation well GS-GSA-MW-10H was converted from delineation location to piezometer. This well location did not produce sufficient groundwater yield for well development and low-flow sampling methods. Locations GS-GSA-PZ-2A, GS-GSA-MW-1, and GS-GSA-MW-2 recently changed to water-level only piezometers for the purpose of better depicting groundwater flow direction. These locations were installed in 2015 but did not produce sufficient groundwater yield for well development or low-flow sampling methods. Locations GS-GSA-PZ-16 through GS-GSA-PZ-22 were installed in May 2020 to be used as water-level only piezometers, and were sampled in August 2020 as part of the second semi-annual sampling event. Piezometers GS-GSA-PZ-17 though GS-GSA-PZ-22 were installed in the vicinity of a previously unknown strip-mined coal storage area, and further historical use research of the area is ongoing.

Piezometers are presented on **Figure 5** and well construction details are summarized in **Table 1**.

#### 2.2.1.5 Monitoring Variance

The groundwater monitoring program at the Site is operating under a Variance granted by ADEM on April 15, 2019, to conform State monitoring requirements under the CCR rule to Federal requirements. The variance:

- 1. Retains boron as an Appendix III detection monitoring parameter and excludes it as an Appendix IV assessment monitoring parameter.
- 2. authorizes the use of Federally-published GWPS of 0.006 milligrams per liter (mg/L) for cobalt, 0.015 mg/L for lead, 0.040 mg/L for lithium, and 0.100 mg/L for molybdenum in lieu of background where those levels are greater than background levels.

#### 2.2.2 Groundwater Monitoring History

Background groundwater samples were collected over the period of August 2016 to June 2017. Semi-annual groundwater monitoring was initiated at the Gypsum Pond in August 2017.

#### 2.2.2.1 Available Monitoring Data

In accordance with § 257.94(b) and ADEM Admin. Code r. 335-13-15-.06(5)(b), eight independent samples were collected from each background and downgradient well and analyzed for the constituents listed in Appendix III and IV prior to October 17, 2017. Background sampling was performed over the period of August 2016 to June 2017. Groundwater sampling for the first detection monitoring event after the background period was performed in August 2017.

Based on results of the 2017 Annual Groundwater and Corrective Action Monitoring Report, APC initiated an assessment monitoring program on January 15, 2018. Pursuant to 40 CFR § 257.95(a) and ADEM Admin. Code r. 335-13-15-.06(6)(a), monitoring wells were sampled for all Appendix IV parameters in February 2018, within 90 days of initiating the assessment monitoring program. Semi-annual assessment sampling continues to the present.

Tables summarizing analytical data from all previous groundwater monitoring events are included within **Appendix A, Groundwater Analytical Data**.

#### 2.2.2.2 Historical Groundwater Flow

Historical potentiometric data from the site show that groundwater flow generally is a subdued representation of topography. Groundwater flows from higher topographic elevations north and east of the Gypsum Pond to lower topographic elevations to the south. Mine spoil layering and complex Pottsville Formation lithofacies contribute to the vertical and horizontal heterogeneity present within the aquifer system and overlying saturated mine spoils. This heterogeneity focuses groundwater flow along more permeable pathways, such as parallel to coal seams and bedding plains, or along vertical or sub-vertical discontinuities in the rock fabric. Thus, groundwater flow paths across the Site can be tortuous.

Groundwater elevations fluctuate in response to rainfall. Seasonal variations of 2 to 20 feet are typical at the site. These fluctuations are consistent in monitoring wells across the site indicating a response to rainfall events.

#### 2.2.3 Groundwater Sampling and Analysis

As required by § 257.90(e) and ADEM Admin. Code r. 335-13-15-.06(1)(f), the following describes monitoring-related activities performed during the preceding year. The Gypsum Pond entered an assessment monitoring program pursuant to 40 CFR § 257.95(a) and ADEM Admin. Code r. 335-13-15-.06(6)(a) in January 2018. Statistical evaluations of 2018 assessment monitoring data identified SSLs of Appendix IV constituents above the GWPS, and the Site performed an Assessment of Corrective Measures. Pursuant to § 257.95(g)(1), ADEM Admin. Code r. 335-13-15-.06(6)(g)2., and AO 18-096-GW, delineation wells were installed to characterize the horizontal and vertical extent of GWPS exceedances identified during assessment monitoring. These wells, along with the compliance monitoring well network, are sampled semi-annually.

#### 2.2.3.1 Sampling Event Summary

Semi-annual Assessment Monitoring sampling events occurred in February 2020 and August 2020. Phase III delineation wells and select piezometers were sampled for the first time in July 2020. These locations were sampled independently of other compliance and delineation wells (Phase I and Phase II delineation wells) but were added to the routine semi-annual sampling schedule beginning with the second 2020 semi-annual monitoring event.

Groundwater samples, at a minimum, are analyzed for the full list of Appendix III and Appendix IV parameters during each assessment monitoring event. Analytical data is included as **Appendix B**, **Laboratory and Field Records**, in accordance with the requirements of § 257.90(e)(3) and ADEM Admin. Code r. 335-13-15-.06(1)(f)3.

#### 2.2.3.2 Groundwater Sample Collection

Prior to recording water levels and collecting samples, each well was opened and allowed to equilibrate to atmospheric pressure. Within a 24-hour period, depths to groundwater were measured to the nearest 0.01 foot with an electronic water level indicator with depth referenced from the top of the inner PVC well casing. Groundwater elevations were calculated by subtracting the depth to groundwater from surveyed top-of-casing (TOC) elevations.

Groundwater samples were collected from monitoring wells using low-flow sampling procedures in accordance with § 257.93(a) and ADEM Admin. Code r. 335-13-15-.06(4)(a). All monitoring wells at Plant Gorgas are equipped with a dedicated pump. Monitoring wells were purged and sampled using low-flow sampling procedures. In this procedure, field water quality parameters (pH, turbidity, conductivity,

and dissolved oxygen) are measured to determine stabilization and groundwater samples are collected when the following stabilization criteria are met:

- 0.2 standard units for pH.
- 5% for specific conductance.
- 0.2 Mg/L or 10% for DO > 0.5 mg/l (whichever is greater).
- Turbidity measurements less than 5 NTU.
- Temperature and ORP record only, no stabilization criteria.

During purging and sampling, a SmarTroll instrument was used to monitor and record field parameters. Once stabilization was achieved, samples were collected and submitted to the laboratory following standard chain-of-custody (COC) protocol. Field data recorded in support of groundwater sampling activities for the monitoring events are included in **Appendix B, Laboratory and Field Records**.

#### 2.2.3.3 Sample Preservation and Handling

Groundwater samples were collected within the designated size and type of laboratory-supplied containers required for specific parameters. Sample bottles were pre-preserved by the laboratory.

Where temperature control was required, samples were placed in an ice-packed cooler and cooled to less than 6 °C immediately after collection. Blue ice or other cooling packs were not used for cooling samples. An ice-packed cooler was on hand when samples were collected.

#### 2.2.3.4 Chain of Custody

A chain-of-custody (COC) record was used to track sample possession from the time of collection to the time of receipt at the laboratory. All samples were handled under strict COC procedures beginning in the field. COC records are included with the analytical laboratory reports included in **Appendix B**.

#### 2.2.3.5 Laboratory Analysis

Laboratory analyses were performed by the APC Environmental Laboratory (APCEL) in Calera, Alabama or Eurofins TestAmerica of Pensacola, Florida and St. Louis, Missouri. Both APCEL and Eurofins TestAmerica are accredited by National Environmental Laboratory Accreditation Program (NELAP) and maintain a NELAP certification for all parameters analyzed. **Table 2, Monitoring Parameters and Reporting Limits**, lists assessment monitoring constituents analyzed at the Site. Groundwater data and COC records for the monitoring events are presented in **Appendix B**.

#### 3.0 GROUNDWATER DATA EVALUATION

#### 3.1 GROUNDWATER ELEVATION DATA EVALUATION

During the February 2020 sampling event, depths to water in the downgradient and delineation wells ranged from 6.73 and 121.02 feet below top of casing (ft BTOC), and groundwater elevations ranged from 372.06 to 256.29 feet above mean sea level (ft MSL). **Figure 6A, Potentiometric Surface Contour Map** (**February 3, 2020**) and **Figure 6B, Potentiometric Surface Contour Map** – **Vertical Delineation Wells** (**February 3, 2020**) depict groundwater elevations and inferred groundwater flow direction from higher elevation to lower.

During the August 2020 sampling event, depths to water in the downgradient and delineation wells ranged from 6.81 and 126.31 ft BTOC, and groundwater elevations ranged from 256.21 to 429.97 ft MSL. Figure 7A, Potentiometric Surface Contour Map – Water Table (August 3, 2020), Figure 7B, Potentiometric Surface Contour Map – Mid Interval (August 3, 2020) and Figure 7C, Potentiometric Surface Contour Map – Deep Interval (August 3, 2020) depict groundwater elevations and inference groundwater flow direction from higher elevation to lower elevations.

As shown on **Figures 6A**, **6B**, **7A**, **7B**, and **7C**, groundwater appears to flow towards the narrow valley occupied by the Gypsum Pond from the north, west, and east of the Site. Groundwater in the valley flows southward towards the Mulberry Fork of the Black Warrior River. All available groundwater elevation data recorded since 2016 have been tabulated and included in **Table 3**, **Groundwater Elevation Summary**.

#### 3.2 HORIZONTAL GROUNDWATER FLOW VELOCITY CALCULATION

Because the geology at the Gypsum Pond is not homogeneous or isotropic with respect to groundwater flow, groundwater velocity calculations using derivations of Darcy's Law, or other methods, will not fully represent the spatial variability across the site. Groundwater flow velocity calculations are provided as a general estimate of groundwater flow velocity at the site based on available information and assumptions described below.

The hydrogeologic characteristics of mine spoils and fractured rock can produce preferential groundwater flow paths, so groundwater velocity is much more variable than in uniform porous media such as sand. These flow paths correspond to more permeable lenses in mine spoil and fractures, zones of fracture concentration, bedding planes, and other discontinuities in the rock. Therefore, groundwater flow velocity at the Site will be highly variable.

Slug testing provided horizontal hydraulic conductivities for the uppermost aquifer between  $5.11 \times 10^{-3}$  centimeters per second (cm/sec) and  $2.47 \times 10^{-4}$  cm/sec. The average hydraulic conductivity value used in the calculations is  $2.83 \times 10^{-3}$  cm/sec or 8.01 ft/day. An estimated effective porosity of 0.15 is used in the flow rate calculations. The hydraulic gradient was calculated and shown on **Table 4**, **Horizontal Groundwater Flow Velocity Calculations**.

An estimate of the horizontal groundwater flow velocity was calculated using the commonly-used derivative of Darcy's Law:

$$V = \frac{K * i}{n_e}$$

Where:

V =Groundwater flow velocity  $\left(\frac{feet}{day}\right)$ 

 $K = \text{Average permeability of the aquifer } \left(\frac{feet}{day}\right)$ 

i = Horizontal hydraulic gradient

 $n_e$ = Effective porosity

**Table 4** presents the estimated horizontal flow velocity calculated using groundwater elevation data from the sampling events in 2020. Darcy's Law provides an approximate horizontal flow velocity because, as stated above, the Site is not homogeneous or isotropic with respect to groundwater flow.

#### 4.0 EVALUATION OF GROUNDWATER QUALITY DATA

#### 4.1 DATA VALIDATION – QUALITY ASSURANCE/QUALITY CONTROL

During each sampling event, quality assurance/quality control samples (QA/QC) were collected at a rate of one sample per every group of 10 well samples. Equipment blank and field blank samples were also collected during each sampling event.

Analytical precision is measured through the calculation of the relative percent difference (RPD) of two data sets generated from a similar source. Here, a comparison of results between samples and field duplicate samples are used as measure of laboratory precision. Where field duplicates are collected, the RPD between the sample and duplicate sample is calculated as:

$$RPD = \frac{Conc1 - Conc2}{(Conc1 + Conc2)/2}$$

Where:

RPD = Relative Percent Difference (%)

Conc1 = Higher concentration of the sample or field duplicate

Conc2 = Lower concentration of the sample or field duplicate

Where the relative percent difference is below 20%, the difference is considered acceptable and no further action is needed. Where an RPD is greater than 20%, further evaluation is required to attempt to determine the cause of the difference and potentially result in qualified data. **Table 5, Relative Percent Difference Calculations,** provides the relative percent differences for sample and sample duplicates during 2020 sampling events. All RPDs were below 20% for the most recent sampling event. Equipment blanks and field blanks were all non-detect for the most recent sampling event. Therefore, no data validation qualifiers were applied to data received.

#### 4.2 STATISTICAL METHODOLOGY AND TESTS

The Sanitas Groundwater statistical software is used to perform the statistical analyses. Sanitas is a decision support software package that incorporates the statistical tests required of Subtitle C and D facilities by EPA regulations. The analysis complies with the federal rule for the Disposal of Coal Combustion Residuals from Electric Utilities (CCR Rule, 2015) as well as with the USEPA Unified Guidance (2009).

#### 4.2.1 Appendix III Evaluation

Intrawell prediction limits, combined with a 1-of-2 verification strategy, were constructed for pH, sulfate, and TDS to determine whether there has been an SSI over background groundwater quality. Interwell prediction limits, combined with a 1-of-2 verification strategy were constructed for boron, calcium, chloride, and fluoride. Intrawell prediction limits use screened historical data within a given well to establish limits for parameters at that well. The most recent sample from the same well is compared to its respective background to identify SSIs over background. Interwell prediction limits pool upgradient well data to establish a background limit for an individual constituent. The most recent sample from each downgradient well is compared to the background limit to identify SSIs.

Groundwater Stats Consulting demonstrated that these test methods were appropriate in the October 2017 Statistical Analysis Plan, which was updated in the September 2019 data screening evaluation. Time series plots were used to screen proposed background data for suspected outliers, or extreme values that would result in limits that are not conservative from a regulatory perspective. Suspected outliers are formally tested using Tukey's box plot method when applicable, and when identified, are flagged in the computer database and deselected prior to construction of statistical limits.

The following adjustments are also applicable to the statistical analysis at the site:

- No statistical analyses are required on wells and analytes containing 100% non-detects (EPA Unified Guidance, 2009, Chapter 6).
- When data contain <15% non-detects in the background, simple substitution of one-half the reporting limit is used in the statistical analysis. The reporting limit used for non-detects is the practical quantitation limit (PQL) as reported by the laboratory.
- When data contain between 15-50% non-detects, the Kaplan-Meier non-detect adjustment is applied to the background data.
- Non-parametric prediction limits are used on data containing greater than 50% non-detects.

#### 4.2.2 Appendix IV Evaluation

When in assessment monitoring, Appendix IV constituents are sampled semi-annually, and concentrations are compared to the GWPS. Following the Unified Guidance, spatial variation for Appendix III parameters is tested using the ANOVA; this test is not prescribed for Appendix IV constituents. Unlike the statistical evaluation of Appendix III constituents (where single-sample results are compared to the statistical limit),

Appendix IV analysis uses the pooled results from each downgradient well to develop a well-specific Confidence Interval that is compared to the statistical limit. The statistical limit is either the Interwell Tolerance limit (i.e. background) calculated using the pool of all available upgradient well data (see Chapter 7 of the Unified Guidance), or an applicable groundwater protection standard such as the MCL. Appendix IV background data are screened for outliers and extreme trending patterns that would lead to artificially elevated statistical limits.

Parametric tolerance limits (i.e. UTLs) were calculated using pooled upgradient well data for Appendix IV parameters with a target of 95% confidence and 95% coverage. The confidence and coverage levels for nonparametric tolerance limits are dependent on the number of background samples. The UTLs were then used as the GWPS.

As described in 40 CFR § 257.95(h)(1)-(3) and the ADEM variance the GWPS is:

- (1) The maximum contaminant level (MCL) established under 40 CFR §§ 141.62 and 141.66.
- (2) Where an MCL has not been established:
  - (i) Cobalt 0.006 mg/L.
  - (ii) Lead 0.015 mg/L.
  - (iii) Lithium 0.040 mg/L.
  - (iv) Molybdenum 0.100 mg/L.
- (3) Background levels for constituents where the background level is higher than the MCL or rule-specified GWPS.

In assessment monitoring, when the Lower Confidence Limit (LCL), or the entire interval, exceeds the GWPS as discussed in the USEPA Unified Guidance (2009), the result is recorded as an SSL. Appendix IV constituents will be updated every 2 years beginning with the Fall 2019 semi-annual sampling event. The next update to GWPS will occur no earlier than the Fall of 2021. Data from upgradient wells collected between updates may still be used to support ASDs if merited.

#### 4.3 STATISTICAL EXCEEDANCES

Analytical data from the 2020 semi-annual monitoring events in February and August 2020 were statistically analyzed in accordance with the Professional Engineer (PE)-certified Statistical Analysis Plan (October 2017) and updated in the August 2020 data screening evaluation performed by Groundwater Stats Consulting. Appendix III statistical analysis was performed to determine if constituents had returned to

background levels. Appendix IV assessment monitoring parameters were evaluated to determine if concentrations statistically exceeded the established groundwater protection standard.

#### 4.3.1 Appendix III Constituents

Based on review of the Appendix III statistical analysis presented in **Appendix C**, **Statistical Analyses**, Appendix III constituents have not returned to background levels.

#### 4.3.2 Appendix IV Constituents

**Table 6, Summary of Background Levels and Groundwater Protection Standards**, summarizes the background limit established at each monitoring well and the GWPS. A summary table of the statistical limits accompanies the prediction limits in **Appendix C**.

The following subsections describe statistical exceedances during 2020 monitoring events.

#### 4.3.2.1 Semi-Annual Groundwater Monitoring Events

Statistical analysis of Appendix IV data did not identify any Appendix IV SSLs during the first or second semi-annual monitoring events. **Table 7, First Semi-Annual Monitoring Event Analytical Summary**, and **Table 8, Second Semi-Annual Monitoring Event Analytical Summary** provide a summary of all constituents for the first and second semi-annual sampling event.

A review of analytical data derived from delineation wells identified the following GWPS Exceedances for the first and second semi-annual sampling events:

- GS-AP-MW-3V: Lithium.
- GS-GSA-MW-12H: Lithium.
- GS-GSA-MW-13H: Arsenic.
- GS-GSA-MW-14H: Lithium.
- GS-GSA-PZ-17: Lithium.
- GS-GSA-PZ-18: Lithium.
- GS-GSA-PZ-18: Arsenic.
- GS-GSA-PZ-22: Arsenic.

Elevated arsenic was encountered in well GS-GSA-MW-13H during the first and second semi-annual events at concentrations of 0.16 mg/L and 0.103 mg/L, respectively (**Tables 7** and **8**). However, this

elevated concentration and GWPS exceedance is not the result of an impact to groundwater from the Gypsum Pond. Wells immediately downgradient of the Gypsum Pond, as well as wells between the Gypsum Pond and GS-GSA-MW-13H, have historically been non-detect or detected at only trace concentrations. This absence of arsenic in all other wells is notable, because if an arsenic impact were related to the Gypsum Pond, the highest concentrations would be expected closer to the Gypsum Pond and diminish to the south in the direction of groundwater flow away from the facility. The observation described in this report is the opposite of that scenario.

Leachate data obtained from the Gypsum Pond showed that arsenic leached at only low-level concentrations and therefore, the Gypsum Pond is not a source of arsenic, especially at that concentration. Leachate data are included in **Appendix D**, **Leachate Data**. The arsenic concentration observed in this well is most likely the result of an organic clay layer that occupies the uppermost part of the well screen.

To address SSLs at the Site, an ACM was prepared to evaluate potential groundwater corrective measures for the occurrence of lithium in groundwater at the Site, in accordance with § 257.96, ADEM Admin. Code r. 335-13-15-.06(7), and ADEM Administrative Order AO 18-096-GW. The ACM was submitted to ADEM and placed in the operating record on June 12, 2019.

Piezometers GS-GSA-PZ-16 through GS-GSA-PZ-22 were installed in May 2020 as part of Phase III delineation efforts. These piezometers were added to the routine semi-annual sampling schedule beginning with the second 2020 semi-annual monitoring event. During the second semi-annual monitoring event, lithium was detected in groundwater samples collected from GS-GSA-PZ-17 and GS-GSA-PZ-18 at concentrations of 1.39 and 0.422 mg/L, respectively, exceeding the established GWPS for lithium (0.419 mg/L). Additionally, arsenic was detected in groundwater samples collected from GS-GSA-PZ-18 and GS-GSA-PZ-22 at concentrations of 0.0114 and 0.0297 mg/L, respectively, exceeding the established GWPS for arsenic (0.01 mg/L). However, the elevated concentrations and GWPS exceedance is not the result of an impact to groundwater from the Gypsum Pond. A review of historical aerial photography indicated that the wells were installed in the vicinity of a former strip-mined coal storage area. Analytical results compare with previously referenced publications that document elevated trace metals in Pottsville and Pottsville coal strata as discussed in Section 2.1.3. Further historical use research of the area is ongoing.

#### 5.0 MONITORING PROGRAM STATUS

The Site is currently in assessment monitoring and evaluating groundwater corrective action alternatives. In accordance with § 257.94(e) and ADEM Admin. Code r. 335-13-15-.06(5)(e), APC implemented assessment monitoring in January 2018. SSIs of Appendix III and SSLs of Appendix IV parameters were identified at the Gorgas Gypsum Pond during sampling events conducted in 2020. Pursuant to § 257.95(g)(3)(i) and ADEM Admin. Code r. 335-13-15-.06(6)(g)4.(i), APC completed an ACM in accordance with § 257.96, ADEM Admin. Code r. 335-13-15-.06(7), and ADEM Administrative Order AO 18-096-GW. The ACM was completed June 12, 2019 and a public meeting was held to discuss the ACM on July 1, 2020.

#### 6.0 EVALUATION OF GROUNDWATER CORRECTIVE MEASURES

Site investigations and preliminary design work have continued at the Site to support remedy selection and design. As discussed in the ACM (Anchor QEA 2020), completing a final long-term corrective action plan is generally a multi-year process. Additional assessment work has been completed since June 2020, and laboratory work has been performed to support MNA and in situ geochemical manipulation as discussed in the ACM. MNA and geochemical manipulation are both geochemically based, so site-specific geochemical data and analyses can be applied to both technologies.

Laboratory analysis of groundwater and precipitates (attenuating solids) was conducted to support MNA and geochemical manipulation. The major rationale for these investigations includes the following:

- Identifying attenuating mechanisms.
- Gaining an understanding of the stability of the attenuating mechanisms.
- Identifying potential geochemical manipulation approaches for constituents of interest (COI) based on Site geochemical conditions and attenuation processes already occurring naturally.

In the previous semi-annual remedy selection and design reporting period (January through June 2020), the following field and laboratory investigations were performed:

- Evaluated groundwater analytical data (primarily graphing) to look for evidence of natural attenuation occurring in space and time.
- Collected groundwater samples from background and impacted wells and performed a complete
  chemical analysis on the samples to enable groundwater geochemical modeling and the development
  of a geochemical conceptual site model (CSM).
- Performed geochemical modeling using the U.S. Geological Survey (USGS) computer program
   PHREEQC with the WATEQ4F thermodynamic database.
- Collected precipitate samples from the bottom of monitoring wells.
- Analyzed precipitate samples by X-ray fluorescence (XRF) and X-ray diffraction (XRD).

The following investigations were begun in the last reporting period but completed in the current reporting period:

• Scanning electron microscopy (SEM) to directly observe attenuating mineral phases.

- Selective sequential extraction (SSE) to determine association of COI with attenuating phases,
   determine relative strength of attenuation, and provide a sense of permanence.
- Cation exchange capacity (CEC) to assess ion exchange as an attenuation mechanism.

The work performed since the completion of the June 2020 Remedy Selection and Design Progress Report includes the following:

- Installing and sampling delineation wells.
- Completing SEM, SSE, and CEC testing on well solids samples.
- Analyzing and synthesizing the laboratory data described above to develop a geochemical CSM and to evaluate MNA and geochemical manipulation.
- Conceptualizing other corrective action options in the context of site-specific conditions, should MNA not perform as expected.

#### 6.1 PRELIMINARY FINDINGS FROM THE GEOCHEMICAL ANALYSES

As discussed in the Semi-Annual Remedy Selection and Design Progress Report Plant Gorgas (Anchor QEA 2020), results from existing groundwater data analysis, geochemical modeling, and well solids analyses provide evidence for attenuation mechanisms for arsenic. The attenuating mechanisms identified include sorption on amorphous iron oxides (arsenic and molybdenum), precipitation of arsenate and molybdate phases (for arsenic and molybdenum, respectively), and cation exchange on clays (lithium).

Concentration versus time, concentration versus distance graphs, and laboratory analyses were integrated with geochemical modeling results to develop an initial geochemical CSM, including probable attenuating mechanisms for arsenic, lithium, and molybdenum, and the relative permanence of those mechanisms. The initial CSM for the Site is:

- Multiple lines of evidence for arsenic, lithium, and molybdenum attenuation.
- Suboxic, neutral to acidic groundwater conditions.
- Redox buffered by iron oxide +/- carbonate equilibria.
- Arsenic attenuation by sorption to iron oxides, incorporation in pyrite, and possibly precipitation of barium arsenate.
- Lithium attenuation by cation exchange on clay minerals and/or incorporation in manganese oxides (e.g., lithiophorite).

• Molybdenum attenuation by adsorption to iron oxides.

As supported by SSE results and the scientific literature, incorporation of arsenic into iron minerals, arsenic into barium arsenate, and lithium into manganese oxides are relatively stable attenuation mechanisms.

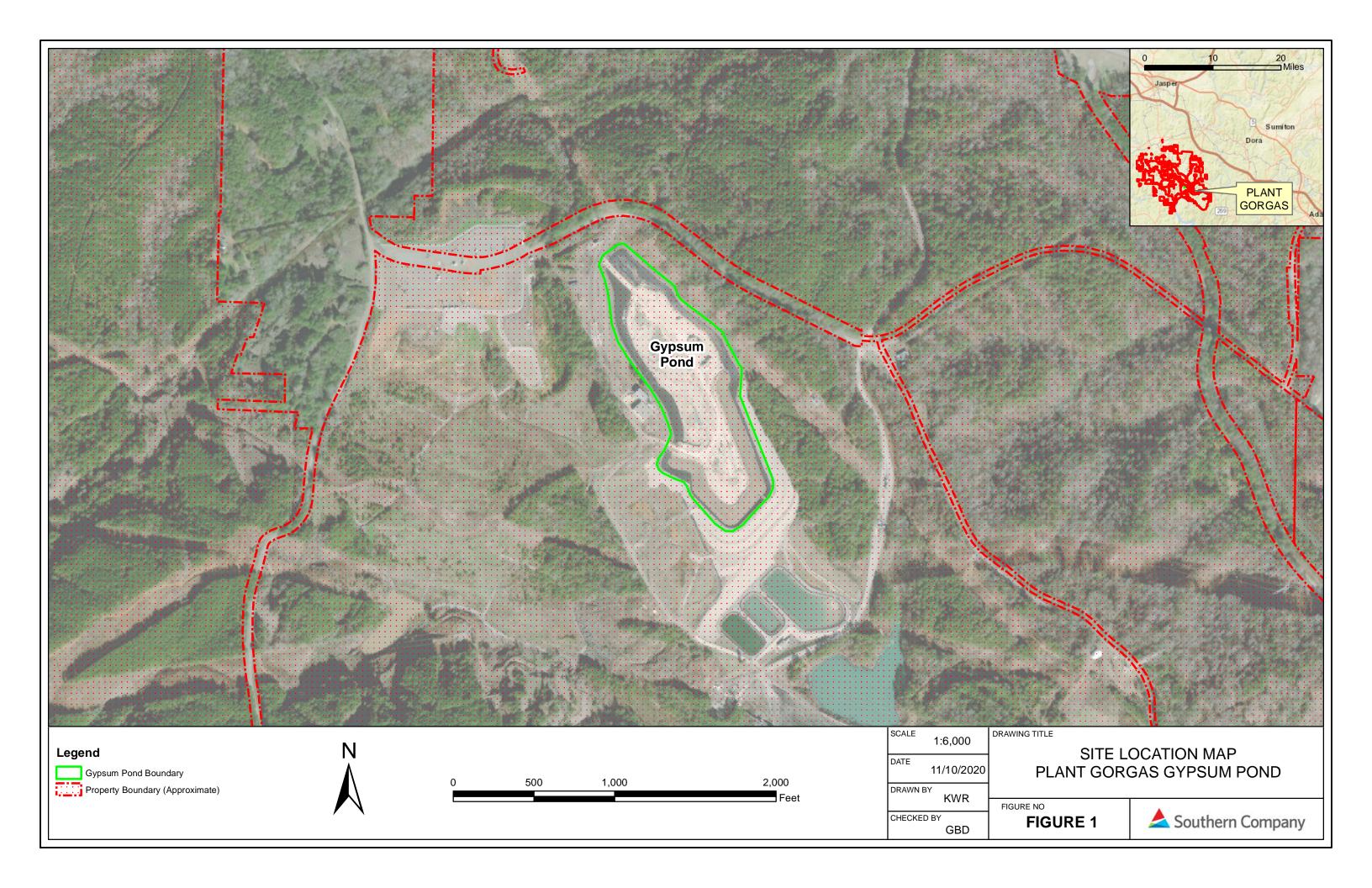
Summary tables of the results are presented in Appendix E, MNA -Geochemical Evaluation Data.

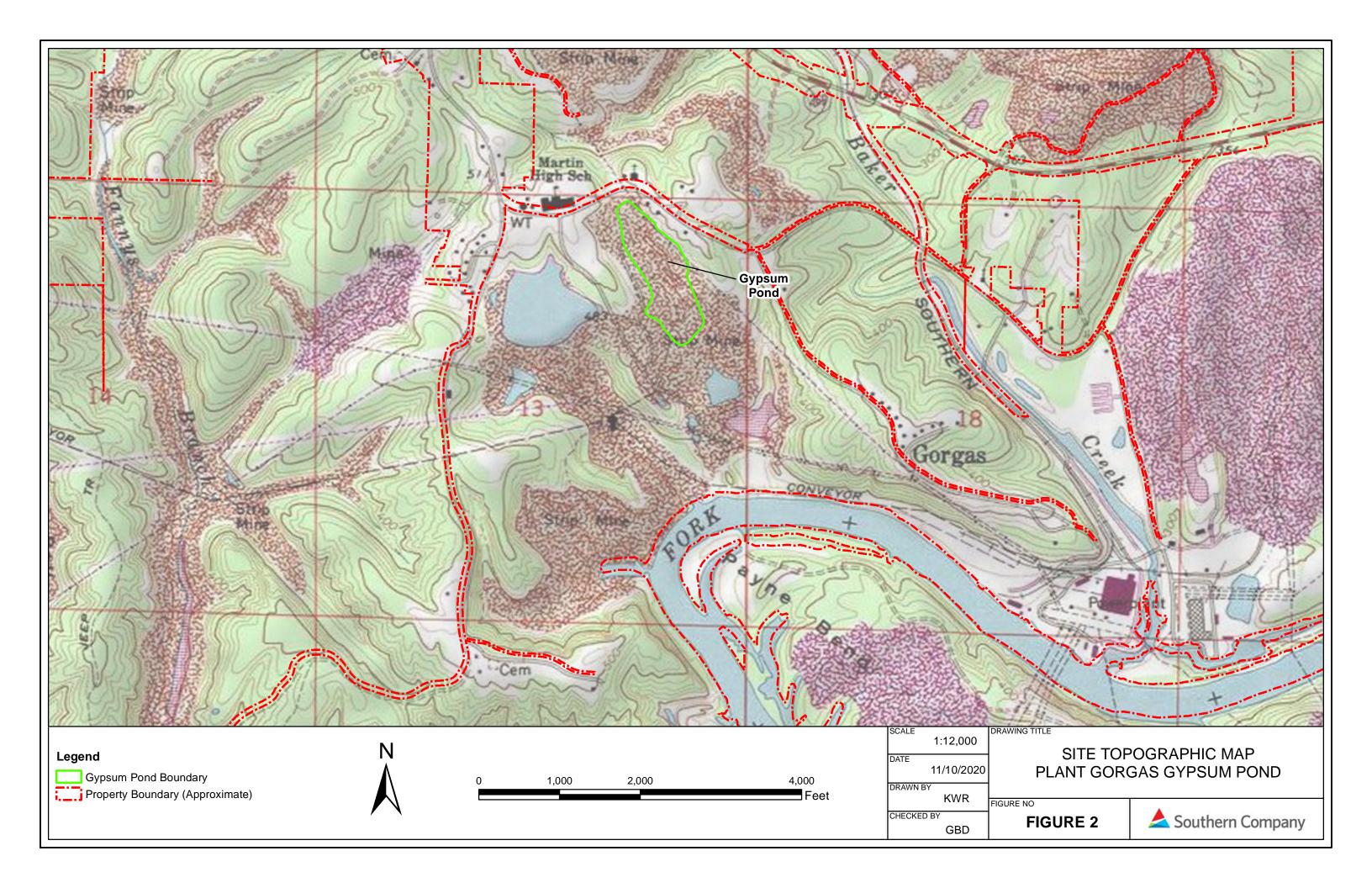
#### 7.0 SUMMARY AND CONCLUSIONS

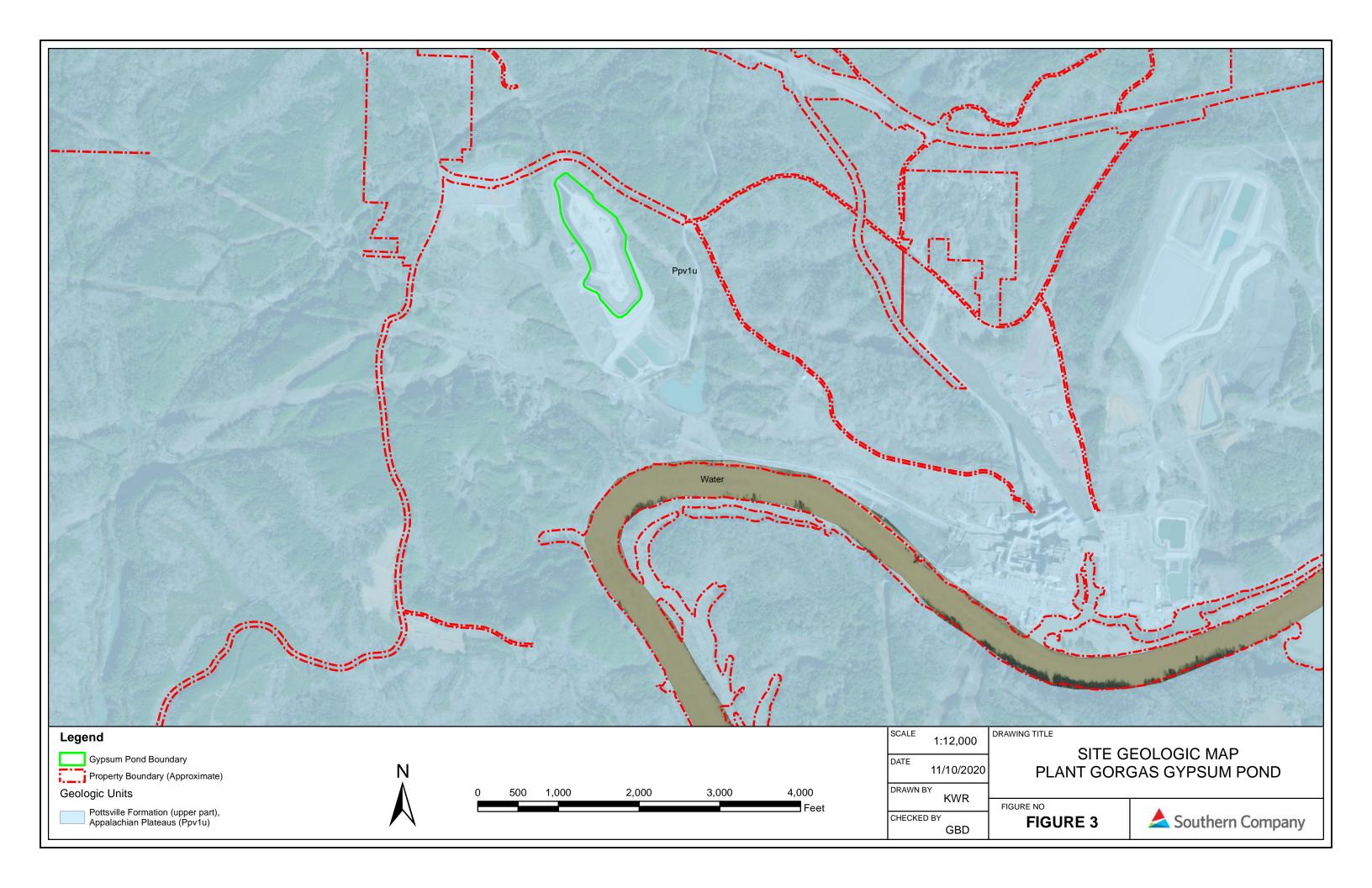
Semi-annual assessment monitoring took place in February and August 2020. Statistical evaluations of the 2020 assessment monitoring data did not identify SSLs of Appendix IV constituents above the GWPS. The Site remains in assessment monitoring while groundwater corrective remedies are being evaluated. Additional monitoring wells were installed to assess the horizontal and vertical extent of groundwater impacts at the Site. These additional monitoring wells will continue to be sampled and analyzed as part of the ongoing assessment monitoring program.

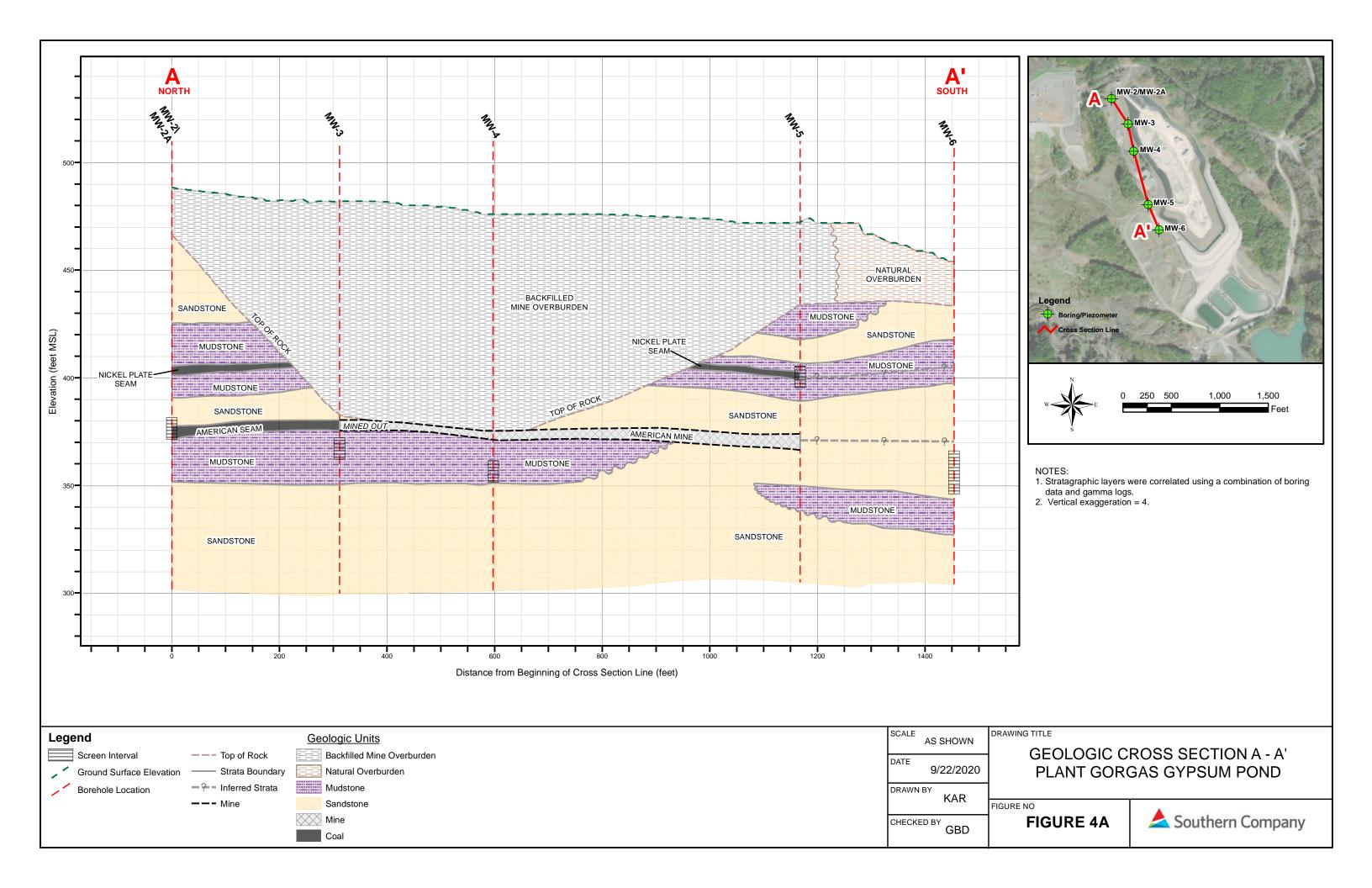
An ACM was completed on June 12, 2019 to address SSLs of Appendix IV above groundwater protection standards. A public meeting was held on July 1, 2020 to discuss the results of the ACM.

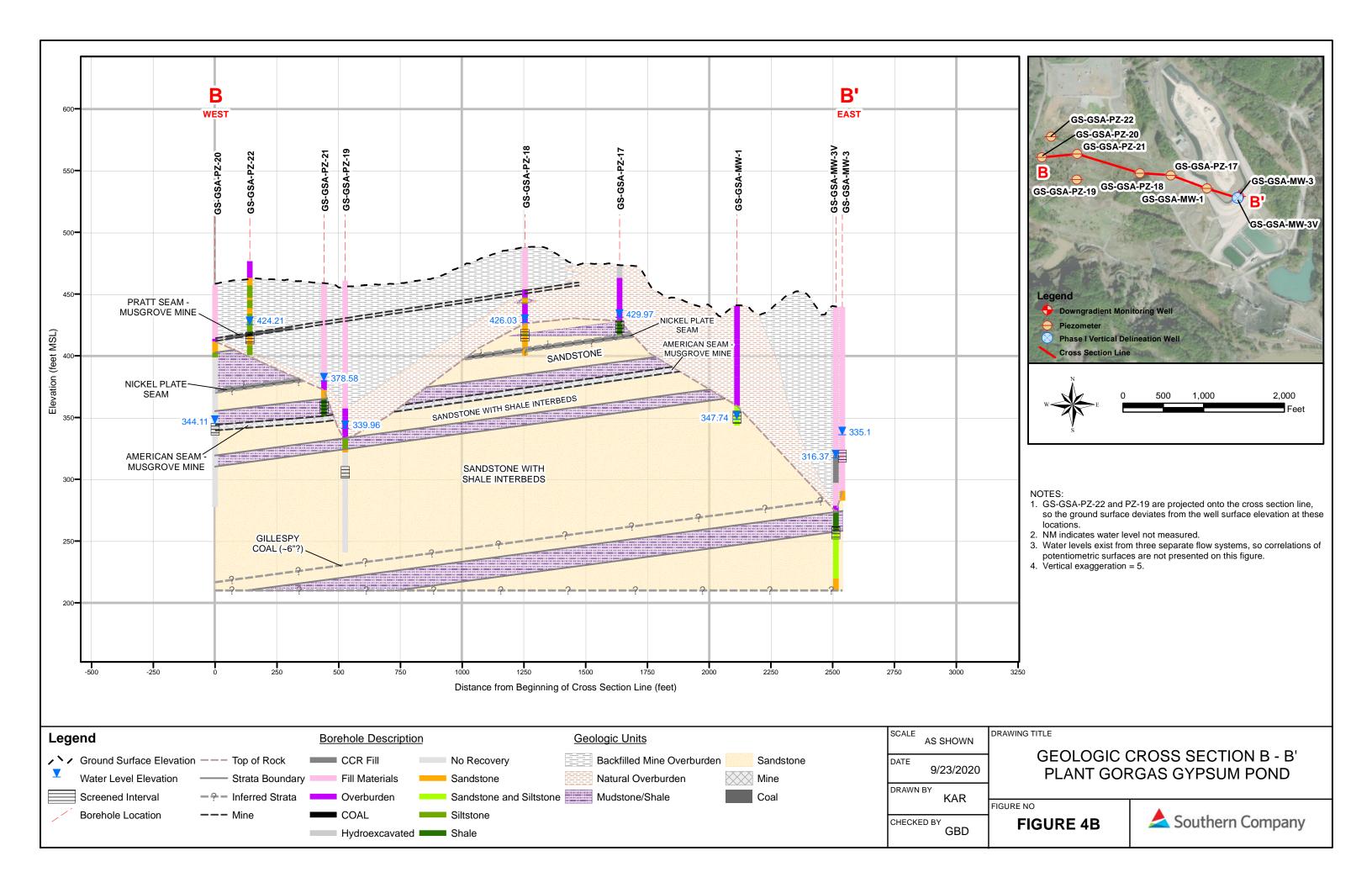
In accordance with § 257.95(d) and Alabama Admin. Code r. 335-13-15-.06(6)(d), APC will continue semi-annual assessment monitoring. The following future actions will be taken or are recommended for the Site:

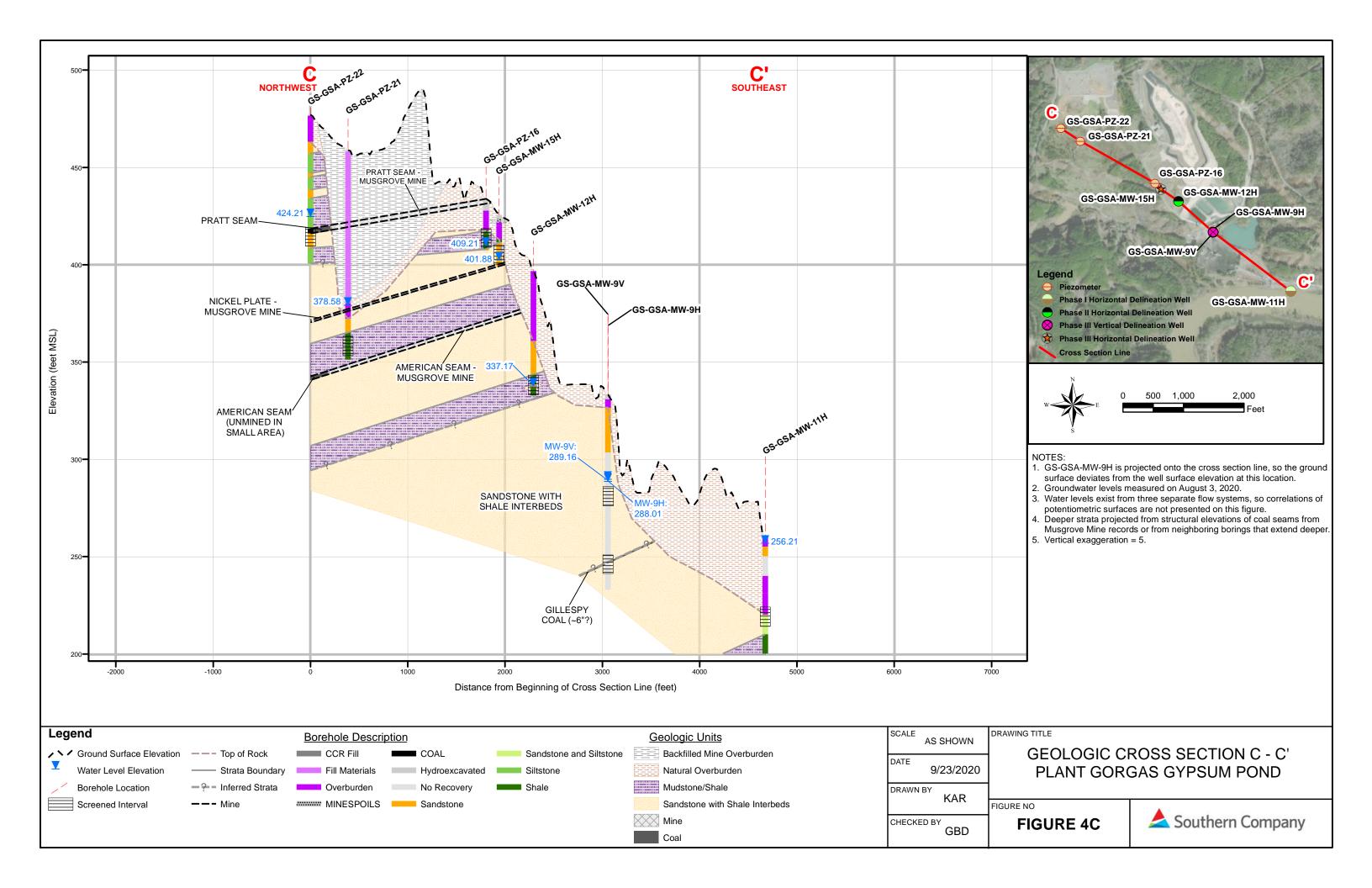

- Collect additional data to further evaluate remedies selected as feasible for the remediation of lithium as described in the ACM.
- Perform a conceptual-level feasibility study of potentially viable corrective actions (January to July 2021).
  - o Show where the viable corrective actions could be applied on Site maps and on geologic sections.
  - Compare site-specific corrective actions to the evaluation criteria in the CCR Rule, with emphasis on deficiencies that could eliminate a corrective action from further consideration.
  - o Determine how corrective actions could be integrated with pond closure.
  - o Determine data gaps and develop plans to collect additional data as needed.
  - o Begin the development of a detailed groundwater remedy plan.
- Submit the next Semi-Annual Progress Report for Groundwater Delineation Activities or Comprehensive Groundwater Investigation Report to ADEM by March 30, 2021.
- Submit the next Semi-Annual Remedy Selection and Design Progress Report by June 12, 2021.
- Conduct the first semi-annual assessment monitoring event in the first half of 2021 and submit the annual groundwater monitoring and corrective action report summarizing the findings to ADEM by July 31, 2021.

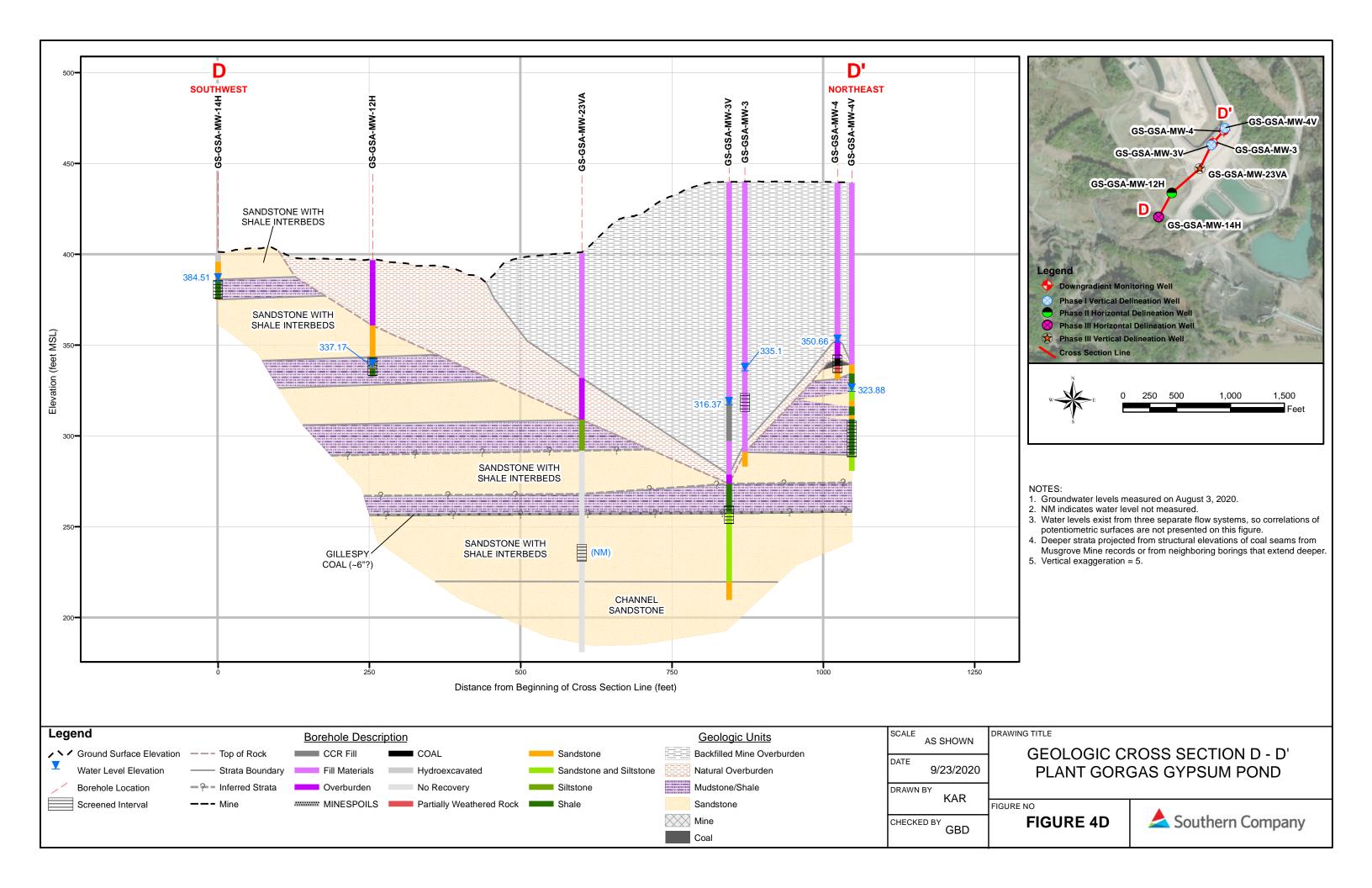

#### 8.0 REFERENCES

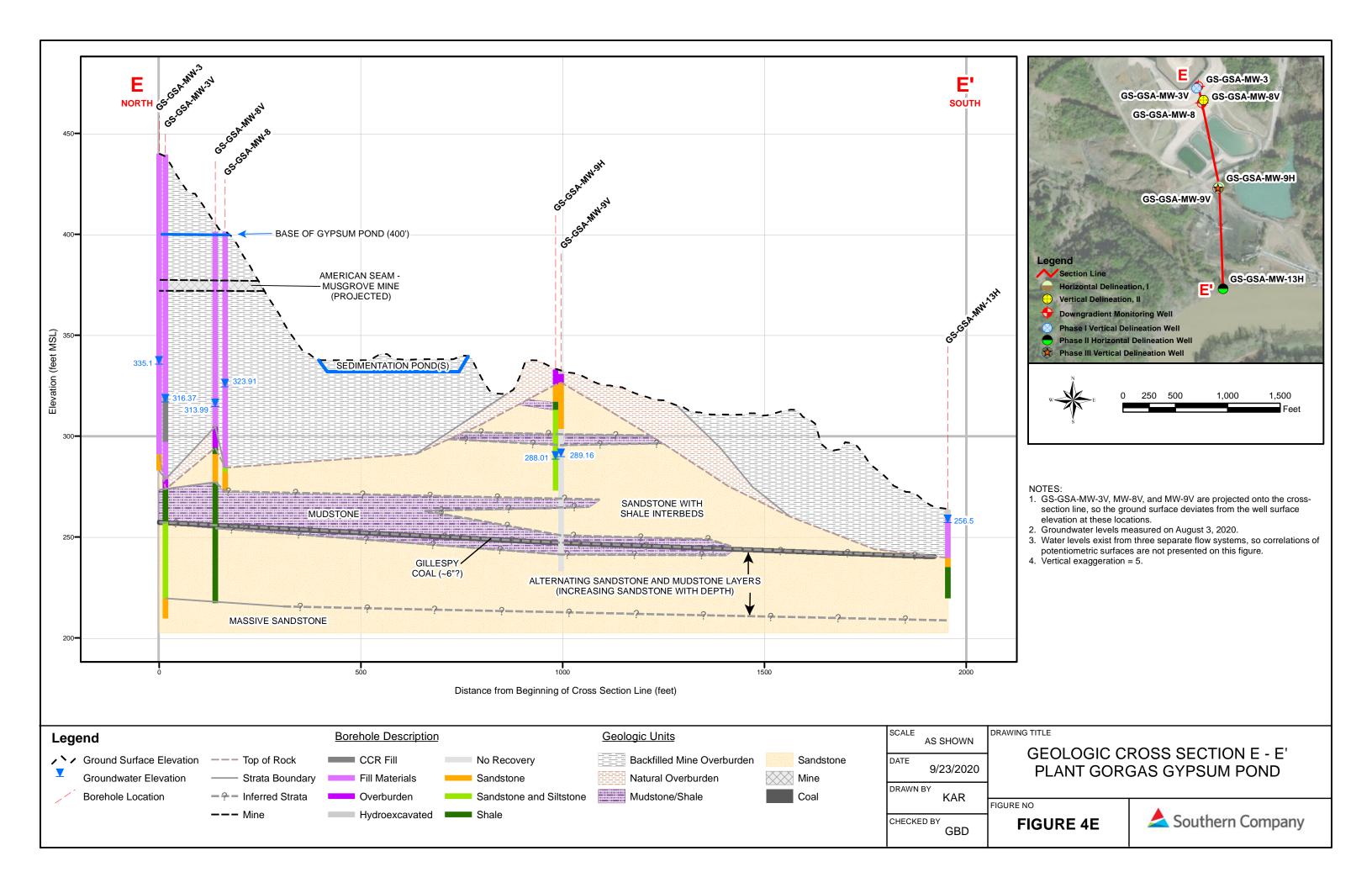

- Alabama Department of Environmental Management (ADEM), 2018, Solid Waste Program, Division 13, ADEM Admin. Code r. 335-13-15.
- Anchor QEA, 2020, Semi-Annual Remedy Selection and Design Progress Report Plant Gorgas.
- ASTM Standard D5092, 2004(2010)e1, Standard Practice for Design and Installation of Groundwater Monitoring Wells, ASTM International, West Conshohocken, PA, DOI 10.1520/D5092-04R10E01, www.astm.org.
- Bragg, L.J., Oman, J.K., Tewalt, S.J., Oman, C.L., Rega, N.H., Washington, P.M., and Finkelman, R.B., 1997, U.S. Geological Survey Coal Quality (COALQUAL) database; version 2.0, U.S.
- Diehl, S.F., Goldhaber, M.B., and Hatch, J.R., 2004, Modes of occurrence of mercury and other traceelements in coals from the warrior field, Black Warrior Basin, Northwestern Alabama, International Journal of Coal Geology, v. 59, p. 193-208.
- Geological Survey of Alabama (GSA), 2010b, Digital Geologic Map of Alabama, URL: http://www.gsa.state.al.us, accessed November, 2010.
- Goldhaber, M.B., Lee, R.C., Hatch, J.R., Pashin, J.C., and Treworgy, J., 2002, The role of large-scale fluid flow in subsurface arsenic enrichment, In: Welch, A., Stollenwerk, K (Eds.), Arsenic in Ground Water: Occurrence and Geochemistry, v. 5, p. 127-176.
- Jennings, S.P., and Cook, M.R., 2010, A Report to the Hanceville Water Works and Sewer Board, Open File Report 1001.
- Kolker, A., and Nordstrom, D.K. 1997, Occurrence and Micro-Distribution of Arsenic in Pyrite, U.S. Geological Survey.
- O'Rear, D.M., Wahl, K.D., and Jefferson, P.O., 1972, Water availability and geology of Walker County, Alabama: Geological Survey of Alabama Map 120, 21p.
- Palmer, C.A., Oman, C.L., Park, A.J., and Luppens, J.A., 2015, The U.S. Geological Survey coal quality (COALQUAL) database version 3.0: U.S. Geological Survey Data Series 975, 43 p.with appendixes, http://dx.doi.org/10.3133/ds975.
- Pashin, J.C., and Raymond, D.E., 2004, Glacial-eustatic control of coalbed methane reservoir distribution (Pottsville Formation; Lower Pennsylvanian) in the Black Warrior Basin of Alabama: Tuscaloosa, Alabama, University of Alabama College of Continuing Studies, 2004 International Coalbed Methane Symposium Proceedings, Paper 0413, 15 p.
- Pashin, J.C., 2007, Hydrodynamics of Coalbed Methane Reservoirs in the Black Warrior Basin: Key to Understanding Reservoir Performance and Environmental Issues, Applied Geochemistry, v. 22, I. 10, p. 2257-2272.
- Raymond, D.E., Osborne, W.E., Copeland, C.W. Jr, and Neathery, T.L., 1988, Alabama Stratigraphy: Alabama Geological Survey Circular, v. 140, p. 1-97.
- Sapp, C.D., and Emplaincourt, J., 1975, Physiographic regions of Alabama, Special Map 168, Geological Survey of Alabama.
- Stricklin, V.E., 1989, Geohydrology and Susceptibility of Major Aquifers to Surface Contamination in Alabama: Area 3, U.S. Geological Survey, Water-Resources Investigations Report 88-4120.

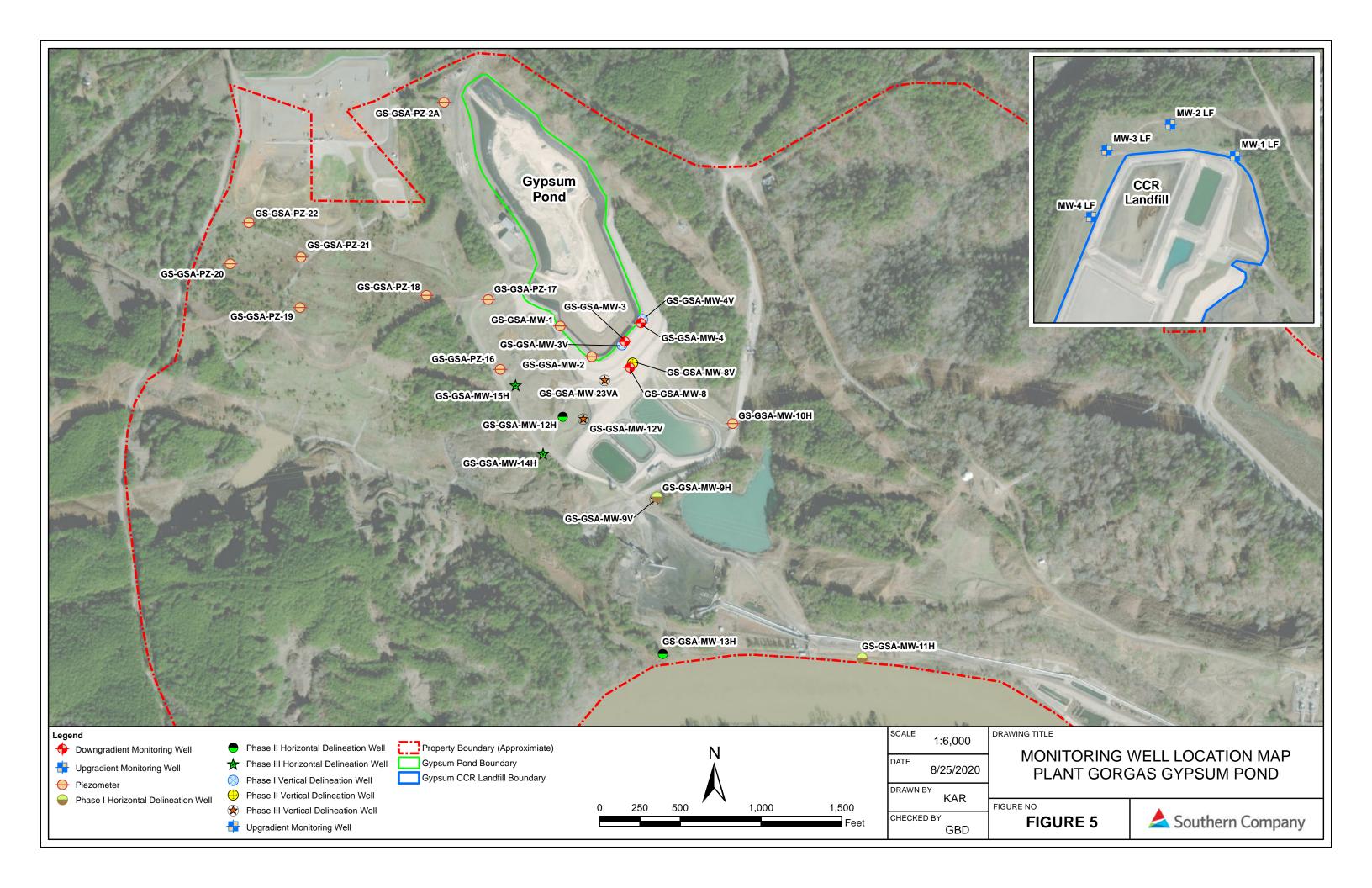

- USEPA. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance.
- USEPA. 2011. Data Validation Standard Operating Procedures. Science and Ecosystem Support Division. Region IV. September.
- USEPA. 2014. National Functional Guidelines for Inorganic Superfund Data Review. Office of Superfund Remediation and Technology Innovation (OSRTI). August.
- USEPA. 2015. Federal Register. Volume 80. No. 74. Friday April 17, 2015. Part II. Environmental Protection Agency. 40 CFR Parts 257and 261. Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule. [EPA-HQ-RCRA-2009–0640; FRL-9919-44-OSWER]. RIN-2050-AE81. April.
- United States Geological Survey (USGS), 1975 (Photo revised 1983), Goodsprings Quadrangle, 7.5 Minute Series Topographic Map.
- Ward II, W.E., Barnett, R.L., Rheams, L.J., 1989, Coal Resources of Walker County, Alabama, Geological Survey of Alabama, Special Map 205.

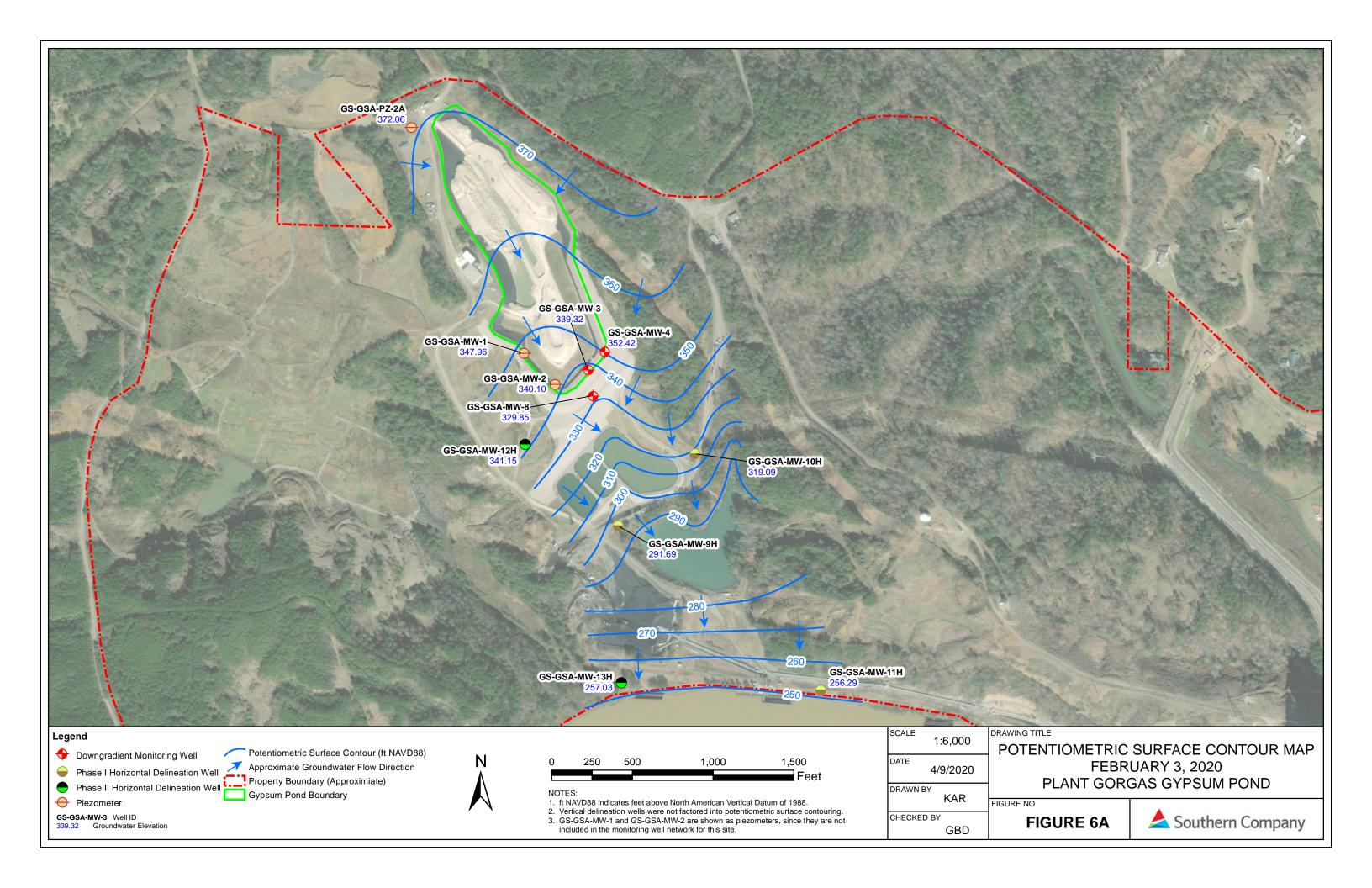

# Figures

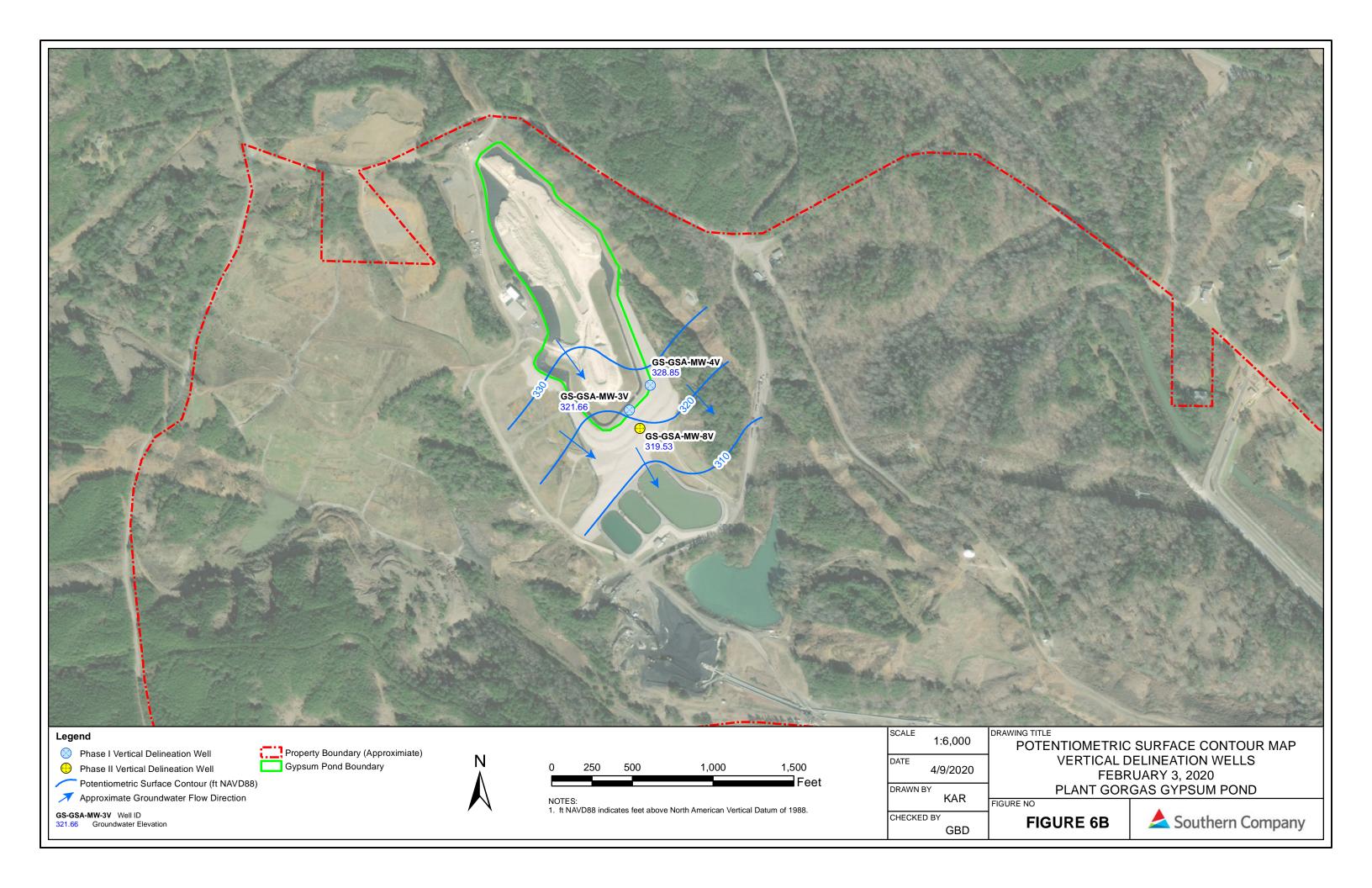


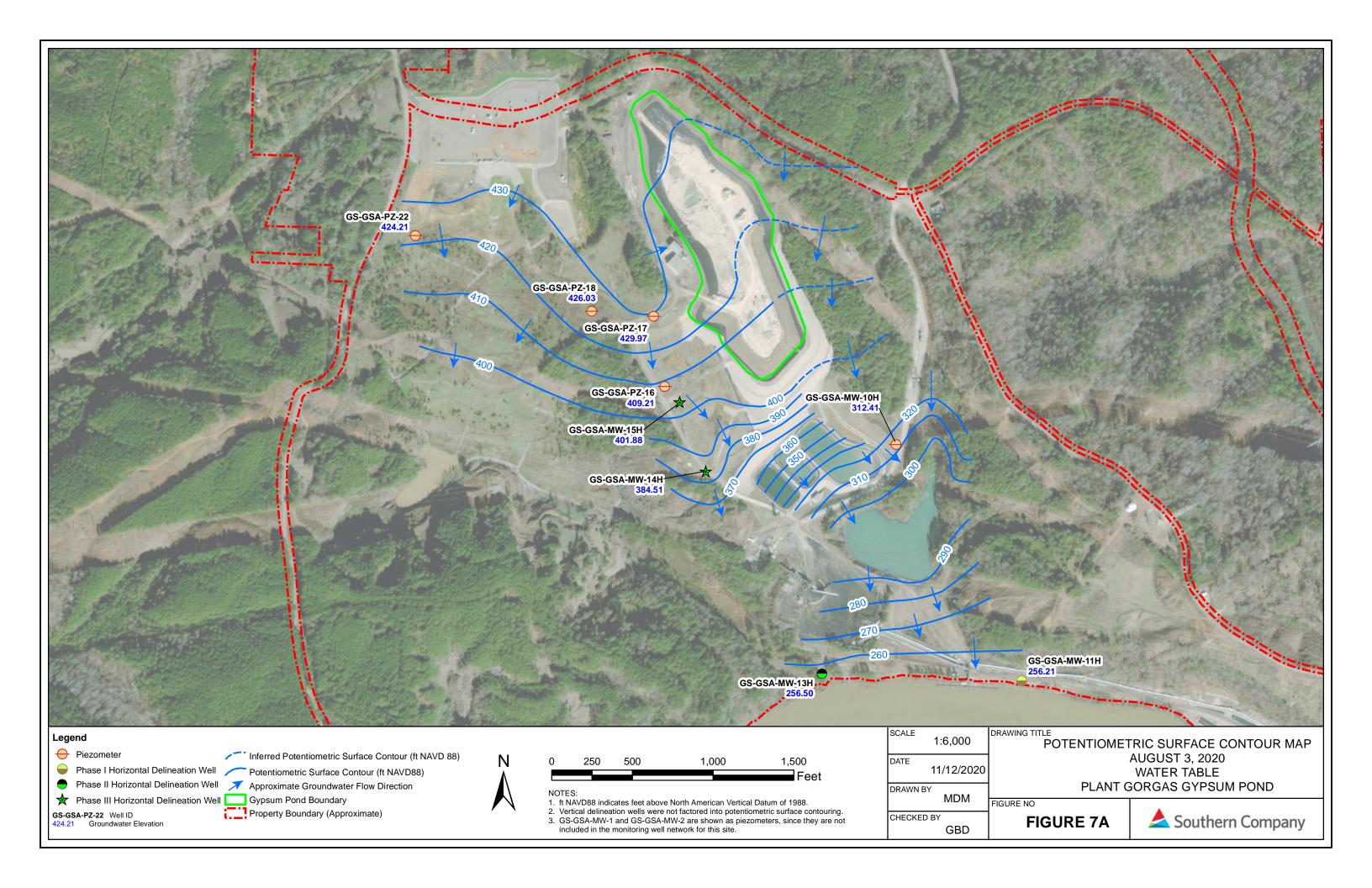



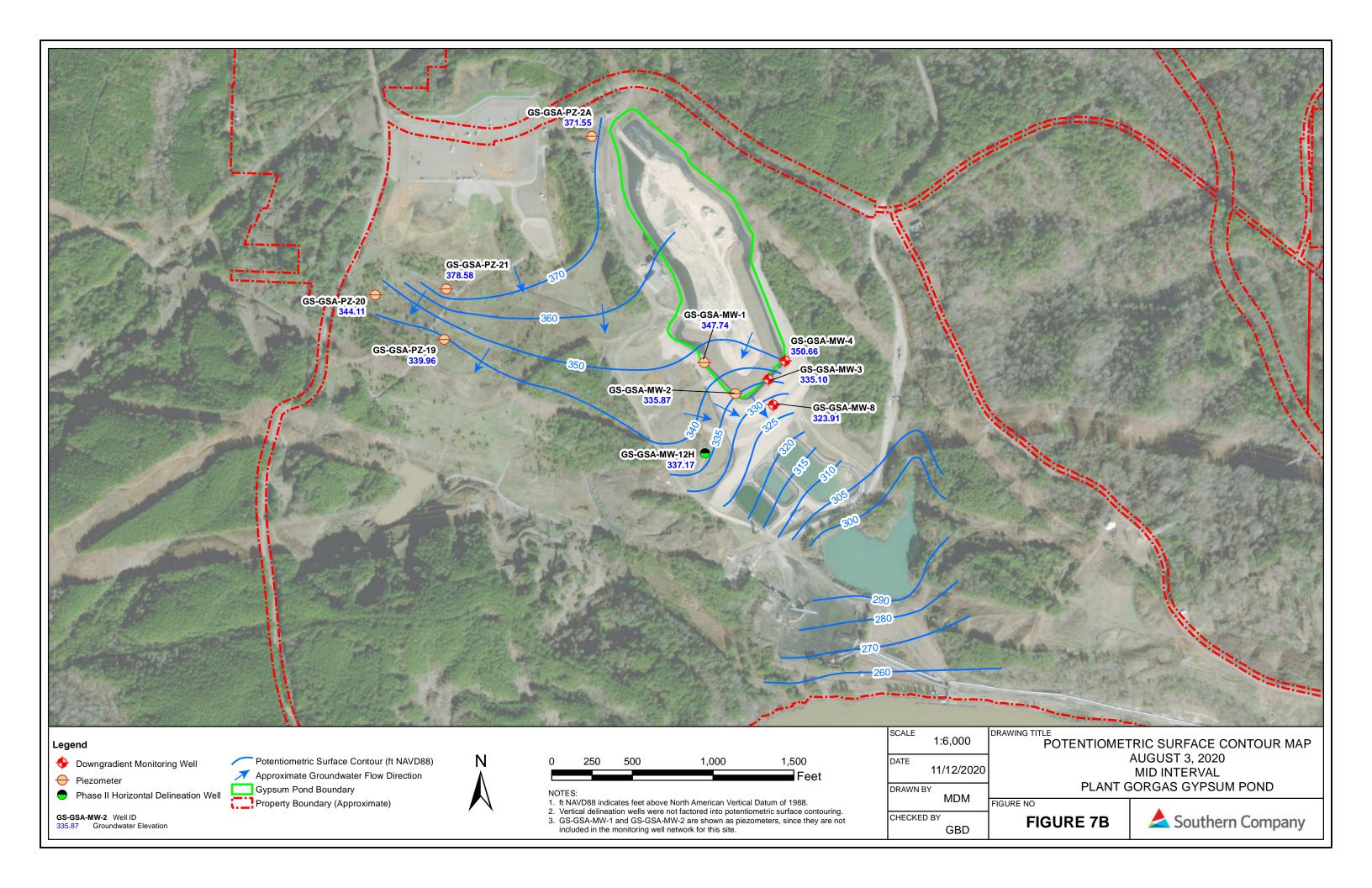



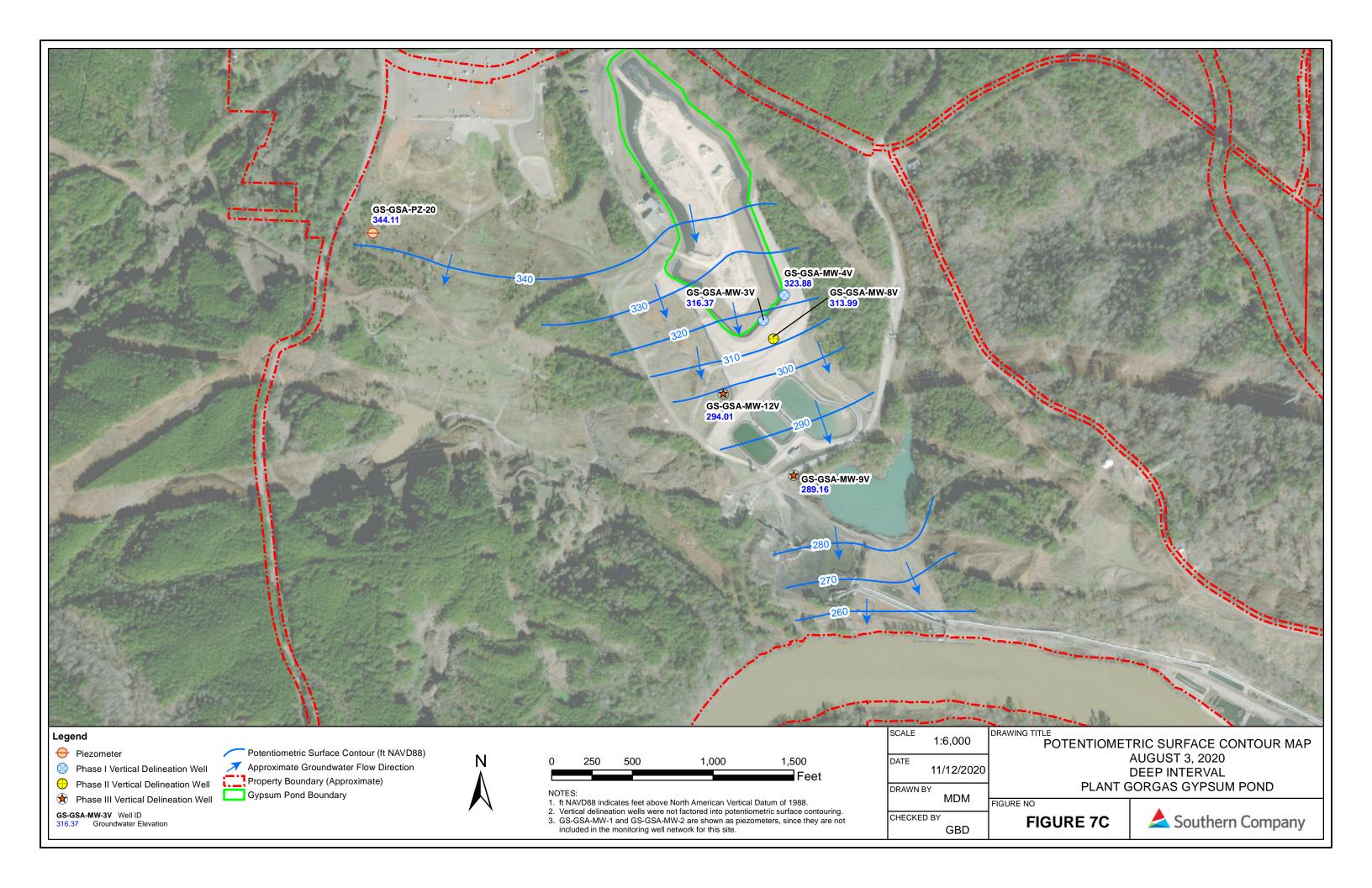














### **Tables**

Table 1. Groundwater Monitoring Well Network Details

| Well Name      | Purpose                | Installation<br>Completion Date | Northing    | Easting     | <b>Ground Elevation</b> | Top of Casing<br>Elevation | Well Depth (ft.) Below Top of Casing | Top of Screen<br>Elevation<br>(ft MSL) | Bottom of Screen<br>Elevation<br>(ft MSL) | Screen Length |
|----------------|------------------------|---------------------------------|-------------|-------------|-------------------------|----------------------------|--------------------------------------|----------------------------------------|-------------------------------------------|---------------|
| MW-1 LF        | Upgradient             | 1/15/2014                       | 1330794.064 | 594082.361  | 499.19                  | 502.25                     | 107.56                               | 405.09                                 | 395.09                                    | 10            |
| MW-2 LF        | Upgradient             | 10/23/2014                      | 1331053.309 | 593548.802  | 498.54                  | 502.12                     | 94.58                                | 417.94                                 | 407.94                                    | 10            |
| MW-3 LF        | Upgradient             | 10/23/2014                      | 1330842.402 | 593025.397  | 522.23                  | 525.9                      | 119.07                               | 417.23                                 | 407.23                                    | 10            |
| MW-4 LF        | Upgradient             | 2/19/2012                       | 1330289.727 | 592896.414  | 516.67                  | 518.63                     | 128.66                               | 400.37                                 | 390.37                                    | 10            |
| GS-GSA-MW-1    | Piezometer             | 12/17/2015                      | 1329217.055 | 2054372.147 | 440.48                  | 442.96                     | 97.70                                | 355.26                                 | 345.26                                    | 10            |
| GS-GSA-MW-2    | Piezometer             | 12/16/2015                      | 1329027.094 | 2054567.756 | 440.04                  | 442.84                     | 121.83                               | 331.01                                 | 321.01                                    | 10            |
| GS-GSA-PZ-2A   | Piezometer             | 11/14/2015                      | 1330604.858 | 2053653.171 | 488.67                  | 491.52                     | 122.40                               | 379.12                                 | 369.12                                    | 10            |
| GS-GSA-MW-3    | Downgradient           | 12/8/2015                       | 1329120.128 | 2054772.316 | 439.75                  | 442.63                     | 129.68                               | 323.35                                 | 313.35                                    | 10            |
| GS-GSA-MW-4    | Downgradient           | 12/9/2015                       | 1329235.421 | 2054872.732 | 439.44                  | 442.10                     | 107.86                               | 344.64                                 | 334.64                                    | 10            |
| GS-GSA-MW-8    | Downgradient           | 12/20/2015                      | 1328959.796 | 2054804.925 | 401.33                  | 404.38                     | 128.45                               | 286.33                                 | 276.33                                    | 10            |
| GS-GSA-MW-3V   | Vertical Delineation   | 2/25/2019                       | 1329100.49  | 2054755.12  | 439.60                  | 442.68                     | 191.58                               | 261.60                                 | 251.60                                    | 10            |
| GS-GSA-MW-4V   | Vertical Delineation   | 2/25/2019                       | 1329256.83  | 2054882.74  | 439.29                  | 442.18                     | 154.39                               | 308.29                                 | 288.29                                    | 20            |
| GS-GSA-MW-9H   | Horizontal Delineation | 2/3/2019                        | 1328157.96  | 2054972.56  | 333.04                  | 335.83                     | 60.29                                | 286.04                                 | 276.04                                    | 10            |
| GS-GSA-MW-10H  | Piezometer             | 2/4/2019                        | 1328612.73  | 2055441.67  | 336.56                  | 339.52                     | 29.46                                | 320.56                                 | 310.56                                    | 10            |
| GS-GSA-MW-11H  | Horizontal Delineation | 2/6/2019                        | 1327162.44  | 2056243.5   | 260.13                  | 263.02                     | 49.39                                | 224.13                                 | 214.13                                    | 10            |
| GS-GSA-MW-8V   | Vertical Delineation   | 10/25/2019                      | 1328988.15  | 2054820.84  | 401.24                  | 404.43                     | 158.50                               | 235.94                                 | 245.94                                    | 10            |
| GS-GSA-MW-12H  | Horizontal Delineation | 10/28/2019                      | 1328654.77  | 2054387.54  | 396.73                  | 399.73                     | 67.50                                | 342.23                                 | 332.23                                    | 10            |
| GS-GSA-MW-13H  | Horizontal Delineation | 10/29/2019                      | 1327186.88  | 2055007.85  | 263.63                  | 266.46                     | 34.90                                | 241.80                                 | 231.80                                    | 10            |
| GS-GSA-MW-9V   | Vertical Delineation   | 5/12/2020                       | 1328144.209 | 2054959.558 | 333.32                  | 336.22                     | 100                                  | 250.82                                 | 241.32                                    | 10            |
| GS-GSA-MW-12V  | Vertical Delineation   | 5/31/2020                       | 1328641.801 | 2054514.475 | 376.76                  | 379.5                      | 160                                  | 258.26                                 | 248.76                                    | 10            |
| GS-GSA-MW-14H  | Horizontal Delineation | 5/4/2020                        | 1328429.824 | 2054266.453 | 400.86                  | 403.66                     | 26                                   | 385.66                                 | 375.66                                    | 10            |
| GS-GSA-MW-15H  | Horizontal Delineation | 5/5/2020                        | 1328854.76  | 2054096.767 | 425.62                  | 428.16                     | 26.5                                 | 410.12                                 | 400.32                                    | 10            |
| GS-GSA-MW-23VA | Vertical Delineation   | 6/11/2020                       | 1328882.096 | 2054647.848 | 400.84                  | 403.6                      | 300                                  | 240.34                                 | 230.84                                    | 10            |
| GS-GSA-PZ-16   | Piezometer             | 5/3/2020                        | 1328948.994 | 2054001.89  | 433.79                  | 436.4                      | 26.5                                 | 418.49                                 | 408.99                                    | 10            |
| GS-GSA-PZ-17   | Piezometer             | 5/2/2020                        | 1329382.193 | 2053926.605 | 473.03                  | 475.94                     | 56.5                                 | 428.23                                 | 418.73                                    | 10            |
| GS-GSA-PZ-18   | Piezometer             | 5/19/2020                       | 1329407.961 | 2053543.873 | 487.2                   | 489.93                     | 87                                   | 421.3                                  | 411.8                                     | 10            |
| GS-GSA-PZ-19   | Piezometer             | 5/29/2020                       | 1329331.642 | 2052760.375 | 460.82                  | 463.5                      | 220                                  | 310.32                                 | 300.82                                    | 10            |
| GS-GSA-PZ-20   | Piezometer             | 5/18/2020                       | 1329602.517 | 2052327.495 | 457.65                  | 460.34                     | 180                                  | 345.15                                 | 335.65                                    | 10            |
| GS-GSA-PZ-22   | Piezometer             | 5/16/2020                       | 1329857.56  | 2052443.676 | 476.56                  | 479.46                     | 76                                   | 419.06                                 | 409.56                                    | 10            |
| GS-GSA-PZ-21   | Piezometer             | 5/14/2020                       | 1329645.275 | 2052766.308 | 458.21                  | 460.94                     | 107                                  | 363.31                                 | 353.31                                    | 10            |

- 1. Northing and easting are in feet relative to the State Plane Alabama West North America Datum of 1983.
- 2. Elevations are in feet relative to the North American vertical Datum of 1988.
- 3. Piezometers are utilized for water level readings only.
- 3. Top of screen and bottom of screen depths are calculated relative Top of Casing elevation .
- 5. MSL Mean Sea Level
- 6. LF = Monitor well located at the CCR Landfill

**Table 2. Monitoring Parameters and Reporting Limits** 

| Parameter                    | Analytical Method       | Reporting Limit (mg/L) |
|------------------------------|-------------------------|------------------------|
|                              | Appendix III Parameters | <u> </u>               |
| Boron                        | EPA 200.7/200.8         | 0.05                   |
| Calcium                      | EPA 200.7/200.8         | 0.25                   |
| Chloride                     | EPA 300.0               | 2                      |
| Fluoride                     | EPA 300.0               | 0.1                    |
| pН                           | None                    | None                   |
| Sulfate                      | EPA 300.0               | 5                      |
| Total Dissolved Solids (TDS) | SM 2540C                | 5                      |
|                              | Appendix IV Parameters  |                        |
| Antimony                     | EPA 200.7/200.8         | 0.0025                 |
| Arsenic                      | EPA 200.7/200.8         | 0.00125                |
| Barium                       | EPA 200.7/200.8         | 0.0025                 |
| Beryllium                    | EPA 200.7/200.8         | 0.0025                 |
| Cadmium                      | EPA 200.7/200.8         | 0.0025                 |
| Chromium                     | EPA 200.7/200.8         | 0.0025                 |
| Cobalt                       | EPA 200.7/200.8         | 0.0025                 |
| Fluoride                     | EPA 300.0               | 0.1                    |
| Lead                         | EPA 200.7/200.8         | 0.00125                |
| Lithium                      | EPA 200.7/200.8         | 0.0025                 |
| Mercury                      | EPA 7470A               | 0.0002                 |
| Molybdenum                   | EPA 200.7/200.8         | 0.015                  |
| Selenium                     | EPA 200.7/200.8         | 0.00125                |
| Thallium                     | EPA 200.7/200.8         | 0.0005                 |
| Radium 226 & 228 combined    | EPA 9315/9320           | 1 pCi/L                |

1. mg/L - Milligrams per liter

2. pCi/L - Picocuries per liter

Table 3 **Groundwater Elevations Summary** 

| Well Name         | Top of<br>Casing | Groundwater Elevation  (ft.) |           |            |            |           |           |           |           |           |  |
|-------------------|------------------|------------------------------|-----------|------------|------------|-----------|-----------|-----------|-----------|-----------|--|
|                   | Elevation        | 8/24/2016                    | 10/3/2016 | 10/26/2016 | 11/21/2016 | 1/17/2017 | 3/20/2017 | 4/17/2017 | 5/30/2017 | 8/23/2017 |  |
| MW-1 <sup>3</sup> | 502.38           | 410.56                       | 410.44    | 410.32     | 410.23     | 410.20    | 410.80    | 411.07    | 410.93    | 411.19    |  |
| MW-2 <sup>3</sup> | 502.17           | 416.47                       | 416.26    | 416.13     | 416.03     | 416.67    | 417.29    | 417.39    | 416.99    | 417.07    |  |
| MW-3 <sup>3</sup> | 525.90           | 415.08                       | 414.82    | 414.64     | 414.43     | 415.27    | 416.07    | 417.21    | 415.63    | 415.73    |  |
| $MW-4^3$          | 517.89           | 399.83                       | 399.35    | 399.09     | 398.79     | 399.77    | 401.28    | 401.59    | 400.94    | 401.03    |  |
| GS-GSA-MW-3       | 442.63           | 332.11                       | 331.71    | 331.53     | 331.33     | 331.02    | 333.43    | 334.12    | 334.72    | 336.19    |  |
| GS-GSA-MW-4       | 442.10           | 350.00                       | 349.10    | 348.71     | 348.26     | 349.61    | 351.50    | 352.75    | 351.17    | 351.02    |  |
| GS-GSA-MW-8       | 404.38           | 318.89                       | 317.35    | 316.33     | 315.43     | 315.89    | 320.12    | 322.22    | 321.64    | 323.71    |  |
| GS-GSA-MW-3V      | 442.68           |                              |           | -          |            |           |           | -         |           |           |  |
| GS-GSA-MW-4V      | 442.18           |                              |           | -          |            |           | -         | -         |           |           |  |
| GS-GSA-MW-9H      | 335.83           |                              |           | -          |            |           |           | -         |           |           |  |
| GS-GSA-MW-10H     | 339.52           |                              |           |            |            |           | -         | -         |           |           |  |
| GS-GSA-MW-11H     | 263.02           |                              |           |            |            |           | -         | -         |           | -         |  |
| GS-GSA-MW-8V      | 404.43           |                              |           |            |            |           | -         | -         |           | -         |  |
| GS-GSA-MW-12H     | 399.73           |                              |           |            |            |           |           | -         |           |           |  |
| GS-GSA-MW-13H     | 266.46           |                              |           |            |            |           |           |           |           |           |  |
| GS-GSA-MW-1       | 442.96           |                              |           |            |            |           | -         | -         |           | -         |  |
| GS-GSA-MW-2       | 442.84           |                              |           |            |            |           | -         | -         |           | -         |  |
| GS-GSA-PZ-2A      | 491.52           |                              |           |            |            |           | -         | -         |           | -         |  |
| GS-GSA-MW-9V      | 336.22           |                              |           |            |            |           | -         | -         |           | -         |  |
| GS-GSA-MW-12V     | 379.50           |                              |           |            |            |           | -         | -         |           | -         |  |
| GS-GSA-MW-14H     | 403.66           |                              |           |            |            |           | -         | -         |           | 1         |  |
| GS-GSA-MW-15H     | 428.16           |                              |           |            |            |           |           |           |           |           |  |
| GS-GSA-MW-23VA    | 403.60           |                              |           |            |            |           |           | -         |           | -         |  |
| GS-GSA-PZ-16      | 436.40           |                              |           |            |            |           |           |           |           |           |  |
| GS-GSA-PZ-17      | 475.94           |                              |           |            |            |           |           |           |           |           |  |
| GS-GSA-PZ-18      | 489.93           |                              |           |            |            |           |           |           |           |           |  |
| GS-GSA-PZ-19      | 463.50           |                              |           |            |            |           |           |           |           |           |  |
| GS-GSA-PZ-20      | 460.34           |                              |           |            |            |           |           |           |           |           |  |
| GS-GSA-PZ-22      | 479.46           |                              |           |            |            |           |           |           |           |           |  |
| GS-GSA-PZ-21      | 460.94           |                              |           |            |            |           |           |           |           |           |  |

- 1. ft. AMSL feet above mean sea level
- 2. -- Not Measured3. Upgradient monitoring well located at the CCR Landfill

Table 3 **Groundwater Elevations Summary** 

| Well Name         | Top of Casing<br>Elevation | Groundwater Elevation  (ft.) |           |            |          |           |           |            |            |          |          |
|-------------------|----------------------------|------------------------------|-----------|------------|----------|-----------|-----------|------------|------------|----------|----------|
|                   |                            | 2/13/2018                    | 6/11/2018 | 10/17/2018 | 3/4/2019 | 3/13/2019 | 4/10/2019 | 10/14/2019 | 11/26/2019 | 2/3/2020 | 8/3/2020 |
| MW-1 <sup>3</sup> | 502.38                     | 411.02                       | 411.41    | 410.78     |          | 412.24    | 412.08    | 410.85     |            | 411.94   | 412.32   |
| MW-2 <sup>3</sup> | 502.17                     | 419.34                       | 417.08    | 416.44     | -        | 417.75    | 421.20    | 416.67     |            | 417.57   | 417.15   |
| MW-3 <sup>3</sup> | 525.90                     | 418.49                       | 415.77    | 414.92     | -        | 418.31    | 417.41    | 415.14     |            | 416.62   | 415.49   |
| MW-4 <sup>3</sup> | 517.89                     | 401.93                       | 401.27    | 399.56     | -        | 401.94    | 402.12    | 399.59     |            | 401.68   | 400.63   |
| GS-GSA-MW-3       | 442.63                     | 332.79                       | 336.36    | 332.37     |          | 341.46    | 341.33    | 332.37     |            | 339.32   | 335.10   |
| GS-GSA-MW-4       | 442.10                     | 353.06                       | 351.52    | 349.56     |          | 353.06    | 353.00    | 349.08     |            | 352.42   | 350.66   |
| GS-GSA-MW-8       | 404.38                     | 320.01                       | 324.40    | 319.03     |          | 334.46    | 330.27    | 319.20     |            | 329.85   | 323.91   |
| GS-GSA-MW-3V      | 442.68                     |                              |           |            | 327.13   | 326.34    |           | 313.29     |            | 321.66   | 316.37   |
| GS-GSA-MW-4V      | 442.18                     |                              |           |            | 333.31   | 332.35    |           | 322.28     |            | 328.85   | 323.88   |
| GS-GSA-MW-9H      | 335.83                     |                              |           |            | 294.33   | 293.64    |           | 286.47     |            | 291.69   | 288.01   |
| GS-GSA-MW-10H     | 339.52                     |                              |           |            |          | 321.80    |           |            |            | 319.09   | 312.41   |
| GS-GSA-MW-11H     | 263.02                     |                              |           |            | 257.01   | 256.30    |           | 255.09     |            | 256.29   | 256.21   |
| GS-GSA-MW-8V      | 404.43                     |                              |           |            |          |           |           |            | 310.82     | 319.53   | 313.99   |
| GS-GSA-MW-12H     | 399.73                     |                              |           |            |          |           |           |            | 339.57     | 341.15   | 337.17   |
| GS-GSA-MW-13H     | 266.46                     |                              |           |            |          |           |           |            | 257.06     | 257.03   | 256.50   |
| GS-GSA-MW-1       | 442.96                     |                              |           |            |          |           |           |            |            | 347.96   | 347.74   |
| GS-GSA-MW-2       | 442.84                     |                              |           |            |          |           |           |            |            | 340.10   | 335.87   |
| GS-GSA-PZ-2A      | 491.52                     |                              |           |            |          |           |           |            |            | 372.06   | 371.55   |
| GS-GSA-MW-9V      | 336.22                     |                              |           |            |          |           |           |            |            |          | 289.16   |
| GS-GSA-MW-12V     | 379.50                     |                              |           |            |          |           |           |            |            |          | 294.01   |
| GS-GSA-MW-14H     | 403.66                     |                              |           |            |          |           |           |            |            |          | 384.51   |
| GS-GSA-MW-15H     | 428.16                     |                              |           |            |          |           |           |            |            |          | 401.88   |
| GS-GSA-MW-23VA    | 403.60                     |                              |           |            |          |           |           |            |            |          |          |
| GS-GSA-PZ-16      | 436.40                     |                              |           |            |          |           |           |            |            |          | 409.21   |
| GS-GSA-PZ-17      | 475.94                     |                              |           |            |          |           |           |            |            |          | 429.97   |
| GS-GSA-PZ-18      | 489.93                     |                              |           |            |          |           |           |            |            |          | 426.03   |
| GS-GSA-PZ-19      | 463.50                     |                              |           |            |          |           |           |            |            |          | 339.96   |
| GS-GSA-PZ-20      | 460.34                     |                              |           |            |          |           |           |            |            |          | 344.11   |
| GS-GSA-PZ-22      | 479.46                     |                              |           |            |          |           |           |            |            |          | 424.21   |
| GS-GSA-PZ-21      | 460.94                     |                              |           |            |          |           |           |            |            |          | 378.58   |

- 1. ft. AMSL feet above mean sea level
- 2. -- Not Measured3. Upgradient monitoring well located at the CCR Landfill

Table 4
Horizontal Groundwater Flow Velocity Calculations

|          |                     |                     |          | SA01 2020             |                           |                       |                                            |                                            |
|----------|---------------------|---------------------|----------|-----------------------|---------------------------|-----------------------|--------------------------------------------|--------------------------------------------|
| Date     | MW-3                | MW-8                | Distance | Hydraulic<br>Gradient | Hydraulic<br>Conductivity | Effective<br>Porosity | Calculated<br>Groundwater<br>Flow Velocity | Calculated<br>Groundwater<br>Flow Velocity |
|          | h <sub>1</sub> (ft) | h <sub>2</sub> (ft) | Δl (ft)  | Δh/Δl (ft/ft)         | K (ft/day)                | n                     | (ft/d)                                     | (ft/yr)                                    |
| 2/3/2020 | 339.32              | 329.85              | 165.30   | 0.057                 | 8.01                      | 0.15                  | 3.06                                       | 1116.64                                    |

### SA02 2020

| Date     | MW-3                | MW-8                | Distance | Hydraulic<br>Gradient       | Hydraulic<br>Conductivity | Effective<br>Porosity | Calculated<br>Groundwater<br>Flow Velocity | Calculated<br>Groundwater<br>Flow Velocity |
|----------|---------------------|---------------------|----------|-----------------------------|---------------------------|-----------------------|--------------------------------------------|--------------------------------------------|
|          | h <sub>1</sub> (ft) | h <sub>2</sub> (ft) | Δl (ft)  | $\Delta h/\Delta l$ (ft/ft) | K (ft/day)                | n                     | (ft/d)                                     | (ft/yr)                                    |
| 8/3/2020 | 335.1               | 323.91              | 165.30   | 0.068                       | 8.01                      | 0.15                  | 3.61                                       | 1319.45                                    |

Notes:

ft=feet

ft/d = feet/day

ft/ft = feet per foot

ft/yr = feet per year

### Table 5. Relative Percent Difference Calculations

|           | 2020 1st Semi-Annual Monitoring Event |               |                     |                    |  |  |  |  |  |  |
|-----------|---------------------------------------|---------------|---------------------|--------------------|--|--|--|--|--|--|
|           |                                       | Monitoring Po | oint Identification | Relative Percent   |  |  |  |  |  |  |
| Parameter | Units                                 | MW-2          | MW-2 Dup            | Difference (RPD %) |  |  |  |  |  |  |
| Barium    | mg/L                                  | 0.0122        | 0.0117              | 4.2                |  |  |  |  |  |  |
| Calcium   | mg/L                                  | 172           | 182                 | 5.6                |  |  |  |  |  |  |
| Chloride  | mg/L                                  | 2.48          | 2.53                | 2.0                |  |  |  |  |  |  |
| Cobalt    | mg/L                                  | 0.0193        | 0.0191              | 1.0                |  |  |  |  |  |  |
| Fluoride  | mg/L                                  | 0.182         | 0.182               | 0.0                |  |  |  |  |  |  |
| Lithium   | mg/L                                  | 0.0534        | 0.0538              | 0.7                |  |  |  |  |  |  |
| pН        | SU                                    | 5.95          | 5.95                | 0.0                |  |  |  |  |  |  |
| Sulfate   | mg/L                                  | 803           | 814                 | 1.4                |  |  |  |  |  |  |
| TDS       | mg/L                                  | 1440          | 1430                | 0.7                |  |  |  |  |  |  |

| Parameter   | Units | Monitoring Po | oint Identification | Relative Percent   |  |
|-------------|-------|---------------|---------------------|--------------------|--|
| 1 at ameter | Cints | GS-GSA-MW-4   | GS-GSA-MW-4 Dup     | Difference (RPD %) |  |
| Arsenic     | mg/L  | 0.00128       | 0.00127             | 0.8                |  |
| Barium      | mg/L  | 0.0124        | 0.0122              | 1.6                |  |
| Beryllium   | mg/L  | 0.00415       | 0.00435             | 4.7                |  |
| Boron       | mg/L  | 2.74          | 2.74                | 0.0                |  |
| Cadmium     | mg/L  | 0.00143       | 0.00142             | 0.7                |  |
| Calcium     | mg/L  | 116           | 115                 | 0.9                |  |
| Chloride    | mg/L  | 43.2          | 42.8                | 0.9                |  |
| Cobalt      | mg/L  | 0.217         | 0.218               | 0.5                |  |
| Lithium     | mg/L  | 0.29          | 0.288               | 0.7                |  |
| pН          | SU    | 3.83          | 3.83                | 0.0                |  |
| Sulfate     | mg/L  | 571           | 573                 | 0.3                |  |
| TDS         | mg/L  | 978           | 986                 | 0.8                |  |

| 2020 2nd Semi-Annual Monitoring Event |       |               |                    |                    |  |  |  |  |  |
|---------------------------------------|-------|---------------|--------------------|--------------------|--|--|--|--|--|
| _                                     |       | Monitoring Po | int Identification | Relative Percent   |  |  |  |  |  |
| Parameter                             | Units | GS-GSA-PZ-20  | GS-GSA-PZ-20 Dup   | Difference (RPD %) |  |  |  |  |  |
| Boron                                 | mg/L  | 0.0833        | 0.0822             | 1.3                |  |  |  |  |  |
| Calcium                               | mg/L  | 76.9          | 77.3               | 0.5                |  |  |  |  |  |
| Chloride                              | mg/L  | 15            | 15.1               | 0.7                |  |  |  |  |  |
| Fluoride                              | mg/L  | 0.188         | 0.183              | 2.7                |  |  |  |  |  |
| Sulfate                               | mg/L  | 379           | 393                | 3.6                |  |  |  |  |  |
| TDS                                   | mg/L  | 798           | 792                | 0.8                |  |  |  |  |  |
| pН                                    | SU    | 6.03          | 6.03               | 0.0                |  |  |  |  |  |
| Arsenic                               | mg/L  | 0.00214       | 0.0021             | 1.9                |  |  |  |  |  |
| Barium                                | mg/L  | 0.0211        | 0.02               | 5.4                |  |  |  |  |  |
| Cobalt                                | mg/L  | 0.00734       | 0.00741            | 0.9                |  |  |  |  |  |
| Lithium                               | mg/L  | 0.102         | 0.101              | 1.0                |  |  |  |  |  |

| Parameter | Units | Monitoring Po | Relative Percent |                    |
|-----------|-------|---------------|------------------|--------------------|
|           | Cints | MW-1 LF       | MW-1 LF Dup      | Difference (RPD %) |
| Calcium   | mg/L  | 148           | 148              | 0.0                |
| Chloride  | mg/L  | 2.05          | 2.06             | 0.5                |
| Sulfate   | mg/L  | 1370          | 1480             | 7.7                |
| TDS       | mg/L  | 2200          | 2200             | 0.0                |
| pН        | SU    | 5.08          | 5.08             | 0.0                |
| Barium    | mg/L  | 0.0107        | 0.0103           | 3.8                |
| Cadmium   | mg/L  | 0.00237       | 0.00219          | 7.9                |
| Cobalt    | mg/L  | 0.0722        | 0.0711           | 1.5                |
| Lithium   | mg/L  | 0.0259        | 0.0262           | 1.2                |
| Selenium  | mg/L  | 0.00278       | 0.00245          | 12.6               |

Table 6.
Summary of Background Levels and Groundwater Protection Standards

| Analyte                 | Units | Background | GWPS  |
|-------------------------|-------|------------|-------|
| Antimony                | mg/L  | 0.003      | 0.006 |
| Arsenic                 | mg/L  | 0.005      | 0.01  |
| Barium                  | mg/L  | 0.01531    | 2     |
| Beryllium               | mg/L  | 0.0121     | 0.004 |
| Cadmium                 | mg/L  | 0.00598    | 0.005 |
| Chromium                | mg/L  | 0.0105     | 0.1   |
| Cobalt                  | mg/L  | 1.07       | 1.07  |
| Combined Radium-226/228 | pCi/L | 1.151      | 5     |
| Fluoride                | mg/L  | 0.5302     | 4     |
| Lead                    | mg/L  | 0.00692    | 0.015 |
| Lithium                 | mg/L  | 0.419      | 0.419 |
| Mercury                 | mg/L  | 0.0005     | 0.002 |
| Molybdenum              | mg/L  | 0.01       | 0.1   |
| Selenium                | mg/L  | 0.0158     | 0.05  |
| Thallium                | mg/L  | 0.001      | 0.002 |

<sup>1.</sup> mg/L - Milligrams per liter

<sup>2.</sup> pCi/L - Picocuries per liter

<sup>3.</sup> The background limits were used when determining the groundwater protection standard (GWPS) under 40 CFR \$257.95(h) and ADEM Rule 335-13-15-.06(h).

Table 7.
First Semi-Annual Monitoring Event Analytical Summary

|               |             |      |         | Field Parameters |              |           |
|---------------|-------------|------|---------|------------------|--------------|-----------|
| WELL          | SAMPLE DATE | DO   | ORP     | Temperature      | Conductivity | Turbidity |
| UNITS         |             | mg/L | mv      | С                | uS/cm        | NTU       |
| MW-1          | 2/3/2020    | 0.82 | 123.43  | 19.79            | 2376.80      | 0.52      |
| MW-2          | 2/3/2020    | 0.23 | 88.19   | 19.09            | 1697.19      | 0.61      |
| MW-3          | 2/3/2020    | 5.63 | 131.47  | 21.57            | 3312.09      | 0.96      |
| MW-4          | 2/3/2020    | 2.91 | 124.13  | 20.34            | 3119.33      | 0.41      |
| GS-GSA-MW-3   | 2/3/2020    | 0.22 | -14.71  | 20.43            | 4133.61      | 3.56      |
| GS-GSA-MW-4   | 2/4/2020    | 0.29 | 298.36  | 19.91            | 1221.02      | 4.79      |
| GS-GSA-MW-8   | 2/4/2020    | 0.29 | -47.90  | 19.85            | 3470.58      | 1.60      |
| GS-GSA-MW-3V  | 2/3/2020    | 0.75 | -51.26  | 21.33            | 3331.61      | 1.28      |
| GS-GSA-MW-4V  | 2/3/2020    | 0.38 | 33.95   | 19.72            | 1481.03      | 2.76      |
| GS-GSA-MW-8V  | 2/5/2020    | 0.51 | -309.03 | 20.25            | 1739.73      | 1.21      |
| GS-GSA-MW-9H  | 2/4/2020    | 0.22 | 118.73  | 20.45            | 3250.54      | 3.91      |
| GS-GSA-MW-11H | 2/4/2020    | 0.17 | 55.02   | 19.26            | 1472.55      | 6.12      |
| GS-GSA-MW-12H | 2/4/2020    | 0.27 | 256.14  | 19.23            | 1706.04      | 4.82      |
| GS-GSA-MW-13H | 2/4/2020    | 0.15 | -3.51   | 19.29            | 1502.46      | 1.52      |

- 2. Non-Detect indicates the result was not detected above the MDL and is considered a non-detect.
- 3. U Radium data is a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurment.
- 4. (+) U\* indicates validation flag applied to samples were equipment blank or field blank limit exceedances potentially biased samples
- 5. TDS Total Dissolved Solids

<sup>1.</sup> J value indicates the result is greater that or equal to the Method Detection Limit (MDL) and less that the Practical Quantitation Limit (PQL). Values are displayed as less than the PQL with a J.

Table 7.
First Semi-Annual Monitoring Event Analytical Summary

|               |             |            |         |          | APPENDIX III |      |         |      |
|---------------|-------------|------------|---------|----------|--------------|------|---------|------|
| WELL          | SAMPLE DATE | Boron      | Calcium | Chloride | Fluoride     | pН   | Sulfate | TDS  |
| UN            | ITS         | mg/L       | mg/L    | mg/L     | mg/L         | SU   | mg/L    | mg/L |
| MW-1          | 2/3/2020    | Non-Detect | 172     | 2.07     | 0.0982(J)    | 5    | 1510    | 2380 |
| MW-2          | 2/3/2020    | Non-Detect | 172     | 2.48     | 0.182        | 5.95 | 803     | 1440 |
| MW-3          | 2/3/2020    | Non-Detect | 276     | 2.12     | 0.256        | 5.54 | 2290    | 3530 |
| MW-4          | 2/3/2020    | 0.0433(J)  | 265     | 1.72     | 0.37         | 6.14 | 1920    | 3240 |
| GS-GSA-MW-3   | 2/3/2020    | 2.13       | 589     | 267      | 0.427        | 5.98 | 2840    | 4920 |
| GS-GSA-MW-4   | 2/4/2020    | 2.74       | 116     | 43.2     | Non-Detect   | 3.83 | 571     | 978  |
| GS-GSA-MW-8   | 2/4/2020    | 1.47       | 461     | 94.1     | 0.132        | 6.85 | 1570    | 3190 |
| GS-GSA-MW-3V  | 2/3/2020    | 3.06       | 504     | 338      | 0.438        | 5.88 | 1970    | 3660 |
| GS-GSA-MW-4V  | 2/3/2020    | 5.25       | 184     | 101      | 0.555        | 5.84 | 808     | 1290 |
| GS-GSA-MW-8V  | 2/5/2020    | 0.136      | 37.3    | 9.05     | 0.162        | 7.48 | 223     | 1100 |
| GS-GSA-MW-9H  | 2/4/2020    | 9.63       | 413     | 139      | 0.205        | 5.34 | 1710    | 3110 |
| GS-GSA-MW-11H | 2/4/2020    | Non-Detect | 163     | 4.27     | 0.0743(J)    | 6.02 | 725     | 1200 |
| GS-GSA-MW-12H | 2/4/2020    | 0.0748(J)  | 158     | 2.34     | Non-Detect   | 4.57 | 978     | 1580 |
| GS-GSA-MW-13H | 2/4/2020    | 0.202      | 171     | 12.9     | 0.115        | 6    | 720     | 1200 |

- 1. J value indicates the result is greater that or equal to the Method Detection Limit (MDL) and less that the Practical Quantitation Limit (PQL). Values are displayed as less than the PQL with a J.
- 2. Non-Detect indicates the result was not detected above the MDL and is considered a non-detect.
- 3. U Radium data is a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurment.
- 4. (+) U\* indicates validation flag applied to samples were equipment blank or field blank limit exceedances potentially biased samples
- 5. TDS Total Dissolved Solids

Table 7.
First Semi-Annual Monitoring Event Analytical Summary

|               |             |            |            |            | APPENDIX IV |             |            |            |
|---------------|-------------|------------|------------|------------|-------------|-------------|------------|------------|
| WELL          | SAMPLE DATE | Antimony   | Arsenic    | Barium     | Beryllium   | Cadmium     | Chromium   | Cobalt     |
| UN            | ITS         | mg/L       | mg/L       | mg/L       | mg/L        | mg/L        | mg/L       | mg/L       |
| MW-1          | 2/3/2020    | Non-Detect | Non-Detect | 0.00995(J) | Non-Detect  | 0.00182     | Non-Detect | 0.0495     |
| MW-2          | 2/3/2020    | Non-Detect | Non-Detect | 0.0122     | Non-Detect  | Non-Detect  | Non-Detect | 0.0193     |
| MW-3          | 2/3/2020    | Non-Detect | Non-Detect | 0.0086(J)  | Non-Detect  | 0.000988(J) | Non-Detect | 0.0114     |
| MW-4          | 2/3/2020    | Non-Detect | Non-Detect | 0.0103     | Non-Detect  | Non-Detect  | Non-Detect | Non-Detect |
| GS-GSA-MW-3   | 2/3/2020    | Non-Detect | Non-Detect | 0.0141     | 0.00141(J)  | Non-Detect  | Non-Detect | 0.0843     |
| GS-GSA-MW-4   | 2/4/2020    | Non-Detect | 0.00128(J) | 0.0124     | 0.00415     | 0.00143     | Non-Detect | 0.217      |
| GS-GSA-MW-8   | 2/4/2020    | Non-Detect | Non-Detect | 0.0209     | Non-Detect  | Non-Detect  | Non-Detect | Non-Detect |
| GS-GSA-MW-3V  | 2/3/2020    | Non-Detect | Non-Detect | 0.0215     | Non-Detect  | Non-Detect  | Non-Detect | 0.0135     |
| GS-GSA-MW-4V  | 2/3/2020    | Non-Detect | 0.00101(J) | 0.0103     | 0.00362     | Non-Detect  | Non-Detect | 0.108      |
| GS-GSA-MW-8V  | 2/5/2020    | Non-Detect | 0.00232(J) | 0.096      | Non-Detect  | Non-Detect  | Non-Detect | Non-Detect |
| GS-GSA-MW-9H  | 2/4/2020    | Non-Detect | 0.00123(J) | 0.0148     | 0.000929(J) | 0.000349(J) | Non-Detect | 0.159      |
| GS-GSA-MW-11H | 2/4/2020    | Non-Detect | Non-Detect | 0.0148     | Non-Detect  | Non-Detect  | Non-Detect | 0.00582    |
| GS-GSA-MW-12H | 2/4/2020    | Non-Detect | 0.00157(J) | 0.0141     | 0.00709     | 0.00301     | Non-Detect | 0.351      |
| GS-GSA-MW-13H | 2/4/2020    | Non-Detect | 0.16       | 0.0296     | Non-Detect  | Non-Detect  | Non-Detect | 0.0442     |

- 1. J value indicates the result is greater that or equal to the Method Detection Limit (MDL) and less that the Practical Quantitation Limit (PQL). Values are displayed as less than the PQL with a J.
- 2. Non-Detect indicates the result was not detected above the MDL and is considered a non-detect.
- 3. U Radium data is a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurment.
- 4. (+) U\* indicates validation flag applied to samples were equipment blank or field blank limit exceedances potentially biased samples
- 5. TDS Total Dissolved Solids

Table 7.
First Semi-Annual Monitoring Event Analytical Summary

|               |             |                                 |            |            | APPEN      | DIX IV     |            |            |             |
|---------------|-------------|---------------------------------|------------|------------|------------|------------|------------|------------|-------------|
| WELL          | SAMPLE DATE | Combined<br>Radium 226 +<br>228 | Fluoride   | Lead       | Lithium    | Mercury    | Molybdenum | Selenium   | Thallium    |
| UN            | ITS         | pCi/L                           | mg/L        |
| MW-1          | 2/3/2020    | 0.521(U)                        | 0.0982(J)  | Non-Detect | 0.0292     | Non-Detect | Non-Detect | 0.00272(J) | Non-Detect  |
| MW-2          | 2/3/2020    | -0.0245(U)                      | 0.182      | Non-Detect | 0.0534     | Non-Detect | Non-Detect | Non-Detect | Non-Detect  |
| MW-3          | 2/3/2020    | 0.0246(U)                       | 0.256      | Non-Detect | 0.0825     | Non-Detect | Non-Detect | 0.012      | Non-Detect  |
| MW-4          | 2/3/2020    | 0.254(U)                        | 0.37       | Non-Detect | 0.0556     | Non-Detect | Non-Detect | 0.00212(J) | Non-Detect  |
| GS-GSA-MW-3   | 2/3/2020    | 0.28(U)                         | 0.427      | Non-Detect | 0.474      | Non-Detect | Non-Detect | Non-Detect | Non-Detect  |
| GS-GSA-MW-4   | 2/4/2020    | 0.324(U)                        | Non-Detect | Non-Detect | 0.29       | Non-Detect | Non-Detect | Non-Detect | Non-Detect  |
| GS-GSA-MW-8   | 2/4/2020    | 0.336(U)                        | 0.132      | Non-Detect | 0.188      | Non-Detect | Non-Detect | Non-Detect | Non-Detect  |
| GS-GSA-MW-3V  | 2/3/2020    | 0.408(U)                        | 0.438      | Non-Detect | 0.46       | Non-Detect | Non-Detect | Non-Detect | Non-Detect  |
| GS-GSA-MW-4V  | 2/3/2020    | 0.758                           | 0.555      | Non-Detect | 0.332      | Non-Detect | Non-Detect | Non-Detect | Non-Detect  |
| GS-GSA-MW-8V  | 2/5/2020    | 0.576                           | 0.162      | Non-Detect | 0.327      | Non-Detect | Non-Detect | Non-Detect | Non-Detect  |
| GS-GSA-MW-9H  | 2/4/2020    | 0.441(U)                        | 0.205      | Non-Detect | 0.203      | Non-Detect | Non-Detect | Non-Detect | 0.000233(J) |
| GS-GSA-MW-11H | 2/4/2020    | 0.319(U)                        | 0.0743(J)  | Non-Detect | Non-Detect | Non-Detect | Non-Detect | Non-Detect | Non-Detect  |
| GS-GSA-MW-12H | 2/4/2020    | 0.939                           | Non-Detect | 0.00334(J) | 0.394      | Non-Detect | Non-Detect | Non-Detect | 0.000491(J) |
| GS-GSA-MW-13H | 2/4/2020    | 0.624                           | 0.115      | Non-Detect | 0.0506     | Non-Detect | Non-Detect | Non-Detect | Non-Detect  |

- 1. J value indicates the result is greater that or equal to the Method Detection Limit (MDL) and less that the Practical Quantitation Limit (PQL). Values are displayed as less than the PQL with a J.
- 2. Non-Detect indicates the result was not detected above the MDL and is considered a non-detect.
- 3. U Radium data is a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurment.
- 4. (+) U\* indicates validation flag applied to samples were equipment blank or field blank limit exceedances potentially biased samples
- 5. TDS Total Dissolved Solids

Table 7.
First Semi-Annual Monitoring Event Analytical Summary

|               |                |      |         | Field Parameters |              |           |
|---------------|----------------|------|---------|------------------|--------------|-----------|
| WELL          | SAMPLE<br>DATE | DO   | ORP     | Temperature      | Conductivity | Turbidity |
| UNITS         |                | mg/L | mv      | С                | uS/cm        | NTU       |
| MW-1          | 8/3/2020       | 0.48 | 286.16  | 20.09            | 1647.17      | 2.06      |
| MW-2          | 8/3/2020       | 0.28 | 59.52   | 20.21            | 1280.91      | 3.65      |
| MW-3          | 8/3/2020       | 1.44 | 206.72  | 24.12            | 2198.42      | 6.72      |
| MW-4          | 8/5/2020       | 1.68 | 145.45  | 20.77            | 2442.43      | 4.87      |
| GS-GSA-MW-3   | 8/4/2020       | 0.15 | -31.98  | 21.3             | 4345.17      | 8.88      |
| GS-GSA-MW-4   | 8/5/2020       | 0.27 | 304.37  | 21.53            | 1150.86      | 8.94      |
| GS-GSA-MW-8   | 8/5/2020       | 0.22 | -110.97 | 22.37            | 3686.49      | 3.86      |
| GS-GSA-MW-3V  | 8/4/2020       | 0.62 | -10.43  | 25.2             | 3805.18      | 1.01      |
| GS-GSA-MW-4V  | 8/5/2020       | 0.44 | 35.35   | 21.7             | 1386.95      | 9.04      |
| GS-GSA-MW-8V  | 8/5/2020       | 0.21 | -284.84 | 22.32            | 1635.82      | 1.62      |
| GS-GSA-MW-9H  | 8/4/2020       | 0.44 | 115.04  | 22.1             | 2019.87      | 8.29      |
| GS-GSA-MW-9V  | 8/4/2020       | 0.93 | -89.8   | 25.02            | 2563.32      | 3.07      |
| GS-GSA-MW-11H | 8/4/2020       | 0.33 | 60.84   | 20.41            | 1267.37      | 9.44      |
| GS-GSA-MW-12H | 8/5/2020       | 0.23 | 349.81  | 20.32            | 1325.81      | 7.94      |
| GS-GSA-MW-12V | 8/5/2020       | 0.19 | -42.27  | 20.1             | 3604.38      | 6.84      |
| GS-GSA-MW-13H | 8/4/2020       | 0.23 | -17.01  | 20.11            | 1199.6       | 4.08      |
| GS-GSA-MW-14H | 8/5/2020       | 0.29 | 291.85  | 20.84            | 1379.37      | 2.93      |
| GS-GSA-PZ-17  | 8/4/2020       | 0.38 | 288.29  | 23.57            | 1883.1       | 5.56      |
| GS-GSA-PZ-18  | 8/3/2020       | 0.7  | 250.58  | 21.91            | 1297.6       | 0.86      |
| GS-GSA-PZ-19  | 8/3/2020       | 0.2  | -30.67  | 18.97            | 1176.09      | 3.77      |
| GS-GSA-PZ-20  | 8/3/2020       | 0.31 | -3.01   | 19.53            | 1185.16      | 4.15      |
| GS-GSA-PZ-21  | 8/4/2020       | 0.26 | -93.39  | 19.38            | 762.82       | 1.86      |
| GS-GSA-PZ-22  | 8/4/2020       | 0.22 | -86.46  | 18.94            | 863.41       | 1.3       |

- 1. J value indicates the result is greater that or equal to the Method Detection Limit (MDL) and less that the Practical Quantitation Limit (PQL). Values are displayed as less than the PQL with a J.
- 2. Non-Detect indicates the result was not detected above the MDL and is considered a non-detect.
- 3. U Radium data is a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurment.
- 4. TDS Total Dissolved Solids

Table 7.
First Semi-Annual Monitoring Event Analytical Summary

|               |                |            |         |          | APPENDIX III |      |         |      |
|---------------|----------------|------------|---------|----------|--------------|------|---------|------|
| WELL          | SAMPLE<br>DATE | Boron      | Calcium | Chloride | Fluoride     | pН   | Sulfate | TDS  |
| UNITS         | S              | mg/L       | mg/L    | mg/L     | mg/L         | SU   | mg/L    | mg/L |
| MW-1          | 8/3/2020       | Non-Detect | 148     | 2.05     | Non-Detect   | 5.08 | 1370    | 2200 |
| MW-2          | 8/3/2020       | 0.0317(J)  | 172     | 4.03     | 0.122        | 5.95 | 907     | 1650 |
| MW-3          | 8/3/2020       | 0.0424(J)  | 285     | 1.17     | 0.0766(J)    | 5.06 | 2330    | 3760 |
| MW-4          | 8/5/2020       | 0.0459(J)  | 281     | 1.57     | 0.359        | 6.15 | 1930    | 3200 |
| GS-GSA-MW-3   | 8/4/2020       | 1.82       | 545     | 222      | 0.389        | 6.09 | 2820    | 5110 |
| GS-GSA-MW-4   | 8/5/2020       | 2.51       | 94.7    | 41       | Non-Detect   | 3.86 | 519     | 938  |
| GS-GSA-MW-8   | 8/5/2020       | 2.16       | 497     | 146      | 0.119        | 6.76 | 1880    | 3610 |
| GS-GSA-MW-3V  | 8/4/2020       | 2.8        | 443     | 305      | 0.349        | 5.9  | 1860    | 3530 |
| GS-GSA-MW-4V  | 8/5/2020       | 4.41       | 167     | 80.9     | 0.363        | 5.81 | 761     | 1330 |
| GS-GSA-MW-8V  | 8/5/2020       | 0.131      | 31.9    | 13.9     | 0.256        | 7.58 | 243     | 1100 |
| GS-GSA-MW-9H  | 8/4/2020       | 8.53       | 346     | 109      | 0.127        | 5.33 | 1790    | 2920 |
| GS-GSA-MW-9V  | 8/4/2020       | 0.149      | 434     | 58.6     | 0.135        | 6.88 | 1700    | 3080 |
| GS-GSA-MW-11H | 8/4/2020       | Non-Detect | 139     | 4.51     | 0.109        | 5.74 | 694     | 1230 |
| GS-GSA-MW-12H | 8/5/2020       | 0.0748(J)  | 126     | 2        | Non-Detect   | 4.13 | 811     | 1380 |
| GS-GSA-MW-12V | 8/5/2020       | 1.55       | 350     | 159      | 0.217        | 6.15 | 1830    | 3330 |
| GS-GSA-MW-13H | 8/4/2020       | 0.263      | 192     | 12.7     | 0.113        | 5.89 | 773     | 1350 |
| GS-GSA-MW-14H | 8/5/2020       | 0.158      | 141     | 3.28     | 0.082(J)     | 3.83 | 796     | 1280 |
| GS-GSA-PZ-17  | 8/4/2020       | 0.168      | 218     | 1.7      | Non-Detect   | 4.08 | 1310    | 2160 |
| GS-GSA-PZ-18  | 8/3/2020       | 0.0671(J)  | 106     | 4.55     | Non-Detect   | 4.09 | 729     | 1210 |
| GS-GSA-PZ-19  | 8/3/2020       | 0.0553(J)  | 88      | 21.7     | 0.18         | 6.32 | 210     | 740  |
| GS-GSA-PZ-20  | 8/3/2020       | 0.0833(J)  | 76.9    | 15       | 0.188        | 6.03 | 379     | 798  |
| GS-GSA-PZ-21  | 8/4/2020       | Non-Detect | 36.4    | 13.6     | 0.323        | 6.94 | 23.8    | 447  |
| GS-GSA-PZ-22  | 8/4/2020       | 0.108      | 70.4    | 7.77     | 0.167        | 6.42 | 340     | 638  |

1. J value indicates the result is greater that or equal to the Method Detection Limit (MDL) and less that the Practical Quantitation Limit (PQL). Values are displayed as less than the PQL with a J.

- 2. Non-Detect indicates the result was not detected above the MDL and is considered a non-detect.
- 3. U Radium data is a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurment.
- 4. TDS Total Dissolved Solids

Table 7.
First Semi-Annual Monitoring Event Analytical Summary

|               |                |            |            |        | APPENDIX IV |             |            |            |
|---------------|----------------|------------|------------|--------|-------------|-------------|------------|------------|
| WELL          | SAMPLE<br>DATE | Antimony   | Arsenic    | Barium | Beryllium   | Cadmium     | Chromium   | Cobalt     |
| UNITS         |                | mg/L       | mg/L       | mg/L   | mg/L        | mg/L        | mg/L       | mg/L       |
| MW-1          | 8/3/2020       | Non-Detect | Non-Detect | 0.0107 | Non-Detect  | 0.00237     | Non-Detect | 0.0722     |
| MW-2          | 8/3/2020       | Non-Detect | Non-Detect | 0.0147 | Non-Detect  | Non-Detect  | Non-Detect | 0.0589     |
| MW-3          | 8/3/2020       | Non-Detect | 0.00426(J) | 0.0166 | 0.00405     | 0.00652     | Non-Detect | 0.64       |
| MW-4          | 8/5/2020       | Non-Detect | Non-Detect | 0.0125 | Non-Detect  | Non-Detect  | Non-Detect | Non-Detect |
| GS-GSA-MW-3   | 8/4/2020       | Non-Detect | Non-Detect | 0.0139 | 0.00174(J)  | Non-Detect  | Non-Detect | 0.0862     |
| GS-GSA-MW-4   | 8/5/2020       | Non-Detect | 0.00115(J) | 0.0142 | 0.00385     | 0.00157     | Non-Detect | 0.235      |
| GS-GSA-MW-8   | 8/5/2020       | Non-Detect | Non-Detect | 0.0216 | Non-Detect  | Non-Detect  | Non-Detect | Non-Detect |
| GS-GSA-MW-3V  | 8/4/2020       | Non-Detect | Non-Detect | 0.017  | Non-Detect  | Non-Detect  | Non-Detect | 0.0133     |
| GS-GSA-MW-4V  | 8/5/2020       | Non-Detect | 0.00116(J) | 0.0112 | 0.00416     | Non-Detect  | Non-Detect | 0.141      |
| GS-GSA-MW-8V  | 8/5/2020       | Non-Detect | 0.00476(J) | 0.125  | Non-Detect  | Non-Detect  | Non-Detect | Non-Detect |
| GS-GSA-MW-9H  | 8/4/2020       | Non-Detect | 0.00137(J) | 0.0153 | 0.000882(J) | 0.000308(J) | Non-Detect | 0.178      |
| GS-GSA-MW-9V  | 8/4/2020       | Non-Detect | Non-Detect | 0.0155 | Non-Detect  | Non-Detect  | Non-Detect | 0.00412(J) |
| GS-GSA-MW-11H | 8/4/2020       | Non-Detect | Non-Detect | 0.0138 | Non-Detect  | Non-Detect  | Non-Detect | 0.0061     |
| GS-GSA-MW-12H | 8/5/2020       | Non-Detect | 0.00158(J) | 0.016  | 0.00747     | 0.00393     | Non-Detect | 0.436      |
| GS-GSA-MW-12V | 8/5/2020       | Non-Detect | Non-Detect | 0.0157 | Non-Detect  | Non-Detect  | Non-Detect | Non-Detect |
| GS-GSA-MW-13H | 8/4/2020       | Non-Detect | 0.103      | 0.0275 | Non-Detect  | Non-Detect  | Non-Detect | 0.111      |
| GS-GSA-MW-14H | 8/5/2020       | Non-Detect | 0.00181(J) | 0.0113 | 0.00879     | 0.0018      | Non-Detect | 0.237      |
| GS-GSA-PZ-17  | 8/4/2020       | Non-Detect | 0.00495(J) | 0.0181 | 0.0145      | 0.00197     | 0.00254(J) | 0.471      |
| GS-GSA-PZ-18  | 8/3/2020       | 0.00113(J) | 0.0114     | 0.0111 | 0.00829     | 0.0012      | 0.00315(J) | 0.156      |
| GS-GSA-PZ-19  | 8/3/2020       | Non-Detect | 0.00279(J) | 0.047  | Non-Detect  | Non-Detect  | Non-Detect | Non-Detect |
| GS-GSA-PZ-20  | 8/3/2020       | Non-Detect | 0.00214(J) | 0.0211 | Non-Detect  | Non-Detect  | Non-Detect | 0.00734    |
| GS-GSA-PZ-21  | 8/4/2020       | Non-Detect | 0.00204(J) | 0.12   | Non-Detect  | Non-Detect  | Non-Detect | Non-Detect |
| GS-GSA-PZ-22  | 8/4/2020       | Non-Detect | 0.0297     | 0.0243 | Non-Detect  | Non-Detect  | Non-Detect | 0.0021(J)  |

- 1. J value indicates the result is greater that or equal to the Method Detection Limit (MDL) and less that the Practical Quantitation Limit (PQL). Values are displayed as less than the PQL with a J.
- 2. Non-Detect indicates the result was not detected above the MDL and is considered a non-detect.
- 3. U Radium data is a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurment.
- 4. TDS Total Dissolved Solids

Table 7.
First Semi-Annual Monitoring Event Analytical Summary

|               |                |                                 |            |            | APPEN      | DIX IV     |            |            |             |
|---------------|----------------|---------------------------------|------------|------------|------------|------------|------------|------------|-------------|
| WELL          | SAMPLE<br>DATE | Combined<br>Radium 226 +<br>228 | Fluoride   | Lead       | Lithium    | Mercury    | Molybdenum | Selenium   | Thallium    |
| UNITS         | S              | pCi/L                           | mg/L        |
| MW-1          | 8/3/2020       | -0.127(U)                       | Non-Detect | Non-Detect | 0.0259     | Non-Detect | Non-Detect | 0.00278(J) | Non-Detect  |
| MW-2          | 8/3/2020       | 0.888(U)                        | 0.122      | Non-Detect | 0.0611     | Non-Detect | Non-Detect | Non-Detect | Non-Detect  |
| MW-3          | 8/3/2020       | 0.765(U)                        | 0.0766(J)  | 0.002(J)   | 0.27       | Non-Detect | Non-Detect | 0.0146     | Non-Detect  |
| MW-4          | 8/5/2020       | 0.565(U)                        | 0.359      | Non-Detect | 0.0519     | Non-Detect | Non-Detect | 0.00232(J) | Non-Detect  |
| GS-GSA-MW-3   | 8/4/2020       | 0.45(U)                         | 0.389      | Non-Detect | 0.468      | Non-Detect | Non-Detect | Non-Detect | Non-Detect  |
| GS-GSA-MW-4   | 8/5/2020       | 0.389(U)                        | Non-Detect | Non-Detect | 0.273      | Non-Detect | Non-Detect | 0.00298(J) | 0.000205(J) |
| GS-GSA-MW-8   | 8/5/2020       | -0.115(U)                       | 0.119      | Non-Detect | 0.206      | Non-Detect | Non-Detect | Non-Detect | Non-Detect  |
| GS-GSA-MW-3V  | 8/4/2020       | -0.00668(U)                     | 0.349      | Non-Detect | 0.395      | Non-Detect | Non-Detect | Non-Detect | Non-Detect  |
| GS-GSA-MW-4V  | 8/5/2020       | 0.533(U)                        | 0.363      | Non-Detect | 0.322      | Non-Detect | Non-Detect | Non-Detect | Non-Detect  |
| GS-GSA-MW-8V  | 8/5/2020       | 1.85                            | 0.256      | Non-Detect | 0.275      | Non-Detect | Non-Detect | Non-Detect | Non-Detect  |
| GS-GSA-MW-9H  | 8/4/2020       | -0.385(U)                       | 0.127      | Non-Detect | 0.166      | Non-Detect | Non-Detect | Non-Detect | 0.000265(J) |
| GS-GSA-MW-9V  | 8/4/2020       | 0.837(U)                        | 0.135      | Non-Detect | 0.364      | Non-Detect | 0.00423(J) | Non-Detect | Non-Detect  |
| GS-GSA-MW-11H | 8/4/2020       | 0.0315(U)                       | 0.109      | Non-Detect | Non-Detect | Non-Detect | Non-Detect | Non-Detect | Non-Detect  |
| GS-GSA-MW-12H | 8/5/2020       | -0.306(U)                       | Non-Detect | 0.00329(J) | 0.441      | Non-Detect | Non-Detect | 0.00417(J) | 0.000297(J) |
| GS-GSA-MW-12V | 8/5/2020       | -0.284(U)                       | 0.217      | Non-Detect | 0.334      | Non-Detect | 0.00247(J) | Non-Detect | Non-Detect  |
| GS-GSA-MW-13H | 8/4/2020       | -0.402(U)                       | 0.113      | Non-Detect | 0.0534     | Non-Detect | Non-Detect | Non-Detect | Non-Detect  |
| GS-GSA-MW-14H | 8/5/2020       | 0.758(U)                        | 0.082(J)   | 0.00122(J) | 0.512      | Non-Detect | Non-Detect | 0.00571(J) | Non-Detect  |
| GS-GSA-PZ-17  | 8/4/2020       | 0.407(U)                        | Non-Detect | 0.00582    | 1.39       | Non-Detect | Non-Detect | 0.0135     | 0.000242(J) |
| GS-GSA-PZ-18  | 8/3/2020       | 0.511(U)                        | Non-Detect | 0.00366(J) | 0.422      | Non-Detect | Non-Detect | 0.00616(J) | Non-Detect  |
| GS-GSA-PZ-19  | 8/3/2020       | 0.652(U)                        | 0.18       | Non-Detect | 0.0753     | Non-Detect | Non-Detect | Non-Detect | Non-Detect  |
| GS-GSA-PZ-20  | 8/3/2020       | 0.0893(U)                       | 0.188      | Non-Detect | 0.102      | Non-Detect | Non-Detect | Non-Detect | Non-Detect  |
| GS-GSA-PZ-21  | 8/4/2020       | 0.839                           | 0.323      | Non-Detect | 0.0182(J)  | Non-Detect | 0.00347(J) | Non-Detect | Non-Detect  |
| GS-GSA-PZ-22  | 8/4/2020       | 0.114(U)                        | 0.167      | Non-Detect | 0.0558     | Non-Detect | 0.00267(J) | Non-Detect | Non-Detect  |

1. J value indicates the result is greater that or equal to the Method Detection Limit (MDL) and less that the Practical Quantitation Limit (PQL). Values are displayed as less than the PQL with a J.

2. Non-Detect indicates the result was not detected above the MDL and is considered a non-detect.

- 3. U Radium data is a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration),
- data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurment.
- 4. TDS Total Dissolved Solids

### Appendix A

### Appendix A Abbreviations

### Abbreviations:

- 1. mg/L Milligrams per liter
- 2. pCi/L Picocuries per liter
- 3. N/A indicates the constituent was not analyzed during the sampling event.
- 4. J value indicates the result is greater that or equal to the Method Detection Limit (MDL) and less that the Practical Quantitation Limit (PQL).

Values are displayed as less than the PQL with a J.

- 5. Non-Detect indicates the result was not detected above the MDL and is considered a non-detect.
- 6. Radium data is a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurement.
- 7. Annual sampling for Appendix IV constituents only was completed following initiation of assessment monitoring. Appendix III constituents were not required during this monitoring event.

|      |             |            |         |          | APPENDIX II |      |         |      |            |            |            |            |         |            |        | APPENDIX I    | V          |            |           |            |            |            |            |
|------|-------------|------------|---------|----------|-------------|------|---------|------|------------|------------|------------|------------|---------|------------|--------|---------------|------------|------------|-----------|------------|------------|------------|------------|
| WELL | SAMPLE DATE | Boron      | Calcium | Chloride | Fluoride    | pH   | Sulfate | TDS  | Antimony   | Arsenic    | Barium     | Beryllium  | Cadmium | Chromium   | Cobalt | ned Radium 22 | Fluoride   | Lead       | Lithium   | Mercury    | Molybdenum | Selenium   | Thallium   |
| U    | NITS        | mg/L       | mg/L    | mg/L     | mg/L        | SU   | mg/L    | mg/L | mg/L       | mg/L       | mg/L       | mg/L       | mg/L    | mg/L       | mg/L   | pCi/L         | mg/L       | mg/L       | mg/L      | mg/L       | mg/L       | mg/L       | mg/L       |
| MW-1 | 4/26/2016   | 0.0231(J)  | 147     | 1.94     | 0.146(J)    | 5.2  | 1490    | 2080 | Non-Detect | Non-Detect | 0.00941(J) | Non-Detect | 0.00196 | Non-Detect | 0.0343 | n/a           | 0.146(J)   | Non-Detect | 0.0264(J) | Non-Detect | Non-Detect | 0.00261(J) | Non-Detect |
| MW-1 | 6/20/2016   | 0.0227(J)  | 152     | 2.09     | 0.148(J)    | 5.18 | 1420    | 2060 | Non-Detect | Non-Detect | 0.00951(J) | Non-Detect | 0.0021  | Non-Detect | 0.0413 | n/a           | 0.148(J)   | Non-Detect | 0.0246(J) | Non-Detect | Non-Detect | 0.00242(J) | Non-Detect |
| MW-1 | 8/8/2016    | 0.0278(J)  | 150     | 2.18     | 0.137(J)    | 5.12 | 1460    | 2070 | Non-Detect | Non-Detect | 0.00991(J) | Non-Detect | 0.00206 | Non-Detect | 0.0513 | n/a           | 0.137(J)   | Non-Detect | 0.0229(J) | Non-Detect | Non-Detect | 0.00253(J) | Non-Detect |
| MW-1 | 8/24/2016   | 0.0247(J)  | 142     | 2.22     | 0.133(J)    | n/a  | 1450    | 2040 | Non-Detect | Non-Detect | 0.00949(J) | Non-Detect | 0.00182 | Non-Detect | 0.0471 | 0.566(U)      | 0.133(J)   | Non-Detect | 0.0236(J) | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| MW-1 | 10/3/2016   | 0.0307(J)  | 139     | 2.34     | 0.103(J)    | 5.21 | 1460    | 2110 | Non-Detect | Non-Detect | 0.0105     | Non-Detect | 0.00188 | Non-Detect | 0.0525 | 0.537(U)      | 0.103(J)   | Non-Detect | 0.0229(J) | Non-Detect | Non-Detect | 0.00211(J) | Non-Detect |
| MW-1 | 10/26/2016  | 0.0241(J)  | 133     | 2.34     | 0.05(J)     | 5.2  | 1330    | 2000 | Non-Detect | Non-Detect | 0.00931(J) | Non-Detect | 0.00175 | Non-Detect | 0.0527 | 0.636         | 0.05(J)    | Non-Detect | 0.0227(J) | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| MW-1 | 11/21/2016  | 0.0202(J)  | 144     | 2.5      | 0.047(J)    | 5.19 | 1420    | 2070 | Non-Detect | Non-Detect | 0.00879(J) | Non-Detect | 0.00197 | Non-Detect | 0.0569 | 0.807         | 0.047(J)   | Non-Detect | 0.0236(J) | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| MW-1 | 11/21/2016  | n/a        | n/a     | n/a      | n/a         | 5.19 | n/a     | n/a  | n/a        | n/a        | n/a        | n/a        | n/a     | n/a        | n/a    | n/a           | n/a        | n/a        | n/a       | n/a        | n/a        | n/a        | n/a        |
| MW-1 | 1/17/2017   | 0.0201(J)  | 131     | 2.68     | 0.09(J)     | 5.17 | 1350    | 1930 | Non-Detect | Non-Detect | 0.00929(J) | Non-Detect | 0.002   | Non-Detect | 0.0768 | 0.308(U)      | 0.09(J)    | Non-Detect | 0.0228(J) | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| MW-1 | 3/22/2017   | 0.0224(J)  | 141     | 3.7      | 0.12        | 5.2  | 1500    | 2060 | Non-Detect | Non-Detect | 0.00938(J) | Non-Detect | 0.0019  | Non-Detect | 0.0535 | 0.344(U)      | 0.12       | Non-Detect | 0.0238(J) | Non-Detect | Non-Detect | 0.0022(J)  | Non-Detect |
| MW-1 | 4/18/2017   | Non-Detect | 149     | 2.4      | 0.12        | 5.2  | 1300    | 2140 | Non-Detect | Non-Detect | 0.00964(J) | Non-Detect | 0.00159 | Non-Detect | 0.0442 | 0.934         | 0.12       | Non-Detect | 0.0242(J) | Non-Detect | Non-Detect | 0.0027(J)  | Non-Detect |
| MW-1 | 5/30/2017   | Non-Detect | 140     | 2.6      | 0.13        | 5.14 | 1400    | 2240 | Non-Detect | Non-Detect | 0.00982(J) | Non-Detect | 0.00214 | Non-Detect | 0.0465 | 0.149(U)      | 0.13       | Non-Detect | 0.0229(J) | Non-Detect | Non-Detect | 0.00316(J) | Non-Detect |
| MW-1 | 8/23/2017   | 0.0253(J)  | 152     | 2.7      | 0.16        | 5.12 | 1500    | 2160 | n/a        | n/a        | n/a        | n/a        | n/a     | n/a        | n/a    | n/a           | 0.16       | n/a        | n/a       | n/a        | n/a        | n/a        | n/a        |
| MW-1 | 2/13/2018   | n/a        | n/a     | n/a      | 0.14        | 5.18 | n/a     | n/a  | Non-Detect | Non-Detect | 0.00937(J) | Non-Detect | 0.0018  | Non-Detect | 0.062  | 0.774         | 0.14       | Non-Detect | 0.0233(J) | Non-Detect | Non-Detect | 0.00211(J) | Non-Detect |
| MW-1 | 5/22/2018   | 0.0224(J)  | 166     | 2.3      | 0.16        | 5.2  | 2100    | 2380 | Non-Detect | Non-Detect | 0.0102     | Non-Detect | 0.00201 | Non-Detect | 0.0443 | -0.091(U)     | 0.16       | Non-Detect | 0.0263(J) | Non-Detect | Non-Detect | 0.00372(J) | Non-Detect |
| MW-1 | 6/12/2018   | 0.0214(J)  | 203     | 2.3      | 0.16        | 5.15 | 1500    | 2400 | Non-Detect | Non-Detect | 0.0104     | Non-Detect | 0.00217 | Non-Detect | 0.0512 | 1.18          | 0.16       | Non-Detect | 0.0251(J) | Non-Detect | Non-Detect | 0.00409(J) | Non-Detect |
| MW-1 | 10/17/2018  | 0.0216(J)  | 171     | 1.7(J)   | 0.18        | 5.12 | 1400    | 2220 | Non-Detect | Non-Detect | 0.00952(J) | Non-Detect | 0.00228 | Non-Detect | 0.0751 | 0.553(U)      | 0.18       | Non-Detect | 0.025(J)  | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| MW-1 | 11/19/2018  | 0.0237(J)  | 154     | 1.7(J)   | 0.15        | 5.09 | 1300    | 2360 | Non-Detect | Non-Detect | 0.00915(J) | Non-Detect | 0.00156 | Non-Detect | 0.0825 | 0.862         | 0.15       | Non-Detect | 0.0241    | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| MW-1 | 4/10/2019   | 0.0304(J)  | 243     | 2.36     | 0.102       | 5.11 | 1700    | 2630 | 0.00143(J) | Non-Detect | 0.0105     | Non-Detect | 0.00224 | Non-Detect | 0.0445 | 0.342(U)      | 0.102      | Non-Detect | 0.0285    | Non-Detect | Non-Detect | 0.00471(J) | Non-Detect |
| MW-1 | 5/14/2019   | Non-Detect | 167     | 2.28     | 0.119       | 5.19 | 1560    | 2340 | 0.00137(J) | Non-Detect | 0.00913(J) | Non-Detect | 0.00238 | Non-Detect | 0.0485 | 0.509         | 0.119      | Non-Detect | 0.026(J)  | Non-Detect | Non-Detect | 0.00316(J) | Non-Detect |
| MW-1 | 10/8/2019   | Non-Detect | 157     | 2.31     | 0.0924(J)   | 5.12 | 1540    | 2330 | Non-Detect | Non-Detect | 0.0109     | Non-Detect | 0.00218 | Non-Detect | 0.0778 | 1.47          | 0.0924(J)  | Non-Detect | 0.0268    | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| MW-1 | 10/16/2019  | 0.0385(J)  | 157     | 2.42     | 0.0756(J)   | 5.16 | 1680    | 3650 | Non-Detect | Non-Detect | 0.0106     | Non-Detect | 0.00225 | Non-Detect | 0.08   | 0.204(U)      | 0.0756(J)  | Non-Detect | 0.0263    | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| MW-1 | 2/3/2020    | Non-Detect | 172     | 2.07     | 0.0982(J)   | 5    | 1510    | 2380 | Non-Detect | Non-Detect | 0.00995(J) | Non-Detect | 0.00182 | Non-Detect | 0.0495 | 0.521(U)      | 0.0982(J)  | Non-Detect | 0.0292    | Non-Detect | Non-Detect | 0.00272(J) | Non-Detect |
| MW-1 | 8/3/2020    | Non-Detect | 148     | 2.05     | Non-Detect  | 5.08 | 1370    | 2200 | Non-Detect | Non-Detect | 0.0107     | Non-Detect | 0.00237 | Non-Detect | 0.0722 | -0.127(U)     | Non-Detect | Non-Detect | 0.0259    | Non-Detect | Non-Detect | 0.00278(J) | Non-Detect |

|      |             |            |         | A        | APPENDIX II |      |         |      |             |            |        |            |             |            |        | APPENDIX IV   | V        |            |           |            |            |            |            |
|------|-------------|------------|---------|----------|-------------|------|---------|------|-------------|------------|--------|------------|-------------|------------|--------|---------------|----------|------------|-----------|------------|------------|------------|------------|
| WELL | SAMPLE DATE | Boron      | Calcium | Chloride | Fluoride    | pН   | Sulfate | TDS  | Antimony    | Arsenic    | Barium | Beryllium  | Cadmium     | Chromium   | Cobalt | ned Radium 22 | Fluoride | Lead       | Lithium   | Mercury    | Molybdenum | Selenium   | Thallium   |
| U    | NITS        | mg/L       | mg/L    | mg/L     | mg/L        | SU   | mg/L    | mg/L | mg/L        | mg/L       | mg/L   | mg/L       | mg/L        | mg/L       | mg/L   | pCi/L         | mg/L     | mg/L       | mg/L      | mg/L       | mg/L       | mg/L       | mg/L       |
| MW-2 | 4/25/2016   | 0.0241(J)  | 123     | 1.9      | 0.149(J)    | 5.94 | 745     | 1260 | Non-Detect  | Non-Detect | 0.0134 | Non-Detect | Non-Detect  | Non-Detect | 0.0487 | n/a           | 0.149(J) | Non-Detect | 0.0353(J) | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| MW-2 | 6/20/2016   | 0.0284(J)  | 168     | 3.43     | 0.148(J)    | 5.96 | 964     | 1620 | Non-Detect  | Non-Detect | 0.0165 | Non-Detect | Non-Detect  | Non-Detect | 0.0767 | n/a           | 0.148(J) | Non-Detect | 0.0583    | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| MW-2 | 8/8/2016    | 0.034(J)   | 180     | 3.31     | 0.134(J)    | 5.88 | 1100    | 1740 | Non-Detect  | Non-Detect | 0.0162 | Non-Detect | Non-Detect  | Non-Detect | 0.103  | n/a           | 0.134(J) | Non-Detect | 0.0627    | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| MW-2 | 8/24/2016   | 0.0316(J)  | 180     | 3.23     | 0.129(J)    | n/a  | 1130    | 1720 | Non-Detect  | Non-Detect | 0.0139 | Non-Detect | Non-Detect  | Non-Detect | 0.093  | 0.65          | 0.129(J) | Non-Detect | 0.0651    | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| MW-2 | 10/3/2016   | 0.0367(J)  | 184     | 3.21     | 0.086(J)    | 5.91 | 1140    | 1800 | Non-Detect  | Non-Detect | 0.0164 | Non-Detect | Non-Detect  | Non-Detect | 0.0964 | 0.845         | 0.086(J) | Non-Detect | 0.0622    | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| MW-2 | 10/26/2016  | 0.0331(J)  | 171     | 3.35     | 0.027(J)    | 5.84 | 1060    | 1800 | Non-Detect  | Non-Detect | 0.0138 | Non-Detect | Non-Detect  | Non-Detect | 0.0904 | 0.994         | 0.027(J) | Non-Detect | 0.0293(J) | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| MW-2 | 11/21/2016  | 0.035(J)   | 179     | 3.34     | 0.027(J)    | 5.82 | 1100    | 1740 | Non-Detect  | 0.00111(J) | 0.0144 | Non-Detect | Non-Detect  | Non-Detect | 0.0857 | 0.537(U)      | 0.027(J) | Non-Detect | 0.0667    | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| MW-2 | 1/17/2017   | 0.0259(J)  | 188     | 3.58     | 0.066(J)    | 5.87 | 1160    | 1960 | Non-Detect  | Non-Detect | 0.0135 | Non-Detect | 0.000311(J) | Non-Detect | 0.0745 | -0.0159(U)    | 0.066(J) | Non-Detect | 0.0636    | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| MW-2 | 3/22/2017   | 0.0243(J)  | 155     | 3.4      | 0.13        | 6.01 | 900     | 1510 | Non-Detect  | Non-Detect | 0.0132 | Non-Detect | Non-Detect  | Non-Detect | 0.0328 | 0.279(U)      | 0.13     | Non-Detect | 0.0464(J) | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| MW-2 | 4/18/2017   | 0.0206(J)  | 156     | 2.6      | 0.16        | 6.02 | 870     | 1580 | Non-Detect  | Non-Detect | 0.012  | Non-Detect | Non-Detect  | Non-Detect | 0.0242 | 0.32(U)       | 0.16     | Non-Detect | 0.0446(J) | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| MW-2 | 5/31/2017   | 0.0234(J)  | 151     | 4.4      | 0.13        | 5.85 | 1100    | 1730 | Non-Detect  | Non-Detect | 0.0126 | Non-Detect | 0.000212(J) | Non-Detect | 0.0441 | 0.178(U)      | 0.13     | Non-Detect | 0.0496(J) | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| MW-2 | 8/23/2017   | 0.0267(J)  | 155     | 4.4      | 0.16        | 5.89 | 920     | 1550 | n/a         | n/a        | n/a    | n/a        | n/a         | n/a        | n/a    | n/a           | 0.16     | n/a        | n/a       | n/a        | n/a        | n/a        | n/a        |
| MW-2 | 2/13/2018   | n/a        | n/a     | n/a      | 0.22        | 6.21 | n/a     | n/a  | Non-Detect  | Non-Detect | 0.0127 | Non-Detect | Non-Detect  | Non-Detect | 0.0179 | 0.804         | 0.22     | Non-Detect | 0.0615    | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| MW-2 | 5/22/2018   | 0.0251(J)  | 172     | 3.2      | 0.17        | 6.04 | 1200    | 1500 | Non-Detect  | Non-Detect | 0.0131 | Non-Detect | Non-Detect  | Non-Detect | 0.028  | 0.0077(U)     | 0.17     | Non-Detect | 0.0465(J) | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| MW-2 | 6/12/2018   | 0.0275(J)  | 179     | 3.7      | 0.16        | 5.95 | 860     | 1550 | Non-Detect  | Non-Detect | 0.0138 | Non-Detect | Non-Detect  | Non-Detect | 0.0366 | -0.315(U)     | 0.16     | Non-Detect | 0.0472(J) | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| MW-2 | 10/17/2018  | 0.0321(J)  | 200     | 4.6      | 0.16        | 5.9  | 970     | 1740 | Non-Detect  | Non-Detect | 0.0137 | Non-Detect | Non-Detect  | Non-Detect | 0.0745 | 0.574(U)      | 0.16     | Non-Detect | 0.0633    | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| MW-2 | 11/19/2018  | 0.0324(J)  | 221     | 3        | 0.18        | 6.03 | 1000    | 1990 | Non-Detect  | Non-Detect | 0.0115 | Non-Detect | Non-Detect  | Non-Detect | 0.0225 | 0.654         | 0.18     | Non-Detect | 0.0584    | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| MW-2 | 4/10/2019   | Non-Detect | 200     | 1.76     | 0.262       | 6.1  | 889     | 1250 | 0.000993(J) | Non-Detect | 0.0111 | Non-Detect | Non-Detect  | Non-Detect | 0.0152 | 0.329(U)      | 0.262    | Non-Detect | 0.0574    | Non-Detect | Non-Detect | 0.00322(J) | Non-Detect |
| MW-2 | 5/14/2019   | Non-Detect | 168     | 2.98     | 0.170       | 6.07 | 948     | 1480 | 0.000989(J) | Non-Detect | 0.0109 | Non-Detect | Non-Detect  | Non-Detect | 0.0222 | 0.579         | 0.170    | Non-Detect | 0.0445    | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| MW-2 | 10/8/2019   | 0.0371(J)  | 190     | 4.26     | 0.164       | 5.96 | 1230    | 1840 | Non-Detect  | Non-Detect | 0.0151 | Non-Detect | Non-Detect  | Non-Detect | 0.0674 | 0.493(U)      | 0.164    | Non-Detect | 0.0677    | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| MW-2 | 10/16/2019  | 0.0419(J)  | 194     | 4.04     | 0.114       | 5.98 | 1170    | 1830 | Non-Detect  | Non-Detect | 0.0146 | Non-Detect | Non-Detect  | Non-Detect | 0.073  | 0.046(U)      | 0.114    | Non-Detect | 0.0661    | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| MW-2 | 2/3/2020    | Non-Detect | 172     | 2.48     | 0.182       | 5.95 | 803     | 1440 | Non-Detect  | Non-Detect | 0.0122 | Non-Detect | Non-Detect  | Non-Detect | 0.0193 | -0.0245(U)    | 0.182    | Non-Detect | 0.0534    | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| MW-2 | 8/3/2020    | 0.0317(J)  | 172     | 4.03     | 0.122       | 5.95 | 907     | 1650 | Non-Detect  | Non-Detect | 0.0147 | Non-Detect | Non-Detect  | Non-Detect | 0.0589 | 0.888(U)      | 0.122    | Non-Detect | 0.0611    | Non-Detect | Non-Detect | Non-Detect | Non-Detect |

|      |             |            |         | A          | APPENDIX II |      |         |      |             |            |            |            |             |            | A          | APPENDIX I    | V         |            |         |            |            |            |             |
|------|-------------|------------|---------|------------|-------------|------|---------|------|-------------|------------|------------|------------|-------------|------------|------------|---------------|-----------|------------|---------|------------|------------|------------|-------------|
| WELL | SAMPLE DATE | Boron      | Calcium | Chloride   | Fluoride    | pН   | Sulfate | TDS  | Antimony    | Arsenic    | Barium     | Beryllium  | Cadmium     | Chromium   | Cobalt     | ned Radium 22 | Fluoride  | Lead       | Lithium | Mercury    | Molybdenum | Selenium   | Thallium    |
|      | UNITS       | mg/L       | mg/L    | mg/L       | mg/L        | SU   | mg/L    | mg/L | mg/L        | mg/L       | mg/L       | mg/L       | mg/L        | mg/L       | mg/L       | pCi/L         | mg/L      | mg/L       | mg/L    | mg/L       | mg/L       | mg/L       | mg/L        |
| MW-3 | 4/25/2016   | 0.028(J)   | 224     | 1.32       | 0.243(J)    | 5.56 | 1890    | 2720 | Non-Detect  | Non-Detect | 0.00803(J) | 0.00122(J) | 0.0121      | 0.00373(J) | 0.232      | n/a           | 0.243(J)  | Non-Detect | 0.0964  | Non-Detect | Non-Detect | Non-Detect | 0.000205(J) |
| MW-3 | 6/22/2016   | 0.0433(J)  | 266     | 1.46       | 0.269(J)    | 5.57 | 2100    | 3250 | Non-Detect  | Non-Detect | 0.0101     | 0.00144(J) | 0.00163     | 0.00606(J) | 0.332      | n/a           | 0.269(J)  | Non-Detect | 0.156   | Non-Detect | Non-Detect | Non-Detect | Non-Detect  |
| MW-3 | 8/9/2016    | 0.0429(J)  | 260     | 1.35       | 0.363       | 5.67 | 2050    | 3050 | Non-Detect  | Non-Detect | 0.00889(J) | 0.00331    | 0.00122     | Non-Detect | 0.311      | n/a           | 0.363     | Non-Detect | 0.122   | Non-Detect | Non-Detect | Non-Detect | Non-Detect  |
| MW-3 | 8/24/2016   | 0.0431(J)  | 274     | 1.47       | 0.346       | 5.63 | 2190    | 3080 | Non-Detect  | Non-Detect | 0.00962(J) | 0.00308    | Non-Detect  | Non-Detect | 0.271      | 0.131(U)      | 0.346     | Non-Detect | 0.138   | Non-Detect | Non-Detect | Non-Detect | Non-Detect  |
| MW-3 | 10/4/2016   | 0.04(J)    | 243     | 1.59       | 0.266(J)    | 5.69 | 1950    | 2900 | Non-Detect  | Non-Detect | 0.00984(J) | 0.00129(J) | 0.000689(J) | Non-Detect | 0.148      | 0.514(U)      | 0.266(J)  | Non-Detect | 0.0966  | Non-Detect | Non-Detect | Non-Detect | Non-Detect  |
| MW-3 | 10/26/2016  | 0.0375(J)  | 254     | 1.27       | 0.266(J)    | 5.56 | 1980    | 2940 | Non-Detect  | Non-Detect | 0.00878(J) | 0.0071     | 0.00136     | Non-Detect | 0.236      | 0.755         | 0.266(J)  | Non-Detect | 0.134   | Non-Detect | Non-Detect | Non-Detect | 0.000209(J) |
| MW-3 | 11/21/2016  | 0.0406(J)  | 263     | 1.38       | 0.244(J)    | 5.42 | 2060    | 3090 | Non-Detect  | Non-Detect | 0.00833(J) | 0.00689    | 0.00171     | Non-Detect | 0.241      | 0.7           | 0.244(J)  | Non-Detect | 0.167   | Non-Detect | Non-Detect | Non-Detect | Non-Detect  |
| MW-3 | 1/18/2017   | 0.0548(J)  | 431     | 1.34       | 0.385       | 5.11 | 2620    | 4020 | Non-Detect  | Non-Detect | 0.00966(J) | 0.0169     | 0.003       | Non-Detect | 0.347      | 0.606         | 0.385     | Non-Detect | 0.237   | Non-Detect | Non-Detect | Non-Detect | Non-Detect  |
| MW-3 | 3/22/2017   | 0.0344(J)  | 318     | 2          | 0.41        | 4.52 | 3200    | 4180 | Non-Detect  | 0.00122(J) | 0.00991(J) | 0.00686    | 0.00473     | 0.00945(J) | 0.271      | 0.927         | 0.41      | Non-Detect | 0.203   | Non-Detect | Non-Detect | 0.0141     | Non-Detect  |
| MW-3 | 4/18/2017   | Non-Detect | 296     | 2.2        | 0.29        | 5.84 | 2500    | 4440 | Non-Detect  | Non-Detect | 0.00976(J) | Non-Detect | 0.00117     | 0.0105     | 0.00324(J) | 0.334(U)      | 0.29      | Non-Detect | 0.0764  | Non-Detect | Non-Detect | 0.0158     | Non-Detect  |
| MW-3 | 5/31/2017   | 0.0454(J)  | 306     | 1.5(J)     | 0.37        | 4.56 | 2800    | 3970 | Non-Detect  | Non-Detect | 0.00866(J) | 0.00547    | 0.00296     | Non-Detect | 0.225      | 0.8           | 0.37      | Non-Detect | 0.218   | Non-Detect | Non-Detect | 0.00632(J) | Non-Detect  |
| MW-3 | 8/23/2017   | 0.0425(J)  | 298     | 1.8(J)     | 0.55        | 4.77 | 2600    | 4050 | n/a         | n/a        | n/a        | n/a        | n/a         | n/a        | n/a        | n/a           | 0.55      | n/a        | n/a     | n/a        | n/a        | n/a        | n/a         |
| MW-3 | 2/13/2018   | n/a        | n/a     | n/a        | 0.27        | 5.67 | n/a     | n/a  | Non-Detect  | Non-Detect | 0.00821(J) | Non-Detect | 0.00232     | Non-Detect | 0.00661(J) | 0.649         | 0.27      | Non-Detect | 0.0964  | Non-Detect | Non-Detect | 0.0209     | Non-Detect  |
| MW-3 | 5/24/2018   | 0.0339(J)  | 297     | 1.6(J)     | 0.6         | 5.19 | 2700    | 3680 |             | Non-Detect |            | 0.00164(J) | 0.00459     | Non-Detect | 0.158      | 0.448(U)      | 0.6       | Non-Detect | 0.145   | Non-Detect | Non-Detect | 0.00918(J) |             |
| MW-3 | 6/12/2018   | 0.0371(J)  | 318     | 1.4(J)     | 0.53        | 4.79 | 2500    | 3820 |             |            |            | 0.00306    | 0.00351     | Non-Detect | 0.291      | 0.234(U)      | 0.53      | Non-Detect | 0.194   |            | Non-Detect |            |             |
| MW-3 | 10/17/2018  | 0.0596(J)  | 392     | Non-Detect | 0.63        | 4.75 | 2700    | 4730 | Non-Detect  | 0.00133(J) | 0.0126     | 0.0121     | 0.00393     | Non-Detect | 0.49       | 0.852         | 0.63      | 0.00102(J) | 0.384   |            | Non-Detect |            |             |
| MW-3 | 11/19/2018  | 0.0514(J)  | 387     | Non-Detect | 0.31        | 3.77 | 3000    | 4710 | Non-Detect  | 0.0012(J)  | 0.0109     | 0.0185     | 0.00309     | Non-Detect | 0.386      | 0.521         | 0.31      | 0.00692    | 0.323   |            | Non-Detect |            |             |
| MW-3 | 4/10/2019   | Non-Detect | 348     | 2.25       | 0.273       | 5.54 | 2460    | 3680 | 0.000978(J) |            |            | Non-Detect | 0.00337     | Non-Detect | 0.0144     | 0.198(U)      | 0.273     | Non-Detect | 0.0905  |            | Non-Detect |            | Non-Detect  |
| MW-3 |             |            |         | 2.28       | 0.273       | 5.71 | 2460    |      |             |            |            |            |             |            |            |               |           | Non-Detect |         |            |            |            |             |
|      |             | Non-Detect |         |            |             |      |         |      | Non-Detect  |            |            |            |             |            |            |               |           |            |         |            |            |            |             |
| MW-3 | 10/8/2019   | 0.0537(J)  | 371     | 1.36       | 0.225       | 4.98 | 2950    | 4720 | Non-Detect  | 0.0048(J)  | 0.0154     | 0.0084     | 0.00598     | Non-Detect | 1.07       | 0.833(U)      | 0.225     | Non-Detect | 0.419   |            | Non-Detect |            |             |
| MW-3 | 10/16/2019  | 0.05(J)    | 346     | 1.4        | 0.106       | 4.51 | 2820    | 4210 | Non-Detect  |            | 0.0128     | 0.0103     | 0.00448     | Non-Detect | 0.848      | 0.0279(U)     | 0.106     | 0.00108(J) | 0.337   |            | Non-Detect |            |             |
| MW-3 | 2/3/2020    | Non-Detect | 276     | 2.12       | 0.256       | 5.54 | 2290    | 3530 | Non-Detect  | Non-Detect | 0.0086(J)  | Non-Detect |             | Non-Detect | 0.0114     | 0.0246(U)     | 0.256     | Non-Detect | 0.0825  |            | Non-Detect |            | Non-Detect  |
| MW-3 | 8/3/2020    | 0.0424(J)  | 285     | 1.17       | 0.0766(J)   | 5.06 | 2330    | 3760 | Non-Detect  | 0.00426(J) | 0.0166     | 0.00405    | 0.00652     | Non-Detect | 0.64       | 0.765(U)      | 0.0766(J) | 0.002(J)   | 0.27    | Non-Detect | Non-Detect | 0.0146     | Non-Detect  |

|      |             |            |         | A          | PPENDIX II |      |         |      |            |            |            |            |            |            | A          | APPENDIX I    | V        |            |           |            |            |            |            |
|------|-------------|------------|---------|------------|------------|------|---------|------|------------|------------|------------|------------|------------|------------|------------|---------------|----------|------------|-----------|------------|------------|------------|------------|
| WELL | SAMPLE DATE | Boron      | Calcium | Chloride   | Fluoride   | pН   | Sulfate | TDS  | Antimony   | Arsenic    | Barium     | Beryllium  | Cadmium    | Chromium   | Cobalt     | ned Radium 22 | Fluoride | Lead       | Lithium   | Mercury    | Molybdenum | Selenium   | Thallium   |
| 1    | JNITS       | mg/L       | mg/L    | mg/L       | mg/L       | SU   | mg/L    | mg/L | mg/L       | mg/L       | mg/L       | mg/L       | mg/L       | mg/L       | mg/L       | pCi/L         | mg/L     | mg/L       | mg/L      | mg/L       | mg/L       | mg/L       | mg/L       |
| MW-4 | 4/25/2016   | 0.0414(J)  | 261     | 1.53       | 0.372      | 6.22 | 2260    | 3300 | Non-Detect | Non-Detect | 0.0114     | Non-Detect | Non-Detect | Non-Detect | Non-Detect | n/a           | 0.372    | Non-Detect | 0.0528    | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| MW-4 | 6/20/2016   | 0.0434(J)  | 295     | 1.85       | 0.361      | 6.21 | 2500    | 3870 | Non-Detect | Non-Detect | 0.0103     | Non-Detect | Non-Detect | Non-Detect | Non-Detect | n/a           | 0.361    | Non-Detect | 0.0554    | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| MW-4 | 8/9/2016    | 0.0453(J)  | 318     | 1.95       | 0.326      | 6.11 | 2750    | 4140 | Non-Detect | Non-Detect | 0.0119     | Non-Detect | Non-Detect | Non-Detect | Non-Detect | n/a           | 0.326    | Non-Detect | 0.0452(J) | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| MW-4 | 8/24/2016   | 0.0451(J)  | 319     | 2.07       | 0.329      | 6.11 | 2770    | 4190 | Non-Detect | Non-Detect | 0.0118     | Non-Detect | Non-Detect | Non-Detect | Non-Detect | 0.266(U)      | 0.329    | Non-Detect | 0.0488(J) | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| MW-4 | 10/3/2016   | 0.0511(J)  | 293     | 2.02       | 0.287(J)   | 6.13 | 3060    | 4190 | Non-Detect | Non-Detect | 0.0119     | Non-Detect | Non-Detect | Non-Detect | Non-Detect | 0.59(U)       | 0.287(J) | Non-Detect | 0.0476(J) | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| MW-4 | 10/26/2016  | 0.0507(J)  | 311     | 2.07       | 0.194(J)   | 6.12 | 2650    | 4400 | Non-Detect | Non-Detect | 0.0104     | Non-Detect | Non-Detect | Non-Detect | Non-Detect | 0.164(U)      | 0.194(J) | Non-Detect | 0.049(J)  | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| MW-4 | 11/21/2016  | 0.0458(J)  | 320     | 2.39       | 0.192(J)   | 6.09 | 2720    | 4230 | Non-Detect | Non-Detect | 0.0106     | Non-Detect | Non-Detect | Non-Detect | Non-Detect | 0.296(U)      | 0.192(J) | Non-Detect | 0.0477(J) | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| MW-4 | 1/18/2017   | 0.0445(J)  | 417     | 1.9        | 0.223(J)   | 6.09 | 2650    | 4120 | Non-Detect | Non-Detect | 0.0101     | Non-Detect | Non-Detect | Non-Detect | Non-Detect | 0.0267(U)     | 0.223(J) | Non-Detect | 0.045(J)  | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| MW-4 | 3/22/2017   | 0.0432(J)  | 292     | 1.5(J)     | 0.32       | 6.15 | 2700    | 3980 | Non-Detect | Non-Detect | 0.0103     | Non-Detect | Non-Detect | Non-Detect | Non-Detect | 0.132(U)      | 0.32     | Non-Detect | 0.0493(J) | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| MW-4 | 4/18/2017   | 0.0409(J)  | 302     | 1.6(J)     | 0.32       | 6.19 | 2400    | 3880 | Non-Detect | Non-Detect | 0.0107     | Non-Detect | Non-Detect | Non-Detect | Non-Detect | -0.0439(U)    | 0.32     | Non-Detect | 0.0494(J) | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| MW-4 | 5/31/2017   | 0.0392(J)  | 284     | 2.1        | 0.31       | 6.13 | 2700    | 4210 |            | Non-Detect |            | Non-Detect |            | Non-Detect |            | 0.3(U)        | 0.31     | Non-Detect | 0.0501    |            | Non-Detect |            |            |
| MW-4 | 8/23/2017   | 0.042(J)   | 297     | 2.3        | 0.38       | 6.12 | 2700    | 3990 | n/a           | 0.38     | n/a        | n/a       | n/a        | n/a        | n/a        | n/a        |
| MW-4 | 2/13/2018   | n/a        | n/a     | n/a        | 0.38       | 6.22 | n/a     | n/a  | Non-Detect |            |            | Non-Detect |            | Non-Detect |            | 0.69          | 0.38     | Non-Detect | 0.0446(J) |            | Non-Detect |            | Non-Detect |
| MW-4 | 5/23/2018   | 0.0433(J)  | 296     | 2          | 0.38       | 6.21 | 2400    | 3740 |            |            |            | Non-Detect |            |            | Non-Detect |               | 0.38     | Non-Detect | 0.0513    |            | Non-Detect |            |            |
|      |             |            |         | 1 7(T)     | 0.39       |      |         |      |            |            |            |            |            |            |            |               |          |            |           |            |            |            |            |
| MW-4 | 6/12/2018   | 0.0478(J)  | 355     | 1.7(J)     |            | 6.16 | 2600    | 4080 |            | Non-Detect |            | Non-Detect |            |            | Non-Detect |               | 0.39     | Non-Detect | 0.0511    |            | Non-Detect |            |            |
| MW-4 | 10/17/2018  | 0.0468(J)  | 342     | 1.5(J)     | 0.39       | 6.12 | 2600    | 4250 |            | Non-Detect |            | Non-Detect |            |            | Non-Detect |               | 0.39     | Non-Detect | 0.0532    |            | Non-Detect |            |            |
| MW-4 | 11/19/2018  | 0.0526(J)  | 289     | Non-Detect | 0.36       | 6.16 | 2400    | 3920 |            | Non-Detect |            | Non-Detect |            |            | Non-Detect | 0.794         | 0.36     | Non-Detect | 0.0467    |            | Non-Detect |            | Non-Detect |
| MW-4 | 4/10/2019   | 0.0438(J)  | 356     | 1.88       | 0.384      | 6.14 | 2090    | 3280 | 0.00097(J) | Non-Detect | 0.0107     | Non-Detect | Non-Detect | Non-Detect | Non-Detect | 0.515         | 0.384    | Non-Detect | 0.0504    | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| MW-4 | 5/14/2019   | Non-Detect | 254     | 1.82       | 0.335      | 6.23 | 2240    | 3130 | Non-Detect | Non-Detect | 0.00949(J) | Non-Detect | Non-Detect | Non-Detect | Non-Detect | 0.352(U)      | 0.335    | Non-Detect | 0.0485    | Non-Detect | Non-Detect | 0.00201(J) | Non-Detect |
| MW-4 | 10/10/2019  | 0.0487(J)  | 302     | 1.93       | 0.304      | 6.15 | 2690    | 4000 | Non-Detect | Non-Detect | 0.0116     | Non-Detect | Non-Detect | Non-Detect | Non-Detect | 1.02(U)       | 0.304    | Non-Detect | 0.054     | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| MW-4 | 10/16/2019  | 0.0505(J)  | 356     | 1.92       | 0.302      | 6.19 | 3050    | 4060 | Non-Detect | Non-Detect | 0.0125     | Non-Detect | Non-Detect | Non-Detect | Non-Detect | 0.356(U)      | 0.302    | Non-Detect | 0.052     | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| MW-4 | 2/3/2020    | 0.0433(J)  | 265     | 1.72       | 0.37       | 6.14 | 1920    | 3240 | Non-Detect | Non-Detect | 0.0103     | Non-Detect | Non-Detect | Non-Detect | Non-Detect | 0.254(U)      | 0.37     | Non-Detect | 0.0556    | Non-Detect | Non-Detect | 0.00212(J) | Non-Detect |
| MW-4 | 8/5/2020    | 0.0459(J)  | 281     | 1.57       | 0.359      | 6.15 | 1930    | 3200 | Non-Detect | Non-Detect | 0.0125     | Non-Detect | Non-Detect | Non-Detect | Non-Detect | 0.565(U)      | 0.359    | Non-Detect | 0.0519    | Non-Detect | Non-Detect | 0.00232(J) | Non-Detect |

|             |             |       |         | A        | APPENDIX II | I    |         |      |            |            |        |             |            |            |        | APPENDIX IV   | -        |            |         |            |            |            |            |
|-------------|-------------|-------|---------|----------|-------------|------|---------|------|------------|------------|--------|-------------|------------|------------|--------|---------------|----------|------------|---------|------------|------------|------------|------------|
| WELL        | SAMPLE DATE | Boron | Calcium | Chloride | Fluoride    | pН   | Sulfate | TDS  | Antimony   | Arsenic    | Barium | Beryllium   | Cadmium    | Chromium   | Cobalt | ned Radium 22 | Fluoride | Lead       | Lithium | Mercury    | Molybdenum | Selenium   | Thallium   |
| UNI         | ITS         | mg/L  | mg/L    | mg/L     | mg/L        | SU   | mg/L    | mg/L | mg/L       | mg/L       | mg/L   | mg/L        | mg/L       | mg/L       | mg/L   | pCi/L         | mg/L     | mg/L       | mg/L    | mg/L       | mg/L       | mg/L       | mg/L       |
| GS-GSA-MW-3 | 8/24/2016   | 0.799 | 539     | 204      | 0.264(J)    | 6.28 | 2910    | 5020 | Non-Detect | Non-Detect | 0.0155 | Non-Detect  | Non-Detect | Non-Detect | 0.0303 | 0.389(U)      | 0.264(J) | Non-Detect | 0.362   | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| GS-GSA-MW-3 | 10/3/2016   | 0.889 | 519.7   | 220      | 0.276(J)    | 6.28 | 2980    | 4880 | Non-Detect | Non-Detect | 0.0156 | Non-Detect  | Non-Detect | Non-Detect | 0.041  | 0.683         | 0.276(J) | Non-Detect | 0.371   | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| GS-GSA-MW-3 | 10/26/2016  | 1.23  | 916     | 249      | 0.182(J)    | 6.19 | 2790    | 5020 | Non-Detect | Non-Detect | 0.0122 | 0.000922(J) | Non-Detect | Non-Detect | 0.0505 | 0.242(U)      | 0.182(J) | Non-Detect | 0.416   | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| GS-GSA-MW-3 | 11/21/2016  | 1.72  | 552     | 256      | 0.238(J)    | 6.2  | 2880    | 5090 | Non-Detect | Non-Detect | 0.0128 | 0.00133(J)  | Non-Detect | Non-Detect | 0.0617 | 0.764         | 0.238(J) | Non-Detect | 0.401   | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| GS-GSA-MW-3 | 1/17/2017   | 2.63  | 572     | 301      | 0.34        | 6.13 | 2950    | 4330 | Non-Detect | Non-Detect | 0.0125 | 0.0017(J)   | Non-Detect | Non-Detect | 0.0793 | 0.191(U)      | 0.34     | Non-Detect | 0.497   | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| GS-GSA-MW-3 | 3/20/2017   | 3.11  | 817     | 320      | 0.39        | 6.17 | 2800    | 2690 | Non-Detect | Non-Detect | 0.0124 | 0.00191(J)  | Non-Detect | Non-Detect | 0.0726 | -0.0158(U)    | 0.39     | Non-Detect | 0.533   | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| GS-GSA-MW-3 | 4/17/2017   | 4.51  | 476     | 340      | 0.57        | 5.6  | 2400    | 4780 | Non-Detect | 0.00405(J) | 0.0149 | 0.00655     | Non-Detect | Non-Detect | 0.294  | 0.307(U)      | 0.57     | Non-Detect | 0.47    | Non-Detect | Non-Detect | 0.00521(J) | Non-Detect |
| GS-GSA-MW-3 | 5/30/2017   | 2.9   | 515     | 310      | 0.38        | 6.07 | 2900    | 5170 | Non-Detect | Non-Detect | 0.0121 | 0.00204(J)  | Non-Detect | Non-Detect | 0.0832 | 0.724         | 0.38     | Non-Detect | 0.479   | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| GS-GSA-MW-3 | 8/24/2017   | 2.83  | 598     | 290      | 0.54        | 5.99 | 2900    | 5140 | n/a        | n/a        | n/a    | n/a         | n/a        | n/a        | n/a    | n/a           | 0.54     | n/a        | n/a     | n/a        | n/a        | n/a        | n/a        |
| GS-GSA-MW-3 | 2/13/2018   | n/a   | n/a     | n/a      | 0.57        | 5.88 | n/a     | n/a  | Non-Detect | Non-Detect | 0.0118 | 0.00387     | Non-Detect | Non-Detect | 0.124  | 0.633         | 0.57     | Non-Detect | 0.508   | Non-Detect | Non-Detect | 0.00267(J) | Non-Detect |
| GS-GSA-MW-3 | 6/11/2018   | 3.09  | 558     | 260      | 0.63        | 5.91 | 2900    | 4960 | Non-Detect | Non-Detect | 0.0127 | 0.00244(J)  | Non-Detect | Non-Detect | 0.138  | 0.773         | 0.63     | Non-Detect | 0.425   | Non-Detect | Non-Detect | 0.00236(J) | Non-Detect |
| GS-GSA-MW-3 | 10/17/2018  | 2.59  | 533     | 270      | 0.78        | 5.88 | 2800    | 4910 | Non-Detect | Non-Detect | 0.013  | 0.00345     | Non-Detect | Non-Detect | 0.138  | 0.668         | 0.78     | Non-Detect | 0.494   | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| GS-GSA-MW-3 | 4/10/2019   | 3.35  | 659     | 249      | 0.738       | 5.83 | 2980    | 5090 | 0.00111(J) | 0.00121(J) | 0.0153 | 0.00257(J)  | Non-Detect | Non-Detect | 0.151  | 0.265(U)      | 0.738    | Non-Detect | 0.425   | Non-Detect | Non-Detect | 0.00234(J) | Non-Detect |
| GS-GSA-MW-3 | 10/14/2019  | 2.48  | 552     | 228      | 0.619       | 6.04 | 3110    | 5110 | Non-Detect | Non-Detect | 0.0122 | 0.00162(J)  | Non-Detect | Non-Detect | 0.102  | 0.297(U)      | 0.619    | Non-Detect | 0.459   | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| GS-GSA-MW-3 | 2/3/2020    | 2.13  | 589     | 267      | 0.427       | 5.98 | 2840    | 4920 | Non-Detect | Non-Detect | 0.0141 | 0.00141(J)  | Non-Detect | Non-Detect | 0.0843 | 0.28(U)       | 0.427    | Non-Detect | 0.474   | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| GS-GSA-MW-3 | 8/4/2020    | 1.82  | 545     | 222      | 0.389       | 6.09 | 2820    | 5110 | Non-Detect | Non-Detect | 0.0139 | 0.00174(J)  | Non-Detect | Non-Detect | 0.0862 | 0.45(U)       | 0.389    | Non-Detect | 0.468   | Non-Detect | Non-Detect | Non-Detect | Non-Detect |

|             |             |       |         | A        | APPENDIX III |      |         |      |             |            |        |           |         |            |        | APPENDIX IV   | •          |            |         |            |            |            |             |
|-------------|-------------|-------|---------|----------|--------------|------|---------|------|-------------|------------|--------|-----------|---------|------------|--------|---------------|------------|------------|---------|------------|------------|------------|-------------|
| WELL        | SAMPLE DATE | Boron | Calcium | Chloride | Fluoride     | pН   | Sulfate | TDS  | Antimony    | Arsenic    | Barium | Beryllium | Cadmium | Chromium   | Cobalt | ned Radium 22 | Fluoride   | Lead       | Lithium | Mercury    | Molybdenum | Selenium   | Thallium    |
| UN]         | ITS         | mg/L  | mg/L    | mg/L     | mg/L         | SU   | mg/L    | mg/L | mg/L        | mg/L       | mg/L   | mg/L      | mg/L    | mg/L       | mg/L   | pCi/L         | mg/L       | mg/L       | mg/L    | mg/L       | mg/L       | mg/L       | mg/L        |
| GS-GSA-MW-4 | 8/24/2016   | 4.88  | 102     | 112      | 0.793        | 3.83 | 567     | 992  | Non-Detect  | Non-Detect | 0.0135 | 0.00576   | 0.00148 | Non-Detect | 0.151  | 0.741         | 0.793      | Non-Detect | 0.291   | Non-Detect | Non-Detect | 0.00234(J) | Non-Detect  |
| GS-GSA-MW-4 | 10/3/2016   | 4.75  | 98.4    | 115      | 0.769        | 3.82 | 596     | 988  | Non-Detect  | Non-Detect | 0.0127 | 0.00469   | 0.00147 | Non-Detect | 0.143  | 0.648         | 0.769      | Non-Detect | 0.287   | Non-Detect | Non-Detect | 0.00739(J) | Non-Detect  |
| GS-GSA-MW-4 | 10/26/2016  | 4.96  | 88.7    | 115      | 0.578        | 3.81 | 585     | 1030 | Non-Detect  | Non-Detect | 0.0118 | 0.00459   | 0.00157 | Non-Detect | 0.154  | 0.632         | 0.578      | Non-Detect | 0.298   | Non-Detect | Non-Detect | 0.00266(J) | Non-Detect  |
| GS-GSA-MW-4 | 11/21/2016  | 4.82  | 104     | 117      | 0.562        | 3.81 | 593     | 1020 | Non-Detect  | Non-Detect | 0.012  | 0.00502   | 0.00154 | Non-Detect | 0.155  | 1.57          | 0.562      | Non-Detect | 0.294   | Non-Detect | Non-Detect | 0.00212(J) | Non-Detect  |
| GS-GSA-MW-4 | 1/17/2017   | 3.97  | 102     | 99.3     | 0.571        | 3.78 | 637     | 988  | Non-Detect  | Non-Detect | 0.0119 | 0.00488   | 0.00131 | Non-Detect | 0.16   | 0.493         | 0.571      | Non-Detect | 0.27    | Non-Detect | Non-Detect | 0.00263(J) | Non-Detect  |
| GS-GSA-MW-4 | 3/21/2017   | 3.39  | 94.7    | 79       | 0.54         | 3.76 | 530     | 990  | Non-Detect  | Non-Detect | 0.0116 | 0.00521   | 0.00134 | Non-Detect | 0.158  | 0.604(U)      | 0.54       | Non-Detect | 0.258   | Non-Detect | Non-Detect | 0.00588(J) | Non-Detect  |
| GS-GSA-MW-4 | 4/17/2017   | 3.46  | 97.9    | 85       | 0.54         | 3.76 | 530     | 884  | Non-Detect  | Non-Detect | 0.0112 | 0.0058    | 0.00122 | Non-Detect | 0.159  | 0.252(U)      | 0.54       | Non-Detect | 0.274   | Non-Detect | Non-Detect | 0.00579(J) | Non-Detect  |
| GS-GSA-MW-4 | 5/30/2017   | 3.79  | 93.9    | 99       | 0.49         | 3.76 | 530     | 1060 | Non-Detect  | Non-Detect | 0.0117 | 0.00517   | 0.00167 | Non-Detect | 0.159  | 0.925         | 0.49       | Non-Detect | 0.285   | Non-Detect | Non-Detect | 0.00471(J) | Non-Detect  |
| GS-GSA-MW-4 | 8/24/2017   | 4.19  | 105     | 110      | 0.7          | 3.7  | 530     | 1060 | n/a         | n/a        | n/a    | n/a       | n/a     | n/a        | n/a    | n/a           | 0.7        | n/a        | n/a     | n/a        | n/a        | n/a        | n/a         |
| GS-GSA-MW-4 | 2/13/2018   | n/a   | n/a     | n/a      | 0.63         | 3.73 | n/a     | n/a  | Non-Detect  | Non-Detect | 0.0121 | 0.00544   | 0.00145 | Non-Detect | 0.19   | 0.382         | 0.63       | Non-Detect | 0.274   | Non-Detect | Non-Detect | 0.00498(J) | Non-Detect  |
| GS-GSA-MW-4 | 6/11/2018   | 3.96  | 105     | 81       | 0.39         | 3.8  | 540     | 944  | Non-Detect  | Non-Detect | 0.0139 | 0.00463   | 0.00171 | Non-Detect | 0.166  | 0.796         | 0.39       | Non-Detect | 0.266   | Non-Detect | Non-Detect | 0.00388(J) | Non-Detect  |
| GS-GSA-MW-4 | 10/17/2018  | 3.98  | 117     | 85       | 0.44         | 3.81 | 520     | 928  | Non-Detect  | Non-Detect | 0.0125 | 0.00369   | 0.00188 | Non-Detect | 0.154  | 0.922         | 0.44       | Non-Detect | 0.266   | Non-Detect | Non-Detect | Non-Detect | Non-Detect  |
| GS-GSA-MW-4 | 4/10/2019   | 3.74  | 129     | 74.3     | Non-Detect   | 3.83 | 616     | 1000 | 0.000976(J) | 0.00176(J) | 0.0136 | 0.00469   | 0.00176 | Non-Detect | 0.241  | 0.622         | Non-Detect | Non-Detect | 0.282   | Non-Detect | Non-Detect | 0.00322(J) | Non-Detect  |
| GS-GSA-MW-4 | 10/14/2019  | 3.37  | 93.5    | 59.1     | Non-Detect   | 3.91 | 641     | 967  | Non-Detect  | 0.0012(J)  | 0.0147 | 0.00403   | 0.0015  | Non-Detect | 0.213  | 0.317(U)      | Non-Detect | Non-Detect | 0.262   | Non-Detect | Non-Detect | Non-Detect | Non-Detect  |
| GS-GSA-MW-4 | 2/4/2020    | 2.74  | 116     | 43.2     | Non-Detect   | 3.83 | 571     | 978  | Non-Detect  | 0.00128(J) | 0.0124 | 0.00415   | 0.00143 | Non-Detect | 0.217  | 0.324(U)      | Non-Detect | Non-Detect | 0.29    | Non-Detect | Non-Detect | Non-Detect | Non-Detect  |
| GS-GSA-MW-4 | 8/5/2020    | 2.51  | 94.7    | 41       | Non-Detect   | 3.86 | 519     | 938  | Non-Detect  | 0.00115(J) | 0.0142 | 0.00385   | 0.00157 | Non-Detect | 0.235  | 0.389(U)      | Non-Detect | Non-Detect | 0.273   | Non-Detect | Non-Detect | 0.00298(J) | 0.000205(J) |

|             |             |           |         | A        | APPENDIX II | I    |         |      |            |            |        |            |            |            |            | APPENDIX IV   | 7        |            |         |            |            |            |            |
|-------------|-------------|-----------|---------|----------|-------------|------|---------|------|------------|------------|--------|------------|------------|------------|------------|---------------|----------|------------|---------|------------|------------|------------|------------|
| WELL        | SAMPLE DATE | Boron     | Calcium | Chloride | Fluoride    | pН   | Sulfate | TDS  | Antimony   | Arsenic    | Barium | Beryllium  | Cadmium    | Chromium   | Cobalt     | ned Radium 22 | Fluoride | Lead       | Lithium | Mercury    | Molybdenum | Selenium   | Thallium   |
| UN]         | ITS         | mg/L      | mg/L    | mg/L     | mg/L        | SU   | mg/L    | mg/L | mg/L       | mg/L       | mg/L   | mg/L       | mg/L       | mg/L       | mg/L       | pCi/L         | mg/L     | mg/L       | mg/L    | mg/L       | mg/L       | mg/L       | mg/L       |
| GS-GSA-MW-8 | 8/24/2016   | 0.0898(J) | 263     | 4.03     | 0.165(J)    | 6.78 | 1250    | 2280 | Non-Detect | 0.00119(J) | 0.0536 | Non-Detect | Non-Detect | Non-Detect | 0.0201     | 0.558(U)      | 0.165(J) | Non-Detect | 0.0683  | Non-Detect | 0.0031(J)  | Non-Detect | Non-Detect |
| GS-GSA-MW-8 | 10/3/2016   | 0.0821(J) | 253     | 3.87     | 0.114(J)    | 6.71 | 1270    | 2370 | Non-Detect | 0.00114(J) | 0.0681 | Non-Detect | Non-Detect | Non-Detect | 0.0167     | 0.565         | 0.114(J) | Non-Detect | 0.0661  | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| GS-GSA-MW-8 | 10/26/2016  | 0.0889(J) | 235     | 4.08     | 0.056(J)    | 6.65 | 1240    | 2350 | Non-Detect | 0.0011(J)  | 0.0562 | Non-Detect | Non-Detect | Non-Detect | 0.0253     | 0.555(U)      | 0.056(J) | Non-Detect | 0.0681  | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| GS-GSA-MW-8 | 11/21/2016  | 0.0788(J) | 246     | 4.39     | 0.059(J)    | 6.7  | 1210    | 2530 | Non-Detect | Non-Detect | 0.0604 | Non-Detect | Non-Detect | Non-Detect | 0.0233     | 0.987         | 0.059(J) | Non-Detect | 0.0682  | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| GS-GSA-MW-8 | 1/17/2017   | 0.0607(J) | 231     | 7.22     | 0.07(J)     | 6.25 | 1150    | 2380 | Non-Detect | 0.00103(J) | 0.0402 | Non-Detect | Non-Detect | Non-Detect | 0.0708     | 0.476(U)      | 0.07(J)  | Non-Detect | 0.0516  | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| GS-GSA-MW-8 | 3/20/2017   | 0.114     | 298     | 5.7      | 0.18        | 7.04 | 1400    | 2630 | Non-Detect | Non-Detect | 0.0305 | Non-Detect | Non-Detect | Non-Detect | 0.00277(J) | 0.633(U)      | 0.18     | Non-Detect | 0.135   | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| GS-GSA-MW-8 | 4/18/2017   | 0.108     | 317     | 4.7      | 0.17        | 6.99 | 1300    | 2700 | Non-Detect | Non-Detect | 0.0276 | Non-Detect | Non-Detect | Non-Detect | Non-Detect | 0.248(U)      | 0.17     | Non-Detect | 0.139   | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| GS-GSA-MW-8 | 5/30/2017   | 0.105     | 316     | 15       | 0.16        | 6.98 | 1500    | 2980 | Non-Detect | Non-Detect | 0.0272 | Non-Detect | Non-Detect | Non-Detect | Non-Detect | 0.412(U)      | 0.16     | Non-Detect | 0.141   | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| GS-GSA-MW-8 | 8/24/2017   | 0.12      | 391     | 93       | 0.18        | 6.89 | 1800    | 3390 | n/a        | n/a        | n/a    | n/a        | n/a        | n/a        | n/a        | n/a           | 0.18     | n/a        | n/a     | n/a        | n/a        | n/a        | n/a        |
| GS-GSA-MW-8 | 2/13/2018   | n/a       | n/a     | n/a      | 0.15        | 6.85 | n/a     | n/a  | Non-Detect | Non-Detect | 0.0249 | Non-Detect | Non-Detect | Non-Detect | 0.00492(J) | 1.08          | 0.15     | Non-Detect | 0.163   | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| GS-GSA-MW-8 | 6/12/2018   | 0.181     | 442     | 140      | 0.15        | 6.83 | 1800    | 3510 | Non-Detect | Non-Detect | 0.0234 | Non-Detect | Non-Detect | Non-Detect | Non-Detect | 0.446(U)      | 0.15     | Non-Detect | 0.166   | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| GS-GSA-MW-8 | 10/17/2018  | 0.616     | 514     | 180      | 0.16        | 6.81 | 1600    | 3550 | Non-Detect | Non-Detect | 0.0236 | Non-Detect | Non-Detect | Non-Detect | Non-Detect | 1.05          | 0.16     | Non-Detect | 0.188   | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| GS-GSA-MW-8 | 4/10/2019   | 0.944     | 533     | 174      | 0.156       | 6.71 | 2150    | 3580 | 0.00102(J) | Non-Detect | 0.02   | Non-Detect | Non-Detect | Non-Detect | Non-Detect | 0.128(U)      | 0.156    | Non-Detect | 0.195   | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| GS-GSA-MW-8 | 10/14/2019  | 2.11      | 524     | 207      | 0.118       | 6.88 | 2090    | 3730 | Non-Detect | Non-Detect | 0.0215 | Non-Detect | Non-Detect | Non-Detect | Non-Detect | 0.225(U)      | 0.118    | Non-Detect | 0.209   | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| GS-GSA-MW-8 | 2/4/2020    | 1.47      | 461     | 94.1     | 0.132       | 6.85 | 1570    | 3190 | Non-Detect | Non-Detect | 0.0209 | Non-Detect | Non-Detect | Non-Detect | Non-Detect | 0.336(U)      | 0.132    | Non-Detect | 0.188   | Non-Detect | Non-Detect | Non-Detect | Non-Detect |
| GS-GSA-MW-8 | 8/5/2020    | 2.16      | 497     | 146      | 0.119       | 6.76 | 1880    | 3610 | Non-Detect | Non-Detect | 0.0216 | Non-Detect | Non-Detect | Non-Detect | Non-Detect | -0.115(U)     | 0.119    | Non-Detect | 0.206   | Non-Detect | Non-Detect | Non-Detect | Non-Detect |

|               |             |            |         | A        | APPENDIX III |      |         |      |             |            |        |             |             |            |            | APPENDIX I    | V          |            |            |            |            |            |             |
|---------------|-------------|------------|---------|----------|--------------|------|---------|------|-------------|------------|--------|-------------|-------------|------------|------------|---------------|------------|------------|------------|------------|------------|------------|-------------|
| WELL          | SAMPLE DATE | Boron      | Calcium | Chloride | Fluoride     | pН   | Sulfate | TDS  | Antimony    | Arsenic    | Barium | Beryllium   | Cadmium     | Chromium   | Cobalt     | ned Radium 22 | Fluoride   | Lead       | Lithium    | Mercury    | Molybdenum | Selenium   | Thallium    |
| UNI           | TS          | mg/L       | mg/L    | mg/L     | mg/L         | SU   | mg/L    | mg/L | mg/L        | mg/L       | mg/L   | mg/L        | mg/L        | mg/L       | mg/L       | pCi/L         | mg/L        |
| GS-GSA-MW-3V  | 3/5/2019    | 0.895      | 329     | 194      | 0.249        | 6.7  | 1170    | 2170 | 0.00179(J)  | Non-Detect | 0.0956 | Non-Detect  | Non-Detect  | Non-Detect | 0.0059     | 0.932         | 0.249      | Non-Detect | 0.309      | Non-Detect | 0.00347(J) | Non-Detect | Non-Detect  |
| GS-GSA-MW-3V  | 10/14/2019  | 2.38       | 368     | 298      | 0.37         | 6.39 | 1710    | 3200 | Non-Detect  | Non-Detect | 0.0451 | Non-Detect  | Non-Detect  | Non-Detect | 0.00845    | 0.184(U)      | 0.37       | Non-Detect | 0.38       | Non-Detect | Non-Detect | Non-Detect | Non-Detect  |
| GS-GSA-MW-3V  | 2/3/2020    | 3.06       | 504     | 338      | 0.438        | 5.88 | 1970    | 3660 | Non-Detect  | Non-Detect | 0.0215 | Non-Detect  | Non-Detect  | Non-Detect | 0.0135     | 0.408(U)      | 0.438      | Non-Detect | 0.46       | Non-Detect | Non-Detect | Non-Detect | Non-Detect  |
| GS-GSA-MW-3V  | 8/4/2020    | 2.8        | 443     | 305      | 0.349        | 5.9  | 1860    | 3530 | Non-Detect  | Non-Detect | 0.017  | Non-Detect  | Non-Detect  | Non-Detect | 0.0133     | -0.00668(U)   | 0.349      | Non-Detect | 0.395      | Non-Detect | Non-Detect | Non-Detect | Non-Detect  |
| GS-GSA-MW-4V  | 3/5/2019    | 7.15       | 249     | 191      | 0.477        | 6.19 | 871     | 1410 | Non-Detect  | Non-Detect | 0.0136 | 0.00155(J)  | Non-Detect  | Non-Detect | 0.0836     | 0.364(U)      | 0.477      | Non-Detect | 0.369      | Non-Detect | Non-Detect | Non-Detect | Non-Detect  |
| GS-GSA-MW-4V  | 10/14/2019  | 5.64       | 173     | 122      | 0.449        | 5.89 | 818     | 1340 | Non-Detect  | Non-Detect | 0.0123 | 0.00382     | Non-Detect  | Non-Detect | 0.12       | 0.369(U)      | 0.449      | Non-Detect | 0.317      | Non-Detect | Non-Detect | Non-Detect | Non-Detect  |
| GS-GSA-MW-4V  | 2/3/2020    | 5.25       | 184     | 101      | 0.555        | 5.84 | 808     | 1290 | Non-Detect  | 0.00101(J) | 0.0103 | 0.00362     | Non-Detect  | Non-Detect | 0.108      | 0.758         | 0.555      | Non-Detect | 0.332      | Non-Detect | Non-Detect | Non-Detect | Non-Detect  |
| GS-GSA-MW-4V  | 8/5/2020    | 4.41       | 167     | 80.9     | 0.363        | 5.81 | 761     | 1330 | Non-Detect  | 0.00116(J) | 0.0112 | 0.00416     | Non-Detect  | Non-Detect | 0.141      | 0.533(U)      | 0.363      | Non-Detect | 0.322      | Non-Detect | Non-Detect | Non-Detect | Non-Detect  |
| GS-GSA-MW-8V  | 2/5/2020    | 0.136      | 37.3    | 9.05     | 0.162        | 7.48 | 223     | 1100 | Non-Detect  | 0.00232(J) | 0.096  | Non-Detect  | Non-Detect  | Non-Detect | Non-Detect | 0.576         | 0.162      | Non-Detect | 0.327      | Non-Detect | Non-Detect | Non-Detect | Non-Detect  |
| GS-GSA-MW-8V  | 8/5/2020    | 0.131      | 31.9    | 13.9     | 0.256        | 7.58 | 243     | 1100 | Non-Detect  | 0.00476(J) | 0.125  | Non-Detect  | Non-Detect  | Non-Detect | Non-Detect | 1.85          | 0.256      | Non-Detect | 0.275      | Non-Detect | Non-Detect | Non-Detect | Non-Detect  |
| GS-GSA-MW-9H  | 3/5/2019    | 12.8       | 578     | 313      | 0.239        | 5.88 | 2010    | 3240 | 0.000852(J) | Non-Detect | 0.0312 | Non-Detect  | 0.000336(J) | Non-Detect | 0.14       | 0.852         | 0.239      | Non-Detect | 0.169      | Non-Detect | Non-Detect | Non-Detect | 0.00021(J)  |
| GS-GSA-MW-9H  | 10/16/2019  | 10.7       | 363     | 145      | 0.101        | 5.43 | 2020    | 3080 | Non-Detect  | 0.0019(J)  | 0.0163 | 0.000985(J) | 0.000362(J) | Non-Detect | 0.168      | 1.29          | 0.101      | Non-Detect | 0.184      | Non-Detect | Non-Detect | Non-Detect | 0.000262(J) |
| GS-GSA-MW-9H  | 2/4/2020    | 9.63       | 413     | 139      | 0.205        | 5.34 | 1710    | 3110 | Non-Detect  | 0.00123(J) | 0.0148 | 0.000929(J) | 0.000349(J) | Non-Detect | 0.159      | 0.441(U)      | 0.205      | Non-Detect | 0.203      | Non-Detect | Non-Detect | Non-Detect | 0.000233(J) |
| GS-GSA-MW-9H  | 8/4/2020    | 8.53       | 346     | 109      | 0.127        | 5.33 | 1790    | 2920 | Non-Detect  | 0.00137(J) | 0.0153 | 0.000882(J) | 0.000308(J) | Non-Detect | 0.178      | -0.385(U)     | 0.127      | Non-Detect | 0.166      | Non-Detect | Non-Detect | Non-Detect | 0.000265(J) |
| GS-GSA-MW-9V  | 8/4/2020    | 0.149      | 434     | 58.6     | 0.135        | 6.88 | 1700    | 3080 | Non-Detect  | Non-Detect | 0.0155 | Non-Detect  | Non-Detect  | Non-Detect | 0.00412(J) | 0.837(U)      | 0.135      | Non-Detect | 0.364      | Non-Detect | 0.00423(J) | Non-Detect | Non-Detect  |
| GS-GSA-MW-11H | 3/4/2019    | 0.0235(J)  | 177     | 3.81     | 0.101        | 6.04 | 785     | 1150 | 0.00149(J)  | Non-Detect | 0.0239 | Non-Detect  | Non-Detect  | Non-Detect | 0.0066     | 0.135(U)      | 0.101      | Non-Detect | Non-Detect | Non-Detect | Non-Detect | Non-Detect | Non-Detect  |
| GS-GSA-MW-11H | 10/16/2019  | 0.0352(J)  | 143     | 4.45     | 0.0875(J)    | 6.07 | 750     | 1150 | Non-Detect  | Non-Detect | 0.0192 | Non-Detect  | Non-Detect  | Non-Detect | 0.00598    | 0.189(U)      | 0.0875(J)  | Non-Detect | Non-Detect | Non-Detect | Non-Detect | Non-Detect | Non-Detect  |
| GS-GSA-MW-11H | 2/4/2020    | Non-Detect | 163     | 4.27     | 0.0743(J)    | 6.02 | 725     | 1200 | Non-Detect  | Non-Detect | 0.0148 | Non-Detect  | Non-Detect  | Non-Detect | 0.00582    | 0.319(U)      | 0.0743(J)  | Non-Detect | Non-Detect | Non-Detect | Non-Detect | Non-Detect | Non-Detect  |
| GS-GSA-MW-11H | 8/4/2020    | Non-Detect | 139     | 4.51     | 0.109        | 5.74 | 694     | 1230 | Non-Detect  | Non-Detect | 0.0138 | Non-Detect  | Non-Detect  | Non-Detect | 0.0061     | 0.0315(U)     | 0.109      | Non-Detect | Non-Detect | Non-Detect | Non-Detect | Non-Detect | Non-Detect  |
| GS-GSA-MW-12H | 2/4/2020    | 0.0748(J)  | 158     | 2.34     | Non-Detect   | 4.57 | 978     | 1580 | Non-Detect  | 0.00157(J) | 0.0141 | 0.00709     | 0.00301     | Non-Detect | 0.351      | 0.939         | Non-Detect | 0.00334(J) | 0.394      | Non-Detect | Non-Detect | Non-Detect | 0.000491(J) |
| GS-GSA-MW-12H | 8/5/2020    | 0.0748(J)  | 126     | 2        | Non-Detect   | 4.13 | 811     | 1380 | Non-Detect  | 0.00158(J) | 0.016  | 0.00747     | 0.00393     | Non-Detect | 0.436      | -0.306(U)     | Non-Detect | 0.00329(J) | 0.441      | Non-Detect | Non-Detect | 0.00417(J) | 0.000297(J) |
| GS-GSA-MW-12V | 8/5/2020    | 1.55       | 350     | 159      | 0.217        | 6.15 | 1830    | 3330 | Non-Detect  | Non-Detect | 0.0157 | Non-Detect  | Non-Detect  | Non-Detect | Non-Detect | -0.284(U)     | 0.217      | Non-Detect | 0.334      | Non-Detect | 0.00247(J) | Non-Detect | Non-Detect  |
| GS-GSA-MW-13H | 2/4/2020    | 0.202      | 171     | 12.9     | 0.115        | 6    | 720     | 1200 | Non-Detect  | 0.16       | 0.0296 | Non-Detect  | Non-Detect  | Non-Detect | 0.0442     | 0.624         | 0.115      | Non-Detect | 0.0506     | Non-Detect | Non-Detect | Non-Detect | Non-Detect  |
| GS-GSA-MW-13H | 8/4/2020    | 0.263      | 192     | 12.7     | 0.113        | 5.89 | 773     | 1350 | Non-Detect  | 0.103      | 0.0275 | Non-Detect  | Non-Detect  | Non-Detect | 0.111      | -0.402(U)     | 0.113      | Non-Detect | 0.0534     | Non-Detect | Non-Detect | Non-Detect | Non-Detect  |
| GS-GSA-MW-14H | 8/5/2020    | 0.158      | 141     | 3.28     | 0.082(J)     | 3.83 | 796     | 1280 | Non-Detect  | 0.00181(J) | 0.0113 | 0.00879     | 0.0018      | Non-Detect | 0.237      | 0.758(U)      | 0.082(J)   | 0.00122(J) | 0.512      | Non-Detect | Non-Detect | 0.00571(J) | Non-Detect  |
| GS-GSA-PZ-17  | 8/4/2020    | 0.168      | 218     | 1.7      | Non-Detect   | 4.08 | 1310    | 2160 | Non-Detect  | 0.00495(J) | 0.0181 | 0.0145      | 0.00197     | 0.00254(J) | 0.471      | 0.407(U)      | Non-Detect | 0.00582    | 1.39       | Non-Detect | Non-Detect | 0.0135     | 0.000242(J) |
| GS-GSA-PZ-18  | 8/3/2020    | 0.0671(J)  | 106     | 4.55     | Non-Detect   | 4.09 | 729     | 1210 | 0.00113(J)  | 0.0114     | 0.0111 | 0.00829     | 0.0012      | 0.00315(J) | 0.156      | 0.511(U)      | Non-Detect | 0.00366(J) | 0.422      | Non-Detect | Non-Detect | 0.00616(J) | Non-Detect  |
| GS-GSA-PZ-19  | 8/3/2020    | 0.0553(J)  | 88      | 21.7     | 0.18         | 6.32 | 210     | 740  | Non-Detect  | 0.00279(J) | 0.047  | Non-Detect  | Non-Detect  | Non-Detect | Non-Detect | 0.652(U)      | 0.18       | Non-Detect | 0.0753     | Non-Detect | Non-Detect | Non-Detect | Non-Detect  |
| GS-GSA-PZ-20  | 8/3/2020    | 0.0833(J)  | 76.9    | 15       | 0.188        | 6.03 | 379     | 798  | Non-Detect  | 0.00214(J) | 0.0211 | Non-Detect  | Non-Detect  | Non-Detect | 0.00734    | 0.0893(U)     | 0.188      | Non-Detect | 0.102      | Non-Detect | Non-Detect | Non-Detect | Non-Detect  |
| GS-GSA-PZ-21  | 8/4/2020    | Non-Detect | 36.4    | 13.6     | 0.323        | 6.94 | 23.8    | 447  | Non-Detect  | 0.00204(J) | 0.12   | Non-Detect  | Non-Detect  | Non-Detect | Non-Detect | 0.839         | 0.323      | Non-Detect | 0.0182(J)  | Non-Detect | 0.00347(J) | Non-Detect | Non-Detect  |
| GS-GSA-PZ-22  | 8/4/2020    | 0.108      | 70.4    | 7.77     | 0.167        | 6.42 | 340     | 638  | Non-Detect  | 0.0297     | 0.0243 | Non-Detect  | Non-Detect  | Non-Detect | 0.0021(J)  | 0.114(U)      | 0.167      | Non-Detect | 0.0558     | Non-Detect | 0.00267(J) | Non-Detect | Non-Detect  |

# Appendix B

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6032 or 6171 FAX (205) 257-1654

### Field Case Narrative



## **Gorgas Gypsum Pond**

### 2020 Compliance Event 1

All samples were collected using methods defined in Alabama Power's Water Field Group Low-Flow Groundwater Sampling Procedure and the associated site-specific Sampling and Analysis Plan (SAP).

The first pH field reading for upgradient well MW-3L was qualified due to the pH reading falling outside of the bracketed calibration range. The below qualifier was used:

• E – Estimated reported value exceeded calibration range

Field quality control procedures were performed as follows:

- Blanks and Sample Duplicates were collected as described in the SAP.
- Calibration verifications for all required field parameters were performed daily, before and after sample collection.

# Analytical Report



Sample Group: WMWGORG\_1257

Project/Site: Gorgas Gypsum

Parrish, AL 35580

For: Southern Company Services

3535 Colonnade Parkway Birmingham, AL 35243

Attention: Dustin Brooks & Greg Dyer

Released By: Laura Midkiff

lbmidkif@southernco.com

(205) 807-2676



Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040 (205) 664-6001

February 25, 2020

Dear Dustin Brooks,

Enclosed are the analytical results for sample(s) received by the laboratory between February 04, 2020 and February 06, 2020. All results reported herein conform to the laboratory's most current Quality Assurance Manual. Results marked with an asterisk conform to the most current applicable TNI/NELAC requirements. Exceptions will be noted in the body of the report.

Laboratory certification ID: E571114

Issued By: State of Florida, Department of Health

Expiration: June 30, 2020

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Quality Control:

Laura Midkiff

Digitality signed by Laura milusuii

DN: cn-Laura Midkiff, \_\_a-Alabama Powei

Company, ou\_Environmental Affairs,
email=lbmidkif@southernco.com, c=US

T. Durant Supervision:

Maske

2020.02.25 14:45:27 -06'00'





This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.



Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



### Metals ICP

### Gorgas Gypsum

### WMWGORG 1257

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions are NIST/ISO/IEC/Guide 34 traceable and were used within their recommended shelf life.

| Sample ID | Batch ID | Project ID   |
|-----------|----------|--------------|
| BA02286   | 665700   | WMWGORG_1257 |
| BA02287   | 665700   | WMWGORG_1257 |
| BA02288   | 665700   | WMWGORG_1257 |
| BA02289   | 665700   | WMWGORG_1257 |
| BA02290   | 665700   | WMWGORG_1257 |
| BA02291   | 665700   | WMWGORG_1257 |
| BA02543   | 665700   | WMWGORG_1257 |
| BA02544   | 665700   | WMWGORG_1257 |
| BA02545   | 665700   | WMWGORG_1257 |
| BA02546   | 665700   | WMWGORG_1257 |
| BA02547   | 665701   | WMWGORG_1257 |
| BA02548   | 665701   | WMWGORG_1257 |
| BA02549   | 665701   | WMWGORG_1257 |
| BA02550   | 665701   | WMWGORG_1257 |
| BA02551   | 665701   | WMWGORG_1257 |
| BA02552   | 665701   | WMWGORG_1257 |
| BA02553   | 665701   | WMWGORG_1257 |
| BA02554   | 665701   | WMWGORG_1257 |
| BA02555   | 665701   | WMWGORG_1257 |

- 4. All of the above samples were analyzed by EPA 200.7 and prepared by EPA 1638.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

### **General Quality Control Procedures:**

- Prior to sample analysis, an initial calibration verification (ICV) was analyzed and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the limit of quantitation for all requested analytes.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analytes.

### **Revision 4**

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analytes.
- A preparation method blank and laboratory control sample were digested and analyzed with the samples in each digestion batch.
- All laboratory control sample criteria were met.
- The method blank associated with each digestion batch passed all acceptance criteria for all requested analytes.
- The spectral interference check associated with EPA 200.7 was analyzed and all acceptance criteria were met.
- All sample internal standard criteria were met.
- The high standard readbacks associated with EPA 200.7 were within acceptance criteria.
- It is noted that the QC summary page typically provides the QC results from the original batch analytical
  sequence. If dilutions were subsequently performed to bring sample concentrations within the calibration range,
  any additional QC data from the dilution analyses may need to be obtained from the laboratory. Any
  qualifications applied to original analyses or dilution re-analyses are based upon QC data available at the time of
  review.

### Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were digested and analyzed with each ICP batch. All acceptance criteria
  for accuracy were met except for the following:
  - o BA02546 MS/MSD spike level for Calcium was less than 30% of the sample nominal concentration.
- A matrix spike and matrix spike duplicate were digested and analyzed with each ICP batch. All acceptance criteria for precision were met.
- 7. The following samples were diluted due to the analyzed sample concentration being greater than the high standard of the calibration curve:

| Sample ID | <u>Analyte</u> | <b>Dilution Factor</b> |
|-----------|----------------|------------------------|
| BA02287   | Calcium        | 20.3                   |
| BA02288   | Calcium        | 20.3                   |
| BA02289   | Calcium        | 20.3                   |
| BA02290   | Calcium        | 20.3                   |
| BA02291   | Calcium        | 20.3                   |
| BA02543   | Calcium        | 20.3                   |
| BA02544   | Calcium        | 20.3                   |
| BA02545   | Calcium        | 20.3                   |
| BA02546   | Calcium        | 20.3                   |
| BA02547   | Calcium        | 20.3                   |
| BA02548   | Calcium        | 20.3                   |
| BA02549   | Calcium        | 20.3                   |
| BA02550   | Calcium        | 20.3                   |

**Revision 4** 

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



| BA02551 | Calcium | 20.3 |
|---------|---------|------|
| BA02552 | Calcium | 20.3 |

8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



### Metals ICPMS

### Gorgas Gypsum

### WMWGORG 1257

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions are NIST/ISO/IEC/Guide 34 traceable and were used within their recommended shelf life.

| Sample ID | Batch ID | Project ID   |
|-----------|----------|--------------|
| BA02286   | 665810   | WMWGORG_1257 |
| BA02287   | 665810   | WMWGORG_1257 |
| BA02288   | 665810   | WMWGORG_1257 |
| BA02289   | 665810   | WMWGORG_1257 |
| BA02290   | 665810   | WMWGORG_1257 |
| BA02291   | 665810   | WMWGORG_1257 |
| BA02543   | 665810   | WMWGORG_1257 |
| BA02544   | 665810   | WMWGORG_1257 |
| BA02545   | 665810   | WMWGORG_1257 |
| BA02546   | 665810   | WMWGORG_1257 |
| BA02547   | 665811   | WMWGORG_1257 |
| BA02548   | 665811   | WMWGORG_1257 |
| BA02549   | 665811   | WMWGORG_1257 |
| BA02550   | 665811   | WMWGORG_1257 |
| BA02551   | 665811   | WMWGORG_1257 |
| BA02552   | 665811   | WMWGORG_1257 |
| BA02553   | 665811   | WMWGORG_1257 |
| BA02554   | 665811   | WMWGORG_1257 |
| BA02555   | 665811   | WMWGORG_1257 |

- 4. All of the above samples were analyzed by EPA 200.8 and prepared by EPA 1638.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

### **General Quality Control Procedures:**

- All tune and calibration met criteria for all requested analytes.
- Prior to sample analysis, an initial calibration verification (ICV) was analyzed and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the limit of quantitation for all requested analytes.

### **Revision 4**

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



- All continued calibration verification (CCV) were within the acceptance criteria for the requested analytes.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analytes.
- A preparation method blank and laboratory control sample were digested and analyzed with the samples in each digestion batch.
- All laboratory control sample criteria were met.
- The method blank associated with each digestion batch passed all acceptance criteria for all requested analytes.
- The interference check samples associated with EPA 200.8 were analyzed and passed for all requested analytes.
- All sample internal standard criteria were met.

Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were digested and analyzed with each ICPMS batch. All acceptance criteria for accuracy were met.
- A matrix spike and matrix spike duplicate were digested and analyzed with each ICPMS batch. All acceptance criteria for precision were met.
- 7. All samples were analyzed without a dilution factor.
- 8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



### Mercury

### Gorgas Gypsum

### WMWGORG 1257

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions are NIST/ISO/IEC/Guide 34 traceable and were used within their recommended shelf life.

| Sample ID | Batch ID | Project ID   |
|-----------|----------|--------------|
| BA02286   | 665760   | WMWGORG_1257 |
| BA02287   | 665760   | WMWGORG_1257 |
| BA02288   | 665760   | WMWGORG_1257 |
| BA02289   | 665760   | WMWGORG_1257 |
| BA02290   | 665760   | WMWGORG_1257 |
| BA02291   | 665760   | WMWGORG_1257 |
| BA02543   | 665760   | WMWGORG_1257 |
| BA02544   | 665760   | WMWGORG_1257 |
| BA02545   | 665760   | WMWGORG_1257 |
| BA02546   | 665760   | WMWGORG_1257 |
| BA02547   | 665761   | WMWGORG_1257 |
| BA02548   | 665761   | WMWGORG_1257 |
| BA02549   | 665761   | WMWGORG_1257 |
| BA02550   | 665761   | WMWGORG_1257 |
| BA02551   | 665761   | WMWGORG_1257 |
| BA02552   | 665761   | WMWGORG_1257 |
| BA02553   | 665761   | WMWGORG_1257 |
| BA02554   | 665761   | WMWGORG_1257 |
| BA02555   | 665761   | WMWGORG_1257 |

- 4. All of the above samples were analyzed and prepared by EPA 245.1.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

### **General Quality Control Procedures:**

- Prior to sample analysis, an initial calibration verification (ICV) was analyzed and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the method detection limit for the requested analyte.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analyte.

### **Revision 4**

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analyte.
- A preparation method blank and laboratory control sample were digested and analyzed with the samples in each digestion batch.
- All laboratory control sample criteria were met.
- The method blank associated with each digestion batch was below the limit of quantitation for the requested analyte.
- All calibration met criteria for the requested analyte.
- All response signals were satisfactory.

Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were digested and analyzed with each batch. All acceptance criteria for accuracy were met.
- A matrix spike and matrix spike duplicate were digested and analyzed with each batch. All acceptance criteria for precision were met.
- 7. All samples were analyzed without a dilution factor.
- 8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



### **TDS**

### Gorgas Gypsum

### WMWGORG 1257

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions are NIST/ISO/IEC/Guide 34 traceable and were used within their recommended shelf life.

| Sample ID | Batch ID | Project ID   |
|-----------|----------|--------------|
| BA02286   | 665731   | WMWGORG_1257 |
| BA02287   | 665731   | WMWGORG_1257 |
| BA02288   | 665731   | WMWGORG_1257 |
| BA02289   | 665731   | WMWGORG_1257 |
| BA02290   | 665731   | WMWGORG_1257 |
| BA02291   | 665731   | WMWGORG_1257 |
| BA02543   | 665731   | WMWGORG_1257 |
| BA02544   | 665731   | WMWGORG_1257 |
| BA02545   | 665731   | WMWGORG_1257 |
| BA02546   | 665732   | WMWGORG_1257 |
| BA02547   | 665732   | WMWGORG_1257 |
| BA02548   | 665732   | WMWGORG_1257 |
| BA02549   | 665732   | WMWGORG_1257 |
| BA02550   | 665732   | WMWGORG_1257 |
| BA02551   | 665732   | WMWGORG_1257 |
| BA02552   | 665732   | WMWGORG_1257 |
| BA02553   | 665732   | WMWGORG_1257 |
| BA02554   | 665732   | WMWGORG_1257 |
| BA02555   | 665732   | WMWGORG_1257 |

- 4. All of the above samples were analyzed by Standard Method 2540C.
- 5. All samples were analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

### **General Quality Control Procedures:**

- A Method Blank was analyzed with each batch. All criteria were met.
- All final weights of samples, standards, and blanks agreed within 0.5mg of the previous weight.
- A sample duplicate was analyzed with each batch. RPD/2 was less than 5%.
- A laboratory control sample was analyzed with each batch. All criteria were met.
- Samples were between 2.5mg and 200mg residue.

### **Revision 4**



Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

- All samples with residue <2.5mg had the maximum volume of 150mL filtered. Affected samples are as follows:
  - o BA02286
  - o BA02553
  - o BA02555

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



### **Anions**

### Gorgas Gypsum

### WMWGORG 1257

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions are NIST/ISO/IEC/Guide 34 traceable and were used within their recommended shelf life.

| Sample ID | Batch ID               | Project ID   |
|-----------|------------------------|--------------|
| BA02286   | 665580, 665584, 665643 | WMWGORG_1257 |
| BA02287   | 665580, 665584, 665643 | WMWGORG_1257 |
| BA02288   | 665580, 665584, 665643 | WMWGORG_1257 |
| BA02289   | 665580, 665584, 665643 | WMWGORG_1257 |
| BA02290   | 665580, 665584, 665643 | WMWGORG_1257 |
| BA02291   | 665580, 665584, 665643 | WMWGORG_1257 |
| BA02543   | 665736, 665738, 665646 | WMWGORG_1257 |
| BA02544   | 665736, 665738, 665646 | WMWGORG_1257 |
| BA02545   | 665736, 665738, 665646 | WMWGORG_1257 |
| BA02546   | 665736, 665738, 665646 | WMWGORG_1257 |
| BA02547   | 665736, 665738, 665646 | WMWGORG_1257 |
| BA02548   | 665736, 665738, 665646 | WMWGORG_1257 |
| BA02549   | 665736, 665738, 665646 | WMWGORG_1257 |
| BA02550   | 665736, 665738, 665646 | WMWGORG_1257 |
| BA02551   | 665736, 665738, 665646 | WMWGORG_1257 |
| BA02552   | 665736, 665738, 665646 | WMWGORG_1257 |
| BA02553   | 665737, 665739, 665647 | WMWGORG_1257 |
| BA02554   | 665737, 665739, 665647 | WMWGORG_1257 |
| BA02555   | 665737, 665739, 665647 | WMWGORG_1257 |

- 4. All of the above samples were analyzed and prepared by SM4500 CI E, SM4500 F G, and SM4500 SO4 E.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

### **General Quality Control Procedures:**

- All calibration met criteria for the requested analyte.
- Prior to sample analysis, an initial calibration verification (ICV), and all criteria were met.
- Prior to sample analysis, an initial calibration blank (ICB) was analyzed and was below the method detection limit for the requested analyte.

### **Revision 4**

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



- All continued calibration verification (CCV) were within the acceptance criteria for the requested analyte.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analyte.
- It is noted that the QC summary page typically provides the QC results from the original batch analytical sequence. If dilutions were subsequently performed to bring sample concentrations within the calibration range, any additional QC data from the dilution analyses may need to be obtained from the laboratory. Any qualifications applied to original analyses or dilution re-analyses are based upon QC data available at the time of review.

Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike was analyzed with each batch. Acceptance criteria for accuracy were met.
- A sample duplicate was analyzed with each batch. Acceptance criteria for precision were met.
- 7. The following samples were diluted due to the analyzed sample concentration being greater than the high standard of the calibration curve:

| Sample ID | <u>Analyte</u>     | <b>Dilution Factor</b> |
|-----------|--------------------|------------------------|
| BA02287   | Sulfate            | 80                     |
| BA02288   | Sulfate            | 80                     |
| BA02289   | Sulfate            | 100                    |
| BA02290   | Sulfate            | 100                    |
| BA02291   | Sulfate            | 100                    |
| BA02543   | Chloride & Sulfate | 40 & 100               |
| BA02544   | Chloride & Sulfate | 40 & 100               |
| BA02545   | Chloride & Sulfate | 20 & 80                |
| BA02546   | Chloride & Sulfate | 20 & 80                |
| BA02547   | Chloride & Sulfate | 20 & 80                |
| BA02548   | Sulfate            | 80                     |
| BA02549   | Sulfate            | 80                     |
| BA02550   | Sulfate            | 80                     |
| BA02551   | Chloride & Sulfate | 40 & 100               |
| BA02552   | Chloride & Sulfate | 40 & 100               |
| BA02554   | Sulfate            | 16                     |

8. The raw data results are shown with dilution factors included.

# Certificate Of Analysis



Description: Gorgas Gypsum Field BlankLocation Code:WMWGORGFBCollected:2/3/20 12:18

Customer ID:

**Submittal Date:** 2/4/20 10:27

Laboratory ID Number: BA02286

| Name                              | Prepared      | Analyzed     | Vio Spec DF | Results      | Units      | MDL      | RL     | Q |
|-----------------------------------|---------------|--------------|-------------|--------------|------------|----------|--------|---|
| Analytical Method: EPA 200.7      | Anal          | yst: RDA     |             | Preparati    | on Method: | EPA 1638 |        |   |
| * Boron, Total                    | 2/10/20 13:30 | 2/13/20 10:1 | 3 1.015     | Not Detected | mg/L       | 0.03     | 0.1    | U |
| * Calcium, Total                  | 2/10/20 13:30 | 2/13/20 10:1 | 3 1.015     | Not Detected | mg/L       | 0.1      | 0.5    | U |
| * Lithium, Total                  | 2/10/20 13:30 | 2/13/20 10:1 | 3 1.015     | Not Detected | mg/L       | 0.01     | 0.02   | U |
| Analytical Method: EPA 200.8      | Anal          | yst: DLJ     |             | Preparati    | on Method: | EPA 1638 |        |   |
| * Antimony, Total                 | 2/6/20 15:00  | 2/7/20 09:57 | 1.015       | Not Detected | mg/L       | 0.0008   | 0.003  | U |
| * Arsenic, Total                  | 2/6/20 15:00  | 2/7/20 09:57 | 1.015       | Not Detected | mg/L       | 0.001    | 0.005  | U |
| * Barium, Total                   | 2/6/20 15:00  | 2/7/20 09:57 | 1.015       | Not Detected | mg/L       | 0.002    | 0.01   | U |
| * Beryllium, Total                | 2/6/20 15:00  | 2/7/20 09:57 | 1.015       | Not Detected | mg/L       | 0.0006   | 0.003  | U |
| * Cadmium, Total                  | 2/6/20 15:00  | 2/7/20 09:57 | 1.015       | Not Detected | mg/L       | 0.0003   | 0.001  | U |
| * Chromium, Total                 | 2/6/20 15:00  | 2/7/20 09:57 | 1.015       | Not Detected | mg/L       | 0.002    | 0.01   | U |
| * Cobalt, Total                   | 2/6/20 15:00  | 2/7/20 09:57 | 1.015       | Not Detected | mg/L       | 0.002    | 0.005  | U |
| * Lead, Total                     | 2/6/20 15:00  | 2/7/20 09:57 | 1.015       | Not Detected | mg/L       | 0.001    | 0.005  | U |
| * Molybdenum, Total               | 2/6/20 15:00  | 2/7/20 09:57 | 1.015       | Not Detected | mg/L       | 0.002    | 0.01   | U |
| * Selenium, Total                 | 2/6/20 15:00  | 2/7/20 09:57 | 1.015       | Not Detected | mg/L       | 0.002    | 0.01   | U |
| * Thallium, Total                 | 2/6/20 15:00  | 2/7/20 09:57 | 1.015       | Not Detected | mg/L       | 0.0002   | 0.001  | U |
| Analytical Method: EPA 245.1      | Anal          | yst: GAS     |             |              |            |          |        |   |
| * Mercury, Total by CVAA          | 2/10/20 11:35 | 2/11/20 14:1 | 1 1         | Not Detected | mg/L       | 0.0003   | 0.0005 | U |
| Analytical Method: SM 2540C       | Anal          | yst: TJW     |             |              |            |          |        |   |
| * Solids, Dissolved               | 2/7/20 15:30  | 2/11/20 10:3 | 0 1         | Not Detected | mg/L       |          | 25     | U |
| Analytical Method: SM4500Cl E     | Anal          | yst: JCC     |             |              |            |          |        |   |
| * Chloride                        | 2/5/20 11:20  | 2/5/20 11:20 | 1           | Not Detected | mg/L       | 0.50     | 1      | U |
| Analytical Method: SM4500F G 2017 | Anal          | yst: JCC     |             |              |            |          |        |   |
| * Fluoride                        | 2/5/20 14:09  | 2/5/20 14:09 | 1           | Not Detected | mg/L       | 0.05     | 0.1    | U |
| Analytical Method: SM4500SO4 E    | Anal          | yst: JCC     |             |              |            |          |        |   |
| * Sulfate                         | 2/6/20 11:16  | 2/6/20 11:16 | 1           | Not Detected | mg/L       | 0.50     | 1      | U |

MDL's and RL's are adjusted for sample dilution, as applicable

# **Batch QC Summary**



**Customer Account:** WMWGORGFB **Sample Date:** 2/3/20 12:18

**Customer ID:** 

**Delivery Date:** 2/4/20 10:27

Description: Gorgas Gypsum Field Blank

Laboratory ID Number: BA02286

|                                |       |             | MB        |       |         |         |          | Standard         |      | Rec       |       | Prec          |
|--------------------------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|------|-----------|-------|---------------|
| Sample Analysis                | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | Limit            | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA02546 Antimony, Total        | mg/L  | 0.000176    | 0.00066   | 0.10  | 0.0950  | 0.0954  | 0.0883   | 0.085 to 0.115   | 95.0 | 70 to 130 | 0.445 | 20            |
| BA02546 Boron, Total           | mg/L  | 0.00144     | 0.0650254 | 1.00  | 3.71    | 3.72    | 1.01     | 0.85 to 1.15     | 97.4 | 70 to 130 | 0.167 | 20            |
| BA02546 Chromium, Total        | mg/L  | 0.0000464   | 0.00044   | 0.10  | 0.0980  | 0.0986  | 0.0980   | 0.085 to 0.115   | 98.0 | 70 to 130 | 0.575 | 20            |
| BA02546 Lead, Total            | mg/L  | 0.0000111   | 0.0001474 | 0.10  | 0.101   | 0.100   | 0.0990   | 0.085 to 0.115   | 101  | 70 to 130 | 0.514 | 20            |
| BA02546 Selenium, Total        | mg/L  | 0.000138    | 0.00066   | 0.10  | 0.0858  | 0.0863  | 0.105    | 0.085 to 0.115   | 85.8 | 70 to 130 | 0.560 | 20            |
| BA02546 Arsenic, Total         | mg/L  | 0.0000218   | 0.0001474 | 0.10  | 0.101   | 0.100   | 0.105    | 0.085 to 0.115   | 100  | 70 to 130 | 1.17  | 20            |
| BA02546 Calcium, Total         | mg/L  | -0.0107     | 0.1518    | 5.00  | 119     | 114     | 5.23     | 4.25 to 5.75     | 48.8 | 70 to 130 | 4.41  | 20            |
| BA02546 Cadmium, Total         | mg/L  | 0.00000727  | 0.0001474 | 0.10  | 0.0966  | 0.0953  | 0.0973   | 0.085 to 0.115   | 95.1 | 70 to 130 | 1.32  | 20            |
| BA02546 Barium, Total          | mg/L  | 0.00000799  | 0.0002    | 0.10  | 0.109   | 0.110   | 0.0917   | 0.085 to 0.115   | 96.7 | 70 to 130 | 0.948 | 20            |
| BA02546 Mercury, Total by CVAA | mg/L  | -0.00000703 | 0.0005    | 0.004 | 0.00409 | 0.00406 | 0.00386  | 0.0034 to 0.0046 | 102  | 70 to 130 | 0.812 | 20            |
| BA02546 Lithium, Total         | mg/L  | -0.0000191  | 0.0154    | 0.20  | 0.525   | 0.523   | 0.201    | 0.17 to 0.23     | 118  | 70 to 130 | 0.338 | 20            |
| BA02546 Beryllium, Total       | mg/L  | 0.0000453   | 0.00088   | 0.10  | 0.100   | 0.102   | 0.0962   | 0.085 to 0.115   | 96.0 | 70 to 130 | 2.15  | 20            |
| BA02546 Molybdenum, Total      | mg/L  | 0.00000558  | 0.0001474 | 0.10  | 0.0950  | 0.0939  | 0.0934   | 0.085 to 0.115   | 95.0 | 70 to 130 | 1.12  | 20            |
| BA02546 Cobalt, Total          | mg/L  | -0.00000314 | 0.0001474 | 0.10  | 0.313   | 0.311   | 0.0961   | 0.085 to 0.115   | 95.7 | 70 to 130 | 0.448 | 20            |
| BA02546 Thallium, Total        | mg/L  | 0.0000141   | 0.0001474 | 0.10  | 0.102   | 0.0991  | 0.0995   | 0.085 to 0.115   | 102  | 70 to 130 | 2.84  | 20            |

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Issued By: State of Florida, Department of Health

Expiration: June 30, 2018

<sup>\*</sup> Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114

# **Batch QC Summary**



Customer Account: WMWGORGFB

Sample Date:

2/3/20 12:18

**Customer ID:** 

**Delivery Date:** 

2/4/20 10:27

Description: Gorgas Gypsum Field Blank

Laboratory ID Number: BA02286

|         |                   |       |          | MB    |       |      | Sample    |          | Standard     |      | Rec       |       | Prec          |
|---------|-------------------|-------|----------|-------|-------|------|-----------|----------|--------------|------|-----------|-------|---------------|
| Sample  | Analysis          | Units | MB       | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA02291 | Chloride          | mg/L  | -0.00879 | 0.50  | 10.0  | 11.5 | 1.65      | 10.1     | 9 to 11      | 97.8 | 80 to 120 | 4.15  | 20            |
| BA02291 | Fluoride          | mg/L  | 0.0246   | 0.05  | 2.50  | 2.97 | 0.369     | 2.60     | 2.25 to 2.75 | 104  | 80 to 120 | 0.271 | 20            |
| BA02291 | Sulfate           | mg/L  | -0.417   | 0.50  | 2000  | 4090 | 2010      | 18.6     | 18 to 22     | 108  | 80 to 120 | 4.58  | 20            |
| BA02543 | Solids, Dissolved | mg/L  | -2.00    | 25    |       |      | 3660      | 53.0     | 40 to 60     |      |           | 0.00  | 5             |

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2017

<sup>\*</sup> Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

# **Certificate Of Analysis**



Description: Gorgas Gypsum - MW-1LLocation Code:WMWGORGCollected:2/3/20 12:28

**Customer ID:** 

**Submittal Date:** 2/4/20 10:27

Laboratory ID Number: BA02287

| Name                                  | Prepared      | Analyzed      | Vio Spec DF | Results      | Units         | MDL     | RL     | Q   |
|---------------------------------------|---------------|---------------|-------------|--------------|---------------|---------|--------|-----|
| Analytical Method: EPA 200.7          | Anal          | yst: RDA      |             | Preparati    | ion Method: E | PA 1638 |        |     |
| * Boron, Total                        | 2/10/20 13:30 | 2/13/20 10:10 | 6 1.015     | Not Detected | mg/L          | 0.03    | 0.1    | U   |
| * Calcium, Total                      | 2/10/20 13:30 | 2/13/20 11:3  | 8 20.3      | 172          | mg/L          | 2.03    | 10.15  |     |
| * Lithium, Total                      | 2/10/20 13:30 | 2/13/20 10:10 | 6 1.015     | 0.0292       | mg/L          | 0.01    | 0.02   |     |
| Analytical Method: EPA 200.8          | Anal          | yst: DLJ      |             | Preparati    | ion Method: E | PA 1638 |        |     |
| * Antimony, Total                     | 2/6/20 15:00  | 2/7/20 10:00  | 1.015       | Not Detected | mg/L          | 0.0008  | 0.003  | U   |
| * Arsenic, Total                      | 2/6/20 15:00  | 2/7/20 10:00  | 1.015       | Not Detected | mg/L          | 0.001   | 0.005  | U   |
| * Barium, Total                       | 2/6/20 15:00  | 2/7/20 10:00  | 1.015       | 0.00995      | mg/L          | 0.002   | 0.01   | J   |
| * Beryllium, Total                    | 2/6/20 15:00  | 2/7/20 10:00  | 1.015       | Not Detected | mg/L          | 0.0006  | 0.003  | U   |
| * Cadmium, Total                      | 2/6/20 15:00  | 2/7/20 10:00  | 1.015       | 0.00182      | mg/L          | 0.0003  | 0.001  |     |
| * Chromium, Total                     | 2/6/20 15:00  | 2/7/20 10:00  | 1.015       | Not Detected | mg/L          | 0.002   | 0.01   | U   |
| * Cobalt, Total                       | 2/6/20 15:00  | 2/7/20 10:00  | 1.015       | 0.0495       | mg/L          | 0.002   | 0.005  |     |
| * Lead, Total                         | 2/6/20 15:00  | 2/7/20 10:00  | 1.015       | Not Detected | mg/L          | 0.001   | 0.005  | U   |
| * Molybdenum, Total                   | 2/6/20 15:00  | 2/7/20 10:00  | 1.015       | Not Detected | mg/L          | 0.002   | 0.01   | U   |
| * Selenium, Total                     | 2/6/20 15:00  | 2/7/20 10:00  | 1.015       | 0.00272      | mg/L          | 0.002   | 0.01   | J   |
| * Thallium, Total                     | 2/6/20 15:00  | 2/7/20 10:00  | 1.015       | Not Detected | mg/L          | 0.0002  | 0.001  | U   |
| Analytical Method: EPA 245.1          | Anal          | yst: GAS      |             |              |               |         |        |     |
| * Mercury, Total by CVAA              | 2/10/20 11:35 |               | 3 1         | Not Detected | mg/L          | 0.0003  | 0.0005 | U   |
| Analytical Method: SM 2540C           | Anal          | yst: TJW      |             |              |               |         |        |     |
| * Solids, Dissolved                   | 2/7/20 15:30  | 2/11/20 10:30 | 0 1         | 2380         | mg/L          |         | 125    |     |
| Analytical Method: SM4500Cl E         | Anal          | yst: JCC      |             |              |               |         |        |     |
| * Chloride                            | 2/5/20 11:21  | 2/5/20 11:21  | 1           | 2.07         | mg/L          | 0.50    | 1      |     |
| Analytical Method: SM4500F G 2017     | Anal          | yst: JCC      |             |              |               |         |        |     |
| * Fluoride                            | 2/5/20 14:10  | 2/5/20 14:10  | 1           | 0.0982       | mg/L          | 0.05    | 0.1    | J   |
| Analytical Method: SM4500SO4 E        | Anal          | yst: JCC      |             |              |               |         |        |     |
| * Sulfate                             | 2/6/20 11:17  | 2/6/20 11:17  | 80          | 1510         | mg/L          | 40.00   | 80     |     |
| Analytical Method: Field Measurements | Anal          | yst: AWG      |             |              |               |         |        |     |
| Conductivity                          | 2/3/20 12:25  | 2/3/20 12:25  |             | 2376.80      | uS/cm         |         |        | FΑ  |
| рН                                    | 2/3/20 12:25  | 2/3/20 12:25  |             | 5.00         | SU            |         |        | FA  |
| Temperature                           | 2/3/20 12:25  | 2/3/20 12:25  |             | 19.79        | С             |         |        | FΑ  |
| Turbidity                             | 2/3/20 12:25  | 2/3/20 12:25  |             | 0.52         | NTU           |         |        | F.A |

MDL's and RL's are adjusted for sample dilution, as applicable

# **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 2/3/20 12:28

**Customer ID:** 

**Delivery Date:** 2/4/20 10:27

Description: Gorgas Gypsum - MW-1L

Laboratory ID Number: BA02287

|                                |       |             | MB        |       |         |         |          | Standard         |      | Rec       |       | Prec          |
|--------------------------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|------|-----------|-------|---------------|
| Sample Analysis                | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | Limit            | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA02546 Antimony, Total        | mg/L  | 0.000176    | 0.00066   | 0.10  | 0.0950  | 0.0954  | 0.0883   | 0.085 to 0.115   | 95.0 | 70 to 130 | 0.445 | 20            |
| BA02546 Barium, Total          | mg/L  | 0.00000799  | 0.0002    | 0.10  | 0.109   | 0.110   | 0.0917   | 0.085 to 0.115   | 96.7 | 70 to 130 | 0.948 | 20            |
| BA02546 Mercury, Total by CVAA | mg/L  | -0.00000703 | 0.0005    | 0.004 | 0.00409 | 0.00406 | 0.00386  | 0.0034 to 0.0046 | 102  | 70 to 130 | 0.812 | 20            |
| BA02546 Lithium, Total         | mg/L  | -0.0000191  | 0.0154    | 0.20  | 0.525   | 0.523   | 0.201    | 0.17 to 0.23     | 118  | 70 to 130 | 0.338 | 20            |
| BA02546 Boron, Total           | mg/L  | 0.00144     | 0.0650254 | 1.00  | 3.71    | 3.72    | 1.01     | 0.85 to 1.15     | 97.4 | 70 to 130 | 0.167 | 20            |
| BA02546 Chromium, Total        | mg/L  | 0.0000464   | 0.00044   | 0.10  | 0.0980  | 0.0986  | 0.0980   | 0.085 to 0.115   | 98.0 | 70 to 130 | 0.575 | 20            |
| BA02546 Lead, Total            | mg/L  | 0.0000111   | 0.0001474 | 0.10  | 0.101   | 0.100   | 0.0990   | 0.085 to 0.115   | 101  | 70 to 130 | 0.514 | 20            |
| BA02546 Selenium, Total        | mg/L  | 0.000138    | 0.00066   | 0.10  | 0.0858  | 0.0863  | 0.105    | 0.085 to 0.115   | 85.8 | 70 to 130 | 0.560 | 20            |
| BA02546 Arsenic, Total         | mg/L  | 0.0000218   | 0.0001474 | 0.10  | 0.101   | 0.100   | 0.105    | 0.085 to 0.115   | 100  | 70 to 130 | 1.17  | 20            |
| BA02546 Calcium, Total         | mg/L  | -0.0107     | 0.1518    | 5.00  | 119     | 114     | 5.23     | 4.25 to 5.75     | 48.8 | 70 to 130 | 4.41  | 20            |
| BA02546 Cadmium, Total         | mg/L  | 0.00000727  | 0.0001474 | 0.10  | 0.0966  | 0.0953  | 0.0973   | 0.085 to 0.115   | 95.1 | 70 to 130 | 1.32  | 20            |
| BA02546 Cobalt, Total          | mg/L  | -0.00000314 | 0.0001474 | 0.10  | 0.313   | 0.311   | 0.0961   | 0.085 to 0.115   | 95.7 | 70 to 130 | 0.448 | 20            |
| BA02546 Thallium, Total        | mg/L  | 0.0000141   | 0.0001474 | 0.10  | 0.102   | 0.0991  | 0.0995   | 0.085 to 0.115   | 102  | 70 to 130 | 2.84  | 20            |
| BA02546 Beryllium, Total       | mg/L  | 0.0000453   | 0.00088   | 0.10  | 0.100   | 0.102   | 0.0962   | 0.085 to 0.115   | 96.0 | 70 to 130 | 2.15  | 20            |
| BA02546 Molybdenum, Total      | mg/L  | 0.00000558  | 0.0001474 | 0.10  | 0.0950  | 0.0939  | 0.0934   | 0.085 to 0.115   | 95.0 | 70 to 130 | 1.12  | 20            |

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Issued By: State of Florida, Department of Health

Expiration: June 30, 2018

<sup>\*</sup> Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114

# **Batch QC Summary**



Customer Account: WMWGORG Sample Date: 2/3/20 12:28

**Customer ID:** 

**Delivery Date:** 2/4/20 10:27

Description: Gorgas Gypsum - MW-1L

Laboratory ID Number: BA02287

|         |                   |       |          | MB    |       |      | Sample    |          | Standard     |      | Rec       |       | Prec          |
|---------|-------------------|-------|----------|-------|-------|------|-----------|----------|--------------|------|-----------|-------|---------------|
| Sample  | Analysis          | Units | MB       | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA02291 | Chloride          | mg/L  | -0.00879 | 0.50  | 10.0  | 11.5 | 1.65      | 10.1     | 9 to 11      | 97.8 | 80 to 120 | 4.15  | 20            |
| BA02543 | Solids, Dissolved | mg/L  | -2.00    | 25    |       |      | 3660      | 53.0     | 40 to 60     |      |           | 0.00  | 5             |
| BA02291 | Fluoride          | mg/L  | 0.0246   | 0.05  | 2.50  | 2.97 | 0.369     | 2.60     | 2.25 to 2.75 | 104  | 80 to 120 | 0.271 | 20            |
| BA02291 | Sulfate           | mg/L  | -0.417   | 0.50  | 2000  | 4090 | 2010      | 18.6     | 18 to 22     | 108  | 80 to 120 | 4.58  | 20            |

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2017

<sup>\*</sup> Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

# **Certificate Of Analysis**



Description: Gorgas Gypsum - MW-2LLocation Code:WMWGORGCollected:2/3/20 13:30

**Customer ID:** 

**Submittal Date:** 2/4/20 10:27

Laboratory ID Number: BA02288

| Name                                  | Prepared      | Analyzed      | Vio Spec DF | Results      | Units         | MDL     | RL     | Q   |
|---------------------------------------|---------------|---------------|-------------|--------------|---------------|---------|--------|-----|
| Analytical Method: EPA 200.7          | Anal          | yst: RDA      |             | Preparati    | ion Method: E | PA 1638 |        |     |
| * Boron, Total                        | 2/10/20 13:30 | 2/13/20 10:19 | 9 1.015     | Not Detected | mg/L          | 0.03    | 0.1    | U   |
| * Calcium, Total                      | 2/10/20 13:30 | 2/13/20 11:4  | 0 20.3      | 172          | mg/L          | 2.03    | 10.15  |     |
| * Lithium, Total                      | 2/10/20 13:30 | 2/13/20 10:19 | 9 1.015     | 0.0534       | mg/L          | 0.01    | 0.02   |     |
| Analytical Method: EPA 200.8          | Anal          | yst: DLJ      |             | Preparati    | ion Method: E | PA 1638 |        |     |
| * Antimony, Total                     | 2/6/20 15:00  | 2/7/20 10:02  | 1.015       | Not Detected | mg/L          | 0.0008  | 0.003  | U   |
| * Arsenic, Total                      | 2/6/20 15:00  | 2/7/20 10:02  | 1.015       | Not Detected | mg/L          | 0.001   | 0.005  | U   |
| * Barium, Total                       | 2/6/20 15:00  | 2/7/20 10:02  | 1.015       | 0.0122       | mg/L          | 0.002   | 0.01   |     |
| * Beryllium, Total                    | 2/6/20 15:00  | 2/7/20 10:02  | 1.015       | Not Detected | mg/L          | 0.0006  | 0.003  | U   |
| * Cadmium, Total                      | 2/6/20 15:00  | 2/7/20 10:02  | 1.015       | Not Detected | mg/L          | 0.0003  | 0.001  | U   |
| * Chromium, Total                     | 2/6/20 15:00  | 2/7/20 10:02  | 1.015       | Not Detected | mg/L          | 0.002   | 0.01   | U   |
| * Cobalt, Total                       | 2/6/20 15:00  | 2/7/20 10:02  | 1.015       | 0.0193       | mg/L          | 0.002   | 0.005  |     |
| * Lead, Total                         | 2/6/20 15:00  | 2/7/20 10:02  | 1.015       | Not Detected | mg/L          | 0.001   | 0.005  | U   |
| * Molybdenum, Total                   | 2/6/20 15:00  | 2/7/20 10:02  | 1.015       | Not Detected | mg/L          | 0.002   | 0.01   | U   |
| * Selenium, Total                     | 2/6/20 15:00  | 2/7/20 10:02  | 1.015       | Not Detected | mg/L          | 0.002   | 0.01   | U   |
| * Thallium, Total                     | 2/6/20 15:00  | 2/7/20 10:02  | 1.015       | Not Detected | mg/L          | 0.0002  | 0.001  | U   |
| Analytical Method: EPA 245.1          | Anal          | yst: GAS      |             |              |               |         |        |     |
| * Mercury, Total by CVAA              | 2/10/20 11:35 | 2/11/20 14:10 | 6 1         | Not Detected | mg/L          | 0.0003  | 0.0005 | U   |
| Analytical Method: SM 2540C           | Anal          | yst: TJW      |             |              |               |         |        |     |
| * Solids, Dissolved                   | 2/7/20 15:30  | 2/11/20 10:30 | 0 1         | 1440         | mg/L          |         | 71.4   |     |
| Analytical Method: SM4500Cl E         | Anal          | yst: JCC      |             |              |               |         |        |     |
| * Chloride                            | 2/5/20 11:23  | 2/5/20 11:23  | 1           | 2.48         | mg/L          | 0.50    | 1      |     |
| Analytical Method: SM4500F G 2017     | Anal          | yst: JCC      |             |              |               |         |        |     |
| * Fluoride                            | 2/5/20 14:11  | 2/5/20 14:11  | 1           | 0.182        | mg/L          | 0.05    | 0.1    |     |
| Analytical Method: SM4500SO4 E        | Anal          | yst: JCC      |             |              |               |         |        |     |
| * Sulfate                             | 2/6/20 11:18  | 2/6/20 11:18  | 80          | 803          | mg/L          | 40.00   | 80     |     |
| Analytical Method: Field Measurements | Anal          | yst: AWG      |             |              |               |         |        |     |
| Conductivity                          | 2/3/20 13:27  | 2/3/20 13:27  |             | 1697.19      | uS/cm         |         |        | F.A |
| рН                                    | 2/3/20 13:27  | 2/3/20 13:27  |             | 5.95         | SU            |         |        | FA  |
| Temperature                           | 2/3/20 13:27  | 2/3/20 13:27  |             | 19.09        | С             |         |        | F/  |
| Turbidity                             | 2/3/20 13:27  | 2/3/20 13:27  |             | 0.61         | NTU           |         |        | FA  |

MDL's and RL's are adjusted for sample dilution, as applicable

# **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 2/3/20 13:30

**Customer ID:** 

**Delivery Date:** 2/4/20 10:27

Description: Gorgas Gypsum - MW-2L

Laboratory ID Number: BA02288

|                                | ·     |             | MB        |       |         |         |          | Standard         |      | Rec       |       | Prec          |
|--------------------------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|------|-----------|-------|---------------|
| Sample Analysis                | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | Limit            | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA02546 Antimony, Total        | mg/L  | 0.000176    | 0.00066   | 0.10  | 0.0950  | 0.0954  | 0.0883   | 0.085 to 0.115   | 95.0 | 70 to 130 | 0.445 | 20            |
| BA02546 Beryllium, Total       | mg/L  | 0.0000453   | 0.00088   | 0.10  | 0.100   | 0.102   | 0.0962   | 0.085 to 0.115   | 96.0 | 70 to 130 | 2.15  | 20            |
| BA02546 Molybdenum, Total      | mg/L  | 0.00000558  | 0.0001474 | 0.10  | 0.0950  | 0.0939  | 0.0934   | 0.085 to 0.115   | 95.0 | 70 to 130 | 1.12  | 20            |
| BA02546 Barium, Total          | mg/L  | 0.00000799  | 0.0002    | 0.10  | 0.109   | 0.110   | 0.0917   | 0.085 to 0.115   | 96.7 | 70 to 130 | 0.948 | 20            |
| BA02546 Mercury, Total by CVAA | mg/L  | -0.00000703 | 0.0005    | 0.004 | 0.00409 | 0.00406 | 0.00386  | 0.0034 to 0.0046 | 102  | 70 to 130 | 0.812 | 20            |
| BA02546 Lithium, Total         | mg/L  | -0.0000191  | 0.0154    | 0.20  | 0.525   | 0.523   | 0.201    | 0.17 to 0.23     | 118  | 70 to 130 | 0.338 | 20            |
| BA02546 Cobalt, Total          | mg/L  | -0.00000314 | 0.0001474 | 0.10  | 0.313   | 0.311   | 0.0961   | 0.085 to 0.115   | 95.7 | 70 to 130 | 0.448 | 20            |
| BA02546 Thallium, Total        | mg/L  | 0.0000141   | 0.0001474 | 0.10  | 0.102   | 0.0991  | 0.0995   | 0.085 to 0.115   | 102  | 70 to 130 | 2.84  | 20            |
| BA02546 Arsenic, Total         | mg/L  | 0.0000218   | 0.0001474 | 0.10  | 0.101   | 0.100   | 0.105    | 0.085 to 0.115   | 100  | 70 to 130 | 1.17  | 20            |
| BA02546 Calcium, Total         | mg/L  | -0.0107     | 0.1518    | 5.00  | 119     | 114     | 5.23     | 4.25 to 5.75     | 48.8 | 70 to 130 | 4.41  | 20            |
| BA02546 Cadmium, Total         | mg/L  | 0.00000727  | 0.0001474 | 0.10  | 0.0966  | 0.0953  | 0.0973   | 0.085 to 0.115   | 95.1 | 70 to 130 | 1.32  | 20            |
| BA02546 Boron, Total           | mg/L  | 0.00144     | 0.0650254 | 1.00  | 3.71    | 3.72    | 1.01     | 0.85 to 1.15     | 97.4 | 70 to 130 | 0.167 | 20            |
| BA02546 Chromium, Total        | mg/L  | 0.0000464   | 0.00044   | 0.10  | 0.0980  | 0.0986  | 0.0980   | 0.085 to 0.115   | 98.0 | 70 to 130 | 0.575 | 20            |
| BA02546 Lead, Total            | mg/L  | 0.0000111   | 0.0001474 | 0.10  | 0.101   | 0.100   | 0.0990   | 0.085 to 0.115   | 101  | 70 to 130 | 0.514 | 20            |
| BA02546 Selenium, Total        | mg/L  | 0.000138    | 0.00066   | 0.10  | 0.0858  | 0.0863  | 0.105    | 0.085 to 0.115   | 85.8 | 70 to 130 | 0.560 | 20            |

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Issued By: State of Florida, Department of Health

Expiration: June 30, 2018

<sup>\*</sup> Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114

# **Batch QC Summary**



Customer Account: WMWGORG Sample Date: 2/3/20 13:30

**Customer ID:** 

**Delivery Date:** 2/4/20 10:27

Description: Gorgas Gypsum - MW-2L

Laboratory ID Number: BA02288

|         |                   |       |          | MB    |       |      | Sample    |          | Standard     |      | Rec       |       | Prec          |
|---------|-------------------|-------|----------|-------|-------|------|-----------|----------|--------------|------|-----------|-------|---------------|
| Sample  | Analysis          | Units | MB       | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA02291 | Chloride          | mg/L  | -0.00879 | 0.50  | 10.0  | 11.5 | 1.65      | 10.1     | 9 to 11      | 97.8 | 80 to 120 | 4.15  | 20            |
| BA02543 | Solids, Dissolved | mg/L  | -2.00    | 25    |       |      | 3660      | 53.0     | 40 to 60     |      |           | 0.00  | 5             |
| BA02291 | Fluoride          | mg/L  | 0.0246   | 0.05  | 2.50  | 2.97 | 0.369     | 2.60     | 2.25 to 2.75 | 104  | 80 to 120 | 0.271 | 20            |
| BA02291 | Sulfate           | mg/L  | -0.417   | 0.50  | 2000  | 4090 | 2010      | 18.6     | 18 to 22     | 108  | 80 to 120 | 4.58  | 20            |

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

\* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

Expiration: June 30, 2017

# **Certificate Of Analysis**



Description: Gorgas Gypsum - MW-2L DUPLocation Code:WMWGORGCollected:2/3/20 13:30

**Customer ID:** 

**Submittal Date:** 2/4/20 10:27

Laboratory ID Number: BA02289

| Name                                  | Prepared      | Analyzed          | Vio Spec DF | Results      | Units         | MDL      | RL     | Q   |
|---------------------------------------|---------------|-------------------|-------------|--------------|---------------|----------|--------|-----|
| Analytical Method: EPA 200.7          | Anal          | yst: RDA          |             | Preparati    | ion Method: E | EPA 1638 |        |     |
| * Boron, Total                        | 2/10/20 13:30 | 2/13/20 10:2      | 2 1.015     | Not Detected | mg/L          | 0.03     | 0.1    | U   |
| * Calcium, Total                      | 2/10/20 13:30 | 2/13/20 11:4      | 3 20.3      | 182          | mg/L          | 2.03     | 10.15  |     |
| * Lithium, Total                      | 2/10/20 13:30 | 2/13/20 10:2      | 2 1.015     | 0.0538       | mg/L          | 0.01     | 0.02   |     |
| Analytical Method: EPA 200.8          | Anal          | yst: DLJ          |             | Preparati    | ion Method: E | EPA 1638 |        |     |
| * Antimony, Total                     | 2/6/20 15:00  | 2/7/20 10:05      | 1.015       | Not Detected | mg/L          | 0.0008   | 0.003  | U   |
| * Arsenic, Total                      | 2/6/20 15:00  | 2/7/20 10:05      | 1.015       | Not Detected | mg/L          | 0.001    | 0.005  | U   |
| * Barium, Total                       | 2/6/20 15:00  | 2/7/20 10:05      | 1.015       | 0.0117       | mg/L          | 0.002    | 0.01   |     |
| * Beryllium, Total                    | 2/6/20 15:00  | 2/7/20 10:05      | 1.015       | Not Detected | mg/L          | 0.0006   | 0.003  | U   |
| * Cadmium, Total                      | 2/6/20 15:00  | 2/7/20 10:05      | 1.015       | Not Detected | mg/L          | 0.0003   | 0.001  | U   |
| * Chromium, Total                     | 2/6/20 15:00  | 2/7/20 10:05      | 1.015       | Not Detected | mg/L          | 0.002    | 0.01   | U   |
| * Cobalt, Total                       | 2/6/20 15:00  | 2/7/20 10:05      | 1.015       | 0.0191       | mg/L          | 0.002    | 0.005  |     |
| * Lead, Total                         | 2/6/20 15:00  | 2/7/20 10:05      | 1.015       | Not Detected | mg/L          | 0.001    | 0.005  | U   |
| * Molybdenum, Total                   | 2/6/20 15:00  | 2/7/20 10:05      | 1.015       | Not Detected | mg/L          | 0.002    | 0.01   | U   |
| * Selenium, Total                     | 2/6/20 15:00  | 2/7/20 10:05      | 1.015       | Not Detected | mg/L          | 0.002    | 0.01   | U   |
| * Thallium, Total                     | 2/6/20 15:00  | 2/7/20 10:05      | 1.015       | Not Detected | mg/L          | 0.0002   | 0.001  | U   |
| Analytical Method: EPA 245.1          | Anal          | yst: GAS          |             |              |               |          |        |     |
| * Mercury, Total by CVAA              | 2/10/20 11:35 | 2/11/20 14:1      | 8 1         | Not Detected | mg/L          | 0.0003   | 0.0005 | U   |
| Analytical Method: SM 2540C           | Anal          | yst: TJW          |             |              |               |          |        |     |
| * Solids, Dissolved                   | 2/7/20 15:30  | 2/11/20 10:3      | 0 1         | 1430         | mg/L          |          | 71.4   |     |
| Analytical Method: SM4500Cl E         | Anal          | yst: JCC          |             |              |               |          |        |     |
| * Chloride                            | 2/5/20 11:24  | 2/5/20 11:24      | 1           | 2.53         | mg/L          | 0.50     | 1      |     |
| Analytical Method: SM4500F G 2017     | Anal          | yst: JCC          |             |              |               |          |        |     |
| * Fluoride                            | 2/5/20 14:13  | 2/5/20 14:13      | 1           | 0.182        | mg/L          | 0.05     | 0.1    |     |
| Analytical Method: SM4500SO4 E        | Anal          | yst: JCC          |             |              |               |          |        |     |
| * Sulfate                             | 2/6/20 11:20  | 2/6/20 11:20      | 100         | 814          | mg/L          | 50.00    | 100    |     |
| Analytical Method: Field Measurements |               | yst: AWG          |             |              |               |          |        |     |
| Conductivity                          | 2/3/20 13:27  | ,<br>2/3/20 13:27 |             | 1697.19      | uS/cm         |          |        | FA  |
| рН                                    | 2/3/20 13:27  | 2/3/20 13:27      |             | 5.95         | SU            |          |        | FA  |
| Temperature                           | 2/3/20 13:27  | 2/3/20 13:27      |             | 19.09        | С             |          |        | FΑ  |
| Turbidity                             | 2/3/20 13:27  | 2/3/20 13:27      |             | 0.61         | NTU           |          |        | F.A |

MDL's and RL's are adjusted for sample dilution, as applicable

# **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 2/3/20 13:30

**Customer ID:** 

**Delivery Date:** 2/4/20 10:27

Description: Gorgas Gypsum - MW-2L DUP

Laboratory ID Number: BA02289

|                                |       |             | MB        |       |         |         |          | Standard         |      | Rec       |       | Prec          |
|--------------------------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|------|-----------|-------|---------------|
| Sample Analysis                | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | Limit            | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA02546 Antimony, Total        | mg/L  | 0.000176    | 0.00066   | 0.10  | 0.0950  | 0.0954  | 0.0883   | 0.085 to 0.115   | 95.0 | 70 to 130 | 0.445 | 20            |
| BA02546 Arsenic, Total         | mg/L  | 0.0000218   | 0.0001474 | 0.10  | 0.101   | 0.100   | 0.105    | 0.085 to 0.115   | 100  | 70 to 130 | 1.17  | 20            |
| BA02546 Calcium, Total         | mg/L  | -0.0107     | 0.1518    | 5.00  | 119     | 114     | 5.23     | 4.25 to 5.75     | 48.8 | 70 to 130 | 4.41  | 20            |
| BA02546 Cadmium, Total         | mg/L  | 0.00000727  | 0.0001474 | 0.10  | 0.0966  | 0.0953  | 0.0973   | 0.085 to 0.115   | 95.1 | 70 to 130 | 1.32  | 20            |
| BA02546 Barium, Total          | mg/L  | 0.00000799  | 0.0002    | 0.10  | 0.109   | 0.110   | 0.0917   | 0.085 to 0.115   | 96.7 | 70 to 130 | 0.948 | 20            |
| BA02546 Mercury, Total by CVAA | mg/L  | -0.00000703 | 0.0005    | 0.004 | 0.00409 | 0.00406 | 0.00386  | 0.0034 to 0.0046 | 102  | 70 to 130 | 0.812 | 20            |
| BA02546 Lithium, Total         | mg/L  | -0.0000191  | 0.0154    | 0.20  | 0.525   | 0.523   | 0.201    | 0.17 to 0.23     | 118  | 70 to 130 | 0.338 | 20            |
| BA02546 Beryllium, Total       | mg/L  | 0.0000453   | 0.00088   | 0.10  | 0.100   | 0.102   | 0.0962   | 0.085 to 0.115   | 96.0 | 70 to 130 | 2.15  | 20            |
| BA02546 Molybdenum, Total      | mg/L  | 0.00000558  | 0.0001474 | 0.10  | 0.0950  | 0.0939  | 0.0934   | 0.085 to 0.115   | 95.0 | 70 to 130 | 1.12  | 20            |
| BA02546 Boron, Total           | mg/L  | 0.00144     | 0.0650254 | 1.00  | 3.71    | 3.72    | 1.01     | 0.85 to 1.15     | 97.4 | 70 to 130 | 0.167 | 20            |
| BA02546 Chromium, Total        | mg/L  | 0.0000464   | 0.00044   | 0.10  | 0.0980  | 0.0986  | 0.0980   | 0.085 to 0.115   | 98.0 | 70 to 130 | 0.575 | 20            |
| BA02546 Lead, Total            | mg/L  | 0.0000111   | 0.0001474 | 0.10  | 0.101   | 0.100   | 0.0990   | 0.085 to 0.115   | 101  | 70 to 130 | 0.514 | 20            |
| BA02546 Selenium, Total        | mg/L  | 0.000138    | 0.00066   | 0.10  | 0.0858  | 0.0863  | 0.105    | 0.085 to 0.115   | 85.8 | 70 to 130 | 0.560 | 20            |
| BA02546 Cobalt, Total          | mg/L  | -0.00000314 | 0.0001474 | 0.10  | 0.313   | 0.311   | 0.0961   | 0.085 to 0.115   | 95.7 | 70 to 130 | 0.448 | 20            |
| BA02546 Thallium, Total        | mg/L  | 0.0000141   | 0.0001474 | 0.10  | 0.102   | 0.0991  | 0.0995   | 0.085 to 0.115   | 102  | 70 to 130 | 2.84  | 20            |

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Issued By: State of Florida, Department of Health

Expiration: June 30, 2018

<sup>\*</sup> Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114

# **Batch QC Summary**



Customer Account: WMWGORG Sample Date: 2/3/20 13:30

**Customer ID:** 

**Delivery Date:** 2/4/20 10:27

Description: Gorgas Gypsum - MW-2L DUP

Laboratory ID Number: BA02289

|         |                   |       |          | MB    |       |      | Sample    |          | Standard     |      | Rec       |       | Prec          |
|---------|-------------------|-------|----------|-------|-------|------|-----------|----------|--------------|------|-----------|-------|---------------|
| Sample  | Analysis          | Units | MB       | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA02291 | Chloride          | mg/L  | -0.00879 | 0.50  | 10.0  | 11.5 | 1.65      | 10.1     | 9 to 11      | 97.8 | 30 to 120 | 4.15  | 20            |
| BA02543 | Solids, Dissolved | mg/L  | -2.00    | 25    |       |      | 3660      | 53.0     | 40 to 60     |      |           | 0.00  | 5             |
| BA02291 | Fluoride          | mg/L  | 0.0246   | 0.05  | 2.50  | 2.97 | 0.369     | 2.60     | 2.25 to 2.75 | 104  | 30 to 120 | 0.271 | 20            |
| BA02291 | Sulfate           | mg/L  | -0.417   | 0.50  | 2000  | 4090 | 2010      | 18.6     | 18 to 22     | 108  | 30 to 120 | 4.58  | 20            |

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2017

<sup>\*</sup> Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

# **Certificate Of Analysis**



Description: Gorgas Gypsum - MW-3LLocation Code:WMWGORGCollected:2/3/20 14:50

**Customer ID:** 

**Submittal Date:** 2/4/20 10:28

Laboratory ID Number: BA02290

| Name                                  | Prepared      | Analyzed          | Vio Spec DF | Results      | Units         | MDL     | RL     | Q   |
|---------------------------------------|---------------|-------------------|-------------|--------------|---------------|---------|--------|-----|
| Analytical Method: EPA 200.7          | Anal          | yst: RDA          |             | Preparati    | ion Method: E | PA 1638 |        |     |
| * Boron, Total                        | 2/10/20 13:30 | 2/13/20 10:2      | 5 1.015     | Not Detected | mg/L          | 0.03    | 0.1    | U   |
| * Calcium, Total                      | 2/10/20 13:30 | 2/13/20 11:4      | 6 20.3      | 276          | mg/L          | 2.03    | 10.15  |     |
| * Lithium, Total                      | 2/10/20 13:30 | 2/13/20 10:2      | 5 1.015     | 0.0825       | mg/L          | 0.01    | 0.02   |     |
| Analytical Method: EPA 200.8          | Anal          | yst: DLJ          |             | Preparati    | ion Method: E | PA 1638 |        |     |
| * Antimony, Total                     | 2/6/20 15:00  | 2/7/20 10:08      | 1.015       | Not Detected | mg/L          | 0.0008  | 0.003  | U   |
| * Arsenic, Total                      | 2/6/20 15:00  | 2/7/20 10:08      | 1.015       | Not Detected | mg/L          | 0.001   | 0.005  | U   |
| * Barium, Total                       | 2/6/20 15:00  | 2/7/20 10:08      | 1.015       | 0.00860      | mg/L          | 0.002   | 0.01   | J   |
| * Beryllium, Total                    | 2/6/20 15:00  | 2/7/20 10:08      | 1.015       | Not Detected | mg/L          | 0.0006  | 0.003  | U   |
| * Cadmium, Total                      | 2/6/20 15:00  | 2/7/20 10:08      | 1.015       | 0.000988     | mg/L          | 0.0003  | 0.001  | J   |
| * Chromium, Total                     | 2/6/20 15:00  | 2/7/20 10:08      | 1.015       | Not Detected | mg/L          | 0.002   | 0.01   | U   |
| * Cobalt, Total                       | 2/6/20 15:00  | 2/7/20 10:08      | 1.015       | 0.0114       | mg/L          | 0.002   | 0.005  |     |
| * Lead, Total                         | 2/6/20 15:00  | 2/7/20 10:08      | 1.015       | Not Detected | mg/L          | 0.001   | 0.005  | U   |
| * Molybdenum, Total                   | 2/6/20 15:00  | 2/7/20 10:08      | 1.015       | Not Detected | mg/L          | 0.002   | 0.01   | U   |
| * Selenium, Total                     | 2/6/20 15:00  | 2/7/20 10:08      | 1.015       | 0.0120       | mg/L          | 0.002   | 0.01   |     |
| * Thallium, Total                     | 2/6/20 15:00  | 2/7/20 10:08      | 1.015       | Not Detected | mg/L          | 0.0002  | 0.001  | U   |
| Analytical Method: EPA 245.1          | Anal          | yst: GAS          |             |              |               |         |        |     |
| * Mercury, Total by CVAA              | 2/10/20 11:35 | 2/11/20 14:2      | 0 1         | Not Detected | mg/L          | 0.0003  | 0.0005 | U   |
| Analytical Method: SM 2540C           | Anal          | yst: TJW          |             |              |               |         |        |     |
| * Solids, Dissolved                   | 2/7/20 15:30  | 2/11/20 10:3      | 0 1         | 3530         | mg/L          |         | 178.6  |     |
| Analytical Method: SM4500Cl E         | Anal          | yst: JCC          |             |              |               |         |        |     |
| * Chloride                            | 2/5/20 11:25  | 2/5/20 11:25      | 1           | 2.12         | mg/L          | 0.50    | 1      |     |
| Analytical Method: SM4500F G 2017     | Anal          | yst: JCC          |             |              |               |         |        |     |
| * Fluoride                            | 2/5/20 14:14  | 2/5/20 14:14      | 1           | 0.256        | mg/L          | 0.05    | 0.1    |     |
| Analytical Method: SM4500SO4 E        | Anal          | yst: JCC          |             |              |               |         |        |     |
| * Sulfate                             | 2/6/20 11:21  | 2/6/20 11:21      | 100         | 2290         | mg/L          | 50.00   | 100    |     |
| Analytical Method: Field Measurements | Anal          | yst: AWG          |             |              |               |         |        |     |
| Conductivity                          | 2/3/20 14:45  | ,<br>2/3/20 14:45 |             | 3312.09      | uS/cm         |         |        | FA  |
| рН                                    | 2/3/20 14:45  | 2/3/20 14:45      |             | 5.54         | SU            |         |        | FA  |
| Temperature                           | 2/3/20 14:45  | 2/3/20 14:45      |             | 21.57        | C             |         |        | F.A |
| Turbidity                             | 2/3/20 14:45  | 2/3/20 14:45      |             | 0.96         | NTU           |         |        | F.A |

MDL's and RL's are adjusted for sample dilution, as applicable

# **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 2/3/20 14:50

**Customer ID:** 

**Delivery Date:** 2/4/20 10:28

Description: Gorgas Gypsum - MW-3L

Laboratory ID Number: BA02290

|                                |       |             | MB        |       |         |         |          | Standard         |      | Rec       |       | Prec          |
|--------------------------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|------|-----------|-------|---------------|
| Sample Analysis                | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | Limit            | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA02546 Antimony, Total        | mg/L  | 0.000176    | 0.00066   | 0.10  | 0.0950  | 0.0954  | 0.0883   | 0.085 to 0.115   | 95.0 | 70 to 130 | 0.445 | 20            |
| BA02546 Arsenic, Total         | mg/L  | 0.0000218   | 0.0001474 | 0.10  | 0.101   | 0.100   | 0.105    | 0.085 to 0.115   | 100  | 70 to 130 | 1.17  | 20            |
| BA02546 Calcium, Total         | mg/L  | -0.0107     | 0.1518    | 5.00  | 119     | 114     | 5.23     | 4.25 to 5.75     | 48.8 | 70 to 130 | 4.41  | 20            |
| BA02546 Cadmium, Total         | mg/L  | 0.00000727  | 0.0001474 | 0.10  | 0.0966  | 0.0953  | 0.0973   | 0.085 to 0.115   | 95.1 | 70 to 130 | 1.32  | 20            |
| BA02546 Beryllium, Total       | mg/L  | 0.0000453   | 0.00088   | 0.10  | 0.100   | 0.102   | 0.0962   | 0.085 to 0.115   | 96.0 | 70 to 130 | 2.15  | 20            |
| BA02546 Molybdenum, Total      | mg/L  | 0.00000558  | 0.0001474 | 0.10  | 0.0950  | 0.0939  | 0.0934   | 0.085 to 0.115   | 95.0 | 70 to 130 | 1.12  | 20            |
| BA02546 Boron, Total           | mg/L  | 0.00144     | 0.0650254 | 1.00  | 3.71    | 3.72    | 1.01     | 0.85 to 1.15     | 97.4 | 70 to 130 | 0.167 | 20            |
| BA02546 Chromium, Total        | mg/L  | 0.0000464   | 0.00044   | 0.10  | 0.0980  | 0.0986  | 0.0980   | 0.085 to 0.115   | 98.0 | 70 to 130 | 0.575 | 20            |
| BA02546 Lead, Total            | mg/L  | 0.0000111   | 0.0001474 | 0.10  | 0.101   | 0.100   | 0.0990   | 0.085 to 0.115   | 101  | 70 to 130 | 0.514 | 20            |
| BA02546 Selenium, Total        | mg/L  | 0.000138    | 0.00066   | 0.10  | 0.0858  | 0.0863  | 0.105    | 0.085 to 0.115   | 85.8 | 70 to 130 | 0.560 | 20            |
| BA02546 Barium, Total          | mg/L  | 0.00000799  | 0.0002    | 0.10  | 0.109   | 0.110   | 0.0917   | 0.085 to 0.115   | 96.7 | 70 to 130 | 0.948 | 20            |
| BA02546 Mercury, Total by CVAA | mg/L  | -0.00000703 | 0.0005    | 0.004 | 0.00409 | 0.00406 | 0.00386  | 0.0034 to 0.0046 | 102  | 70 to 130 | 0.812 | 20            |
| BA02546 Lithium, Total         | mg/L  | -0.0000191  | 0.0154    | 0.20  | 0.525   | 0.523   | 0.201    | 0.17 to 0.23     | 118  | 70 to 130 | 0.338 | 20            |
| BA02546 Cobalt, Total          | mg/L  | -0.00000314 | 0.0001474 | 0.10  | 0.313   | 0.311   | 0.0961   | 0.085 to 0.115   | 95.7 | 70 to 130 | 0.448 | 20            |
| BA02546 Thallium, Total        | mg/L  | 0.0000141   | 0.0001474 | 0.10  | 0.102   | 0.0991  | 0.0995   | 0.085 to 0.115   | 102  | 70 to 130 | 2.84  | 20            |

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Issued By: State of Florida, Department of Health

Expiration: June 30, 2018

<sup>\*</sup> Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114

# **Batch QC Summary**



Customer Account: WMWGORG Sample Date: 2/3/20 14:50

**Customer ID:** 

**Delivery Date:** 2/4/20 10:28

Description: Gorgas Gypsum - MW-3L

Laboratory ID Number: BA02290

|         |                   |       |          | MB    |       |      | Sample    |          | Standard     |      | Rec       |       | Prec          |
|---------|-------------------|-------|----------|-------|-------|------|-----------|----------|--------------|------|-----------|-------|---------------|
| Sample  | Analysis          | Units | MB       | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA02291 | Chloride          | mg/L  | -0.00879 | 0.50  | 10.0  | 11.5 | 1.65      | 10.1     | 9 to 11      | 97.8 | 80 to 120 | 4.15  | 20            |
| BA02291 | Fluoride          | mg/L  | 0.0246   | 0.05  | 2.50  | 2.97 | 0.369     | 2.60     | 2.25 to 2.75 | 104  | 80 to 120 | 0.271 | 20            |
| BA02291 | Sulfate           | mg/L  | -0.417   | 0.50  | 2000  | 4090 | 2010      | 18.6     | 18 to 22     | 108  | 80 to 120 | 4.58  | 20            |
| BA02543 | Solids, Dissolved | mg/L  | -2.00    | 25    |       |      | 3660      | 53.0     | 40 to 60     |      |           | 0.00  | 5             |

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2017

<sup>\*</sup> Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

# **Certificate Of Analysis**



Description: Gorgas Gypsum - MW-4LLocation Code:WMWGORGCollected:2/3/20 16:10

**Customer ID:** 

**Submittal Date:** 2/4/20 10:28

Laboratory ID Number: BA02291

| Name                                  | Prepared      | Analyzed     | Vio Spec DF | Results                      | Units         | MDL     | RL     | Q   |  |  |
|---------------------------------------|---------------|--------------|-------------|------------------------------|---------------|---------|--------|-----|--|--|
| Analytical Method: EPA 200.7          | Anal          | yst: RDA     |             | Preparation Method: EPA 1638 |               |         |        |     |  |  |
| * Boron, Total                        | 2/10/20 13:30 | 2/13/20 10:2 | 8 1.015     | 0.0433                       | mg/L          | 0.03    | 0.1    | J   |  |  |
| * Calcium, Total                      | 2/10/20 13:30 | 2/13/20 11:4 | 9 20.3      | 265                          | mg/L          | 2.03    | 10.15  |     |  |  |
| * Lithium, Total                      | 2/10/20 13:30 | 2/13/20 10:2 | 8 1.015     | 0.0556                       | mg/L          | 0.01    | 0.02   |     |  |  |
| Analytical Method: EPA 200.8          | Anal          | yst: DLJ     |             | Preparati                    | ion Method: E | PA 1638 |        |     |  |  |
| * Antimony, Total                     | 2/6/20 15:00  | 2/7/20 10:10 | 1.015       | Not Detected                 | mg/L          | 0.0008  | 0.003  | U   |  |  |
| * Arsenic, Total                      | 2/6/20 15:00  | 2/7/20 10:10 | 1.015       | Not Detected                 | mg/L          | 0.001   | 0.005  | U   |  |  |
| * Barium, Total                       | 2/6/20 15:00  | 2/7/20 10:10 | 1.015       | 0.0103                       | mg/L          | 0.002   | 0.01   |     |  |  |
| * Beryllium, Total                    | 2/6/20 15:00  | 2/7/20 10:10 | 1.015       | Not Detected                 | mg/L          | 0.0006  | 0.003  | U   |  |  |
| * Cadmium, Total                      | 2/6/20 15:00  | 2/7/20 10:10 | 1.015       | Not Detected                 | mg/L          | 0.0003  | 0.001  | U   |  |  |
| * Chromium, Total                     | 2/6/20 15:00  | 2/7/20 10:10 | 1.015       | Not Detected                 | mg/L          | 0.002   | 0.01   | U   |  |  |
| * Cobalt, Total                       | 2/6/20 15:00  | 2/7/20 10:10 | 1.015       | Not Detected                 | mg/L          | 0.002   | 0.005  | U   |  |  |
| * Lead, Total                         | 2/6/20 15:00  | 2/7/20 10:10 | 1.015       | Not Detected                 | mg/L          | 0.001   | 0.005  | U   |  |  |
| * Molybdenum, Total                   | 2/6/20 15:00  | 2/7/20 10:10 | 1.015       | Not Detected                 | mg/L          | 0.002   | 0.01   | U   |  |  |
| * Selenium, Total                     | 2/6/20 15:00  | 2/7/20 10:10 | 1.015       | 0.00212                      | mg/L          | 0.002   | 0.01   | J   |  |  |
| * Thallium, Total                     | 2/6/20 15:00  | 2/7/20 10:10 | 1.015       | Not Detected                 | mg/L          | 0.0002  | 0.001  | U   |  |  |
| Analytical Method: EPA 245.1          | Anal          | yst: GAS     |             |                              |               |         |        |     |  |  |
| * Mercury, Total by CVAA              | 2/10/20 11:35 | 2/11/20 14:2 | 3 1         | Not Detected                 | mg/L          | 0.0003  | 0.0005 | U   |  |  |
| Analytical Method: SM 2540C           | Anal          | yst: TJW     |             |                              |               |         |        |     |  |  |
| * Solids, Dissolved                   | 2/7/20 15:30  | 2/11/20 10:3 | 0 1         | 3240                         | mg/L          |         | 178.6  |     |  |  |
| Analytical Method: SM4500Cl E         | Anal          | yst: JCC     |             |                              |               |         |        |     |  |  |
| * Chloride                            | 2/5/20 11:26  | 2/5/20 11:26 | 1           | 1.72                         | mg/L          | 0.50    | 1      |     |  |  |
| Analytical Method: SM4500F G 2017     | Anal          | yst: JCC     |             |                              |               |         |        |     |  |  |
| * Fluoride                            | 2/5/20 14:15  | 2/5/20 14:15 | 1           | 0.370                        | mg/L          | 0.05    | 0.1    |     |  |  |
| Analytical Method: SM4500SO4 E        | Anal          | yst: JCC     |             |                              |               |         |        |     |  |  |
| * Sulfate                             | 2/6/20 11:26  | 2/6/20 11:26 | 100         | 1920                         | mg/L          | 50.00   | 100    |     |  |  |
| Analytical Method: Field Measurements |               | yst: AWG     |             |                              |               |         |        |     |  |  |
| Conductivity                          | 2/3/20 16:04  | 2/3/20 16:04 |             | 3119.33                      | uS/cm         |         |        | FA  |  |  |
| pH                                    | 2/3/20 16:04  | 2/3/20 16:04 |             | 6.14                         | SU            |         |        | FA  |  |  |
| Temperature                           | 2/3/20 16:04  | 2/3/20 16:04 |             | 20.34                        | C             |         |        | FΑ  |  |  |
| Turbidity                             | 2/3/20 16:04  | 2/3/20 16:04 |             | 0.41                         | NTU           |         |        | F.A |  |  |

MDL's and RL's are adjusted for sample dilution, as applicable

# **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 2/3/20 16:10

**Customer ID:** 

**Delivery Date:** 2/4/20 10:28

Description: Gorgas Gypsum - MW-4L

Laboratory ID Number: BA02291

|                                |       |             | MB        |       |         |         |          | Standard         |      | Rec       |       | Prec          |
|--------------------------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|------|-----------|-------|---------------|
| Sample Analysis                | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | Limit            | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA02546 Antimony, Total        | mg/L  | 0.000176    | 0.00066   | 0.10  | 0.0950  | 0.0954  | 0.0883   | 0.085 to 0.115   | 95.0 | 70 to 130 | 0.445 | 20            |
| BA02546 Arsenic, Total         | mg/L  | 0.0000218   | 0.0001474 | 0.10  | 0.101   | 0.100   | 0.105    | 0.085 to 0.115   | 100  | 70 to 130 | 1.17  | 20            |
| BA02546 Calcium, Total         | mg/L  | -0.0107     | 0.1518    | 5.00  | 119     | 114     | 5.23     | 4.25 to 5.75     | 48.8 | 70 to 130 | 4.41  | 20            |
| BA02546 Cadmium, Total         | mg/L  | 0.00000727  | 0.0001474 | 0.10  | 0.0966  | 0.0953  | 0.0973   | 0.085 to 0.115   | 95.1 | 70 to 130 | 1.32  | 20            |
| BA02546 Barium, Total          | mg/L  | 0.00000799  | 0.0002    | 0.10  | 0.109   | 0.110   | 0.0917   | 0.085 to 0.115   | 96.7 | 70 to 130 | 0.948 | 20            |
| BA02546 Mercury, Total by CVAA | mg/L  | -0.00000703 | 0.0005    | 0.004 | 0.00409 | 0.00406 | 0.00386  | 0.0034 to 0.0046 | 102  | 70 to 130 | 0.812 | 20            |
| BA02546 Lithium, Total         | mg/L  | -0.0000191  | 0.0154    | 0.20  | 0.525   | 0.523   | 0.201    | 0.17 to 0.23     | 118  | 70 to 130 | 0.338 | 20            |
| BA02546 Beryllium, Total       | mg/L  | 0.0000453   | 0.00088   | 0.10  | 0.100   | 0.102   | 0.0962   | 0.085 to 0.115   | 96.0 | 70 to 130 | 2.15  | 20            |
| BA02546 Molybdenum, Total      | mg/L  | 0.00000558  | 0.0001474 | 0.10  | 0.0950  | 0.0939  | 0.0934   | 0.085 to 0.115   | 95.0 | 70 to 130 | 1.12  | 20            |
| BA02546 Boron, Total           | mg/L  | 0.00144     | 0.0650254 | 1.00  | 3.71    | 3.72    | 1.01     | 0.85 to 1.15     | 97.4 | 70 to 130 | 0.167 | 20            |
| BA02546 Chromium, Total        | mg/L  | 0.0000464   | 0.00044   | 0.10  | 0.0980  | 0.0986  | 0.0980   | 0.085 to 0.115   | 98.0 | 70 to 130 | 0.575 | 20            |
| BA02546 Lead, Total            | mg/L  | 0.0000111   | 0.0001474 | 0.10  | 0.101   | 0.100   | 0.0990   | 0.085 to 0.115   | 101  | 70 to 130 | 0.514 | 20            |
| BA02546 Selenium, Total        | mg/L  | 0.000138    | 0.00066   | 0.10  | 0.0858  | 0.0863  | 0.105    | 0.085 to 0.115   | 85.8 | 70 to 130 | 0.560 | 20            |
| BA02546 Cobalt, Total          | mg/L  | -0.00000314 | 0.0001474 | 0.10  | 0.313   | 0.311   | 0.0961   | 0.085 to 0.115   | 95.7 | 70 to 130 | 0.448 | 20            |
| BA02546 Thallium, Total        | mg/L  | 0.0000141   | 0.0001474 | 0.10  | 0.102   | 0.0991  | 0.0995   | 0.085 to 0.115   | 102  | 70 to 130 | 2.84  | 20            |

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Issued By: State of Florida, Department of Health

Expiration: June 30, 2018

<sup>\*</sup> Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114

## **Batch QC Summary**



Customer Account: WMWGORG Sample Date: 2/3/20 16:10

**Customer ID:** 

**Delivery Date:** 2/4/20 10:28

Description: Gorgas Gypsum - MW-4L

Laboratory ID Number: BA02291

|         |                   |       |          | MB    |       |      | Sample    |          | Standard     |      | Rec       |       | Prec          |
|---------|-------------------|-------|----------|-------|-------|------|-----------|----------|--------------|------|-----------|-------|---------------|
| Sample  | Analysis          | Units | MB       | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA02291 | Chloride          | mg/L  | -0.00879 | 0.50  | 10.0  | 11.5 | 1.65      | 10.1     | 9 to 11      | 97.8 | 80 to 120 | 4.15  | 20            |
| BA02543 | Solids, Dissolved | mg/L  | -2.00    | 25    |       |      | 3660      | 53.0     | 40 to 60     |      |           | 0.00  | 5             |
| BA02291 | Fluoride          | mg/L  | 0.0246   | 0.05  | 2.50  | 2.97 | 0.369     | 2.60     | 2.25 to 2.75 | 104  | 80 to 120 | 0.271 | 20            |
| BA02291 | Sulfate           | mg/L  | -0.417   | 0.50  | 2000  | 4090 | 2010      | 18.6     | 18 to 22     | 108  | 80 to 120 | 4.58  | 20            |

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2017

<sup>\*</sup> Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

# **Certificate Of Analysis**



Description: Gorgas Gypsum - MW-3VLocation Code:WMWGORGCollected:2/3/20 14:25

**Customer ID:** 

Submittal Date: 2/6/20 13:21

Laboratory ID Number: BA02543

| Name                                  | Prepared      | Analyzed      | Vio Spec DF | Results      | Units         | MDL      | RL     | Q   |
|---------------------------------------|---------------|---------------|-------------|--------------|---------------|----------|--------|-----|
| Analytical Method: EPA 200.7          | Anal          | yst: RDA      |             | Preparati    | ion Method: E | EPA 1638 |        |     |
| * Boron, Total                        | 2/10/20 13:30 | 2/13/20 10:3  | 1 1.015     | 3.06         | mg/L          | 0.03     | 0.1    |     |
| * Calcium, Total                      | 2/10/20 13:30 | 2/13/20 11:52 | 2 20.3      | 504          | mg/L          | 2.03     | 10.15  |     |
| * Lithium, Total                      | 2/10/20 13:30 | 2/13/20 10:3  | 1 1.015     | 0.460        | mg/L          | 0.01     | 0.02   |     |
| Analytical Method: EPA 200.8          | Anal          | yst: DLJ      |             | Preparati    | ion Method: E | EPA 1638 |        |     |
| * Antimony, Total                     | 2/6/20 15:00  | 2/7/20 10:13  | 1.015       | Not Detected | mg/L          | 0.0008   | 0.003  | U   |
| * Arsenic, Total                      | 2/6/20 15:00  | 2/7/20 10:13  | 1.015       | Not Detected | mg/L          | 0.001    | 0.005  | U   |
| * Barium, Total                       | 2/6/20 15:00  | 2/7/20 10:13  | 1.015       | 0.0215       | mg/L          | 0.002    | 0.01   |     |
| * Beryllium, Total                    | 2/6/20 15:00  | 2/7/20 10:13  | 1.015       | Not Detected | mg/L          | 0.0006   | 0.003  | U   |
| * Cadmium, Total                      | 2/6/20 15:00  | 2/7/20 10:13  | 1.015       | Not Detected | mg/L          | 0.0003   | 0.001  | U   |
| * Chromium, Total                     | 2/6/20 15:00  | 2/7/20 10:13  | 1.015       | Not Detected | mg/L          | 0.002    | 0.01   | U   |
| * Cobalt, Total                       | 2/6/20 15:00  | 2/7/20 10:13  | 1.015       | 0.0135       | mg/L          | 0.002    | 0.005  |     |
| * Lead, Total                         | 2/6/20 15:00  | 2/7/20 10:13  | 1.015       | Not Detected | mg/L          | 0.001    | 0.005  | U   |
| * Molybdenum, Total                   | 2/6/20 15:00  | 2/7/20 10:13  | 1.015       | Not Detected | mg/L          | 0.002    | 0.01   | U   |
| * Selenium, Total                     | 2/6/20 15:00  | 2/7/20 10:13  | 1.015       | Not Detected | mg/L          | 0.002    | 0.01   | U   |
| * Thallium, Total                     | 2/6/20 15:00  | 2/7/20 10:13  | 1.015       | Not Detected | mg/L          | 0.0002   | 0.001  | U   |
| Analytical Method: EPA 245.1          | Anal          | yst: GAS      |             |              |               |          |        |     |
| * Mercury, Total by CVAA              | 2/10/20 11:35 | 2/11/20 14:2  | 5 1         | Not Detected | mg/L          | 0.0003   | 0.0005 | U   |
| Analytical Method: SM 2540C           | Anal          | yst: TJW      |             |              |               |          |        |     |
| * Solids, Dissolved                   | 2/7/20 15:30  | 2/11/20 10:30 | 0 1         | 3660         | mg/L          |          | 208.3  |     |
| Analytical Method: SM4500Cl E         | Anal          | yst: JCC      |             |              |               |          |        |     |
| * Chloride                            | 2/7/20 11:19  | 2/7/20 11:19  | 40          | 338          | mg/L          | 20.00    | 40     |     |
| Analytical Method: SM4500F G 2017     | Anal          | yst: JCC      |             |              |               |          |        |     |
| * Fluoride                            | 2/7/20 14:27  | 2/7/20 14:27  | 1           | 0.438        | mg/L          | 0.05     | 0.1    |     |
| Analytical Method: SM4500SO4 E        | Anal          | yst: JCC      |             |              |               |          |        |     |
| * Sulfate                             | 2/6/20 14:42  | 2/6/20 14:42  | 100         | 1970         | mg/L          | 50.00    | 100    |     |
| Analytical Method: Field Measurements | Anal          | yst: TJD      |             |              |               |          |        |     |
| Conductivity                          | 2/3/20 14:21  | 2/3/20 14:21  |             | 3331.61      | uS/cm         |          |        | F.A |
| pН                                    | 2/3/20 14:21  | 2/3/20 14:21  |             | 5.88         | SU            |          |        | F.A |
| Temperature                           | 2/3/20 14:21  | 2/3/20 14:21  |             | 21.33        | С             |          |        | F/  |
| Turbidity                             | 2/3/20 14:21  | 2/3/20 14:21  |             | 1.28         | NTU           |          |        | F.  |

MDL's and RL's are adjusted for sample dilution, as applicable

## **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 2/3/20 14:25

**Customer ID:** 

**Delivery Date:** 2/6/20 13:21

Description: Gorgas Gypsum - MW-3V

Laboratory ID Number: BA02543

|                                |       |             | MB        |       |         |         |          | Standard         |      | Rec       |       | Prec          |
|--------------------------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|------|-----------|-------|---------------|
| Sample Analysis                | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | l Limit          | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA02546 Antimony, Total        | mg/L  | 0.000176    | 0.00066   | 0.10  | 0.0950  | 0.0954  | 0.0883   | 0.085 to 0.115   | 95.0 | 70 to 130 | 0.445 | 20            |
| BA02546 Arsenic, Total         | mg/L  | 0.0000218   | 0.0001474 | 0.10  | 0.101   | 0.100   | 0.105    | 0.085 to 0.115   | 100  | 70 to 130 | 1.17  | 20            |
| BA02546 Calcium, Total         | mg/L  | -0.0107     | 0.1518    | 5.00  | 119     | 114     | 5.23     | 4.25 to 5.75     | 48.8 | 70 to 130 | 4.41  | 20            |
| BA02546 Cadmium, Total         | mg/L  | 0.00000727  | 0.0001474 | 0.10  | 0.0966  | 0.0953  | 0.0973   | 0.085 to 0.115   | 95.1 | 70 to 130 | 1.32  | 20            |
| BA02546 Boron, Total           | mg/L  | 0.00144     | 0.0650254 | 1.00  | 3.71    | 3.72    | 1.01     | 0.85 to 1.15     | 97.4 | 70 to 130 | 0.167 | 20            |
| BA02546 Chromium, Total        | mg/L  | 0.0000464   | 0.00044   | 0.10  | 0.0980  | 0.0986  | 0.0980   | 0.085 to 0.115   | 98.0 | 70 to 130 | 0.575 | 20            |
| BA02546 Lead, Total            | mg/L  | 0.0000111   | 0.0001474 | 0.10  | 0.101   | 0.100   | 0.0990   | 0.085 to 0.115   | 101  | 70 to 130 | 0.514 | 20            |
| BA02546 Selenium, Total        | mg/L  | 0.000138    | 0.00066   | 0.10  | 0.0858  | 0.0863  | 0.105    | 0.085 to 0.115   | 85.8 | 70 to 130 | 0.560 | 20            |
| BA02546 Beryllium, Total       | mg/L  | 0.0000453   | 0.00088   | 0.10  | 0.100   | 0.102   | 0.0962   | 0.085 to 0.115   | 96.0 | 70 to 130 | 2.15  | 20            |
| BA02546 Molybdenum, Total      | mg/L  | 0.00000558  | 0.0001474 | 0.10  | 0.0950  | 0.0939  | 0.0934   | 0.085 to 0.115   | 95.0 | 70 to 130 | 1.12  | 20            |
| BA02546 Barium, Total          | mg/L  | 0.00000799  | 0.0002    | 0.10  | 0.109   | 0.110   | 0.0917   | 0.085 to 0.115   | 96.7 | 70 to 130 | 0.948 | 20            |
| BA02546 Mercury, Total by CVAA | mg/L  | -0.00000703 | 0.0005    | 0.004 | 0.00409 | 0.00406 | 0.00386  | 0.0034 to 0.0046 | 102  | 70 to 130 | 0.812 | 20            |
| BA02546 Lithium, Total         | mg/L  | -0.0000191  | 0.0154    | 0.20  | 0.525   | 0.523   | 0.201    | 0.17 to 0.23     | 118  | 70 to 130 | 0.338 | 20            |
| BA02546 Cobalt, Total          | mg/L  | -0.00000314 | 0.0001474 | 0.10  | 0.313   | 0.311   | 0.0961   | 0.085 to 0.115   | 95.7 | 70 to 130 | 0.448 | 20            |
| BA02546 Thallium, Total        | mg/L  | 0.0000141   | 0.0001474 | 0.10  | 0.102   | 0.0991  | 0.0995   | 0.085 to 0.115   | 102  | 70 to 130 | 2.84  | 20            |

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Issued By: State of Florida, Department of Health

Expiration: June 30, 2018

<sup>\*</sup> Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114

## **Batch QC Summary**



Customer Account: WMWGORG Sample Date: 2/3/20 14:25

**Customer ID:** 

**Delivery Date:** 

2/6/20 13:21

Description: Gorgas Gypsum - MW-3V

Laboratory ID Number: BA02543

|         |                   |       |         | MB    |       |      | Sample    |          | Standard     |      | Rec       |      | Prec  |
|---------|-------------------|-------|---------|-------|-------|------|-----------|----------|--------------|------|-----------|------|-------|
| Sample  | Analysis          | Units | MB      | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit     | Prec | Limit |
| BA02552 | Sulfate           | mg/L  | -0.434  | 0.50  | 2000  | 3400 | 1630      | 18.2     | 18 to 22     | 91.5 | 80 to 120 | 3.75 | 20    |
| BA02543 | Solids, Dissolved | mg/L  | -2.00   | 25    |       |      | 3660      | 53.0     | 40 to 60     |      |           | 0.00 | 5     |
| BA02552 | Chloride          | mg/L  | -0.0143 | 0.50  | 400   | 553  | 98.0      | 10.5     | 9 to 11      | 115  | 80 to 120 | 4.06 | 20    |
| BA02552 | Fluoride          | mg/L  | 0.0121  | 0.05  | 2.50  | 2.68 | 0.134     | 2.61     | 2.25 to 2.75 | 102  | 80 to 120 | 1.50 | 20    |

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2017

<sup>\*</sup> Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

# **Certificate Of Analysis**



Description: Gorgas Gypsum - MW-3Location Code:WMWGORGCollected:2/3/20 15:42

**Customer ID:** 

**Submittal Date:** 2/6/20 13:21

Laboratory ID Number: BA02544

| Name                                  | Prepared      | Analyzed     | Vio Spec DF | Results      | Units         | MDL     | RL     | Q   |
|---------------------------------------|---------------|--------------|-------------|--------------|---------------|---------|--------|-----|
| Analytical Method: EPA 200.7          | Anal          | yst: RDA     |             | Preparati    | ion Method: E | PA 1638 |        |     |
| * Boron, Total                        | 2/10/20 13:30 | 2/13/20 10:3 | 4 1.015     | 2.13         | mg/L          | 0.03    | 0.1    |     |
| * Calcium, Total                      | 2/10/20 13:30 | 2/13/20 11:5 | 5 20.3      | 589          | mg/L          | 2.03    | 10.15  |     |
| * Lithium, Total                      | 2/10/20 13:30 | 2/13/20 10:3 | 4 1.015     | 0.474        | mg/L          | 0.01    | 0.02   |     |
| Analytical Method: EPA 200.8          | Anal          | yst: DLJ     |             | Preparati    | ion Method: E | PA 1638 |        |     |
| * Antimony, Total                     | 2/6/20 15:00  | 2/7/20 10:15 | 1.015       | Not Detected | mg/L          | 0.0008  | 0.003  | U   |
| * Arsenic, Total                      | 2/6/20 15:00  | 2/7/20 10:15 | 1.015       | Not Detected | mg/L          | 0.001   | 0.005  | U   |
| * Barium, Total                       | 2/6/20 15:00  | 2/7/20 10:15 | 1.015       | 0.0141       | mg/L          | 0.002   | 0.01   |     |
| * Beryllium, Total                    | 2/6/20 15:00  | 2/7/20 10:15 | 1.015       | 0.00141      | mg/L          | 0.0006  | 0.003  | J   |
| * Cadmium, Total                      | 2/6/20 15:00  | 2/7/20 10:15 | 1.015       | Not Detected | mg/L          | 0.0003  | 0.001  | U   |
| * Chromium, Total                     | 2/6/20 15:00  | 2/7/20 10:15 | 1.015       | Not Detected | mg/L          | 0.002   | 0.01   | U   |
| * Cobalt, Total                       | 2/6/20 15:00  | 2/7/20 10:15 | 1.015       | 0.0843       | mg/L          | 0.002   | 0.005  |     |
| * Lead, Total                         | 2/6/20 15:00  | 2/7/20 10:15 | 1.015       | Not Detected | mg/L          | 0.001   | 0.005  | U   |
| * Molybdenum, Total                   | 2/6/20 15:00  | 2/7/20 10:15 | 1.015       | Not Detected | mg/L          | 0.002   | 0.01   | U   |
| * Selenium, Total                     | 2/6/20 15:00  | 2/7/20 10:15 | 1.015       | Not Detected | mg/L          | 0.002   | 0.01   | U   |
| * Thallium, Total                     | 2/6/20 15:00  | 2/7/20 10:15 | 1.015       | Not Detected | mg/L          | 0.0002  | 0.001  | U   |
| Analytical Method: EPA 245.1          | Anal          | yst: GAS     |             |              |               |         |        |     |
| * Mercury, Total by CVAA              | 2/10/20 11:35 | 2/11/20 14:2 | 7 1         | Not Detected | mg/L          | 0.0003  | 0.0005 | U   |
| Analytical Method: SM 2540C           | Anal          | yst: TJW     |             |              |               |         |        |     |
| * Solids, Dissolved                   | 2/7/20 15:30  | 2/11/20 10:3 | 0 1         | 4920         | mg/L          |         | 250    |     |
| Analytical Method: SM4500Cl E         | Anal          | yst: JCC     |             |              |               |         |        |     |
| * Chloride                            | 2/7/20 11:21  | 2/7/20 11:21 | 40          | 267          | mg/L          | 20.00   | 40     |     |
| Analytical Method: SM4500F G 2017     | Anal          | yst: JCC     |             |              |               |         |        |     |
| * Fluoride                            | 2/7/20 14:29  | 2/7/20 14:29 | 1           | 0.427        | mg/L          | 0.05    | 0.1    |     |
| Analytical Method: SM4500SO4 E        | Anal          | yst: JCC     |             |              |               |         |        |     |
| * Sulfate                             | 2/6/20 14:43  | 2/6/20 14:43 | 100         | 2840         | mg/L          | 50.00   | 100    |     |
| Analytical Method: Field Measurements | Anal          | yst: TJD     |             |              |               |         |        |     |
| Conductivity                          | 2/3/20 15:39  | 2/3/20 15:39 |             | 4133.61      | uS/cm         |         |        | FA  |
| рН                                    | 2/3/20 15:39  | 2/3/20 15:39 |             | 5.98         | SU            |         |        | FA  |
| Temperature                           | 2/3/20 15:39  | 2/3/20 15:39 |             | 20.43        | С             |         |        | F.A |
| Turbidity                             | 2/3/20 15:39  | 2/3/20 15:39 |             | 3.56         | NTU           |         |        | FA  |

MDL's and RL's are adjusted for sample dilution, as applicable

## **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 2/3/20 15:42

**Customer ID:** 

**Delivery Date:** 2/6/20 13:21

Description: Gorgas Gypsum - MW-3

Laboratory ID Number: BA02544

|                                |       |             | MB        |       |         |         |          | Standard         |      | Rec       |       | Prec          |
|--------------------------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|------|-----------|-------|---------------|
| Sample Analysis                | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | Limit            | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA02546 Antimony, Total        | mg/L  | 0.000176    | 0.00066   | 0.10  | 0.0950  | 0.0954  | 0.0883   | 0.085 to 0.115   | 95.0 | 70 to 130 | 0.445 | 20            |
| BA02546 Arsenic, Total         | mg/L  | 0.0000218   | 0.0001474 | 0.10  | 0.101   | 0.100   | 0.105    | 0.085 to 0.115   | 100  | 70 to 130 | 1.17  | 20            |
| BA02546 Calcium, Total         | mg/L  | -0.0107     | 0.1518    | 5.00  | 119     | 114     | 5.23     | 4.25 to 5.75     | 48.8 | 70 to 130 | 4.41  | 20            |
| BA02546 Cadmium, Total         | mg/L  | 0.00000727  | 0.0001474 | 0.10  | 0.0966  | 0.0953  | 0.0973   | 0.085 to 0.115   | 95.1 | 70 to 130 | 1.32  | 20            |
| BA02546 Barium, Total          | mg/L  | 0.00000799  | 0.0002    | 0.10  | 0.109   | 0.110   | 0.0917   | 0.085 to 0.115   | 96.7 | 70 to 130 | 0.948 | 20            |
| BA02546 Mercury, Total by CVAA | mg/L  | -0.00000703 | 0.0005    | 0.004 | 0.00409 | 0.00406 | 0.00386  | 0.0034 to 0.0046 | 102  | 70 to 130 | 0.812 | 20            |
| BA02546 Lithium, Total         | mg/L  | -0.0000191  | 0.0154    | 0.20  | 0.525   | 0.523   | 0.201    | 0.17 to 0.23     | 118  | 70 to 130 | 0.338 | 20            |
| BA02546 Beryllium, Total       | mg/L  | 0.0000453   | 0.00088   | 0.10  | 0.100   | 0.102   | 0.0962   | 0.085 to 0.115   | 96.0 | 70 to 130 | 2.15  | 20            |
| BA02546 Molybdenum, Total      | mg/L  | 0.00000558  | 0.0001474 | 0.10  | 0.0950  | 0.0939  | 0.0934   | 0.085 to 0.115   | 95.0 | 70 to 130 | 1.12  | 20            |
| BA02546 Boron, Total           | mg/L  | 0.00144     | 0.0650254 | 1.00  | 3.71    | 3.72    | 1.01     | 0.85 to 1.15     | 97.4 | 70 to 130 | 0.167 | 20            |
| BA02546 Chromium, Total        | mg/L  | 0.0000464   | 0.00044   | 0.10  | 0.0980  | 0.0986  | 0.0980   | 0.085 to 0.115   | 98.0 | 70 to 130 | 0.575 | 20            |
| BA02546 Lead, Total            | mg/L  | 0.0000111   | 0.0001474 | 0.10  | 0.101   | 0.100   | 0.0990   | 0.085 to 0.115   | 101  | 70 to 130 | 0.514 | 20            |
| BA02546 Selenium, Total        | mg/L  | 0.000138    | 0.00066   | 0.10  | 0.0858  | 0.0863  | 0.105    | 0.085 to 0.115   | 85.8 | 70 to 130 | 0.560 | 20            |
| BA02546 Cobalt, Total          | mg/L  | -0.00000314 | 0.0001474 | 0.10  | 0.313   | 0.311   | 0.0961   | 0.085 to 0.115   | 95.7 | 70 to 130 | 0.448 | 20            |
| BA02546 Thallium, Total        | mg/L  | 0.0000141   | 0.0001474 | 0.10  | 0.102   | 0.0991  | 0.0995   | 0.085 to 0.115   | 102  | 70 to 130 | 2.84  | 20            |

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Issued By: State of Florida, Department of Health

Expiration: June 30, 2018

<sup>\*</sup> Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114

## **Batch QC Summary**



Customer Account: WMWGORG Sample Date: 2/3/20 15:42

**Customer ID:** 

**Delivery Date:** 2/6/20 13:21

Description: Gorgas Gypsum - MW-3

Laboratory ID Number: BA02544

|                           |       |         | MB    |       |      | Sample    |          | Standard     |      | Rec       |      | Prec          |
|---------------------------|-------|---------|-------|-------|------|-----------|----------|--------------|------|-----------|------|---------------|
| Sample Analysis           | Units | MB      | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit     | Prec | <u>Li</u> mit |
| BA02543 Solids, Dissolved | mg/L  | -2.00   | 25    |       |      | 3660      | 53.0     | 40 to 60     |      |           | 0.00 | 5             |
| BA02552 Chloride          | mg/L  | -0.0143 | 0.50  | 400   | 553  | 98.0      | 10.5     | 9 to 11      | 115  | 80 to 120 | 4.06 | 20            |
| BA02552 Fluoride          | mg/L  | 0.0121  | 0.05  | 2.50  | 2.68 | 0.134     | 2.61     | 2.25 to 2.75 | 102  | 80 to 120 | 1.50 | 20            |
| BA02552 Sulfate           | mg/L  | -0.434  | 0.50  | 2000  | 3400 | 1630      | 18.2     | 18 to 22     | 91.5 | 80 to 120 | 3.75 | 20            |

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

\* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

Expiration: June 30, 2017

# **Certificate Of Analysis**



Description: Gorgas Gypsum - MW-4VLocation Code:WMWGORGCollected:2/3/20 16:54

**Customer ID:** 

Submittal Date: 2/6/20 13:21

Laboratory ID Number: BA02545

| Name                                  | Prepared      | Analyzed     | Vio Spec DF | Results      | Units         | MDL      | RL     | Q   |
|---------------------------------------|---------------|--------------|-------------|--------------|---------------|----------|--------|-----|
| Analytical Method: EPA 200.7          | Anal          | yst: RDA     |             | Preparat     | ion Method:   | EPA 1638 |        |     |
| * Boron, Total                        | 2/10/20 13:30 | 2/13/20 10:3 | 7 1.015     | 5.25         | mg/L          | 0.03     | 0.1    |     |
| * Calcium, Total                      | 2/10/20 13:30 | 2/13/20 11:5 | 8 20.3      | 184          | mg/L          | 2.03     | 10.15  |     |
| * Lithium, Total                      | 2/10/20 13:30 | 2/13/20 10:3 | 7 1.015     | 0.332        | mg/L          | 0.01     | 0.02   |     |
| Analytical Method: EPA 200.8          | Anal          | yst: DLJ     |             | Preparat     | ion Method: l | EPA 1638 |        |     |
| * Antimony, Total                     | 2/6/20 15:00  | 2/7/20 10:18 | 1.015       | Not Detected | mg/L          | 0.0008   | 0.003  | U   |
| * Arsenic, Total                      | 2/6/20 15:00  | 2/7/20 10:18 | 1.015       | 0.00101      | mg/L          | 0.001    | 0.005  | J   |
| * Barium, Total                       | 2/6/20 15:00  | 2/7/20 10:18 | 1.015       | 0.0103       | mg/L          | 0.002    | 0.01   |     |
| * Beryllium, Total                    | 2/6/20 15:00  | 2/7/20 10:18 | 1.015       | 0.00362      | mg/L          | 0.0006   | 0.003  |     |
| * Cadmium, Total                      | 2/6/20 15:00  | 2/7/20 10:18 | 1.015       | Not Detected | mg/L          | 0.0003   | 0.001  | U   |
| * Chromium, Total                     | 2/6/20 15:00  | 2/7/20 10:18 | 1.015       | Not Detected | mg/L          | 0.002    | 0.01   | U   |
| * Cobalt, Total                       | 2/6/20 15:00  | 2/7/20 10:18 | 1.015       | 0.108        | mg/L          | 0.002    | 0.005  |     |
| * Lead, Total                         | 2/6/20 15:00  | 2/7/20 10:18 | 1.015       | Not Detected | mg/L          | 0.001    | 0.005  | U   |
| * Molybdenum, Total                   | 2/6/20 15:00  | 2/7/20 10:18 | 1.015       | Not Detected | mg/L          | 0.002    | 0.01   | U   |
| * Selenium, Total                     | 2/6/20 15:00  | 2/7/20 10:18 | 1.015       | Not Detected | mg/L          | 0.002    | 0.01   | U   |
| * Thallium, Total                     | 2/6/20 15:00  | 2/7/20 10:18 | 1.015       | Not Detected | mg/L          | 0.0002   | 0.001  | U   |
| Analytical Method: EPA 245.1          | Anal          | yst: GAS     |             |              |               |          |        |     |
| * Mercury, Total by CVAA              | 2/10/20 11:35 | 2/11/20 14:3 | 0 1         | Not Detected | mg/L          | 0.0003   | 0.0005 | U   |
| Analytical Method: SM 2540C           | Analy         | yst: TJW     |             |              |               |          |        |     |
| * Solids, Dissolved                   | 2/7/20 15:30  | 2/11/20 10:3 | 0 1         | 1290         | mg/L          |          | 71.4   |     |
| Analytical Method: SM4500Cl E         | Analy         | yst: JCC     |             |              |               |          |        |     |
| * Chloride                            | 2/7/20 11:22  | 2/7/20 11:22 | 20          | 101          | mg/L          | 10.00    | 20     |     |
| Analytical Method: SM4500F G 2017     | Anal          | yst: JCC     |             |              |               |          |        |     |
| * Fluoride                            | 2/7/20 14:30  | 2/7/20 14:30 | 1           | 0.555        | mg/L          | 0.05     | 0.1    |     |
| Analytical Method: SM4500SO4 E        | Anal          | yst: JCC     |             |              |               |          |        |     |
| * Sulfate                             | 2/6/20 14:44  | 2/6/20 14:44 | 80          | 808          | mg/L          | 40.00    | 80     |     |
| Analytical Method: Field Measurements | Anal          | yst: TJD     |             |              |               |          |        |     |
| Conductivity                          | 2/3/20 16:51  | 2/3/20 16:51 |             | 1481.03      | uS/cm         |          |        | F.A |
| рН                                    | 2/3/20 16:51  | 2/3/20 16:51 |             | 5.84         | SU            |          |        | FA  |
| Temperature                           | 2/3/20 16:51  | 2/3/20 16:51 |             | 19.72        | С             |          |        | FA  |
| Turbidity                             | 2/3/20 16:51  | 2/3/20 16:51 |             | 2.76         | NTU           |          |        | F/  |

MDL's and RL's are adjusted for sample dilution, as applicable

## **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 2/3/20 16:54

**Customer ID:** 

**Delivery Date:** 2/6/20 13:21

Description: Gorgas Gypsum - MW-4V

Laboratory ID Number: BA02545

|                                |       |             | MB        |       |         |         |          | Standard         |      | Rec       |       | Prec          |
|--------------------------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|------|-----------|-------|---------------|
| Sample Analysis                | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | Limit            | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA02546 Antimony, Total        | mg/L  | 0.000176    | 0.00066   | 0.10  | 0.0950  | 0.0954  | 0.0883   | 0.085 to 0.115   | 95.0 | 70 to 130 | 0.445 | 20            |
| BA02546 Arsenic, Total         | mg/L  | 0.0000218   | 0.0001474 | 0.10  | 0.101   | 0.100   | 0.105    | 0.085 to 0.115   | 100  | 70 to 130 | 1.17  | 20            |
| BA02546 Calcium, Total         | mg/L  | -0.0107     | 0.1518    | 5.00  | 119     | 114     | 5.23     | 4.25 to 5.75     | 48.8 | 70 to 130 | 4.41  | 20            |
| BA02546 Cadmium, Total         | mg/L  | 0.00000727  | 0.0001474 | 0.10  | 0.0966  | 0.0953  | 0.0973   | 0.085 to 0.115   | 95.1 | 70 to 130 | 1.32  | 20            |
| BA02546 Beryllium, Total       | mg/L  | 0.0000453   | 0.00088   | 0.10  | 0.100   | 0.102   | 0.0962   | 0.085 to 0.115   | 96.0 | 70 to 130 | 2.15  | 20            |
| BA02546 Molybdenum, Total      | mg/L  | 0.00000558  | 0.0001474 | 0.10  | 0.0950  | 0.0939  | 0.0934   | 0.085 to 0.115   | 95.0 | 70 to 130 | 1.12  | 20            |
| BA02546 Boron, Total           | mg/L  | 0.00144     | 0.0650254 | 1.00  | 3.71    | 3.72    | 1.01     | 0.85 to 1.15     | 97.4 | 70 to 130 | 0.167 | 20            |
| BA02546 Chromium, Total        | mg/L  | 0.0000464   | 0.00044   | 0.10  | 0.0980  | 0.0986  | 0.0980   | 0.085 to 0.115   | 98.0 | 70 to 130 | 0.575 | 20            |
| BA02546 Lead, Total            | mg/L  | 0.0000111   | 0.0001474 | 0.10  | 0.101   | 0.100   | 0.0990   | 0.085 to 0.115   | 101  | 70 to 130 | 0.514 | 20            |
| BA02546 Selenium, Total        | mg/L  | 0.000138    | 0.00066   | 0.10  | 0.0858  | 0.0863  | 0.105    | 0.085 to 0.115   | 85.8 | 70 to 130 | 0.560 | 20            |
| BA02546 Cobalt, Total          | mg/L  | -0.00000314 | 0.0001474 | 0.10  | 0.313   | 0.311   | 0.0961   | 0.085 to 0.115   | 95.7 | 70 to 130 | 0.448 | 20            |
| BA02546 Thallium, Total        | mg/L  | 0.0000141   | 0.0001474 | 0.10  | 0.102   | 0.0991  | 0.0995   | 0.085 to 0.115   | 102  | 70 to 130 | 2.84  | 20            |
| BA02546 Barium, Total          | mg/L  | 0.00000799  | 0.0002    | 0.10  | 0.109   | 0.110   | 0.0917   | 0.085 to 0.115   | 96.7 | 70 to 130 | 0.948 | 20            |
| BA02546 Mercury, Total by CVAA | mg/L  | -0.00000703 | 0.0005    | 0.004 | 0.00409 | 0.00406 | 0.00386  | 0.0034 to 0.0046 | 102  | 70 to 130 | 0.812 | 20            |
| BA02546 Lithium, Total         | mg/L  | -0.0000191  | 0.0154    | 0.20  | 0.525   | 0.523   | 0.201    | 0.17 to 0.23     | 118  | 70 to 130 | 0.338 | 20            |

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Issued By: State of Florida, Department of Health

Expiration: June 30, 2018

<sup>\*</sup> Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114

## **Batch QC Summary**



Customer Account: WMWGORG Sample Date: 2/3/20 16:54

**Customer ID:** 

**Delivery Date:** 2/6/20 13:21

Description: Gorgas Gypsum - MW-4V

Laboratory ID Number: BA02545

|         |                   |       |         | MB    |       |      | Sample    |          | Standard     |        | Rec       |      | Prec          |
|---------|-------------------|-------|---------|-------|-------|------|-----------|----------|--------------|--------|-----------|------|---------------|
| Sample  | Analysis          | Units | MB      | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec    | Limit     | Prec | <u>Li</u> mit |
| BA02552 | Sulfate           | mg/L  | -0.434  | 0.50  | 2000  | 3400 | 1630      | 18.2     | 18 to 22     | 91.5 8 | 30 to 120 | 3.75 | 20            |
| BA02543 | Solids, Dissolved | mg/L  | -2.00   | 25    |       |      | 3660      | 53.0     | 40 to 60     |        |           | 0.00 | 5             |
| BA02552 | Chloride          | mg/L  | -0.0143 | 0.50  | 400   | 553  | 98.0      | 10.5     | 9 to 11      | 115 8  | 30 to 120 | 4.06 | 20            |
| BA02552 | Fluoride          | mg/L  | 0.0121  | 0.05  | 2.50  | 2.68 | 0.134     | 2.61     | 2.25 to 2.75 | 102 8  | 30 to 120 | 1.50 | 20            |

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2017

<sup>\*</sup> Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

# **Certificate Of Analysis**



Description: Gorgas Gypsum - MW-4

Location Code: Collected:

WMWGORG 2/4/20 09:55

Customer ID:

Submittal Date:

2/6/20 13:21

| Analyze nalyst: RDA 30 2/13/2 30 2/13/2 nalyst: DLJ 0 2/7/20 0 2/7/20 0 2/7/20 0 2/7/20 0 2/7/20 0 2/7/20 0 2/7/20 | 0 10:40<br>0 12:01<br>0 10:40<br>10:21<br>10:21<br>10:21                           | 1.015<br>20.3<br>1.015<br>1.015<br>1.015<br>1.015                                                                             | 2.74<br>116<br>0.290<br><i>Pre</i>                                                                                                           | Units  paration Method:  mg/L  mg/L  mg/L  paration Method:  cted mg/L  mg/L  mg/L                                                                                                    | 0.03<br>2.03<br>0.01                                                                                                                                                                                                | 0.1<br>10.15<br>0.02                                                                                                                                                                                            | Q<br>RA                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 30 2/13/2 30 2/13/2 30 2/13/2 nalyst: DLJ 0 2/7/20 0 2/7/20 0 2/7/20 0 2/7/20 0 2/7/20 0 2/7/20                    | 0 12:01<br>0 10:40<br>10:21<br>10:21<br>10:21                                      | 20.3<br>1.015<br>1.015<br>1.015                                                                                               | 2.74<br>116<br>0.290<br><i>Pre</i> <sub>i</sub><br>Not Dete                                                                                  | mg/L<br>mg/L<br>mg/L<br>paration Method:<br>cted mg/L                                                                                                                                 | 0.03<br>2.03<br>0.01<br>EPA 1638                                                                                                                                                                                    | 10.15<br>0.02                                                                                                                                                                                                   | RA                                                                                                                                                                                                                                              |
| 30 2/13/2 30 2/13/2 nalyst: DLJ 0 2/7/20 0 2/7/20 0 2/7/20 0 2/7/20 0 2/7/20 0 2/7/20                              | 0 12:01<br>0 10:40<br>10:21<br>10:21<br>10:21                                      | 20.3<br>1.015<br>1.015<br>1.015                                                                                               | 116<br>0.290<br><i>Pre</i> <sub>j</sub><br>Not Dete                                                                                          | mg/L<br>mg/L<br>paration Method:<br>cted mg/L                                                                                                                                         | 2.03<br>0.01<br><b>EPA 1638</b>                                                                                                                                                                                     | 10.15<br>0.02                                                                                                                                                                                                   | RA                                                                                                                                                                                                                                              |
| 30 2/13/2 nalyst: DLJ 0 2/7/20 0 2/7/20 0 2/7/20 0 2/7/20 0 2/7/20 0 2/7/20                                        | 0 10:40<br>10:21<br>10:21<br>10:21                                                 | 1.015<br>1.015<br>1.015                                                                                                       | 0.290<br><i>Pre</i> <sub>j</sub><br>Not Dete                                                                                                 | mg/L<br>paration Method:<br>cted mg/L                                                                                                                                                 | 0.01<br><b>EPA 1638</b>                                                                                                                                                                                             | 0.02                                                                                                                                                                                                            | RA                                                                                                                                                                                                                                              |
| nalyst: DLJ 0 2/7/20 0 2/7/20 0 2/7/20 0 2/7/20 0 2/7/20 0 2/7/20                                                  | 10:21<br>10:21<br>10:21                                                            | 1.015<br>1.015                                                                                                                | <i>Pre</i><br>Not Dete                                                                                                                       | paration Method:<br>cted mg/L                                                                                                                                                         | EPA 1638                                                                                                                                                                                                            |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                 |
| 0 2/7/20<br>0 2/7/20<br>0 2/7/20<br>0 2/7/20<br>0 2/7/20<br>0 2/7/20                                               | 10:21<br>10:21                                                                     | 1.015                                                                                                                         | Not Dete                                                                                                                                     | cted mg/L                                                                                                                                                                             |                                                                                                                                                                                                                     | 0.003                                                                                                                                                                                                           |                                                                                                                                                                                                                                                 |
| 0 2/7/20<br>0 2/7/20<br>0 2/7/20<br>0 2/7/20                                                                       | 10:21<br>10:21                                                                     | 1.015                                                                                                                         |                                                                                                                                              | • • • • • • • • • • • • • • • • • • • •                                                                                                                                               | 0.0008                                                                                                                                                                                                              | 0.003                                                                                                                                                                                                           |                                                                                                                                                                                                                                                 |
| 0 2/7/20<br>0 2/7/20<br>0 2/7/20                                                                                   | 10:21                                                                              |                                                                                                                               | 0.00128                                                                                                                                      | ma/l                                                                                                                                                                                  |                                                                                                                                                                                                                     | 0.003                                                                                                                                                                                                           | U                                                                                                                                                                                                                                               |
| 0 2/7/20<br>0 2/7/20                                                                                               |                                                                                    | 1 015                                                                                                                         |                                                                                                                                              | mg/L                                                                                                                                                                                  | 0.001                                                                                                                                                                                                               | 0.005                                                                                                                                                                                                           | J                                                                                                                                                                                                                                               |
| 0 2/7/20                                                                                                           | 10:21                                                                              | 1.013                                                                                                                         | 0.0124                                                                                                                                       | mg/L                                                                                                                                                                                  | 0.002                                                                                                                                                                                                               | 0.01                                                                                                                                                                                                            |                                                                                                                                                                                                                                                 |
| -                                                                                                                  |                                                                                    | 1.015                                                                                                                         | 0.00415                                                                                                                                      | mg/L                                                                                                                                                                                  | 0.0006                                                                                                                                                                                                              | 0.003                                                                                                                                                                                                           |                                                                                                                                                                                                                                                 |
| 0 2/7/20                                                                                                           | 10:21                                                                              | 1.015                                                                                                                         | 0.00143                                                                                                                                      | mg/L                                                                                                                                                                                  | 0.0003                                                                                                                                                                                                              | 0.001                                                                                                                                                                                                           |                                                                                                                                                                                                                                                 |
| 0 2/1/20                                                                                                           | 10:21                                                                              | 1.015                                                                                                                         | Not Dete                                                                                                                                     | cted mg/L                                                                                                                                                                             | 0.002                                                                                                                                                                                                               | 0.01                                                                                                                                                                                                            | U                                                                                                                                                                                                                                               |
| 0 2/7/20                                                                                                           | 10:21                                                                              | 1.015                                                                                                                         | 0.217                                                                                                                                        | mg/L                                                                                                                                                                                  | 0.002                                                                                                                                                                                                               | 0.005                                                                                                                                                                                                           |                                                                                                                                                                                                                                                 |
| 0 2/7/20                                                                                                           | 10:21                                                                              | 1.015                                                                                                                         | Not Dete                                                                                                                                     | cted mg/L                                                                                                                                                                             | 0.001                                                                                                                                                                                                               | 0.005                                                                                                                                                                                                           | U                                                                                                                                                                                                                                               |
| 0 2/7/20                                                                                                           | 10:21                                                                              | 1.015                                                                                                                         | Not Dete                                                                                                                                     | cted mg/L                                                                                                                                                                             | 0.002                                                                                                                                                                                                               | 0.01                                                                                                                                                                                                            | U                                                                                                                                                                                                                                               |
| 0 2/7/20                                                                                                           | 10:21                                                                              | 1.015                                                                                                                         | Not Dete                                                                                                                                     | cted mg/L                                                                                                                                                                             | 0.002                                                                                                                                                                                                               | 0.01                                                                                                                                                                                                            | U                                                                                                                                                                                                                                               |
| 0 2/7/20                                                                                                           | 10:21                                                                              | 1.015                                                                                                                         | Not Dete                                                                                                                                     | cted mg/L                                                                                                                                                                             | 0.0002                                                                                                                                                                                                              | 0.001                                                                                                                                                                                                           | U                                                                                                                                                                                                                                               |
| nalyst: GAS                                                                                                        |                                                                                    |                                                                                                                               |                                                                                                                                              |                                                                                                                                                                                       |                                                                                                                                                                                                                     |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                 |
| 35 2/11/2                                                                                                          | 0 14:32                                                                            | 1                                                                                                                             | Not Dete                                                                                                                                     | cted mg/L                                                                                                                                                                             | 0.0003                                                                                                                                                                                                              | 0.0005                                                                                                                                                                                                          | U                                                                                                                                                                                                                                               |
| nalyst: TJW                                                                                                        |                                                                                    |                                                                                                                               |                                                                                                                                              |                                                                                                                                                                                       |                                                                                                                                                                                                                     |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                 |
| 0 2/11/2                                                                                                           | 0 10:30                                                                            | 1                                                                                                                             | 978                                                                                                                                          | mg/L                                                                                                                                                                                  |                                                                                                                                                                                                                     | 50                                                                                                                                                                                                              |                                                                                                                                                                                                                                                 |
| nalyst: JCC                                                                                                        |                                                                                    |                                                                                                                               |                                                                                                                                              |                                                                                                                                                                                       |                                                                                                                                                                                                                     |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                 |
| 3 2/7/20                                                                                                           | 11:23                                                                              | 20                                                                                                                            | 43.2                                                                                                                                         | mg/L                                                                                                                                                                                  | 10.00                                                                                                                                                                                                               | 20                                                                                                                                                                                                              |                                                                                                                                                                                                                                                 |
| nalyst: JCC                                                                                                        |                                                                                    |                                                                                                                               |                                                                                                                                              |                                                                                                                                                                                       |                                                                                                                                                                                                                     |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                 |
| 1 2/7/20                                                                                                           | 14:31                                                                              | 1                                                                                                                             | Not Dete                                                                                                                                     | cted mg/L                                                                                                                                                                             | 0.05                                                                                                                                                                                                                | 0.1                                                                                                                                                                                                             | U                                                                                                                                                                                                                                               |
| nalyst: JCC                                                                                                        |                                                                                    |                                                                                                                               |                                                                                                                                              |                                                                                                                                                                                       |                                                                                                                                                                                                                     |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                 |
| 5 2/6/20                                                                                                           | 14:45                                                                              | 80                                                                                                                            | 571                                                                                                                                          | mg/L                                                                                                                                                                                  | 40.00                                                                                                                                                                                                               | 80                                                                                                                                                                                                              |                                                                                                                                                                                                                                                 |
| nalyst: TJD                                                                                                        |                                                                                    |                                                                                                                               |                                                                                                                                              |                                                                                                                                                                                       |                                                                                                                                                                                                                     |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                 |
| -                                                                                                                  | 09:53                                                                              |                                                                                                                               | 1221.02                                                                                                                                      | uS/cm                                                                                                                                                                                 |                                                                                                                                                                                                                     |                                                                                                                                                                                                                 | FA                                                                                                                                                                                                                                              |
| 3 2/4/20                                                                                                           | 09:53                                                                              |                                                                                                                               | 3.83                                                                                                                                         | SU                                                                                                                                                                                    |                                                                                                                                                                                                                     |                                                                                                                                                                                                                 | FA                                                                                                                                                                                                                                              |
|                                                                                                                    |                                                                                    |                                                                                                                               |                                                                                                                                              |                                                                                                                                                                                       |                                                                                                                                                                                                                     |                                                                                                                                                                                                                 | FA                                                                                                                                                                                                                                              |
| -                                                                                                                  |                                                                                    |                                                                                                                               |                                                                                                                                              |                                                                                                                                                                                       |                                                                                                                                                                                                                     |                                                                                                                                                                                                                 | FA                                                                                                                                                                                                                                              |
|                                                                                                                    | 3 2/7/20 nalyst: JCC 1 2/7/20 nalyst: JCC 5 2/6/20 nalyst: TJD 13 2/4/20 13 2/4/20 | 3 2/7/20 11:23 nalyst: JCC 1 2/7/20 14:31 nalyst: JCC 5 2/6/20 14:45 nalyst: TJD 3 2/4/20 09:53 3 2/4/20 09:53 3 2/4/20 09:53 | 3 2/7/20 11:23 20  nalyst: JCC 11 2/7/20 14:31 1  nalyst: JCC 5 2/6/20 14:45 80  nalyst: TJD 13 2/4/20 09:53 13 2/4/20 09:53 13 2/4/20 09:53 | 3 2/7/20 11:23 20 43.2  nalyst: JCC  1 2/7/20 14:31 1 Not Dete  nalyst: JCC  5 2/6/20 14:45 80 571  nalyst: TJD  13 2/4/20 09:53 1221.02  13 2/4/20 09:53 3.83  13 2/4/20 09:53 19.91 | 3 2/7/20 11:23 20 43.2 mg/L  nalyst: JCC  1 2/7/20 14:31 1 Not Detected mg/L  nalyst: JCC  5 2/6/20 14:45 80 571 mg/L  nalyst: TJD  13 2/4/20 09:53 1221.02 uS/cm  13 2/4/20 09:53 3.83 SU  13 2/4/20 09:53 19.91 C | 3 2/7/20 11:23 20 43.2 mg/L 10.00  nalyst: JCC  1 2/7/20 14:31 1 Not Detected mg/L 0.05  nalyst: JCC  5 2/6/20 14:45 80 571 mg/L 40.00  nalyst: TJD  13 2/4/20 09:53 1221.02 uS/cm  13 2/4/20 09:53 SU  19.91 C | 3 2/7/20 11:23 20 43.2 mg/L 10.00 20  malyst: JCC  11 2/7/20 14:31 1 Not Detected mg/L 0.05 0.1  malyst: JCC  5 2/6/20 14:45 80 571 mg/L 40.00 80  malyst: TJD  13 2/4/20 09:53 1221.02 uS/cm  13 2/4/20 09:53 3.83 SU  13 2/4/20 09:53 19.91 C |

MDL's and RL's are adjusted for sample dilution, as applicable

## **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 2/4/20 09:55

**Customer ID:** 

**Delivery Date:** 2/6/20 13:21

Description: Gorgas Gypsum - MW-4

Laboratory ID Number: BA02546

|                                |       |             | MB        |       |         |         |          | Standard         |      | Rec       |       | Prec          |
|--------------------------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|------|-----------|-------|---------------|
| Sample Analysis                | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | Limit            | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA02546 Antimony, Total        | mg/L  | 0.000176    | 0.00066   | 0.10  | 0.0950  | 0.0954  | 0.0883   | 0.085 to 0.115   | 95.0 | 70 to 130 | 0.445 | 20            |
| BA02546 Barium, Total          | mg/L  | 0.00000799  | 0.0002    | 0.10  | 0.109   | 0.110   | 0.0917   | 0.085 to 0.115   | 96.7 | 70 to 130 | 0.948 | 20            |
| BA02546 Mercury, Total by CVAA | mg/L  | -0.00000703 | 0.0005    | 0.004 | 0.00409 | 0.00406 | 0.00386  | 0.0034 to 0.0046 | 102  | 70 to 130 | 0.812 | 20            |
| BA02546 Lithium, Total         | mg/L  | -0.0000191  | 0.0154    | 0.20  | 0.525   | 0.523   | 0.201    | 0.17 to 0.23     | 118  | 70 to 130 | 0.338 | 20            |
| BA02546 Beryllium, Total       | mg/L  | 0.0000453   | 0.00088   | 0.10  | 0.100   | 0.102   | 0.0962   | 0.085 to 0.115   | 96.0 | 70 to 130 | 2.15  | 20            |
| BA02546 Molybdenum, Total      | mg/L  | 0.00000558  | 0.0001474 | 0.10  | 0.0950  | 0.0939  | 0.0934   | 0.085 to 0.115   | 95.0 | 70 to 130 | 1.12  | 20            |
| BA02546 Arsenic, Total         | mg/L  | 0.0000218   | 0.0001474 | 0.10  | 0.101   | 0.100   | 0.105    | 0.085 to 0.115   | 100  | 70 to 130 | 1.17  | 20            |
| BA02546 Calcium, Total         | mg/L  | -0.0107     | 0.1518    | 5.00  | 119     | 114     | 5.23     | 4.25 to 5.75     | 48.8 | 70 to 130 | 4.41  | 20            |
| BA02546 Cadmium, Total         | mg/L  | 0.00000727  | 0.0001474 | 0.10  | 0.0966  | 0.0953  | 0.0973   | 0.085 to 0.115   | 95.1 | 70 to 130 | 1.32  | 20            |
| BA02546 Boron, Total           | mg/L  | 0.00144     | 0.0650254 | 1.00  | 3.71    | 3.72    | 1.01     | 0.85 to 1.15     | 97.4 | 70 to 130 | 0.167 | 20            |
| BA02546 Chromium, Total        | mg/L  | 0.0000464   | 0.00044   | 0.10  | 0.0980  | 0.0986  | 0.0980   | 0.085 to 0.115   | 98.0 | 70 to 130 | 0.575 | 20            |
| BA02546 Lead, Total            | mg/L  | 0.0000111   | 0.0001474 | 0.10  | 0.101   | 0.100   | 0.0990   | 0.085 to 0.115   | 101  | 70 to 130 | 0.514 | 20            |
| BA02546 Selenium, Total        | mg/L  | 0.000138    | 0.00066   | 0.10  | 0.0858  | 0.0863  | 0.105    | 0.085 to 0.115   | 85.8 | 70 to 130 | 0.560 | 20            |
| BA02546 Cobalt, Total          | mg/L  | -0.00000314 | 0.0001474 | 0.10  | 0.313   | 0.311   | 0.0961   | 0.085 to 0.115   | 95.7 | 70 to 130 | 0.448 | 20            |
| BA02546 Thallium, Total        | mg/L  | 0.0000141   | 0.0001474 | 0.10  | 0.102   | 0.0991  | 0.0995   | 0.085 to 0.115   | 102  | 70 to 130 | 2.84  | 20            |

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Issued By: State of Florida, Department of Health

Expiration: June 30, 2018

<sup>\*</sup> Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114

## **Batch QC Summary**



Customer Account: WMWGORG Sample Date: 2/4/20 09:55

**Customer ID:** 

**Delivery Date:** 2/6/20 13:21

Description: Gorgas Gypsum - MW-4

Laboratory ID Number: BA02546

|         |                   |       |         | MB    |       |      | Sample    |          | Standard     |      | Rec       |       | Prec          |
|---------|-------------------|-------|---------|-------|-------|------|-----------|----------|--------------|------|-----------|-------|---------------|
| Sample  | Analysis          | Units | MB      | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA02551 | Solids, Dissolved | mg/L  | -2.00   | 25    |       |      | 3110      | 53.0     | 40 to 60     |      |           | 0.115 | 5             |
| BA02552 | Sulfate           | mg/L  | -0.434  | 0.50  | 2000  | 3400 | 1630      | 18.2     | 18 to 22     | 91.5 | 80 to 120 | 3.75  | 20            |
| BA02552 | Chloride          | mg/L  | -0.0143 | 0.50  | 400   | 553  | 98.0      | 10.5     | 9 to 11      | 115  | 80 to 120 | 4.06  | 20            |
| BA02552 | Fluoride          | mg/L  | 0.0121  | 0.05  | 2.50  | 2.68 | 0.134     | 2.61     | 2.25 to 2.75 | 102  | 80 to 120 | 1.50  | 20            |

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2017

<sup>\*</sup> Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

# **Certificate Of Analysis**



Description: Gorgas Gypsum - MW-4 DUPLocation Code:WMWGORGCollected:2/4/20 09:55

**Customer ID:** 

Submittal Date: 2/6/20 13:21

Laboratory ID Number: BA02547

| Name                                  | Prepared      | Analyzed     | Vio Spec DF | Results      | Units         | MDL     | RL     | Q          |
|---------------------------------------|---------------|--------------|-------------|--------------|---------------|---------|--------|------------|
| Analytical Method: EPA 200.7          | Anal          | yst: RDA     |             | Preparati    | ion Method: E | PA 1638 |        |            |
| * Boron, Total                        | 2/10/20 13:30 | 2/13/20 10:5 | 9 1.015     | 2.74         | mg/L          | 0.03    | 0.1    |            |
| * Calcium, Total                      | 2/10/20 13:30 | 2/13/20 12:1 | 6 20.3      | 115          | mg/L          | 2.03    | 10.15  |            |
| * Lithium, Total                      | 2/10/20 13:30 | 2/13/20 10:5 | 9 1.015     | 0.288        | mg/L          | 0.01    | 0.02   |            |
| Analytical Method: EPA 200.8          | Anal          | yst: DLJ     |             | Preparati    | ion Method: E | PA 1638 |        |            |
| * Antimony, Total                     | 2/6/20 15:00  | 2/7/20 10:36 | 1.015       | Not Detected | mg/L          | 0.0008  | 0.003  | U          |
| * Arsenic, Total                      | 2/6/20 15:00  | 2/7/20 10:36 | 1.015       | 0.00127      | mg/L          | 0.001   | 0.005  | J          |
| * Barium, Total                       | 2/6/20 15:00  | 2/7/20 10:36 | 1.015       | 0.0122       | mg/L          | 0.002   | 0.01   |            |
| * Beryllium, Total                    | 2/6/20 15:00  | 2/7/20 10:36 | 1.015       | 0.00435      | mg/L          | 0.0006  | 0.003  |            |
| * Cadmium, Total                      | 2/6/20 15:00  | 2/7/20 10:36 | 1.015       | 0.00142      | mg/L          | 0.0003  | 0.001  |            |
| * Chromium, Total                     | 2/6/20 15:00  | 2/7/20 10:36 | 1.015       | Not Detected | mg/L          | 0.002   | 0.01   | U          |
| * Cobalt, Total                       | 2/6/20 15:00  | 2/7/20 10:36 | 1.015       | 0.218        | mg/L          | 0.002   | 0.005  |            |
| * Lead, Total                         | 2/6/20 15:00  | 2/7/20 10:36 | 1.015       | Not Detected | mg/L          | 0.001   | 0.005  | U          |
| * Molybdenum, Total                   | 2/6/20 15:00  | 2/7/20 10:36 | 1.015       | Not Detected | mg/L          | 0.002   | 0.01   | U          |
| * Selenium, Total                     | 2/6/20 15:00  | 2/7/20 10:36 | 1.015       | Not Detected | mg/L          | 0.002   | 0.01   | U          |
| * Thallium, Total                     | 2/6/20 15:00  | 2/7/20 10:36 | 1.015       | Not Detected | mg/L          | 0.0002  | 0.001  | U          |
| Analytical Method: EPA 245.1          | Anal          | yst: GAS     |             |              |               |         |        |            |
| * Mercury, Total by CVAA              | 2/10/20 11:35 | 2/11/20 14:4 | 9 1         | Not Detected | mg/L          | 0.0003  | 0.0005 | U          |
| Analytical Method: SM 2540C           | Anal          | yst: TJW     |             |              |               |         |        |            |
| * Solids, Dissolved                   | 2/7/20 15:30  | 2/11/20 10:3 | 0 1         | 986          | mg/L          |         | 50     |            |
| Analytical Method: SM4500Cl E         | Anal          | yst: JCC     |             |              |               |         |        |            |
| * Chloride                            | 2/7/20 11:24  | 2/7/20 11:24 | 20          | 42.8         | mg/L          | 10.00   | 20     |            |
| Analytical Method: SM4500F G 2017     | Anal          | yst: JCC     |             |              |               |         |        |            |
| * Fluoride                            | 2/7/20 14:32  | 2/7/20 14:32 | 1           | Not Detected | mg/L          | 0.05    | 0.1    | U          |
| Analytical Method: SM4500SO4 E        | Anal          | yst: JCC     |             |              |               |         |        |            |
| * Sulfate                             | 2/6/20 14:47  | 2/6/20 14:47 | 80          | 573          | mg/L          | 40.00   | 80     |            |
| Analytical Method: Field Measurements | Anal          | yst: TJD     |             |              |               |         |        |            |
| Conductivity                          | 2/4/20 09:53  | 2/4/20 09:53 |             | 1221.02      | uS/cm         |         |        | FA         |
| pН                                    | 2/4/20 09:53  | 2/4/20 09:53 |             | 3.83         | SU            |         |        | FA         |
| Temperature                           | 2/4/20 09:53  | 2/4/20 09:53 |             | 19.91        | С             |         |        | F <i>A</i> |
| Turbidity                             | 2/4/20 09:53  | 2/4/20 09:53 |             | 4.79         | NTU           |         |        | F.A        |

MDL's and RL's are adjusted for sample dilution, as applicable

## **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 2/4/20 09:55

**Customer ID:** 

**Delivery Date:** 2/6/20 13:21

Description: Gorgas Gypsum - MW-4 DUP

Laboratory ID Number: BA02547

|                                |       |             | MB        |       |         |         |          | Standard         |      | Rec       |       | Prec          |
|--------------------------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|------|-----------|-------|---------------|
| Sample Analysis                | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | Limit            | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA02555 Calcium, Total         | mg/L  | -0.0107     | 0.1518    | 5.00  | 5.12    | 5.09    | 5.23     | 4.25 to 5.75     | 102  | 70 to 130 | 0.504 | 20            |
| BA02555 Boron, Total           | mg/L  | 0.00144     | 0.0650254 | 1.00  | 0.995   | 0.997   | 1.01     | 0.85 to 1.15     | 99.5 | 70 to 130 | 0.196 | 20            |
| BA02555 Chromium, Total        | mg/L  | 0.0000464   | 0.00044   | 0.10  | 0.101   | 0.0991  | 0.0980   | 0.085 to 0.115   | 101  | 70 to 130 | 1.99  | 20            |
| BA02555 Beryllium, Total       | mg/L  | 0.0000453   | 0.00088   | 0.10  | 0.0958  | 0.0949  | 0.0962   | 0.085 to 0.115   | 95.8 | 70 to 130 | 0.982 | 20            |
| BA02555 Lead, Total            | mg/L  | 0.0000111   | 0.0001474 | 0.10  | 0.101   | 0.0989  | 0.0990   | 0.085 to 0.115   | 101  | 70 to 130 | 1.78  | 20            |
| BA02555 Cadmium, Total         | mg/L  | 0.00000727  | 0.0001474 | 0.10  | 0.0965  | 0.0979  | 0.0973   | 0.085 to 0.115   | 96.5 | 70 to 130 | 1.41  | 20            |
| BA02555 Cobalt, Total          | mg/L  | -0.00000314 | 0.0001474 | 0.10  | 0.100   | 0.0971  | 0.0961   | 0.085 to 0.115   | 100  | 70 to 130 | 3.44  | 20            |
| BA02555 Mercury, Total by CVAA | mg/L  | -0.0000109  | 0.0005    | 0.004 | 0.00414 | 0.00420 | 0.00396  | 0.0034 to 0.0046 | 103  | 70 to 130 | 1.49  | 20            |
| BA02555 Molybdenum, Total      | mg/L  | 0.00000558  | 0.0001474 | 0.10  | 0.0981  | 0.0992  | 0.0934   | 0.085 to 0.115   | 98.1 | 70 to 130 | 1.13  | 20            |
| BA02555 Barium, Total          | mg/L  | 0.00000799  | 0.0002    | 0.10  | 0.0967  | 0.0963  | 0.0917   | 0.085 to 0.115   | 96.7 | 70 to 130 | 0.395 | 20            |
| BA02555 Thallium, Total        | mg/L  | 0.0000141   | 0.0001474 | 0.10  | 0.103   | 0.100   | 0.0995   | 0.085 to 0.115   | 103  | 70 to 130 | 2.44  | 20            |
| BA02555 Arsenic, Total         | mg/L  | 0.0000218   | 0.0001474 | 0.10  | 0.103   | 0.103   | 0.105    | 0.085 to 0.115   | 103  | 70 to 130 | 0.188 | 20            |
| BA02555 Lithium, Total         | mg/L  | -0.0000191  | 0.0154    | 0.20  | 0.197   | 0.196   | 0.201    | 0.17 to 0.23     | 98.6 | 70 to 130 | 0.628 | 20            |
| BA02555 Antimony, Total        | mg/L  | 0.000176    | 0.00066   | 0.10  | 0.0926  | 0.0928  | 0.0883   | 0.085 to 0.115   | 92.6 | 70 to 130 | 0.256 | 20            |
| BA02555 Selenium, Total        | mg/L  | 0.000138    | 0.00066   | 0.10  | 0.0988  | 0.101   | 0.105    | 0.085 to 0.115   | 98.8 | 70 to 130 | 1.76  | 20            |

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Issued By: State of Florida, Department of Health

Expiration: June 30, 2018

<sup>\*</sup> Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114

## **Batch QC Summary**



Customer Account: WMWGORG Sample Date: 2/4/20 09:55

**Customer ID:** 

**Delivery Date:** 2/6/20 13:21

Description: Gorgas Gypsum - MW-4 DUP

Laboratory ID Number: BA02547

|                           |       |         | MB    |       |      | Sample    |          | Standard     |      | Rec       |       | Prec          |
|---------------------------|-------|---------|-------|-------|------|-----------|----------|--------------|------|-----------|-------|---------------|
| Sample Analysis           | Units | MB      | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA02551 Solids, Dissolved | mg/L  | -2.00   | 25    |       |      | 3110      | 53.0     | 40 to 60     |      |           | 0.115 | 5             |
| BA02552 Sulfate           | mg/L  | -0.434  | 0.50  | 2000  | 3400 | 1630      | 18.2     | 18 to 22     | 91.5 | 80 to 120 | 3.75  | 20            |
| BA02552 Chloride          | mg/L  | -0.0143 | 0.50  | 400   | 553  | 98.0      | 10.5     | 9 to 11      | 115  | 80 to 120 | 4.06  | 20            |
| BA02552 Fluoride          | mg/L  | 0.0121  | 0.05  | 2.50  | 2.68 | 0.134     | 2.61     | 2.25 to 2.75 | 102  | 80 to 120 | 1.50  | 20            |

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2017

<sup>\*</sup> Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

# **Certificate Of Analysis**



Description: Gorgas Gypsum - MW-12HLocation Code:WMWGORGCollected:2/4/20 11:12

**Customer ID:** 

**Submittal Date:** 2/6/20 13:21

Laboratory ID Number: BA02548

| Name                                  | Prepared      | Analyzed      | Vio Spec DF | Results      | Units         | MDL     | RL     | Q   |
|---------------------------------------|---------------|---------------|-------------|--------------|---------------|---------|--------|-----|
| Analytical Method: EPA 200.7          | Anal          | yst: RDA      |             | Preparati    | ion Method: E | PA 1638 |        |     |
| * Boron, Total                        | 2/10/20 13:30 | 2/13/20 11:0  | 2 1.015     | 0.0748       | mg/L          | 0.03    | 0.1    | J   |
| * Calcium, Total                      | 2/10/20 13:30 | 2/13/20 12:19 | 9 20.3      | 158          | mg/L          | 2.03    | 10.15  |     |
| * Lithium, Total                      | 2/10/20 13:30 | 2/13/20 11:0  | 2 1.015     | 0.394        | mg/L          | 0.01    | 0.02   |     |
| Analytical Method: EPA 200.8          | Anal          | yst: DLJ      |             | Preparati    | ion Method: E | PA 1638 |        |     |
| * Antimony, Total                     | 2/6/20 15:00  | 2/7/20 10:39  | 1.015       | Not Detected | mg/L          | 0.0008  | 0.003  | U   |
| * Arsenic, Total                      | 2/6/20 15:00  | 2/7/20 10:39  | 1.015       | 0.00157      | mg/L          | 0.001   | 0.005  | J   |
| * Barium, Total                       | 2/6/20 15:00  | 2/7/20 10:39  | 1.015       | 0.0141       | mg/L          | 0.002   | 0.01   |     |
| * Beryllium, Total                    | 2/6/20 15:00  | 2/7/20 10:39  | 1.015       | 0.00709      | mg/L          | 0.0006  | 0.003  |     |
| * Cadmium, Total                      | 2/6/20 15:00  | 2/7/20 10:39  | 1.015       | 0.00301      | mg/L          | 0.0003  | 0.001  |     |
| * Chromium, Total                     | 2/6/20 15:00  | 2/7/20 10:39  | 1.015       | Not Detected | mg/L          | 0.002   | 0.01   | U   |
| * Cobalt, Total                       | 2/6/20 15:00  | 2/7/20 10:39  | 1.015       | 0.351        | mg/L          | 0.002   | 0.005  |     |
| * Lead, Total                         | 2/6/20 15:00  | 2/7/20 10:39  | 1.015       | 0.00334      | mg/L          | 0.001   | 0.005  | J   |
| * Molybdenum, Total                   | 2/6/20 15:00  | 2/7/20 10:39  | 1.015       | Not Detected | mg/L          | 0.002   | 0.01   | U   |
| * Selenium, Total                     | 2/6/20 15:00  | 2/7/20 10:39  | 1.015       | Not Detected | mg/L          | 0.002   | 0.01   | U   |
| * Thallium, Total                     | 2/6/20 15:00  | 2/7/20 10:39  | 1.015       | 0.000491     | mg/L          | 0.0002  | 0.001  | J   |
| Analytical Method: EPA 245.1          | Anal          | yst: GAS      |             |              |               |         |        |     |
| * Mercury, Total by CVAA              | 2/10/20 11:35 | 2/11/20 14:5  | 1 1         | Not Detected | mg/L          | 0.0003  | 0.0005 | U   |
| Analytical Method: SM 2540C           | Anal          | yst: TJW      |             |              |               |         |        |     |
| * Solids, Dissolved                   | 2/7/20 15:30  | 2/11/20 10:30 | 0 1         | 1580         | mg/L          |         | 71.4   |     |
| Analytical Method: SM4500Cl E         | Anal          | yst: JCC      |             |              |               |         |        |     |
| * Chloride                            | 2/7/20 11:25  | 2/7/20 11:25  | 1           | 2.34         | mg/L          | 0.50    | 1      |     |
| Analytical Method: SM4500F G 2017     | Anal          | yst: JCC      |             |              |               |         |        |     |
| * Fluoride                            | 2/7/20 14:33  | 2/7/20 14:33  | 1           | Not Detected | mg/L          | 0.05    | 0.1    | U   |
| Analytical Method: SM4500SO4 E        | Anal          | yst: JCC      |             |              |               |         |        |     |
| * Sulfate                             | 2/6/20 14:48  | 2/6/20 14:48  | 80          | 978          | mg/L          | 40.00   | 80     |     |
| Analytical Method: Field Measurements | Anal          | yst: TJD      |             |              |               |         |        |     |
| Conductivity                          | 2/4/20 11:09  | 2/4/20 11:09  |             | 1706.04      | uS/cm         |         |        | FA  |
| рН                                    | 2/4/20 11:09  | 2/4/20 11:09  |             | 4.57         | SU            |         |        | FA  |
| Temperature                           | 2/4/20 11:09  | 2/4/20 11:09  |             | 19.23        | С             |         |        | F.A |
| Turbidity                             | 2/4/20 11:09  | 2/4/20 11:09  |             | 4.82         | NTU           |         |        | FA  |

MDL's and RL's are adjusted for sample dilution, as applicable

## **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 2/4/20 11:12

**Customer ID:** 

**Delivery Date:** 2/6/20 13:21

Description: Gorgas Gypsum - MW-12H

Laboratory ID Number: BA02548

|                                |       |             | MB        |       |         |         |          | Standard         |      | Rec       |       | Prec          |
|--------------------------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|------|-----------|-------|---------------|
| Sample Analysis                | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | Limit            | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA02555 Calcium, Total         | mg/L  | -0.0107     | 0.1518    | 5.00  | 5.12    | 5.09    | 5.23     | 4.25 to 5.75     | 102  | 70 to 130 | 0.504 | 20            |
| BA02555 Antimony, Total        | mg/L  | 0.000176    | 0.00066   | 0.10  | 0.0926  | 0.0928  | 0.0883   | 0.085 to 0.115   | 92.6 | 70 to 130 | 0.256 | 20            |
| BA02555 Selenium, Total        | mg/L  | 0.000138    | 0.00066   | 0.10  | 0.0988  | 0.101   | 0.105    | 0.085 to 0.115   | 98.8 | 70 to 130 | 1.76  | 20            |
| BA02555 Barium, Total          | mg/L  | 0.00000799  | 0.0002    | 0.10  | 0.0967  | 0.0963  | 0.0917   | 0.085 to 0.115   | 96.7 | 70 to 130 | 0.395 | 20            |
| BA02555 Thallium, Total        | mg/L  | 0.0000141   | 0.0001474 | 0.10  | 0.103   | 0.100   | 0.0995   | 0.085 to 0.115   | 103  | 70 to 130 | 2.44  | 20            |
| BA02555 Cadmium, Total         | mg/L  | 0.00000727  | 0.0001474 | 0.10  | 0.0965  | 0.0979  | 0.0973   | 0.085 to 0.115   | 96.5 | 70 to 130 | 1.41  | 20            |
| BA02555 Cobalt, Total          | mg/L  | -0.00000314 | 0.0001474 | 0.10  | 0.100   | 0.0971  | 0.0961   | 0.085 to 0.115   | 100  | 70 to 130 | 3.44  | 20            |
| BA02555 Mercury, Total by CVAA | mg/L  | -0.0000109  | 0.0005    | 0.004 | 0.00414 | 0.00420 | 0.00396  | 0.0034 to 0.0046 | 103  | 70 to 130 | 1.49  | 20            |
| BA02555 Molybdenum, Total      | mg/L  | 0.00000558  | 0.0001474 | 0.10  | 0.0981  | 0.0992  | 0.0934   | 0.085 to 0.115   | 98.1 | 70 to 130 | 1.13  | 20            |
| BA02555 Beryllium, Total       | mg/L  | 0.0000453   | 0.00088   | 0.10  | 0.0958  | 0.0949  | 0.0962   | 0.085 to 0.115   | 95.8 | 70 to 130 | 0.982 | 20            |
| BA02555 Lead, Total            | mg/L  | 0.0000111   | 0.0001474 | 0.10  | 0.101   | 0.0989  | 0.0990   | 0.085 to 0.115   | 101  | 70 to 130 | 1.78  | 20            |
| BA02555 Boron, Total           | mg/L  | 0.00144     | 0.0650254 | 1.00  | 0.995   | 0.997   | 1.01     | 0.85 to 1.15     | 99.5 | 70 to 130 | 0.196 | 20            |
| BA02555 Chromium, Total        | mg/L  | 0.0000464   | 0.00044   | 0.10  | 0.101   | 0.0991  | 0.0980   | 0.085 to 0.115   | 101  | 70 to 130 | 1.99  | 20            |
| BA02555 Arsenic, Total         | mg/L  | 0.0000218   | 0.0001474 | 0.10  | 0.103   | 0.103   | 0.105    | 0.085 to 0.115   | 103  | 70 to 130 | 0.188 | 20            |
| BA02555 Lithium, Total         | mg/L  | -0.0000191  | 0.0154    | 0.20  | 0.197   | 0.196   | 0.201    | 0.17 to 0.23     | 98.6 | 70 to 130 | 0.628 | 20            |

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Issued By: State of Florida, Department of Health

Expiration: June 30, 2018

<sup>\*</sup> Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114

## **Batch QC Summary**



Customer Account: WMWGORG Sample Date: 2/4/20 11:12

**Customer ID:** 

**Delivery Date:** 2/6/20 13:21

Description: Gorgas Gypsum - MW-12H

Laboratory ID Number: BA02548

|         |                   |       |         | MB    |       |      | Sample    |          | Standard     |      | Rec       |       | Prec          |
|---------|-------------------|-------|---------|-------|-------|------|-----------|----------|--------------|------|-----------|-------|---------------|
| Sample  | Analysis          | Units | MB      | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA02552 | Chloride          | mg/L  | -0.0143 | 0.50  | 400   | 553  | 98.0      | 10.5     | 9 to 11      | 115  | 80 to 120 | 4.06  | 20            |
| BA02552 | Fluoride          | mg/L  | 0.0121  | 0.05  | 2.50  | 2.68 | 0.134     | 2.61     | 2.25 to 2.75 | 102  | 80 to 120 | 1.50  | 20            |
| BA02551 | Solids, Dissolved | mg/L  | -2.00   | 25    |       |      | 3110      | 53.0     | 40 to 60     |      |           | 0.115 | 5             |
| BA02552 | Sulfate           | mg/L  | -0.434  | 0.50  | 2000  | 3400 | 1630      | 18.2     | 18 to 22     | 91.5 | 80 to 120 | 3.75  | 20            |

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2017

<sup>\*</sup> Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

# **Certificate Of Analysis**



Description: Gorgas Gypsum - MW-11HLocation Code:WMWGORGCollected:2/4/20 12:40

**Customer ID:** 

**Submittal Date:** 2/6/20 13:21

Laboratory ID Number: BA02549

| Name                                  | Prepared      | Analyzed     | Vio Spec DF | Results      | Units         | MDL     | RL     | Q   |
|---------------------------------------|---------------|--------------|-------------|--------------|---------------|---------|--------|-----|
| Analytical Method: EPA 200.7          | Anal          | yst: RDA     |             | Preparati    | ion Method: E | PA 1638 |        |     |
| * Boron, Total                        | 2/10/20 13:30 | 2/13/20 11:0 | 5 1.015     | Not Detected | mg/L          | 0.03    | 0.1    | U   |
| * Calcium, Total                      | 2/10/20 13:30 | 2/13/20 12:2 | 2 20.3      | 163          | mg/L          | 2.03    | 10.15  |     |
| * Lithium, Total                      | 2/10/20 13:30 | 2/13/20 11:0 | 5 1.015     | Not Detected | mg/L          | 0.01    | 0.02   | U   |
| Analytical Method: EPA 200.8          | Anal          | yst: DLJ     |             | Preparati    | ion Method: E | PA 1638 |        |     |
| * Antimony, Total                     | 2/6/20 15:00  | 2/7/20 10:41 | 1.015       | Not Detected | mg/L          | 0.0008  | 0.003  | U   |
| * Arsenic, Total                      | 2/6/20 15:00  | 2/7/20 10:41 | 1.015       | Not Detected | mg/L          | 0.001   | 0.005  | U   |
| * Barium, Total                       | 2/6/20 15:00  | 2/7/20 10:41 | 1.015       | 0.0148       | mg/L          | 0.002   | 0.01   |     |
| * Beryllium, Total                    | 2/6/20 15:00  | 2/7/20 10:41 | 1.015       | Not Detected | mg/L          | 0.0006  | 0.003  | U   |
| * Cadmium, Total                      | 2/6/20 15:00  | 2/7/20 10:41 | 1.015       | Not Detected | mg/L          | 0.0003  | 0.001  | U   |
| * Chromium, Total                     | 2/6/20 15:00  | 2/7/20 10:41 | 1.015       | Not Detected | mg/L          | 0.002   | 0.01   | U   |
| * Cobalt, Total                       | 2/6/20 15:00  | 2/7/20 10:41 | 1.015       | 0.00582      | mg/L          | 0.002   | 0.005  |     |
| * Lead, Total                         | 2/6/20 15:00  | 2/7/20 10:41 | 1.015       | Not Detected | mg/L          | 0.001   | 0.005  | U   |
| * Molybdenum, Total                   | 2/6/20 15:00  | 2/7/20 10:41 | 1.015       | Not Detected | mg/L          | 0.002   | 0.01   | U   |
| * Selenium, Total                     | 2/6/20 15:00  | 2/7/20 10:41 | 1.015       | Not Detected | mg/L          | 0.002   | 0.01   | U   |
| * Thallium, Total                     | 2/6/20 15:00  | 2/7/20 10:41 | 1.015       | Not Detected | mg/L          | 0.0002  | 0.001  | U   |
| Analytical Method: EPA 245.1          | Anal          | yst: GAS     |             |              |               |         |        |     |
| * Mercury, Total by CVAA              | 2/10/20 11:35 | 2/11/20 14:5 | 3 1         | Not Detected | mg/L          | 0.0003  | 0.0005 | U   |
| Analytical Method: SM 2540C           | Anal          | yst: TJW     |             |              |               |         |        |     |
| * Solids, Dissolved                   | 2/7/20 15:30  | 2/11/20 10:3 | 0 1         | 1200         | mg/L          |         | 71.4   |     |
| Analytical Method: SM4500Cl E         | Anal          | yst: JCC     |             |              |               |         |        |     |
| * Chloride                            | 2/7/20 11:27  | 2/7/20 11:27 | 1           | 4.27         | mg/L          | 0.50    | 1      |     |
| Analytical Method: SM4500F G 2017     | Anal          | yst: JCC     |             |              |               |         |        |     |
| * Fluoride                            | 2/7/20 14:35  | 2/7/20 14:35 | 1           | 0.0743       | mg/L          | 0.05    | 0.1    | J   |
| Analytical Method: SM4500SO4 E        | Anal          | yst: JCC     |             |              |               |         |        |     |
| * Sulfate                             | 2/6/20 14:49  | 2/6/20 14:49 | 80          | 725          | mg/L          | 40.00   | 80     |     |
| Analytical Method: Field Measurements | Anal          | yst: TJD     |             |              |               |         |        |     |
| Conductivity                          | 2/4/20 12:38  | 2/4/20 12:38 |             | 1472.55      | uS/cm         |         |        | FA  |
| pН                                    | 2/4/20 12:38  | 2/4/20 12:38 |             | 6.02         | SU            |         |        | FA  |
| Temperature                           | 2/4/20 12:38  | 2/4/20 12:38 |             | 19.26        | С             |         |        | FΑ  |
| Turbidity                             | 2/4/20 12:38  | 2/4/20 12:38 |             | 6.12         | NTU           |         |        | F.A |

MDL's and RL's are adjusted for sample dilution, as applicable

## **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 2/4/20 12:40

**Customer ID:** 

**Delivery Date:** 2/6/20 13:21

Description: Gorgas Gypsum - MW-11H

Laboratory ID Number: BA02549

|                                |       |             | MB        |       |         |         |          | Standard         |      | Rec       |       | Prec          |
|--------------------------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|------|-----------|-------|---------------|
| Sample Analysis                | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | Limit            | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA02555 Calcium, Total         | mg/L  | -0.0107     | 0.1518    | 5.00  | 5.12    | 5.09    | 5.23     | 4.25 to 5.75     | 102  | 70 to 130 | 0.504 | 20            |
| BA02555 Boron, Total           | mg/L  | 0.00144     | 0.0650254 | 1.00  | 0.995   | 0.997   | 1.01     | 0.85 to 1.15     | 99.5 | 70 to 130 | 0.196 | 20            |
| BA02555 Chromium, Total        | mg/L  | 0.0000464   | 0.00044   | 0.10  | 0.101   | 0.0991  | 0.0980   | 0.085 to 0.115   | 101  | 70 to 130 | 1.99  | 20            |
| BA02555 Barium, Total          | mg/L  | 0.00000799  | 0.0002    | 0.10  | 0.0967  | 0.0963  | 0.0917   | 0.085 to 0.115   | 96.7 | 70 to 130 | 0.395 | 20            |
| BA02555 Thallium, Total        | mg/L  | 0.0000141   | 0.0001474 | 0.10  | 0.103   | 0.100   | 0.0995   | 0.085 to 0.115   | 103  | 70 to 130 | 2.44  | 20            |
| BA02555 Cadmium, Total         | mg/L  | 0.00000727  | 0.0001474 | 0.10  | 0.0965  | 0.0979  | 0.0973   | 0.085 to 0.115   | 96.5 | 70 to 130 | 1.41  | 20            |
| BA02555 Cobalt, Total          | mg/L  | -0.00000314 | 0.0001474 | 0.10  | 0.100   | 0.0971  | 0.0961   | 0.085 to 0.115   | 100  | 70 to 130 | 3.44  | 20            |
| BA02555 Mercury, Total by CVAA | mg/L  | -0.0000109  | 0.0005    | 0.004 | 0.00414 | 0.00420 | 0.00396  | 0.0034 to 0.0046 | 103  | 70 to 130 | 1.49  | 20            |
| BA02555 Molybdenum, Total      | mg/L  | 0.00000558  | 0.0001474 | 0.10  | 0.0981  | 0.0992  | 0.0934   | 0.085 to 0.115   | 98.1 | 70 to 130 | 1.13  | 20            |
| BA02555 Antimony, Total        | mg/L  | 0.000176    | 0.00066   | 0.10  | 0.0926  | 0.0928  | 0.0883   | 0.085 to 0.115   | 92.6 | 70 to 130 | 0.256 | 20            |
| BA02555 Selenium, Total        | mg/L  | 0.000138    | 0.00066   | 0.10  | 0.0988  | 0.101   | 0.105    | 0.085 to 0.115   | 98.8 | 70 to 130 | 1.76  | 20            |
| BA02555 Arsenic, Total         | mg/L  | 0.0000218   | 0.0001474 | 0.10  | 0.103   | 0.103   | 0.105    | 0.085 to 0.115   | 103  | 70 to 130 | 0.188 | 20            |
| BA02555 Lithium, Total         | mg/L  | -0.0000191  | 0.0154    | 0.20  | 0.197   | 0.196   | 0.201    | 0.17 to 0.23     | 98.6 | 70 to 130 | 0.628 | 20            |
| BA02555 Beryllium, Total       | mg/L  | 0.0000453   | 0.00088   | 0.10  | 0.0958  | 0.0949  | 0.0962   | 0.085 to 0.115   | 95.8 | 70 to 130 | 0.982 | 20            |
| BA02555 Lead, Total            | mg/L  | 0.0000111   | 0.0001474 | 0.10  | 0.101   | 0.0989  | 0.0990   | 0.085 to 0.115   | 101  | 70 to 130 | 1.78  | 20            |

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Issued By: State of Florida, Department of Health

Expiration: June 30, 2018

<sup>\*</sup> Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114

## **Batch QC Summary**



Customer Account: WMWGORG Sample Date: 2/4/20 12:40

**Customer ID:** 

**Delivery Date:** 2/6/20 13:21

Description: Gorgas Gypsum - MW-11H

Laboratory ID Number: BA02549

|                           |       |         | MB    |       |      | Sample    |          | Standard     |      | Rec       |       | Prec          |
|---------------------------|-------|---------|-------|-------|------|-----------|----------|--------------|------|-----------|-------|---------------|
| Sample Analysis           | Units | MB      | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA02552 Chloride          | mg/L  | -0.0143 | 0.50  | 400   | 553  | 98.0      | 10.5     | 9 to 11      | 115  | 80 to 120 | 4.06  | 20            |
| BA02552 Fluoride          | mg/L  | 0.0121  | 0.05  | 2.50  | 2.68 | 0.134     | 2.61     | 2.25 to 2.75 | 102  | 80 to 120 | 1.50  | 20            |
| BA02551 Solids, Dissolved | mg/L  | -2.00   | 25    |       |      | 3110      | 53.0     | 40 to 60     |      |           | 0.115 | 5             |
| BA02552 Sulfate           | mg/L  | -0.434  | 0.50  | 2000  | 3400 | 1630      | 18.2     | 18 to 22     | 91.5 | 80 to 120 | 3.75  | 20            |

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2017

<sup>\*</sup> Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

# **Certificate Of Analysis**



Description: Gorgas Gypsum - MW-13HLocation Code:WMWGORGCollected:2/4/20 13:35

**Customer ID:** 

Submittal Date: 2/6/20 13:21

Laboratory ID Number: BA02550

| Name                                  | Prepared      | Analyzed      | Vio Spec DF | Results      | Units         | MDL     | RL     | Q   |
|---------------------------------------|---------------|---------------|-------------|--------------|---------------|---------|--------|-----|
| Analytical Method: EPA 200.7          | Anal          | yst: RDA      |             | Preparati    | ion Method: E | PA 1638 |        |     |
| * Boron, Total                        | 2/10/20 13:30 | 2/13/20 11:0  | 8 1.015     | 0.202        | mg/L          | 0.03    | 0.1    |     |
| * Calcium, Total                      | 2/10/20 13:30 | 2/13/20 12:2  | 5 20.3      | 171          | mg/L          | 2.03    | 10.15  |     |
| * Lithium, Total                      | 2/10/20 13:30 | 2/13/20 11:0  | 8 1.015     | 0.0506       | mg/L          | 0.01    | 0.02   |     |
| Analytical Method: EPA 200.8          | Anal          | yst: DLJ      |             | Preparati    | ion Method: E | PA 1638 |        |     |
| * Antimony, Total                     | 2/6/20 15:00  | 2/7/20 10:44  | 1.015       | Not Detected | mg/L          | 0.0008  | 0.003  | U   |
| * Arsenic, Total                      | 2/6/20 15:00  | 2/7/20 10:44  | 1.015       | 0.160        | mg/L          | 0.001   | 0.005  |     |
| * Barium, Total                       | 2/6/20 15:00  | 2/7/20 10:44  | 1.015       | 0.0296       | mg/L          | 0.002   | 0.01   |     |
| * Beryllium, Total                    | 2/6/20 15:00  | 2/7/20 10:44  | 1.015       | Not Detected | mg/L          | 0.0006  | 0.003  | U   |
| * Cadmium, Total                      | 2/6/20 15:00  | 2/7/20 10:44  | 1.015       | Not Detected | mg/L          | 0.0003  | 0.001  | U   |
| * Chromium, Total                     | 2/6/20 15:00  | 2/7/20 10:44  | 1.015       | Not Detected | mg/L          | 0.002   | 0.01   | U   |
| * Cobalt, Total                       | 2/6/20 15:00  | 2/7/20 10:44  | 1.015       | 0.0442       | mg/L          | 0.002   | 0.005  |     |
| * Lead, Total                         | 2/6/20 15:00  | 2/7/20 10:44  | 1.015       | Not Detected | mg/L          | 0.001   | 0.005  | U   |
| * Molybdenum, Total                   | 2/6/20 15:00  | 2/7/20 10:44  | 1.015       | Not Detected | mg/L          | 0.002   | 0.01   | U   |
| * Selenium, Total                     | 2/6/20 15:00  | 2/7/20 10:44  | 1.015       | Not Detected | mg/L          | 0.002   | 0.01   | U   |
| * Thallium, Total                     | 2/6/20 15:00  | 2/7/20 10:44  | 1.015       | Not Detected | mg/L          | 0.0002  | 0.001  | U   |
| Analytical Method: EPA 245.1          | Anal          | yst: GAS      |             |              |               |         |        |     |
| * Mercury, Total by CVAA              | 2/10/20 11:35 | 2/11/20 14:50 | 6 1         | Not Detected | mg/L          | 0.0003  | 0.0005 | U   |
| Analytical Method: SM 2540C           | Anal          | yst: TJW      |             |              |               |         |        |     |
| * Solids, Dissolved                   | 2/7/20 15:30  | 2/11/20 10:30 | 0 1         | 1200         | mg/L          |         | 71.4   |     |
| Analytical Method: SM4500Cl E         | Anal          | yst: JCC      |             |              |               |         |        |     |
| * Chloride                            | 2/7/20 11:28  | 2/7/20 11:28  | 1           | 12.9         | mg/L          | 0.50    | 1      |     |
| Analytical Method: SM4500F G 2017     | Anal          | yst: JCC      |             |              |               |         |        |     |
| * Fluoride                            | 2/7/20 14:36  | 2/7/20 14:36  | 1           | 0.115        | mg/L          | 0.05    | 0.1    |     |
| Analytical Method: SM4500SO4 E        | Anal          | yst: JCC      |             |              |               |         |        |     |
| * Sulfate                             | 2/6/20 14:50  | 2/6/20 14:50  | 80          | 720          | mg/L          | 40.00   | 80     |     |
| Analytical Method: Field Measurements |               | yst: TJD      |             |              |               |         |        |     |
| Conductivity                          | 2/4/20 13:33  | 2/4/20 13:33  |             | 1502.46      | uS/cm         |         |        | FΑ  |
| рН                                    | 2/4/20 13:33  | 2/4/20 13:33  |             | 6.00         | SU            |         |        | FA  |
| Temperature                           | 2/4/20 13:33  | 2/4/20 13:33  |             | 19.29        | С             |         |        | FΑ  |
| Turbidity                             | 2/4/20 13:33  | 2/4/20 13:33  |             | 1.52         | NTU           |         |        | F.A |

MDL's and RL's are adjusted for sample dilution, as applicable

## **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 2/4/20 13:35

**Customer ID:** 

**Delivery Date:** 2/6/20 13:21

Description: Gorgas Gypsum - MW-13H

Laboratory ID Number: BA02550

|                                |       |             | MB        |       |         |         |          | Standard         |      | Rec       |       | Prec          |
|--------------------------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|------|-----------|-------|---------------|
| Sample Analysis                | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | l Limit          | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA02555 Calcium, Total         | mg/L  | -0.0107     | 0.1518    | 5.00  | 5.12    | 5.09    | 5.23     | 4.25 to 5.75     | 102  | 70 to 130 | 0.504 | 20            |
| BA02555 Antimony, Total        | mg/L  | 0.000176    | 0.00066   | 0.10  | 0.0926  | 0.0928  | 0.0883   | 0.085 to 0.115   | 92.6 | 70 to 130 | 0.256 | 20            |
| BA02555 Selenium, Total        | mg/L  | 0.000138    | 0.00066   | 0.10  | 0.0988  | 0.101   | 0.105    | 0.085 to 0.115   | 98.8 | 70 to 130 | 1.76  | 20            |
| BA02555 Boron, Total           | mg/L  | 0.00144     | 0.0650254 | 1.00  | 0.995   | 0.997   | 1.01     | 0.85 to 1.15     | 99.5 | 70 to 130 | 0.196 | 20            |
| BA02555 Chromium, Total        | mg/L  | 0.0000464   | 0.00044   | 0.10  | 0.101   | 0.0991  | 0.0980   | 0.085 to 0.115   | 101  | 70 to 130 | 1.99  | 20            |
| BA02555 Barium, Total          | mg/L  | 0.00000799  | 0.0002    | 0.10  | 0.0967  | 0.0963  | 0.0917   | 0.085 to 0.115   | 96.7 | 70 to 130 | 0.395 | 20            |
| BA02555 Thallium, Total        | mg/L  | 0.0000141   | 0.0001474 | 0.10  | 0.103   | 0.100   | 0.0995   | 0.085 to 0.115   | 103  | 70 to 130 | 2.44  | 20            |
| BA02555 Arsenic, Total         | mg/L  | 0.0000218   | 0.0001474 | 0.10  | 0.103   | 0.103   | 0.105    | 0.085 to 0.115   | 103  | 70 to 130 | 0.188 | 20            |
| BA02555 Lithium, Total         | mg/L  | -0.0000191  | 0.0154    | 0.20  | 0.197   | 0.196   | 0.201    | 0.17 to 0.23     | 98.6 | 70 to 130 | 0.628 | 20            |
| BA02555 Beryllium, Total       | mg/L  | 0.0000453   | 0.00088   | 0.10  | 0.0958  | 0.0949  | 0.0962   | 0.085 to 0.115   | 95.8 | 70 to 130 | 0.982 | 20            |
| BA02555 Lead, Total            | mg/L  | 0.0000111   | 0.0001474 | 0.10  | 0.101   | 0.0989  | 0.0990   | 0.085 to 0.115   | 101  | 70 to 130 | 1.78  | 20            |
| BA02555 Cadmium, Total         | mg/L  | 0.00000727  | 0.0001474 | 0.10  | 0.0965  | 0.0979  | 0.0973   | 0.085 to 0.115   | 96.5 | 70 to 130 | 1.41  | 20            |
| BA02555 Cobalt, Total          | mg/L  | -0.00000314 | 0.0001474 | 0.10  | 0.100   | 0.0971  | 0.0961   | 0.085 to 0.115   | 100  | 70 to 130 | 3.44  | 20            |
| BA02555 Mercury, Total by CVAA | mg/L  | -0.0000109  | 0.0005    | 0.004 | 0.00414 | 0.00420 | 0.00396  | 0.0034 to 0.0046 | 103  | 70 to 130 | 1.49  | 20            |
| BA02555 Molybdenum, Total      | mg/L  | 0.00000558  | 0.0001474 | 0.10  | 0.0981  | 0.0992  | 0.0934   | 0.085 to 0.115   | 98.1 | 70 to 130 | 1.13  | 20            |

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Issued By: State of Florida, Department of Health

Expiration: June 30, 2018

<sup>\*</sup> Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114

## **Batch QC Summary**



Customer Account: WMWGORG Sample Date: 2/4/20 13:35

**Customer ID:** 

**Delivery Date:** 2/6/20 13:21

Description: Gorgas Gypsum - MW-13H

Laboratory ID Number: BA02550

|         |                   |       |         | MB    |       |      | Sample    |          | Standard     |       | Rec       |       | Prec          |
|---------|-------------------|-------|---------|-------|-------|------|-----------|----------|--------------|-------|-----------|-------|---------------|
| Sample  | Analysis          | Units | MB      | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec   | Limit     | Prec  | <u>Li</u> mit |
| BA02552 | Chloride          | mg/L  | -0.0143 | 0.50  | 400   | 553  | 98.0      | 10.5     | 9 to 11      | 115   | 80 to 120 | 4.06  | 20            |
| BA02552 | Fluoride          | mg/L  | 0.0121  | 0.05  | 2.50  | 2.68 | 0.134     | 2.61     | 2.25 to 2.75 | 102 8 | 80 to 120 | 1.50  | 20            |
| BA02551 | Solids, Dissolved | mg/L  | -2.00   | 25    |       |      | 3110      | 53.0     | 40 to 60     |       |           | 0.115 | 5             |
| BA02552 | Sulfate           | mg/L  | -0.434  | 0.50  | 2000  | 3400 | 1630      | 18.2     | 18 to 22     | 91.5  | 80 to 120 | 3.75  | 20            |

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

\* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

Expiration: June 30, 2017

# **Certificate Of Analysis**



Description: Gorgas Gypsum - MW-9HLocation Code:WMWGORGCollected:2/4/20 14:48

**Customer ID:** 

Submittal Date: 2/6/20 13:21

Laboratory ID Number: BA02551

| Name                                  | Prepared      | Analyzed      | Vio Spec DF | Results      | Units         | MDL     | RL     | Q  |
|---------------------------------------|---------------|---------------|-------------|--------------|---------------|---------|--------|----|
| Analytical Method: EPA 200.7          | Anal          | yst: RDA      |             | Preparati    | ion Method: E | PA 1638 |        |    |
| * Boron, Total                        | 2/10/20 13:30 | 2/13/20 11:1  | 1 1.015     | 9.63         | mg/L          | 0.03    | 0.1    |    |
| * Calcium, Total                      | 2/10/20 13:30 | 2/13/20 12:28 | 3 20.3      | 413          | mg/L          | 2.03    | 10.15  |    |
| * Lithium, Total                      | 2/10/20 13:30 | 2/13/20 11:1  | 1 1.015     | 0.203        | mg/L          | 0.01    | 0.02   |    |
| Analytical Method: EPA 200.8          | Anal          | yst: DLJ      |             | Preparati    | ion Method: E | PA 1638 |        |    |
| * Antimony, Total                     | 2/6/20 15:00  | 2/7/20 10:47  | 1.015       | Not Detected | mg/L          | 0.0008  | 0.003  | U  |
| * Arsenic, Total                      | 2/6/20 15:00  | 2/7/20 10:47  | 1.015       | 0.00123      | mg/L          | 0.001   | 0.005  | J  |
| * Barium, Total                       | 2/6/20 15:00  | 2/7/20 10:47  | 1.015       | 0.0148       | mg/L          | 0.002   | 0.01   |    |
| * Beryllium, Total                    | 2/6/20 15:00  | 2/7/20 10:47  | 1.015       | 0.000929     | mg/L          | 0.0006  | 0.003  | J  |
| * Cadmium, Total                      | 2/6/20 15:00  | 2/7/20 10:47  | 1.015       | 0.000349     | mg/L          | 0.0003  | 0.001  | J  |
| * Chromium, Total                     | 2/6/20 15:00  | 2/7/20 10:47  | 1.015       | Not Detected | mg/L          | 0.002   | 0.01   | U  |
| * Cobalt, Total                       | 2/6/20 15:00  | 2/7/20 10:47  | 1.015       | 0.159        | mg/L          | 0.002   | 0.005  |    |
| * Lead, Total                         | 2/6/20 15:00  | 2/7/20 10:47  | 1.015       | Not Detected | mg/L          | 0.001   | 0.005  | U  |
| * Molybdenum, Total                   | 2/6/20 15:00  | 2/7/20 10:47  | 1.015       | Not Detected | mg/L          | 0.002   | 0.01   | U  |
| * Selenium, Total                     | 2/6/20 15:00  | 2/7/20 10:47  | 1.015       | Not Detected | mg/L          | 0.002   | 0.01   | U  |
| * Thallium, Total                     | 2/6/20 15:00  | 2/7/20 10:47  | 1.015       | 0.000233     | mg/L          | 0.0002  | 0.001  | J  |
| Analytical Method: EPA 245.1          | Anal          | yst: GAS      |             |              |               |         |        |    |
| * Mercury, Total by CVAA              | 2/10/20 11:35 | 2/11/20 14:58 | 3 1         | Not Detected | mg/L          | 0.0003  | 0.0005 | U  |
| Analytical Method: SM 2540C           | Anal          | yst: TJW      |             |              |               |         |        |    |
| * Solids, Dissolved                   | 2/7/20 15:30  | 2/11/20 10:30 | 0 1         | 3110         | mg/L          |         | 178.6  |    |
| Analytical Method: SM4500Cl E         | Anal          | yst: JCC      |             |              |               |         |        |    |
| * Chloride                            | 2/7/20 11:29  | 2/7/20 11:29  | 40          | 139          | mg/L          | 20.00   | 40     |    |
| Analytical Method: SM4500F G 2017     | Anal          | yst: JCC      |             |              |               |         |        |    |
| * Fluoride                            | 2/7/20 14:37  | 2/7/20 14:37  | 1           | 0.205        | mg/L          | 0.05    | 0.1    |    |
| Analytical Method: SM4500SO4 E        | Anal          | yst: JCC      |             |              |               |         |        |    |
| * Sulfate                             | 2/6/20 14:52  | 2/6/20 14:52  | 100         | 1710         | mg/L          | 50.00   | 100    |    |
| Analytical Method: Field Measurements | Anal          | yst: TJD      |             |              |               |         |        |    |
| Conductivity                          | 2/4/20 14:45  | 2/4/20 14:45  |             | 3250.54      | uS/cm         |         |        | FA |
| рН                                    | 2/4/20 14:45  | 2/4/20 14:45  |             | 5.34         | SU            |         |        | FA |
| Temperature                           | 2/4/20 14:45  | 2/4/20 14:45  |             | 20.45        | С             |         |        | FΑ |
| Turbidity                             | 2/4/20 14:45  | 2/4/20 14:45  |             | 3.91         | NTU           |         |        | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

## **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 2/4/20 14:48

**Customer ID:** 

**Delivery Date:** 2/6/20 13:21

Description: Gorgas Gypsum - MW-9H

Laboratory ID Number: BA02551

|                                |       |             | MB        |       |         |         |          | Standard         |      | Rec       |       | Prec          |
|--------------------------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|------|-----------|-------|---------------|
| Sample Analysis                | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | l Limit          | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA02555 Calcium, Total         | mg/L  | -0.0107     | 0.1518    | 5.00  | 5.12    | 5.09    | 5.23     | 4.25 to 5.75     | 102  | 70 to 130 | 0.504 | 20            |
| BA02555 Beryllium, Total       | mg/L  | 0.0000453   | 0.00088   | 0.10  | 0.0958  | 0.0949  | 0.0962   | 0.085 to 0.115   | 95.8 | 70 to 130 | 0.982 | 20            |
| BA02555 Lead, Total            | mg/L  | 0.0000111   | 0.0001474 | 0.10  | 0.101   | 0.0989  | 0.0990   | 0.085 to 0.115   | 101  | 70 to 130 | 1.78  | 20            |
| BA02555 Antimony, Total        | mg/L  | 0.000176    | 0.00066   | 0.10  | 0.0926  | 0.0928  | 0.0883   | 0.085 to 0.115   | 92.6 | 70 to 130 | 0.256 | 20            |
| BA02555 Selenium, Total        | mg/L  | 0.000138    | 0.00066   | 0.10  | 0.0988  | 0.101   | 0.105    | 0.085 to 0.115   | 98.8 | 70 to 130 | 1.76  | 20            |
| BA02555 Boron, Total           | mg/L  | 0.00144     | 0.0650254 | 1.00  | 0.995   | 0.997   | 1.01     | 0.85 to 1.15     | 99.5 | 70 to 130 | 0.196 | 20            |
| BA02555 Chromium, Total        | mg/L  | 0.0000464   | 0.00044   | 0.10  | 0.101   | 0.0991  | 0.0980   | 0.085 to 0.115   | 101  | 70 to 130 | 1.99  | 20            |
| BA02555 Barium, Total          | mg/L  | 0.00000799  | 0.0002    | 0.10  | 0.0967  | 0.0963  | 0.0917   | 0.085 to 0.115   | 96.7 | 70 to 130 | 0.395 | 20            |
| BA02555 Thallium, Total        | mg/L  | 0.0000141   | 0.0001474 | 0.10  | 0.103   | 0.100   | 0.0995   | 0.085 to 0.115   | 103  | 70 to 130 | 2.44  | 20            |
| BA02555 Cadmium, Total         | mg/L  | 0.00000727  | 0.0001474 | 0.10  | 0.0965  | 0.0979  | 0.0973   | 0.085 to 0.115   | 96.5 | 70 to 130 | 1.41  | 20            |
| BA02555 Cobalt, Total          | mg/L  | -0.00000314 | 0.0001474 | 0.10  | 0.100   | 0.0971  | 0.0961   | 0.085 to 0.115   | 100  | 70 to 130 | 3.44  | 20            |
| BA02555 Mercury, Total by CVAA | mg/L  | -0.0000109  | 0.0005    | 0.004 | 0.00414 | 0.00420 | 0.00396  | 0.0034 to 0.0046 | 103  | 70 to 130 | 1.49  | 20            |
| BA02555 Molybdenum, Total      | mg/L  | 0.00000558  | 0.0001474 | 0.10  | 0.0981  | 0.0992  | 0.0934   | 0.085 to 0.115   | 98.1 | 70 to 130 | 1.13  | 20            |
| BA02555 Arsenic, Total         | mg/L  | 0.0000218   | 0.0001474 | 0.10  | 0.103   | 0.103   | 0.105    | 0.085 to 0.115   | 103  | 70 to 130 | 0.188 | 20            |
| BA02555 Lithium, Total         | mg/L  | -0.0000191  | 0.0154    | 0.20  | 0.197   | 0.196   | 0.201    | 0.17 to 0.23     | 98.6 | 70 to 130 | 0.628 | 20            |

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Issued By: State of Florida, Department of Health

Expiration: June 30, 2018

<sup>\*</sup> Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114

## **Batch QC Summary**



Customer Account: WMWGORG Sample Date: 2/4/20 14:48

**Customer ID:** 

**Delivery Date:** 2/6/20 13:21

Description: Gorgas Gypsum - MW-9H

Laboratory ID Number: BA02551

|                           |       |         | MB    |       |      | Sample    |          | Standard     |      | Rec       |       | Prec          |
|---------------------------|-------|---------|-------|-------|------|-----------|----------|--------------|------|-----------|-------|---------------|
| Sample Analysis           | Units | MB      | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA02552 Chloride          | mg/L  | -0.0143 | 0.50  | 400   | 553  | 98.0      | 10.5     | 9 to 11      | 115  | 80 to 120 | 4.06  | 20            |
| BA02552 Fluoride          | mg/L  | 0.0121  | 0.05  | 2.50  | 2.68 | 0.134     | 2.61     | 2.25 to 2.75 | 102  | 80 to 120 | 1.50  | 20            |
| BA02551 Solids, Dissolved | mg/L  | -2.00   | 25    |       |      | 3110      | 53.0     | 40 to 60     |      |           | 0.115 | 5             |
| BA02552 Sulfate           | mg/L  | -0.434  | 0.50  | 2000  | 3400 | 1630      | 18.2     | 18 to 22     | 91.5 | 80 to 120 | 3.75  | 20            |

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2017

<sup>\*</sup> Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

# **Certificate Of Analysis**



Description: Gorgas Gypsum - MW-8Location Code:WMWGORGCollected:2/4/20 16:35

**Customer ID:** 

**Submittal Date:** 2/6/20 13:21

Laboratory ID Number: BA02552

| Name                                  | Prepared      | Analyzed     | Vio Spec DF | Results      | Units         | MDL      | RL     | Q |
|---------------------------------------|---------------|--------------|-------------|--------------|---------------|----------|--------|---|
| Analytical Method: EPA 200.7          | Anal          | yst: RDA     |             | Preparati    | ion Method: I | EPA 1638 |        |   |
| * Boron, Total                        | 2/10/20 13:30 | 2/13/20 11:1 | 4 1.015     | 1.47         | mg/L          | 0.03     | 0.1    |   |
| * Calcium, Total                      | 2/10/20 13:30 | 2/13/20 12:3 | 1 20.3      | 461          | mg/L          | 2.03     | 10.15  |   |
| * Lithium, Total                      | 2/10/20 13:30 | 2/13/20 11:1 | 4 1.015     | 0.188        | mg/L          | 0.01     | 0.02   |   |
| Analytical Method: EPA 200.8          | Anal          | yst: DLJ     |             | Preparati    | ion Method: I | EPA 1638 |        |   |
| * Antimony, Total                     | 2/6/20 15:00  | 2/7/20 10:49 | 1.015       | Not Detected | mg/L          | 0.0008   | 0.003  | U |
| * Arsenic, Total                      | 2/6/20 15:00  | 2/7/20 10:49 | 1.015       | Not Detected | mg/L          | 0.001    | 0.005  | U |
| * Barium, Total                       | 2/6/20 15:00  | 2/7/20 10:49 | 1.015       | 0.0209       | mg/L          | 0.002    | 0.01   |   |
| * Beryllium, Total                    | 2/6/20 15:00  | 2/7/20 10:49 | 1.015       | Not Detected | mg/L          | 0.0006   | 0.003  | U |
| * Cadmium, Total                      | 2/6/20 15:00  | 2/7/20 10:49 | 1.015       | Not Detected | mg/L          | 0.0003   | 0.001  | U |
| * Chromium, Total                     | 2/6/20 15:00  | 2/7/20 10:49 | 1.015       | Not Detected | mg/L          | 0.002    | 0.01   | U |
| * Cobalt, Total                       | 2/6/20 15:00  | 2/7/20 10:49 | 1.015       | Not Detected | mg/L          | 0.002    | 0.005  | U |
| * Lead, Total                         | 2/6/20 15:00  | 2/7/20 10:49 | 1.015       | Not Detected | mg/L          | 0.001    | 0.005  | U |
| * Molybdenum, Total                   | 2/6/20 15:00  | 2/7/20 10:49 | 1.015       | Not Detected | mg/L          | 0.002    | 0.01   | U |
| * Selenium, Total                     | 2/6/20 15:00  | 2/7/20 10:49 | 1.015       | Not Detected | mg/L          | 0.002    | 0.01   | U |
| * Thallium, Total                     | 2/6/20 15:00  | 2/7/20 10:49 | 1.015       | Not Detected | mg/L          | 0.0002   | 0.001  | U |
| Analytical Method: EPA 245.1          | Anal          | yst: GAS     |             |              |               |          |        |   |
| * Mercury, Total by CVAA              | 2/10/20 11:35 | 2/11/20 15:0 | 0 1         | Not Detected | mg/L          | 0.0003   | 0.0005 | U |
| Analytical Method: SM 2540C           | Anal          | yst: TJW     |             |              |               |          |        |   |
| * Solids, Dissolved                   | 2/7/20 15:30  | 2/11/20 10:3 | 0 1         | 3190         | mg/L          |          | 178.6  |   |
| Analytical Method: SM4500Cl E         | Anal          | yst: JCC     |             |              |               |          |        |   |
| * Chloride                            | 2/7/20 11:30  | 2/7/20 11:30 | 40          | 94.1         | mg/L          | 20.00    | 40     |   |
| Analytical Method: SM4500F G 2017     | Anal          | yst: JCC     |             |              |               |          |        |   |
| * Fluoride                            | 2/7/20 14:38  | 2/7/20 14:38 | 1           | 0.132        | mg/L          | 0.05     | 0.1    |   |
| Analytical Method: SM4500SO4 E        | Anal          | yst: JCC     |             |              |               |          |        |   |
| * Sulfate                             | 2/6/20 14:53  | 2/6/20 14:53 | 100         | 1570         | mg/L          | 50.00    | 100    |   |
| Analytical Method: Field Measurements | Anal          | yst: TJD     |             |              |               |          |        |   |
| Conductivity                          | 2/4/20 16:32  | 2/4/20 16:32 |             | 3470.58      | uS/cm         |          |        | F |
| рН                                    | 2/4/20 16:32  | 2/4/20 16:32 |             | 6.85         | SU            |          |        | F |
| Temperature                           | 2/4/20 16:32  | 2/4/20 16:32 |             | 19.85        | С             |          |        | F |
| Turbidity                             | 2/4/20 16:32  | 2/4/20 16:32 |             | 1.6          | NTU           |          |        | F |

MDL's and RL's are adjusted for sample dilution, as applicable

## **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 2/4/20 16:35

**Customer ID:** 

**Delivery Date:** 2/6/20 13:21

Description: Gorgas Gypsum - MW-8

Laboratory ID Number: BA02552

|                                |       |             | MB        |       |         |         |          | Standard         |      | Rec       |       | Prec          |
|--------------------------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|------|-----------|-------|---------------|
| Sample Analysis                | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | Limit            | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA02555 Calcium, Total         | mg/L  | -0.0107     | 0.1518    | 5.00  | 5.12    | 5.09    | 5.23     | 4.25 to 5.75     | 102  | 70 to 130 | 0.504 | 20            |
| BA02555 Boron, Total           | mg/L  | 0.00144     | 0.0650254 | 1.00  | 0.995   | 0.997   | 1.01     | 0.85 to 1.15     | 99.5 | 70 to 130 | 0.196 | 20            |
| BA02555 Chromium, Total        | mg/L  | 0.0000464   | 0.00044   | 0.10  | 0.101   | 0.0991  | 0.0980   | 0.085 to 0.115   | 101  | 70 to 130 | 1.99  | 20            |
| BA02555 Beryllium, Total       | mg/L  | 0.0000453   | 0.00088   | 0.10  | 0.0958  | 0.0949  | 0.0962   | 0.085 to 0.115   | 95.8 | 70 to 130 | 0.982 | 20            |
| BA02555 Lead, Total            | mg/L  | 0.0000111   | 0.0001474 | 0.10  | 0.101   | 0.0989  | 0.0990   | 0.085 to 0.115   | 101  | 70 to 130 | 1.78  | 20            |
| BA02555 Antimony, Total        | mg/L  | 0.000176    | 0.00066   | 0.10  | 0.0926  | 0.0928  | 0.0883   | 0.085 to 0.115   | 92.6 | 70 to 130 | 0.256 | 20            |
| BA02555 Selenium, Total        | mg/L  | 0.000138    | 0.00066   | 0.10  | 0.0988  | 0.101   | 0.105    | 0.085 to 0.115   | 98.8 | 70 to 130 | 1.76  | 20            |
| BA02555 Barium, Total          | mg/L  | 0.00000799  | 0.0002    | 0.10  | 0.0967  | 0.0963  | 0.0917   | 0.085 to 0.115   | 96.7 | 70 to 130 | 0.395 | 20            |
| BA02555 Thallium, Total        | mg/L  | 0.0000141   | 0.0001474 | 0.10  | 0.103   | 0.100   | 0.0995   | 0.085 to 0.115   | 103  | 70 to 130 | 2.44  | 20            |
| BA02555 Cadmium, Total         | mg/L  | 0.00000727  | 0.0001474 | 0.10  | 0.0965  | 0.0979  | 0.0973   | 0.085 to 0.115   | 96.5 | 70 to 130 | 1.41  | 20            |
| BA02555 Cobalt, Total          | mg/L  | -0.00000314 | 0.0001474 | 0.10  | 0.100   | 0.0971  | 0.0961   | 0.085 to 0.115   | 100  | 70 to 130 | 3.44  | 20            |
| BA02555 Mercury, Total by CVAA | mg/L  | -0.0000109  | 0.0005    | 0.004 | 0.00414 | 0.00420 | 0.00396  | 0.0034 to 0.0046 | 103  | 70 to 130 | 1.49  | 20            |
| BA02555 Molybdenum, Total      | mg/L  | 0.00000558  | 0.0001474 | 0.10  | 0.0981  | 0.0992  | 0.0934   | 0.085 to 0.115   | 98.1 | 70 to 130 | 1.13  | 20            |
| BA02555 Arsenic, Total         | mg/L  | 0.0000218   | 0.0001474 | 0.10  | 0.103   | 0.103   | 0.105    | 0.085 to 0.115   | 103  | 70 to 130 | 0.188 | 20            |
| BA02555 Lithium, Total         | mg/L  | -0.0000191  | 0.0154    | 0.20  | 0.197   | 0.196   | 0.201    | 0.17 to 0.23     | 98.6 | 70 to 130 | 0.628 | 20            |

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Issued By: State of Florida, Department of Health

Expiration: June 30, 2018

<sup>\*</sup> Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114

## **Batch QC Summary**



Customer Account: WMWGORG Sample Date: 2/4/20 16:35

**Customer ID:** 

**Delivery Date:** 2/6/20 13:21

Description: Gorgas Gypsum - MW-8

Laboratory ID Number: BA02552

|         |                   |       |         | MB    |       |      | Sample    |          | Standard     |      | Rec       |       | Prec          |
|---------|-------------------|-------|---------|-------|-------|------|-----------|----------|--------------|------|-----------|-------|---------------|
| Sample  | Analysis          | Units | MB      | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA02551 | Solids, Dissolved | mg/L  | -2.00   | 25    |       |      | 3110      | 53.0     | 40 to 60     |      |           | 0.115 | 5             |
| BA02552 | Sulfate           | mg/L  | -0.434  | 0.50  | 2000  | 3400 | 1630      | 18.2     | 18 to 22     | 91.5 | 80 to 120 | 3.75  | 20            |
| BA02552 | Chloride          | mg/L  | -0.0143 | 0.50  | 400   | 553  | 98.0      | 10.5     | 9 to 11      | 115  | 80 to 120 | 4.06  | 20            |
| BA02552 | Fluoride          | mg/L  | 0.0121  | 0.05  | 2.50  | 2.68 | 0.134     | 2.61     | 2.25 to 2.75 | 102  | 80 to 120 | 1.50  | 20            |

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2017

<sup>\*</sup> Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

# **Certificate Of Analysis**



Description: Gorgas Gypsum Field BlankLocation Code:WMWGORGFBCollected:2/4/20 17:00

Customer ID:

Submittal Date: 2/6/20 13:21

Laboratory ID Number: BA02553

| on Method: EP  | PA 1638 |           |               |
|----------------|---------|-----------|---------------|
| mg/L           | 0.03    | 0.1       | U             |
| mg/L           | 0.1     | 0.5       | U             |
| mg/L           | 0.01    | 0.02      | U             |
| on Method: EP. | PA 1638 |           |               |
| mg/L           | 0.0008  | 0.003     | U             |
| mg/L           | 0.001   | 0.005     | U             |
| mg/L           | 0.002   | 0.01      | U             |
| mg/L           | 0.0006  | 0.003     | U             |
| mg/L           | 0.0003  | 0.001     | U             |
| mg/L           | 0.002   | 0.01      | U             |
| mg/L           | 0.002   | 0.005     | U             |
| mg/L           | 0.001   | 0.005     | U             |
| mg/L           | 0.002   | 0.01      | U             |
| mg/L           | 0.002   | 0.01      | U             |
| mg/L           | 0.0002  | 0.001     | U             |
|                |         |           |               |
| mg/L           | 0.0003  | 0.0005    | U             |
|                |         |           |               |
| mg/L           |         | 25        | U             |
|                |         |           |               |
| mg/L           | 0.50    | 1         | U             |
|                |         |           |               |
| mg/L           | 0.05    | 0.1       | U             |
|                |         |           |               |
| mg/L           | 0.50    | 1         | U             |
|                | mg/L    | mg/L 0.05 | mg/L 0.05 0.1 |

MDL's and RL's are adjusted for sample dilution, as applicable

## **Batch QC Summary**



**Customer Account:** WMWGORGFB **Sample Date:** 2/4/20 17:00

**Customer ID:** 

**Delivery Date:** 2/6/20 13:21

Description: Gorgas Gypsum Field Blank

Laboratory ID Number: BA02553

|                                |       |             | MB        |       |         |         |          | Standard         |      | Rec       |       | Prec          |
|--------------------------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|------|-----------|-------|---------------|
| Sample Analysis                | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | Limit            | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA02555 Calcium, Total         | mg/L  | -0.0107     | 0.1518    | 5.00  | 5.12    | 5.09    | 5.23     | 4.25 to 5.75     | 102  | 70 to 130 | 0.504 | 20            |
| BA02555 Boron, Total           | mg/L  | 0.00144     | 0.0650254 | 1.00  | 0.995   | 0.997   | 1.01     | 0.85 to 1.15     | 99.5 | 70 to 130 | 0.196 | 20            |
| BA02555 Chromium, Total        | mg/L  | 0.0000464   | 0.00044   | 0.10  | 0.101   | 0.0991  | 0.0980   | 0.085 to 0.115   | 101  | 70 to 130 | 1.99  | 20            |
| BA02555 Barium, Total          | mg/L  | 0.00000799  | 0.0002    | 0.10  | 0.0967  | 0.0963  | 0.0917   | 0.085 to 0.115   | 96.7 | 70 to 130 | 0.395 | 20            |
| BA02555 Thallium, Total        | mg/L  | 0.0000141   | 0.0001474 | 0.10  | 0.103   | 0.100   | 0.0995   | 0.085 to 0.115   | 103  | 70 to 130 | 2.44  | 20            |
| BA02555 Cadmium, Total         | mg/L  | 0.00000727  | 0.0001474 | 0.10  | 0.0965  | 0.0979  | 0.0973   | 0.085 to 0.115   | 96.5 | 70 to 130 | 1.41  | 20            |
| BA02555 Cobalt, Total          | mg/L  | -0.00000314 | 0.0001474 | 0.10  | 0.100   | 0.0971  | 0.0961   | 0.085 to 0.115   | 100  | 70 to 130 | 3.44  | 20            |
| BA02555 Mercury, Total by CVAA | mg/L  | -0.0000109  | 0.0005    | 0.004 | 0.00414 | 0.00420 | 0.00396  | 0.0034 to 0.0046 | 103  | 70 to 130 | 1.49  | 20            |
| BA02555 Molybdenum, Total      | mg/L  | 0.00000558  | 0.0001474 | 0.10  | 0.0981  | 0.0992  | 0.0934   | 0.085 to 0.115   | 98.1 | 70 to 130 | 1.13  | 20            |
| BA02555 Beryllium, Total       | mg/L  | 0.0000453   | 0.00088   | 0.10  | 0.0958  | 0.0949  | 0.0962   | 0.085 to 0.115   | 95.8 | 70 to 130 | 0.982 | 20            |
| BA02555 Lead, Total            | mg/L  | 0.0000111   | 0.0001474 | 0.10  | 0.101   | 0.0989  | 0.0990   | 0.085 to 0.115   | 101  | 70 to 130 | 1.78  | 20            |
| BA02555 Antimony, Total        | mg/L  | 0.000176    | 0.00066   | 0.10  | 0.0926  | 0.0928  | 0.0883   | 0.085 to 0.115   | 92.6 | 70 to 130 | 0.256 | 20            |
| BA02555 Selenium, Total        | mg/L  | 0.000138    | 0.00066   | 0.10  | 0.0988  | 0.101   | 0.105    | 0.085 to 0.115   | 98.8 | 70 to 130 | 1.76  | 20            |
| BA02555 Arsenic, Total         | mg/L  | 0.0000218   | 0.0001474 | 0.10  | 0.103   | 0.103   | 0.105    | 0.085 to 0.115   | 103  | 70 to 130 | 0.188 | 20            |
| BA02555 Lithium, Total         | mg/L  | -0.0000191  | 0.0154    | 0.20  | 0.197   | 0.196   | 0.201    | 0.17 to 0.23     | 98.6 | 70 to 130 | 0.628 | 20            |

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Issued By: State of Florida, Department of Health

Expiration: June 30, 2018

<sup>\*</sup> Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114

## **Batch QC Summary**



Customer Account: WMWGORGFB

Sample Date:

2/4/20 17:00

**Customer ID:** 

**Delivery Date:** 

2/6/20 13:21

Description: Gorgas Gypsum Field Blank

Laboratory ID Number: BA02553

|         |                   |       |          | MB    |       |      | Sample    |          | Standard     |      | Rec       |       | Prec          |
|---------|-------------------|-------|----------|-------|-------|------|-----------|----------|--------------|------|-----------|-------|---------------|
| Sample  | Analysis          | Units | MB       | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA02551 | Solids, Dissolved | mg/L  | -2.00    | 25    |       |      | 3110      | 53.0     | 40 to 60     |      |           | 0.115 | 5             |
| BA02555 | Sulfate           | mg/L  | -0.528   | 0.50  | 20.0  | 18.0 | -0.413    | 18.2     | 18 to 22     | 90.0 | 80 to 120 | 0.00  | 20            |
| BA02555 | Chloride          | mg/L  | -0.00614 | 0.50  | 10.0  | 10.3 | 0.0855    | 10.4     | 9 to 11      | 103  | 80 to 120 | 0.00  | 20            |
| BA02555 | Fluoride          | mg/L  | 0.00436  | 0.05  | 2.50  | 2.54 | 0.00833   | 2.57     | 2.25 to 2.75 | 102  | 80 to 120 | 0.00  | 20            |

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2017

<sup>\*</sup> Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

# **Certificate Of Analysis**



Description: Gorgas Gypsum - MW-8VLocation Code:WMWGORGCollected:2/5/20 13:23

**Customer ID:** 

Submittal Date: 2/6/20 13:21

Laboratory ID Number: BA02554

| Name                                  | Prepared      | Analyzed     | Vio Spec DF | Results      | Units         | MDL      | RL     | Q  |
|---------------------------------------|---------------|--------------|-------------|--------------|---------------|----------|--------|----|
| Analytical Method: EPA 200.7          | Anal          | yst: RDA     |             | Preparati    | ion Method:   | EPA 1638 |        |    |
| * Boron, Total                        | 2/10/20 13:30 | 2/13/20 11:2 | 0 1.015     | 0.136        | mg/L          | 0.03     | 0.1    |    |
| * Calcium, Total                      | 2/10/20 13:30 | 2/13/20 11:2 | 0 1.015     | 37.3         | mg/L          | 0.1      | 0.5    |    |
| * Lithium, Total                      | 2/10/20 13:30 | 2/13/20 11:2 | 0 1.015     | 0.327        | mg/L          | 0.01     | 0.02   |    |
| Analytical Method: EPA 200.8          | Anal          | yst: DLJ     |             | Preparati    | ion Method: l | EPA 1638 |        |    |
| * Antimony, Total                     | 2/6/20 15:00  | 2/7/20 10:55 | 1.015       | Not Detected | mg/L          | 0.0008   | 0.003  | U  |
| * Arsenic, Total                      | 2/6/20 15:00  | 2/7/20 10:55 | 1.015       | 0.00232      | mg/L          | 0.001    | 0.005  | J  |
| * Barium, Total                       | 2/6/20 15:00  | 2/7/20 10:55 | 1.015       | 0.0960       | mg/L          | 0.002    | 0.01   |    |
| * Beryllium, Total                    | 2/6/20 15:00  | 2/7/20 10:55 | 1.015       | Not Detected | mg/L          | 0.0006   | 0.003  | U  |
| * Cadmium, Total                      | 2/6/20 15:00  | 2/7/20 10:55 | 1.015       | Not Detected | mg/L          | 0.0003   | 0.001  | U  |
| * Chromium, Total                     | 2/6/20 15:00  | 2/7/20 10:55 | 1.015       | Not Detected | mg/L          | 0.002    | 0.01   | U  |
| * Cobalt, Total                       | 2/6/20 15:00  | 2/7/20 10:55 | 1.015       | Not Detected | mg/L          | 0.002    | 0.005  | U  |
| * Lead, Total                         | 2/6/20 15:00  | 2/7/20 10:55 | 1.015       | Not Detected | mg/L          | 0.001    | 0.005  | U  |
| * Molybdenum, Total                   | 2/6/20 15:00  | 2/7/20 10:55 | 1.015       | Not Detected | mg/L          | 0.002    | 0.01   | U  |
| * Selenium, Total                     | 2/6/20 15:00  | 2/7/20 10:55 | 1.015       | Not Detected | mg/L          | 0.002    | 0.01   | U  |
| * Thallium, Total                     | 2/6/20 15:00  | 2/7/20 10:55 | 1.015       | Not Detected | mg/L          | 0.0002   | 0.001  | U  |
| Analytical Method: EPA 245.1          | Anal          | yst: GAS     |             |              |               |          |        |    |
| * Mercury, Total by CVAA              | 2/10/20 11:35 | 2/11/20 15:0 | 5 1         | Not Detected | mg/L          | 0.0003   | 0.0005 | U  |
| Analytical Method: SM 2540C           | Anal          | yst: TJW     |             |              |               |          |        |    |
| * Solids, Dissolved                   | 2/7/20 15:30  | 2/11/20 10:3 | 0 1         | 1100         | mg/L          |          | 71.4   |    |
| Analytical Method: SM4500Cl E         | Anal          | yst: JCC     |             |              |               |          |        |    |
| * Chloride                            | 2/7/20 11:48  | 2/7/20 11:48 | 1           | 9.05         | mg/L          | 0.50     | 1      |    |
| Analytical Method: SM4500F G 2017     | Anal          | yst: JCC     |             |              |               |          |        |    |
| * Fluoride                            | 2/7/20 14:52  | 2/7/20 14:52 | 1           | 0.162        | mg/L          | 0.05     | 0.1    |    |
| Analytical Method: SM4500SO4 E        | Anal          | yst: JCC     |             |              |               |          |        |    |
| * Sulfate                             | 2/6/20 15:06  | 2/6/20 15:06 | 16          | 223          | mg/L          | 8.00     | 16     |    |
| Analytical Method: Field Measurements | Anal          | yst: TJD     |             |              |               |          |        |    |
| Conductivity                          | 2/5/20 13:20  | 2/5/20 13:20 |             | 1739.73      | uS/cm         |          |        | FA |
| рН                                    | 2/5/20 13:20  | 2/5/20 13:20 |             | 7.48         | SU            |          |        | FA |
| Temperature                           | 2/5/20 13:20  | 2/5/20 13:20 |             | 20.25        | С             |          |        | F/ |
| Turbidity                             | 2/5/20 13:20  | 2/5/20 13:20 |             | 1.21         | NTU           |          |        | F/ |

MDL's and RL's are adjusted for sample dilution, as applicable

## **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 2/5/20 13:23

**Customer ID:** 

**Delivery Date:** 2/6/20 13:21

Description: Gorgas Gypsum - MW-8V

Laboratory ID Number: BA02554

|                                |       |             | MB        |       |         |         |          | Standard         |      | Rec       |       | Prec          |
|--------------------------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|------|-----------|-------|---------------|
| Sample Analysis                | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | Limit            | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA02555 Calcium, Total         | mg/L  | -0.0107     | 0.1518    | 5.00  | 5.12    | 5.09    | 5.23     | 4.25 to 5.75     | 102  | 70 to 130 | 0.504 | 20            |
| BA02555 Boron, Total           | mg/L  | 0.00144     | 0.0650254 | 1.00  | 0.995   | 0.997   | 1.01     | 0.85 to 1.15     | 99.5 | 70 to 130 | 0.196 | 20            |
| BA02555 Chromium, Total        | mg/L  | 0.0000464   | 0.00044   | 0.10  | 0.101   | 0.0991  | 0.0980   | 0.085 to 0.115   | 101  | 70 to 130 | 1.99  | 20            |
| BA02555 Beryllium, Total       | mg/L  | 0.0000453   | 0.00088   | 0.10  | 0.0958  | 0.0949  | 0.0962   | 0.085 to 0.115   | 95.8 | 70 to 130 | 0.982 | 20            |
| BA02555 Lead, Total            | mg/L  | 0.0000111   | 0.0001474 | 0.10  | 0.101   | 0.0989  | 0.0990   | 0.085 to 0.115   | 101  | 70 to 130 | 1.78  | 20            |
| BA02555 Cadmium, Total         | mg/L  | 0.00000727  | 0.0001474 | 0.10  | 0.0965  | 0.0979  | 0.0973   | 0.085 to 0.115   | 96.5 | 70 to 130 | 1.41  | 20            |
| BA02555 Cobalt, Total          | mg/L  | -0.00000314 | 0.0001474 | 0.10  | 0.100   | 0.0971  | 0.0961   | 0.085 to 0.115   | 100  | 70 to 130 | 3.44  | 20            |
| BA02555 Mercury, Total by CVAA | mg/L  | -0.0000109  | 0.0005    | 0.004 | 0.00414 | 0.00420 | 0.00396  | 0.0034 to 0.0046 | 103  | 70 to 130 | 1.49  | 20            |
| BA02555 Molybdenum, Total      | mg/L  | 0.00000558  | 0.0001474 | 0.10  | 0.0981  | 0.0992  | 0.0934   | 0.085 to 0.115   | 98.1 | 70 to 130 | 1.13  | 20            |
| BA02555 Barium, Total          | mg/L  | 0.00000799  | 0.0002    | 0.10  | 0.0967  | 0.0963  | 0.0917   | 0.085 to 0.115   | 96.7 | 70 to 130 | 0.395 | 20            |
| BA02555 Thallium, Total        | mg/L  | 0.0000141   | 0.0001474 | 0.10  | 0.103   | 0.100   | 0.0995   | 0.085 to 0.115   | 103  | 70 to 130 | 2.44  | 20            |
| BA02555 Antimony, Total        | mg/L  | 0.000176    | 0.00066   | 0.10  | 0.0926  | 0.0928  | 0.0883   | 0.085 to 0.115   | 92.6 | 70 to 130 | 0.256 | 20            |
| BA02555 Selenium, Total        | mg/L  | 0.000138    | 0.00066   | 0.10  | 0.0988  | 0.101   | 0.105    | 0.085 to 0.115   | 98.8 | 70 to 130 | 1.76  | 20            |
| BA02555 Arsenic, Total         | mg/L  | 0.0000218   | 0.0001474 | 0.10  | 0.103   | 0.103   | 0.105    | 0.085 to 0.115   | 103  | 70 to 130 | 0.188 | 20            |
| BA02555 Lithium, Total         | mg/L  | -0.0000191  | 0.0154    | 0.20  | 0.197   | 0.196   | 0.201    | 0.17 to 0.23     | 98.6 | 70 to 130 | 0.628 | 20            |

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Issued By: State of Florida, Department of Health

Expiration: June 30, 2018

<sup>\*</sup> Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114

## **Batch QC Summary**



Customer Account: WMWGORG Sample Date: 2/5/20 13:23

**Customer ID:** 

**Delivery Date:** 2/6/20 13:21

Description: Gorgas Gypsum - MW-8V

Laboratory ID Number: BA02554

|         |                   |       |          | MB    |       |      | Sample    |          | Standard     |      | Rec       |       | Prec          |
|---------|-------------------|-------|----------|-------|-------|------|-----------|----------|--------------|------|-----------|-------|---------------|
| Sample  | Analysis          | Units | MB       | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA02551 | Solids, Dissolved | mg/L  | -2.00    | 25    |       |      | 3110      | 53.0     | 40 to 60     |      |           | 0.115 | 5             |
| BA02555 | Sulfate           | mg/L  | -0.528   | 0.50  | 20.0  | 18.0 | -0.413    | 18.2     | 18 to 22     | 90.0 | 80 to 120 | 0.00  | 20            |
| BA02555 | Chloride          | mg/L  | -0.00614 | 0.50  | 10.0  | 10.3 | 0.0855    | 10.4     | 9 to 11      | 103  | 80 to 120 | 0.00  | 20            |
| BA02555 | Fluoride          | mg/L  | 0.00436  | 0.05  | 2.50  | 2.54 | 0.00833   | 2.57     | 2.25 to 2.75 | 102  | 80 to 120 | 0.00  | 20            |

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2017

<sup>\*</sup> Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

## **Certificate Of Analysis**



Description: Gorgas Gypsum Equipment BlankLocation Code:WMWGORGEBCollected:2/5/20 14:00

Customer ID:

**Submittal Date:** 2/6/20 13:21

Laboratory ID Number: BA02555

| Name                                  | Prepared      | Analyzed     | Vio Spec D | )F  | Results      | Units      | MDL      | RL     | Q |
|---------------------------------------|---------------|--------------|------------|-----|--------------|------------|----------|--------|---|
| Analytical Method: EPA 200.7          | Anal          | yst: RDA     |            |     | Preparati    | on Method: | EPA 1638 |        |   |
| * Boron, Total                        | 2/10/20 13:30 | 2/13/20 11:2 | 3 1.0      | 015 | Not Detected | mg/L       | 0.03     | 0.1    | U |
| * Calcium, Total                      | 2/10/20 13:30 | 2/13/20 11:2 | 3 1.0      | 015 | Not Detected | mg/L       | 0.1      | 0.5    | U |
| * Lithium, Total                      | 2/10/20 13:30 | 2/13/20 11:2 | 3 1.0      | 015 | Not Detected | mg/L       | 0.01     | 0.02   | U |
| Analytical Method: EPA 200.8          | Anal          | yst: DLJ     |            |     | Preparati    | on Method: | EPA 1638 |        |   |
| * Antimony, Total                     | 2/6/20 15:00  | 2/7/20 10:57 | 1.0        | 015 | Not Detected | mg/L       | 0.0008   | 0.003  | U |
| * Arsenic, Total                      | 2/6/20 15:00  | 2/7/20 10:57 | 1.0        | 015 | Not Detected | mg/L       | 0.001    | 0.005  | U |
| * Barium, Total                       | 2/6/20 15:00  | 2/7/20 10:57 | 1.0        | 015 | Not Detected | mg/L       | 0.002    | 0.01   | U |
| * Beryllium, Total                    | 2/6/20 15:00  | 2/7/20 10:57 | 1.0        | 015 | Not Detected | mg/L       | 0.0006   | 0.003  | U |
| * Cadmium, Total                      | 2/6/20 15:00  | 2/7/20 10:57 | 1.0        | 015 | Not Detected | mg/L       | 0.0003   | 0.001  | U |
| * Chromium, Total                     | 2/6/20 15:00  | 2/7/20 10:57 | 1.0        | 015 | Not Detected | mg/L       | 0.002    | 0.01   | U |
| * Cobalt, Total                       | 2/6/20 15:00  | 2/7/20 10:57 | 1.0        | 015 | Not Detected | mg/L       | 0.002    | 0.005  | U |
| * Lead, Total                         | 2/6/20 15:00  | 2/7/20 10:57 | 1.0        | 015 | Not Detected | mg/L       | 0.001    | 0.005  | U |
| <ul> <li>Molybdenum, Total</li> </ul> | 2/6/20 15:00  | 2/7/20 10:57 | 1.0        | 015 | Not Detected | mg/L       | 0.002    | 0.01   | U |
| * Selenium, Total                     | 2/6/20 15:00  | 2/7/20 10:57 | 1.0        | 015 | Not Detected | mg/L       | 0.002    | 0.01   | U |
| * Thallium, Total                     | 2/6/20 15:00  | 2/7/20 10:57 | 1.0        | 015 | Not Detected | mg/L       | 0.0002   | 0.001  | U |
| Analytical Method: EPA 245.1          | Anal          | yst: GAS     |            |     |              |            |          |        |   |
| * Mercury, Total by CVAA              | 2/10/20 11:35 | 2/11/20 15:0 | 8 1        |     | Not Detected | mg/L       | 0.0003   | 0.0005 | U |
| Analytical Method: SM 2540C           | Anal          | yst: TJW     |            |     |              |            |          |        |   |
| * Solids, Dissolved                   | 2/7/20 15:30  | 2/11/20 10:3 | 0 1        |     | Not Detected | mg/L       |          | 25     | U |
| Analytical Method: SM4500Cl E         | Anal          | yst: JCC     |            |     |              |            |          |        |   |
| * Chloride                            | 2/7/20 11:49  | 2/7/20 11:49 | 1          |     | Not Detected | mg/L       | 0.50     | 1      | U |
| Analytical Method: SM4500F G 2017     | Anal          | yst: JCC     |            |     |              |            |          |        |   |
| * Fluoride                            | 2/7/20 14:53  | 2/7/20 14:53 | 1          |     | Not Detected | mg/L       | 0.05     | 0.1    | U |
| Analytical Method: SM4500SO4 E        | Anal          | yst: JCC     |            |     |              |            |          |        |   |
| * Sulfate                             | 2/6/20 15:07  | 2/6/20 15:07 | 1          |     | Not Detected | mg/L       | 0.50     | 1      | U |

MDL's and RL's are adjusted for sample dilution, as applicable

## **Batch QC Summary**



**Customer Account:** WMWGORGEB **Sample Date:** 2/5/20 14:00

**Customer ID:** 

**Delivery Date:** 2/6/20 13:21

**Description**: Gorgas Gypsum Equipment Blank

Laboratory ID Number: BA02555

|                                |       |             | MB        |       |         |         |          | Standard         |      | Rec       |       | Prec          |
|--------------------------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|------|-----------|-------|---------------|
| Sample Analysis                | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | Limit            | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA02555 Boron, Total           | mg/L  | 0.00144     | 0.0650254 | 1.00  | 0.995   | 0.997   | 1.01     | 0.85 to 1.15     | 99.5 | 70 to 130 | 0.196 | 20            |
| BA02555 Chromium, Total        | mg/L  | 0.0000464   | 0.00044   | 0.10  | 0.101   | 0.0991  | 0.0980   | 0.085 to 0.115   | 101  | 70 to 130 | 1.99  | 20            |
| BA02555 Antimony, Total        | mg/L  | 0.000176    | 0.00066   | 0.10  | 0.0926  | 0.0928  | 0.0883   | 0.085 to 0.115   | 92.6 | 70 to 130 | 0.256 | 20            |
| BA02555 Selenium, Total        | mg/L  | 0.000138    | 0.00066   | 0.10  | 0.0988  | 0.101   | 0.105    | 0.085 to 0.115   | 98.8 | 70 to 130 | 1.76  | 20            |
| BA02555 Cadmium, Total         | mg/L  | 0.00000727  | 0.0001474 | 0.10  | 0.0965  | 0.0979  | 0.0973   | 0.085 to 0.115   | 96.5 | 70 to 130 | 1.41  | 20            |
| BA02555 Cobalt, Total          | mg/L  | -0.00000314 | 0.0001474 | 0.10  | 0.100   | 0.0971  | 0.0961   | 0.085 to 0.115   | 100  | 70 to 130 | 3.44  | 20            |
| BA02555 Mercury, Total by CVAA | mg/L  | -0.0000109  | 0.0005    | 0.004 | 0.00414 | 0.00420 | 0.00396  | 0.0034 to 0.0046 | 103  | 70 to 130 | 1.49  | 20            |
| BA02555 Molybdenum, Total      | mg/L  | 0.00000558  | 0.0001474 | 0.10  | 0.0981  | 0.0992  | 0.0934   | 0.085 to 0.115   | 98.1 | 70 to 130 | 1.13  | 20            |
| BA02555 Beryllium, Total       | mg/L  | 0.0000453   | 0.00088   | 0.10  | 0.0958  | 0.0949  | 0.0962   | 0.085 to 0.115   | 95.8 | 70 to 130 | 0.982 | 20            |
| BA02555 Lead, Total            | mg/L  | 0.0000111   | 0.0001474 | 0.10  | 0.101   | 0.0989  | 0.0990   | 0.085 to 0.115   | 101  | 70 to 130 | 1.78  | 20            |
| BA02555 Barium, Total          | mg/L  | 0.00000799  | 0.0002    | 0.10  | 0.0967  | 0.0963  | 0.0917   | 0.085 to 0.115   | 96.7 | 70 to 130 | 0.395 | 20            |
| BA02555 Thallium, Total        | mg/L  | 0.0000141   | 0.0001474 | 0.10  | 0.103   | 0.100   | 0.0995   | 0.085 to 0.115   | 103  | 70 to 130 | 2.44  | 20            |
| BA02555 Arsenic, Total         | mg/L  | 0.0000218   | 0.0001474 | 0.10  | 0.103   | 0.103   | 0.105    | 0.085 to 0.115   | 103  | 70 to 130 | 0.188 | 20            |
| BA02555 Lithium, Total         | mg/L  | -0.0000191  | 0.0154    | 0.20  | 0.197   | 0.196   | 0.201    | 0.17 to 0.23     | 98.6 | 70 to 130 | 0.628 | 20            |
| BA02555 Calcium, Total         | mg/L  | -0.0107     | 0.1518    | 5.00  | 5.12    | 5.09    | 5.23     | 4.25 to 5.75     | 102  | 70 to 130 | 0.504 | 20            |

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Issued By: State of Florida, Department of Health

Expiration: June 30, 2018

<sup>\*</sup> Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114

## **Batch QC Summary**



Customer Account: WMWGORGEB Sample Date:

2/5/20 14:00

**Customer ID:** 

**Delivery Date:** 

2/6/20 13:21

**Description**: Gorgas Gypsum Equipment Blank

Laboratory ID Number: BA02555

|         |                   |       |          | MB    |       |      | Sample    |          | Standard     |      | Rec       |       | Prec          |
|---------|-------------------|-------|----------|-------|-------|------|-----------|----------|--------------|------|-----------|-------|---------------|
| Sample  | Analysis          | Units | MB       | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA02551 | Solids, Dissolved | mg/L  | -2.00    | 25    |       |      | 3110      | 53.0     | 40 to 60     |      |           | 0.115 | 5             |
| BA02555 | Sulfate           | mg/L  | -0.528   | 0.50  | 20.0  | 18.0 | -0.413    | 18.2     | 18 to 22     | 90.0 | 80 to 120 | 0.00  | 20            |
| BA02555 | Chloride          | mg/L  | -0.00614 | 0.50  | 10.0  | 10.3 | 0.0855    | 10.4     | 9 to 11      | 103  | 80 to 120 | 0.00  | 20            |
| BA02555 | Fluoride          | mg/L  | 0.00436  | 0.05  | 2.50  | 2.54 | 0.00833   | 2.57     | 2.25 to 2.75 | 102  | 80 to 120 | 0.00  | 20            |

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2017

<sup>\*</sup> Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

U



| Abbreviation | Description                                                                                                     |
|--------------|-----------------------------------------------------------------------------------------------------------------|
| DF           | Dilution Factor                                                                                                 |
| LCS          | Lab Control Sample                                                                                              |
| LFM          | Lab Fortified Matrix                                                                                            |
| MB           | Method Blank                                                                                                    |
| MDL          | Method Detection Limit; minimum concentration of an analyte that can be determined with 99% confidence that the |
|              | concentration is greater than zero.                                                                             |
| MS           | Matrix Spike                                                                                                    |
| MSD          | Matrix Spike Duplicate                                                                                          |
| Prec         | Precision (% RPD)                                                                                               |
| Q            | Qualifier; comment used to note deviations or additional information associated with analytical results.        |
| QC           | Quality Control                                                                                                 |
| Rec          | Recovery of Matrix Spike                                                                                        |
| RL           | Reporting Limit; lowest concentration at which an analyte can be quantitatively measured.                       |
| Vio Spec     | Violation Specification; regulatory limit which has been exceeded by the sample analyzed.                       |
|              |                                                                                                                 |
|              |                                                                                                                 |
| Qualifier    | Description                                                                                                     |
| FA           | Field results were reviewed by the Water Field Group.                                                           |
| J            | Reported value is an estimate because concentration is less than reporting limit.                               |
| RA           | Matrix spike is invalid due to sample concentration.                                                            |
|              | DF LCS LFM MB MDL MS MSD Prec Q QC Rec RL Vio Spec  Qualifier FA J                                              |

Compound was analyzed, but not detected.

| Alabama Pov  Lab  Field  SERVICES | Chain of Ground           | of Custoo<br>lwater<br>ral Testing L | ·   | La        | eld Co |          | •       |          | Outsid    |            | ab ETA       | 02/04/20  | 020 09:00  |              |
|-----------------------------------|---------------------------|--------------------------------------|-----|-----------|--------|----------|---------|----------|-----------|------------|--------------|-----------|------------|--------------|
| Reques                            | sted Complet              | e Date Routi                         | ne  |           |        |          |         | Re       | sults To  | Dustin Br  | ooks Gre     | a Dver    |            | T            |
| reque                             | Site Represe              |                                      |     |           |        |          |         | 1        | ested By  |            |              | 9 0 / c.  |            | ┪            |
|                                   | _                         | llector Anth                         |     |           |        |          |         | 1 ^      | ocation   |            |              |           |            | ┨            |
|                                   |                           | niector Antii                        | OH  | , Goggins |        |          |         | <u> </u> | Ocation   | Gorgas     | Gypsui       |           |            | _            |
| Bottles                           | 1 Metals                  | 500 mL                               | 3   | TDS       | 50     | 00 m     | L       | 5 N/A    | 1         | N/A        | ] 7 N/A      | \         | N/A        |              |
|                                   | 2 Hg                      | 250 mL                               | 4   | Anions    | 25     | 50 m     | L[      | 6 N/A    | 1         | N/A        | 8 N/A        |           | N/A        |              |
|                                   | Comments                  |                                      |     |           |        |          |         |          |           |            |              |           |            |              |
|                                   | Bottle Lab                |                                      |     |           |        |          |         |          |           |            |              |           |            |              |
|                                   | Sample #                  | Date                                 |     | Time      | Cou    |          |         | Desc     | ription   |            | Filter       | Lab I     | d          |              |
| F                                 | ·B-1                      | 2/3/20                               |     | 12:18     | 4      | _        | Field E |          | 777 77011 |            | 2 22002      | BA022     |            |              |
| <u> </u>                          | <br>/IW-1L                | 02/03/20/                            | 20  | 12:18     | 4      | $\dashv$ |         | dwater   |           |            | <del> </del> | BA022     |            |              |
| -                                 |                           |                                      |     |           | -      | $\dashv$ |         |          |           |            |              |           |            |              |
| <u> </u>                          | 1W-2L                     | 02/03/202                            |     | 13:30     | 4      | $\dashv$ | Ground  |          |           |            |              | BA0228    |            |              |
| -                                 | MW-2LDUP 02/03/2020 13:30 |                                      |     |           |        |          |         | e Duplic | ate       |            |              | BA0228    |            |              |
| -                                 | MW-3L 02/03/2020 14:50    |                                      |     |           |        |          | Ground  |          |           |            | BA0229       |           |            |              |
| IN                                | MW-4L 02/03/2020 16:10    |                                      |     |           |        |          | Ground  | dwater   |           | _          |              | BA0229    | <i>3</i> 1 |              |
| _                                 |                           |                                      |     |           |        | $\dashv$ |         |          |           |            |              |           |            |              |
| L                                 |                           |                                      |     |           |        | $\dashv$ |         |          |           |            |              |           |            |              |
| L                                 |                           |                                      |     |           |        | $\dashv$ |         |          |           |            |              |           |            |              |
|                                   |                           |                                      |     |           |        | 4        |         |          |           |            |              |           |            |              |
|                                   |                           |                                      |     |           |        | _        |         |          |           |            |              |           |            |              |
|                                   |                           |                                      |     |           |        |          |         |          |           |            |              |           |            |              |
|                                   |                           |                                      |     |           |        | _        |         |          |           |            |              |           |            |              |
|                                   |                           |                                      |     |           |        |          |         |          |           |            |              |           |            |              |
|                                   |                           |                                      |     |           |        |          |         |          |           |            |              |           |            |              |
|                                   |                           |                                      |     |           |        |          |         |          |           |            |              |           |            |              |
|                                   |                           |                                      |     |           |        |          |         |          |           |            |              |           |            |              |
|                                   |                           |                                      |     |           |        |          |         |          |           |            |              |           |            |              |
|                                   |                           |                                      |     |           |        |          |         |          |           | _          |              |           |            |              |
|                                   |                           |                                      |     |           |        |          |         |          |           |            |              |           |            |              |
|                                   |                           |                                      |     |           |        |          |         |          |           |            |              |           |            |              |
|                                   | Relin                     | quished By                           |     | •         | ·      |          |         | Rece     | ived By   |            |              | Date      | :/Time     | _            |
|                                   | a                         | of Got                               |     |           |        |          |         | Laura    | Molek     |            |              | 02/04/20  | 020 09:15  |              |
|                                   |                           | <i>V W</i>                           |     |           |        |          |         |          | 80        |            |              |           |            | $^{\dagger}$ |
|                                   |                           |                                      |     |           |        |          |         |          |           |            |              |           |            |              |
|                                   |                           |                                      |     |           |        |          |         |          |           |            |              |           |            |              |
| Sn                                | narTroll ID               | 7586-41442-5                         | 5-1 |           |        |          | Allı    | metals a | and radio | ological l | oottles l    | nave pH < | < 2        | _            |
| T                                 | urbidity ID               | 5160-26211-1                         | -1  |           |        |          |         | Coole    | r Temp    | 0.4 degre  | es C         |           |            |              |
| Sa                                | mple Event                | 1257                                 |     |           |        |          | Th      | ermom    | eter ID   | 5408-275   | 568-2-2      |           |            |              |

Page 72 of 75

pH Strip ID 7453-40656-10-8

7.1

| Alabama Pow | Chain of Custody Field Complete Field Groundwater APC General Testing Laboratory  Field Complete Lab Complete Lab ETA  O2/06/2020 09:00 |            |          |       |         |             |                                                   |        |            |       |  |  |  |  |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------|----------|-------|---------|-------------|---------------------------------------------------|--------|------------|-------|--|--|--|--|
|             |                                                                                                                                         |            |          |       |         | 1 2 1       |                                                   |        |            | 1     |  |  |  |  |
| Reques      | sted Complete I                                                                                                                         |            |          |       |         | Results     |                                                   |        | g Dyer     |       |  |  |  |  |
|             | Site Representa                                                                                                                         |            |          |       |         | Requested   | · <del>                                    </del> |        |            |       |  |  |  |  |
|             | Colle                                                                                                                                   | ctor TJ Da | ugherty  |       |         | Locat       | ion Gorgas                                        | Gypsun | n          |       |  |  |  |  |
| Bottles     | 1 Metals                                                                                                                                | 500 mL     | 3 TDS    | 500 n | nL      | 5 N/A       | N/A                                               | 7 N/A  | N/         | A     |  |  |  |  |
|             | 2 Hg                                                                                                                                    | 250 mL     | 4 Anions | 250 n | nL      | 6 N/A       | N/A                                               | 8 N/A  | N/A        | 4     |  |  |  |  |
| Comments    |                                                                                                                                         |            |          |       |         |             |                                                   |        |            |       |  |  |  |  |
|             | Bottle Lab                                                                                                                              |            |          |       |         |             |                                                   |        |            |       |  |  |  |  |
|             | Sample # Date Time Count Description Filter Lab Id                                                                                      |            |          |       |         |             |                                                   |        |            |       |  |  |  |  |
| Ν           | NW-3V                                                                                                                                   | 2/3/20     | 14:25    | 4     | Groun   | dwater      |                                                   |        | BA02543    |       |  |  |  |  |
| Ν           | 1W-3                                                                                                                                    | 02/03/2020 | 15:42    | 4     | Groun   | dwater      |                                                   |        | BA02544    |       |  |  |  |  |
| M           | 1W-4V                                                                                                                                   | 02/03/2020 | 16:54    | 4     | Groun   | dwater      |                                                   |        | BA02545    |       |  |  |  |  |
| M           | 1W-4                                                                                                                                    | 02/04/2020 | 09:55    | 4     | Groun   | dwater      |                                                   |        | BA02546    |       |  |  |  |  |
| M           | 1W-4 Dup                                                                                                                                | 02/04/2020 | 09:55    | 4     | Sampl   | e Duplicate |                                                   |        | BA02547    |       |  |  |  |  |
| М           | IW-12H                                                                                                                                  | 02/04/2020 | 11:12    | 4     | Groun   | dwater      |                                                   |        | BA02548    |       |  |  |  |  |
| N           | 1W-11H                                                                                                                                  | 02/04/2020 | 12:40    | 4     | Groun   | dwater      | _                                                 |        | BA02549    |       |  |  |  |  |
| M           | 1W-13H                                                                                                                                  | 02/04/2020 | 13:35    | 4     | Groun   | dwater      |                                                   |        | BA02550    |       |  |  |  |  |
| N           | 1W-9H                                                                                                                                   | 02/04/2020 | 14:48    | 4     | Groun   | dwater      |                                                   |        | BA02551    |       |  |  |  |  |
| N           | 1W-8                                                                                                                                    | 02/04/2020 | 16:35    | 4     | Groun   | dwater      |                                                   |        | BA02552    |       |  |  |  |  |
| F           | B-2                                                                                                                                     | 02/04/2020 | 17:00    | 4     | Field E | -<br>3lank  |                                                   |        | BA02553    |       |  |  |  |  |
| M           | 1W-8V                                                                                                                                   | 02/05/2020 | 13:23    | 4     | Groun   | dwater      |                                                   |        | BA02554    |       |  |  |  |  |
| E           | B-1                                                                                                                                     | 02/05/2020 | 14:00    | 4     | Equipr  | ment Blank  |                                                   |        | BA02555    |       |  |  |  |  |
|             |                                                                                                                                         |            |          |       |         |             |                                                   |        |            |       |  |  |  |  |
|             |                                                                                                                                         |            |          |       |         |             |                                                   |        |            |       |  |  |  |  |
|             |                                                                                                                                         |            |          |       |         |             |                                                   |        |            |       |  |  |  |  |
|             |                                                                                                                                         |            |          |       |         |             |                                                   |        |            |       |  |  |  |  |
|             |                                                                                                                                         |            |          |       |         |             |                                                   |        |            |       |  |  |  |  |
|             |                                                                                                                                         |            |          |       |         |             | _                                                 |        |            |       |  |  |  |  |
|             |                                                                                                                                         |            |          |       |         |             |                                                   |        |            |       |  |  |  |  |
|             |                                                                                                                                         |            |          |       |         |             |                                                   |        |            |       |  |  |  |  |
|             | Relinqu                                                                                                                                 | ished By   |          |       | •       | Received    | Ву                                                |        | Date/Ti    | me    |  |  |  |  |
|             | N                                                                                                                                       | Mr.        |          |       |         | Received X  | H                                                 |        | 02/06/2020 | 08:25 |  |  |  |  |
|             |                                                                                                                                         |            |          |       |         |             |                                                   |        |            |       |  |  |  |  |
|             |                                                                                                                                         |            |          |       |         |             |                                                   |        |            |       |  |  |  |  |
|             |                                                                                                                                         |            |          |       |         |             |                                                   |        |            |       |  |  |  |  |
| 0           | T 11 ID                                                                                                                                 |            | _        |       | A 11    | . 1 1       | 1. 1 . 1.1                                        | 1 1    | II. O      |       |  |  |  |  |

SmarTroll ID | 7586-41444-5-3 Turbidity ID | 4677-23343-4-2 Sample Event | 1257

All metals and radiological bottles have pH < 2 **✓** 

Cooler Temp | 1.5 degrees C Thermometer ID 5408-27568-2-2 pH Strip ID 7901-43572-2-1

| Chain of Custody Field Field SERVICES APC General Testing Laboratory  Field Complete  Lab Complete  APC General Testing Laboratory | <b>✓</b> Outside Lab |
|------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Requested Complete Date Routine                                                                                                    | Results To Dustin    |

I ab ETA 02/04/2020 09:00

|                                    | APC General Testing Laboratory Lab ETA 02/04/2020 09:00 |            |           |     |               |         |                                                 |               |       |     |         |                                     |          |           |          |         |           |   |  |
|------------------------------------|---------------------------------------------------------|------------|-----------|-----|---------------|---------|-------------------------------------------------|---------------|-------|-----|---------|-------------------------------------|----------|-----------|----------|---------|-----------|---|--|
| Reques                             | Requested Complete Date Routine                         |            |           |     |               |         |                                                 |               |       |     |         | Results To Dustin Brooks, Greg Dyer |          |           |          |         |           |   |  |
|                                    | Site Repr                                               | resent     | ative Joh | n P | ate           | !       |                                                 |               |       | [ [ | Reques  | ted By                              | Greg Dy  | er        |          |         |           |   |  |
|                                    |                                                         | Colle      | ector Ant | ho  | ny (          | Goggins |                                                 |               |       |     | Lo      | cation                              | Gorgas   | Gyp       | sum      |         |           |   |  |
| Bottles                            | 1 Radium                                                | <u> </u>   | 1 L       | ٦١  | 3             | N/A     |                                                 | N/A           |       | 5   | N/A     |                                     | N/A      | 7         | N/A      |         | N/A       |   |  |
| 2000200                            | 2 N/A                                                   |            | N/A       | 1   | 4             | N/A     |                                                 | N/A           |       | 6   | N/A     |                                     | N/A      | 8         | N/A      |         | N/A       | T |  |
|                                    | C = === == = = = = = = = = = = = = = =                  |            |           | _   |               |         |                                                 |               |       |     |         |                                     |          |           |          |         |           | = |  |
|                                    | Comme                                                   |            |           |     |               |         |                                                 |               |       |     |         |                                     |          |           |          |         |           |   |  |
|                                    |                                                         |            |           |     | Ŧ             |         | _                                               | 1             |       |     |         |                                     |          | <b>.</b>  | , [      |         |           | _ |  |
|                                    | Cample                                                  | ~ #        | Date      |     |               | Time    |                                                 | ottle<br>ount |       |     | Doggr   | intion                              |          | La<br>Fil |          | Lab I   | .a        |   |  |
|                                    | Sample<br>B-1                                           | <i>t</i> # | 2/3/20    |     |               | 12:18   | C                                               | 1             | Field | Rla | Descr   | ірпоп                               |          | ΓII       | tei      | BA022   |           |   |  |
| <u> </u>                           | MW-1L 02/03/2020 12:28                                  |            |           |     |               |         |                                                 | <u>'</u><br>1 | Grou  |     |         |                                     |          |           | $\dashv$ | BA022   |           |   |  |
| <b>⊢</b>                           | MW-2L 02/03/2020 13:30                                  |            |           |     |               |         |                                                 | 1             | Grou  |     |         |                                     |          |           | $\dashv$ | BA022   |           |   |  |
| -                                  | MW-2LDUP 02/03/2020 13:30                               |            |           |     |               |         |                                                 | 1             |       |     | Duplica | <br>te                              |          |           | +        | BA022   |           |   |  |
| <b>⊢</b>                           | 1W-3L                                                   |            | 02/03/20  |     | $\rightarrow$ | 14:50   |                                                 | 1             | Grou  |     |         |                                     |          |           | 7        | BA022   |           |   |  |
| <u> </u>                           | MW-4L 02/03/2020 16:10                                  |            |           |     |               |         |                                                 | 1             | Grou  | ndw | ater    |                                     |          |           | $\neg$   | BA022   | 97        |   |  |
|                                    | 52.55.2525 10.10                                        |            |           |     |               |         |                                                 |               |       |     |         |                                     |          |           |          |         |           |   |  |
|                                    |                                                         |            |           |     |               |         |                                                 |               |       |     |         |                                     | -        |           | ヿ        |         |           |   |  |
|                                    |                                                         |            |           |     |               |         |                                                 |               |       |     |         |                                     |          |           |          |         |           |   |  |
|                                    |                                                         |            |           |     |               |         |                                                 |               |       |     |         |                                     |          |           |          |         |           |   |  |
|                                    |                                                         |            |           |     |               |         |                                                 |               |       |     |         |                                     |          |           |          |         |           |   |  |
|                                    |                                                         |            |           |     |               |         |                                                 |               |       |     |         |                                     |          |           | $\Box$   |         |           |   |  |
|                                    |                                                         |            |           |     | $\perp$       |         |                                                 |               |       |     |         |                                     |          |           |          |         |           |   |  |
|                                    |                                                         |            |           |     | $\perp$       |         |                                                 |               |       |     |         |                                     |          |           | _        |         |           |   |  |
| L                                  |                                                         |            |           |     | _             |         |                                                 |               |       |     |         |                                     |          |           | _        |         |           |   |  |
|                                    |                                                         |            |           |     | 4             |         |                                                 |               |       |     |         |                                     |          |           | _        |         |           |   |  |
|                                    |                                                         |            | -         |     | _             |         |                                                 |               |       |     |         |                                     |          |           | _        |         |           |   |  |
|                                    |                                                         |            |           |     | 4             |         |                                                 |               |       |     |         |                                     |          |           | _        |         |           |   |  |
| <u> </u>                           |                                                         |            |           |     | $\perp$       |         |                                                 |               |       |     |         |                                     |          |           | _        |         |           |   |  |
| <u> </u>                           |                                                         |            |           |     | +             |         | _                                               |               |       |     |         |                                     |          |           | $\dashv$ |         |           |   |  |
|                                    |                                                         |            |           |     |               |         |                                                 |               |       |     |         |                                     |          |           |          |         |           |   |  |
|                                    | Re                                                      | elingu     | ished By  |     |               |         |                                                 |               |       |     | Receiv  | ed By                               |          |           |          | Date    | e/Time    |   |  |
|                                    |                                                         | adj        |           |     |               |         |                                                 |               |       |     | Rauld 9 | Marse                               |          |           |          | 02/04/2 | 020 09:15 |   |  |
|                                    | Const of                                                |            |           |     |               |         | ╟                                               |               |       |     |         | way.                                |          |           | $\dashv$ | 02,01,2 |           |   |  |
|                                    |                                                         |            |           |     |               |         |                                                 |               |       |     |         |                                     |          |           |          |         |           | _ |  |
|                                    |                                                         |            |           |     |               |         |                                                 |               |       |     |         |                                     |          |           |          |         |           |   |  |
|                                    |                                                         |            |           |     |               |         |                                                 |               |       |     |         |                                     |          |           |          |         | _         |   |  |
| SmarTroll ID <b>7586-41442-5-1</b> |                                                         |            |           |     |               |         | All metals and radiological bottles have pH < 2 |               |       |     |         |                                     | < 2 🔽    |           |          |         |           |   |  |
|                                    | urbidity I                                              |            | 60-26211- | 1-1 | 1             |         | _                                               |               |       |     | Cooler  | _                                   | N/A      |           |          |         |           |   |  |
| Sa                                 | Sample Event 1257                                       |            |           |     |               |         |                                                 |               | T     | her | mome    |                                     | N/A      |           |          |         |           |   |  |
|                                    |                                                         |            |           |     |               |         |                                                 |               |       |     | pH Str  | rip ID                              | 7453-406 | 56-1      | 0-8      |         |           |   |  |

| 📤 Alabama Power |                                 |
|-----------------|---------------------------------|
| <b>≥</b> ab&    | Chain of Custody                |
| Field           | Chain of Custody<br>Groundwater |
|                 | APC General Testing Labora      |

**✓** Field Complete ✓ Lab Complete

| <br>    |     |
|---------|-----|
| Outside | Lab |

| APC General Testing Laboratory  Lab ETA 02/06/2020 09:00 |                                        |                 |                                                  |                                                  |              |                    |            |              |                    |          |  |  |
|----------------------------------------------------------|----------------------------------------|-----------------|--------------------------------------------------|--------------------------------------------------|--------------|--------------------|------------|--------------|--------------------|----------|--|--|
| Reque                                                    | ested Complete                         | Date Routine    |                                                  |                                                  |              | Results 7          | o Dustin B | Brooks, Greg | <br>g Dyer         |          |  |  |
| _                                                        | Site Represent                         | ative John Pa   | te                                               |                                                  |              | Requested F        | By Greg Dy | yer          |                    |          |  |  |
|                                                          | -                                      | ector TJ Dau    | gherty                                           |                                                  |              | Locatio            | n Gorgas   | Gypsum       | <u> </u>           |          |  |  |
| Bottles                                                  | 1 Radium                               | 1 L 3           | N/A                                              | N/A                                              |              | 5 N/A              | N/A        | 7 N/A        | N/A                |          |  |  |
| Dotties                                                  | 2 N/A                                  | N/A 4           | l N/A                                            | N/A                                              |              | 6 N/A              | N/A        | 8 N/A        |                    |          |  |  |
|                                                          |                                        |                 |                                                  |                                                  |              |                    | 1.4//      |              |                    |          |  |  |
|                                                          | Comments R                             | adium MS/MSD co | ollected @ M\                                    | W-12H                                            |              |                    |            |              |                    |          |  |  |
|                                                          | Doutle Tale                            |                 |                                                  |                                                  |              |                    |            |              |                    |          |  |  |
|                                                          | C 1 . #                                | Ditt            | TT*                                              | Bottle                                           |              | December           |            | Lab          | T .1. T.1          |          |  |  |
|                                                          | Sample #<br>MW-3V                      | Date            | Time                                             | Count                                            | Group        | Description dwater | n          | Filter       | Lab Id<br>BA02556  |          |  |  |
| <b> </b>                                                 |                                        | 2/3/20          | 14:25                                            | 1                                                | <u> </u>     | dwater<br>dwater   |            | +            | BA02557            |          |  |  |
| ⊢                                                        | MW-3                                   |                 | 15:42                                            | 1                                                | <u> </u>     |                    |            | ++           |                    |          |  |  |
| ⊢                                                        | MW-4V<br>MW-4                          | 02/03/2020      | 16:54                                            | 1                                                | -            | dwater<br>dwater   |            | +            | BA02558<br>BA02559 | +        |  |  |
| ⊢                                                        | MW-4 Dup                               | 02/04/2020      | 09:55                                            | 1                                                |              | e Duplicate        |            | + +          | BA02560            | -        |  |  |
| ⊢                                                        | ww-4 Dup<br>MW-12H                     | 02/04/2020      | 09:55                                            | 1                                                | <del></del>  | dwater             |            | +            | BA02561            |          |  |  |
| ⊢                                                        | MW-11H                                 | 02/04/2020      | 11:12                                            | 3                                                | <del> </del> | dwater             | +          | BA02562      |                    |          |  |  |
| ⊢                                                        | MW-13H                                 | 02/04/2020      | 12:40                                            | 1                                                | <del> </del> | dwater             |            | +            | BA02563            |          |  |  |
| ⊢                                                        | MW-9H                                  | 02/04/2020      | 13:35                                            | 1                                                | <u> </u>     | dwater<br>dwater   |            | +            | BA02564            |          |  |  |
| ⊢                                                        | MW-8                                   | 02/04/2020      | 14:48                                            | <del>                                     </del> | <u> </u>     | dwater<br>dwater   |            | + +          | BA02565            |          |  |  |
| l ⊢                                                      | =B-2                                   | 02/04/2020      | 16:35                                            | 1                                                | Field E      |                    |            | +            | BA02566            |          |  |  |
| ⊢                                                        | MW-8V                                  | 02/05/2020      | 17:00                                            | 1                                                | -            | dwater             |            | +            | BA02567            |          |  |  |
| ⊢                                                        | ====================================== | 02/05/2020      | 13:23                                            | 1                                                |              | ment Blank         |            | +            | BA02568            |          |  |  |
| <u> </u>                                                 | _D-1                                   | 02/03/2020      | 14:00                                            | 1                                                | Lquipi       | TICHT DIAM         |            | +            | DA02300            |          |  |  |
| -                                                        |                                        |                 |                                                  |                                                  |              |                    |            | +            |                    |          |  |  |
| _                                                        |                                        |                 |                                                  |                                                  |              |                    |            | +            |                    |          |  |  |
| -                                                        |                                        |                 |                                                  | <u> </u>                                         |              |                    |            | +            |                    |          |  |  |
| -                                                        |                                        |                 | <del>                                     </del> |                                                  |              |                    |            | + +          |                    |          |  |  |
| _                                                        |                                        |                 |                                                  |                                                  | <u> </u>     |                    |            | +            |                    |          |  |  |
| -                                                        |                                        |                 |                                                  |                                                  |              |                    |            | +            |                    |          |  |  |
| -                                                        |                                        |                 | <del> </del>                                     |                                                  |              |                    |            | + +          |                    | 1        |  |  |
| L                                                        |                                        | <u> </u>        | <u> </u>                                         | <u> </u>                                         |              |                    |            |              |                    |          |  |  |
|                                                          | Relinqu                                | iished By       |                                                  |                                                  |              | Received B         | •          |              | Date/Tin           | ne       |  |  |
|                                                          | <i>\$</i>                              | M               |                                                  |                                                  |              | Xwa 12/1           | 7          |              | 02/06/2020 (       | 08:25    |  |  |
|                                                          |                                        |                 |                                                  |                                                  |              |                    |            |              |                    |          |  |  |
|                                                          |                                        |                 |                                                  | ┨├──                                             |              |                    |            |              |                    |          |  |  |
|                                                          |                                        |                 |                                                  |                                                  |              |                    |            |              |                    |          |  |  |
|                                                          |                                        |                 |                                                  | <del></del>                                      |              |                    | 1. 1       |              |                    |          |  |  |
|                                                          | -                                      | 86-41444-5-3    |                                                  |                                                  | All          | metals and rac     |            | bottles h    | have pH $< 2$      | <u>~</u> |  |  |
|                                                          | · · ·                                  | 577-23343-4-2   |                                                  | $\dashv$                                         | <del></del>  | Cooler Tem         | `          |              |                    |          |  |  |
| Sa                                                       | ample Event 12                         | :5 <i>/</i>     |                                                  |                                                  |              |                    |            |              |                    |          |  |  |
| 1                                                        |                                        |                 |                                                  | pH Strip ID 7901-43572-2-1                       |              |                    |            |              |                    |          |  |  |



# **Environment Testing TestAmerica**

## ANALYTICAL REPORT

Eurofins TestAmerica, Pensacola 3355 McLemore Drive Pensacola, FL 32514 Tel: (850)474-1001

Laboratory Job ID: 400-183738-1

Laboratory Sample Delivery Group: Gorgas Gypsum 1257

Client Project/Site: CCR Plant Gorgas

#### For:

Alabama Power General Test Laboratory 744 County Rd 87 GSC #8 Calera, Alabama 35040

Attn: Laura Midkiff

CheyrindxWhitmin

Authorized for release by: 3/10/2020 5:07:24 PM

Cheyenne Whitmire, Project Manager II (850)471-6222

cheyenne.whitmire@testamericainc.com

·····LINKS ······

Review your project results through

Total Access

**Have a Question?** 



Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

## **Table of Contents**

| Cover Page            | 1  |
|-----------------------|----|
| Table of Contents     | 2  |
| Case Narrative        | 3  |
| Method Summary        | 4  |
| Sample Summary        | 5  |
| Client Sample Results | 6  |
| Definitions           | 25 |
| Chronicle             | 26 |
| QC Association        | 31 |
| QC Sample Results     | 32 |
| Chain of Custody      | 34 |
| Receipt Checklists    | 36 |
| Certification Summary | 38 |

#### Case Narrative

Client: Alabama Power General Test Laboratory

Job ID: 400-183738-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1257

Job ID: 400-183738-1

Laboratory: Eurofins TestAmerica, Pensacola

**Narrative** 

Job Narrative 400-183738-1

#### **RAD**

Method 9315: Radium-226 Prep Batch 160-460256. Any minimum detectable concentration (MDC), critical value (DLC), or Safe Drinking Water Act detection limit (SDWA DL) is sample-specific unless otherwise stated elsewhere in this narrative. Radiochemistry sample results are reported with the count date/time applied as the Activity Reference Date. BA02292 FB-1 (400-183738-1), BA02293 MW-1L (400-183738-2). BA02294 MW-2L (400-183738-3). BA02295 MW-2L DUP (400-183738-4). BA02296 MW-3L (400-183738-5). BA02297 MW-4L (400-183738-6), BA02556 MW-3V (400-183738-7), BA02557 MW-3 (400-183738-8), BA02558 MW-4V (400-183738-9), BA02559 MW-4 (400-183738-10), BA02560 MW-4 DUP (400-183738-11), BA02561 MW-12H (400-183738-12), BA02561 MW-12H (400-183738-12[MS]), BA02561 MW-12H (400-183738-12[MSD]), BA02562 MW-11H (400-183738-13), BA02563 MW-13H (400-183738-14), BA02564 MW-9H (400-183738-15), BA02565 MW-8 (400-183738-16), BA02566 FB-2 (400-183738-17), BA02567 MW-8V (400-183738-18), BA02568 EB-1 (400-183738-19), (LCS 160-460256/1-A) and (MB 160-460256/23-A)

Method 9320: Radium-228 Prep Batch 160-460265. Any minimum detectable concentration (MDC), critical value (DLC), or Safe Drinking Water Act detection limit (SDWA DL) is sample-specific unless otherwise stated elsewhere in this narrative. Radiochemistry sample results are reported with the count date/time applied as the Activity Reference Date. BA02292 FB-1 (400-183738-1), BA02293 MW-1L (400-183738-2), BA02294 MW-2L (400-183738-3), BA02295 MW-2L DUP (400-183738-4), BA02296 MW-3L (400-183738-5), BA02297 MW-4L (400-183738-6), BA02556 MW-3V (400-183738-7), BA02557 MW-3 (400-183738-8), BA02558 MW-4V (400-183738-9), BA02559 MW-4 (400-183738-10), BA02560 MW-4 DUP (400-183738-11), BA02561 MW-12H (400-183738-12), BA02561 MW-12H (400-183738-12[MS]), BA02561 MW-12H (400-183738-12[MSD]), BA02562 MW-11H (400-183738-13), BA02563 MW-13H (400-183738-14), BA02564 MW-9H (400-183738-15), BA02565 MW-8 (400-183738-16), BA02566 FB-2 (400-183738-17), BA02567 MW-8V (400-183738-18), BA02568 EB-1 (400-183738-19), (LCS 160-460265/1-A) and (MB 160-460265/23-A)

Method PrecSep 0: Radium 228 Prep Batch 160-460265. The following samples were prepared at a reduced aliquot due to limited volume: BA02292 FB-1 (400-183738-1), BA02293 MW-1L (400-183738-2), BA02294 MW-2L (400-183738-3), BA02295 MW-2L DUP (400-183738-4), BA02296 MW-3L (400-183738-5), BA02297 MW-4L (400-183738-6), BA02556 MW-3V (400-183738-7), BA02557 MW-3 (400-183738-8), BA02558 MW-4V (400-183738-9), BA02559 MW-4 (400-183738-10), BA02560 MW-4 DUP (400-183738-11), BA02561 MW-12H (400-183738-12), BA02561 MW-12H (400-183738-12[MS]), BA02561 MW-12H (400-183738-12[MSD]), BA02562 MW-11H (400-183738-13), BA02563 MW-13H (400-183738-14), BA02564 MW-9H (400-183738-15), BA02565 MW-8 (400-183738-16), BA02566 FB-2 (400-183738-17), BA02567 MW-8V (400-183738-18) and BA02568 EB-1 (400-183738-19).

Method PrecSep-21: Radium 226 Prep Batch 160-460256. The following samples were prepared at a reduced aliquot due to limited volume: BA02292 FB-1 (400-183738-1), BA02293 MW-1L (400-183738-2), BA02294 MW-2L (400-183738-3), BA02295 MW-2L DUP (400-183738-4), BA02296 MW-3L (400-183738-5), BA02297 MW-4L (400-183738-6), BA02556 MW-3V (400-183738-7), BA02557 MW-3 (400-183738-8), BA02558 MW-4V (400-183738-9), BA02559 MW-4 (400-183738-10), BA02560 MW-4 DUP (400-183738-11), BA02561 MW-12H (400-183738-12), BA02561 MW-12H (400-183738-12[MS]), BA02561 MW-12H (400-183738-12[MSD]), BA02562 MW-11H (400-183738-13), BA02563 MW-13H (400-183738-14), BA02564 MW-9H (400-183738-15), BA02565 MW-8 (400-183738-16), BA02566 FB-2 (400-183738-17), BA02567 MW-8V (400-183738-18) and BA02568 EB-1 (400-183738-19).

## **Method Summary**

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gorgas

Job ID: 400-183738-1 SDG: Gorgas Gypsum 1257

9

| Method      | Method Description                                     | Protocol | Laboratory |
|-------------|--------------------------------------------------------|----------|------------|
| 9315        | Radium-226 (GFPC)                                      | SW846    | TAL SL     |
| 9320        | Radium-228 (GFPC)                                      | SW846    | TAL SL     |
| Ra226_Ra228 | Combined Radium-226 and Radium-228                     | TAL-STL  | TAL SL     |
| PrecSep_0   | Preparation, Precipitate Separation                    | None     | TAL SL     |
| PrecSep-21  | Preparation, Precipitate Separation (21-Day In-Growth) | None     | TAL SL     |

#### **Protocol References:**

None = None

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL-STL = TestAmerica Laboratories, St. Louis, Facility Standard Operating Procedure.

#### Laboratory References:

TAL SL = Eurofins TestAmerica, St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Eurofins TestAmerica, Pensacola

## **Sample Summary**

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gorgas

| Job ID: 400-183738-1    |
|-------------------------|
| SDG: Gorgas Gypsum 1257 |
|                         |

| Lab Sample ID | Client Sample ID  | Matrix | Collected      | Received       | Asset |
|---------------|-------------------|--------|----------------|----------------|-------|
| 400-183738-1  | BA02292 FB-1      | Water  | 02/03/20 12:18 | 02/10/20 14:08 |       |
| 400-183738-2  | BA02293 MW-1L     | Water  | 02/03/20 12:28 | 02/10/20 14:08 |       |
| 400-183738-3  | BA02294 MW-2L     | Water  | 02/03/20 13:30 | 02/10/20 14:08 |       |
| 400-183738-4  | BA02295 MW-2L DUP | Water  | 02/03/20 13:30 | 02/10/20 14:08 |       |
| 400-183738-5  | BA02296 MW-3L     | Water  | 02/03/20 14:50 | 02/10/20 14:08 |       |
| 400-183738-6  | BA02297 MW-4L     | Water  | 02/03/20 16:10 | 02/10/20 14:08 |       |
| 400-183738-7  | BA02556 MW-3V     | Water  | 02/03/20 14:25 | 02/10/20 14:08 |       |
| 400-183738-8  | BA02557 MW-3      | Water  | 02/03/20 15:42 | 02/10/20 14:08 |       |
| 400-183738-9  | BA02558 MW-4V     | Water  | 02/03/20 16:54 | 02/10/20 14:08 |       |
| 400-183738-10 | BA02559 MW-4      | Water  | 02/04/20 09:55 | 02/10/20 14:08 |       |
| 400-183738-11 | BA02560 MW-4 DUP  | Water  | 02/04/20 09:55 | 02/10/20 14:08 |       |
| 400-183738-12 | BA02561 MW-12H    | Water  | 02/04/20 11:12 | 02/10/20 14:08 |       |
| 400-183738-13 | BA02562 MW-11H    | Water  | 02/04/20 12:40 | 02/10/20 14:08 |       |
| 400-183738-14 | BA02563 MW-13H    | Water  | 02/04/20 13:35 | 02/10/20 14:08 |       |
| 400-183738-15 | BA02564 MW-9H     | Water  | 02/04/20 14:48 | 02/10/20 14:08 |       |
| 400-183738-16 | BA02565 MW-8      | Water  | 02/04/20 16:35 | 02/10/20 14:08 |       |
| 400-183738-17 | BA02566 FB-2      | Water  | 02/04/20 17:00 | 02/10/20 14:08 |       |
| 400-183738-18 | BA02567 MW-8V     | Water  | 02/05/20 13:23 | 02/10/20 14:08 |       |
| 400-183738-19 | BA02568 EB-1      | Water  | 02/05/20 14:00 | 02/10/20 14:08 |       |

5

5

7

10

11

12

11:

Client: Alabama Power General Test Laboratory

Job ID: 400-183738-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1257

Client Sample ID: BA02292 FB-1

Lab Sample ID: 400-183738-1 Date Collected: 02/03/20 12:18 **Matrix: Water** Date Received: 02/10/20 14:08

| Analyte    | Result | Qualifier | Count<br>Uncert.<br>(2σ+/-) | Total<br>Uncert.<br>(2σ+/-) | RL   | MDC   | Unit | Prepared       | Analyzed       | Dil Fac |
|------------|--------|-----------|-----------------------------|-----------------------------|------|-------|------|----------------|----------------|---------|
| Radium-226 | -0.127 |           | 0.0475                      | 0.0488                      | 1.00 | 0.163 |      | 02/13/20 06:48 |                | 1       |
| Carrier    | %Yield | Qualifier | Limits                      |                             |      |       |      | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier | 100    |           | 40 - 110                    |                             |      |       |      | 02/13/20 06:48 | 03/06/20 09:59 | 1       |

| Method: 9320 - 1 | Radium-228 ( | GFPC)     | Count    | Total   |      |       |       |                |                |         |
|------------------|--------------|-----------|----------|---------|------|-------|-------|----------------|----------------|---------|
|                  |              |           | Uncert.  | Uncert. |      |       |       | _              |                |         |
| Analyte          | Result       | Qualifier | (2σ+/-)  | (2σ+/-) | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-228       | 0.123        | U         | 0.295    | 0.295   | 1.00 | 0.507 | pCi/L | 02/13/20 07:22 | 02/26/20 17:16 | 1       |
| Carrier          | %Yield       | Qualifier | Limits   |         |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier       | 100          |           | 40 - 110 |         |      |       |       | 02/13/20 07:22 | 02/26/20 17:16 | 1       |
| Y Carrier        | 87.1         |           | 40 - 110 |         |      |       |       | 02/13/20 07:22 | 02/26/20 17:16 | 1       |

| Method: Ra226 Ra             | 228 - Combin | ned Radiu | m-226 a          | nd Radiun        | n-228 |       |       |          |                |         |
|------------------------------|--------------|-----------|------------------|------------------|-------|-------|-------|----------|----------------|---------|
| _                            |              |           | Count<br>Uncert. | Total<br>Uncert. |       |       |       |          |                |         |
| Analyte                      | Result Qua   |           | (2σ+/-)          | (2σ+/-)          | RL    | MDC   | Unit  | Prepared | Analyzed       | Dil Fac |
| Combined Radium 226<br>+ 228 | -0.00470 U   |           | 0.299            | 0.299            | 5.00  | 0.507 | pCi/L |          | 03/10/20 07:34 | 1       |

3/10/2020

Client: Alabama Power General Test Laboratory

Job ID: 400-183738-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1257

Client Sample ID: BA02293 MW-1L

Lab Sample ID: 400-183738-2 Date Collected: 02/03/20 12:28 **Matrix: Water** Date Received: 02/10/20 14:08

|            |        |           | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |
|------------|--------|-----------|------------------|------------------|------|-------|-------|----------------|----------------|---------|
| Analyte    | Result | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-226 | 0.0251 | U         | 0.0828           | 0.0828           | 1.00 | 0.155 | pCi/L | 02/13/20 06:48 | 03/06/20 09:59 | 1       |
| Carrier    | %Yield | Qualifier | Limits           |                  |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier | 92.3   | -         | 40 - 110         |                  |      |       |       | 02/13/20 06:48 | 03/06/20 09:59 | 1       |

| Method: 9320 - | Radium-228 ( | (GFPC)    | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |
|----------------|--------------|-----------|------------------|------------------|------|-------|-------|----------------|----------------|---------|
| Analyte        | Result       | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-228     | 0.496        | U         | 0.370            | 0.372            | 1.00 | 0.584 | pCi/L | 02/13/20 07:22 | 02/26/20 17:16 | 1       |
| Carrier        | %Yield       | Qualifier | Limits           |                  |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier     | 92.3         |           | 40 - 110         |                  |      |       |       | 02/13/20 07:22 | 02/26/20 17:16 | 1       |
| Y Carrier      | 86.7         |           | 40 - 110         |                  |      |       |       | 02/13/20 07:22 | 02/26/20 17:16 | 1       |

| Method: Ra226 Ra2            | 228 - Con | nbined Ra | dium-226 a       | nd Radiun        | 1-228 |       |       |          |                |         |
|------------------------------|-----------|-----------|------------------|------------------|-------|-------|-------|----------|----------------|---------|
| _                            |           |           | Count<br>Uncert. | Total<br>Uncert. |       |       |       |          |                |         |
| Analyte                      | Result    | Qualifier | (2σ+/-)          | (2σ+/-)          | RL    | MDC   | Unit  | Prepared | Analyzed       | Dil Fac |
| Combined Radium 226<br>+ 228 | 0.521     | U         | 0.379            | 0.381            | 5.00  | 0.584 | pCi/L |          | 03/10/20 07:34 | 1       |

3/10/2020

Client: Alabama Power General Test Laboratory

86.4

Job ID: 400-183738-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1257

Client Sample ID: BA02294 MW-2L

Y Carrier

Lab Sample ID: 400-183738-3 Date Collected: 02/03/20 13:30 **Matrix: Water** Date Received: 02/10/20 14:08

| Method: 9315 - R | adium-226 ( | GFPC)     |          |         |      |       |       |                |                |         |
|------------------|-------------|-----------|----------|---------|------|-------|-------|----------------|----------------|---------|
|                  |             |           | Count    | Total   |      |       |       |                |                |         |
|                  |             |           | Uncert.  | Uncert. |      |       |       |                |                |         |
| Analyte          | Result      | Qualifier | (2σ+/-)  | (2σ+/-) | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-226       | 0.0154      | U         | 0.103    | 0.103   | 1.00 | 0.195 | pCi/L | 02/13/20 06:48 | 03/06/20 09:59 | 1       |
| Carrier          | %Yield      | Qualifier | Limits   |         |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier       | 88.6        |           | 40 - 110 |         |      |       |       | 02/13/20 06:48 | 03/06/20 09:59 | 1       |
| Method: 9320 - R | adium-228 ( | GFPC)     |          |         |      |       |       |                |                |         |
|                  | `           | ,         | Count    | Total   |      |       |       |                |                |         |
|                  |             |           | Uncert.  | Uncert. |      |       |       |                |                |         |
| Analyte          | Result      | Qualifier | (2σ+/-)  | (2σ+/-) | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-228       | -0.0399     | U         | 0.309    | 0.309   | 1.00 | 0.561 | pCi/L | 02/13/20 07:22 | 02/26/20 17:16 | 1       |
| Carrier          | %Yield      | Qualifier | Limits   |         |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier       | 88.6        |           | 40 - 110 |         |      |       |       | 02/13/20 07:22 | 02/26/20 17:16 |         |

| Method: Ra226_Ra2            | 228 - Con | nbined Ra | dium-226 a       | nd Radium        | <b>-228</b> |       |       |          |                |         |
|------------------------------|-----------|-----------|------------------|------------------|-------------|-------|-------|----------|----------------|---------|
| _                            |           |           | Count<br>Uncert. | Total<br>Uncert. |             |       |       |          |                |         |
| Analyte                      | Result    | Qualifier | (2σ+/-)          | (2σ+/-)          | RL          | MDC   | Unit  | Prepared | Analyzed       | Dil Fac |
| Combined Radium 226<br>+ 228 | -0.0245   | U         | 0.326            | 0.326            | 5.00        | 0.561 | pCi/L |          | 03/10/20 07:34 | 1       |

40 - 110

3/10/2020

02/13/20 07:22 02/26/20 17:16

Client: Alabama Power General Test Laboratory

Job ID: 400-183738-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1257

Client Sample ID: BA02295 MW-2L DUP

Lab Sample ID: 400-183738-4 Date Collected: 02/03/20 13:30 **Matrix: Water** Date Received: 02/10/20 14:08

| Analyte    | Result | Qualifier | Count<br>Uncert.<br>(2σ+/-) | Total<br>Uncert.<br>(2σ+/-) | RL   | MDC   | Unit | Prepared       | Analyzed       | Dil Fac |
|------------|--------|-----------|-----------------------------|-----------------------------|------|-------|------|----------------|----------------|---------|
| Radium-226 | 0.0667 |           | 0.0867                      | 0.0869                      | 1.00 | 0.145 |      |                |                | 1       |
| Carrier    | %Yield | Qualifier | Limits                      |                             |      |       |      | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier | 97.2   |           | 40 - 110                    |                             |      |       |      | 02/13/20 06:48 | 03/06/20 09:59 | 1       |

| Analyte    | Result | Qualifier | Uncert.<br>(2σ+/-) | 1 otal<br>Uncert.<br>(2σ+/-) | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
|------------|--------|-----------|--------------------|------------------------------|------|-------|-------|----------------|----------------|---------|
| Radium-228 | -0.165 | U         | 0.280              | 0.280                        | 1.00 | 0.529 | pCi/L | 02/13/20 07:22 | 02/26/20 17:16 | 1       |
| Carrier    | %Yield | Qualifier | Limits             |                              |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier | 97.2   |           | 40 - 110           |                              |      |       |       | 02/13/20 07:22 | 02/26/20 17:16 | 1       |
| Y Carrier  | 86.7   |           | 40 - 110           |                              |      |       |       | 02/13/20 07:22 | 02/26/20 17:16 | 1       |

| Method: Ra226_Ra2            | 228 - Con | nbined Ra | dium-226 a | nd Radium | 1-228 |       |       |          |                |         |
|------------------------------|-----------|-----------|------------|-----------|-------|-------|-------|----------|----------------|---------|
| _                            |           |           | Count      | Total     |       |       |       |          |                |         |
|                              |           |           | Uncert.    | Uncert.   |       |       |       |          |                |         |
| Analyte                      | Result    | Qualifier | (2σ+/-)    | (2σ+/-)   | RL    | MDC   | Unit  | Prepared | Analyzed       | Dil Fac |
| Combined Radium 226<br>+ 228 | -0.0978   | U         | 0.293      | 0.293     | 5.00  | 0.529 | pCi/L | _        | 03/10/20 07:34 | 1       |

3/10/2020

Client: Alabama Power General Test Laboratory

Job ID: 400-183738-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1257

Client Sample ID: BA02296 MW-3L

Date Collected: 02/03/20 14:50 Date Received: 02/10/20 14:08 Lab Sample ID: 400-183738-5

**Matrix: Water** 

| Analyte    | Result | Qualifier | Count<br>Uncert.<br>(2σ+/-) | Total<br>Uncert.<br>(2σ+/-) | RL   | MDC   | Unit | Prepared       | Analvzed       | Dil Fac |
|------------|--------|-----------|-----------------------------|-----------------------------|------|-------|------|----------------|----------------|---------|
| Radium-226 | -0.126 |           | 0.0764                      | 0.0772                      | 1.00 | 0.197 |      | 02/13/20 06:48 |                | 1       |
| Carrier    | %Yield | Qualifier | Limits                      |                             |      |       |      | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier | 96.6   | -         | 40 - 110                    |                             |      |       |      | 02/13/20 06:48 | 03/06/20 09:59 | 1       |

| Method: 9320 - I | Radium-228 ( | (GFPC)    |                  |                  |      |       |       |                |                |         |
|------------------|--------------|-----------|------------------|------------------|------|-------|-------|----------------|----------------|---------|
|                  |              | ,         | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |
| Analyte          | Result       | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-228       | 0.150        | U         | 0.298            | 0.298            | 1.00 | 0.509 | pCi/L | 02/13/20 07:22 | 02/26/20 17:16 | 1       |
| Carrier          | %Yield       | Qualifier | Limits           |                  |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier       | 96.6         |           | 40 - 110         |                  |      |       |       | 02/13/20 07:22 | 02/26/20 17:16 | 1       |
| Y Carrier        | 85.2         |           | 40 - 110         |                  |      |       |       | 02/13/20 07:22 | 02/26/20 17:16 | 1       |

| Method: Ra226 Ra2            | 228 - Combined | d Radium-226 | and Radiur | m-228 |       |       |              |                |         |
|------------------------------|----------------|--------------|------------|-------|-------|-------|--------------|----------------|---------|
| _                            |                | Count        | Total      |       |       |       |              |                |         |
|                              |                | Uncert.      | Uncert.    |       |       |       |              |                |         |
| Analyte                      | Result Qualif  | ier (2σ+/-)  | (2σ+/-)    | RL    | MDC   | Unit  | Prepared     | Analyzed       | Dil Fac |
| Combined Radium 226<br>+ 228 | 0.0246 U       | 0.308        | 0.308      | 5.00  | 0.509 | pCi/L | <del>_</del> | 03/10/20 07:34 | 1       |

Client: Alabama Power General Test Laboratory

Job ID: 400-183738-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1257

Client Sample ID: BA02297 MW-4L

Lab Sample ID: 400-183738-6 Date Collected: 02/03/20 16:10 **Matrix: Water** Date Received: 02/10/20 14:08

| Analyte      | Result | Qualifier | Count<br>Uncert.<br>(2σ+/-) | Total<br>Uncert.<br>(2σ+/-) | RL   | MDC   | Unit  | Prepared       | Analvzed       | Dil Fac |
|--------------|--------|-----------|-----------------------------|-----------------------------|------|-------|-------|----------------|----------------|---------|
| Radium-226   | 0.0627 |           | 0.0759                      | 0.0761                      | 1.00 | 0.124 |       |                | 03/06/20 09:59 | 1       |
| Naululli-220 | 0.0027 | U         | 0.0759                      | 0.0701                      | 1.00 | 0.124 | pCi/L | 02/13/20 00.40 | 03/00/20 09.59 | !       |
| Carrier      | %Yield | Qualifier | Limits                      |                             |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier   | 99.1   |           | 40 - 110                    |                             |      |       |       | 02/13/20 06:48 | 03/06/20 09:59 |         |

| Method: 9320 - 1 | Naululli-220 ( | GI FO)    | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |
|------------------|----------------|-----------|------------------|------------------|------|-------|-------|----------------|----------------|---------|
| Analyte          | Result         | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-228       | 0.191          | Ū         | 0.335            | 0.335            | 1.00 | 0.567 | pCi/L | 02/13/20 07:22 | 02/26/20 17:16 | 1       |
| Carrier          | %Yield         | Qualifier | Limits           |                  |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier       | 99.1           |           | 40 - 110         |                  |      |       |       | 02/13/20 07:22 | 02/26/20 17:16 | 1       |
| Y Carrier        | 77.8           |           | 40 - 110         |                  |      |       |       | 02/13/20 07:22 | 02/26/20 17:16 | 1       |

| Method: Ra226_Ra2            | 28 - Con | bined Rad | dium-226 a | nd Radium | 1-228 |       |       |          |                |         |
|------------------------------|----------|-----------|------------|-----------|-------|-------|-------|----------|----------------|---------|
| _                            |          |           | Count      | Total     |       |       |       |          |                |         |
|                              |          |           | Uncert.    | Uncert.   |       |       |       |          |                |         |
| Analyte                      | Result   | Qualifier | (2σ+/-)    | (2σ+/-)   | RL    | MDC   | Unit  | Prepared | Analyzed       | Dil Fac |
| Combined Radium 226<br>+ 228 | 0.254    | U         | 0.343      | 0.344     | 5.00  | 0.567 | pCi/L | _        | 03/10/20 07:34 | 1       |

Client: Alabama Power General Test Laboratory

Job ID: 400-183738-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1257

Client Sample ID: BA02556 MW-3V

Carrier

Ba Carrier

Y Carrier

Lab Sample ID: 400-183738-7 Date Collected: 02/03/20 14:25 **Matrix: Water** Date Received: 02/10/20 14:08

| Method: 9315 - I      | Radium-226 ( | GFPC)     | Count    | Total   |      |       |       |                |                |         |
|-----------------------|--------------|-----------|----------|---------|------|-------|-------|----------------|----------------|---------|
|                       |              |           | Uncert.  | Uncert. |      |       |       |                |                |         |
| Analyte               | Result       | Qualifier | (2σ+/-)  | (2σ+/-) | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-226            | 0.0601       | U         | 0.0798   | 0.0800  | 1.00 | 0.134 | pCi/L | 02/13/20 06:48 | 03/06/20 09:59 | 1       |
| Carrier               | %Yield       | Qualifier | Limits   |         |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier            | 96.0         |           | 40 - 110 |         |      |       |       | 02/13/20 06:48 | 03/06/20 09:59 | 1       |
| _<br>Method: 9320 - I | Radium-228 ( | GFPC)     |          |         |      |       |       |                |                |         |
|                       |              | ,         | Count    | Total   |      |       |       |                |                |         |
|                       |              |           | Uncert.  | Uncert. |      |       |       |                |                |         |
| Analyte               | Result       | Qualifier | (2σ+/-)  | (2σ+/-) | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-228            | 0.348        | U         | 0.338    | 0.340   | 1.00 | 0.548 | pCi/L | 02/13/20 07:22 | 02/26/20 17:17 | 1       |

Prepared

Analyzed

02/13/20 07:22 02/26/20 17:17

02/13/20 07:22 02/26/20 17:17

Limits

40 - 110

40 - 110

%Yield Qualifier

96.0

83.0

| Method: Ra226 Ra2            | 228 - Con | nbined Rad | dium-226 a       | nd Radium        | 1-228 |       |       |          |                |         |
|------------------------------|-----------|------------|------------------|------------------|-------|-------|-------|----------|----------------|---------|
| _                            |           |            | Count<br>Uncert. | Total<br>Uncert. |       |       |       |          |                |         |
| Analyte                      | Result    | Qualifier  | (2σ+/-)          | (2σ+/-)          | RL    | MDC   | Unit  | Prepared | Analyzed       | Dil Fac |
| Combined Radium 226<br>+ 228 | 0.408     | U          | 0.347            | 0.349            | 5.00  | 0.548 | pCi/L |          | 03/10/20 07:34 | 1       |

Eurofins TestAmerica, Pensacola

3/10/2020

Dil Fac

Client: Alabama Power General Test Laboratory

Job ID: 400-183738-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1257

Client Sample ID: BA02557 MW-3

Lab Sample ID: 400-183738-8 Date Collected: 02/03/20 15:42 **Matrix: Water** Date Received: 02/10/20 14:08

| Method: 9315 - | Radium-226 ( | (GFPC)    | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |
|----------------|--------------|-----------|------------------|------------------|------|-------|-------|----------------|----------------|---------|
| Analyte        | Result       | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-226     | 0.0150       | U         | 0.0961           | 0.0961           | 1.00 | 0.181 | pCi/L | 02/13/20 06:48 | 03/06/20 09:59 | 1       |
| Carrier        | %Yield       | Qualifier | Limits           |                  |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier     | 105          |           | 40 - 110         |                  |      |       |       | 02/13/20 06:48 | 03/06/20 09:59 | 1       |
|                | Radium-228 ( | (GFPC)    |                  |                  |      |       |       |                |                |         |
|                |              | •         | Count            | Total            |      |       |       |                |                |         |

|            |        |           | Uncert.  | Uncert. |      |       |       |                |                |         |
|------------|--------|-----------|----------|---------|------|-------|-------|----------------|----------------|---------|
| Analyte    | Result | Qualifier | (2σ+/-)  | (2σ+/-) | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-228 | 0.265  | U         | 0.304    | 0.305   | 1.00 | 0.500 | pCi/L | 02/13/20 07:22 | 02/26/20 17:17 | 1       |
| Carrier    | %Yield | Qualifier | Limits   |         |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier | 105    |           | 40 - 110 |         |      |       |       | 02/13/20 07:22 | 02/26/20 17:17 | 1       |
| Y Carrier  | 81.9   |           | 40 - 110 |         |      |       |       | 02/13/20 07:22 | 02/26/20 17:17 | 1       |

| Method: Ra226 Ra2            | 28 - Con | bined Rad | dium-226 a | nd Radium | 1-228 |       |       |          |                |         |
|------------------------------|----------|-----------|------------|-----------|-------|-------|-------|----------|----------------|---------|
| _                            |          |           | Count      | Total     |       |       |       |          |                |         |
|                              |          |           | Uncert.    | Uncert.   |       |       |       |          |                |         |
| Analyte                      | Result   | Qualifier | (2σ+/-)    | (2σ+/-)   | RL    | MDC   | Unit  | Prepared | Analyzed       | Dil Fac |
| Combined Radium 226<br>+ 228 | 0.280    | U         | 0.319      | 0.320     | 5.00  | 0.500 | pCi/L |          | 03/10/20 07:34 | 1       |

Client: Alabama Power General Test Laboratory

Job ID: 400-183738-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1257

Client Sample ID: BA02558 MW-4V

Lab Sample ID: 400-183738-9 Date Collected: 02/03/20 16:54 **Matrix: Water** Date Received: 02/10/20 14:08

| Method: 9315 - I             | Radium-226 (                | GFPC)             |                             |                             |            |       |            |                         |                                |                     |
|------------------------------|-----------------------------|-------------------|-----------------------------|-----------------------------|------------|-------|------------|-------------------------|--------------------------------|---------------------|
|                              |                             | •                 | Count<br>Uncert.            | Total<br>Uncert.            |            |       |            |                         |                                |                     |
| Analyte                      | Result                      | Qualifier         | (2σ+/-)                     | (2σ+/-)                     | RL         | MDC   | Unit       | Prepared                | Analyzed                       | Dil Fac             |
| Radium-226                   | 0.0269                      | U                 | 0.0795                      | 0.0795                      | 1.00       | 0.148 | pCi/L      | 02/13/20 06:48          | 03/06/20 09:59                 | 1                   |
| Carrier                      | %Yield                      | Qualifier         | Limits                      |                             |            |       |            | Prepared                | Analyzed                       | Dil Fac             |
|                              |                             |                   | 10 110                      |                             |            |       |            | 00/40/00 00:40          | 02/06/20 00:50                 |                     |
| Ba Carrier  Method: 9320 - I | 93.2<br>Radium-228 (        | (GFPC)            | 40 - 110                    |                             |            |       |            | 02/13/20 06:48          | 03/06/20 09:59                 | 1                   |
| Ba Carner  Method: 9320 - I  |                             | (GFPC)            | Count                       | Total<br>Uncert.            |            |       |            | 02/13/20 06.48          | 03/06/20 09.59                 | 7                   |
| -                            | Radium-228 (                | (GFPC)  Qualifier |                             | Total<br>Uncert.<br>(2σ+/-) | RL         | MDC   | Unit       | 02/13/20 06:48          | Analyzed                       | Dil Fac             |
| Method: 9320 - I             | Radium-228 (                | •                 | Count<br>Uncert.            | Uncert.                     | RL<br>1.00 |       | Unit pCi/L |                         |                                | Dil Fac             |
| Method: 9320 - I             | Radium-228 (  Result  0.731 | Qualifier         | Count<br>Uncert.<br>(2σ+/-) | Uncert.<br>(2σ+/-)          |            |       |            | Prepared                | Analyzed                       | Dil Fac  1  Dil Fac |
| Method: 9320 - I             | Radium-228 (  Result  0.731 | Qualifier         | Count<br>Uncert.<br>(2σ+/-) | Uncert.<br>(2σ+/-)          |            |       |            | Prepared 02/13/20 07:22 | <b>Analyzed</b> 02/26/20 17:17 | 1                   |

| Method: Ra226_Ra             | 228 - Combined I | Radium-226 a | ınd Radium | 1-228 |       |       |          |                |         |
|------------------------------|------------------|--------------|------------|-------|-------|-------|----------|----------------|---------|
|                              |                  | Count        | Total      |       |       |       |          |                |         |
|                              |                  | Uncert.      | Uncert.    |       |       |       |          |                |         |
| Analyte                      | Result Qualifier | (2σ+/-)      | (2σ+/-)    | RL    | MDC   | Unit  | Prepared | Analyzed       | Dil Fac |
| Combined Radium<br>226 + 228 | 0.758            | 0.363        | 0.370      | 5.00  | 0.512 | pCi/L |          | 03/10/20 07:34 | 1       |

Client: Alabama Power General Test Laboratory

Job ID: 400-183738-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1257

Client Sample ID: BA02559 MW-4

Lab Sample ID: 400-183738-10 Date Collected: 02/04/20 09:55 **Matrix: Water** Date Received: 02/10/20 14:08

|            |        |           | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |
|------------|--------|-----------|------------------|------------------|------|-------|-------|----------------|----------------|---------|
| Analyte    | Result | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-226 | 0.0685 | U         | 0.0968           | 0.0970           | 1.00 | 0.164 | pCi/L | 02/13/20 06:48 | 03/06/20 09:59 | 1       |
| Carrier    | %Yield | Qualifier | Limits           |                  |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier | 94.2   |           | 40 - 110         |                  |      |       |       | 02/13/20 06:48 | 03/06/20 09:59 | 1       |

| Method: 9320 - I | Radium-228 ( | (GFPC)    |                  |                  |      |       |       |                |                |         |
|------------------|--------------|-----------|------------------|------------------|------|-------|-------|----------------|----------------|---------|
|                  |              | ,         | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |
| Analyte          | Result       | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-228       | 0.256        | U         | 0.348            | 0.349            | 1.00 | 0.580 | pCi/L | 02/13/20 07:22 | 02/26/20 17:17 | 1       |
| Carrier          | %Yield       | Qualifier | Limits           |                  |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier       | 94.2         | -         | 40 - 110         |                  |      |       |       | 02/13/20 07:22 | 02/26/20 17:17 | 1       |
| Y Carrier        | 86.0         |           | 40 - 110         |                  |      |       |       | 02/13/20 07:22 | 02/26/20 17:17 | 1       |

| _<br>Method: Ra226 Ra2       | 28 - Con | nbined Rad | dium-226 a | nd Radium | -228 |       |       |          |                |         |
|------------------------------|----------|------------|------------|-----------|------|-------|-------|----------|----------------|---------|
| _                            |          |            | Count      | Total     |      |       |       |          |                |         |
|                              |          |            | Uncert.    | Uncert.   |      |       |       |          |                |         |
| Analyte                      | Result   | Qualifier  | (2σ+/-)    | (2σ+/-)   | RL   | MDC   | Unit  | Prepared | Analyzed       | Dil Fac |
| Combined Radium 226<br>+ 228 | 0.324    | U          | 0.361      | 0.362     | 5.00 | 0.580 | pCi/L | _        | 03/10/20 07:34 | 1       |

Client: Alabama Power General Test Laboratory

Job ID: 400-183738-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1257

Client Sample ID: BA02560 MW-4 DUP

Lab Sample ID: 400-183738-11 Date Collected: 02/04/20 09:55 **Matrix: Water** Date Received: 02/10/20 14:08

| Method: 9315 - I | Radium-226 ( | GFPC)     | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |
|------------------|--------------|-----------|------------------|------------------|------|-------|-------|----------------|----------------|---------|
| Analyte          | Result       | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-226       | -0.0521      | U         | 0.0869           | 0.0870           | 1.00 | 0.193 | pCi/L | 02/13/20 06:48 | 03/06/20 09:59 | 1       |
| Carrier          | %Yield       | Qualifier | Limits           |                  |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier       | 92.0         |           | 40 - 110         |                  |      |       |       | 02/13/20 06:48 | 03/06/20 09:59 | 1       |
| Method: 9320 - I | Radium-228 ( | GFPC)     | Count            | Total            |      |       |       |                |                |         |

| MCt1104: 3020 - 1 |        | ,         | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |
|-------------------|--------|-----------|------------------|------------------|------|-------|-------|----------------|----------------|---------|
| Analyte           | Result | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-228        | 0.721  |           | 0.366            | 0.372            | 1.00 | 0.542 | pCi/L | 02/13/20 07:22 | 02/26/20 17:17 | 1       |
| Carrier           | %Yield | Qualifier | Limits           |                  |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier        | 92.0   |           | 40 - 110         |                  |      |       |       | 02/13/20 07:22 | 02/26/20 17:17 | 1       |
| Y Carrier         | 89.3   |           | 40 - 110         |                  |      |       |       | 02/13/20 07:22 | 02/26/20 17:17 | 1       |

| Method: Ra226_Ra             | 228 - Combined  | Radium-226 a | ınd Radiun | า-228 |       |       |          |                |         |
|------------------------------|-----------------|--------------|------------|-------|-------|-------|----------|----------------|---------|
|                              |                 | Count        | Total      |       |       |       |          |                |         |
|                              |                 | Uncert.      | Uncert.    |       |       |       |          |                |         |
| Analyte                      | Result Qualifie | r (2σ+/-)    | (2σ+/-)    | RL    | MDC   | Unit  | Prepared | Analyzed       | Dil Fac |
| Combined Radium<br>226 + 228 | 0.669           | 0.376        | 0.382      | 5.00  | 0.542 | pCi/L |          | 03/10/20 07:34 | 1       |

Client: Alabama Power General Test Laboratory

Job ID: 400-183738-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1257

Client Sample ID: BA02561 MW-12H

Lab Sample ID: 400-183738-12 Date Collected: 02/04/20 11:12 **Matrix: Water** 

| Date Received: 02/10/20 14:08 |       |       |
|-------------------------------|-------|-------|
|                               |       |       |
|                               | Count | Total |

|            |        |           | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |
|------------|--------|-----------|------------------|------------------|------|-------|-------|----------------|----------------|---------|
| Analyte    | Result | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-226 | 0.299  |           | 0.128            | 0.131            | 1.00 | 0.146 | pCi/L | 02/13/20 06:48 | 03/06/20 10:00 | 1       |
| Carrier    | %Yield | Qualifier | Limits           |                  |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier | 94.8   |           | 40 - 110         |                  |      |       |       | 02/13/20 06:48 | 03/06/20 10:00 | 1       |

| Method: 9320 - F | (aululii-220 ( | (GFFC)    | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |
|------------------|----------------|-----------|------------------|------------------|------|-------|-------|----------------|----------------|---------|
| Analyte          | Result         | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-228       | 0.641          |           | 0.329            | 0.334            | 1.00 | 0.477 | pCi/L | 02/13/20 07:22 | 02/26/20 17:17 | 1       |
| Carrier          | %Yield         | Qualifier | Limits           |                  |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier       | 94.8           |           | 40 - 110         |                  |      |       |       | 02/13/20 07:22 | 02/26/20 17:17 | 1       |
| Y Carrier        | 85.6           |           | 40 - 110         |                  |      |       |       | 02/13/20 07:22 | 02/26/20 17:17 | 1       |

| Method: Ra226_Ra             | 228 - Con | ibined Rad | dium-226 a | nd Radium | <b>-228</b> |       |       |          |                |         |
|------------------------------|-----------|------------|------------|-----------|-------------|-------|-------|----------|----------------|---------|
|                              |           |            | Count      | Total     |             |       |       |          |                |         |
|                              |           |            | Uncert.    | Uncert.   |             |       |       |          |                |         |
| Analyte                      | Result    | Qualifier  | (2σ+/-)    | (2σ+/-)   | RL          | MDC   | Unit  | Prepared | Analyzed       | Dil Fac |
| Combined Radium<br>226 + 228 | 0.939     |            | 0.353      | 0.359     | 5.00        | 0.477 | pCi/L |          | 03/10/20 07:34 | 1       |

Client: Alabama Power General Test Laboratory

Job ID: 400-183738-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1257

Client Sample ID: BA02562 MW-11H

Lab Sample ID: 400-183738-13 Date Collected: 02/04/20 12:40 **Matrix: Water** Date Received: 02/10/20 14:08

|            |         |           | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |
|------------|---------|-----------|------------------|------------------|------|-------|-------|----------------|----------------|---------|
| Analyte    | Result  | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-226 | -0.0577 | U         | 0.0731           | 0.0733           | 1.00 | 0.171 | pCi/L | 02/13/20 06:48 | 03/06/20 11:51 | 1       |
| Carrier    | %Yield  | Qualifier | Limits           |                  |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier | 94.5    |           | 40 - 110         |                  |      |       |       | 02/13/20 06:48 | 03/06/20 11:51 | 1       |

| Radium-228 ( | GFPC)            |          |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------|------------------|----------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |                  | Count    | Total                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              |                  | Uncert.  | Uncert.                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Result       | Qualifier        | (2σ+/-)  | (2σ+/-)                                     | RL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MDC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Prepared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dil Fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.377        | U                | 0.417    | 0.418                                       | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.684                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pCi/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 02/13/20 07:22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 02/26/20 17:20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| %Yield       | Qualifier        | Limits   |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Prepared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dil Fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 94.5         |                  | 40 - 110 |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 02/13/20 07:22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 02/26/20 17:20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 87.9         |                  | 40 - 110 |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 02/13/20 07:22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 02/26/20 17:20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              | Result     0.377 |          | Count Uncert.   (2σ+/-)   0.377   U   0.417 | Count Uncert. Uncert.   Uncert.   (2σ+/-)   (2σ+/-) | Count Uncert. Uncert.   Count Uncert.   Cou | Count Uncert. Uncert.   Count Uncert.   Cou | Count Uncert. Uncert.   Count Uncert.   Cou | Count Uncert. Uncert.   Count Uncert.   Cou | Count Uncert.   Uncert. |

| Method: Ra226_Ra2            | 228 - Con | bined Rad | dium-226 a | nd Radium | 1-228 |       |       |          |                |         |
|------------------------------|-----------|-----------|------------|-----------|-------|-------|-------|----------|----------------|---------|
| _                            |           |           | Count      | Total     |       |       |       |          |                |         |
|                              |           |           | Uncert.    | Uncert.   |       |       |       |          |                |         |
| Analyte                      | Result    | Qualifier | (2σ+/-)    | (2σ+/-)   | RL    | MDC   | Unit  | Prepared | Analyzed       | Dil Fac |
| Combined Radium 226<br>+ 228 | 0.319     | U         | 0.423      | 0.424     | 5.00  | 0.684 | pCi/L | _        | 03/10/20 07:34 | 1       |

Client: Alabama Power General Test Laboratory

Job ID: 400-183738-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1257

Client Sample ID: BA02563 MW-13H

Lab Sample ID: 400-183738-14 Date Collected: 02/04/20 13:35 **Matrix: Water** Date Received: 02/10/20 14:08

|            |        |           | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |
|------------|--------|-----------|------------------|------------------|------|-------|-------|----------------|----------------|---------|
| Analyte    | Result | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-226 | 0.0349 | Ū         | 0.0856           | 0.0856           | 1.00 | 0.156 | pCi/L | 02/13/20 06:48 | 03/06/20 11:51 | 1       |
| Carrier    | %Yield | Qualifier | Limits           |                  |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier | 91.4   |           | 40 - 110         |                  |      |       |       | 02/13/20 06:48 | 03/06/20 11:51 | 1       |

| Method: 9320 - I | Radium-228 ( | (GFPC)    |                  |                  |      |       |       |                |                |         |
|------------------|--------------|-----------|------------------|------------------|------|-------|-------|----------------|----------------|---------|
|                  |              | ,         | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |
| Analyte          | Result       | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-228       | 0.589        | U         | 0.392            | 0.396            | 1.00 | 0.610 | pCi/L | 02/13/20 07:22 | 02/26/20 17:20 | 1       |
| Carrier          | %Yield       | Qualifier | Limits           |                  |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier       | 91.4         |           | 40 - 110         |                  |      |       |       | 02/13/20 07:22 | 02/26/20 17:20 | 1       |
| Y Carrier        | 87.5         |           | 40 - 110         |                  |      |       |       | 02/13/20 07:22 | 02/26/20 17:20 | 1       |

| Method: Ra226_Ra             | 228 - Con | bined Rad | dium-226 a | nd Radium | 1-228 |       |       |          |                |         |
|------------------------------|-----------|-----------|------------|-----------|-------|-------|-------|----------|----------------|---------|
| _                            |           |           | Count      | Total     |       |       |       |          |                |         |
|                              |           |           | Uncert.    | Uncert.   |       |       |       |          |                |         |
| Analyte                      | Result    | Qualifier | (2σ+/-)    | (2σ+/-)   | RL    | MDC   | Unit  | Prepared | Analyzed       | Dil Fac |
| Combined Radium<br>226 + 228 | 0.624     |           | 0.401      | 0.405     | 5.00  | 0.610 | pCi/L | _        | 03/10/20 07:34 | 1       |

Client: Alabama Power General Test Laboratory

Job ID: 400-183738-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1257

Client Sample ID: BA02564 MW-9H

Lab Sample ID: 400-183738-15 Date Collected: 02/04/20 14:48 **Matrix: Water** Date Received: 02/10/20 14:08

|            |         |           | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |
|------------|---------|-----------|------------------|------------------|------|-------|-------|----------------|----------------|---------|
| Analyte    | Result  | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-226 | -0.0144 | U         | 0.0906           | 0.0906           | 1.00 | 0.183 | pCi/L | 02/13/20 06:48 | 03/06/20 11:51 | 1       |
| Carrier    | %Yield  | Qualifier | Limits           |                  |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier | 95.4    |           | 40 - 110         |                  |      |       |       | 02/13/20 06:48 | 03/06/20 11:51 | 1       |

|            | ·      |           | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |
|------------|--------|-----------|------------------|------------------|------|-------|-------|----------------|----------------|---------|
| Analyte    | Result | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-228 | 0.456  | U         | 0.397            | 0.399            | 1.00 | 0.639 | pCi/L | 02/13/20 07:22 | 02/26/20 17:20 | 1       |
| Carrier    | %Yield | Qualifier | Limits           |                  |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier | 95.4   |           | 40 - 110         |                  |      |       |       | 02/13/20 07:22 | 02/26/20 17:20 | 1       |
| Y Carrier  | 87.9   |           | 40 - 110         |                  |      |       |       | 02/13/20 07:22 | 02/26/20 17:20 | 1       |

| Method: Ra226 Ra             | 228 - Con | nbined Ra | dium-226 a | nd Radiun | n-228 |       |       |          |                |         |
|------------------------------|-----------|-----------|------------|-----------|-------|-------|-------|----------|----------------|---------|
| _                            |           |           | Count      | Total     |       |       |       |          |                |         |
|                              |           |           | Uncert.    | Uncert.   |       |       |       |          |                |         |
| Analyte                      | Result    | Qualifier | (2σ+/-)    | (2σ+/-)   | RL    | MDC   | Unit  | Prepared | Analyzed       | Dil Fac |
| Combined Radium 226<br>+ 228 | 0.441     | Ū         | 0.407      | 0.409     | 5.00  | 0.639 | pCi/L | _        | 03/10/20 07:34 | 1       |

Client: Alabama Power General Test Laboratory

Job ID: 400-183738-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1257

Client Sample ID: BA02565 MW-8

Date Received: 02/10/20 14:08

Lab Sample ID: 400-183738-16 Date Collected: 02/04/20 16:35

**Matrix: Water** 

| Method: 9315 - I | Radium-226 ( | (GFPC)    |                  |                  |      |       |       |                |                |         |
|------------------|--------------|-----------|------------------|------------------|------|-------|-------|----------------|----------------|---------|
|                  | ·            |           | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |
| Analyte          | Result       | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-226       | 0.0585       | U         | 0.0865           | 0.0866           | 1.00 | 0.148 | pCi/L | 02/13/20 06:48 | 03/06/20 11:51 | 1       |
| Carrier          | %Yield       | Qualifier | Limits           |                  |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier       | 94.5         |           | 40 - 110         |                  |      |       |       | 02/13/20 06:48 | 03/06/20 11:51 | 1       |

| Method: 9320 - I | Radium-228 ( | (GFPC)    | Count    | Total   |      |       |       |                |                |         |
|------------------|--------------|-----------|----------|---------|------|-------|-------|----------------|----------------|---------|
|                  |              |           | Uncert.  | Uncert. |      |       |       |                |                |         |
| Analyte          | Result       | Qualifier | (2σ+/-)  | (2σ+/-) | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-228       | 0.277        | U         | 0.410    | 0.411   | 1.00 | 0.685 | pCi/L | 02/13/20 07:22 | 02/26/20 17:21 | 1       |
| Carrier          | %Yield       | Qualifier | Limits   |         |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier       | 94.5         |           | 40 - 110 |         |      |       |       | 02/13/20 07:22 | 02/26/20 17:21 | 1       |
| Y Carrier        | 86.7         |           | 40 - 110 |         |      |       |       | 02/13/20 07:22 | 02/26/20 17:21 | 1       |

| Method: Ra226 Ra2            | 228 - Con | nbined Ra | dium-226 a | nd Radiun | n-228 |       |       |          |                |         |
|------------------------------|-----------|-----------|------------|-----------|-------|-------|-------|----------|----------------|---------|
| _                            |           |           | Count      | Total     |       |       |       |          |                |         |
|                              |           |           | Uncert.    | Uncert.   |       |       |       |          |                |         |
| Analyte                      | Result    | Qualifier | (2σ+/-)    | (2σ+/-)   | RL    | MDC   | Unit  | Prepared | Analyzed       | Dil Fac |
| Combined Radium 226<br>+ 228 | 0.336     | Ū         | 0.419      | 0.420     | 5.00  | 0.685 | pCi/L | _        | 03/10/20 07:34 | 1       |

Client: Alabama Power General Test Laboratory

Job ID: 400-183738-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1257

Client Sample ID: BA02566 FB-2

Lab Sample ID: 400-183738-17 Date Collected: 02/04/20 17:00 **Matrix: Water** Date Received: 02/10/20 14:08

| Method: | 9315 - | Radium-226 | (GFPC) |
|---------|--------|------------|--------|

| Miction. 3010 - 1     |        | <b>,</b>  | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                                |                         |         |
|-----------------------|--------|-----------|------------------|------------------|------|-------|-------|--------------------------------|-------------------------|---------|
| Analyte               | Result | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared                       | Analyzed                | Dil Fac |
| Radium-226            | -0.115 | U         | 0.0773           | 0.0780           | 1.00 | 0.194 | pCi/L | 02/13/20 06:48                 | 03/06/20 11:51          | 1       |
| Carrier<br>Ba Carrier |        | Qualifier | Limits 40 - 110  |                  |      |       |       | <b>Prepared</b> 02/13/20 06:48 | Analyzed 03/06/20 11:51 | Dil Fac |

| Method: | 9320 - | Radium-228  | (GFPC) |
|---------|--------|-------------|--------|
| mothoa  | 0020   | Madiani 220 | (00)   |

| Metriod: 3320 - Rai |         | , ,       | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |
|---------------------|---------|-----------|------------------|------------------|------|-------|-------|----------------|----------------|---------|
| Analyte             | Result  | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-228          | -0.0239 | Ū         | 0.329            | 0.329            | 1.00 | 0.590 | pCi/L | 02/13/20 07:22 | 02/26/20 17:21 | 1       |
| Carrier             | %Yield  | Qualifier | Limits           |                  |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier          | 98.2    |           | 40 - 110         |                  |      |       |       | 02/13/20 07:22 | 02/26/20 17:21 | 1       |
| Y Carrier           | 83.0    |           | 40 - 110         |                  |      |       |       | 02/13/20 07:22 | 02/26/20 17:21 | 1       |

### Method: Ra226 Ra228 - Combined Radium-226 and Radium-228

| RL MDG | Unit  | Prepared | Analyzed       | Dil Fac |
|--------|-------|----------|----------------|---------|
| 0.590  | pCi/L |          | 03/10/20 07:34 | 1       |
|        |       |          |                |         |

Client: Alabama Power General Test Laboratory

0.345 U

97.8

86.4

%Yield Qualifier

Job ID: 400-183738-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1257

Client Sample ID: BA02567 MW-8V

Radium-228

Carrier

Ba Carrier

Y Carrier

226 + 228

Lab Sample ID: 400-183738-18 Date Collected: 02/05/20 13:23 **Matrix: Water** Date Received: 02/10/20 14:08

| Method: 9315 - I      | Radium-226 ( | GFPC)     |                             |                             |      |       |       |                |                |         |
|-----------------------|--------------|-----------|-----------------------------|-----------------------------|------|-------|-------|----------------|----------------|---------|
| Analyte               |              | Qualifier | Count<br>Uncert.<br>(2σ+/-) | Total<br>Uncert.<br>(2σ+/-) | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-226            | 0.230        |           | 0.110                       | 0.112                       | 1.00 | 0.125 | pCi/L | 02/13/20 06:48 | 03/06/20 11:51 | 1       |
| Carrier               | %Yield       | Qualifier | Limits                      |                             |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier            | 97.8         |           | 40 - 110                    |                             |      |       |       | 02/13/20 06:48 | 03/06/20 11:51 | 1       |
| -<br>Method: 9320 - I | Radium-228 ( | (GFPC)    |                             |                             |      |       |       |                |                |         |
|                       |              |           | Count                       | Total                       |      |       |       |                |                |         |
|                       |              |           | Uncert.                     | Uncert.                     |      |       |       |                |                |         |
| Analyte               | Result       | Qualifier | (2σ+/-)                     | (2σ+/-)                     | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |

| Method: Ra226 Ra | 228 - Com | nbined Ra | dium-226 a | nd Radium | n-228 |       |       |          |                |         |
|------------------|-----------|-----------|------------|-----------|-------|-------|-------|----------|----------------|---------|
| _                |           |           | Count      | Total     |       |       |       |          |                |         |
|                  |           |           | Uncert.    | Uncert.   |       |       |       |          |                |         |
| Analyte          | Result    | Qualifier | (2σ+/-)    | (2σ+/-)   | RL    | MDC   | Unit  | Prepared | Analyzed       | Dil Fac |
| Combined Radium  | 0.576     |           | 0.355      | 0.358     | 5.00  | 0.549 | nCi/l | _        | 03/10/20 07:34 |         |

0.340

1.00

0.549 pCi/L

02/13/20 07:22 02/26/20 17:21

02/13/20 07:22 02/26/20 17:21

02/13/20 07:22 02/26/20 17:21

Analyzed

Prepared

0.338

Limits

40 - 110

40 - 110

Dil Fac

Client: Alabama Power General Test Laboratory

Job ID: 400-183738-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1257

Client Sample ID: BA02568 EB-1

Lab Sample ID: 400-183738-19 Date Collected: 02/05/20 14:00 **Matrix: Water** Date Received: 02/10/20 14:08

|            |         |           | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |
|------------|---------|-----------|------------------|------------------|------|-------|-------|----------------|----------------|---------|
| Analyte    | Result  | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-226 | -0.0149 | U         | 0.0589           | 0.0589           | 1.00 | 0.132 | pCi/L | 02/13/20 06:48 | 03/06/20 11:51 | 1       |
| Carrier    | %Yield  | Qualifier | Limits           |                  |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier | 96.9    |           | 40 - 110         |                  |      |       |       | 02/13/20 06:48 | 03/06/20 11:51 | 1       |

| Method: 9320 - Ra | idium-228 ( | (GFPC)    | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |
|-------------------|-------------|-----------|------------------|------------------|------|-------|-------|----------------|----------------|---------|
| Analyte           | Result      | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-228        | 0.0633      | U         | 0.356            | 0.356            | 1.00 | 0.622 | pCi/L | 02/13/20 07:22 | 02/26/20 17:21 | 1       |
| Carrier           | %Yield      | Qualifier | Limits           |                  |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier        | 96.9        |           | 40 - 110         |                  |      |       |       | 02/13/20 07:22 | 02/26/20 17:21 | 1       |
| Y Carrier         | 84.1        |           | 40 - 110         |                  |      |       |       | 02/13/20 07:22 | 02/26/20 17:21 | 1       |

| Method: Ra226 Ra             | 228 - Combined Ra | ndium-226 a | nd Radiun | 1-228 |       |       |          |                |         |
|------------------------------|-------------------|-------------|-----------|-------|-------|-------|----------|----------------|---------|
| _                            |                   | Count       | Total     |       |       |       |          |                |         |
|                              |                   | Uncert.     | Uncert.   |       |       |       |          |                |         |
| Analyte                      | Result Qualifier  | (2σ+/-)     | (2σ+/-)   | RL    | MDC   | Unit  | Prepared | Analyzed       | Dil Fac |
| Combined Radium 226<br>+ 228 | 0.0485 U          | 0.361       | 0.361     | 5.00  | 0.622 | pCi/L | _        | 03/10/20 07:34 | 1       |

#### **Definitions/Glossary**

Client: Alabama Power General Test Laboratory

Job ID: 400-183738-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1257

#### **Qualifiers**

| R | a | d |
|---|---|---|
|   |   |   |

Qualifier **Qualifier Description** 

Result is less than the sample detection limit.

#### **Glossary**

| Abbreviation | These commonly used abbreviations may or may not be present in this report.                |
|--------------|--------------------------------------------------------------------------------------------|
| ¤            | Listed under the "D" column to designate that the result is reported on a dry weight basis |

%R Percent Recovery CFL Contains Free Liquid **CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor** 

Detection Limit (DoD/DOE) DΙ

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin) **EDL** Limit of Detection (DoD/DOE) LOD Limit of Quantitation (DoD/DOE) LOQ

Minimum Detectable Activity (Radiochemistry) MDA Minimum Detectable Concentration (Radiochemistry) MDC

MDL Method Detection Limit ML Minimum Level (Dioxin)

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

**PQL Practical Quantitation Limit** 

QC **Quality Control** 

Relative Error Ratio (Radiochemistry) **RER** 

RL Reporting Limit or Requested Limit (Radiochemistry)

**RPD** Relative Percent Difference, a measure of the relative difference between two points

**TEF** Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

#### **Lab Chronicle**

Client: Alabama Power General Test Laboratory

Job ID: 400-183738-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1257

Client Sample ID: BA02292 FB-1

Lab Sample ID: 400-183738-1 Date Collected: 02/03/20 12:18 **Matrix: Water** Date Received: 02/10/20 14:08

|           | Batch    | Batch       |     | Dilution | Batch  | Prepared       |         |        |
|-----------|----------|-------------|-----|----------|--------|----------------|---------|--------|
| Prep Type | Type     | Method      | Run | Factor   | Number | or Analyzed    | Analyst | Lab    |
| Total/NA  | Prep     | PrecSep-21  |     |          | 460256 | 02/13/20 06:48 | RBR     | TAL SL |
| Total/NA  | Analysis | 9315        |     | 1        | 463404 | 03/06/20 09:59 | AJD     | TAL SL |
| Total/NA  | Prep     | PrecSep_0   |     |          | 460265 | 02/13/20 07:22 | RBR     | TAL SL |
| Total/NA  | Analysis | 9320        |     | 1        | 461941 | 02/26/20 17:16 | KLS     | TAL SL |
| Total/NA  | Analysis | Ra226_Ra228 |     | 1        | 463533 | 03/10/20 07:34 | SMP     | TAL SL |

Client Sample ID: BA02293 MW-1L

Lab Sample ID: 400-183738-2 Date Collected: 02/03/20 12:28 **Matrix: Water** 

Date Received: 02/10/20 14:08

| _         | Batch    | Batch       |     | Dilution | Batch  | Prepared       |         |        |
|-----------|----------|-------------|-----|----------|--------|----------------|---------|--------|
| Prep Type | Туре     | Method      | Run | Factor   | Number | or Analyzed    | Analyst | Lab    |
| Total/NA  | Prep     | PrecSep-21  |     |          | 460256 | 02/13/20 06:48 | RBR     | TAL SL |
| Total/NA  | Analysis | 9315        |     | 1        | 463404 | 03/06/20 09:59 | AJD     | TAL SL |
| Total/NA  | Prep     | PrecSep_0   |     |          | 460265 | 02/13/20 07:22 | RBR     | TAL SL |
| Total/NA  | Analysis | 9320        |     | 1        | 461941 | 02/26/20 17:16 | KLS     | TAL SL |
| Total/NA  | Analysis | Ra226_Ra228 |     | 1        | 463533 | 03/10/20 07:34 | SMP     | TAL SL |

Client Sample ID: BA02294 MW-2L

Lab Sample ID: 400-183738-3 Date Collected: 02/03/20 13:30 **Matrix: Water** Date Received: 02/10/20 14:08

|           | Batch    | Batch       |     | Dilution | Batch  | Prepared       |         |        |
|-----------|----------|-------------|-----|----------|--------|----------------|---------|--------|
| Prep Type | Type     | Method      | Run | Factor   | Number | or Analyzed    | Analyst | Lab    |
| Total/NA  | Prep     | PrecSep-21  |     |          | 460256 | 02/13/20 06:48 | RBR     | TAL SL |
| Total/NA  | Analysis | 9315        |     | 1        | 463404 | 03/06/20 09:59 | AJD     | TAL SL |
| Total/NA  | Prep     | PrecSep_0   |     |          | 460265 | 02/13/20 07:22 | RBR     | TAL SL |
| Total/NA  | Analysis | 9320        |     | 1        | 461941 | 02/26/20 17:16 | KLS     | TAL SL |
| Total/NA  | Analysis | Ra226_Ra228 |     | 1        | 463533 | 03/10/20 07:34 | SMP     | TAL SL |

Client Sample ID: BA02295 MW-2L DUP

Lab Sample ID: 400-183738-4 Date Collected: 02/03/20 13:30 **Matrix: Water** Date Received: 02/10/20 14:08

| _         | Batch    | Batch       |     | Dilution | Batch  | Prepared       |         |        |
|-----------|----------|-------------|-----|----------|--------|----------------|---------|--------|
| Prep Type | Type     | Method      | Run | Factor   | Number | or Analyzed    | Analyst | Lab    |
| Total/NA  | Prep     | PrecSep-21  |     |          | 460256 | 02/13/20 06:48 | RBR     | TAL SL |
| Total/NA  | Analysis | 9315        |     | 1        | 463404 | 03/06/20 09:59 | AJD     | TAL SL |
| Total/NA  | Prep     | PrecSep_0   |     |          | 460265 | 02/13/20 07:22 | RBR     | TAL SL |
| Total/NA  | Analysis | 9320        |     | 1        | 461941 | 02/26/20 17:16 | KLS     | TAL SL |
| Total/NA  | Analysis | Ra226 Ra228 |     | 1        | 463533 | 03/10/20 07:34 | SMP     | TAL SL |

Eurofins TestAmerica, Pensacola

Page 26 of 39

3/10/2020

#### **Lab Chronicle**

Client: Alabama Power General Test Laboratory

Job ID: 400-183738-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1257

Client Sample ID: BA02296 MW-3L

Lab Sample ID: 400-183738-5 Date Collected: 02/03/20 14:50 **Matrix: Water** Date Received: 02/10/20 14:08

|           | Batch    | Batch       |     | Dilution | Batch  | Prepared       |         |        |
|-----------|----------|-------------|-----|----------|--------|----------------|---------|--------|
| Prep Type | Type     | Method      | Run | Factor   | Number | or Analyzed    | Analyst | Lab    |
| Total/NA  | Prep     | PrecSep-21  |     |          | 460256 | 02/13/20 06:48 | RBR     | TAL SL |
| Total/NA  | Analysis | 9315        |     | 1        | 463404 | 03/06/20 09:59 | AJD     | TAL SL |
| Total/NA  | Prep     | PrecSep_0   |     |          | 460265 | 02/13/20 07:22 | RBR     | TAL SL |
| Total/NA  | Analysis | 9320        |     | 1        | 461941 | 02/26/20 17:16 | KLS     | TAL SL |
| Total/NA  | Analysis | Ra226_Ra228 |     | 1        | 463533 | 03/10/20 07:34 | SMP     | TAL SL |

Client Sample ID: BA02297 MW-4L

Lab Sample ID: 400-183738-6 Date Collected: 02/03/20 16:10 **Matrix: Water** Date Received: 02/10/20 14:08

|           | Batch    | Batch       |     | Dilution | Batch  | Prepared       |         |        |
|-----------|----------|-------------|-----|----------|--------|----------------|---------|--------|
| Prep Type | Type     | Method      | Run | Factor   | Number | or Analyzed    | Analyst | Lab    |
| Total/NA  | Prep     | PrecSep-21  |     |          | 460256 | 02/13/20 06:48 | RBR     | TAL SL |
| Total/NA  | Analysis | 9315        |     | 1        | 463404 | 03/06/20 09:59 | AJD     | TAL SL |
| Total/NA  | Prep     | PrecSep_0   |     |          | 460265 | 02/13/20 07:22 | RBR     | TAL SL |
| Total/NA  | Analysis | 9320        |     | 1        | 461941 | 02/26/20 17:16 | KLS     | TAL SL |
| Total/NA  | Analysis | Ra226_Ra228 |     | 1        | 463533 | 03/10/20 07:34 | SMP     | TAL SL |

Client Sample ID: BA02556 MW-3V

Lab Sample ID: 400-183738-7 Date Collected: 02/03/20 14:25 **Matrix: Water** Date Received: 02/10/20 14:08

|           | Batch    | Batch       |     | Dilution | Batch  | Prepared       |         |        |
|-----------|----------|-------------|-----|----------|--------|----------------|---------|--------|
| Prep Type | Type     | Method      | Run | Factor   | Number | or Analyzed    | Analyst | Lab    |
| Total/NA  | Prep     | PrecSep-21  |     |          | 460256 | 02/13/20 06:48 | RBR     | TAL SL |
| Total/NA  | Analysis | 9315        |     | 1        | 463404 | 03/06/20 09:59 | AJD     | TAL SL |
| Total/NA  | Prep     | PrecSep_0   |     |          | 460265 | 02/13/20 07:22 | RBR     | TAL SL |
| Total/NA  | Analysis | 9320        |     | 1        | 461941 | 02/26/20 17:17 | KLS     | TAL SL |
| Total/NA  | Analysis | Ra226_Ra228 |     | 1        | 463533 | 03/10/20 07:34 | SMP     | TAL SL |

Client Sample ID: BA02557 MW-3

Lab Sample ID: 400-183738-8 Date Collected: 02/03/20 15:42 **Matrix: Water** Date Received: 02/10/20 14:08

| _         | Batch    | Batch       |     | Dilution | Batch  | Prepared       |         |        |
|-----------|----------|-------------|-----|----------|--------|----------------|---------|--------|
| Prep Type | Type     | Method      | Run | Factor   | Number | or Analyzed    | Analyst | Lab    |
| Total/NA  | Prep     | PrecSep-21  |     |          | 460256 | 02/13/20 06:48 | RBR     | TAL SL |
| Total/NA  | Analysis | 9315        |     | 1        | 463404 | 03/06/20 09:59 | AJD     | TAL SL |
| Total/NA  | Prep     | PrecSep_0   |     |          | 460265 | 02/13/20 07:22 | RBR     | TAL SL |
| Total/NA  | Analysis | 9320        |     | 1        | 461941 | 02/26/20 17:17 | KLS     | TAL SL |
| Total/NA  | Analysis | Ra226_Ra228 |     | 1        | 463533 | 03/10/20 07:34 | SMP     | TAL SL |

Eurofins TestAmerica, Pensacola

Page 27 of 39

Job ID: 400-183738-1

Client: Alabama Power General Test Laboratory Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1257

Client Sample ID: BA02558 MW-4V

Date Collected: 02/03/20 16:54 Date Received: 02/10/20 14:08

Lab Sample ID: 400-183738-9

**Matrix: Water** 

|           | Batch    | Batch       |     | Dilution | Batch  | Prepared       |         |        |
|-----------|----------|-------------|-----|----------|--------|----------------|---------|--------|
| Prep Type | Type     | Method      | Run | Factor   | Number | or Analyzed    | Analyst | Lab    |
| Total/NA  | Prep     | PrecSep-21  |     |          | 460256 | 02/13/20 06:48 | RBR     | TAL SL |
| Total/NA  | Analysis | 9315        |     | 1        | 463404 | 03/06/20 09:59 | AJD     | TAL SL |
| Total/NA  | Prep     | PrecSep_0   |     |          | 460265 | 02/13/20 07:22 | RBR     | TAL SL |
| Total/NA  | Analysis | 9320        |     | 1        | 461941 | 02/26/20 17:17 | KLS     | TAL SL |
| Total/NA  | Analysis | Ra226_Ra228 |     | 1        | 463533 | 03/10/20 07:34 | SMP     | TAL SL |

Lab Sample ID: 400-183738-10 Client Sample ID: BA02559 MW-4

Date Collected: 02/04/20 09:55 Date Received: 02/10/20 14:08

**Matrix: Water** 

Batch Batch Dilution Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Prep PrecSep-21 460256 02/13/20 06:48 RBR TAL SL Total/NA Analysis 9315 463404 03/06/20 09:59 AJD TAL SL Total/NA Prep PrecSep\_0 460265 02/13/20 07:22 RBR TAL SL 461941 02/26/20 17:17 KLS Total/NA Analysis 9320 TAL SL 1 Total/NA Analysis Ra226 Ra228 1 463533 03/10/20 07:34 SMP TAL SL

Client Sample ID: BA02560 MW-4 DUP Lab Sample ID: 400-183738-11

Date Collected: 02/04/20 09:55 Date Received: 02/10/20 14:08

**Matrix: Water** 

|           | Batch    | Batch       |     | Dilution | Batch  | Prepared       |         |        |
|-----------|----------|-------------|-----|----------|--------|----------------|---------|--------|
| Prep Type | Type     | Method      | Run | Factor   | Number | or Analyzed    | Analyst | Lab    |
| Total/NA  | Prep     | PrecSep-21  |     |          | 460256 | 02/13/20 06:48 | RBR     | TAL SL |
| Total/NA  | Analysis | 9315        |     | 1        | 463404 | 03/06/20 09:59 | AJD     | TAL SL |
| Total/NA  | Prep     | PrecSep_0   |     |          | 460265 | 02/13/20 07:22 | RBR     | TAL SL |
| Total/NA  | Analysis | 9320        |     | 1        | 461941 | 02/26/20 17:17 | KLS     | TAL SL |
| Total/NA  | Analysis | Ra226_Ra228 |     | 1        | 463533 | 03/10/20 07:34 | SMP     | TAL SL |

Client Sample ID: BA02561 MW-12H

Date Collected: 02/04/20 11:12 Date Received: 02/10/20 14:08

Lab Sample ID: 400-183738-12 **Matrix: Water** 

| _         | Batch    | Batch       |     | Dilution | Batch  | Prepared       |         |        |
|-----------|----------|-------------|-----|----------|--------|----------------|---------|--------|
| Prep Type | Type     | Method      | Run | Factor   | Number | or Analyzed    | Analyst | Lab    |
| Total/NA  | Prep     | PrecSep-21  |     |          | 460256 | 02/13/20 06:48 | RBR     | TAL SL |
| Total/NA  | Analysis | 9315        |     | 1        | 463404 | 03/06/20 10:00 | AJD     | TAL SL |
| Total/NA  | Prep     | PrecSep_0   |     |          | 460265 | 02/13/20 07:22 | RBR     | TAL SL |
| Total/NA  | Analysis | 9320        |     | 1        | 461941 | 02/26/20 17:17 | KLS     | TAL SL |
| Total/NA  | Analysis | Ra226_Ra228 |     | 1        | 463533 | 03/10/20 07:34 | SMP     | TAL SL |

3/10/2020

Client Sample ID: BA02562 MW-11H

Client: Alabama Power General Test Laboratory

Date Collected: 02/04/20 12:40 Date Received: 02/10/20 14:08

Project/Site: CCR Plant Gorgas

Lab Sample ID: 400-183738-13

**Matrix: Water** 

|           | Batch    | Batch       |     | Dilution | Batch  | Prepared       |         |        |
|-----------|----------|-------------|-----|----------|--------|----------------|---------|--------|
| Prep Type | Туре     | Method      | Run | Factor   | Number | or Analyzed    | Analyst | Lab    |
| Total/NA  | Prep     | PrecSep-21  |     |          | 460256 | 02/13/20 06:48 | RBR     | TAL SL |
| Total/NA  | Analysis | 9315        |     | 1        | 463404 | 03/06/20 11:51 | AJD     | TAL SL |
| Total/NA  | Prep     | PrecSep_0   |     |          | 460265 | 02/13/20 07:22 | RBR     | TAL SL |
| Total/NA  | Analysis | 9320        |     | 1        | 461940 | 02/26/20 17:20 | KLS     | TAL SL |
| Total/NA  | Analysis | Ra226_Ra228 |     | 1        | 463533 | 03/10/20 07:34 | SMP     | TAL SL |

Client Sample ID: BA02563 MW-13H

Date Collected: 02/04/20 13:35 Date Received: 02/10/20 14:08

Lab Sample ID: 400-183738-14

**Matrix: Water** 

|           | Batch    | Batch       |               | Dilution | Batch  | Prepared       |         |        |
|-----------|----------|-------------|---------------|----------|--------|----------------|---------|--------|
| Prep Type | Type     | Method      | Run           | Factor   | Number | or Analyzed    | Analyst | Lab    |
| Total/NA  | Prep     | PrecSep-21  | <del></del> - |          | 460256 | 02/13/20 06:48 | RBR     | TAL SL |
| Total/NA  | Analysis | 9315        |               | 1        | 463404 | 03/06/20 11:51 | AJD     | TAL SL |
| Total/NA  | Prep     | PrecSep_0   |               |          | 460265 | 02/13/20 07:22 | RBR     | TAL SL |
| Total/NA  | Analysis | 9320        |               | 1        | 461940 | 02/26/20 17:20 | KLS     | TAL SL |
| Total/NA  | Analysis | Ra226_Ra228 |               | 1        | 463533 | 03/10/20 07:34 | SMP     | TAL SL |

Lab Sample ID: 400-183738-15 Client Sample ID: BA02564 MW-9H Date Collected: 02/04/20 14:48

Date Received: 02/10/20 14:08

**Matrix: Water** 

|           | Batch    | Batch       |     | Dilution | Batch  | Prepared       |         |        |
|-----------|----------|-------------|-----|----------|--------|----------------|---------|--------|
| Prep Type | Туре     | Method      | Run | Factor   | Number | or Analyzed    | Analyst | Lab    |
| Total/NA  | Prep     | PrecSep-21  |     |          | 460256 | 02/13/20 06:48 | RBR     | TAL SL |
| Total/NA  | Analysis | 9315        |     | 1        | 463404 | 03/06/20 11:51 | AJD     | TAL SL |
| Total/NA  | Prep     | PrecSep_0   |     |          | 460265 | 02/13/20 07:22 | RBR     | TAL SL |
| Total/NA  | Analysis | 9320        |     | 1        | 461940 | 02/26/20 17:20 | KLS     | TAL SL |
| Total/NA  | Analysis | Ra226_Ra228 |     | 1        | 463533 | 03/10/20 07:34 | SMP     | TAL SL |

Lab Sample ID: 400-183738-16 Client Sample ID: BA02565 MW-8 **Matrix: Water** 

Date Collected: 02/04/20 16:35 Date Received: 02/10/20 14:08

| _         | Batch    | Batch       |     | Dilution | Batch  | Prepared       |         |        |
|-----------|----------|-------------|-----|----------|--------|----------------|---------|--------|
| Prep Type | Type     | Method      | Run | Factor   | Number | or Analyzed    | Analyst | Lab    |
| Total/NA  | Prep     | PrecSep-21  |     |          | 460256 | 02/13/20 06:48 | RBR     | TAL SL |
| Total/NA  | Analysis | 9315        |     | 1        | 463404 | 03/06/20 11:51 | AJD     | TAL SL |
| Total/NA  | Prep     | PrecSep_0   |     |          | 460265 | 02/13/20 07:22 | RBR     | TAL SL |
| Total/NA  | Analysis | 9320        |     | 1        | 461940 | 02/26/20 17:21 | KLS     | TAL SL |
| Total/NA  | Analysis | Ra226_Ra228 |     | 1        | 463533 | 03/10/20 07:34 | SMP     | TAL SL |

### **Lab Chronicle**

Client: Alabama Power General Test Laboratory

Job ID: 400-183738-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1257

Client Sample ID: BA02566 FB-2

Lab Sample ID: 400-183738-17 Date Collected: 02/04/20 17:00 **Matrix: Water** Date Received: 02/10/20 14:08

|           | Batch    | Batch       |     | Dilution | Batch  | Prepared       |         |        |
|-----------|----------|-------------|-----|----------|--------|----------------|---------|--------|
| Prep Type | Type     | Method      | Run | Factor   | Number | or Analyzed    | Analyst | Lab    |
| Total/NA  | Prep     | PrecSep-21  |     |          | 460256 | 02/13/20 06:48 | RBR     | TAL SL |
| Total/NA  | Analysis | 9315        |     | 1        | 463404 | 03/06/20 11:51 | AJD     | TAL SL |
| Total/NA  | Prep     | PrecSep_0   |     |          | 460265 | 02/13/20 07:22 | RBR     | TAL SL |
| Total/NA  | Analysis | 9320        |     | 1        | 461940 | 02/26/20 17:21 | KLS     | TAL SL |
| Total/NA  | Analysis | Ra226_Ra228 |     | 1        | 463533 | 03/10/20 07:34 | SMP     | TAL SL |

Client Sample ID: BA02567 MW-8V

Lab Sample ID: 400-183738-18 Date Collected: 02/05/20 13:23 **Matrix: Water** Date Received: 02/10/20 14:08

| _         | Batch    | Batch       |     | Dilution | Batch  | Prepared       |         |        |
|-----------|----------|-------------|-----|----------|--------|----------------|---------|--------|
| Prep Type | Type     | Method      | Run | Factor   | Number | or Analyzed    | Analyst | Lab    |
| Total/NA  | Prep     | PrecSep-21  |     |          | 460256 | 02/13/20 06:48 | RBR     | TAL SL |
| Total/NA  | Analysis | 9315        |     | 1        | 463404 | 03/06/20 11:51 | AJD     | TAL SL |
| Total/NA  | Prep     | PrecSep_0   |     |          | 460265 | 02/13/20 07:22 | RBR     | TAL SL |
| Total/NA  | Analysis | 9320        |     | 1        | 461940 | 02/26/20 17:21 | KLS     | TAL SL |
| Total/NA  | Analysis | Ra226_Ra228 |     | 1        | 463533 | 03/10/20 07:34 | SMP     | TAL SL |

Client Sample ID: BA02568 EB-1

Lab Sample ID: 400-183738-19 Date Collected: 02/05/20 14:00 **Matrix: Water** Date Received: 02/10/20 14:08

|           | Batch    | Batch       |     | Dilution | Batch  | Prepared       |         |        |
|-----------|----------|-------------|-----|----------|--------|----------------|---------|--------|
| Prep Type | Type     | Method      | Run | Factor   | Number | or Analyzed    | Analyst | Lab    |
| Total/NA  | Prep     | PrecSep-21  |     |          | 460256 | 02/13/20 06:48 | RBR     | TAL SL |
| Total/NA  | Analysis | 9315        |     | 1        | 463404 | 03/06/20 11:51 | AJD     | TAL SL |
| Total/NA  | Prep     | PrecSep_0   |     |          | 460265 | 02/13/20 07:22 | RBR     | TAL SL |
| Total/NA  | Analysis | 9320        |     | 1        | 461940 | 02/26/20 17:21 | KLS     | TAL SL |
| Total/NA  | Analysis | Ra226_Ra228 |     | 1        | 463533 | 03/10/20 07:34 | SMP     | TAL SL |

### **Laboratory References:**

TAL SL = Eurofins TestAmerica, St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Eurofins TestAmerica, Pensacola

### **QC Association Summary**

Client: Alabama Power General Test Laboratory

Job ID: 400-183738-1 SDG: Gorgas Gypsum 1257 Project/Site: CCR Plant Gorgas

### Rad

### **Prep Batch: 460256**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method     | Prep Batch |
|--------------------|--------------------|-----------|--------|------------|------------|
| 400-183738-1       | BA02292 FB-1       | Total/NA  | Water  | PrecSep-21 |            |
| 400-183738-2       | BA02293 MW-1L      | Total/NA  | Water  | PrecSep-21 |            |
| 400-183738-3       | BA02294 MW-2L      | Total/NA  | Water  | PrecSep-21 |            |
| 400-183738-4       | BA02295 MW-2L DUP  | Total/NA  | Water  | PrecSep-21 |            |
| 400-183738-5       | BA02296 MW-3L      | Total/NA  | Water  | PrecSep-21 |            |
| 400-183738-6       | BA02297 MW-4L      | Total/NA  | Water  | PrecSep-21 |            |
| 400-183738-7       | BA02556 MW-3V      | Total/NA  | Water  | PrecSep-21 |            |
| 400-183738-8       | BA02557 MW-3       | Total/NA  | Water  | PrecSep-21 |            |
| 400-183738-9       | BA02558 MW-4V      | Total/NA  | Water  | PrecSep-21 |            |
| 400-183738-10      | BA02559 MW-4       | Total/NA  | Water  | PrecSep-21 |            |
| 400-183738-11      | BA02560 MW-4 DUP   | Total/NA  | Water  | PrecSep-21 |            |
| 400-183738-12      | BA02561 MW-12H     | Total/NA  | Water  | PrecSep-21 |            |
| 400-183738-13      | BA02562 MW-11H     | Total/NA  | Water  | PrecSep-21 |            |
| 400-183738-14      | BA02563 MW-13H     | Total/NA  | Water  | PrecSep-21 |            |
| 400-183738-15      | BA02564 MW-9H      | Total/NA  | Water  | PrecSep-21 |            |
| 400-183738-16      | BA02565 MW-8       | Total/NA  | Water  | PrecSep-21 |            |
| 400-183738-17      | BA02566 FB-2       | Total/NA  | Water  | PrecSep-21 |            |
| 400-183738-18      | BA02567 MW-8V      | Total/NA  | Water  | PrecSep-21 |            |
| 400-183738-19      | BA02568 EB-1       | Total/NA  | Water  | PrecSep-21 |            |
| MB 160-460256/23-A | Method Blank       | Total/NA  | Water  | PrecSep-21 |            |
| LCS 160-460256/1-A | Lab Control Sample | Total/NA  | Water  | PrecSep-21 |            |
| 400-183738-12 MS   | BA02561 MW-12H     | Total/NA  | Water  | PrecSep-21 |            |
| 400-183738-12 MSD  | BA02561 MW-12H     | Total/NA  | Water  | PrecSep-21 |            |

### **Prep Batch: 460265**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method    | Prep Batcl |
|--------------------|--------------------|-----------|--------|-----------|------------|
| 400-183738-1       | BA02292 FB-1       | Total/NA  | Water  | PrecSep_0 | _          |
| 400-183738-2       | BA02293 MW-1L      | Total/NA  | Water  | PrecSep_0 |            |
| 400-183738-3       | BA02294 MW-2L      | Total/NA  | Water  | PrecSep_0 |            |
| 400-183738-4       | BA02295 MW-2L DUP  | Total/NA  | Water  | PrecSep_0 |            |
| 400-183738-5       | BA02296 MW-3L      | Total/NA  | Water  | PrecSep_0 |            |
| 400-183738-6       | BA02297 MW-4L      | Total/NA  | Water  | PrecSep_0 |            |
| 400-183738-7       | BA02556 MW-3V      | Total/NA  | Water  | PrecSep_0 |            |
| 400-183738-8       | BA02557 MW-3       | Total/NA  | Water  | PrecSep_0 |            |
| 400-183738-9       | BA02558 MW-4V      | Total/NA  | Water  | PrecSep_0 |            |
| 00-183738-10       | BA02559 MW-4       | Total/NA  | Water  | PrecSep_0 |            |
| 100-183738-11      | BA02560 MW-4 DUP   | Total/NA  | Water  | PrecSep_0 |            |
| 100-183738-12      | BA02561 MW-12H     | Total/NA  | Water  | PrecSep_0 |            |
| 100-183738-13      | BA02562 MW-11H     | Total/NA  | Water  | PrecSep_0 |            |
| 100-183738-14      | BA02563 MW-13H     | Total/NA  | Water  | PrecSep_0 |            |
| 400-183738-15      | BA02564 MW-9H      | Total/NA  | Water  | PrecSep_0 |            |
| 100-183738-16      | BA02565 MW-8       | Total/NA  | Water  | PrecSep_0 |            |
| 400-183738-17      | BA02566 FB-2       | Total/NA  | Water  | PrecSep_0 |            |
| 400-183738-18      | BA02567 MW-8V      | Total/NA  | Water  | PrecSep_0 |            |
| 400-183738-19      | BA02568 EB-1       | Total/NA  | Water  | PrecSep_0 |            |
| MB 160-460265/23-A | Method Blank       | Total/NA  | Water  | PrecSep_0 |            |
| _CS 160-460265/1-A | Lab Control Sample | Total/NA  | Water  | PrecSep_0 |            |
| 400-183738-12 MS   | BA02561 MW-12H     | Total/NA  | Water  | PrecSep_0 |            |
| 400-183738-12 MSD  | BA02561 MW-12H     | Total/NA  | Water  | PrecSep_0 |            |

Eurofins TestAmerica, Pensacola

Client: Alabama Power General Test Laboratory

Job ID: 400-183738-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1257

Method: 9315 - Radium-226 (GFPC)

Lab Sample ID: MB 160-460256/23-A

Lab Sample ID: LCS 160-460256/1-A

**Matrix: Water** 

Analysis Batch: 463404

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 460256

MB MB Uncert. Uncert. Analyte Result Qualifier RL MDC Unit  $(2\sigma + / -)$  $(2\sigma + / -)$ Prepared Analyzed Dil Fac Radium-226 -0.02354 U 0.190 pCi/L 02/13/20 06:48 03/06/20 11:52 0.0925 0.0926 1.00

Total

MB MB

Carrier Qualifier Limits %Yield Prepared Analyzed Dil Fac Ba Carrier 40 - 110 02/13/20 06:48 03/06/20 11:52 99.1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

**Prep Batch: 460256** 

**Matrix: Water** Analysis Batch: 463404 Total

Count

Spike LCS LCS Uncert. %Rec. Added RLLimits Analyte Result Qual  $(2\sigma + / -)$ MDC Unit %Rec Radium-226 15.1 12.83 1.34 1.00 0.146 pCi/L 75 - 125 85

LCS LCS

Carrier %Yield Qualifier I imits Ba Carrier 101 40 - 110

Lab Sample ID: 400-183738-12 MS Client Sample ID: BA02561 MW-12H

**Matrix: Water** Prep Type: Total/NA Analysis Batch: 463404 **Prep Batch: 460256** 

Total Sample Sample **Spike** MS MS Uncert. %Rec.

Analyte Result Qual Added  $(2\sigma + / -)$ RL**MDC** Unit Limits Result Qual %Rec Radium-226 0.299 15.1 13.32 1.38 1.00 0.125 pCi/L 86 75 - 138

MS MS Carrier %Yield Qualifier I imits Ba Carrier 99.4 40 - 110

Lab Sample ID: 400-183738-12 MSD Client Sample ID: BA02561 MW-12H

**Matrix: Water** 

Analysis Batch: 463404 **Prep Batch: 460256** Total

MSD MSD %Rec. Sample Sample Spike Uncert. **RER** Analyte Added RL **MDC** Unit %Rec Result Qual Result Qual  $(2\sigma + / -)$ Limits RER Limit Radium-226 0.299 15.1 13.09 1.37 1.00 0.149 pCi/L 85 75 - 138

MSD MSD

Carrier %Yield Qualifier Limits 97.8 Ba Carrier 40 - 110

Method: 9320 - Radium-228 (GFPC)

Lab Sample ID: MB 160-460265/23-A **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Analysis Batch: 461940 Count

Total MB MB Uncert. Uncert.  $(2\sigma + / -)$ Analyte Result Qualifier  $(2\sigma + / -)$ RL **MDC** Unit Dil Fac Prepared Analyzed Radium-228 0.4626 U 0.380 0.382 02/13/20 07:22 02/26/20 17:21 1.00 0.607 pCi/L

Eurofins TestAmerica, Pensacola

Page 32 of 39

3/10/2020

10

Prep Type: Total/NA

0.08

Prep Batch: 460265

Job ID: 400-183738-1

Client: Alabama Power General Test Laboratory Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1257

Method: 9320 - Radium-228 (GFPC) (Continued)

|            | MB MB            |          |                               |         |
|------------|------------------|----------|-------------------------------|---------|
| Carrier    | %Yield Qualifier | Limits   | Prepared Analyzed             | Dil Fac |
| Ba Carrier | 99.1             | 40 - 110 | 02/13/20 07:22 02/26/20 17:21 | 1       |
| Y Carrier  | 87.9             | 40 - 110 | 02/13/20 07:22 02/26/20 17:21 | 1       |

Lab Sample ID: LCS 160-460265/1-A

**Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Analysis Batch: 461941 Prep Batch: 460265** 

Total Spike LCS LCS Uncert. %Rec. **Analyte** Added Result Qual  $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits Radium-228 12.1 9.903 1.00 0.505 pCi/L 75 - 125 1.19 82

LCS LCS Carrier %Yield Qualifier Limits Ba Carrier 101 40 - 110 90.8 Y Carrier 40 - 110

Lab Sample ID: 400-183738-12 MS

Analysis Batch: 461941

Client Sample ID: BA02561 MW-12H **Matrix: Water** Prep Type: Total/NA Prep Batch: 460265

Total Sample Sample Spike MS MS Uncert. %Rec. Added RL Analyte Result Qual Result Qual (2σ+/-) **MDC** Unit %Rec Limits Radium-228 0.641 12.1 11.83 1.40 1.00 0.522 pCi/L 93 45 - 150

MS MS Carrier %Yield Qualifier Limits Ba Carrier 99 4 40 - 110 Y Carrier 84.1 40 - 110

Lab Sample ID: 400-183738-12 MSD

**Matrix: Water** 

Radium-228

Analysis Batch: 461941

**Prep Batch: 460265** Total MSD MSD %Rec. **RER** Sample Sample Spike Uncert. Analyte Added RL **MDC** Unit %Rec Limits Result Qual Result Qual  $(2\sigma + / -)$ RER Limit

1.48

1.00

0.619 pCi/L

12.41

12.1

MSD MSD Carrier %Yield Qualifier Limits 40 - 110 Ba Carrier 97.8 40 - 110 Y Carrier 78.9

0.641

10

Client Sample ID: BA02561 MW-12H

45 - 150

97

Prep Type: Total/NA

0.20

Sample Disposal ( A fee may be assessed if samples are retained longer than 1 month)

Hetum To Client Disposal By Lab Months

sible Hazard Identification



# **TestAmerica**

# Chain of Custody Record

FestAmerica Pensacola

Since laboratory oraceditations are subject to change. Test/merical laboratories, Inc. places the ownerthip of method, analyte & excreedations or our subcorticus compliance upon our subcorticus. The sample analyzed, the sample analyzed, the sample must be shipped back to the Test/merical aboratory or other instructions will be provided. Any changes to accreditation status should be brought to Test/merical analyzed, the sample are current to date, return the signed Chain of Custody attention is said compliance to Test/merical Laboratories, Inc. MW-2L Dup (Sample Duplicate) 100-56525-24537.1 FB-1 (Field Blank) Page 1 of 2 MW-1L MW-2L MW-3L Analysis Requested 3315\_Ra226, 9320\_Ra228, Ra226Ha228\_GFPC Lab PM: Whitmire, Cheyenne R E-Mail: 2W 4200 CI E 2 4 009 WS Perform MS/MSD (Yes or No) Water Water Water Water Water Water O O 9 9 O g 12:18 12:28 13:30 13:30 14:50 16:10 TAT Requested (days): **Due Date Requested** Sample Date Sampler: TJ Daugherty Phone: 2/3/20 2/3/20 2/3/20 2/3/20 2/3/20 2/3/20 Project #: 40007143 SSOW#: Client Information (Sub Contract Lab) mple Identification - Client ID (Lab ID) 3355 McLemore Drive Pensacola, FL 32514 Phone (850) 474-1001 Fax (850) 478-2671 bama Power General Test Laboratory County Rd 87 GSC#8 gas Gypsum 1257 -664-6197 ura Midkif rate, Zip: L, 35040 3A02295 BA02296 3A02293 3A02294 A02292 BA02297

Special Instructions/Note:

Custody Seals Intact: Custody Seal No

|                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |                                       |                                                  |                                                 |                                      |             |                      |                          |                             |                        |               |                         |                               | THE LESSEEN IN ENVIRONMENTAL TROUBLE                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------|--------------------------------------------------|-------------------------------------------------|--------------------------------------|-------------|----------------------|--------------------------|-----------------------------|------------------------|---------------|-------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Client Information (Sub Contract Lab)                                                                                                                    | Sampler:<br>Anthony Goggins                                                                                                                                                                                                                                                                                                                                                                       | 15                                |                                       | Lab PM:<br>Whitm                                 | ire, Che                                        | syenne                               | Œ           |                      |                          | Carrier T                   | Carrier Tracking No(s) | (s):          | 400-6                   | COC No:<br>400-56525-24537.1  | 37.1                                                                                                                                           |
| Client Contact<br>Laura Midkif                                                                                                                           | Phone:                                                                                                                                                                                                                                                                                                                                                                                            |                                   |                                       | E-Mail:                                          | E-Mail:<br>chevenne.whitmire@testamericainc.com | itmire@                              | testarr     | ericain              | C.com                    | State of Origin:<br>Alabama | Origin:<br>1a          |               | Page:<br>Page           | Page:<br>Page 2 of 2          |                                                                                                                                                |
| Сотралу:<br>Alabama Power General Test Laboratory                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |                                       |                                                  | ccreditati                                      | ons Requ                             | uired (Se   | e note):             |                          |                             |                        |               | Job #                   |                               |                                                                                                                                                |
| Address:<br>744 County Rd 87 GSC#8                                                                                                                       | Due Date Requested                                                                                                                                                                                                                                                                                                                                                                                | #                                 |                                       |                                                  |                                                 |                                      |             | Analys               | sis Re                   | Analysis Requested          | P                      |               | Prese                   | Preservation Codes:           |                                                                                                                                                |
| yy:<br>alera                                                                                                                                             | TAT Requested (days):                                                                                                                                                                                                                                                                                                                                                                             | ys):<br>Routine                   | 9                                     |                                                  |                                                 | F                                    |             | F                    | -                        |                             |                        |               | C-2-2                   | aOH<br>Acetate                |                                                                                                                                                |
| State, Zip:<br>AL, 35040                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |                                       |                                                  |                                                 |                                      | Jast        | 2,115                |                          |                             |                        |               | 22:                     | D - Nitric Acid<br>E - NaHSO4 | P - Na204S<br>Q - Na2SO3                                                                                                                       |
| Phone:<br>205-664-6197                                                                                                                                   | # Od                                                                                                                                                                                                                                                                                                                                                                                              |                                   |                                       |                                                  | (OA                                             |                                      |             | 9778                 | _                        | _                           |                        | _             | 7 0 I                   | mchlor<br>scorbic Acid        |                                                                                                                                                |
| Email:<br>bmidkif@southernco.com                                                                                                                         | #OM                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                       |                                                  |                                                 |                                      | 35300       | H977*                |                          |                             |                        |               | ers<br>                 | Water                         |                                                                                                                                                |
| Project Name:<br>C.C.R                                                                                                                                   | Project #: 40007143                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                       |                                                  |                                                 |                                      |             | H '972               | _                        |                             |                        | _             | entaine<br>R - 7<br>m m | DTA                           |                                                                                                                                                |
| Sifter Gorgas Gypsum 1257                                                                                                                                | **MOSS                                                                                                                                                                                                                                                                                                                                                                                            |                                   |                                       |                                                  |                                                 | _                                    |             | BH_US                |                          |                             |                        |               | of col                  | 1.5                           |                                                                                                                                                |
| Samule Identification - Client ID (I ah ID)                                                                                                              | Sample Date                                                                                                                                                                                                                                                                                                                                                                                       | Sample                            | Sample<br>Type<br>(C=comp,<br>G=crab) | Matrix<br>(Wevester,<br>Sweeld,<br>Owerstateldi, | Field Filtered                                  | 2M 4500 CLE                          | 70S 00S# WS | 9315_Ra226, 93       |                          |                             |                        |               | nedmuN latoT            | Special                       | Special Instructions/Note:                                                                                                                     |
| מחוקום ומכווניונסמוסון סופנוגים (במסוב)                                                                                                                  | $\bigvee$                                                                                                                                                                                                                                                                                                                                                                                         | $\mathbb{N}$                      |                                       | 7                                                | X                                               | 1                                    |             |                      |                          |                             |                        |               |                         |                               |                                                                                                                                                |
| BA02556                                                                                                                                                  | 2/3/20                                                                                                                                                                                                                                                                                                                                                                                            | 14:25                             | 9                                     | Water                                            |                                                 | -                                    |             | ×                    |                          |                             |                        |               | 1 MW-3V                 | 30                            |                                                                                                                                                |
| BA02557                                                                                                                                                  | 2/3/20                                                                                                                                                                                                                                                                                                                                                                                            | 15:42                             | 9                                     | Water                                            |                                                 |                                      |             | ×                    |                          |                             |                        |               | 1 MW-3                  | 6                             |                                                                                                                                                |
| BA02558                                                                                                                                                  | 2/3/20                                                                                                                                                                                                                                                                                                                                                                                            | 16:54                             | B                                     | Water                                            |                                                 |                                      |             | ×                    |                          |                             |                        |               | 1 MW-4V                 | 4V                            |                                                                                                                                                |
| BA02559                                                                                                                                                  | 2/4/20                                                                                                                                                                                                                                                                                                                                                                                            | 09:55                             | 9                                     | Water                                            |                                                 |                                      |             | ×                    |                          |                             |                        |               | 1 MW-4                  | 4                             |                                                                                                                                                |
| BA02560                                                                                                                                                  | 2/4/20                                                                                                                                                                                                                                                                                                                                                                                            | 09:55                             | B                                     | Water                                            |                                                 |                                      |             | ×                    |                          |                             |                        |               | 1 MW                    | 4 DUP (Sa                     | MW-4 DUP (Sample Duplicate)                                                                                                                    |
| BA02561                                                                                                                                                  | 2/4/20                                                                                                                                                                                                                                                                                                                                                                                            | 11:12                             | 9                                     | Water                                            | ×                                               |                                      |             | ×                    |                          |                             |                        |               | 3 MW                    | MW-12H                        |                                                                                                                                                |
| BA02562                                                                                                                                                  | 2/4/20                                                                                                                                                                                                                                                                                                                                                                                            | 12:40                             | 9                                     | Water                                            |                                                 |                                      |             | ×                    |                          |                             |                        |               | 1 MW                    | MW-11H                        |                                                                                                                                                |
| BA02563                                                                                                                                                  | 2/4/20                                                                                                                                                                                                                                                                                                                                                                                            | 13:35                             | В                                     | Water                                            |                                                 |                                      |             | ×                    |                          |                             |                        |               | 1 MW                    | MW-13H                        |                                                                                                                                                |
| BA02564                                                                                                                                                  | 2/4/20                                                                                                                                                                                                                                                                                                                                                                                            | 14:48                             | G                                     | Water                                            |                                                 |                                      |             | ×                    |                          |                             |                        |               | 1 MW                    | нө-мм                         |                                                                                                                                                |
| BA02565                                                                                                                                                  | 2/4/20                                                                                                                                                                                                                                                                                                                                                                                            | 16:35                             | G                                     | Water                                            |                                                 |                                      |             | ×                    |                          |                             |                        |               | 1 MW-8                  | ep<br>-                       |                                                                                                                                                |
| BA02566                                                                                                                                                  | 2/4/20                                                                                                                                                                                                                                                                                                                                                                                            | 17:00                             | G                                     | Water                                            |                                                 |                                      |             | ×                    |                          |                             |                        |               | 1 FB-                   | FB-2 (Field Blank)            | (yı                                                                                                                                            |
| BA02567                                                                                                                                                  | 2/5/20                                                                                                                                                                                                                                                                                                                                                                                            | 13:23                             | 9                                     | Water                                            |                                                 |                                      |             | ×                    |                          |                             |                        |               | 1 WW                    | MW-8V                         |                                                                                                                                                |
| BA02568                                                                                                                                                  | 2/5/20                                                                                                                                                                                                                                                                                                                                                                                            | 14:00                             | 5                                     | Water                                            |                                                 |                                      |             | ×                    |                          |                             |                        | H             | 1 EB-                   | EB-1 (Equipment Blank)        | nt Blank)                                                                                                                                      |
|                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                 |                                   |                                       |                                                  |                                                 | 1                                    | 1           | +                    | #                        | -                           | +                      |               |                         |                               |                                                                                                                                                |
|                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |                                       |                                                  | F                                               | 1                                    | F           | +                    | 1                        | F                           | F                      | F             | +                       |                               |                                                                                                                                                |
|                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |                                       |                                                  | E                                               |                                      | -           | -                    | F                        | F                           | F                      |               |                         |                               |                                                                                                                                                |
|                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |                                       |                                                  |                                                 |                                      | F           |                      |                          |                             | F                      | -             |                         |                               |                                                                                                                                                |
|                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |                                       |                                                  |                                                 |                                      |             |                      |                          |                             |                        |               |                         |                               |                                                                                                                                                |
| Note: Since laboratory accreditations are subject to change, TestAmeric                                                                                  | ca Laboratories, Inc. places t                                                                                                                                                                                                                                                                                                                                                                    | ne ownership o                    | of method, analy                      | rte & accreditat                                 | Jdwoo uo                                        | ance upo                             | on out su   | bcontract            | laborato                 | ries. This s                | sample ship            | oment is fo   | warded under            | chain-of-cust                 | ody. If the laboratory                                                                                                                         |
| currently maintain accreditation in the State of Origin listed above for an<br>Laboratories, Inc. attention immediately. If all requested accreditations | of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the FestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to TestAmerica all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to TestAmerica Laboratories, inc. | ilyzed, the san<br>e signed Chair | ples must be s                        | hipped back to<br>esting to said o               | the TestA<br>omplicand                          | merica la<br>se to Test              | America     | or other<br>Laborato | instructio<br>ries, Inc. | ns will be p                | rovided. A             | ny change     | to accreditation        | on status sho                 | ild be brought to Test                                                                                                                         |
| Possible Hazard Identification<br>Unconfirmed                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |                                       |                                                  | Sa                                              | Ret                                  | Dispos.     | al ( A fe            | е тау                    | be asse.                    | ssed if s              | samples<br>3b | are retaine             | d longer t                    | Sample Disposal ( A fee may be assessed if samples are retained longer than 1 month)  — Hetum To Client — Disposal By Lab — Archive For Months |
| Deliverable Beguested: 1 II III IV Other (specify)                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |                                       | 43                                               | 43599 Sn                                        | Special Instructions/OC Bequirements | structic    | DO/Suc               | Benuir                   | ements:                     |                        |               |                         |                               |                                                                                                                                                |
| Empty Kit Relinguished by:<br>Relinquished by: Laura Midkiff                                                                                             | Date/Time: 2/06/2020 14:45                                                                                                                                                                                                                                                                                                                                                                        | Date:                             |                                       | Water                                            | Time:                                           | Receive                              | weg by:     |                      |                          |                             | Method of              | Shipment.     | 100                     | SUNI                          | Company                                                                                                                                        |
| Relinquished by:                                                                                                                                         | Date/Time:                                                                                                                                                                                                                                                                                                                                                                                        |                                   |                                       | Company                                          |                                                 | Received by                          | ed by:      |                      |                          |                             |                        | Date/Time     | 3                       | 7                             | Company                                                                                                                                        |
| Refinquished by:                                                                                                                                         | Date/Time:                                                                                                                                                                                                                                                                                                                                                                                        |                                   |                                       | Company                                          |                                                 | Received by                          | ed by:      |                      |                          |                             |                        | Date/Time:    |                         |                               | Company                                                                                                                                        |
|                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |                                       |                                                  |                                                 |                                      |             |                      |                          |                             |                        |               |                         |                               |                                                                                                                                                |

Client: Alabama Power General Test Laboratory

Job Number: 400-183738-1

SDG Number: Gorgas Gypsum 1257

Login Number: 183738 List Source: Eurofins TestAmerica, Pensacola

List Number: 1

Creator: Perez, Trina M

| Creator: Perez, Trina M                                                                                   |        |             |
|-----------------------------------------------------------------------------------------------------------|--------|-------------|
| Question                                                                                                  | Answer | Comment     |
| Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td> | N/A    |             |
| The cooler's custody seal, if present, is intact.                                                         | True   |             |
| Sample custody seals, if present, are intact.                                                             | N/A    |             |
| The cooler or samples do not appear to have been compromised or tampered with.                            | True   |             |
| Samples were received on ice.                                                                             | N/A    |             |
| Cooler Temperature is acceptable.                                                                         | True   |             |
| Cooler Temperature is recorded.                                                                           | True   | 18.6°C IR-9 |
| COC is present.                                                                                           | True   |             |
| COC is filled out in ink and legible.                                                                     | True   |             |
| COC is filled out with all pertinent information.                                                         | True   |             |
| Is the Field Sampler's name present on COC?                                                               | True   |             |
| There are no discrepancies between the containers received and the COC.                                   | True   |             |
| Samples are received within Holding Time (excluding tests with immediate HTs)                             | True   |             |
| Sample containers have legible labels.                                                                    | True   |             |
| Containers are not broken or leaking.                                                                     | True   |             |
| Sample collection date/times are provided.                                                                | True   |             |
| Appropriate sample containers are used.                                                                   | True   |             |
| Sample bottles are completely filled.                                                                     | True   |             |
| Sample Preservation Verified.                                                                             | True   |             |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs                          | True   |             |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").                           | N/A    |             |
| Multiphasic samples are not present.                                                                      | True   |             |
| Samples do not require splitting or compositing.                                                          | True   |             |
| Residual Chlorine Checked.                                                                                | N/A    |             |
|                                                                                                           |        |             |

Client: Alabama Power General Test Laboratory

Job Number: 400-183738-1

SDG Number: Gorgas Gypsum 1257

Login Number: 183738 List Source: Eurofins TestAmerica, St. Louis
List Number: 2 List Creation: 02/12/20 10:30 AM

Creator: Hellm, Michael

| Answer | Comment                                                   |
|--------|-----------------------------------------------------------|
| True   |                                                           |
| True   |                                                           |
| N/A    |                                                           |
| True   |                                                           |
| N/A    |                                                           |
| True   |                                                           |
| True   | 20.0                                                      |
| True   |                                                           |
| True   |                                                           |
| True   |                                                           |
| N/A    |                                                           |
| True   |                                                           |
| N/A    |                                                           |
| N/A    |                                                           |
| True   |                                                           |
| N/A    |                                                           |
|        | True N/A True N/A True True True True True True True True |

### **Accreditation/Certification Summary**

Client: Alabama Power General Test Laboratory

Job ID: 400-183738-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1257

### Laboratory: Eurofins TestAmerica, Pensacola

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

| Authority              | Program             | Identification Number | Expiration Date |
|------------------------|---------------------|-----------------------|-----------------|
| Alabama                | State               | 40150                 | 07-01-20        |
| ANAB                   | ISO/IEC 17025       | L2471                 | 02-23-23        |
| Arizona                | State               | AZ0710                | 01-13-21        |
| Arkansas DEQ           | State               | 88-0689               | 09-01-20        |
| California             | State               | 2510                  | 07-01-20        |
| Florida                | NELAP               | E81010                | 06-30-20        |
| Georgia                | State               | E81010(FL)            | 06-30-20        |
| Illinois               | NELAP               | 004586                | 10-09-20        |
| lowa                   | State               | 367                   | 08-01-20        |
| Kansas                 | NELAP               | E-10253               | 08-16-20        |
| Kentucky (UST)         | State               | 53                    | 06-30-20        |
| Kentucky (WW)          | State               | KY98030               | 12-31-20        |
| Louisiana              | NELAP               | 30976                 | 06-30-20        |
| Louisiana (DW)         | State               | LA017                 | 12-31-20        |
| Maryland               | State               | 233                   | 09-30-20        |
| Massachusetts          | State               | M-FL094               | 06-30-20        |
| Michigan               | State               | 9912                  | 05-06-20        |
| Minnesota              | NELAP               | 012-999-481           | 12-31-20        |
| New Jersey             | NELAP               | FL006                 | 06-30-20        |
| New York               | NELAP               | 12115                 | 04-30-20        |
| New York               | NELAP Secondary AB  | 12115                 | 04-01-20        |
| North Carolina (WW/SW) | State               | 314                   | 12-31-20        |
| Oklahoma               | State               | 9810-186              | 08-31-20        |
| Pennsylvania           | NELAP               | 68-00467              | 01-31-21        |
| Rhode Island           | State               | LAO00307              | 12-30-20        |
| South Carolina         | State               | 96026002              | 06-30-20        |
| Tennessee              | State               | TN02907               | 06-30-20        |
| Texas                  | NELAP               | T104704286            | 09-30-20        |
| US Fish & Wildlife     | US Federal Programs | 058448                | 07-31-20        |
| USDA                   | US Federal Programs | P330-18-00148         | 05-17-21        |
| Virginia               | NELAP               | 460166                | 06-14-20        |
| Washington             | State               | C915                  | 05-15-20        |
| West Virginia DEP      | State               | 136                   | 06-30-20        |

### **Accreditation/Certification Summary**

Client: Alabama Power General Test Laboratory

Job ID: 400-183738-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1257

### Laboratory: Eurofins TestAmerica, St. Louis

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

| Authority                | Program                                 | <b>Identification Number</b> | <b>Expiration Date</b> |
|--------------------------|-----------------------------------------|------------------------------|------------------------|
| ANAB                     | Dept. of Defense ELAP                   | L2305                        | 04-06-22               |
| ANAB                     | Dept. of Energy                         | L2305.01                     | 04-06-22               |
| ANAB                     | ISO/IEC 17025                           | L2305                        | 04-06-22               |
| Arizona                  | State                                   | AZ0813                       | 12-08-20               |
| California               | Los Angeles County Sanitation Districts | 10259                        | 06-30-20               |
| California               | State                                   | 2886                         | 06-30-20               |
| Connecticut              | State                                   | PH-0241                      | 03-31-21               |
| Florida                  | NELAP                                   | E87689                       | 06-30-20               |
| HI - RadChem Recognition | State                                   | n/a                          | 06-30-20               |
| Illinois                 | NELAP                                   | 004553                       | 11-30-20               |
| lowa                     | State                                   | 373                          | 09-17-20               |
| Kansas                   | NELAP                                   | E-10236                      | 10-31-20               |
| Kentucky (DW)            | State                                   | KY90125                      | 12-31-20               |
| Louisiana                | NELAP                                   | 04080                        | 06-30-20               |
| Louisiana (DW)           | State                                   | LA011                        | 12-31-20               |
| Maryland                 | State                                   | 310                          | 09-30-20               |
| MI - RadChem Recognition | State                                   | 9005                         | 06-30-20               |
| Missouri                 | State                                   | 780                          | 06-30-22               |
| Nevada                   | State                                   | MO000542020-1                | 07-31-20               |
| New Jersey               | NELAP                                   | MO002                        | 06-30-20               |
| New York                 | NELAP                                   | 11616                        | 04-01-20               |
| North Dakota             | State                                   | R-207                        | 06-30-20               |
| NRC                      | NRC                                     | 24-24817-01                  | 12-31-22               |
| Oklahoma                 | State                                   | 9997                         | 08-31-20               |
| Pennsylvania             | NELAP                                   | 68-00540                     | 02-28-20 *             |
| South Carolina           | State                                   | 85002001                     | 06-30-20               |
| Texas                    | NELAP                                   | T104704193-19-13             | 07-31-20               |
| US Fish & Wildlife       | US Federal Programs                     | 058448                       | 07-31-20               |
| Utah                     | NELAP                                   | MO000542019-11               | 07-31-20               |
| Virginia                 | NELAP                                   | 10310                        | 06-14-20               |
| Washington               | State                                   | C592                         | 08-30-20               |
| West Virginia DEP        | State                                   | 381                          | 10-31-20               |

<sup>\*</sup> Accreditation/Certification renewal pending - accreditation/certification considered valid.

Eurofins TestAmerica, Pensacola

| WELL ID            | READING TIME   | DESCRIPTION                   | VALUE   | UNIT  |
|--------------------|----------------|-------------------------------|---------|-------|
| APCO-GS-GYPLF-MW-1 | 2/3/2020 12:05 | Conductivity                  | 2376.2  | uS/cm |
| APCO-GS-GYPLF-MW-1 | 2/3/2020 12:05 | DO                            | 0.93    | mg/L  |
| APCO-GS-GYPLF-MW-1 | 2/3/2020 12:05 | Depth to Water Detail         | 91.73   | ft    |
| APCO-GS-GYPLF-MW-1 | 2/3/2020 12:05 | Oxidation Reduction Potention | 125.42  | mv    |
| APCO-GS-GYPLF-MW-1 | 2/3/2020 12:05 | рН                            | 5       | pН    |
| APCO-GS-GYPLF-MW-1 | 2/3/2020 12:05 | Temperature                   | 19.87   | С     |
| APCO-GS-GYPLF-MW-1 | 2/3/2020 12:05 | Turbidity                     | 0.61    | NTU   |
| APCO-GS-GYPLF-MW-1 | 2/3/2020 12:10 | Conductivity                  | 2355.07 | uS/cm |
| APCO-GS-GYPLF-MW-1 | 2/3/2020 12:10 |                               | 1.04    | mg/L  |
| APCO-GS-GYPLF-MW-1 | 2/3/2020 12:10 | Depth to Water Detail         | 91.73   | ft    |
| APCO-GS-GYPLF-MW-1 |                | Oxidation Reduction Potention | 125.62  | mv    |
| APCO-GS-GYPLF-MW-1 | 2/3/2020 12:10 | рН                            | 5.01    | pН    |
| APCO-GS-GYPLF-MW-1 | 2/3/2020 12:10 | Temperature                   | 19.69   | С     |
| APCO-GS-GYPLF-MW-1 | 2/3/2020 12:10 | Turbidity                     | 0.36    | NTU   |
| APCO-GS-GYPLF-MW-1 | 2/3/2020 12:15 | Conductivity                  | 2352.32 | uS/cm |
| APCO-GS-GYPLF-MW-1 | 2/3/2020 12:15 | DO                            | 0.94    | mg/L  |
| APCO-GS-GYPLF-MW-1 | 2/3/2020 12:15 | Depth to Water Detail         | 91.73   | ft    |
| APCO-GS-GYPLF-MW-1 | 2/3/2020 12:15 | Oxidation Reduction Potention | 126.68  | mv    |
| APCO-GS-GYPLF-MW-1 | 2/3/2020 12:15 | рН                            | 5       | pН    |
| APCO-GS-GYPLF-MW-1 | 2/3/2020 12:15 | Temperature                   | 19.89   | С     |
| APCO-GS-GYPLF-MW-1 | 2/3/2020 12:15 |                               | 0.5     | NTU   |
| APCO-GS-GYPLF-MW-1 | 2/3/2020 12:20 | Conductivity                  | 2366.22 | uS/cm |
| APCO-GS-GYPLF-MW-1 | 2/3/2020 12:20 | DO                            | 0.84    | mg/L  |
| APCO-GS-GYPLF-MW-1 | 2/3/2020 12:20 | Depth to Water Detail         | 91.73   | ft    |
| APCO-GS-GYPLF-MW-1 | 2/3/2020 12:20 | Oxidation Reduction Potention | 124.84  | mv    |
| APCO-GS-GYPLF-MW-1 | 2/3/2020 12:20 | рН                            |         | pН    |
| APCO-GS-GYPLF-MW-1 | 2/3/2020 12:20 | Temperature                   | 19.95   | С     |
| APCO-GS-GYPLF-MW-1 | 2/3/2020 12:20 | Turbidity                     | 0.34    | NTU   |
| APCO-GS-GYPLF-MW-1 | 2/3/2020 12:25 |                               | 2376.8  | uS/cm |
| APCO-GS-GYPLF-MW-1 | 2/3/2020 12:25 | DO                            | 0.82    | mg/L  |
| APCO-GS-GYPLF-MW-1 | 2/3/2020 12:25 | Depth to Water Detail         | 91.73   |       |
| APCO-GS-GYPLF-MW-1 | 2/3/2020 12:25 | Oxidation Reduction Potention | 123.43  | mv    |
| APCO-GS-GYPLF-MW-1 | 2/3/2020 12:25 | рН                            | 5       | рН    |
| APCO-GS-GYPLF-MW-1 | 2/3/2020 12:25 | Temperature                   | 19.79   | С     |
| APCO-GS-GYPLF-MW-1 | 2/3/2020 12:25 | Turbidity                     | 0.52    | NTU   |

| WELL ID            | READING TIME   | DESCRIPTION                   | VALUE   | UNIT  |
|--------------------|----------------|-------------------------------|---------|-------|
| APCO-GS-GYPLF-MW-2 | 2/3/2020 13:07 | Conductivity                  | 1787.74 | uS/cm |
| APCO-GS-GYPLF-MW-2 | 2/3/2020 13:07 | DO                            | 0.37    | mg/L  |
| APCO-GS-GYPLF-MW-2 | 2/3/2020 13:07 | Depth to Water Detail         | 84.65   | ft    |
| APCO-GS-GYPLF-MW-2 | 2/3/2020 13:07 | Oxidation Reduction Potention | 95.28   | mv    |
| APCO-GS-GYPLF-MW-2 | 2/3/2020 13:07 | рН                            | 5.87    | pН    |
| APCO-GS-GYPLF-MW-2 | 2/3/2020 13:07 | Temperature                   | 19.25   | С     |
| APCO-GS-GYPLF-MW-2 | 2/3/2020 13:07 | Turbidity                     | 9.84    | NTU   |
| APCO-GS-GYPLF-MW-2 | 2/3/2020 13:12 | Conductivity                  | 1730.42 | uS/cm |
| APCO-GS-GYPLF-MW-2 | 2/3/2020 13:12 | DO                            | 0.3     | mg/L  |
| APCO-GS-GYPLF-MW-2 | 2/3/2020 13:12 | Depth to Water Detail         | 84.65   | ft    |
| APCO-GS-GYPLF-MW-2 | 2/3/2020 13:12 | Oxidation Reduction Potention | 93.74   | mv    |
| APCO-GS-GYPLF-MW-2 | 2/3/2020 13:12 | рН                            | 5.91    | pН    |
| APCO-GS-GYPLF-MW-2 | 2/3/2020 13:12 | Temperature                   | 19.21   | С     |
| APCO-GS-GYPLF-MW-2 | 2/3/2020 13:12 | Turbidity                     | 2.14    | NTU   |
| APCO-GS-GYPLF-MW-2 | 2/3/2020 13:17 | Conductivity                  | 1715.99 | uS/cm |
| APCO-GS-GYPLF-MW-2 | 2/3/2020 13:17 | DO                            | 0.25    | mg/L  |
| APCO-GS-GYPLF-MW-2 | 2/3/2020 13:17 | Depth to Water Detail         | 84.65   | ft    |
| APCO-GS-GYPLF-MW-2 | 2/3/2020 13:17 | Oxidation Reduction Potention | 92.1    | mv    |
| APCO-GS-GYPLF-MW-2 | 2/3/2020 13:17 | рН                            | 5.93    | pН    |
| APCO-GS-GYPLF-MW-2 | 2/3/2020 13:17 | Temperature                   | 19.11   | С     |
| APCO-GS-GYPLF-MW-2 | 2/3/2020 13:17 | Turbidity                     | 0.9     | NTU   |
| APCO-GS-GYPLF-MW-2 | 2/3/2020 13:22 | Conductivity                  | 1705.31 | uS/cm |
| APCO-GS-GYPLF-MW-2 | 2/3/2020 13:22 | DO                            | 0.25    | mg/L  |
| APCO-GS-GYPLF-MW-2 | 2/3/2020 13:22 | Depth to Water Detail         | 84.65   | ft    |
| APCO-GS-GYPLF-MW-2 | 2/3/2020 13:22 | Oxidation Reduction Potention | 89.42   | mv    |
| APCO-GS-GYPLF-MW-2 | 2/3/2020 13:22 | ±                             | 5.94    |       |
| APCO-GS-GYPLF-MW-2 | 2/3/2020 13:22 | Temperature                   | 19.07   | C     |
| APCO-GS-GYPLF-MW-2 | 2/3/2020 13:22 | Turbidity                     | 0.65    | NTU   |
| APCO-GS-GYPLF-MW-2 | 2/3/2020 13:27 | Conductivity                  | 1697.19 | uS/cm |
| APCO-GS-GYPLF-MW-2 | 2/3/2020 13:27 |                               | 0.23    | mg/L  |
| APCO-GS-GYPLF-MW-2 | 2/3/2020 13:27 | Depth to Water Detail         | 84.65   |       |
| APCO-GS-GYPLF-MW-2 | 2/3/2020 13:27 | Oxidation Reduction Potention | 88.19   | mv    |
| APCO-GS-GYPLF-MW-2 | 2/3/2020 13:27 | рН                            | 5.95    | рН    |
| APCO-GS-GYPLF-MW-2 | 2/3/2020 13:27 | Temperature                   | 19.09   | С     |
| APCO-GS-GYPLF-MW-2 | 2/3/2020 13:27 | Turbidity                     | 0.61    | NTU   |

| WELL ID            | READING TIME   | DESCRIPTION                   | VALUE   | UNIT  |
|--------------------|----------------|-------------------------------|---------|-------|
| APCO-GS-GYPLF-MW-3 | 2/3/2020 14:20 | Conductivity                  | 3546    | uS/cm |
| APCO-GS-GYPLF-MW-3 | 2/3/2020 14:20 | DO                            | 7.68    | mg/L  |
| APCO-GS-GYPLF-MW-3 | 2/3/2020 14:20 | Depth to Water Detail         | 109.6   | ft    |
| APCO-GS-GYPLF-MW-3 | 2/3/2020 14:20 | Oxidation Reduction Potention | 155.34  | mv    |
| APCO-GS-GYPLF-MW-3 | 2/3/2020 14:20 | рН                            | 3.86    | рН    |
| APCO-GS-GYPLF-MW-3 | 2/3/2020 14:20 | Temperature                   | 21.51   | С     |
| APCO-GS-GYPLF-MW-3 | 2/3/2020 14:20 | Turbidity                     | 0.61    | NTU   |
| APCO-GS-GYPLF-MW-3 | 2/3/2020 14:25 | Conductivity                  | 3466.71 | uS/cm |
| APCO-GS-GYPLF-MW-3 | 2/3/2020 14:25 | DO                            | 6.7     | mg/L  |
| APCO-GS-GYPLF-MW-3 | 2/3/2020 14:25 | Depth to Water Detail         | 109.72  | ft    |
| APCO-GS-GYPLF-MW-3 | 2/3/2020 14:25 | Oxidation Reduction Potention | 157.87  | mv    |
| APCO-GS-GYPLF-MW-3 | 2/3/2020 14:25 | рН                            | 4.16    | рН    |
| APCO-GS-GYPLF-MW-3 | 2/3/2020 14:25 | Temperature                   | 21.62   | С     |
| APCO-GS-GYPLF-MW-3 | 2/3/2020 14:25 | Turbidity                     | 0.68    | NTU   |
| APCO-GS-GYPLF-MW-3 | 2/3/2020 14:30 |                               | 3319.74 | uS/cm |
| APCO-GS-GYPLF-MW-3 | 2/3/2020 14:30 | DO                            | 5.89    | mg/L  |
| APCO-GS-GYPLF-MW-3 | 2/3/2020 14:30 | Depth to Water Detail         | 109.86  | ft    |
| APCO-GS-GYPLF-MW-3 |                | Oxidation Reduction Potention | 140.14  | mv    |
| APCO-GS-GYPLF-MW-3 | 2/3/2020 14:30 | рН                            | 5.26    | рН    |
| APCO-GS-GYPLF-MW-3 | 2/3/2020 14:30 | Temperature                   | 21.85   | С     |
| APCO-GS-GYPLF-MW-3 | 2/3/2020 14:30 | Turbidity                     | 0.47    | NTU   |
| APCO-GS-GYPLF-MW-3 | 2/3/2020 14:35 | Conductivity                  | 3304.92 | uS/cm |
| APCO-GS-GYPLF-MW-3 | 2/3/2020 14:35 | DO                            | 5.73    | mg/L  |
| APCO-GS-GYPLF-MW-3 | 2/3/2020 14:35 | Depth to Water Detail         | 109.93  | ft    |
| APCO-GS-GYPLF-MW-3 | 2/3/2020 14:35 | Oxidation Reduction Potention | 135.05  | mv    |
| APCO-GS-GYPLF-MW-3 | 2/3/2020 14:35 | рН                            | 5.47    | рН    |
| APCO-GS-GYPLF-MW-3 | 2/3/2020 14:35 | Temperature                   | 21.6    | С     |
| APCO-GS-GYPLF-MW-3 | 2/3/2020 14:35 | Turbidity                     | 0.51    | NTU   |
| APCO-GS-GYPLF-MW-3 | 2/3/2020 14:40 | Conductivity                  | 3302.95 | uS/cm |
| APCO-GS-GYPLF-MW-3 | 2/3/2020 14:40 | DO                            | 5.68    | mg/L  |
| APCO-GS-GYPLF-MW-3 | 2/3/2020 14:40 | Depth to Water Detail         | 110.09  | ft    |
| APCO-GS-GYPLF-MW-3 | 2/3/2020 14:40 | Oxidation Reduction Potention | 132.57  | mv    |
| APCO-GS-GYPLF-MW-3 | 2/3/2020 14:40 | рН                            | 5.52    | рН    |
| APCO-GS-GYPLF-MW-3 | 2/3/2020 14:40 | Temperature                   | 21.62   | С     |
| APCO-GS-GYPLF-MW-3 | 2/3/2020 14:40 | Turbidity                     | 0.74    | NTU   |
| APCO-GS-GYPLF-MW-3 | 2/3/2020 14:45 | Conductivity                  | 3312.09 | uS/cm |
| APCO-GS-GYPLF-MW-3 | 2/3/2020 14:45 | DO                            | 5.63    | mg/L  |
| APCO-GS-GYPLF-MW-3 | 2/3/2020 14:45 | Depth to Water Detail         | 110.18  | ft    |
| APCO-GS-GYPLF-MW-3 | 2/3/2020 14:45 | Oxidation Reduction Potention | 131.47  | mv    |
| APCO-GS-GYPLF-MW-3 | 2/3/2020 14:45 | рН                            | 5.54    | рН    |
| APCO-GS-GYPLF-MW-3 | 2/3/2020 14:45 | Temperature                   | 21.57   | С     |
| APCO-GS-GYPLF-MW-3 | 2/3/2020 14:45 | Turbidity                     | 0.96    | NTU   |

| WELL ID            | READING TIME   | DESCRIPTION                   | VALUE   | UNIT  |
|--------------------|----------------|-------------------------------|---------|-------|
| APCO-GS-GYPLF-MW-4 | 2/3/2020 15:39 | Conductivity                  | 3137.22 | uS/cm |
| APCO-GS-GYPLF-MW-4 | 2/3/2020 15:39 | DO                            | 2.22    | mg/L  |
| APCO-GS-GYPLF-MW-4 | 2/3/2020 15:39 | Depth to Water Detail         | 116.22  | ft    |
| APCO-GS-GYPLF-MW-4 |                | Oxidation Reduction Potention | 126.06  | mv    |
| APCO-GS-GYPLF-MW-4 | 2/3/2020 15:39 | рН                            | 6.12    | рН    |
| APCO-GS-GYPLF-MW-4 | 2/3/2020 15:39 | Temperature                   | 20.18   | С     |
| APCO-GS-GYPLF-MW-4 | 2/3/2020 15:39 | Turbidity                     | 1.01    | NTU   |
| APCO-GS-GYPLF-MW-4 | 2/3/2020 15:44 | Conductivity                  | 3124.19 | uS/cm |
| APCO-GS-GYPLF-MW-4 | 2/3/2020 15:44 | DO                            | 2.21    | mg/L  |
| APCO-GS-GYPLF-MW-4 | 2/3/2020 15:44 | Depth to Water Detail         | 116.22  | ft    |
| APCO-GS-GYPLF-MW-4 | 2/3/2020 15:44 | Oxidation Reduction Potention | 125.29  | mv    |
| APCO-GS-GYPLF-MW-4 | 2/3/2020 15:44 | рН                            | 6.12    | рН    |
| APCO-GS-GYPLF-MW-4 | 2/3/2020 15:44 | Temperature                   | 20.19   | С     |
| APCO-GS-GYPLF-MW-4 | 2/3/2020 15:44 | Turbidity                     | 0.91    | NTU   |
| APCO-GS-GYPLF-MW-4 | 2/3/2020 15:49 | Conductivity                  | 3121.48 | uS/cm |
| APCO-GS-GYPLF-MW-4 | 2/3/2020 15:49 | DO                            | 2.5     | mg/L  |
| APCO-GS-GYPLF-MW-4 | 2/3/2020 15:49 | Depth to Water Detail         | 116.22  | ft    |
| APCO-GS-GYPLF-MW-4 | 2/3/2020 15:49 | Oxidation Reduction Potention | 124.81  | mv    |
| APCO-GS-GYPLF-MW-4 | 2/3/2020 15:49 | рН                            | 6.12    | рН    |
| APCO-GS-GYPLF-MW-4 | 2/3/2020 15:49 | Temperature                   | 20.31   | С     |
| APCO-GS-GYPLF-MW-4 | 2/3/2020 15:49 | Turbidity                     | 0.8     | NTU   |
| APCO-GS-GYPLF-MW-4 | 2/3/2020 15:54 | Conductivity                  | 3121.14 | uS/cm |
| APCO-GS-GYPLF-MW-4 | 2/3/2020 15:54 | DO                            | 2.7     | mg/L  |
| APCO-GS-GYPLF-MW-4 | 2/3/2020 15:54 | Depth to Water Detail         | 116.22  | ft    |
| APCO-GS-GYPLF-MW-4 | 2/3/2020 15:54 | Oxidation Reduction Potention | 124.65  | mv    |
| APCO-GS-GYPLF-MW-4 | 2/3/2020 15:54 | рН                            | 6.13    | рН    |
| APCO-GS-GYPLF-MW-4 | 2/3/2020 15:54 | Temperature                   | 20.19   | C     |
| APCO-GS-GYPLF-MW-4 | 2/3/2020 15:54 | Turbidity                     | 0.53    | NTU   |
| APCO-GS-GYPLF-MW-4 | 2/3/2020 15:59 | Conductivity                  | 3121.01 | uS/cm |
| APCO-GS-GYPLF-MW-4 | 2/3/2020 15:59 | DO                            | 2.82    | mg/L  |
| APCO-GS-GYPLF-MW-4 | 2/3/2020 15:59 | Depth to Water Detail         | 116.22  | ft    |
| APCO-GS-GYPLF-MW-4 | 2/3/2020 15:59 | Oxidation Reduction Potention | 124.38  | mv    |
| APCO-GS-GYPLF-MW-4 | 2/3/2020 15:59 | рН                            | 6.14    | pН    |
| APCO-GS-GYPLF-MW-4 | 2/3/2020 15:59 | Temperature                   | 20.16   |       |
| APCO-GS-GYPLF-MW-4 | 2/3/2020 15:59 | •                             | 0.83    | NTU   |
| APCO-GS-GYPLF-MW-4 | 2/3/2020 16:04 | ·                             | 3119.33 | uS/cm |
| APCO-GS-GYPLF-MW-4 | 2/3/2020 16:04 | DO                            |         | mg/L  |
| APCO-GS-GYPLF-MW-4 |                | Depth to Water Detail         | 116.22  |       |
| APCO-GS-GYPLF-MW-4 |                | Oxidation Reduction Potention | 124.13  |       |
| APCO-GS-GYPLF-MW-4 | 2/3/2020 16:04 | рН                            | 6.14    | •     |
| APCO-GS-GYPLF-MW-4 | 2/3/2020 16:04 | 4                             | 20.34   |       |
| APCO-GS-GYPLF-MW-4 | 2/3/2020 16:04 | Turbidity                     | 0.41    | NTU   |

| WELL ID      | READING TIME   | DESCRIPTION                           | VALUE   | UNIT  |
|--------------|----------------|---------------------------------------|---------|-------|
| GS-GSA-MW-3V | 2/3/2020 13:46 | •                                     | 3666.47 | uS/cm |
| GS-GSA-MW-3V | 2/3/2020 13:46 | DO                                    |         | mg/L  |
| GS-GSA-MW-3V | 2/3/2020 13:46 | Depth to Water Detail                 | 122.33  | ft    |
| GS-GSA-MW-3V | 2/3/2020 13:46 | Oxidation Reduction Potention         | -77.92  | mv    |
| GS-GSA-MW-3V | 2/3/2020 13:46 | рН                                    | 6.08    | •     |
| GS-GSA-MW-3V | 2/3/2020 13:46 | Temperature                           | 21.46   | C     |
| GS-GSA-MW-3V | 2/3/2020 13:46 | Turbidity                             | 12.1    | NTU   |
| GS-GSA-MW-3V | 2/3/2020 13:51 | Conductivity                          | 3661.5  | uS/cm |
| GS-GSA-MW-3V | 2/3/2020 13:51 | DO                                    | 0.78    | mg/L  |
| GS-GSA-MW-3V | 2/3/2020 13:51 | Depth to Water Detail                 | 123.28  | ft    |
| GS-GSA-MW-3V | 2/3/2020 13:51 | Oxidation Reduction Potention         | -46.39  | mv    |
| GS-GSA-MW-3V | 2/3/2020 13:51 | рН                                    | 5.94    | рН    |
| GS-GSA-MW-3V | 2/3/2020 13:51 | Temperature                           | 21.28   | С     |
| GS-GSA-MW-3V | 2/3/2020 13:51 | Turbidity                             | 5.45    | NTU   |
| GS-GSA-MW-3V | 2/3/2020 13:56 | Conductivity                          | 3642.39 | uS/cm |
| GS-GSA-MW-3V | 2/3/2020 13:56 |                                       | 0.77    | mg/L  |
| GS-GSA-MW-3V | 2/3/2020 13:56 | Depth to Water Detail                 | 123.36  |       |
| GS-GSA-MW-3V |                | Oxidation Reduction Potention         | -33.17  | mv    |
| GS-GSA-MW-3V | 2/3/2020 13:56 | рН                                    | 5.9     | рН    |
| GS-GSA-MW-3V | 2/3/2020 13:56 | Temperature                           | 21.31   |       |
| GS-GSA-MW-3V | 2/3/2020 13:56 | Turbidity                             | 2.8     | NTU   |
| GS-GSA-MW-3V | 2/3/2020 14:01 |                                       | 3612.33 | uS/cm |
| GS-GSA-MW-3V | 2/3/2020 14:01 | DO                                    | 0.76    | mg/L  |
| GS-GSA-MW-3V | 2/3/2020 14:01 | Depth to Water Detail                 | 123.7   |       |
| GS-GSA-MW-3V |                | Oxidation Reduction Potention         | -29.68  | mv    |
| GS-GSA-MW-3V | 2/3/2020 14:01 | рН                                    | 5.88    | рН    |
| GS-GSA-MW-3V | 2/3/2020 14:01 | Temperature                           | 21.43   | C     |
| GS-GSA-MW-3V | 2/3/2020 14:01 | Turbidity                             | 2.29    | NTU   |
| GS-GSA-MW-3V | 2/3/2020 14:06 | Conductivity                          | 3550.97 | uS/cm |
| GS-GSA-MW-3V | 2/3/2020 14:06 | DO                                    | 0.78    | mg/L  |
| GS-GSA-MW-3V |                | Depth to Water Detail                 | 123.96  |       |
| GS-GSA-MW-3V |                | Oxidation Reduction Potention         | -35.55  | mv    |
| GS-GSA-MW-3V | 2/3/2020 14:06 | рН                                    | 5.87    |       |
| GS-GSA-MW-3V | 2/3/2020 14:06 | Temperature                           | 21.26   | •     |
| GS-GSA-MW-3V | 2/3/2020 14:06 | Turbidity                             |         | NTU   |
| GS-GSA-MW-3V | 2/3/2020 14:11 |                                       | 3450.49 |       |
| GS-GSA-MW-3V | 2/3/2020 14:11 | <u>`</u>                              | 0.76    | mg/L  |
| GS-GSA-MW-3V | 2/3/2020 14:11 | Depth to Water Detail                 | 124.36  | _     |
| GS-GSA-MW-3V |                | Oxidation Reduction Potention         | -43.29  | mv    |
| GS-GSA-MW-3V | 2/3/2020 14:11 |                                       | 5.87    |       |
| GS-GSA-MW-3V | 2/3/2020 14:11 | *                                     | 21.31   | •     |
| GS-GSA-MW-3V | 2/3/2020 14:11 | *                                     |         | NTU   |
| GS-GSA-MW-3V | 2/3/2020 14:16 | · · · · · · · · · · · · · · · · · · · | 3440.63 |       |
| GS-GSA-MW-3V | 2/3/2020 14:16 | ·                                     |         | mg/L  |

| WELL ID      | READING TIME   | DESCRIPTION                   | VALUE   | UNIT  |
|--------------|----------------|-------------------------------|---------|-------|
| GS-GSA-MW-3V | 2/3/2020 14:16 | Depth to Water Detail         | 124.43  | ft    |
| GS-GSA-MW-3V | 2/3/2020 14:16 | Oxidation Reduction Potention | -48.45  | mv    |
| GS-GSA-MW-3V | 2/3/2020 14:16 | pН                            | 5.87    | рН    |
| GS-GSA-MW-3V | 2/3/2020 14:16 | Temperature                   | 21.35   | С     |
| GS-GSA-MW-3V | 2/3/2020 14:16 | Turbidity                     | 1.03    | NTU   |
| GS-GSA-MW-3V | 2/3/2020 14:21 | Conductivity                  | 3331.61 | uS/cm |
| GS-GSA-MW-3V | 2/3/2020 14:21 | DO                            | 0.75    | mg/L  |
| GS-GSA-MW-3V | 2/3/2020 14:21 | Depth to Water Detail         | 124.58  | ft    |
| GS-GSA-MW-3V | 2/3/2020 14:21 | Oxidation Reduction Potention | -51.26  | mv    |
| GS-GSA-MW-3V | 2/3/2020 14:21 | рН                            | 5.88    | pН    |
| GS-GSA-MW-3V | 2/3/2020 14:21 | Temperature                   | 21.33   | С     |
| GS-GSA-MW-3V | 2/3/2020 14:21 | Turbidity                     | 1.28    | NTU   |

| WELL ID     | READING TIME   | DESCRIPTION                   | VALUE   | UNIT  |
|-------------|----------------|-------------------------------|---------|-------|
| GS-GSA-MW-3 | 2/3/2020 15:24 | Conductivity                  | 4164.22 | uS/cm |
| GS-GSA-MW-3 | 2/3/2020 15:24 | DO                            | 0.41    | mg/L  |
| GS-GSA-MW-3 | 2/3/2020 15:24 | Depth to Water Detail         | 103.44  | ft    |
| GS-GSA-MW-3 | 2/3/2020 15:24 | Oxidation Reduction Potention | 3.08    | mv    |
| GS-GSA-MW-3 | 2/3/2020 15:24 | рН                            | 5.93    | pН    |
| GS-GSA-MW-3 | 2/3/2020 15:24 | Temperature                   | 20.62   | С     |
| GS-GSA-MW-3 | 2/3/2020 15:24 | Turbidity                     | 3.88    | NTU   |
| GS-GSA-MW-3 | 2/3/2020 15:29 | Conductivity                  | 4153.59 | uS/cm |
| GS-GSA-MW-3 | 2/3/2020 15:29 | DO                            | 0.28    | mg/L  |
| GS-GSA-MW-3 | 2/3/2020 15:29 | Depth to Water Detail         | 103.44  | ft    |
| GS-GSA-MW-3 | 2/3/2020 15:29 | Oxidation Reduction Potention | -7.57   | mv    |
| GS-GSA-MW-3 | 2/3/2020 15:29 | рН                            | 5.95    | pН    |
| GS-GSA-MW-3 | 2/3/2020 15:29 | Temperature                   | 20.5    | С     |
| GS-GSA-MW-3 | 2/3/2020 15:29 | Turbidity                     | 3.74    | NTU   |
| GS-GSA-MW-3 | 2/3/2020 15:34 | Conductivity                  | 4116.28 | uS/cm |
| GS-GSA-MW-3 | 2/3/2020 15:34 | DO                            | 0.24    | mg/L  |
| GS-GSA-MW-3 |                | Depth to Water Detail         | 103.44  | ft    |
| GS-GSA-MW-3 | 2/3/2020 15:34 | Oxidation Reduction Potention | -11.94  | mv    |
| GS-GSA-MW-3 | 2/3/2020 15:34 | рН                            | 5.97    | pН    |
| GS-GSA-MW-3 | 2/3/2020 15:34 | Temperature                   | 20.45   | С     |
| GS-GSA-MW-3 | 2/3/2020 15:34 | Turbidity                     | 4.19    | NTU   |
| GS-GSA-MW-3 | 2/3/2020 15:39 | Conductivity                  | 4133.61 | uS/cm |
| GS-GSA-MW-3 | 2/3/2020 15:39 | DO                            | 0.22    | mg/L  |
| GS-GSA-MW-3 | 2/3/2020 15:39 | Depth to Water Detail         | 103.44  | ft    |
| GS-GSA-MW-3 | 2/3/2020 15:39 | Oxidation Reduction Potention | -14.71  | mv    |
| GS-GSA-MW-3 | 2/3/2020 15:39 | рН                            | 5.98    | рН    |
| GS-GSA-MW-3 | 2/3/2020 15:39 | Temperature                   | 20.43   | С     |
| GS-GSA-MW-3 | 2/3/2020 15:39 | Turbidity                     | 3.56    | NTU   |

| WELL ID      | READING TIME   | DESCRIPTION                   | VALUE   | UNIT  |
|--------------|----------------|-------------------------------|---------|-------|
| GS-GSA-MW-4V | 2/3/2020 16:36 | Conductivity                  | 1493.76 | uS/cm |
| GS-GSA-MW-4V | 2/3/2020 16:36 | DO                            | 0.66    | mg/L  |
| GS-GSA-MW-4V | 2/3/2020 16:36 | Depth to Water Detail         | 114.43  | ft    |
| GS-GSA-MW-4V | 2/3/2020 16:36 | Oxidation Reduction Potention | 31.47   | mv    |
| GS-GSA-MW-4V | 2/3/2020 16:36 | рН                            | 5.83    | pН    |
| GS-GSA-MW-4V | 2/3/2020 16:36 | Temperature                   | 19.96   | С     |
| GS-GSA-MW-4V | 2/3/2020 16:36 | Turbidity                     | 8.02    | NTU   |
| GS-GSA-MW-4V | 2/3/2020 16:41 | Conductivity                  | 1487.23 | uS/cm |
| GS-GSA-MW-4V | 2/3/2020 16:41 | DO                            | 0.46    | mg/L  |
| GS-GSA-MW-4V | 2/3/2020 16:41 | Depth to Water Detail         | 114.84  | ft    |
| GS-GSA-MW-4V | 2/3/2020 16:41 | Oxidation Reduction Potention | 31.86   | mv    |
| GS-GSA-MW-4V | 2/3/2020 16:41 |                               | 5.85    | pН    |
| GS-GSA-MW-4V | 2/3/2020 16:41 | Temperature                   | 19.83   | С     |
| GS-GSA-MW-4V | 2/3/2020 16:41 | Turbidity                     | 6.03    | NTU   |
| GS-GSA-MW-4V | 2/3/2020 16:46 | Conductivity                  | 1484.62 | uS/cm |
| GS-GSA-MW-4V | 2/3/2020 16:46 |                               | 0.41    | mg/L  |
| GS-GSA-MW-4V | 2/3/2020 16:46 | Depth to Water Detail         | 115     | ft    |
| GS-GSA-MW-4V | 2/3/2020 16:46 | Oxidation Reduction Potention | 32.68   | mv    |
| GS-GSA-MW-4V | 2/3/2020 16:46 | рН                            | 5.85    | pН    |
| GS-GSA-MW-4V | 2/3/2020 16:46 | Temperature                   | 19.76   | С     |
| GS-GSA-MW-4V | 2/3/2020 16:46 | Turbidity                     | 3.16    | NTU   |
| GS-GSA-MW-4V | 2/3/2020 16:51 | Conductivity                  | 1481.03 | uS/cm |
| GS-GSA-MW-4V | 2/3/2020 16:51 | DO                            | 0.38    | mg/L  |
| GS-GSA-MW-4V | 2/3/2020 16:51 | Depth to Water Detail         | 115.02  | ft    |
| GS-GSA-MW-4V | 2/3/2020 16:51 | Oxidation Reduction Potention | 33.95   | mv    |
| GS-GSA-MW-4V | 2/3/2020 16:51 | рН                            | 5.84    |       |
| GS-GSA-MW-4V | 2/3/2020 16:51 | Temperature                   | 19.72   | С     |
| GS-GSA-MW-4V | 2/3/2020 16:51 | Turbidity                     | 2.76    | NTU   |

| WELL ID     | READING TIME  | DESCRIPTION                   | VALUE   | UNIT  |
|-------------|---------------|-------------------------------|---------|-------|
| GS-GSA-MW-4 | 2/4/2020 9:38 | Conductivity                  | 1222.54 | uS/cm |
| GS-GSA-MW-4 | 2/4/2020 9:38 | DO                            | 0.45    | mg/L  |
| GS-GSA-MW-4 | 2/4/2020 9:38 | Depth to Water Detail         | 90.01   | ft    |
| GS-GSA-MW-4 | 2/4/2020 9:38 | Oxidation Reduction Potention | 309.41  | mv    |
| GS-GSA-MW-4 | 2/4/2020 9:38 | рН                            | 3.78    | pН    |
| GS-GSA-MW-4 | 2/4/2020 9:38 | Temperature                   | 19.92   | С     |
| GS-GSA-MW-4 | 2/4/2020 9:38 | Turbidity                     | 7.04    | NTU   |
| GS-GSA-MW-4 | 2/4/2020 9:43 | Conductivity                  | 1221.13 | uS/cm |
| GS-GSA-MW-4 | 2/4/2020 9:43 | DO                            | 0.35    | mg/L  |
| GS-GSA-MW-4 | 2/4/2020 9:43 | Depth to Water Detail         | 90.01   | ft    |
| GS-GSA-MW-4 | 2/4/2020 9:43 | Oxidation Reduction Potention | 304.49  | mv    |
| GS-GSA-MW-4 | 2/4/2020 9:43 | рН                            | 3.81    | pН    |
| GS-GSA-MW-4 | 2/4/2020 9:43 | Temperature                   | 19.91   | С     |
| GS-GSA-MW-4 | 2/4/2020 9:43 | Turbidity                     | 5.79    | NTU   |
| GS-GSA-MW-4 | 2/4/2020 9:48 | Conductivity                  | 1221.24 | uS/cm |
| GS-GSA-MW-4 | 2/4/2020 9:48 | DO                            | 0.31    | mg/L  |
| GS-GSA-MW-4 | 2/4/2020 9:48 | Depth to Water Detail         | 90.01   | ft    |
| GS-GSA-MW-4 | 2/4/2020 9:48 | Oxidation Reduction Potention | 300.85  | mv    |
| GS-GSA-MW-4 | 2/4/2020 9:48 | рН                            | 3.82    | pН    |
| GS-GSA-MW-4 | 2/4/2020 9:48 | Temperature                   | 19.92   | С     |
| GS-GSA-MW-4 | 2/4/2020 9:48 | Turbidity                     | 5.54    | NTU   |
| GS-GSA-MW-4 | 2/4/2020 9:53 | Conductivity                  | 1221.02 | uS/cm |
| GS-GSA-MW-4 | 2/4/2020 9:53 | DO                            | 0.29    | mg/L  |
| GS-GSA-MW-4 | 2/4/2020 9:53 | Depth to Water Detail         | 90.01   |       |
| GS-GSA-MW-4 | 2/4/2020 9:53 | Oxidation Reduction Potention | 298.36  | mv    |
| GS-GSA-MW-4 | 2/4/2020 9:53 | рН                            | 3.83    | рН    |
| GS-GSA-MW-4 | 2/4/2020 9:53 | Temperature                   | 19.91   | С     |
| GS-GSA-MW-4 | 2/4/2020 9:53 | Turbidity                     | 4.79    | NTU   |

| WELL ID       | READING TIME   | DESCRIPTION                   | VALUE   | UNIT  |
|---------------|----------------|-------------------------------|---------|-------|
| GS-GSA-MW-12H | 2/4/2020 10:44 | Conductivity                  | 1783.2  | uS/cm |
| GS-GSA-MW-12H | 2/4/2020 10:44 | DO                            | 0.27    | mg/L  |
| GS-GSA-MW-12H | 2/4/2020 10:44 | Depth to Water Detail         | 58.96   | ft    |
| GS-GSA-MW-12H | 2/4/2020 10:44 | Oxidation Reduction Potention | 206.3   | mv    |
| GS-GSA-MW-12H | 2/4/2020 10:44 | рН                            | 5.02    | рН    |
| GS-GSA-MW-12H | 2/4/2020 10:44 | Temperature                   | 19.16   | С     |
| GS-GSA-MW-12H | 2/4/2020 10:44 | Turbidity                     | 28.8    | NTU   |
| GS-GSA-MW-12H | 2/4/2020 10:49 | Conductivity                  | 1736.09 | uS/cm |
| GS-GSA-MW-12H | 2/4/2020 10:49 | DO                            | 0.23    | mg/L  |
| GS-GSA-MW-12H | 2/4/2020 10:49 | Depth to Water Detail         | 59.07   | ft    |
| GS-GSA-MW-12H |                | Oxidation Reduction Potention | 222.39  | mv    |
| GS-GSA-MW-12H | 2/4/2020 10:49 | рН                            | 4.79    | рН    |
| GS-GSA-MW-12H | 2/4/2020 10:49 | Temperature                   | 19.26   | С     |
| GS-GSA-MW-12H | 2/4/2020 10:49 | Turbidity                     | 11.3    | NTU   |
| GS-GSA-MW-12H | 2/4/2020 10:54 | Conductivity                  | 1723.12 | uS/cm |
| GS-GSA-MW-12H | 2/4/2020 10:54 | DO                            | 0.21    | mg/L  |
| GS-GSA-MW-12H | 2/4/2020 10:54 | Depth to Water Detail         | 59.07   | ft    |
| GS-GSA-MW-12H | 2/4/2020 10:54 | Oxidation Reduction Potention | 231     | mv    |
| GS-GSA-MW-12H | 2/4/2020 10:54 | рН                            | 4.72    | рН    |
| GS-GSA-MW-12H | 2/4/2020 10:54 | Temperature                   | 19.22   | С     |
| GS-GSA-MW-12H | 2/4/2020 10:54 | Turbidity                     | 8.88    | NTU   |
| GS-GSA-MW-12H | 2/4/2020 10:59 | Conductivity                  | 1715.29 | uS/cm |
| GS-GSA-MW-12H | 2/4/2020 10:59 | DO                            | 0.21    | mg/L  |
| GS-GSA-MW-12H | 2/4/2020 10:59 | Depth to Water Detail         | 59.07   | ft    |
| GS-GSA-MW-12H | 2/4/2020 10:59 | Oxidation Reduction Potention | 240.65  | mv    |
| GS-GSA-MW-12H | 2/4/2020 10:59 | рН                            | 4.65    | рН    |
| GS-GSA-MW-12H | 2/4/2020 10:59 | Temperature                   | 19.21   | С     |
| GS-GSA-MW-12H | 2/4/2020 10:59 | Turbidity                     | 6.96    | NTU   |
| GS-GSA-MW-12H | 2/4/2020 11:04 | Conductivity                  | 1711.22 | uS/cm |
| GS-GSA-MW-12H | 2/4/2020 11:04 | DO                            | 0.25    | mg/L  |
| GS-GSA-MW-12H | 2/4/2020 11:04 | Depth to Water Detail         | 59.07   |       |
| GS-GSA-MW-12H | 2/4/2020 11:04 | Oxidation Reduction Potention | 247.57  | mv    |
| GS-GSA-MW-12H | 2/4/2020 11:04 | рН                            | 4.62    | рН    |
| GS-GSA-MW-12H | 2/4/2020 11:04 | Temperature                   | 19.23   | С     |
| GS-GSA-MW-12H | 2/4/2020 11:04 | Turbidity                     | 5.45    | NTU   |
| GS-GSA-MW-12H | 2/4/2020 11:09 | Conductivity                  | 1706.04 | uS/cm |
| GS-GSA-MW-12H | 2/4/2020 11:09 | DO                            | 0.27    | mg/L  |
| GS-GSA-MW-12H | 2/4/2020 11:09 | Depth to Water Detail         | 59.07   | ft    |
| GS-GSA-MW-12H | 2/4/2020 11:09 | Oxidation Reduction Potention | 256.14  | mv    |
| GS-GSA-MW-12H | 2/4/2020 11:09 | рН                            | 4.57    | рН    |
| GS-GSA-MW-12H | 2/4/2020 11:09 | Temperature                   | 19.23   | С     |
| GS-GSA-MW-12H | 2/4/2020 11:09 | Turbidity                     | 4.82    | NTU   |

| WELL ID       | READING TIME   | DESCRIPTION                   | VALUE   | UNIT  |
|---------------|----------------|-------------------------------|---------|-------|
| GS-GSA-MW-11H | 2/4/2020 12:08 | Conductivity                  | 1515.33 | uS/cm |
| GS-GSA-MW-11H | 2/4/2020 12:08 | DO                            | 0.2     | mg/L  |
| GS-GSA-MW-11H | 2/4/2020 12:08 | Depth to Water Detail         | 7.75    | ft    |
| GS-GSA-MW-11H |                | Oxidation Reduction Potention | 86.51   | mv    |
| GS-GSA-MW-11H | 2/4/2020 12:08 | рН                            | 6       | рН    |
| GS-GSA-MW-11H | 2/4/2020 12:08 | Temperature                   | 19.11   | С     |
| GS-GSA-MW-11H | 2/4/2020 12:08 | Turbidity                     | 12      | NTU   |
| GS-GSA-MW-11H | 2/4/2020 12:13 | Conductivity                  | 1513.46 | uS/cm |
| GS-GSA-MW-11H | 2/4/2020 12:13 | DO                            | 0.18    | mg/L  |
| GS-GSA-MW-11H | 2/4/2020 12:13 | Depth to Water Detail         | 7.9     | ft    |
| GS-GSA-MW-11H |                | Oxidation Reduction Potention | 67.74   | mv    |
| GS-GSA-MW-11H | 2/4/2020 12:13 | рН                            | 6.01    | рН    |
| GS-GSA-MW-11H | 2/4/2020 12:13 | Temperature                   | 19.19   | C     |
| GS-GSA-MW-11H | 2/4/2020 12:13 |                               | 8.5     | NTU   |
| GS-GSA-MW-11H | 2/4/2020 12:18 |                               | 1504.37 | uS/cm |
| GS-GSA-MW-11H | 2/4/2020 12:18 |                               | 0.18    | mg/L  |
| GS-GSA-MW-11H | 2/4/2020 12:18 | Depth to Water Detail         | 7.97    |       |
| GS-GSA-MW-11H |                | Oxidation Reduction Potention | 61.59   | mv    |
| GS-GSA-MW-11H | 2/4/2020 12:18 | рН                            | 6.01    | рН    |
| GS-GSA-MW-11H | 2/4/2020 12:18 | Temperature                   | 19.19   | C     |
| GS-GSA-MW-11H | 2/4/2020 12:18 |                               | 7.33    | NTU   |
| GS-GSA-MW-11H | 2/4/2020 12:23 | Conductivity                  | 1497.23 | uS/cm |
| GS-GSA-MW-11H | 2/4/2020 12:23 | DO                            | 0.17    | mg/L  |
| GS-GSA-MW-11H | 2/4/2020 12:23 | Depth to Water Detail         | 8.02    |       |
| GS-GSA-MW-11H |                | Oxidation Reduction Potention | 55.95   | mv    |
| GS-GSA-MW-11H | 2/4/2020 12:23 | рН                            | 6.01    | рН    |
| GS-GSA-MW-11H | 2/4/2020 12:23 | Temperature                   | 19.18   |       |
| GS-GSA-MW-11H | 2/4/2020 12:23 |                               | 6.78    | NTU   |
| GS-GSA-MW-11H | 2/4/2020 12:28 | Conductivity                  | 1489.75 | uS/cm |
| GS-GSA-MW-11H | 2/4/2020 12:28 |                               | 0.17    | mg/L  |
| GS-GSA-MW-11H |                | Depth to Water Detail         | 8.08    |       |
| GS-GSA-MW-11H | 2/4/2020 12:28 | Oxidation Reduction Potention | 54.43   | mv    |
| GS-GSA-MW-11H | 2/4/2020 12:28 | рН                            | 6.02    | рН    |
| GS-GSA-MW-11H | 2/4/2020 12:28 | Temperature                   | 19.23   | C     |
| GS-GSA-MW-11H | 2/4/2020 12:28 | Turbidity                     | 5.85    | NTU   |
| GS-GSA-MW-11H | 2/4/2020 12:33 | ,                             | 1479.14 | uS/cm |
| GS-GSA-MW-11H | 2/4/2020 12:33 | •                             | 0.17    | mg/L  |
| GS-GSA-MW-11H | 2/4/2020 12:33 | Depth to Water Detail         | 8.1     | ft    |
| GS-GSA-MW-11H |                | Oxidation Reduction Potention | 55.59   | mv    |
| GS-GSA-MW-11H | 2/4/2020 12:33 | рН                            | 6.02    | рН    |
| GS-GSA-MW-11H | 2/4/2020 12:33 |                               | 19.24   | С     |
| GS-GSA-MW-11H | 2/4/2020 12:33 | 4                             | 5.34    | NTU   |
| GS-GSA-MW-11H | 2/4/2020 12:38 |                               | 1472.55 |       |
| GS-GSA-MW-11H | 2/4/2020 12:38 | DO                            | 0.17    | mg/L  |

| WELL ID       | READING TIME   | DESCRIPTION                   | VALUE | UNIT |
|---------------|----------------|-------------------------------|-------|------|
| GS-GSA-MW-11H | 2/4/2020 12:38 | Depth to Water Detail         | 8.11  | ft   |
| GS-GSA-MW-11H | 2/4/2020 12:38 | Oxidation Reduction Potention | 55.02 | mv   |
| GS-GSA-MW-11H | 2/4/2020 12:38 | pН                            | 6.02  | рН   |
| GS-GSA-MW-11H | 2/4/2020 12:38 | Temperature                   | 19.26 | С    |
| GS-GSA-MW-11H | 2/4/2020 12:38 | Turbidity                     | 6.12  | NTU  |

| WELL ID       | READING TIME   | DESCRIPTION                   | VALUE   | UNIT  |
|---------------|----------------|-------------------------------|---------|-------|
| GS-GSA-MW-13H | 2/4/2020 13:18 | Conductivity                  | 1499.44 | uS/cm |
| GS-GSA-MW-13H | 2/4/2020 13:18 | DO                            | 0.2     | mg/L  |
| GS-GSA-MW-13H | 2/4/2020 13:18 | Depth to Water Detail         | 9.45    | ft    |
| GS-GSA-MW-13H | 2/4/2020 13:18 | Oxidation Reduction Potention | 5.81    | mv    |
| GS-GSA-MW-13H | 2/4/2020 13:18 | 1                             | 5.99    | рН    |
| GS-GSA-MW-13H | 2/4/2020 13:18 | Temperature                   | 19.28   | C     |
| GS-GSA-MW-13H | 2/4/2020 13:18 |                               | 1.96    | NTU   |
| GS-GSA-MW-13H | 2/4/2020 13:23 | Conductivity                  | 1499.94 | uS/cm |
| GS-GSA-MW-13H | 2/4/2020 13:23 | DO                            |         | mg/L  |
| GS-GSA-MW-13H | 2/4/2020 13:23 | Depth to Water Detail         | 9.47    | ft    |
| GS-GSA-MW-13H | 2/4/2020 13:23 | Oxidation Reduction Potention | 0.97    | mv    |
| GS-GSA-MW-13H | 2/4/2020 13:23 | рН                            | 6       | рН    |
| GS-GSA-MW-13H | 2/4/2020 13:23 | Temperature                   | 19.22   | C     |
| GS-GSA-MW-13H | 2/4/2020 13:23 | Turbidity                     | 1.43    | NTU   |
| GS-GSA-MW-13H | 2/4/2020 13:28 | Conductivity                  | 1501.12 | uS/cm |
| GS-GSA-MW-13H | 2/4/2020 13:28 |                               |         | mg/L  |
| GS-GSA-MW-13H |                | Depth to Water Detail         | 9.47    | ft    |
| GS-GSA-MW-13H | 2/4/2020 13:28 | Oxidation Reduction Potention | -1.77   | mv    |
| GS-GSA-MW-13H | 2/4/2020 13:28 | 4                             | 6       | рН    |
| GS-GSA-MW-13H | 2/4/2020 13:28 | Temperature                   | 19.25   |       |
| GS-GSA-MW-13H | 2/4/2020 13:28 |                               | 1.39    | NTU   |
| GS-GSA-MW-13H | 2/4/2020 13:33 | Conductivity                  | 1502.46 | uS/cm |
| GS-GSA-MW-13H | 2/4/2020 13:33 | DO                            |         | mg/L  |
| GS-GSA-MW-13H |                | Depth to Water Detail         | 9.47    | ft    |
| GS-GSA-MW-13H | 2/4/2020 13:33 | Oxidation Reduction Potention | -3.51   | mv    |
| GS-GSA-MW-13H | 2/4/2020 13:33 | *                             |         | рН    |
| GS-GSA-MW-13H | 2/4/2020 13:33 | Temperature                   | 19.29   | С     |
| GS-GSA-MW-13H | 2/4/2020 13:33 | Turbidity                     | 1.52    | NTU   |

| WELL ID      | READING TIME   | DESCRIPTION                   | VALUE   | UNIT  |
|--------------|----------------|-------------------------------|---------|-------|
| GS-GSA-MW-9H | 2/4/2020 14:25 | Conductivity                  | 3327.99 | uS/cm |
| GS-GSA-MW-9H | 2/4/2020 14:25 | DO                            | 0.32    | mg/L  |
| GS-GSA-MW-9H | 2/4/2020 14:25 | Depth to Water Detail         | 46.2    | ft    |
| GS-GSA-MW-9H | 2/4/2020 14:25 | Oxidation Reduction Potention | 126.6   | mv    |
| GS-GSA-MW-9H | 2/4/2020 14:25 | рН                            | 5.14    | pН    |
| GS-GSA-MW-9H | 2/4/2020 14:25 | Temperature                   | 20.56   | С     |
| GS-GSA-MW-9H | 2/4/2020 14:25 | Turbidity                     | 19      | NTU   |
| GS-GSA-MW-9H | 2/4/2020 14:30 | Conductivity                  | 3290.53 | uS/cm |
| GS-GSA-MW-9H | 2/4/2020 14:30 | DO                            | 0.25    | mg/L  |
| GS-GSA-MW-9H | 2/4/2020 14:30 | Depth to Water Detail         | 46.86   | ft    |
| GS-GSA-MW-9H | 2/4/2020 14:30 | Oxidation Reduction Potention | 126.58  | mv    |
| GS-GSA-MW-9H | 2/4/2020 14:30 | рН                            | 5.23    | рН    |
| GS-GSA-MW-9H | 2/4/2020 14:30 | Temperature                   | 20.48   | С     |
| GS-GSA-MW-9H | 2/4/2020 14:30 | Turbidity                     | 11.01   | NTU   |
| GS-GSA-MW-9H | 2/4/2020 14:35 | Conductivity                  | 3269.88 | uS/cm |
| GS-GSA-MW-9H | 2/4/2020 14:35 | DO                            | 0.24    | mg/L  |
| GS-GSA-MW-9H | 2/4/2020 14:35 | Depth to Water Detail         | 47.74   | ft    |
| GS-GSA-MW-9H | 2/4/2020 14:35 | Oxidation Reduction Potention | 122.95  | mv    |
| GS-GSA-MW-9H | 2/4/2020 14:35 | рН                            | 5.29    | pН    |
| GS-GSA-MW-9H | 2/4/2020 14:35 | Temperature                   | 20.47   | С     |
| GS-GSA-MW-9H | 2/4/2020 14:35 | Turbidity                     | 6.39    | NTU   |
| GS-GSA-MW-9H | 2/4/2020 14:40 | Conductivity                  | 3256.23 | uS/cm |
| GS-GSA-MW-9H | 2/4/2020 14:40 | DO                            | 0.22    | mg/L  |
| GS-GSA-MW-9H | 2/4/2020 14:40 | Depth to Water Detail         | 47.75   | ft    |
| GS-GSA-MW-9H | 2/4/2020 14:40 | Oxidation Reduction Potention | 120.41  | mv    |
| GS-GSA-MW-9H | 2/4/2020 14:40 | рН                            | 5.33    | рН    |
| GS-GSA-MW-9H | 2/4/2020 14:40 | Temperature                   | 20.46   | С     |
| GS-GSA-MW-9H | 2/4/2020 14:40 | Turbidity                     | 4.83    | NTU   |
| GS-GSA-MW-9H | 2/4/2020 14:45 | Conductivity                  | 3250.54 |       |
| GS-GSA-MW-9H | 2/4/2020 14:45 | DO                            | 0.22    | mg/L  |
| GS-GSA-MW-9H | 2/4/2020 14:45 | Depth to Water Detail         | 47.78   |       |
| GS-GSA-MW-9H | 2/4/2020 14:45 | Oxidation Reduction Potention | 118.73  | mv    |
| GS-GSA-MW-9H | 2/4/2020 14:45 | рН                            | 5.34    | pН    |
| GS-GSA-MW-9H | 2/4/2020 14:45 | Temperature                   | 20.45   | С     |
| GS-GSA-MW-9H | 2/4/2020 14:45 | Turbidity                     | 3.91    | NTU   |

| WELL ID     | READING TIME   | DESCRIPTION                   | VALUE   | UNIT  |
|-------------|----------------|-------------------------------|---------|-------|
| GS-GSA-MW-8 | 2/4/2020 16:17 | Conductivity                  | 3584.9  | uS/cm |
| GS-GSA-MW-8 | 2/4/2020 16:17 |                               | 0.43    | mg/L  |
| GS-GSA-MW-8 | 2/4/2020 16:17 | Depth to Water Detail         | 75.34   | ft    |
| GS-GSA-MW-8 | 2/4/2020 16:17 | Oxidation Reduction Potention | -33.83  | mv    |
| GS-GSA-MW-8 | 2/4/2020 16:17 | рН                            | 6.85    | pН    |
| GS-GSA-MW-8 | 2/4/2020 16:17 | Temperature                   | 19.92   | С     |
| GS-GSA-MW-8 | 2/4/2020 16:17 | Turbidity                     | 1.27    | NTU   |
| GS-GSA-MW-8 | 2/4/2020 16:22 | Conductivity                  | 3558.08 | uS/cm |
| GS-GSA-MW-8 | 2/4/2020 16:22 | DO                            | 0.33    | mg/L  |
| GS-GSA-MW-8 | 2/4/2020 16:22 | Depth to Water Detail         | 75.41   | ft    |
| GS-GSA-MW-8 | 2/4/2020 16:22 | Oxidation Reduction Potention | -41.22  | mv    |
| GS-GSA-MW-8 | 2/4/2020 16:22 | рН                            | 6.85    | рН    |
| GS-GSA-MW-8 | 2/4/2020 16:22 | Temperature                   | 19.9    | С     |
| GS-GSA-MW-8 | 2/4/2020 16:22 | Turbidity                     | 1.24    | NTU   |
| GS-GSA-MW-8 | 2/4/2020 16:27 | Conductivity                  | 3481.44 | uS/cm |
| GS-GSA-MW-8 | 2/4/2020 16:27 |                               | 0.3     | mg/L  |
| GS-GSA-MW-8 | 2/4/2020 16:27 | Depth to Water Detail         | 75.45   | ft    |
| GS-GSA-MW-8 | 2/4/2020 16:27 | Oxidation Reduction Potention | -46.73  | mv    |
| GS-GSA-MW-8 | 2/4/2020 16:27 | рН                            | 6.85    | pН    |
| GS-GSA-MW-8 | 2/4/2020 16:27 | Temperature                   | 19.88   | С     |
| GS-GSA-MW-8 | 2/4/2020 16:27 | Turbidity                     | 1.73    | NTU   |
| GS-GSA-MW-8 | 2/4/2020 16:32 | Conductivity                  | 3470.58 | uS/cm |
| GS-GSA-MW-8 | 2/4/2020 16:32 | DO                            | 0.29    | mg/L  |
| GS-GSA-MW-8 | 2/4/2020 16:32 | Depth to Water Detail         | 75.48   |       |
| GS-GSA-MW-8 | 2/4/2020 16:32 | Oxidation Reduction Potention | -47.9   | mv    |
| GS-GSA-MW-8 | 2/4/2020 16:32 |                               | 6.85    | рН    |
| GS-GSA-MW-8 | 2/4/2020 16:32 | Temperature                   | 19.85   |       |
| GS-GSA-MW-8 | 2/4/2020 16:32 | Turbidity                     | 1.6     | NTU   |

| WELL ID      | READING TIME   | DESCRIPTION                   | VALUE   | UNIT  |
|--------------|----------------|-------------------------------|---------|-------|
| GS-GSA-MW-8V | 2/5/2020 11:00 | Conductivity                  | 1720.02 | uS/cm |
| GS-GSA-MW-8V | 2/5/2020 11:00 | DO                            | 0.74    | mg/L  |
| GS-GSA-MW-8V | 2/5/2020 11:00 | Depth to Water Detail         | 87.33   | ft    |
| GS-GSA-MW-8V |                | Oxidation Reduction Potention | -192.36 | mv    |
| GS-GSA-MW-8V | 2/5/2020 11:00 | рН                            | 7.53    | рН    |
| GS-GSA-MW-8V | 2/5/2020 11:00 | Temperature                   | 20.03   | С     |
| GS-GSA-MW-8V | 2/5/2020 11:00 | Turbidity                     | 1.6     | NTU   |
| GS-GSA-MW-8V | 2/5/2020 11:05 | Conductivity                  | 1727.33 | uS/cm |
| GS-GSA-MW-8V | 2/5/2020 11:05 | DO                            | 0.6     | mg/L  |
| GS-GSA-MW-8V | 2/5/2020 11:05 | Depth to Water Detail         | 88.46   | ft    |
| GS-GSA-MW-8V |                | Oxidation Reduction Potention | -216.01 | mv    |
| GS-GSA-MW-8V | 2/5/2020 11:05 | рН                            | 7.53    | рН    |
| GS-GSA-MW-8V | 2/5/2020 11:05 | Temperature                   | 20.06   | С     |
| GS-GSA-MW-8V | 2/5/2020 11:05 | Turbidity                     | 0.86    | NTU   |
| GS-GSA-MW-8V | 2/5/2020 11:10 | Conductivity                  | 1731.3  | uS/cm |
| GS-GSA-MW-8V | 2/5/2020 11:10 | DO                            | 0.55    | mg/L  |
| GS-GSA-MW-8V | 2/5/2020 11:10 | Depth to Water Detail         | 89.23   | ft    |
| GS-GSA-MW-8V | 2/5/2020 11:10 | Oxidation Reduction Potention | -234.99 | mv    |
| GS-GSA-MW-8V | 2/5/2020 11:10 | рН                            | 7.53    | рН    |
| GS-GSA-MW-8V | 2/5/2020 11:10 | Temperature                   | 20.09   | С     |
| GS-GSA-MW-8V | 2/5/2020 11:10 | Turbidity                     | 0.73    | NTU   |
| GS-GSA-MW-8V | 2/5/2020 11:15 | Conductivity                  | 1737.84 | uS/cm |
| GS-GSA-MW-8V | 2/5/2020 11:15 | DO                            | 0.53    | mg/L  |
| GS-GSA-MW-8V |                | Depth to Water Detail         | 90.24   | ft    |
| GS-GSA-MW-8V | 2/5/2020 11:15 | Oxidation Reduction Potention | -250.49 | mv    |
| GS-GSA-MW-8V | 2/5/2020 11:15 | рН                            | 7.54    | рН    |
| GS-GSA-MW-8V | 2/5/2020 11:15 | Temperature                   | 20.11   | С     |
| GS-GSA-MW-8V | 2/5/2020 11:15 | Turbidity                     | 0.73    | NTU   |
| GS-GSA-MW-8V | 2/5/2020 11:20 | Conductivity                  | 1724.38 | uS/cm |
| GS-GSA-MW-8V | 2/5/2020 11:20 | DO                            | 0.53    | mg/L  |
| GS-GSA-MW-8V | 2/5/2020 11:20 | Depth to Water Detail         | 91.04   | ft    |
| GS-GSA-MW-8V | 2/5/2020 11:20 | Oxidation Reduction Potention | -262.79 | mv    |
| GS-GSA-MW-8V | 2/5/2020 11:20 | рН                            | 7.54    | pН    |
| GS-GSA-MW-8V | 2/5/2020 11:20 | Temperature                   | 20.21   | С     |
| GS-GSA-MW-8V | 2/5/2020 11:20 | Turbidity                     | 0.93    | NTU   |
| GS-GSA-MW-8V | 2/5/2020 11:25 | · ·                           | 1713.36 | uS/cm |
| GS-GSA-MW-8V | 2/5/2020 11:25 | DO                            | 0.54    | mg/L  |
| GS-GSA-MW-8V | 2/5/2020 11:25 | Depth to Water Detail         | 91.5    | ft    |
| GS-GSA-MW-8V | 2/5/2020 11:25 | Oxidation Reduction Potention | -272.96 | mv    |
| GS-GSA-MW-8V | 2/5/2020 11:25 | рН                            | 7.54    | рН    |
| GS-GSA-MW-8V | 2/5/2020 11:25 | Temperature                   | 20.17   |       |
| GS-GSA-MW-8V | 2/5/2020 11:25 |                               | 1.15    | NTU   |
| GS-GSA-MW-8V | 2/5/2020 11:30 |                               | 1710.86 |       |
| GS-GSA-MW-8V | 2/5/2020 11:30 | DO                            | 0.55    | mg/L  |

| WELL ID      | READING TIME   | DESCRIPTION                           | VALUE   | UNIT  |
|--------------|----------------|---------------------------------------|---------|-------|
| GS-GSA-MW-8V | 2/5/2020 11:30 | Depth to Water Detail                 | 92.23   | ft    |
| GS-GSA-MW-8V |                | Oxidation Reduction Potention         | -279.54 |       |
| GS-GSA-MW-8V | 2/5/2020 11:30 | рН                                    | 7.54    | рН    |
| GS-GSA-MW-8V | 2/5/2020 11:30 | Temperature                           | 20.19   | C     |
| GS-GSA-MW-8V | 2/5/2020 11:30 |                                       |         | NTU   |
| GS-GSA-MW-8V | 2/5/2020 11:35 | Conductivity                          | 1708.77 | uS/cm |
| GS-GSA-MW-8V | 2/5/2020 11:35 | DO                                    | 0.53    | mg/L  |
| GS-GSA-MW-8V | 2/5/2020 11:35 | Depth to Water Detail                 | 92.75   | ft    |
| GS-GSA-MW-8V |                | Oxidation Reduction Potention         | -285.48 | mv    |
| GS-GSA-MW-8V | 2/5/2020 11:35 | рН                                    | 7.55    | рН    |
| GS-GSA-MW-8V | 2/5/2020 11:35 | Temperature                           | 20.16   | C     |
| GS-GSA-MW-8V | 2/5/2020 11:35 | Turbidity                             |         | NTU   |
| GS-GSA-MW-8V | 2/5/2020 11:40 | Conductivity                          | 1709.3  | uS/cm |
| GS-GSA-MW-8V | 2/5/2020 11:40 | DO                                    | 0.52    | mg/L  |
| GS-GSA-MW-8V | 2/5/2020 11:40 | Depth to Water Detail                 | 93.21   | ft    |
| GS-GSA-MW-8V |                | Oxidation Reduction Potention         | -288.54 | mv    |
| GS-GSA-MW-8V | 2/5/2020 11:40 | рН                                    | 7.56    | рН    |
| GS-GSA-MW-8V | 2/5/2020 11:40 | Temperature                           | 20.26   |       |
| GS-GSA-MW-8V | 2/5/2020 11:40 | Turbidity                             | 1.87    | NTU   |
| GS-GSA-MW-8V | 2/5/2020 11:45 | Conductivity                          | 1710.2  | uS/cm |
| GS-GSA-MW-8V | 2/5/2020 11:45 | DO                                    | 0.52    | mg/L  |
| GS-GSA-MW-8V | 2/5/2020 11:45 | Depth to Water Detail                 | 93.7    | ft    |
| GS-GSA-MW-8V |                | Oxidation Reduction Potention         | -289.93 | mv    |
| GS-GSA-MW-8V | 2/5/2020 11:45 | рН                                    | 7.57    | рН    |
| GS-GSA-MW-8V | 2/5/2020 11:45 | Temperature                           | 20.31   | С     |
| GS-GSA-MW-8V | 2/5/2020 11:45 |                                       | 1.97    | NTU   |
| GS-GSA-MW-8V | 2/5/2020 11:50 | Conductivity                          | 1711.14 | uS/cm |
| GS-GSA-MW-8V | 2/5/2020 11:50 | DO                                    | 0.51    | mg/L  |
| GS-GSA-MW-8V | 2/5/2020 11:50 | Depth to Water Detail                 | 94.45   | ft    |
| GS-GSA-MW-8V |                | Oxidation Reduction Potention         | -290.39 | mv    |
| GS-GSA-MW-8V | 2/5/2020 11:50 | рН                                    | 7.57    | рН    |
| GS-GSA-MW-8V | 2/5/2020 11:50 | Temperature                           | 20.36   | С     |
| GS-GSA-MW-8V | 2/5/2020 11:50 | Turbidity                             | 1.7     | NTU   |
| GS-GSA-MW-8V | 2/5/2020 11:55 | Conductivity                          | 1711.67 | uS/cm |
| GS-GSA-MW-8V | 2/5/2020 11:55 | DO                                    | 0.5     | mg/L  |
| GS-GSA-MW-8V | 2/5/2020 11:55 | Depth to Water Detail                 | 94.71   | ft    |
| GS-GSA-MW-8V | 2/5/2020 11:55 | Oxidation Reduction Potention         | -290.98 | mv    |
| GS-GSA-MW-8V | 2/5/2020 11:55 | рН                                    | 7.58    | рН    |
| GS-GSA-MW-8V | 2/5/2020 11:55 | Temperature                           | 20.31   | С     |
| GS-GSA-MW-8V | 2/5/2020 11:55 | Turbidity                             | 2.3     | NTU   |
| GS-GSA-MW-8V | 2/5/2020 12:00 | · · · · · · · · · · · · · · · · · · · | 1714.5  | uS/cm |
| GS-GSA-MW-8V | 2/5/2020 12:00 | DO                                    | 0.51    | mg/L  |
| GS-GSA-MW-8V | 2/5/2020 12:00 | Depth to Water Detail                 | 95.38   | ft    |
| GS-GSA-MW-8V | 2/5/2020 12:00 | Oxidation Reduction Potention         | -291.22 | mv    |

| WELL ID      | READING TIME   | DESCRIPTION                   | VALUE   | UNIT  |
|--------------|----------------|-------------------------------|---------|-------|
| GS-GSA-MW-8V | 2/5/2020 12:00 | рН                            | 7.58    | рН    |
| GS-GSA-MW-8V | 2/5/2020 12:00 | Temperature                   | 20.33   |       |
| GS-GSA-MW-8V | 2/5/2020 12:00 | Turbidity                     | 1.89    | NTU   |
| GS-GSA-MW-8V | 2/5/2020 12:05 | Conductivity                  | 1714.32 | uS/cm |
| GS-GSA-MW-8V | 2/5/2020 12:05 | DO                            | 0.5     | mg/L  |
| GS-GSA-MW-8V | 2/5/2020 12:05 | Depth to Water Detail         | 95.75   | ft    |
| GS-GSA-MW-8V |                | Oxidation Reduction Potention | -291.54 | mv    |
| GS-GSA-MW-8V | 2/5/2020 12:05 | рН                            | 7.58    | рН    |
| GS-GSA-MW-8V | 2/5/2020 12:05 | Temperature                   | 20.37   | С     |
| GS-GSA-MW-8V | 2/5/2020 12:05 | Turbidity                     | 5.52    | NTU   |
| GS-GSA-MW-8V | 2/5/2020 12:10 | Conductivity                  | 1712.52 | uS/cm |
| GS-GSA-MW-8V | 2/5/2020 12:10 | DO                            | 0.5     | mg/L  |
| GS-GSA-MW-8V | 2/5/2020 12:10 | Depth to Water Detail         | 96.28   | ft    |
| GS-GSA-MW-8V | 2/5/2020 12:10 | Oxidation Reduction Potention | -293.12 | mv    |
| GS-GSA-MW-8V | 2/5/2020 12:10 | рН                            | 7.58    | рН    |
| GS-GSA-MW-8V | 2/5/2020 12:10 | Temperature                   | 20.38   | С     |
| GS-GSA-MW-8V | 2/5/2020 12:10 | Turbidity                     | 1.86    | NTU   |
| GS-GSA-MW-8V | 2/5/2020 12:15 | Conductivity                  | 1711.56 | uS/cm |
| GS-GSA-MW-8V | 2/5/2020 12:15 | DO                            | 0.49    | mg/L  |
| GS-GSA-MW-8V | 2/5/2020 12:15 | Depth to Water Detail         | 96.47   | ft    |
| GS-GSA-MW-8V | 2/5/2020 12:15 | Oxidation Reduction Potention | -294.79 | mv    |
| GS-GSA-MW-8V | 2/5/2020 12:15 | рН                            | 7.56    | рН    |
| GS-GSA-MW-8V | 2/5/2020 12:15 | Temperature                   | 20.39   | С     |
| GS-GSA-MW-8V | 2/5/2020 12:15 | Turbidity                     | 1.7     | NTU   |
| GS-GSA-MW-8V | 2/5/2020 12:20 | Conductivity                  | 1711.86 | uS/cm |
| GS-GSA-MW-8V | 2/5/2020 12:20 | DO                            | 0.49    | mg/L  |
| GS-GSA-MW-8V | 2/5/2020 12:20 | Depth to Water Detail         | 97.04   | ft    |
| GS-GSA-MW-8V | 2/5/2020 12:20 | Oxidation Reduction Potention | -296.3  | mv    |
| GS-GSA-MW-8V | 2/5/2020 12:20 |                               | 7.56    | pН    |
| GS-GSA-MW-8V | 2/5/2020 12:20 | Temperature                   | 20.4    | C     |
| GS-GSA-MW-8V | 2/5/2020 12:20 | Turbidity                     | 1.54    | NTU   |
| GS-GSA-MW-8V | 2/5/2020 12:25 | Conductivity                  | 1714.47 | uS/cm |
| GS-GSA-MW-8V | 2/5/2020 12:25 |                               | 0.5     | mg/L  |
| GS-GSA-MW-8V | 2/5/2020 12:25 | Depth to Water Detail         | 97.39   | ft    |
| GS-GSA-MW-8V | 2/5/2020 12:25 | Oxidation Reduction Potention | -297.89 | mv    |
| GS-GSA-MW-8V | 2/5/2020 12:25 | рН                            | 7.55    | рН    |
| GS-GSA-MW-8V | 2/5/2020 12:25 | Temperature                   | 20.4    | С     |
| GS-GSA-MW-8V | 2/5/2020 12:25 |                               | 1.62    | NTU   |
| GS-GSA-MW-8V | 2/5/2020 12:30 | Conductivity                  |         | uS/cm |
| GS-GSA-MW-8V | 2/5/2020 12:30 |                               |         | mg/L  |
| GS-GSA-MW-8V | 2/5/2020 12:30 | Depth to Water Detail         | 97.77   | ft    |
| GS-GSA-MW-8V | 2/5/2020 12:30 | Oxidation Reduction Potention | -299.16 | mv    |
| GS-GSA-MW-8V | 2/5/2020 12:30 | рН                            | 7.54    | рН    |
| GS-GSA-MW-8V | 2/5/2020 12:30 | Temperature                   | 20.39   | C     |

| WELL ID      | READING TIME   | DESCRIPTION                   | VALUE   | UNIT  |
|--------------|----------------|-------------------------------|---------|-------|
| GS-GSA-MW-8V | 2/5/2020 12:30 | Turbidity                     | 1.8     | NTU   |
| GS-GSA-MW-8V | 2/5/2020 12:35 | Conductivity                  | 1720.41 | uS/cm |
| GS-GSA-MW-8V | 2/5/2020 12:35 | DO                            | 0.51    | mg/L  |
| GS-GSA-MW-8V | 2/5/2020 12:35 | Depth to Water Detail         | 97.82   | ft    |
| GS-GSA-MW-8V | 2/5/2020 12:35 | Oxidation Reduction Potention | -301.05 | mv    |
| GS-GSA-MW-8V | 2/5/2020 12:35 |                               | 7.52    | рН    |
| GS-GSA-MW-8V | 2/5/2020 12:35 | Temperature                   | 20.36   | C     |
| GS-GSA-MW-8V | 2/5/2020 12:35 | Turbidity                     | 1.7     | NTU   |
| GS-GSA-MW-8V | 2/5/2020 12:40 | Conductivity                  | 1724.08 | uS/cm |
| GS-GSA-MW-8V | 2/5/2020 12:40 | DO                            | 0.5     | mg/L  |
| GS-GSA-MW-8V | 2/5/2020 12:40 | Depth to Water Detail         | 98.46   | ft    |
| GS-GSA-MW-8V | 2/5/2020 12:40 | Oxidation Reduction Potention | -302.31 | mv    |
| GS-GSA-MW-8V | 2/5/2020 12:40 | рН                            | 7.51    | рН    |
| GS-GSA-MW-8V | 2/5/2020 12:40 | Temperature                   | 20.3    | С     |
| GS-GSA-MW-8V | 2/5/2020 12:40 |                               | 1.68    | NTU   |
| GS-GSA-MW-8V | 2/5/2020 12:45 | Conductivity                  | 1727.4  | uS/cm |
| GS-GSA-MW-8V | 2/5/2020 12:45 | DO                            | 0.5     | mg/L  |
| GS-GSA-MW-8V | 2/5/2020 12:45 | Depth to Water Detail         | 98.55   |       |
| GS-GSA-MW-8V |                | Oxidation Reduction Potention | -303.75 | mv    |
| GS-GSA-MW-8V | 2/5/2020 12:45 | рН                            | 7.51    | рН    |
| GS-GSA-MW-8V | 2/5/2020 12:45 | Temperature                   | 20.4    | С     |
| GS-GSA-MW-8V | 2/5/2020 12:45 |                               | 1.59    | NTU   |
| GS-GSA-MW-8V | 2/5/2020 12:50 | Conductivity                  | 1729.72 | uS/cm |
| GS-GSA-MW-8V | 2/5/2020 12:50 | DO                            | 0.51    | mg/L  |
| GS-GSA-MW-8V | 2/5/2020 12:50 | Depth to Water Detail         | 99.1    |       |
| GS-GSA-MW-8V | 2/5/2020 12:50 | Oxidation Reduction Potention | -305.44 | mv    |
| GS-GSA-MW-8V | 2/5/2020 12:50 | рН                            | 7.51    | рН    |
| GS-GSA-MW-8V | 2/5/2020 12:50 | Temperature                   | 20.36   | С     |
| GS-GSA-MW-8V | 2/5/2020 12:50 |                               | 1.54    | NTU   |
| GS-GSA-MW-8V | 2/5/2020 12:55 | Conductivity                  | 1731.58 | uS/cm |
| GS-GSA-MW-8V | 2/5/2020 12:55 |                               | 0.5     | mg/L  |
| GS-GSA-MW-8V | 2/5/2020 12:55 | Depth to Water Detail         | 99.23   | ft    |
| GS-GSA-MW-8V | 2/5/2020 12:55 | Oxidation Reduction Potention | -306.73 | mv    |
| GS-GSA-MW-8V | 2/5/2020 12:55 | рН                            | 7.5     | рН    |
| GS-GSA-MW-8V | 2/5/2020 12:55 | Temperature                   | 20.35   | С     |
| GS-GSA-MW-8V | 2/5/2020 12:55 | Turbidity                     | 1.42    | NTU   |
| GS-GSA-MW-8V | 2/5/2020 13:00 | -                             | 1733.72 | uS/cm |
| GS-GSA-MW-8V | 2/5/2020 13:00 | ·                             | 0.49    | mg/L  |
| GS-GSA-MW-8V | 2/5/2020 13:00 | Depth to Water Detail         | 99.44   | ft    |
| GS-GSA-MW-8V |                | Oxidation Reduction Potention | -306.58 | mv    |
| GS-GSA-MW-8V | 2/5/2020 13:00 |                               | 7.49    |       |
| GS-GSA-MW-8V | 2/5/2020 13:00 | Temperature                   | 20.36   | •     |
| GS-GSA-MW-8V | 2/5/2020 13:00 | •                             | 1.44    | NTU   |
| GS-GSA-MW-8V | 2/5/2020 13:05 |                               | 1734.19 | uS/cm |

| WELL ID      | READING TIME   | DESCRIPTION                   | VALUE   | UNIT  |
|--------------|----------------|-------------------------------|---------|-------|
| GS-GSA-MW-8V | 2/5/2020 13:05 | DO                            |         | mg/L  |
| GS-GSA-MW-8V | 2/5/2020 13:05 | Depth to Water Detail         | 99.65   | ft    |
| GS-GSA-MW-8V | 2/5/2020 13:05 | Oxidation Reduction Potention | -308.18 | mv    |
| GS-GSA-MW-8V | 2/5/2020 13:05 | рН                            | 7.49    |       |
| GS-GSA-MW-8V | 2/5/2020 13:05 | Temperature                   | 20.33   | C     |
| GS-GSA-MW-8V | 2/5/2020 13:05 | Turbidity                     | 1.39    | NTU   |
| GS-GSA-MW-8V | 2/5/2020 13:10 | Conductivity                  | 1737.49 | uS/cm |
| GS-GSA-MW-8V | 2/5/2020 13:10 | DO                            | 0.5     | mg/L  |
| GS-GSA-MW-8V | 2/5/2020 13:10 | Depth to Water Detail         | 100.28  | ft    |
| GS-GSA-MW-8V | 2/5/2020 13:10 | Oxidation Reduction Potention | -308.87 | mv    |
| GS-GSA-MW-8V | 2/5/2020 13:10 | рН                            | 7.49    | рН    |
| GS-GSA-MW-8V | 2/5/2020 13:10 | Temperature                   | 20.31   | C     |
| GS-GSA-MW-8V | 2/5/2020 13:10 | Turbidity                     | 1.23    | NTU   |
| GS-GSA-MW-8V | 2/5/2020 13:15 | Conductivity                  | 1738.58 | uS/cm |
| GS-GSA-MW-8V | 2/5/2020 13:15 |                               | 0.49    | mg/L  |
| GS-GSA-MW-8V | 2/5/2020 13:15 | Depth to Water Detail         | 100.38  | ft    |
| GS-GSA-MW-8V | 2/5/2020 13:15 | Oxidation Reduction Potention | -308.91 | mv    |
| GS-GSA-MW-8V | 2/5/2020 13:15 | 1                             | 7.49    |       |
| GS-GSA-MW-8V | 2/5/2020 13:15 | Temperature                   | 20.27   | C     |
| GS-GSA-MW-8V | 2/5/2020 13:15 |                               | 1.41    | NTU   |
| GS-GSA-MW-8V | 2/5/2020 13:20 | Conductivity                  | 1739.73 | uS/cm |
| GS-GSA-MW-8V | 2/5/2020 13:20 | DO                            | 0.51    | mg/L  |
| GS-GSA-MW-8V |                | Depth to Water Detail         | 100.51  | ft    |
| GS-GSA-MW-8V | 2/5/2020 13:20 | Oxidation Reduction Potention | -309.03 | mv    |
| GS-GSA-MW-8V | 2/5/2020 13:20 | *                             | 7.48    | рН    |
| GS-GSA-MW-8V | 2/5/2020 13:20 | Temperature                   | 20.25   | С     |
| GS-GSA-MW-8V | 2/5/2020 13:20 | Turbidity                     | 1.21    | NTU   |

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6032 or 6171 FAX (205) 257-1654

### Field Case Narrative



### **Gorgas Gypsum Pond**

### 2020 Compliance Event 2

All samples were collected using methods defined in Alabama Power's Water Field Group Low-Flow Groundwater Sampling Procedure and the associated site-specific Sampling and Analysis Plan (SAP).

Trucks moving material in the area caused dusty conditions during pumping and sampling at wells MW-4, MW-4V and PZ-17.

No field readings for turbidity and depth to water were recorded for MW-9V at the 90 minute mark due to attempts to resolve Bluetooth connectivity issues.

Field quality control procedures were performed as follows:

- Blanks and Sample Duplicates were collected as described in the SAP.
- Calibration verifications for all required field parameters were performed daily, before and after sample collection.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040 205-664-6001

### Analytical Report



Sample Group: WMWGORG\_1289

Project/Site: Gorgas Gypsum

Parrish, AL 35580

For: Southern Company Services

3535 Colonnade Parkway Birmingham, AL 35243

Attention: Dustin Brooks & Greg Dyer

Released By: Laura Midkiff

lbmidkif@southernco.com

(205) 664-6197



Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040 (205) 664-6001

August 21, 2020

Dear Dustin Brooks,

Enclosed are the analytical results for sample(s) received by the laboratory on August 06, 2020. All results reported herein conform to the laboratory's most current Quality Assurance Manual. Results marked with an asterisk conform to the most current applicable TNI/NELAC requirements. Exceptions will be noted in the body of the report.

Laboratory certification ID: E571114

Issued By: State of Florida, Department of Health

Expiration: June 30, 2021

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Quality Control: Laura Midkiff Control: Laura Midkiff Control: Laura Midkiff Control: Laura Midkiff Control: Co

T. Durant Supervision:

Maske





This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.



### Case Narrative

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



**Total Metals ICP** 

### Gorgas Gypsum

### WMWGORG\_1289

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

| Sample ID | Batch ID | Project ID   |
|-----------|----------|--------------|
| BA14541   | 678865   | WMWGORG_1289 |
| BA14542   | 678865   | WMWGORG_1289 |
| BA14543   | 678865   | WMWGORG_1289 |
| BA14544   | 678865   | WMWGORG_1289 |
| BA14545   | 678865   | WMWGORG_1289 |
| BA14546   | 678865   | WMWGORG_1289 |
| BA14547   | 678865   | WMWGORG_1289 |
| BA14548   | 678865   | WMWGORG_1289 |
| BA14549   | 678865   | WMWGORG_1289 |
| BA14550   | 678865   | WMWGORG_1289 |
| BA14551   | 678866   | WMWGORG_1289 |
| BA14552   | 678866   | WMWGORG_1289 |
| BA14553   | 678866   | WMWGORG_1289 |
| BA14554   | 678866   | WMWGORG_1289 |
| BA14555   | 678866   | WMWGORG_1289 |
| BA14556   | 678866   | WMWGORG_1289 |
| BA14557   | 678866   | WMWGORG_1289 |
| BA14558   | 678866   | WMWGORG_1289 |
| BA14559   | 678866   | WMWGORG_1289 |
| BA14560   | 678866   | WMWGORG_1289 |
| BA14561   | 678867   | WMWGORG_1289 |
| BA14562   | 678867   | WMWGORG_1289 |
| BA14563   | 678867   | WMWGORG_1289 |
| BA14564   | 678867   | WMWGORG_1289 |
| BA14565   | 678867   | WMWGORG_1289 |
| BA14566   | 678867   | WMWGORG_1289 |
| BA14567   | 678867   | WMWGORG_1289 |
| BA14568   | 678867   | WMWGORG_1289 |
| BA14569   | 678867   | WMWGORG_1289 |
| BA14570   | 678867   | WMWGORG_1289 |
| BA14571   | 678868   | WMWGORG_1289 |
|           |          |              |

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



- 4. All of the above samples were analyzed by EPA 200.7 and prepared by EPA 1638.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

### **General Quality Control Procedures:**

- Prior to sample analysis, an initial calibration verification (ICV) was analyzed, and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the limit of quantitation for all requested analytes.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analytes.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analytes.
- A preparation method blank and laboratory control sample were digested and analyzed with the samples in each digestion batch.
- All laboratory control sample criteria were met.
- The method blank associated with each digestion batch passed all acceptance criteria for all requested analytes.
- All calibration curve requirements were within acceptance criteria.
- All sample internal standard criteria were met.
- The spectral interference check associated with EPA 200.7 was analyzed and all acceptance criteria were met.
- It is noted that the QC summary page typically provides the QC results from the original batch analytical
  sequence. If dilutions were subsequently performed to bring sample concentrations within the calibration range,
  any additional QC data from the dilution analyses may need to be obtained from the laboratory. Any
  qualifications applied to original analyses or dilution re-analyses are based upon QC data available at the time of
  review.

### Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were digested and analyzed with each ICP batch. All acceptance criteria for accuracy were met, except for the following:
  - BA14550 MS/MSD Spike level is less than 30% of sample nominal concentration for Calcium, Iron,
     Magnesium, and Sodium.
  - Ba14560 MS/MSD Spike level is less than 30% of sample nominal concentration for Calcium, Iron, and Magnesium.
- A matrix spike and matrix spike duplicate were digested and analyzed with each ICP batch. All acceptance criteria for precision were met.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



7. The following samples were diluted due to the analyzed sample concentration being greater than the high standard of the calibration curve:

| Sample ID | <u>Analyte</u>                   | <b>Dilution Factor</b> |
|-----------|----------------------------------|------------------------|
| BA14542   | Calcium, Iron, Magnesium         | 10.15                  |
| BA14543   | Calcium, Magnesium, Sodium       | 10.15                  |
| BA14544   | Calcium, Iron, Magnesium, Sodium | 10.15                  |
| BA14545   | Calcium, Iron, Magnesium, Sodium | 10.15                  |
| BA14547   | Sodium                           | 10.15                  |
| BA14548   | Calcium, Iron                    | 20.3                   |
| BA14549   | Calcium, Iron, Magnesium         | 101.5                  |
| BA14550   | Calcium, Iron, Magnesium, Sodium | 101.5                  |
| BA14551   | Calcium, Iron, Magnesium, Sodium | 101.5                  |
| BA14552   | Sodium                           | 10.15                  |
| BA14553   | Calcium, Iron, Magnesium, Sodium | 20.3                   |
| BA14554   | Calcium, Magnesium               | 10.15                  |
| BA14555   | Calcium, Iron, Magnesium, Sodium | 101.5                  |
| BA14557   | Calcium, Magnesium               | 10.15                  |
| BA14558   | Calcium, Magnesium               | 10.15                  |
| BA14559   | Calcium, Iron, Magnesium         | 10.15                  |
| BA14560   | Calcium, Iron, Magnesium, Sodium | 20.3                   |
| BA14561   | Calcium, Magnesium, Sodium       | 10.15                  |
| BA14562   | Calcium, Magnesium, Sodium       | 10.15                  |
| BA14563   | Calcium, Iron, Magnesium, Sodium | 20.3                   |
| BA14564   | Calcium, Iron, Magnesium, Sodium | 10.15                  |
| BA14565   | Calcium, Magnesium, Sodium       | 20.3                   |
| BA14566   | Calcium, Magnesium               | 20.3                   |
| BA14567   | Calcium, Iron, Magnesium         | 10.15                  |
| BA14568   | Calcium, Iron, Magnesium         | 10.15                  |
| BA14569   | Calcium, Iron, Magnesium         | 20.3                   |
|           |                                  |                        |

8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



### **Dissolved Metals ICP**

### Gorgas Gypsum

## WMWGORG\_1289

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

| Sample ID | Batch ID | Project ID   |
|-----------|----------|--------------|
| BA14542   | 678835   | WMWGORG_1289 |
| BA14543   | 678835   | WMWGORG_1289 |
| BA14544   | 678835   | WMWGORG_1289 |
| BA14545   | 678835   | WMWGORG_1289 |
| BA14547   | 678835   | WMWGORG_1289 |
| BA14548   | 678835   | WMWGORG_1289 |
| BA14549   | 678835   | WMWGORG_1289 |
| BA14550   | 678835   | WMWGORG_1289 |
| BA14551   | 678835   | WMWGORG_1289 |
| BA14552   | 678835   | WMWGORG_1289 |
| BA14553   | 678836   | WMWGORG_1289 |
| BA14554   | 678836   | WMWGORG_1289 |
| BA14555   | 678836   | WMWGORG_1289 |
| BA14557   | 678836   | WMWGORG_1289 |
| BA14558   | 678836   | WMWGORG_1289 |
| BA14559   | 678836   | WMWGORG_1289 |
| BA14560   | 678836   | WMWGORG_1289 |
| BA14561   | 678836   | WMWGORG_1289 |
| BA14562   | 678836   | WMWGORG_1289 |
| BA14563   | 678836   | WMWGORG_1289 |
| BA14564   | 678837   | WMWGORG_1289 |
| BA14565   | 678837   | WMWGORG_1289 |
| BA14566   | 678837   | WMWGORG_1289 |
| BA14567   | 678837   | WMWGORG_1289 |
| BA14568   | 678837   | WMWGORG_1289 |
| BA14569   | 678837   | WMWGORG_1289 |

- 4. All of the above samples were analyzed and prepared by EPA 200.7 for dissolved analysis.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



#### **General Quality Control Procedures:**

- Prior to sample analysis, an initial calibration verification (ICV) was analyzed, and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the limit of quantitation for all requested analytes.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analytes.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analytes.
- Due to no filtered method blank (MB) or laboratory control sample (LCS) submitted with the sample set, an unfiltered MB and LCS were analyzed with the samples in each batch.
- All laboratory control sample criteria were met.
- The method blank associated with each batch passed all acceptance criteria for all requested analytes.
- All calibration curve requirements were within acceptance criteria.
- All sample internal standard criteria were met.
- The spectral interference check associated with EPA 200.7 was analyzed and all acceptance criteria were met.
- It is noted that the QC summary page typically provides the QC results from the original batch analytical
  sequence. If dilutions were subsequently performed to bring sample concentrations within the calibration range,
  any additional QC data from the dilution analyses may need to be obtained from the laboratory. Any
  qualifications applied to original analyses or dilution re-analyses are based upon QC data available at the time of
  review.

#### Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were analyzed with each ICP batch. All acceptance criteria for accuracy were met, except for the following:
  - o BA14563 and BA14569 MS/MSD spike levels for Iron are less than 30% of the sample nominal concentrations.
- A matrix spike and matrix spike duplicate were analyzed with each ICP batch. All acceptance criteria for precision were met.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



7. The following samples were diluted due to the analyzed sample concentration being greater than the high standard of the calibration curve:

| Sample ID | <u>Analyte</u> | <b>Dilution Factor</b> |
|-----------|----------------|------------------------|
| BA14542   | Iron           | 101.5                  |
| BA14544   | Iron           | 10.15                  |
| BA14545   | Iron           | 10.15                  |
| BA14548   | Iron           | 101.5                  |
| BA14549   | Iron           | 101.5                  |
| BA14550   | Iron           | 101.5                  |
| BA14551   | Iron           | 101.5                  |
| BA14553   | Iron           | 10.15                  |
| BA14555   | Iron           | 101.5                  |
| BA14559   | Iron           | 10.15                  |
| BA14560   | Iron           | 10.15                  |
| BA14563   | Iron           | 101.5                  |
| BA14564   | Iron           | 101.5                  |
| BA14567   | Iron           | 10.15                  |
| BA14568   | Iron           | 10.15                  |
| BA14569   | Iron           | 101.5                  |

8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



## **Total Metals ICPMS**

### Gorgas Gypsum

## WMWGORG\_1289

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

| Sample ID | Batch ID | Project ID   |
|-----------|----------|--------------|
| BA14541   | 679198   | WMWGORG_1289 |
| BA14542   | 679198   | WMWGORG_1289 |
| BA14543   | 679198   | WMWGORG_1289 |
| BA14544   | 679198   | WMWGORG_1289 |
| BA14545   | 679198   | WMWGORG_1289 |
| BA14546   | 679198   | WMWGORG_1289 |
| BA14547   | 679198   | WMWGORG_1289 |
| BA14548   | 679198   | WMWGORG_1289 |
| BA14549   | 679198   | WMWGORG_1289 |
| BA14550   | 679198   | WMWGORG_1289 |
| BA14551   | 679199   | WMWGORG_1289 |
| BA14552   | 679199   | WMWGORG_1289 |
| BA14553   | 679199   | WMWGORG_1289 |
| BA14554   | 679199   | WMWGORG_1289 |
| BA14555   | 679199   | WMWGORG_1289 |
| BA14556   | 679199   | WMWGORG_1289 |
| BA14557   | 679199   | WMWGORG_1289 |
| BA14558   | 679199   | WMWGORG_1289 |
| BA14559   | 679199   | WMWGORG_1289 |
| BA14560   | 679199   | WMWGORG_1289 |
| BA14561   | 679200   | WMWGORG_1289 |
| BA14562   | 679200   | WMWGORG_1289 |
| BA14563   | 679200   | WMWGORG_1289 |
| BA14564   | 679200   | WMWGORG_1289 |
| BA14565   | 679200   | WMWGORG_1289 |
| BA14566   | 679200   | WMWGORG_1289 |
| BA14567   | 679200   | WMWGORG_1289 |
| BA14568   | 679200   | WMWGORG_1289 |
| BA14569   | 679200   | WMWGORG_1289 |
| BA14570   | 679200   | WMWGORG_1289 |
| BA14571   | 679201   | WMWGORG_1289 |
|           |          |              |

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



- 4. All of the above samples were analyzed by EPA 200.8 and prepared by EPA 1638.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

#### **General Quality Control Procedures:**

- All tune and calibration met criteria for all requested analytes.
- Prior to sample analysis, an initial calibration verification (ICV) was analyzed and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the limit of quantitation for all requested analytes.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analytes, except for the following:
  - Batches 679199-679201 CCV for potassium failed on 08/10/20. All three batches were rerun for Potassium on 8/11/20 with passing CCV.
  - Batch 679201 CCV for Chromium failed on 08/10/20. The batch was rerun for Chromium on 8/11/20 with passing CCV.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analytes.
- A preparation method blank and laboratory control sample were digested and analyzed with the samples in each digestion batch.
- All laboratory control sample criteria were met.
- The method blank associated with each digestion batch passed all acceptance criteria for all requested analytes.
- The interference check samples associated with EPA 200.8 were analyzed and passed for all requested analytes.
- All sample internal standard criteria were met.

### Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were digested and analyzed with each ICPMS batch. All acceptance criteria for accuracy were met, except for the following:
  - BA14550 and BA14560 MS/MSD Spike levels are less than 30% of sample nominal concentrations for Manganese.
- A matrix spike and matrix spike duplicate were digested and analyzed with each ICPMS batch. All acceptance criteria for precision were met.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

7. The following samples were diluted due to the analyzed sample concentration being greater than the high standard of the calibration curve:

| Sample ID | <u>Analyte</u> | <b>Dilution Factor</b> |
|-----------|----------------|------------------------|
| BA14542   | Manganese      | 10.15                  |
| BA14547   | Manganese      | 5.075                  |
| BA14548   | Manganese      | 5.075                  |
| BA14549   | Manganese      | 10.15                  |
| BA14550   | Manganese      | 92.365                 |
| BA14551   | Manganese      | 92.365                 |
| BA14553   | Manganese      | 92.365                 |
| BA14554   | Manganese      | 92.365                 |
| BA14555   | Manganese      | 92.365                 |
| BA14557   | Manganese      | 10.15                  |
| BA14558   | Manganese      | 10.15                  |
| BA14559   | Manganese      | 10.15                  |
| BA14560   | Manganese      | 92.365                 |
| BA14561   | Manganese      | 5.075                  |
| BA14562   | Manganese      | 5.075                  |
| BA14563   | Manganese      | 92.365                 |
| BA14564   | Manganese      | 92.365                 |
| BA14565   | Manganese      | 5.075                  |
| BA14567   | Manganese      | 10.15                  |
| BA14568   | Manganese      | 10.15                  |
| BA14569   | Manganese      | 10.15                  |

8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



### **Dissolved Metals ICPMS**

### Gorgas Gypsum

## WMWGORG\_1289

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

| Sample ID | Batch ID | Project ID   |
|-----------|----------|--------------|
| BA14542   | 679139   | WMWGORG_1289 |
| BA14543   | 679139   | WMWGORG_1289 |
| BA14544   | 679139   | WMWGORG_1289 |
| BA14545   | 679139   | WMWGORG_1289 |
| BA14547   | 679139   | WMWGORG_1289 |
| BA14548   | 679139   | WMWGORG_1289 |
| BA14549   | 679139   | WMWGORG_1289 |
| BA14550   | 679139   | WMWGORG_1289 |
| BA14551   | 679139   | WMWGORG_1289 |
| BA14552   | 679139   | WMWGORG_1289 |
| BA14553   | 679140   | WMWGORG_1289 |
| BA14554   | 679140   | WMWGORG_1289 |
| BA14555   | 679140   | WMWGORG_1289 |
| BA14557   | 679140   | WMWGORG_1289 |
| BA14558   | 679140   | WMWGORG_1289 |
| BA14559   | 679140   | WMWGORG_1289 |
| BA14560   | 679140   | WMWGORG_1289 |
| BA14561   | 679140   | WMWGORG_1289 |
| BA14562   | 679140   | WMWGORG_1289 |
| BA14563   | 679140   | WMWGORG_1289 |
| BA14564   | 679141   | WMWGORG_1289 |
| BA14565   | 679141   | WMWGORG_1289 |
| BA14566   | 679141   | WMWGORG_1289 |
| BA14567   | 679141   | WMWGORG_1289 |
| BA14568   | 679141   | WMWGORG_1289 |
| BA14569   | 679141   | WMWGORG_1289 |

- 4. All of the above samples were analyzed and prepared by EPA 200.8 for dissolved analysis.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



#### **General Quality Control Procedures:**

- All tune and calibration met criteria for all requested analytes.
- Prior to sample analysis, an initial calibration verification (ICV) was analyzed and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the limit of quantitation for all requested analytes.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analytes.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analytes.
- Due to no filtered method blank (MB) or laboratory control sample (LCS) submitted with the sample set, an unfiltered MB and LCS were analyzed with the samples in each batch.
- All laboratory control sample criteria were met.
- The method blank associated with each preparation batch passed all acceptance criteria for all requested analytes.
- The interference check samples associated with EPA 200.8 were analyzed and passed for all requested analytes.
- All sample internal standard criteria were met.

### Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were analyzed with each ICPMS batch. All acceptance criteria for accuracy were met, except for the following:
  - BA14563 and BA14569 MS/MSD spike levels for Manganese are less than 30% of the sample nominal concentrations.
- A matrix spike and matrix spike duplicate were analyzed with each ICPMS batch. All acceptance criteria for precision were met.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



7. The following samples were diluted due to the analyzed sample concentration being greater than the high standard of the calibration curve:

| Sample ID | <u>Analyte</u> | <b>Dilution Factor</b> |
|-----------|----------------|------------------------|
| BA14542   | Manganese      | 10.15                  |
| BA14547   | Manganese      | 5.075                  |
| BA14548   | Manganese      | 5.075                  |
| BA14549   | Manganese      | 10.15                  |
| BA14550   | Manganese      | 92.365                 |
| BA14551   | Manganese      | 92.365                 |
| BA14553   | Manganese      | 92.365                 |
| BA14554   | Manganese      | 92.365                 |
| BA14555   | Manganese      | 92.365                 |
| BA14557   | Manganese      | 10.15                  |
| BA14558   | Manganese      | 10.15                  |
| BA14559   | Manganese      | 10.15                  |
| BA14560   | Manganese      | 92.365                 |
| BA14561   | Manganese      | 5.075                  |
| BA14562   | Manganese      | 5.075                  |
| BA14563   | Manganese      | 92.365                 |
| BA14564   | Manganese      | 92.365                 |
| BA14565   | Manganese      | 5.075                  |
| BA14567   | Manganese      | 10.15                  |
| BA14568   | Manganese      | 10.15                  |
| BA14569   | Manganese      | 10.15                  |

8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



## Mercury

## Gorgas Gypsum

## WMWGORG\_1289

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

| Sample ID | Batch ID | Project ID   |
|-----------|----------|--------------|
| BA14541   | 678939   | WMWGORG_1289 |
| BA14542   | 678939   | WMWGORG_1289 |
| BA14543   | 678939   | WMWGORG_1289 |
| BA14544   | 678939   | WMWGORG_1289 |
| BA14545   | 678939   | WMWGORG_1289 |
| BA14546   | 678939   | WMWGORG_1289 |
| BA14547   | 678939   | WMWGORG_1289 |
| BA14548   | 678939   | WMWGORG_1289 |
| BA14549   | 678939   | WMWGORG_1289 |
| BA14550   | 678939   | WMWGORG_1289 |
| BA14551   | 678940   | WMWGORG_1289 |
| BA14552   | 678940   | WMWGORG_1289 |
| BA14553   | 678940   | WMWGORG_1289 |
| BA14554   | 678940   | WMWGORG_1289 |
| BA14555   | 678940   | WMWGORG_1289 |
| BA14556   | 678940   | WMWGORG_1289 |
| BA14557   | 678940   | WMWGORG_1289 |
| BA14558   | 678940   | WMWGORG_1289 |
| BA14559   | 678940   | WMWGORG_1289 |
| BA14560   | 678940   | WMWGORG_1289 |
| BA14561   | 678941   | WMWGORG_1289 |
| BA14562   | 678941   | WMWGORG_1289 |
| BA14563   | 678941   | WMWGORG_1289 |
| BA14564   | 678941   | WMWGORG_1289 |
| BA14565   | 678941   | WMWGORG_1289 |
| BA14566   | 678941   | WMWGORG_1289 |
| BA14567   | 678941   | WMWGORG_1289 |
| BA14568   | 678941   | WMWGORG_1289 |
| BA14569   | 678941   | WMWGORG_1289 |
| BA14570   | 678941   | WMWGORG_1289 |
| BA14571   | 678942   | WMWGORG_1289 |
|           |          |              |

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



- 4. All of the above samples were analyzed and prepared by EPA 245.1.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

### **General Quality Control Procedures:**

- Prior to sample analysis, an initial calibration verification (ICV) was analyzed and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the method detection limit for the requested analyte.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analyte.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analyte.
- A preparation method blank and laboratory control sample were digested and analyzed with the samples in each digestion batch.
- All laboratory control sample criteria were met.
- The method blank associated with each digestion batch was below the limit of quantitation for the requested analyte.
- All calibration met criteria for the requested analyte.
- All response signals were satisfactory.

#### Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were digested and analyzed with each batch. All acceptance criteria for accuracy were met.
- A matrix spike and matrix spike duplicate were digested and analyzed with each batch. All acceptance criteria for precision were met.
- 7. All samples were analyzed without a dilution.
- 8. The raw data results are shown with dilution factors included.



## TDS

## Gorgas Gypsum

## WMWGORG\_1289

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

| Sample ID | Batch ID | Project ID   |
|-----------|----------|--------------|
| BA14541   | 678741   | WMWGORG_1289 |
| BA14542   | 678741   | WMWGORG_1289 |
| BA14543   | 678741   | WMWGORG_1289 |
| BA14544   | 678741   | WMWGORG_1289 |
| BA14545   | 678741   | WMWGORG_1289 |
| BA14546   | 678741   | WMWGORG_1289 |
| BA14547   | 678741   | WMWGORG_1289 |
| BA14548   | 678741   | WMWGORG_1289 |
| BA14549   | 678741   | WMWGORG_1289 |
| BA14550   | 678741   | WMWGORG_1289 |
| BA14551   | 678742   | WMWGORG_1289 |
| BA14552   | 678905   | WMWGORG_1289 |
| BA14553   | 678907   | WMWGORG_1289 |
| BA14554   | 678907   | WMWGORG_1289 |
| BA14555   | 678907   | WMWGORG_1289 |
| BA14556   | 678907   | WMWGORG_1289 |
| BA14557   | 678742   | WMWGORG_1289 |
| BA14558   | 678742   | WMWGORG_1289 |
| BA14559   | 678742   | WMWGORG_1289 |
| BA14560   | 678742   | WMWGORG_1289 |
| BA14561   | 678742   | WMWGORG_1289 |
| BA14562   | 678742   | WMWGORG_1289 |
| BA14563   | 678742   | WMWGORG_1289 |
| BA14564   | 678742   | WMWGORG_1289 |
| BA14565   | 678742   | WMWGORG_1289 |
| BA14566   | 678907   | WMWGORG_1289 |
| BA14567   | 678907   | WMWGORG_1289 |
| BA14568   | 678907   | WMWGORG_1289 |
| BA14569   | 678907   | WMWGORG_1289 |
| BA14570   | 678907   | WMWGORG_1289 |
| BA14571   | 678907   | WMWGORG_1289 |

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



- 4. All of the above samples were analyzed by Standard Method 2540C.
- 5. All samples were analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

### **General Quality Control Procedures:**

- A Method Blank was analyzed with each batch. All criteria were met.
- All final weights of samples, standards, and blanks agreed within 0.5mg of the previous weight.
- A sample duplicate was analyzed with each batch. RPD/2 was less than 5%.
- A laboratory control sample was analyzed with each batch. All criteria were met.
- Samples were between 2.5mg and 200mg residue.
- All samples with residue <2.5mg had the maximum volume of 150mL filtered. Affected samples are as follows:</li>
  - o BA14541
  - o BA14546
  - o BA14556
  - o BA14570
  - o BA14571

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



### **Anions**

## Gorgas Gypsum

## WMWGORG\_1289

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

| Sample ID | Batch ID                 | Project ID   |
|-----------|--------------------------|--------------|
| BA14541   | 678915, 678998, & 678792 | WMWGORG_1289 |
| BA14542   | 678915, 678998, & 678792 | WMWGORG_1289 |
| BA14543   | 678915, 678998, & 678792 | WMWGORG_1289 |
| BA14544   | 678915, 678998, & 678792 | WMWGORG_1289 |
| BA14545   | 678915, 678998, & 678792 | WMWGORG_1289 |
| BA14546   | 678915, 678998, & 678792 | WMWGORG_1289 |
| BA14547   | 678915, 678998, & 678792 | WMWGORG_1289 |
| BA14548   | 678915, 678998, & 678792 | WMWGORG_1289 |
| BA14549   | 678915, 678998, & 678792 | WMWGORG_1289 |
| BA14550   | 678915, 678998, & 678792 | WMWGORG_1289 |
| BA14551   | 678916, 678999, & 678793 | WMWGORG_1289 |
| BA14552   | 678916, 678999, & 678793 | WMWGORG_1289 |
| BA14553   | 678916, 678999, & 678793 | WMWGORG_1289 |
| BA14554   | 678916, 678999, & 678793 | WMWGORG_1289 |
| BA14555   | 678916, 678999, & 678793 | WMWGORG_1289 |
| BA14556   | 678916, 678999, & 678793 | WMWGORG_1289 |
| BA14557   | 678916, 678999, & 678793 | WMWGORG_1289 |
| BA14558   | 678916, 678999, & 678793 | WMWGORG_1289 |
| BA14559   | 678916, 678999, & 678793 | WMWGORG_1289 |
| BA14560   | 678916, 678999, & 678793 | WMWGORG_1289 |
| BA14561   | 678917, 679000, & 678794 | WMWGORG_1289 |
| BA14562   | 678917, 679000, & 678794 | WMWGORG_1289 |
| BA14563   | 678917, 679000, & 678794 | WMWGORG_1289 |
| BA14564   | 678917, 679000, & 678794 | WMWGORG_1289 |
| BA14565   | 678917, 679000, & 678794 | WMWGORG_1289 |
| BA14566   | 678917, 679000, & 678794 | WMWGORG_1289 |
| BA14567   | 678917, 679000, & 678794 | WMWGORG_1289 |
| BA14568   | 678917, 679000, & 678794 | WMWGORG_1289 |
| BA14569   | 678917, 679000, & 678794 | WMWGORG_1289 |
| BA14570   | 678917, 679000, & 678794 | WMWGORG_1289 |
| BA14571   | 678918, 679001, & 678795 | WMWGORG_1289 |

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



- 4. All of the above samples were analyzed and prepared by SM4500 CI E, SM4500 F G, and SM4500 SO4 E.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

### **General Quality Control Procedures:**

- All calibration met criteria for the requested analyte.
- Prior to sample analysis, an initial calibration verification (ICV), and all criteria were met.
- Prior to sample analysis, an initial calibration blank (ICB) was analyzed and was below half the limit of quantitation for the requested analyte.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analyte.
- All continued calibration blanks (CCB) were below half the limit of quantitation for the requested analyte.
- It is noted that the QC summary page typically provides the QC results from the original batch analytical
  sequence. If dilutions were subsequently performed to bring sample concentrations within the calibration range,
  any additional QC data from the dilution analyses may need to be obtained from the laboratory. Any
  qualifications applied to original analyses or dilution re-analyses are based upon QC data available at the time of
  review.

### Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike was analyzed with each batch. Acceptance criteria for accuracy were met, except for the following:
  - BA14560 matrix spike recovery for Fluoride was outside of the specification limit.
- A sample duplicate was analyzed with each batch. Acceptance criteria for precision were met.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



7. The following samples were diluted due to the analyzed sample concentration being greater than the high standard of the calibration curve:

| Sample ID | <u>Analyte</u>     | <b>Dilution Factor</b> |
|-----------|--------------------|------------------------|
| BA14542   | Sulfate            | 40                     |
| BA14543   | Chloride & Sulfate | 2 & 16                 |
| BA14544   | Sulfate            | 20                     |
| BA14545   | Sulfate            | 20                     |
| BA14548   | Sulfate            | 20                     |
| BA14549   | Sulfate            | 50                     |
| BA14550   | Chloride & Sulfate | 25 & 100               |
| BA14551   | Chloride & Sulfate | 25 & 200               |
| BA14552   | Sulfate            | 40                     |
| BA14553   | Chloride & Sulfate | 25 & 100               |
| BA14554   | Sulfate            | 40                     |
| BA14555   | Chloride & Sulfate | 25 & 100               |
| BA14557   | Sulfate            | 50                     |
| BA14558   | Sulfate            | 50                     |
| BA14559   | Sulfate            | 40                     |
| BA14560   | Sulfate            | 200                    |
| BA14561   | Sulfate            | 40                     |
| BA14562   | Sulfate            | 40                     |
| BA14563   | Sulfate            | 40                     |
| BA14564   | Chloride & Sulfate | 10 & 100               |
| BA14565   | Chloride & Sulfate | 10 & 100               |
| BA14566   | Sulfate            | 100                    |
| BA14567   | Sulfate            | 40                     |
| BA14568   | Chloride & Sulfate | 8 & 32                 |
| BA14569   | Chloride & Sulfate | 10 & 40                |

8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



## Alkalinity

## Gorgas Gypsum

## WMWGORG\_1289

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

| Batch ID        | Project ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 679452 & 679453 | WMWGORG_1289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 679450 & 679451 | WMWGORG_1289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | 679452 & 679453<br>679452 & 679453<br>679450 & 679451<br>679450 & 679451 |

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



- 4. All of the above samples were analyzed Standard Method 2320B, except for the following:
  - a. Samples BA14542, BA14549, BA14554, BA14567, and BA14568 are reported as NA due to the initial pH being less than the 4.5pH titration end point.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

### **General Quality Control Procedures:**

- An initial pH check was analyzed with each batch. The acceptance criteria were met.
- A final pH check was analyzed with each batch. The acceptance criteria were met.
- An alkalinity laboratory control sample was analyzed with each batch. Range criteria of within 10% of true value was met.
- An alkalinity sample duplicate was analyzed with each batch. Precision criteria less than 10 RPD was met.

# **Certificate Of Analysis**



Description: Gorgas Gypsum Equipment Blank-2Location Code:WMWGORGEBCollected:8/3/20 10:15

**Customer ID:** 

**Submittal Date:** 8/6/20 11:00

Laboratory ID Number: BA14541

| Name                                  | Prepared      | Analyzed     | Vio Spec | DF    | Results      | Units         | MDL     | RL     | Q |
|---------------------------------------|---------------|--------------|----------|-------|--------------|---------------|---------|--------|---|
| Analytical Method: EPA 200.7          | Anal          | yst: RDA     |          |       | Preparati    | on Method: El | PA 1638 |        |   |
| * Boron, Total                        | 8/10/20 15:00 | 8/12/20 09:3 | 34 1     | 1.015 | Not Detected | mg/L          | 0.03    | 0.1    | U |
| * Calcium, Total                      | 8/10/20 15:00 | 8/12/20 09:3 | 34 1     | 1.015 | Not Detected | mg/L          | 0.1     | 0.5    | U |
| * Iron, Total                         | 8/10/20 15:00 | 8/12/20 09:3 | 34 1     | 1.015 | Not Detected | mg/L          | 0.02    | 0.05   | U |
| * Lithium, Total                      | 8/10/20 15:00 | 8/12/20 09:3 | 34 1     | 1.015 | Not Detected | mg/L          | 0.01    | 0.02   | U |
| * Magnesium, Total                    | 8/10/20 15:00 | 8/12/20 09:3 | 34 1     | 1.015 | Not Detected | mg/L          | 0.1     | 0.5    | U |
| * Sodium, Total                       | 8/10/20 15:00 | 8/12/20 09:3 | 34 1     | 1.015 | Not Detected | mg/L          | 0.1     | 0.5    | U |
| Analytical Method: EPA 200.8          | Anal          | yst: DLJ     |          |       | Preparati    | on Method: El | PA 1638 |        |   |
| * Antimony, Total                     | 8/7/20 12:54  | 8/10/20 10:5 | 59 1     | 1.015 | Not Detected | mg/L          | 0.0008  | 0.003  | U |
| * Arsenic, Total                      | 8/7/20 12:54  | 8/10/20 10:5 | 59 1     | 1.015 | Not Detected | mg/L          | 0.001   | 0.005  | U |
| * Barium, Total                       | 8/7/20 12:54  | 8/10/20 10:5 | 59 1     | 1.015 | Not Detected | mg/L          | 0.002   | 0.01   | U |
| * Beryllium, Total                    | 8/7/20 12:54  | 8/10/20 10:5 | 59 1     | 1.015 | Not Detected | mg/L          | 0.0006  | 0.003  | U |
| * Cadmium, Total                      | 8/7/20 12:54  | 8/10/20 10:5 | 59 1     | 1.015 | Not Detected | mg/L          | 0.0003  | 0.001  | U |
| * Chromium, Total                     | 8/7/20 12:54  | 8/10/20 10:5 | 59 1     | 1.015 | Not Detected | mg/L          | 0.002   | 0.01   | U |
| * Cobalt, Total                       | 8/7/20 12:54  | 8/10/20 10:5 | 59 1     | 1.015 | Not Detected | mg/L          | 0.002   | 0.005  | U |
| * Lead, Total                         | 8/7/20 12:54  | 8/10/20 10:5 | 59 1     | 1.015 | Not Detected | mg/L          | 0.001   | 0.005  | U |
| <ul> <li>Molybdenum, Total</li> </ul> | 8/7/20 12:54  | 8/10/20 10:5 | 59 1     | 1.015 | Not Detected | mg/L          | 0.002   | 0.01   | U |
| * Manganese, Total                    | 8/7/20 12:54  | 8/10/20 10:5 | 59 1     | 1.015 | Not Detected | mg/L          | 0.001   | 0.005  | U |
| * Potassium, Total                    | 8/7/20 12:54  | 8/10/20 10:5 | 59 1     | 1.015 | Not Detected | mg/L          | 0.3     | 2.5    | U |
| * Selenium, Total                     | 8/7/20 12:54  | 8/10/20 10:5 | 59 1     | 1.015 | Not Detected | mg/L          | 0.002   | 0.01   | U |
| * Thallium, Total                     | 8/7/20 12:54  | 8/10/20 10:5 | 59 1     | 1.015 | Not Detected | mg/L          | 0.0002  | 0.001  | U |
| Analytical Method: EPA 245.1          | Anal          | yst: GAS     |          |       |              |               |         |        |   |
| * Mercury, Total by CVAA              | 8/11/20 09:20 | 8/11/20 13:0 | )1 1     |       | Not Detected | mg/L          | 0.0003  | 0.0005 | U |
| Analytical Method: SM 2540C           | Anal          | yst: TJW     |          |       |              |               |         |        |   |
| * Solids, Dissolved                   | 8/7/20 14:25  | 8/11/20 12:2 | 20 1     |       | Not Detected | mg/L          |         | 25     | U |
| Analytical Method: SM4500Cl E         | Anal          | yst: JCC     |          |       |              |               |         |        |   |
| * Chloride                            | 8/10/20 12:29 | 8/10/20 12:2 | 29 1     | I     | Not Detected | mg/L          | 0.50    | 1      | U |
| Analytical Method: SM4500F G 2017     | Anal          | yst: JCC     |          |       |              |               |         |        |   |
| * Fluoride                            | 8/11/20 10:45 | 8/11/20 10:4 | 15 1     | l     | Not Detected | mg/L          | 0.06    | 0.1    | U |
| Analytical Method: SM4500SO4 E 2011   | Anal          | yst: JCC     |          |       |              |               |         |        |   |
| * Sulfate                             | 8/7/20 11:27  | 8/7/20 11:27 | ,        | 1     | Not Detected | ma/L          | 0.50    | 1      | U |

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

# **Batch QC Summary**



**Customer Account:** WMWGORGEB **Sample Date:** 8/3/20 10:15

**Customer ID:** 

**Delivery Date:** 8/6/20 11:00

Description: Gorgas Gypsum Equipment Blank-2

Laboratory ID Number: BA14541

|                                |       |             | MB        |       |         |         |          | Standard         |      | Rec       |       | Prec          |
|--------------------------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|------|-----------|-------|---------------|
| Sample Analysis                | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | Limit            | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA14550 Thallium, Total        | mg/L  | 0.0000135   | 0.0001474 | 0.10  | 0.105   | 0.111   | 0.0999   | 0.085 to 0.115   | 105  | 70 to 130 | 5.56  | 20            |
| BA14550 Cobalt, Total          | mg/L  | -0.0000239  | 0.0001474 | 0.10  | 0.118   | 0.124   | 0.104    | 0.085 to 0.115   | 105  | 70 to 130 | 4.96  | 20            |
| BA14550 Selenium, Total        | mg/L  | -0.0000679  | 0.001     | 0.10  | 0.103   | 0.111   | 0.100    | 0.085 to 0.115   | 103  | 70 to 130 | 7.48  | 20            |
| BA14550 Calcium, Total         | mg/L  | -0.00321    | 0.1518    | 5.00  | 447     | 438     | 5.03     | 4.25 to 5.75     | 80.0 | 70 to 130 | 2.03  | 20            |
| BA14550 Iron, Total            | mg/L  | 0.00220     | 0.0176    | 0.2   | 34.8    | 34.0    | 0.202    | 0.17 to 0.23     | 250  | 70 to 130 | 2.33  | 20            |
| BA14550 Potassium, Total       | mg/L  | -0.00825    | 0.3674    | 10.0  | 23.0    | 23.9    | 10.8     | 8.5 to 11.5      | 112  | 70 to 130 | 3.84  | 20            |
| BA14550 Sodium, Total          | mg/L  | 0.000367    | 0.044     | 5.00  | 219     | 215     | 4.84     | 4.25 to 5.75     | 80.0 | 70 to 130 | 1.84  | 20            |
| BA14550 Antimony, Total        | mg/L  | 0.000196    | 0.001     | 0.10  | 0.0928  | 0.0984  | 0.0872   | 0.085 to 0.115   | 92.8 | 70 to 130 | 5.86  | 20            |
| BA14550 Barium, Total          | mg/L  | 0.00000766  | 0.0002    | 0.10  | 0.113   | 0.121   | 0.0897   | 0.085 to 0.115   | 96.0 | 70 to 130 | 6.84  | 20            |
| BA14550 Molybdenum, Total      | mg/L  | 0.00000555  | 0.0001474 | 0.10  | 0.104   | 0.110   | 0.0966   | 0.085 to 0.115   | 104  | 70 to 130 | 5.61  | 20            |
| BA14550 Beryllium, Total       | mg/L  | -0.00000532 | 0.00088   | 0.10  | 0.0910  | 0.0921  | 0.0878   | 0.085 to 0.115   | 91.0 | 70 to 130 | 1.20  | 20            |
| BA14550 Lithium, Total         | mg/L  | -0.000168   | 0.0154    | 0.20  | 0.643   | 0.642   | 0.190    | 0.17 to 0.23     | 124  | 70 to 130 | 0.156 | 20            |
| BA14550 Lead, Total            | mg/L  | 0.00000456  | 0.0001474 | 0.10  | 0.110   | 0.117   | 0.106    | 0.085 to 0.115   | 110  | 70 to 130 | 6.17  | 20            |
| BA14550 Chromium, Total        | mg/L  | -0.0000152  | 0.00044   | 0.10  | 0.106   | 0.112   | 0.104    | 0.085 to 0.115   | 106  | 70 to 130 | 5.50  | 20            |
| BA14550 Manganese, Total       | mg/L  | 0.0000036   | 0.0001474 | 0.10  | 15.0    | 12.6    | 0.0985   | 0.085 to 0.115   | 100  | 70 to 130 | 17.4  | 20            |
| BA14550 Mercury, Total by CVAA | mg/L  | 0.0000256   | 0.0005    | 0.004 | 0.00332 | 0.00316 | 0.00364  | 0.0034 to 0.0046 | 83.0 | 70 to 130 | 4.94  | 20            |
| BA14550 Magnesium, Total       | mg/L  | 0.000661    | 0.0462    | 5.00  | 247     | 241     | 5.13     | 4.25 to 5.75     | 80.0 | 70 to 130 | 2.46  | 20            |
| BA14550 Arsenic, Total         | mg/L  | 0.00000093  | 0.0001474 | 0.10  | 0.110   | 0.119   | 0.105    | 0.085 to 0.115   | 110  | 70 to 130 | 7.86  | 20            |
| BA14550 Boron, Total           | mg/L  | 0.000558    | 0.0650254 | 1.00  | 3.78    | 3.76    | 0.964    | 0.85 to 1.15     | 98.0 | 70 to 130 | 0.531 | 20            |
| BA14550 Cadmium, Total         | mg/L  | -0.00000379 | 0.0001474 | 0.10  | 0.0982  | 0.104   | 0.0962   | 0.085 to 0.115   | 98.2 | 70 to 130 | 5.74  | 20            |

Comments:

# **Batch QC Summary**



Customer Account: WMWGORGEB

Sample Date:

8/3/20 10:15

**Customer ID:** 

Delivery Date:

8/6/20 11:00

Description: Gorgas Gypsum Equipment Blank-2

Laboratory ID Number: BA14541

|         |                   |       |        | MB    |       |      | Sample    |          | Standard     |        | Rec       |       | Prec          |
|---------|-------------------|-------|--------|-------|-------|------|-----------|----------|--------------|--------|-----------|-------|---------------|
| Sample  | Analysis          | Units | MB     | Limit | Spike | MS   | Duplicate | Standard | l Limit      | Rec    | Limit     | Prec  | <u>Li</u> mit |
| BA14550 | Fluoride          | mg/L  | 0.0233 | 0.05  | 2.50  | 2.91 | 0.377     | 2.45     | 2.25 to 2.75 | 102 8  | 30 to 120 | 7.71  | 20            |
| BA14550 | Sulfate           | mg/L  | -0.397 | 0.50  | 2000  | 3770 | 1830      | 18.9     | 18 to 22     | 95.5 8 | 30 to 120 | 1.63  | 20            |
| BA14550 | Solids, Dissolved | mg/L  | 0.0000 | 25    |       |      | 3530      | 52.0     | 40 to 60     |        |           | 0.00  | 5             |
| BA14550 | Chloride          | mg/L  | 0.0146 | 0.50  | 250   | 546  | 302       | 10.2     | 9 to 11      | 96.4 8 | 30 to 120 | 0.988 | 20            |

Comments:

## Certificate Of Analysis



Description: Gorgas Gypsum - PZ-18Location Code:WMWGORGCollected:8/3/20 11:00

**Customer ID:** 

**Submittal Date:** 8/6/20 11:00

Laboratory ID Number: BA14542

| Name                                  | Prepared      | Analyzed     | Vio Spec DF | Results      | Units       | MDL      | RL      | Q |
|---------------------------------------|---------------|--------------|-------------|--------------|-------------|----------|---------|---|
| Analytical Method: EPA 200.7          | Analy         | yst: RDA     |             | Preparati    | ion Method: | EPA 1638 |         |   |
| * Boron, Total                        | 8/10/20 15:00 | 8/12/20 09:3 | 7 1.015     | 0.0671       | mg/L        | 0.03     | 0.1     | J |
| * Calcium, Total                      | 8/10/20 15:00 | 8/12/20 12:0 | 1 10.15     | 106          | mg/L        | 1.015    | 5.075   |   |
| * Iron, Total                         | 8/10/20 15:00 | 8/12/20 12:0 | 1 10.15     | 16.4         | mg/L        | 0.203    | 0.5075  |   |
| * Lithium, Total                      | 8/10/20 15:00 | 8/12/20 09:3 | 7 1.015     | 0.422        | mg/L        | 0.01     | 0.02    |   |
| * Magnesium, Total                    | 8/10/20 15:00 | 8/12/20 12:0 | 1 10.15     | 71.8         | mg/L        | 1.015    | 5.075   |   |
| * Sodium, Total                       | 8/10/20 15:00 | 8/12/20 09:3 | 7 1.015     | 17.0         | mg/L        | 0.1      | 0.5     |   |
| Analytical Method: EPA 200.7          | Analy         | yst: RDA     |             |              |             |          |         |   |
| * Iron, Dissolved                     | 8/10/20 13:30 | 8/11/20 13:2 | 8 101.5     | 17.4         | mg/L        | 2.03     | 5.075   |   |
| Analytical Method: EPA 200.8          | Analy         | yst: DLJ     |             | Preparati    | ion Method: | EPA 1638 |         |   |
| * Antimony, Total                     | 8/7/20 12:54  | 8/10/20 11:0 | 2 1.015     | 0.00113      | mg/L        | 0.0008   | 0.003   | J |
| * Arsenic, Total                      | 8/7/20 12:54  | 8/10/20 11:0 | 2 1.015     | 0.0114       | mg/L        | 0.001    | 0.005   |   |
| * Barium, Total                       | 8/7/20 12:54  | 8/10/20 11:0 | 2 1.015     | 0.0111       | mg/L        | 0.002    | 0.01    |   |
| * Beryllium, Total                    | 8/7/20 12:54  | 8/10/20 11:0 | 2 1.015     | 0.00829      | mg/L        | 0.0006   | 0.003   |   |
| * Cadmium, Total                      | 8/7/20 12:54  | 8/10/20 11:0 | 2 1.015     | 0.00120      | mg/L        | 0.0003   | 0.001   |   |
| * Chromium, Total                     | 8/7/20 12:54  | 8/10/20 11:0 | 2 1.015     | 0.00315      | mg/L        | 0.002    | 0.01    | J |
| * Cobalt, Total                       | 8/7/20 12:54  | 8/10/20 11:0 | 2 1.015     | 0.156        | mg/L        | 0.002    | 0.005   |   |
| * Lead, Total                         | 8/7/20 12:54  | 8/10/20 11:0 | 2 1.015     | 0.00366      | mg/L        | 0.001    | 0.005   | J |
| <ul> <li>Molybdenum, Total</li> </ul> | 8/7/20 12:54  | 8/10/20 11:0 | 2 1.015     | Not Detected | mg/L        | 0.002    | 0.01    | U |
| * Potassium, Total                    | 8/7/20 12:54  | 8/10/20 11:0 | 2 1.015     | 2.82         | mg/L        | 0.3      | 2.5     |   |
| * Manganese, Total                    | 8/7/20 12:54  | 8/11/20 13:5 | 7 10.15     | 4.94         | mg/L        | 0.01015  | 0.05075 |   |
| * Selenium, Total                     | 8/7/20 12:54  | 8/10/20 11:0 | 2 1.015     | 0.00616      | mg/L        | 0.002    | 0.01    | J |
| * Thallium, Total                     | 8/7/20 12:54  | 8/10/20 11:0 | 2 1.015     | Not Detected | mg/L        | 0.0002   | 0.001   | U |
| Analytical Method: EPA 200.8          | Analy         | yst: DLJ     |             |              |             |          |         |   |
| * Manganese, Dissolved                | 8/7/20 14:00  | 8/11/20 15:2 | 0 10.15     | 4.90         | mg/L        | 0.01015  | 0.05075 |   |
| Analytical Method: EPA 245.1          | Analy         | yst: GAS     |             |              |             |          |         |   |
| Mercury, Total by CVAA                | 8/11/20 09:20 | •            | 3 1         | Not Detected | mg/L        | 0.0003   | 0.0005  | U |
| Analytical Method: SM 2320 B          | Anal          | yst: JAG     |             |              |             |          |         |   |
| Alkalinity, Total as CaCO3            | 8/14/20 10:00 | •            | 5 1         | NA           | mg/L        |          | 0.10    |   |
| Analytical Method: SM 2540C           |               | yst: TJW     | •           |              | Č           |          |         |   |
| * Solids, Dissolved                   | 8/7/20 14:25  | 8/11/20 12:2 | 0 1         | 1210         | mg/L        |          | 83.3    |   |

MDL's and RL's are adjusted for sample dilution, as applicable

## Certificate Of Analysis



**Description:** Gorgas Gypsum - PZ-18

**Location Code:** 

WMWGORG 8/3/20 11:00

Collected:

Customer ID: Submittal Date:

8/6/20 11:00

Laboratory ID Number: BA14542

| Name                                  | Prepared      | Analyzed     | Vio Spec | DF | Results      | Units | MDL   | RL  | Q  |
|---------------------------------------|---------------|--------------|----------|----|--------------|-------|-------|-----|----|
| Analytical Method: SM 4500CO2 D       | Anal          | yst: JAG     |          |    |              |       |       |     |    |
| Bicarbonate Alkalinity, (calc.)       | 8/14/20 10:00 | 8/14/20 11:0 | )5       | 1  | NA           | mg/L  |       |     |    |
| Carbonate Alkalinity, (calc.)         | 8/14/20 10:00 | 8/14/20 11:0 | )5       | 1  | NA           | mg/L  |       |     |    |
| Analytical Method: SM4500Cl E         | Anal          | yst: JCC     |          |    |              |       |       |     |    |
| * Chloride                            | 8/10/20 12:30 | 8/10/20 12:3 | 30       | 1  | 4.55         | mg/L  | 0.50  | 1   |    |
| Analytical Method: SM4500F G 2017     | Anal          | yst: JCC     |          |    |              |       |       |     |    |
| * Fluoride                            | 8/11/20 10:46 | 8/11/20 10:4 | 6        | 1  | Not Detected | mg/L  | 0.06  | 0.1 | U  |
| Analytical Method: SM4500SO4 E 2011   | Anal          | yst: JCC     |          |    |              |       |       |     |    |
| * Sulfate                             | 8/7/20 11:28  | 8/7/20 11:28 | 3        | 40 | 729          | mg/L  | 20.00 | 40  |    |
| Analytical Method: Field Measurements | Anal          | yst: DKG     |          |    |              |       |       |     |    |
| Conductivity                          | 8/3/20 10:56  | 8/3/20 10:56 | ;        |    | 1297.60      | uS/cm |       |     | FA |
| рН                                    | 8/3/20 10:56  | 8/3/20 10:56 | ;        |    | 4.09         | SU    |       |     | FA |
| Temperature                           | 8/3/20 10:56  | 8/3/20 10:56 | 5        |    | 21.91        | С     |       |     | FA |
| Turbidity                             | 8/3/20 10:56  | 8/3/20 10:56 | 5        |    | 0.86         | NTU   |       |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

## **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 8/3/20 11:00

**Customer ID:** 

**Delivery Date:** 8/6/20 11:00

**Description**: Gorgas Gypsum - PZ-18

Laboratory ID Number: BA14542

|                                |       |             | MB        |       |         |         |          | Standard         |      | Rec       |       | Prec          |
|--------------------------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|------|-----------|-------|---------------|
| Sample Analysis                | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | Limit            | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA14550 Thallium, Total        | mg/L  | 0.0000135   | 0.0001474 | 0.10  | 0.105   | 0.111   | 0.0999   | 0.085 to 0.115   | 105  | 70 to 130 | 5.56  | 20            |
| BA14550 Arsenic, Total         | mg/L  | 0.00000093  | 0.0001474 | 0.10  | 0.110   | 0.119   | 0.105    | 0.085 to 0.115   | 110  | 70 to 130 | 7.86  | 20            |
| BA14550 Boron, Total           | mg/L  | 0.000558    | 0.0650254 | 1.00  | 3.78    | 3.76    | 0.964    | 0.85 to 1.15     | 98.0 | 70 to 130 | 0.531 | 20            |
| BA14550 Cadmium, Total         | mg/L  | -0.00000379 | 0.0001474 | 0.10  | 0.0982  | 0.104   | 0.0962   | 0.085 to 0.115   | 98.2 | 70 to 130 | 5.74  | 20            |
| BA14552 Iron, Dissolved        | mg/L  | -0.000944   | 0.0176    | 0.2   | 0.241   | 0.245   | 0.206    | 0.17 to 0.23     | 100  | 70 to 130 | 1.65  | 20            |
| BA14550 Chromium, Total        | mg/L  | -0.0000152  | 0.00044   | 0.10  | 0.106   | 0.112   | 0.104    | 0.085 to 0.115   | 106  | 70 to 130 | 5.50  | 20            |
| BA14550 Manganese, Total       | mg/L  | 0.0000036   | 0.0001474 | 0.10  | 15.0    | 12.6    | 0.0985   | 0.085 to 0.115   | 100  | 70 to 130 | 17.4  | 20            |
| BA14550 Beryllium, Total       | mg/L  | -0.00000532 | 0.00088   | 0.10  | 0.0910  | 0.0921  | 0.0878   | 0.085 to 0.115   | 91.0 | 70 to 130 | 1.20  | 20            |
| BA14550 Lithium, Total         | mg/L  | -0.000168   | 0.0154    | 0.20  | 0.643   | 0.642   | 0.190    | 0.17 to 0.23     | 124  | 70 to 130 | 0.156 | 20            |
| BA14550 Lead, Total            | mg/L  | 0.00000456  | 0.0001474 | 0.10  | 0.110   | 0.117   | 0.106    | 0.085 to 0.115   | 110  | 70 to 130 | 6.17  | 20            |
| BA14550 Mercury, Total by CVAA | mg/L  | 0.0000256   | 0.0005    | 0.004 | 0.00332 | 0.00316 | 0.00364  | 0.0034 to 0.0046 | 83.0 | 70 to 130 | 4.94  | 20            |
| BA14550 Magnesium, Total       | mg/L  | 0.000661    | 0.0462    | 5.00  | 247     | 241     | 5.13     | 4.25 to 5.75     | 80.0 | 70 to 130 | 2.46  | 20            |
| BA14550 Calcium, Total         | mg/L  | -0.00321    | 0.1518    | 5.00  | 447     | 438     | 5.03     | 4.25 to 5.75     | 80.0 | 70 to 130 | 2.03  | 20            |
| BA14550 Iron, Total            | mg/L  | 0.00220     | 0.0176    | 0.2   | 34.8    | 34.0    | 0.202    | 0.17 to 0.23     | 250  | 70 to 130 | 2.33  | 20            |
| BA14550 Potassium, Total       | mg/L  | -0.00825    | 0.3674    | 10.0  | 23.0    | 23.9    | 10.8     | 8.5 to 11.5      | 112  | 70 to 130 | 3.84  | 20            |
| BA14550 Sodium, Total          | mg/L  | 0.000367    | 0.044     | 5.00  | 219     | 215     | 4.84     | 4.25 to 5.75     | 80.0 | 70 to 130 | 1.84  | 20            |
| BA14550 Antimony, Total        | mg/L  | 0.000196    | 0.001     | 0.10  | 0.0928  | 0.0984  | 0.0872   | 0.085 to 0.115   | 92.8 | 70 to 130 | 5.86  | 20            |
| BA14552 Manganese, Dissolved   | mg/L  | 0.0000168   | 0.0001474 | 0.10  | 0.183   | 0.190   | 0.103    | 0.085 to 0.115   | 91.5 | 70 to 130 | 3.75  | 20            |
| BA14550 Barium, Total          | mg/L  | 0.00000766  | 0.0002    | 0.10  | 0.113   | 0.121   | 0.0897   | 0.085 to 0.115   | 96.0 | 70 to 130 | 6.84  | 20            |
| BA14550 Molybdenum, Total      | mg/L  | 0.00000555  | 0.0001474 | 0.10  | 0.104   | 0.110   | 0.0966   | 0.085 to 0.115   | 104  | 70 to 130 | 5.61  | 20            |
| BA14550 Cobalt, Total          | mg/L  | -0.0000239  | 0.0001474 | 0.10  | 0.118   | 0.124   | 0.104    | 0.085 to 0.115   | 105  | 70 to 130 | 4.96  | 20            |
| BA14550 Selenium, Total        | mg/L  | -0.0000679  | 0.001     | 0.10  | 0.103   | 0.111   | 0.100    | 0.085 to 0.115   | 103  | 70 to 130 | 7.48  | 20            |

# **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 8/3/20 11:00

Customer ID:

**Delivery Date:** 8/6/20 11:00

Description: Gorgas Gypsum - PZ-18

Laboratory ID Number: BA14542

|         |                            |       |        | MB    |       |      | Sample    |          | Standard     |        | Rec       |       | Prec          |
|---------|----------------------------|-------|--------|-------|-------|------|-----------|----------|--------------|--------|-----------|-------|---------------|
| Sample  | Analysis                   | Units | MB     | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec    | Limit     | Prec  | <u>Li</u> mit |
| BA14550 | Chloride                   | mg/L  | 0.0146 | 0.50  | 250   | 546  | 302       | 10.2     | 9 to 11      | 96.4 8 | 30 to 120 | 0.988 | 20            |
| BA14550 | Fluoride                   | mg/L  | 0.0233 | 0.05  | 2.50  | 2.91 | 0.377     | 2.45     | 2.25 to 2.75 | 102 8  | 30 to 120 | 7.71  | 20            |
| BA14550 | Sulfate                    | mg/L  | -0.397 | 0.50  | 2000  | 3770 | 1830      | 18.9     | 18 to 22     | 95.5 8 | 30 to 120 | 1.63  | 20            |
| BA14550 | Solids, Dissolved          | mg/L  | 0.0000 | 25    |       |      | 3530      | 52.0     | 40 to 60     |        |           | 0.00  | 5             |
| BA14563 | Alkalinity, Total as CaCO3 | mg/L  |        |       |       |      | 116       | 49.0     | 45.0 to 55.0 |        |           | 2.72  | 10            |

# Certificate Of Analysis



Description: Gorgas Gypsum - PZ-19Location Code:WMWGORGCollected:8/3/20 12:50

Customer ID:

**Submittal Date:** 8/6/20 11:01

Laboratory ID Number: BA14543

| Name                         | Prepared      | Analyzed      | Vio Spec DF | Results      | Units       | MDL      | RL     | Q |
|------------------------------|---------------|---------------|-------------|--------------|-------------|----------|--------|---|
| Analytical Method: EPA 200.7 | Analy         | st: RDA       |             | Preparati    | ion Method: | EPA 1638 |        |   |
| * Boron, Total               | 8/10/20 15:00 | 8/12/20 09:40 | 1.015       | 0.0553       | mg/L        | 0.03     | 0.1    | J |
| * Calcium, Total             | 8/10/20 15:00 | 8/12/20 12:04 | 4 10.15     | 88.0         | mg/L        | 1.015    | 5.075  |   |
| * Iron, Total                | 8/10/20 15:00 | 8/12/20 09:40 | 1.015       | 3.15         | mg/L        | 0.02     | 0.05   |   |
| * Lithium, Total             | 8/10/20 15:00 | 8/12/20 09:40 | 1.015       | 0.0753       | mg/L        | 0.01     | 0.02   |   |
| * Magnesium, Total           | 8/10/20 15:00 | 8/12/20 12:04 | 4 10.15     | 42.2         | mg/L        | 1.015    | 5.075  |   |
| * Sodium, Total              | 8/10/20 15:00 | 8/12/20 12:04 | 4 10.15     | 94.2         | mg/L        | 1.015    | 5.075  |   |
| Analytical Method: EPA 200.7 | Analy         | st: RDA       |             |              |             |          |        |   |
| * Iron, Dissolved            | 8/10/20 13:30 | 8/11/20 10:5  | 1.015       | 3.17         | mg/L        | 0.02     | 0.05   |   |
| Analytical Method: EPA 200.8 | Analy         | st: DLJ       |             | Preparati    | ion Method: | EPA 1638 |        |   |
| * Antimony, Total            | 8/7/20 12:54  | 8/10/20 11:0  | 5 1.015     | Not Detected | mg/L        | 0.0008   | 0.003  | U |
| * Arsenic, Total             | 8/7/20 12:54  | 8/10/20 11:0  | 5 1.015     | 0.00279      | mg/L        | 0.001    | 0.005  | J |
| * Barium, Total              | 8/7/20 12:54  | 8/10/20 11:0  | 5 1.015     | 0.0470       | mg/L        | 0.002    | 0.01   |   |
| * Beryllium, Total           | 8/7/20 12:54  | 8/10/20 11:0  | 5 1.015     | Not Detected | mg/L        | 0.0006   | 0.003  | U |
| * Cadmium, Total             | 8/7/20 12:54  | 8/10/20 11:0  | 5 1.015     | Not Detected | mg/L        | 0.0003   | 0.001  | U |
| * Chromium, Total            | 8/7/20 12:54  | 8/10/20 11:0  | 5 1.015     | Not Detected | mg/L        | 0.002    | 0.01   | U |
| * Cobalt, Total              | 8/7/20 12:54  | 8/10/20 11:0  | 5 1.015     | Not Detected | mg/L        | 0.002    | 0.005  | U |
| * Lead, Total                | 8/7/20 12:54  | 8/10/20 11:0  | 5 1.015     | Not Detected | mg/L        | 0.001    | 0.005  | U |
| * Molybdenum, Total          | 8/7/20 12:54  | 8/10/20 11:0  | 5 1.015     | Not Detected | mg/L        | 0.002    | 0.01   | U |
| * Potassium, Total           | 8/7/20 12:54  | 8/10/20 11:0  | 5 1.015     | 8.26         | mg/L        | 0.3      | 2.5    |   |
| * Manganese, Total           | 8/7/20 12:54  | 8/10/20 11:0  | 5 1.015     | 0.900        | mg/L        | 0.001    | 0.005  |   |
| * Selenium, Total            | 8/7/20 12:54  | 8/10/20 11:0  | 5 1.015     | Not Detected | mg/L        | 0.002    | 0.01   | U |
| * Thallium, Total            | 8/7/20 12:54  | 8/10/20 11:0  | 5 1.015     | Not Detected | mg/L        | 0.0002   | 0.001  | U |
| Analytical Method: EPA 200.8 | Analy         | st: DLJ       |             |              |             |          |        |   |
| * Manganese, Dissolved       | 8/7/20 14:00  | 8/10/20 10:32 | 2 1.015     | 0.857        | mg/L        | 0.001    | 0.005  |   |
| Analytical Method: EPA 245.1 | Analy         | st: GAS       |             |              |             |          |        |   |
| * Mercury, Total by CVAA     | 8/11/20 09:20 | 8/11/20 13:00 | 6 1         | Not Detected | mg/L        | 0.0003   | 0.0005 | U |
| Analytical Method: SM 2320 B | Analy         | /st: JAG      |             |              |             |          |        |   |
| Alkalinity, Total as CaCO3   | 8/14/20 10:00 |               | 5 1         | 393          | mg/L        |          | 0.1    |   |
| Analytical Method: SM 2540C  | Analy         | /st: TJW      |             |              |             |          |        |   |
| * Solids, Dissolved          | 8/7/20 14:25  | 8/11/20 12:20 | 0 1         | 740          | mg/L        |          | 50     |   |

MDL's and RL's are adjusted for sample dilution, as applicable

## Certificate Of Analysis



FΑ

Description: Gorgas Gypsum - PZ-19

Turbidity

**Location Code:** 

**WMWGORG** 8/3/20 12:50

Collected: **Customer ID:** 

3.77

**Submittal Date:** 

NTU

8/6/20 11:01

| Laboratory ID Number: BA14543         |               |              |             | Subn    | nittai Date: | 6/6/20 11:0 | )   |    |
|---------------------------------------|---------------|--------------|-------------|---------|--------------|-------------|-----|----|
| Name                                  | Prepared      | Analyzed     | Vio Spec DF | Results | Units        | MDL         | RL  | Q  |
| Analytical Method: SM 4500CO2 D       | Ana           | lyst: JAG    |             |         |              |             |     |    |
| Bicarbonate Alkalinity, (calc.)       | 8/14/20 10:00 | 8/14/20 11:0 | 5 1         | 393     | mg/L         |             |     |    |
| Carbonate Alkalinity, (calc.)         | 8/14/20 10:00 | 8/14/20 11:0 | 5 1         | 0.18    | mg/L         |             |     |    |
| Analytical Method: SM4500Cl E         | Ana           | lyst: JCC    |             |         |              |             |     |    |
| * Chloride                            | 8/10/20 12:31 | 8/10/20 12:3 | 1 2         | 21.7    | mg/L         | 1.00        | 2   |    |
| Analytical Method: SM4500F G 2017     | Ana           | lyst: JCC    |             |         |              |             |     |    |
| * Fluoride                            | 8/11/20 10:47 | 8/11/20 10:4 | 7 1         | 0.180   | mg/L         | 0.06        | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Ana           | lyst: JCC    |             |         |              |             |     |    |
| * Sulfate                             | 8/7/20 11:29  | 8/7/20 11:29 | 16          | 210     | mg/L         | 8.00        | 16  |    |
| Analytical Method: Field Measurements | Ana           | lyst: DKG    |             |         |              |             |     |    |
| Conductivity                          | 8/3/20 12:46  | 8/3/20 12:46 |             | 1176.09 | uS/cm        |             |     | FA |
| рН                                    | 8/3/20 12:46  | 8/3/20 12:46 |             | 6.32    | SU           |             |     | FA |
| Temperature                           | 8/3/20 12:46  | 8/3/20 12:46 |             | 18.97   | С            |             |     | FA |

8/3/20 12:46

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 8/19/2020

8/3/20 12:46

# **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 8/3/20 12:50

Customer ID:

**Delivery Date:** 8/6/20 11:01

Description: Gorgas Gypsum - PZ-19

Laboratory ID Number: BA14543

|                                |       |             | MB        |       |         |         |          | Standard         |      | Rec       |       | Prec          |
|--------------------------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|------|-----------|-------|---------------|
| Sample Analysis                | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | Limit            | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA14550 Thallium, Total        | mg/L  | 0.0000135   | 0.0001474 | 0.10  | 0.105   | 0.111   | 0.0999   | 0.085 to 0.115   | 105  | 70 to 130 | 5.56  | 20            |
| BA14550 Barium, Total          | mg/L  | 0.00000766  | 0.0002    | 0.10  | 0.113   | 0.121   | 0.0897   | 0.085 to 0.115   | 96.0 | 70 to 130 | 6.84  | 20            |
| BA14550 Molybdenum, Total      | mg/L  | 0.00000555  | 0.0001474 | 0.10  | 0.104   | 0.110   | 0.0966   | 0.085 to 0.115   | 104  | 70 to 130 | 5.61  | 20            |
| BA14550 Beryllium, Total       | mg/L  | -0.00000532 | 0.00088   | 0.10  | 0.0910  | 0.0921  | 0.0878   | 0.085 to 0.115   | 91.0 | 70 to 130 | 1.20  | 20            |
| BA14550 Lithium, Total         | mg/L  | -0.000168   | 0.0154    | 0.20  | 0.643   | 0.642   | 0.190    | 0.17 to 0.23     | 124  | 70 to 130 | 0.156 | 20            |
| BA14550 Lead, Total            | mg/L  | 0.00000456  | 0.0001474 | 0.10  | 0.110   | 0.117   | 0.106    | 0.085 to 0.115   | 110  | 70 to 130 | 6.17  | 20            |
| BA14550 Chromium, Total        | mg/L  | -0.0000152  | 0.00044   | 0.10  | 0.106   | 0.112   | 0.104    | 0.085 to 0.115   | 106  | 70 to 130 | 5.50  | 20            |
| BA14550 Manganese, Total       | mg/L  | 0.0000036   | 0.0001474 | 0.10  | 15.0    | 12.6    | 0.0985   | 0.085 to 0.115   | 100  | 70 to 130 | 17.4  | 20            |
| BA14550 Arsenic, Total         | mg/L  | 0.00000093  | 0.0001474 | 0.10  | 0.110   | 0.119   | 0.105    | 0.085 to 0.115   | 110  | 70 to 130 | 7.86  | 20            |
| BA14550 Boron, Total           | mg/L  | 0.000558    | 0.0650254 | 1.00  | 3.78    | 3.76    | 0.964    | 0.85 to 1.15     | 98.0 | 70 to 130 | 0.531 | 20            |
| BA14550 Cadmium, Total         | mg/L  | -0.00000379 | 0.0001474 | 0.10  | 0.0982  | 0.104   | 0.0962   | 0.085 to 0.115   | 98.2 | 70 to 130 | 5.74  | 20            |
| BA14552 Iron, Dissolved        | mg/L  | -0.000944   | 0.0176    | 0.2   | 0.241   | 0.245   | 0.206    | 0.17 to 0.23     | 100  | 70 to 130 | 1.65  | 20            |
| BA14550 Mercury, Total by CVAA | mg/L  | 0.0000256   | 0.0005    | 0.004 | 0.00332 | 0.00316 | 0.00364  | 0.0034 to 0.0046 | 83.0 | 70 to 130 | 4.94  | 20            |
| BA14550 Magnesium, Total       | mg/L  | 0.000661    | 0.0462    | 5.00  | 247     | 241     | 5.13     | 4.25 to 5.75     | 80.0 | 70 to 130 | 2.46  | 20            |
| BA14550 Calcium, Total         | mg/L  | -0.00321    | 0.1518    | 5.00  | 447     | 438     | 5.03     | 4.25 to 5.75     | 80.0 | 70 to 130 | 2.03  | 20            |
| BA14550 Iron, Total            | mg/L  | 0.00220     | 0.0176    | 0.2   | 34.8    | 34.0    | 0.202    | 0.17 to 0.23     | 250  | 70 to 130 | 2.33  | 20            |
| BA14550 Potassium, Total       | mg/L  | -0.00825    | 0.3674    | 10.0  | 23.0    | 23.9    | 10.8     | 8.5 to 11.5      | 112  | 70 to 130 | 3.84  | 20            |
| BA14550 Sodium, Total          | mg/L  | 0.000367    | 0.044     | 5.00  | 219     | 215     | 4.84     | 4.25 to 5.75     | 80.0 | 70 to 130 | 1.84  | 20            |
| BA14550 Antimony, Total        | mg/L  | 0.000196    | 0.001     | 0.10  | 0.0928  | 0.0984  | 0.0872   | 0.085 to 0.115   | 92.8 | 70 to 130 | 5.86  | 20            |
| BA14552 Manganese, Dissolved   | mg/L  | 0.0000168   | 0.0001474 | 0.10  | 0.183   | 0.190   | 0.103    | 0.085 to 0.115   | 91.5 | 70 to 130 | 3.75  | 20            |
| BA14550 Cobalt, Total          | mg/L  | -0.0000239  | 0.0001474 | 0.10  | 0.118   | 0.124   | 0.104    | 0.085 to 0.115   | 105  | 70 to 130 | 4.96  | 20            |
| BA14550 Selenium, Total        | mg/L  | -0.0000679  | 0.001     | 0.10  | 0.103   | 0.111   | 0.100    | 0.085 to 0.115   | 103  | 70 to 130 | 7.48  | 20            |

# **Batch QC Summary**



Customer Account: WMWGORG

**Customer ID:** 

Sample Date: 8/3/20 12:50

**Delivery Date:** 8/6/20 11:01

Description: Gorgas Gypsum - PZ-19

Laboratory ID Number: BA14543

|                                    |       |        | MB    |       |      | Sample    |          | Standard     | Rec            |       | Prec          |
|------------------------------------|-------|--------|-------|-------|------|-----------|----------|--------------|----------------|-------|---------------|
| Sample Analysis                    | Units | MB     | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec Limit      | Prec  | <u>Li</u> mit |
| BA14550 Chloride                   | mg/L  | 0.0146 | 0.50  | 250   | 546  | 302       | 10.2     | 9 to 11      | 96.4 80 to 120 | 0.988 | 20            |
| BA14550 Fluoride                   | mg/L  | 0.0233 | 0.05  | 2.50  | 2.91 | 0.377     | 2.45     | 2.25 to 2.75 | 102 80 to 120  | 7.71  | 20            |
| BA14550 Sulfate                    | mg/L  | -0.397 | 0.50  | 2000  | 3770 | 1830      | 18.9     | 18 to 22     | 95.5 80 to 120 | 1.63  | 20            |
| BA14550 Solids, Dissolved          | mg/L  | 0.0000 | 25    |       |      | 3530      | 52.0     | 40 to 60     |                | 0.00  | 5             |
| BA14563 Alkalinity, Total as CaCO3 | mg/L  |        |       |       |      | 116       | 49.0     | 45.0 to 55.0 |                | 2.72  | 10            |

# Certificate Of Analysis



Description: Gorgas Gypsum - PZ-20Location Code:WMWGORGCollected:8/3/20 13:59

Customer ID:

**Submittal Date:** 8/6/20 11:01

Laboratory ID Number: BA14544

| Name                         | Prepared      | Analyzed \    | /io Spec DF | Results      | Units      | MDL      | RL     | Q |
|------------------------------|---------------|---------------|-------------|--------------|------------|----------|--------|---|
| Analytical Method: EPA 200.7 | Analy         | st: RDA       |             | Preparati    | on Method: | EPA 1638 |        |   |
| * Boron, Total               | 8/10/20 15:00 | 8/12/20 09:43 | 1.015       | 0.0833       | mg/L       | 0.03     | 0.1    | J |
| * Calcium, Total             | 8/10/20 15:00 | 8/12/20 12:07 | 10.15       | 76.9         | mg/L       | 1.015    | 5.075  |   |
| * Iron, Total                | 8/10/20 15:00 | 8/12/20 12:07 | 10.15       | 8.83         | mg/L       | 0.203    | 0.5075 |   |
| * Lithium, Total             | 8/10/20 15:00 | 8/12/20 09:43 | 1.015       | 0.102        | mg/L       | 0.01     | 0.02   |   |
| * Magnesium, Total           | 8/10/20 15:00 | 8/12/20 12:07 | 10.15       | 42.9         | mg/L       | 1.015    | 5.075  |   |
| * Sodium, Total              | 8/10/20 15:00 | 8/12/20 12:07 | 10.15       | 86.0         | mg/L       | 1.015    | 5.075  |   |
| Analytical Method: EPA 200.7 | Analy         | st: RDA       |             |              |            |          |        |   |
| * Iron, Dissolved            | 8/10/20 13:30 | 8/11/20 13:31 | 10.15       | 9.39         | mg/L       | 0.203    | 0.5075 |   |
| Analytical Method: EPA 200.8 | Analy         | st: DLJ       |             | Preparati    | on Method: | EPA 1638 |        |   |
| * Antimony, Total            | 8/7/20 12:54  | 8/10/20 11:07 | 1.015       | Not Detected | mg/L       | 0.0008   | 0.003  | U |
| * Arsenic, Total             | 8/7/20 12:54  | 8/10/20 11:07 | 1.015       | 0.00214      | mg/L       | 0.001    | 0.005  | J |
| * Barium, Total              | 8/7/20 12:54  | 8/10/20 11:07 | 1.015       | 0.0211       | mg/L       | 0.002    | 0.01   |   |
| * Beryllium, Total           | 8/7/20 12:54  | 8/10/20 11:07 | 1.015       | Not Detected | mg/L       | 0.0006   | 0.003  | U |
| * Cadmium, Total             | 8/7/20 12:54  | 8/10/20 11:07 | 1.015       | Not Detected | mg/L       | 0.0003   | 0.001  | U |
| * Chromium, Total            | 8/7/20 12:54  | 8/10/20 11:07 | 1.015       | Not Detected | mg/L       | 0.002    | 0.01   | U |
| * Cobalt, Total              | 8/7/20 12:54  | 8/10/20 11:07 | 1.015       | 0.00734      | mg/L       | 0.002    | 0.005  |   |
| * Lead, Total                | 8/7/20 12:54  | 8/10/20 11:07 | 1.015       | Not Detected | mg/L       | 0.001    | 0.005  | U |
| * Molybdenum, Total          | 8/7/20 12:54  | 8/10/20 11:07 | 1.015       | Not Detected | mg/L       | 0.002    | 0.01   | U |
| * Potassium, Total           | 8/7/20 12:54  | 8/10/20 11:07 | 1.015       | 5.00         | mg/L       | 0.3      | 2.5    |   |
| * Manganese, Total           | 8/7/20 12:54  | 8/10/20 11:07 | 1.015       | 0.851        | mg/L       | 0.001    | 0.005  |   |
| * Selenium, Total            | 8/7/20 12:54  | 8/10/20 11:07 | 1.015       | Not Detected | mg/L       | 0.002    | 0.01   | U |
| * Thallium, Total            | 8/7/20 12:54  | 8/10/20 11:07 | 1.015       | Not Detected | mg/L       | 0.0002   | 0.001  | U |
| Analytical Method: EPA 200.8 | Analy         | st: DLJ       |             |              |            |          |        |   |
| * Manganese, Dissolved       | 8/7/20 14:00  | 8/10/20 10:34 | 1.015       | 0.801        | mg/L       | 0.001    | 0.005  |   |
| Analytical Method: EPA 245.1 | Analy         | st: GAS       |             |              |            |          |        |   |
| * Mercury, Total by CVAA     | 8/11/20 09:20 |               | 1           | Not Detected | mg/L       | 0.0003   | 0.0005 | U |
| Analytical Method: SM 2320 B |               | st: JAG       |             |              |            |          |        |   |
| Alkalinity, Total as CaCO3   | 8/14/20 10:00 |               | 1           | 153          | mg/L       |          | 0.1    |   |
| Analytical Method: SM 2540C  |               | /st: TJW      | •           |              | ŭ          |          |        |   |
| * Solids, Dissolved          | 8/7/20 14:25  | 8/11/20 12:20 | 1           | 798          | mg/L       |          | 50     |   |

MDL's and RL's are adjusted for sample dilution, as applicable

## Certificate Of Analysis



**Description:** Gorgas Gypsum - PZ-20

**Location Code:** 

WMWGORG

Collected:

Customer ID: Submittal Date: 8/3/20 13:59 8/6/20 11:01

Laboratory ID Number: BA14544

| Laboratory ID Number: BA14544         |               |              |          |    |         |       |       |     |    |
|---------------------------------------|---------------|--------------|----------|----|---------|-------|-------|-----|----|
| Name                                  | Prepared      | Analyzed     | Vio Spec | DF | Results | Units | MDL   | RL  | Q  |
| Analytical Method: SM 4500CO2 D       | Ana           | lyst: JAG    |          |    |         |       |       |     | _  |
| Bicarbonate Alkalinity, (calc.)       | 8/14/20 10:00 | 8/14/20 11:0 | 05       | 1  | 153     | mg/L  |       |     |    |
| Carbonate Alkalinity, (calc.)         | 8/14/20 10:00 | 8/14/20 11:0 | 05       | 1  | 0.03    | mg/L  |       |     |    |
| Analytical Method: SM4500CI E         | Ana           | lyst: JCC    |          |    |         |       |       |     |    |
| * Chloride                            | 8/10/20 12:33 | 8/10/20 12:3 | 33       | 1  | 15.0    | mg/L  | 0.50  | 1   |    |
| Analytical Method: SM4500F G 2017     | Ana           | lyst: JCC    |          |    |         |       |       |     |    |
| * Fluoride                            | 8/11/20 10:48 | 8/11/20 10:4 | 18       | 1  | 0.188   | mg/L  | 0.06  | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Ana           | lyst: JCC    |          |    |         |       |       |     |    |
| * Sulfate                             | 8/7/20 11:30  | 8/7/20 11:30 | )        | 20 | 379     | mg/L  | 10.00 | 20  |    |
| Analytical Method: Field Measurements | Ana           | lyst: DKG    |          |    |         |       |       |     |    |
| Conductivity                          | 8/3/20 13:55  | 8/3/20 13:55 | 5        |    | 1185.16 | uS/cm |       |     | FA |
| рН                                    | 8/3/20 13:55  | 8/3/20 13:55 | 5        |    | 6.03    | SU    |       |     | FA |
| Temperature                           | 8/3/20 13:55  | 8/3/20 13:55 | 5        |    | 19.53   | С     |       |     | FA |
| Turbidity                             | 8/3/20 13:55  | 8/3/20 13:55 | 5        |    | 4.15    | NTU   |       |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

# **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 8/3/20 13:59

**Customer ID:** 

**Delivery Date:** 8/6/20 11:01

**Description**: Gorgas Gypsum - PZ-20

Laboratory ID Number: BA14544

|                      |              |       |             | MB        |       |         |         |          | Standard         |      | Rec       |       | Prec          |
|----------------------|--------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|------|-----------|-------|---------------|
| Sample Analysis      |              | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | Limit            | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA14550 Thallium, To | otal         | mg/L  | 0.0000135   | 0.0001474 | 0.10  | 0.105   | 0.111   | 0.0999   | 0.085 to 0.115   | 105  | 70 to 130 | 5.56  | 20            |
| BA14550 Arsenic, Tot | al           | mg/L  | 0.00000093  | 0.0001474 | 0.10  | 0.110   | 0.119   | 0.105    | 0.085 to 0.115   | 110  | 70 to 130 | 7.86  | 20            |
| BA14550 Boron, Tota  | l            | mg/L  | 0.000558    | 0.0650254 | 1.00  | 3.78    | 3.76    | 0.964    | 0.85 to 1.15     | 98.0 | 70 to 130 | 0.531 | 20            |
| BA14550 Cadmium, T   | otal         | mg/L  | -0.00000379 | 0.0001474 | 0.10  | 0.0982  | 0.104   | 0.0962   | 0.085 to 0.115   | 98.2 | 70 to 130 | 5.74  | 20            |
| BA14552 Iron, Dissol | ved          | mg/L  | -0.000944   | 0.0176    | 0.2   | 0.241   | 0.245   | 0.206    | 0.17 to 0.23     | 100  | 70 to 130 | 1.65  | 20            |
| BA14550 Mercury, To  | otal by CVAA | mg/L  | 0.0000256   | 0.0005    | 0.004 | 0.00332 | 0.00316 | 0.00364  | 0.0034 to 0.0046 | 83.0 | 70 to 130 | 4.94  | 20            |
| BA14550 Magnesium    | , Total      | mg/L  | 0.000661    | 0.0462    | 5.00  | 247     | 241     | 5.13     | 4.25 to 5.75     | 80.0 | 70 to 130 | 2.46  | 20            |
| BA14550 Chromium,    | Total        | mg/L  | -0.0000152  | 0.00044   | 0.10  | 0.106   | 0.112   | 0.104    | 0.085 to 0.115   | 106  | 70 to 130 | 5.50  | 20            |
| BA14550 Manganese    | , Total      | mg/L  | 0.0000036   | 0.0001474 | 0.10  | 15.0    | 12.6    | 0.0985   | 0.085 to 0.115   | 100  | 70 to 130 | 17.4  | 20            |
| BA14550 Calcium, To  | otal         | mg/L  | -0.00321    | 0.1518    | 5.00  | 447     | 438     | 5.03     | 4.25 to 5.75     | 80.0 | 70 to 130 | 2.03  | 20            |
| BA14550 Iron, Total  |              | mg/L  | 0.00220     | 0.0176    | 0.2   | 34.8    | 34.0    | 0.202    | 0.17 to 0.23     | 250  | 70 to 130 | 2.33  | 20            |
| BA14550 Potassium,   | Total        | mg/L  | -0.00825    | 0.3674    | 10.0  | 23.0    | 23.9    | 10.8     | 8.5 to 11.5      | 112  | 70 to 130 | 3.84  | 20            |
| BA14550 Sodium, To   | tal          | mg/L  | 0.000367    | 0.044     | 5.00  | 219     | 215     | 4.84     | 4.25 to 5.75     | 80.0 | 70 to 130 | 1.84  | 20            |
| BA14550 Antimony, T  | otal         | mg/L  | 0.000196    | 0.001     | 0.10  | 0.0928  | 0.0984  | 0.0872   | 0.085 to 0.115   | 92.8 | 70 to 130 | 5.86  | 20            |
| BA14552 Manganese    | , Dissolved  | mg/L  | 0.0000168   | 0.0001474 | 0.10  | 0.183   | 0.190   | 0.103    | 0.085 to 0.115   | 91.5 | 70 to 130 | 3.75  | 20            |
| BA14550 Cobalt, Tota | al           | mg/L  | -0.0000239  | 0.0001474 | 0.10  | 0.118   | 0.124   | 0.104    | 0.085 to 0.115   | 105  | 70 to 130 | 4.96  | 20            |
| BA14550 Selenium, T  | otal         | mg/L  | -0.0000679  | 0.001     | 0.10  | 0.103   | 0.111   | 0.100    | 0.085 to 0.115   | 103  | 70 to 130 | 7.48  | 20            |
| BA14550 Beryllium, T | otal         | mg/L  | -0.00000532 | 0.00088   | 0.10  | 0.0910  | 0.0921  | 0.0878   | 0.085 to 0.115   | 91.0 | 70 to 130 | 1.20  | 20            |
| BA14550 Lithium, Tot | al           | mg/L  | -0.000168   | 0.0154    | 0.20  | 0.643   | 0.642   | 0.190    | 0.17 to 0.23     | 124  | 70 to 130 | 0.156 | 20            |
| BA14550 Lead, Total  |              | mg/L  | 0.00000456  | 0.0001474 | 0.10  | 0.110   | 0.117   | 0.106    | 0.085 to 0.115   | 110  | 70 to 130 | 6.17  | 20            |
| BA14550 Barium, Tot  | al           | mg/L  | 0.00000766  | 0.0002    | 0.10  | 0.113   | 0.121   | 0.0897   | 0.085 to 0.115   | 96.0 | 70 to 130 | 6.84  | 20            |
| BA14550 Molybdenur   | n, Total     | mg/L  | 0.00000555  | 0.0001474 | 0.10  | 0.104   | 0.110   | 0.0966   | 0.085 to 0.115   | 104  | 70 to 130 | 5.61  | 20            |

# **Batch QC Summary**



Customer Account: WMWGORG Sample Date: 8/3/20 13:59

**Customer ID:** 

**Delivery Date:** 8/6/20 11:01

Description: Gorgas Gypsum - PZ-20

Laboratory ID Number: BA14544

|         |                            |       |        | MB    |       |      | Sample    |          | Standard     |      | Rec       |       | Prec          |
|---------|----------------------------|-------|--------|-------|-------|------|-----------|----------|--------------|------|-----------|-------|---------------|
| Sample  | Analysis                   | Units | MB     | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA14550 | Chloride                   | mg/L  | 0.0146 | 0.50  | 250   | 546  | 302       | 10.2     | 9 to 11      | 96.4 | 80 to 120 | 0.988 | 20            |
| BA14550 | Fluoride                   | mg/L  | 0.0233 | 0.05  | 2.50  | 2.91 | 0.377     | 2.45     | 2.25 to 2.75 | 102  | 80 to 120 | 7.71  | 20            |
| BA14550 | Sulfate                    | mg/L  | -0.397 | 0.50  | 2000  | 3770 | 1830      | 18.9     | 18 to 22     | 95.5 | 80 to 120 | 1.63  | 20            |
| BA14550 | Solids, Dissolved          | mg/L  | 0.0000 | 25    |       |      | 3530      | 52.0     | 40 to 60     |      |           | 0.00  | 5             |
| BA14563 | Alkalinity, Total as CaCO3 | mg/L  |        |       |       |      | 116       | 49.0     | 45.0 to 55.0 |      |           | 2.72  | 10            |

# Certificate Of Analysis



Description: Gorgas Gypsum - PZ-20 DUPLocation Code:WMWGORGCollected:8/3/20 13:59

**Customer ID:** 

**Submittal Date:** 8/6/20 11:01

Laboratory ID Number: BA14545

| Name                         | Prepared      | Analyzed     | Vio Spec DF | Results                      | Units        | MDL      | RL     | Q |
|------------------------------|---------------|--------------|-------------|------------------------------|--------------|----------|--------|---|
| Analytical Method: EPA 200.7 | Analy         | yst: RDA     |             | Preparation Method: EPA 1638 |              |          |        |   |
| * Boron, Total               | 8/10/20 15:00 | 8/12/20 09:4 | 6 1.015     | 0.0822                       | mg/L         | 0.03     | 0.1    | J |
| * Calcium, Total             | 8/10/20 15:00 | 8/12/20 12:1 | 0 10.15     | 77.3                         | mg/L         | 1.015    | 5.075  |   |
| * Iron, Total                | 8/10/20 15:00 | 8/12/20 12:1 | 0 10.15     | 8.93                         | mg/L         | 0.203    | 0.5075 |   |
| * Lithium, Total             | 8/10/20 15:00 | 8/12/20 09:4 | 6 1.015     | 0.101                        | mg/L         | 0.01     | 0.02   |   |
| * Magnesium, Total           | 8/10/20 15:00 | 8/12/20 12:1 | 0 10.15     | 42.9                         | mg/L         | 1.015    | 5.075  |   |
| * Sodium, Total              | 8/10/20 15:00 | 8/12/20 12:1 | 0 10.15     | 86.6                         | mg/L         | 1.015    | 5.075  |   |
| Analytical Method: EPA 200.7 | Analy         | yst: RDA     |             |                              |              |          |        |   |
| * Iron, Dissolved            | 8/10/20 13:30 | 8/11/20 13:3 | 4 10.15     | 9.37                         | mg/L         | 0.203    | 0.5075 |   |
| Analytical Method: EPA 200.8 | Analy         | yst: DLJ     |             | Preparat                     | tion Method: | EPA 1638 |        |   |
| * Antimony, Total            | 8/7/20 12:54  | 8/10/20 11:1 | 0 1.015     | Not Detected                 | mg/L         | 0.0008   | 0.003  | U |
| * Arsenic, Total             | 8/7/20 12:54  | 8/10/20 11:1 | 0 1.015     | 0.00210                      | mg/L         | 0.001    | 0.005  | J |
| * Barium, Total              | 8/7/20 12:54  | 8/10/20 11:1 | 0 1.015     | 0.0200                       | mg/L         | 0.002    | 0.01   |   |
| * Beryllium, Total           | 8/7/20 12:54  | 8/10/20 11:1 | 0 1.015     | Not Detected                 | mg/L         | 0.0006   | 0.003  | U |
| * Cadmium, Total             | 8/7/20 12:54  | 8/10/20 11:1 | 0 1.015     | Not Detected                 | mg/L         | 0.0003   | 0.001  | U |
| * Chromium, Total            | 8/7/20 12:54  | 8/10/20 11:1 | 0 1.015     | Not Detected                 | mg/L         | 0.002    | 0.01   | U |
| * Cobalt, Total              | 8/7/20 12:54  | 8/10/20 11:1 | 0 1.015     | 0.00741                      | mg/L         | 0.002    | 0.005  |   |
| * Lead, Total                | 8/7/20 12:54  | 8/10/20 11:1 | 0 1.015     | Not Detected                 | mg/L         | 0.001    | 0.005  | U |
| * Molybdenum, Total          | 8/7/20 12:54  | 8/10/20 11:1 | 0 1.015     | Not Detected                 | mg/L         | 0.002    | 0.01   | U |
| * Potassium, Total           | 8/7/20 12:54  | 8/10/20 11:1 | 0 1.015     | 5.09                         | mg/L         | 0.3      | 2.5    |   |
| * Manganese, Total           | 8/7/20 12:54  | 8/10/20 11:1 | 0 1.015     | 0.865                        | mg/L         | 0.001    | 0.005  |   |
| * Selenium, Total            | 8/7/20 12:54  | 8/10/20 11:1 | 0 1.015     | Not Detected                 | mg/L         | 0.002    | 0.01   | U |
| * Thallium, Total            | 8/7/20 12:54  | 8/10/20 11:1 | 0 1.015     | Not Detected                 | mg/L         | 0.0002   | 0.001  | U |
| Analytical Method: EPA 200.8 | Analy         | yst: DLJ     |             |                              |              |          |        |   |
| * Manganese, Dissolved       | 8/7/20 14:00  | 8/10/20 10:3 | 7 1.015     | 0.803                        | mg/L         | 0.001    | 0.005  |   |
| Analytical Method: EPA 245.1 | Analy         | yst: GAS     |             |                              |              |          |        |   |
| * Mercury, Total by CVAA     | 8/11/20 09:20 | 8/11/20 13:1 | 0 1         | Not Detected                 | mg/L         | 0.0003   | 0.0005 | U |
| Analytical Method: SM 2320 B | Analy         | yst: JAG     |             |                              |              |          |        |   |
| Alkalinity, Total as CaCO3   | 8/14/20 10:00 |              | 5 1         | 156                          | mg/L         |          | 0.1    |   |
| Analytical Method: SM 2540C  |               | yst: TJW     |             |                              | -            |          |        |   |
| * Solids, Dissolved          | 8/7/20 14:25  | 8/11/20 12:2 | 0 1         | 792                          | mg/L         |          | 50     |   |

MDL's and RL's are adjusted for sample dilution, as applicable

## Certificate Of Analysis



Description: Gorgas Gypsum - PZ-20 DUPLocation Code:WMWGORGCollected:8/3/20 13:59

Customer ID:

Submittal Date: 8/6/20 11:01

Laboratory ID Number: BA14545

| Name                                  | Prepared      | Analyzed     | Vio Spec | DF | Results | Units | MDL   | RL  | Q  |
|---------------------------------------|---------------|--------------|----------|----|---------|-------|-------|-----|----|
| Analytical Method: SM 4500CO2 D       | Anal          | yst: JAG     |          |    |         |       |       |     |    |
| Bicarbonate Alkalinity, (calc.)       | 8/14/20 10:00 | 8/14/20 11:0 | 5        | 1  | 156     | mg/L  |       |     |    |
| Carbonate Alkalinity, (calc.)         | 8/14/20 10:00 | 8/14/20 11:0 | 5        | 1  | 0.03    | mg/L  |       |     |    |
| Analytical Method: SM4500Cl E         | Anal          | yst: JCC     |          |    |         |       |       |     |    |
| * Chloride                            | 8/10/20 12:34 | 8/10/20 12:3 | 4        | 1  | 15.1    | mg/L  | 0.50  | 1   |    |
| Analytical Method: SM4500F G 2017     | Anal          | yst: JCC     |          |    |         |       |       |     |    |
| * Fluoride                            | 8/11/20 10:50 | 8/11/20 10:5 | 60       | 1  | 0.183   | mg/L  | 0.06  | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Anal          | yst: JCC     |          |    |         |       |       |     |    |
| * Sulfate                             | 8/7/20 11:31  | 8/7/20 11:31 | :        | 20 | 393     | mg/L  | 10.00 | 20  |    |
| Analytical Method: Field Measurements | Anal          | yst: DKG     |          |    |         |       |       |     |    |
| Conductivity                          | 8/3/20 13:55  | 8/3/20 13:55 | i        |    | 1185.16 | uS/cm |       |     | FA |
| рН                                    | 8/3/20 13:55  | 8/3/20 13:55 | i        |    | 6.03    | SU    |       |     | FA |
| Temperature                           | 8/3/20 13:55  | 8/3/20 13:55 | i        |    | 19.53   | С     |       |     | FA |
| Turbidity                             | 8/3/20 13:55  | 8/3/20 13:55 | i        |    | 4.15    | NTU   |       |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

### **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 8/3/20 13:59

Customer ID:

**Delivery Date:** 8/6/20 11:01

Description: Gorgas Gypsum - PZ-20 DUP

Laboratory ID Number: BA14545

| <u> </u> |                        |       |             | MB        |       |         |         |          | Standard         |      | Rec       |       | Prec          |
|----------|------------------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|------|-----------|-------|---------------|
| Sample   | Analysis               | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | Limit            | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA14550  | Thallium, Total        | mg/L  | 0.0000135   | 0.0001474 | 0.10  | 0.105   | 0.111   | 0.0999   | 0.085 to 0.115   | 105  | 70 to 130 | 5.56  | 20            |
| BA14550  | Mercury, Total by CVAA | mg/L  | 0.0000256   | 0.0005    | 0.004 | 0.00332 | 0.00316 | 0.00364  | 0.0034 to 0.0046 | 83.0 | 70 to 130 | 4.94  | 20            |
| BA14550  | Magnesium, Total       | mg/L  | 0.000661    | 0.0462    | 5.00  | 247     | 241     | 5.13     | 4.25 to 5.75     | 80.0 | 70 to 130 | 2.46  | 20            |
| BA14550  | Arsenic, Total         | mg/L  | 0.00000093  | 0.0001474 | 0.10  | 0.110   | 0.119   | 0.105    | 0.085 to 0.115   | 110  | 70 to 130 | 7.86  | 20            |
| BA14550  | Boron, Total           | mg/L  | 0.000558    | 0.0650254 | 1.00  | 3.78    | 3.76    | 0.964    | 0.85 to 1.15     | 98.0 | 70 to 130 | 0.531 | 20            |
| BA14550  | Cadmium, Total         | mg/L  | -0.00000379 | 0.0001474 | 0.10  | 0.0982  | 0.104   | 0.0962   | 0.085 to 0.115   | 98.2 | 70 to 130 | 5.74  | 20            |
| BA14552  | Iron, Dissolved        | mg/L  | -0.000944   | 0.0176    | 0.2   | 0.241   | 0.245   | 0.206    | 0.17 to 0.23     | 100  | 70 to 130 | 1.65  | 20            |
| BA14550  | Cobalt, Total          | mg/L  | -0.0000239  | 0.0001474 | 0.10  | 0.118   | 0.124   | 0.104    | 0.085 to 0.115   | 105  | 70 to 130 | 4.96  | 20            |
| BA14550  | Selenium, Total        | mg/L  | -0.0000679  | 0.001     | 0.10  | 0.103   | 0.111   | 0.100    | 0.085 to 0.115   | 103  | 70 to 130 | 7.48  | 20            |
| BA14550  | Calcium, Total         | mg/L  | -0.00321    | 0.1518    | 5.00  | 447     | 438     | 5.03     | 4.25 to 5.75     | 80.0 | 70 to 130 | 2.03  | 20            |
| BA14550  | Iron, Total            | mg/L  | 0.00220     | 0.0176    | 0.2   | 34.8    | 34.0    | 0.202    | 0.17 to 0.23     | 250  | 70 to 130 | 2.33  | 20            |
| BA14550  | Potassium, Total       | mg/L  | -0.00825    | 0.3674    | 10.0  | 23.0    | 23.9    | 10.8     | 8.5 to 11.5      | 112  | 70 to 130 | 3.84  | 20            |
| BA14550  | Sodium, Total          | mg/L  | 0.000367    | 0.044     | 5.00  | 219     | 215     | 4.84     | 4.25 to 5.75     | 80.0 | 70 to 130 | 1.84  | 20            |
| BA14550  | Antimony, Total        | mg/L  | 0.000196    | 0.001     | 0.10  | 0.0928  | 0.0984  | 0.0872   | 0.085 to 0.115   | 92.8 | 70 to 130 | 5.86  | 20            |
| BA14552  | Manganese, Dissolved   | mg/L  | 0.0000168   | 0.0001474 | 0.10  | 0.183   | 0.190   | 0.103    | 0.085 to 0.115   | 91.5 | 70 to 130 | 3.75  | 20            |
| BA14550  | Chromium, Total        | mg/L  | -0.0000152  | 0.00044   | 0.10  | 0.106   | 0.112   | 0.104    | 0.085 to 0.115   | 106  | 70 to 130 | 5.50  | 20            |
| BA14550  | Manganese, Total       | mg/L  | 0.0000036   | 0.0001474 | 0.10  | 15.0    | 12.6    | 0.0985   | 0.085 to 0.115   | 100  | 70 to 130 | 17.4  | 20            |
| BA14550  | Beryllium, Total       | mg/L  | -0.00000532 | 0.00088   | 0.10  | 0.0910  | 0.0921  | 0.0878   | 0.085 to 0.115   | 91.0 | 70 to 130 | 1.20  | 20            |
| BA14550  | Lithium, Total         | mg/L  | -0.000168   | 0.0154    | 0.20  | 0.643   | 0.642   | 0.190    | 0.17 to 0.23     | 124  | 70 to 130 | 0.156 | 20            |
| BA14550  | Lead, Total            | mg/L  | 0.00000456  | 0.0001474 | 0.10  | 0.110   | 0.117   | 0.106    | 0.085 to 0.115   | 110  | 70 to 130 | 6.17  | 20            |
| BA14550  | Barium, Total          | mg/L  | 0.00000766  | 0.0002    | 0.10  | 0.113   | 0.121   | 0.0897   | 0.085 to 0.115   | 96.0 | 70 to 130 | 6.84  | 20            |
| BA14550  | Molybdenum, Total      | mg/L  | 0.00000555  | 0.0001474 | 0.10  | 0.104   | 0.110   | 0.0966   | 0.085 to 0.115   | 104  | 70 to 130 | 5.61  | 20            |

### **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 8/3/20 13:59

Customer ID:

**Delivery Date:** 8/6/20 11:01

Description: Gorgas Gypsum - PZ-20 DUP

Laboratory ID Number: BA14545

|                                    |       |        | MB    |       |      | Sample    |          | Standard     |      | Rec       |       | Prec          |
|------------------------------------|-------|--------|-------|-------|------|-----------|----------|--------------|------|-----------|-------|---------------|
| Sample Analysis                    | Units | MB     | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA14550 Chloride                   | mg/L  | 0.0146 | 0.50  | 250   | 546  | 302       | 10.2     | 9 to 11      | 96.4 | 80 to 120 | 0.988 | 20            |
| BA14550 Fluoride                   | mg/L  | 0.0233 | 0.05  | 2.50  | 2.91 | 0.377     | 2.45     | 2.25 to 2.75 | 102  | 80 to 120 | 7.71  | 20            |
| BA14550 Sulfate                    | mg/L  | -0.397 | 0.50  | 2000  | 3770 | 1830      | 18.9     | 18 to 22     | 95.5 | 80 to 120 | 1.63  | 20            |
| BA14550 Solids, Dissolved          | mg/L  | 0.0000 | 25    |       |      | 3530      | 52.0     | 40 to 60     |      |           | 0.00  | 5             |
| BA14563 Alkalinity, Total as CaCO3 | mg/L  |        |       |       |      | 116       | 49.0     | 45.0 to 55.0 |      |           | 2.72  | 10            |

## **Certificate Of Analysis**



Description: Gorgas Gypsum Field Blank-1Location Code:WMWGORGFBCollected:8/3/20 14:45

**Customer ID:** 

Submittal Date: 8/6/20 11:01

Laboratory ID Number: BA14546

| Name                                | Prepared      | Analyzed          | Vio Spec DF | Results      | Units       | MDL      | RL     | Q |
|-------------------------------------|---------------|-------------------|-------------|--------------|-------------|----------|--------|---|
| Analytical Method: EPA 200.7        | Anal          | yst: RDA          |             | Preparat     | ion Method: | EPA 1638 |        |   |
| * Boron, Total                      | 8/10/20 15:00 | 8/12/20 09:4      | 9 1.015     | Not Detected | mg/L        | 0.03     | 0.1    | U |
| * Calcium, Total                    | 8/10/20 15:00 | 8/12/20 09:4      | 9 1.015     | Not Detected | mg/L        | 0.1      | 0.5    | U |
| * Iron, Total                       | 8/10/20 15:00 | 8/12/20 09:4      | 9 1.015     | Not Detected | mg/L        | 0.02     | 0.05   | U |
| * Lithium, Total                    | 8/10/20 15:00 | 8/12/20 09:4      | 9 1.015     | Not Detected | mg/L        | 0.01     | 0.02   | U |
| * Magnesium, Total                  | 8/10/20 15:00 | 8/12/20 09:4      | 9 1.015     | Not Detected | mg/L        | 0.1      | 0.5    | U |
| * Sodium, Total                     | 8/10/20 15:00 | 8/12/20 09:4      | 9 1.015     | Not Detected | mg/L        | 0.1      | 0.5    | U |
| Analytical Method: EPA 200.8        | Anal          | yst: DLJ          |             | Preparat     | ion Method: | EPA 1638 |        |   |
| * Antimony, Total                   | 8/7/20 12:54  | 8/10/20 11:1      | 3 1.015     | Not Detected | mg/L        | 0.0008   | 0.003  | U |
| * Arsenic, Total                    | 8/7/20 12:54  | 8/10/20 11:1      | 3 1.015     | Not Detected | mg/L        | 0.001    | 0.005  | U |
| * Barium, Total                     | 8/7/20 12:54  | 8/10/20 11:1      | 3 1.015     | Not Detected | mg/L        | 0.002    | 0.01   | U |
| * Beryllium, Total                  | 8/7/20 12:54  | 8/10/20 11:1      | 3 1.015     | Not Detected | mg/L        | 0.0006   | 0.003  | U |
| * Cadmium, Total                    | 8/7/20 12:54  | 8/10/20 11:1      | 3 1.015     | Not Detected | mg/L        | 0.0003   | 0.001  | U |
| * Chromium, Total                   | 8/7/20 12:54  | 8/10/20 11:1      | 3 1.015     | Not Detected | mg/L        | 0.002    | 0.01   | U |
| * Cobalt, Total                     | 8/7/20 12:54  | 8/10/20 11:1      | 3 1.015     | Not Detected | mg/L        | 0.002    | 0.005  | U |
| * Lead, Total                       | 8/7/20 12:54  | 8/10/20 11:1      | 3 1.015     | Not Detected | mg/L        | 0.001    | 0.005  | U |
| * Molybdenum, Total                 | 8/7/20 12:54  | 8/10/20 11:1      | 3 1.015     | Not Detected | mg/L        | 0.002    | 0.01   | U |
| * Manganese, Total                  | 8/7/20 12:54  | 8/10/20 11:1      | 3 1.015     | Not Detected | mg/L        | 0.001    | 0.005  | U |
| * Potassium, Total                  | 8/7/20 12:54  | 8/10/20 11:1      | 3 1.015     | Not Detected | mg/L        | 0.3      | 2.5    | U |
| * Selenium, Total                   | 8/7/20 12:54  | 8/10/20 11:1      | 3 1.015     | Not Detected | mg/L        | 0.002    | 0.01   | U |
| * Thallium, Total                   | 8/7/20 12:54  | 8/10/20 11:1      | 3 1.015     | Not Detected | mg/L        | 0.0002   | 0.001  | U |
| Analytical Method: EPA 245.1        | Anal          | yst: GAS          |             |              |             |          |        |   |
| * Mercury, Total by CVAA            | 8/11/20 09:20 | 8/11/20 13:1      | 3 1         | Not Detected | mg/L        | 0.0003   | 0.0005 | U |
| Analytical Method: SM 2540C         | Anal          | yst: TJW          |             |              |             |          |        |   |
| * Solids, Dissolved                 | 8/7/20 14:25  | 8/11/20 12:2      | 0 1         | Not Detected | mg/L        |          | 25     | U |
| Analytical Method: SM4500Cl E       | Anal          | yst: JCC          |             |              |             |          |        |   |
| * Chloride                          | 8/10/20 12:35 | 8/10/20 12:3      | 5 1         | Not Detected | mg/L        | 0.50     | 1      | U |
| Analytical Method: SM4500F G 2017   | Anal          | yst: JCC          |             |              |             |          |        |   |
| * Fluoride                          | 8/11/20 10:51 |                   | 1 1         | Not Detected | mg/L        | 0.06     | 0.1    | U |
| Analytical Method: SM4500SO4 E 2011 |               | yst: JCC          |             |              |             |          |        |   |
| * Sulfate                           | 8/7/20 11:33  | ,<br>8/7/20 11:33 | 1           | Not Detected | mg/L        | 0.50     | 1      | U |

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

### **Batch QC Summary**



**Customer Account:** WMWGORGFB **Sample Date:** 8/3/20 14:45

**Customer ID:** 

**Delivery Date:** 8/6/20 11:01

Description: Gorgas Gypsum Field Blank-1

Laboratory ID Number: BA14546

|         |                        |       |             | MB        |       |         |         |          | Standard         |      | Rec       |       | Prec          |
|---------|------------------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|------|-----------|-------|---------------|
| Sample  | Analysis               | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | Limit            | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA14550 | Thallium, Total        | mg/L  | 0.0000135   | 0.0001474 | 0.10  | 0.105   | 0.111   | 0.0999   | 0.085 to 0.115   | 105  | 70 to 130 | 5.56  | 20            |
| BA14550 | Mercury, Total by CVAA | mg/L  | 0.0000256   | 0.0005    | 0.004 | 0.00332 | 0.00316 | 0.00364  | 0.0034 to 0.0046 | 83.0 | 70 to 130 | 4.94  | 20            |
| BA14550 | Magnesium, Total       | mg/L  | 0.000661    | 0.0462    | 5.00  | 247     | 241     | 5.13     | 4.25 to 5.75     | 80.0 | 70 to 130 | 2.46  | 20            |
| BA14550 | Arsenic, Total         | mg/L  | 0.00000093  | 0.0001474 | 0.10  | 0.110   | 0.119   | 0.105    | 0.085 to 0.115   | 110  | 70 to 130 | 7.86  | 20            |
| BA14550 | Boron, Total           | mg/L  | 0.000558    | 0.0650254 | 1.00  | 3.78    | 3.76    | 0.964    | 0.85 to 1.15     | 98.0 | 70 to 130 | 0.531 | 20            |
| BA14550 | Cadmium, Total         | mg/L  | -0.00000379 | 0.0001474 | 0.10  | 0.0982  | 0.104   | 0.0962   | 0.085 to 0.115   | 98.2 | 70 to 130 | 5.74  | 20            |
| BA14550 | Calcium, Total         | mg/L  | -0.00321    | 0.1518    | 5.00  | 447     | 438     | 5.03     | 4.25 to 5.75     | 80.0 | 70 to 130 | 2.03  | 20            |
| BA14550 | Iron, Total            | mg/L  | 0.00220     | 0.0176    | 0.2   | 34.8    | 34.0    | 0.202    | 0.17 to 0.23     | 250  | 70 to 130 | 2.33  | 20            |
| BA14550 | Potassium, Total       | mg/L  | -0.00825    | 0.3674    | 10.0  | 23.0    | 23.9    | 10.8     | 8.5 to 11.5      | 112  | 70 to 130 | 3.84  | 20            |
| BA14550 | Sodium, Total          | mg/L  | 0.000367    | 0.044     | 5.00  | 219     | 215     | 4.84     | 4.25 to 5.75     | 80.0 | 70 to 130 | 1.84  | 20            |
| BA14550 | Antimony, Total        | mg/L  | 0.000196    | 0.001     | 0.10  | 0.0928  | 0.0984  | 0.0872   | 0.085 to 0.115   | 92.8 | 70 to 130 | 5.86  | 20            |
| BA14550 | Chromium, Total        | mg/L  | -0.0000152  | 0.00044   | 0.10  | 0.106   | 0.112   | 0.104    | 0.085 to 0.115   | 106  | 70 to 130 | 5.50  | 20            |
| BA14550 | Manganese, Total       | mg/L  | 0.0000036   | 0.0001474 | 0.10  | 15.0    | 12.6    | 0.0985   | 0.085 to 0.115   | 100  | 70 to 130 | 17.4  | 20            |
| BA14550 | Cobalt, Total          | mg/L  | -0.0000239  | 0.0001474 | 0.10  | 0.118   | 0.124   | 0.104    | 0.085 to 0.115   | 105  | 70 to 130 | 4.96  | 20            |
| BA14550 | Selenium, Total        | mg/L  | -0.0000679  | 0.001     | 0.10  | 0.103   | 0.111   | 0.100    | 0.085 to 0.115   | 103  | 70 to 130 | 7.48  | 20            |
| BA14550 | Beryllium, Total       | mg/L  | -0.00000532 | 0.00088   | 0.10  | 0.0910  | 0.0921  | 0.0878   | 0.085 to 0.115   | 91.0 | 70 to 130 | 1.20  | 20            |
| BA14550 | Lithium, Total         | mg/L  | -0.000168   | 0.0154    | 0.20  | 0.643   | 0.642   | 0.190    | 0.17 to 0.23     | 124  | 70 to 130 | 0.156 | 20            |
| BA14550 | Lead, Total            | mg/L  | 0.00000456  | 0.0001474 | 0.10  | 0.110   | 0.117   | 0.106    | 0.085 to 0.115   | 110  | 70 to 130 | 6.17  | 20            |
| BA14550 | Barium, Total          | mg/L  | 0.00000766  | 0.0002    | 0.10  | 0.113   | 0.121   | 0.0897   | 0.085 to 0.115   | 96.0 | 70 to 130 | 6.84  | 20            |
| BA14550 | Molybdenum, Total      | mg/L  | 0.00000555  | 0.0001474 | 0.10  | 0.104   | 0.110   | 0.0966   | 0.085 to 0.115   | 104  | 70 to 130 | 5.61  | 20            |

Comments:

### **Batch QC Summary**



Customer Account: WMWGORGFB

Sample Date: 8

8/3/20 14:45

**Customer ID:** 

**Delivery Date:** 

8/6/20 11:01

Description: Gorgas Gypsum Field Blank-1

Laboratory ID Number: BA14546

|         |                   |       |        | MB    |       |      | Sample    |          | Standard     |      | Rec       |       | Prec          |
|---------|-------------------|-------|--------|-------|-------|------|-----------|----------|--------------|------|-----------|-------|---------------|
| Sample  | Analysis          | Units | MB     | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA14550 | Chloride          | mg/L  | 0.0146 | 0.50  | 250   | 546  | 302       | 10.2     | 9 to 11      | 96.4 | 80 to 120 | 0.988 | 20            |
| BA14550 | Fluoride          | mg/L  | 0.0233 | 0.05  | 2.50  | 2.91 | 0.377     | 2.45     | 2.25 to 2.75 | 102  | 80 to 120 | 7.71  | 20            |
| BA14550 | Sulfate           | mg/L  | -0.397 | 0.50  | 2000  | 3770 | 1830      | 18.9     | 18 to 22     | 95.5 | 80 to 120 | 1.63  | 20            |
| BA14550 | Solids, Dissolved | mg/L  | 0.0000 | 25    |       |      | 3530      | 52.0     | 40 to 60     |      |           | 0.00  | 5             |

Comments:

### Certificate Of Analysis



Description: Gorgas Gypsum - PZ-21Location Code:WMWGORGCollected:8/4/20 08:53

Customer ID:

Laboratory ID Number: BA14547 Submittal Date: 8/6/20 11:01

| Name                                  | Prepared      | Analyzed     | Vio Spec DF | Results      | Units        | MDL      | RL       | Q |
|---------------------------------------|---------------|--------------|-------------|--------------|--------------|----------|----------|---|
| Analytical Method: EPA 200.7          | Anal          | yst: RDA     |             | Preparati    | on Method: L | EPA 1638 |          |   |
| * Boron, Total                        | 8/10/20 15:00 | 8/12/20 09:5 | 2 1.015     | Not Detected | mg/L         | 0.03     | 0.1      | U |
| * Calcium, Total                      | 8/10/20 15:00 | 8/12/20 09:5 | 2 1.015     | 36.4         | mg/L         | 0.1      | 0.5      |   |
| * Iron, Total                         | 8/10/20 15:00 | 8/12/20 09:5 | 2 1.015     | 3.32         | mg/L         | 0.02     | 0.05     |   |
| * Lithium, Total                      | 8/10/20 15:00 | 8/12/20 09:5 | 2 1.015     | 0.0182       | mg/L         | 0.01     | 0.02     | J |
| * Magnesium, Total                    | 8/10/20 15:00 | 8/12/20 09:5 | 2 1.015     | 36.0         | mg/L         | 0.1      | 0.5      |   |
| * Sodium, Total                       | 8/10/20 15:00 | 8/12/20 12:1 | 3 10.15     | 86.3         | mg/L         | 1.015    | 5.075    |   |
| Analytical Method: EPA 200.7          | Anal          | yst: RDA     |             |              |              |          |          |   |
| * Iron, Dissolved                     | 8/10/20 13:30 | 8/11/20 11:0 | 0 1.015     | 3.31         | mg/L         | 0.02     | 0.05     |   |
| Analytical Method: EPA 200.8          | Anal          | yst: DLJ     |             | Preparati    | on Method: I | EPA 1638 |          |   |
| * Antimony, Total                     | 8/7/20 12:54  | 8/10/20 11:1 | 5 1.015     | Not Detected | mg/L         | 0.0008   | 0.003    | U |
| * Arsenic, Total                      | 8/7/20 12:54  | 8/10/20 11:1 | 5 1.015     | 0.00204      | mg/L         | 0.001    | 0.005    | J |
| * Barium, Total                       | 8/7/20 12:54  | 8/10/20 11:1 | 5 1.015     | 0.120        | mg/L         | 0.002    | 0.01     |   |
| * Beryllium, Total                    | 8/7/20 12:54  | 8/10/20 11:1 | 5 1.015     | Not Detected | mg/L         | 0.0006   | 0.003    | U |
| * Cadmium, Total                      | 8/7/20 12:54  | 8/10/20 11:1 | 5 1.015     | Not Detected | mg/L         | 0.0003   | 0.001    | U |
| * Chromium, Total                     | 8/7/20 12:54  | 8/10/20 11:1 | 5 1.015     | Not Detected | mg/L         | 0.002    | 0.01     | U |
| * Cobalt, Total                       | 8/7/20 12:54  | 8/10/20 11:1 | 5 1.015     | Not Detected | mg/L         | 0.002    | 0.005    | U |
| * Lead, Total                         | 8/7/20 12:54  | 8/10/20 11:1 | 5 1.015     | Not Detected | mg/L         | 0.001    | 0.005    | U |
| <ul> <li>Molybdenum, Total</li> </ul> | 8/7/20 12:54  | 8/10/20 11:1 | 5 1.015     | 0.00347      | mg/L         | 0.002    | 0.01     | J |
| * Potassium, Total                    | 8/7/20 12:54  | 8/10/20 11:1 | 5 1.015     | 2.69         | mg/L         | 0.3      | 2.5      |   |
| * Manganese, Total                    | 8/7/20 12:54  | 8/11/20 14:0 | 0 5.075     | 2.10         | mg/L         | 0.005075 | 0.025375 |   |
| * Selenium, Total                     | 8/7/20 12:54  | 8/10/20 11:1 | 5 1.015     | Not Detected | mg/L         | 0.002    | 0.01     | U |
| * Thallium, Total                     | 8/7/20 12:54  | 8/10/20 11:1 | 5 1.015     | Not Detected | mg/L         | 0.0002   | 0.001    | U |
| Analytical Method: EPA 200.8          | Anal          | yst: DLJ     |             |              |              |          |          |   |
| * Manganese, Dissolved                | 8/7/20 14:00  | 8/11/20 15:2 | 3 5.075     | 2.12         | mg/L         | 0.005075 | 0.025375 |   |
| Analytical Method: EPA 245.1          | Anal          | yst: GAS     |             |              |              |          |          |   |
| * Mercury, Total by CVAA              |               | 8/11/20 13:1 | 5 1         | Not Detected | mg/L         | 0.0003   | 0.0005   | U |
| Analytical Method: SM 2320 B          | Anal          | yst: JAG     |             |              |              |          |          |   |
| Alkalinity, Total as CaCO3            | 8/14/20 10:00 | 8/14/20 11:0 | 5 1         | 410          | mg/L         |          | 0.1      |   |
| Analytical Method: SM 2540C           |               | lyst: TJW    |             |              |              |          |          |   |
| * Solids, Dissolved                   | 8/7/20 14:25  | 8/11/20 12:2 | 0 1         | 447          | mg/L         |          | 25       |   |

MDL's and RL's are adjusted for sample dilution, as applicable

Laboratory ID Number: BA14547

### Certificate Of Analysis



Description: Gorgas Gypsum - PZ-21

Location Code: Collected:

WMWGORG 8/4/20 08:53

**Customer ID:** 

Submittal Date:

8/6/20 11:01

| Name                                  | Prepared      | Analyzed     | Vio Spec | DF | Results | Units | MDL  | RL  | Q  |
|---------------------------------------|---------------|--------------|----------|----|---------|-------|------|-----|----|
| Analytical Method: SM 4500CO2 D       | Anai          | lyst: JAG    |          |    |         |       |      |     |    |
| Bicarbonate Alkalinity, (calc.)       | 8/14/20 10:00 | 8/14/20 11:0 | 5        | 1  | 410     | mg/L  |      |     |    |
| Carbonate Alkalinity, (calc.)         | 8/14/20 10:00 | 8/14/20 11:0 | 5        | 1  | 0.41    | mg/L  |      |     |    |
| Analytical Method: SM4500Cl E         | Anai          | lyst: JCC    |          |    |         |       |      |     |    |
| * Chloride                            | 8/10/20 12:36 | 8/10/20 12:3 | 6        | 1  | 13.6    | mg/L  | 0.50 | 1   |    |
| Analytical Method: SM4500F G 2017     | Anai          | lyst: JCC    |          |    |         |       |      |     |    |
| * Fluoride                            | 8/11/20 10:52 | 8/11/20 10:5 | 2        | 1  | 0.323   | mg/L  | 0.06 | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Anai          | yst: JCC     |          |    |         |       |      |     |    |
| * Sulfate                             | 8/7/20 11:34  | 8/7/20 11:34 | ļ        | 1  | 23.8    | mg/L  | 0.50 | 1   |    |
| Analytical Method: Field Measurements | Anai          | lyst: DKG    |          |    |         |       |      |     |    |
| Conductivity                          | 8/4/20 08:49  | 8/4/20 08:49 | )        |    | 762.82  | uS/cm |      |     | FA |
| рН                                    | 8/4/20 08:49  | 8/4/20 08:49 | )        |    | 6.94    | SU    |      |     | FA |
| Temperature                           | 8/4/20 08:49  | 8/4/20 08:49 | )        |    | 19.38   | С     |      |     | FA |
| Turbidity                             | 8/4/20 08:49  | 8/4/20 08:49 | )        |    | 1.86    | NTU   |      |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

### **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 8/4/20 08:53

Customer ID:

**Delivery Date:** 8/6/20 11:01

Description: Gorgas Gypsum - PZ-21

Laboratory ID Number: BA14547

|         |                        |       |             | MB        |       |         |         |          | Standard         |      | Rec       |       | Prec          |
|---------|------------------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|------|-----------|-------|---------------|
| Sample  | Analysis               | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | Limit            | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA14550 | Thallium, Total        | mg/L  | 0.0000135   | 0.0001474 | 0.10  | 0.105   | 0.111   | 0.0999   | 0.085 to 0.115   | 105  | 70 to 130 | 5.56  | 20            |
| BA14550 | Cobalt, Total          | mg/L  | -0.0000239  | 0.0001474 | 0.10  | 0.118   | 0.124   | 0.104    | 0.085 to 0.115   | 105  | 70 to 130 | 4.96  | 20            |
| BA14550 | Selenium, Total        | mg/L  | -0.0000679  | 0.001     | 0.10  | 0.103   | 0.111   | 0.100    | 0.085 to 0.115   | 103  | 70 to 130 | 7.48  | 20            |
| BA14550 | Arsenic, Total         | mg/L  | 0.00000093  | 0.0001474 | 0.10  | 0.110   | 0.119   | 0.105    | 0.085 to 0.115   | 110  | 70 to 130 | 7.86  | 20            |
| BA14550 | Boron, Total           | mg/L  | 0.000558    | 0.0650254 | 1.00  | 3.78    | 3.76    | 0.964    | 0.85 to 1.15     | 98.0 | 70 to 130 | 0.531 | 20            |
| BA14550 | Cadmium, Total         | mg/L  | -0.00000379 | 0.0001474 | 0.10  | 0.0982  | 0.104   | 0.0962   | 0.085 to 0.115   | 98.2 | 70 to 130 | 5.74  | 20            |
| BA14552 | Iron, Dissolved        | mg/L  | -0.000944   | 0.0176    | 0.2   | 0.241   | 0.245   | 0.206    | 0.17 to 0.23     | 100  | 70 to 130 | 1.65  | 20            |
| BA14550 | Barium, Total          | mg/L  | 0.00000766  | 0.0002    | 0.10  | 0.113   | 0.121   | 0.0897   | 0.085 to 0.115   | 96.0 | 70 to 130 | 6.84  | 20            |
| BA14550 | Molybdenum, Total      | mg/L  | 0.00000555  | 0.0001474 | 0.10  | 0.104   | 0.110   | 0.0966   | 0.085 to 0.115   | 104  | 70 to 130 | 5.61  | 20            |
| BA14550 | Calcium, Total         | mg/L  | -0.00321    | 0.1518    | 5.00  | 447     | 438     | 5.03     | 4.25 to 5.75     | 80.0 | 70 to 130 | 2.03  | 20            |
| BA14550 | Iron, Total            | mg/L  | 0.00220     | 0.0176    | 0.2   | 34.8    | 34.0    | 0.202    | 0.17 to 0.23     | 250  | 70 to 130 | 2.33  | 20            |
| BA14550 | Potassium, Total       | mg/L  | -0.00825    | 0.3674    | 10.0  | 23.0    | 23.9    | 10.8     | 8.5 to 11.5      | 112  | 70 to 130 | 3.84  | 20            |
| BA14550 | Sodium, Total          | mg/L  | 0.000367    | 0.044     | 5.00  | 219     | 215     | 4.84     | 4.25 to 5.75     | 80.0 | 70 to 130 | 1.84  | 20            |
| BA14550 | Antimony, Total        | mg/L  | 0.000196    | 0.001     | 0.10  | 0.0928  | 0.0984  | 0.0872   | 0.085 to 0.115   | 92.8 | 70 to 130 | 5.86  | 20            |
| BA14552 | Manganese, Dissolved   | mg/L  | 0.0000168   | 0.0001474 | 0.10  | 0.183   | 0.190   | 0.103    | 0.085 to 0.115   | 91.5 | 70 to 130 | 3.75  | 20            |
| BA14550 | Chromium, Total        | mg/L  | -0.0000152  | 0.00044   | 0.10  | 0.106   | 0.112   | 0.104    | 0.085 to 0.115   | 106  | 70 to 130 | 5.50  | 20            |
| BA14550 | Manganese, Total       | mg/L  | 0.0000036   | 0.0001474 | 0.10  | 15.0    | 12.6    | 0.0985   | 0.085 to 0.115   | 100  | 70 to 130 | 17.4  | 20            |
| BA14550 | Mercury, Total by CVAA | mg/L  | 0.0000256   | 0.0005    | 0.004 | 0.00332 | 0.00316 | 0.00364  | 0.0034 to 0.0046 | 83.0 | 70 to 130 | 4.94  | 20            |
| BA14550 | Magnesium, Total       | mg/L  | 0.000661    | 0.0462    | 5.00  | 247     | 241     | 5.13     | 4.25 to 5.75     | 80.0 | 70 to 130 | 2.46  | 20            |
| BA14550 | Beryllium, Total       | mg/L  | -0.00000532 | 0.00088   | 0.10  | 0.0910  | 0.0921  | 0.0878   | 0.085 to 0.115   | 91.0 | 70 to 130 | 1.20  | 20            |
| BA14550 | Lithium, Total         | mg/L  | -0.000168   | 0.0154    | 0.20  | 0.643   | 0.642   | 0.190    | 0.17 to 0.23     | 124  | 70 to 130 | 0.156 | 20            |
| BA14550 | Lead, Total            | mg/L  | 0.00000456  | 0.0001474 | 0.10  | 0.110   | 0.117   | 0.106    | 0.085 to 0.115   | 110  | 70 to 130 | 6.17  | 20            |

### **Batch QC Summary**



Customer Account: WMWGORG

Sample Date: 8/4/20 08:53

**Customer ID:** 

**Delivery Date:** 8/6/20 11:01

Description: Gorgas Gypsum - PZ-21

Laboratory ID Number: BA14547

|                                    |       |        | MB    |       |      | Sample    |          | Standard     | Rec            |       | Prec          |
|------------------------------------|-------|--------|-------|-------|------|-----------|----------|--------------|----------------|-------|---------------|
| Sample Analysis                    | Units | MB     | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec Limit      | Prec  | <u>Li</u> mit |
| BA14550 Chloride                   | mg/L  | 0.0146 | 0.50  | 250   | 546  | 302       | 10.2     | 9 to 11      | 96.4 80 to 120 | 0.988 | 20            |
| BA14550 Fluoride                   | mg/L  | 0.0233 | 0.05  | 2.50  | 2.91 | 0.377     | 2.45     | 2.25 to 2.75 | 102 80 to 120  | 7.71  | 20            |
| BA14550 Sulfate                    | mg/L  | -0.397 | 0.50  | 2000  | 3770 | 1830      | 18.9     | 18 to 22     | 95.5 80 to 120 | 1.63  | 20            |
| BA14550 Solids, Dissolved          | mg/L  | 0.0000 | 25    |       |      | 3530      | 52.0     | 40 to 60     |                | 0.00  | 5             |
| BA14563 Alkalinity, Total as CaCO3 | mg/L  |        |       |       |      | 116       | 49.0     | 45.0 to 55.0 |                | 2.72  | 10            |

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 8/19/2020

> Reported: 8/21/2020 Version: 3.1 COA\_CCR

### Certificate Of Analysis



Description: Gorgas Gypsum - PZ-22Location Code:WMWGORGCollected:8/4/20 10:00

Customer ID:

Submittal Date: 8/6/20 11:01

Laboratory ID Number: BA14548

| Name                         | Prepared      | Analyzed     | Vio Spec DF | Results    | Units          | MDL      | RL       | Q |
|------------------------------|---------------|--------------|-------------|------------|----------------|----------|----------|---|
| Analytical Method: EPA 200.7 | Analy         | yst: RDA     |             | Prepa      | ration Method: | EPA 1638 |          |   |
| * Boron, Total               | 8/10/20 15:00 | 8/12/20 09:5 | 5 1.01      | 0.108      | mg/L           | 0.03     | 0.1      |   |
| * Calcium, Total             | 8/10/20 15:00 | 8/12/20 12:1 | 6 20.3      | 70.4       | mg/L           | 2.03     | 10.15    |   |
| * Iron, Total                | 8/10/20 15:00 | 8/12/20 12:1 | 6 20.3      | 55.0       | mg/L           | 0.406    | 1.015    |   |
| * Lithium, Total             | 8/10/20 15:00 | 8/12/20 09:5 | 5 1.01      | 0.0558     | mg/L           | 0.01     | 0.02     |   |
| * Magnesium, Total           | 8/10/20 15:00 | 8/12/20 09:5 | 5 1.01      | 36.7       | mg/L           | 0.1      | 0.5      |   |
| * Sodium, Total              | 8/10/20 15:00 | 8/12/20 09:5 | 5 1.01      | 36.1       | mg/L           | 0.1      | 0.5      |   |
| Analytical Method: EPA 200.7 | Anal          | yst: RDA     |             |            |                |          |          |   |
| * Iron, Dissolved            | 8/10/20 13:30 | 8/11/20 13:3 | 7 101.      | 5 53.6     | mg/L           | 2.03     | 5.075    |   |
| Analytical Method: EPA 200.8 | Anal          | yst: DLJ     |             | Prepa      | ration Method: | EPA 1638 |          |   |
| * Antimony, Total            | 8/7/20 12:54  | 8/10/20 11:1 | 8 1.01      | Not Detect | ed mg/L        | 0.0008   | 0.003    | U |
| * Arsenic, Total             | 8/7/20 12:54  | 8/10/20 11:1 | 8 1.01      | 0.0297     | mg/L           | 0.001    | 0.005    |   |
| * Barium, Total              | 8/7/20 12:54  | 8/10/20 11:1 | 8 1.01      | 0.0243     | mg/L           | 0.002    | 0.01     |   |
| * Beryllium, Total           | 8/7/20 12:54  | 8/10/20 11:1 | 8 1.01      | Not Detect | ed mg/L        | 0.0006   | 0.003    | U |
| * Cadmium, Total             | 8/7/20 12:54  | 8/10/20 11:1 | 8 1.01      | Not Detect | ed mg/L        | 0.0003   | 0.001    | U |
| * Chromium, Total            | 8/7/20 12:54  | 8/10/20 11:1 | 8 1.01      | Not Detect | ed mg/L        | 0.002    | 0.01     | U |
| * Cobalt, Total              | 8/7/20 12:54  | 8/10/20 11:1 | 8 1.01      | 0.00210    | mg/L           | 0.002    | 0.005    | J |
| * Lead, Total                | 8/7/20 12:54  | 8/10/20 11:1 | 8 1.01      | Not Detect | ed mg/L        | 0.001    | 0.005    | U |
| * Molybdenum, Total          | 8/7/20 12:54  | 8/10/20 11:1 | 8 1.01      | 0.00267    | mg/L           | 0.002    | 0.01     | J |
| * Potassium, Total           | 8/7/20 12:54  | 8/10/20 11:1 | 8 1.01      | 7.18       | mg/L           | 0.3      | 2.5      |   |
| * Manganese, Total           | 8/7/20 12:54  | 8/11/20 14:0 | 3 5.07      | 5 2.27     | mg/L           | 0.005075 | 0.025375 |   |
| * Selenium, Total            | 8/7/20 12:54  | 8/10/20 11:1 | 8 1.01      | Not Detect | ed mg/L        | 0.002    | 0.01     | U |
| * Thallium, Total            | 8/7/20 12:54  | 8/10/20 11:1 | 8 1.01      | Not Detect | ed mg/L        | 0.0002   | 0.001    | U |
| Analytical Method: EPA 200.8 | Anal          | yst: DLJ     |             |            |                |          |          |   |
| * Manganese, Dissolved       | 8/7/20 14:00  | 8/11/20 15:2 | 5 5.07      | 5 2.39     | mg/L           | 0.005075 | 0.025375 |   |
| Analytical Method: EPA 245.1 | Anal          | yst: GAS     |             |            |                |          |          |   |
| * Mercury, Total by CVAA     | 8/11/20 09:20 |              | 8 1         | Not Detect | ed mg/L        | 0.0003   | 0.0005   | U |
| Analytical Method: SM 2320 B | Anal          | yst: JAG     |             |            | -              |          |          |   |
| Alkalinity, Total as CaCO3   | 8/14/20 10:00 |              | 5 1         | 89.8       | mg/L           |          | 0.1      |   |
| Analytical Method: SM 2540C  | Anal          | yst: TJW     |             |            |                |          |          |   |
| * Solids, Dissolved          | 8/7/20 14:25  | 8/11/20 12:2 | 0 1         | 638        | mg/L           |          | 50       |   |

MDL's and RL's are adjusted for sample dilution, as applicable

## Certificate Of Analysis



**Location Code: WMWGORG** Description: Gorgas Gypsum - PZ-22 Collected:

**Customer ID:** 

8/4/20 10:00

Submittal Date: 8/6/20 11:01

| Laboratory ID Number: BA14548         |               |              |             | Subi    | ilillai Dale. | 0/0/20 11.0 | <i>)</i> |    |
|---------------------------------------|---------------|--------------|-------------|---------|---------------|-------------|----------|----|
| Name                                  | Prepared      | Analyzed     | Vio Spec DF | Results | Units         | MDL         | RL       | Q  |
| Analytical Method: SM 4500CO2 D       | Ana           | lyst: JAG    |             |         |               |             |          |    |
| Bicarbonate Alkalinity, (calc.)       | 8/14/20 10:00 | 8/14/20 11:0 | 5 1         | 89.8    | mg/L          |             |          |    |
| Carbonate Alkalinity, (calc.)         | 8/14/20 10:00 | 8/14/20 11:0 | 5 1         | 0.02    | mg/L          |             |          |    |
| Analytical Method: SM4500Cl E         | Ana           | lyst: JCC    |             |         |               |             |          |    |
| * Chloride                            | 8/10/20 12:37 | 8/10/20 12:3 | 37 1        | 7.77    | mg/L          | 0.50        | 1        |    |
| Analytical Method: SM4500F G 2017     | Ana           | lyst: JCC    |             |         |               |             |          |    |
| * Fluoride                            | 8/11/20 10:53 | 8/11/20 10:5 | 3 1         | 0.167   | mg/L          | 0.06        | 0.1      |    |
| Analytical Method: SM4500SO4 E 2011   | Ana           | lyst: JCC    |             |         |               |             |          |    |
| * Sulfate                             | 8/7/20 11:35  | 8/7/20 11:35 | 5 20        | 340     | mg/L          | 10.00       | 20       |    |
| Analytical Method: Field Measurements | Ana           | lyst: DKG    |             |         |               |             |          |    |
| Conductivity                          | 8/4/20 09:57  | 8/4/20 09:57 | •           | 863.41  | uS/cm         |             |          | FA |
| рН                                    | 8/4/20 09:57  | 8/4/20 09:57 | •           | 6.42    | SU            |             |          | FA |
| Temperature                           | 8/4/20 09:57  | 8/4/20 09:57 | •           | 18.94   | С             |             |          | FA |
| Turbidity                             | 8/4/20 09:57  | 8/4/20 09:57 | •           | 1.3     | NTU           |             |          | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

#### **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 8/4/20 10:00

Customer ID:

**Delivery Date:** 8/6/20 11:01

**Description**: Gorgas Gypsum - PZ-22

Laboratory ID Number: BA14548

| -                              |       |             | MB        |       |         |         |          | Standard         |      | Rec       |       | Prec          |
|--------------------------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|------|-----------|-------|---------------|
| Sample Analysis                | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | Limit            | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA14550 Thallium, Total        | mg/L  | 0.0000135   | 0.0001474 | 0.10  | 0.105   | 0.111   | 0.0999   | 0.085 to 0.115   | 105  | 70 to 130 | 5.56  | 20            |
| BA14550 Mercury, Total by CVAA | mg/L  | 0.0000256   | 0.0005    | 0.004 | 0.00332 | 0.00316 | 0.00364  | 0.0034 to 0.0046 | 83.0 | 70 to 130 | 4.94  | 20            |
| BA14550 Magnesium, Total       | mg/L  | 0.000661    | 0.0462    | 5.00  | 247     | 241     | 5.13     | 4.25 to 5.75     | 80.0 | 70 to 130 | 2.46  | 20            |
| BA14550 Arsenic, Total         | mg/L  | 0.00000093  | 0.0001474 | 0.10  | 0.110   | 0.119   | 0.105    | 0.085 to 0.115   | 110  | 70 to 130 | 7.86  | 20            |
| BA14550 Boron, Total           | mg/L  | 0.000558    | 0.0650254 | 1.00  | 3.78    | 3.76    | 0.964    | 0.85 to 1.15     | 98.0 | 70 to 130 | 0.531 | 20            |
| BA14550 Cadmium, Total         | mg/L  | -0.00000379 | 0.0001474 | 0.10  | 0.0982  | 0.104   | 0.0962   | 0.085 to 0.115   | 98.2 | 70 to 130 | 5.74  | 20            |
| BA14552 Iron, Dissolved        | mg/L  | -0.000944   | 0.0176    | 0.2   | 0.241   | 0.245   | 0.206    | 0.17 to 0.23     | 100  | 70 to 130 | 1.65  | 20            |
| BA14550 Cobalt, Total          | mg/L  | -0.0000239  | 0.0001474 | 0.10  | 0.118   | 0.124   | 0.104    | 0.085 to 0.115   | 105  | 70 to 130 | 4.96  | 20            |
| BA14550 Selenium, Total        | mg/L  | -0.0000679  | 0.001     | 0.10  | 0.103   | 0.111   | 0.100    | 0.085 to 0.115   | 103  | 70 to 130 | 7.48  | 20            |
| BA14550 Chromium, Total        | mg/L  | -0.0000152  | 0.00044   | 0.10  | 0.106   | 0.112   | 0.104    | 0.085 to 0.115   | 106  | 70 to 130 | 5.50  | 20            |
| BA14550 Manganese, Total       | mg/L  | 0.0000036   | 0.0001474 | 0.10  | 15.0    | 12.6    | 0.0985   | 0.085 to 0.115   | 100  | 70 to 130 | 17.4  | 20            |
| BA14550 Beryllium, Total       | mg/L  | -0.00000532 | 0.00088   | 0.10  | 0.0910  | 0.0921  | 0.0878   | 0.085 to 0.115   | 91.0 | 70 to 130 | 1.20  | 20            |
| BA14550 Lithium, Total         | mg/L  | -0.000168   | 0.0154    | 0.20  | 0.643   | 0.642   | 0.190    | 0.17 to 0.23     | 124  | 70 to 130 | 0.156 | 20            |
| BA14550 Lead, Total            | mg/L  | 0.00000456  | 0.0001474 | 0.10  | 0.110   | 0.117   | 0.106    | 0.085 to 0.115   | 110  | 70 to 130 | 6.17  | 20            |
| BA14550 Barium, Total          | mg/L  | 0.00000766  | 0.0002    | 0.10  | 0.113   | 0.121   | 0.0897   | 0.085 to 0.115   | 96.0 | 70 to 130 | 6.84  | 20            |
| BA14550 Molybdenum, Total      | mg/L  | 0.00000555  | 0.0001474 | 0.10  | 0.104   | 0.110   | 0.0966   | 0.085 to 0.115   | 104  | 70 to 130 | 5.61  | 20            |
| BA14550 Calcium, Total         | mg/L  | -0.00321    | 0.1518    | 5.00  | 447     | 438     | 5.03     | 4.25 to 5.75     | 80.0 | 70 to 130 | 2.03  | 20            |
| BA14550 Iron, Total            | mg/L  | 0.00220     | 0.0176    | 0.2   | 34.8    | 34.0    | 0.202    | 0.17 to 0.23     | 250  | 70 to 130 | 2.33  | 20            |
| BA14550 Potassium, Total       | mg/L  | -0.00825    | 0.3674    | 10.0  | 23.0    | 23.9    | 10.8     | 8.5 to 11.5      | 112  | 70 to 130 | 3.84  | 20            |
| BA14550 Sodium, Total          | mg/L  | 0.000367    | 0.044     | 5.00  | 219     | 215     | 4.84     | 4.25 to 5.75     | 80.0 | 70 to 130 | 1.84  | 20            |
| BA14550 Antimony, Total        | mg/L  | 0.000196    | 0.001     | 0.10  | 0.0928  | 0.0984  | 0.0872   | 0.085 to 0.115   | 92.8 | 70 to 130 | 5.86  | 20            |
| BA14552 Manganese, Dissolved   | mg/L  | 0.0000168   | 0.0001474 | 0.10  | 0.183   | 0.190   | 0.103    | 0.085 to 0.115   | 91.5 | 70 to 130 | 3.75  | 20            |

### **Batch QC Summary**



Customer Account: WMWGORG Sample Date: 8/4/20 10:00

**Customer ID:** 

**Delivery Date:** 8/6/20 11:01

Description: Gorgas Gypsum - PZ-22

Laboratory ID Number: BA14548

|         |                            |       |        | MB    |       |      | Sample    |          | Standard     |      | Rec       |       | Prec          |
|---------|----------------------------|-------|--------|-------|-------|------|-----------|----------|--------------|------|-----------|-------|---------------|
| Sample  | Analysis                   | Units | MB     | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA14550 | Chloride                   | mg/L  | 0.0146 | 0.50  | 250   | 546  | 302       | 10.2     | 9 to 11      | 96.4 | 80 to 120 | 0.988 | 20            |
| BA14550 | Fluoride                   | mg/L  | 0.0233 | 0.05  | 2.50  | 2.91 | 0.377     | 2.45     | 2.25 to 2.75 | 102  | 80 to 120 | 7.71  | 20            |
| BA14550 | Sulfate                    | mg/L  | -0.397 | 0.50  | 2000  | 3770 | 1830      | 18.9     | 18 to 22     | 95.5 | 80 to 120 | 1.63  | 20            |
| BA14550 | Solids, Dissolved          | mg/L  | 0.0000 | 25    |       |      | 3530      | 52.0     | 40 to 60     |      |           | 0.00  | 5             |
| BA14563 | Alkalinity, Total as CaCO3 | mg/L  |        |       |       |      | 116       | 49.0     | 45.0 to 55.0 |      |           | 2.72  | 10            |

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 8/19/2020

> Reported: 8/21/2020 Version: 3.1 COA\_CCR

#### Certificate Of Analysis



Description: Gorgas Gypsum - PZ-17Location Code:WMWGORGCollected:8/4/20 11:20

**Customer ID:** 

Submittal Date: 8/6/20 11:01

Laboratory ID Number: BA14549

| Name                                  | Prepared      | Analyzed     | Vio Spec DF | Results      | Units      | MDL      | RL      | Q |
|---------------------------------------|---------------|--------------|-------------|--------------|------------|----------|---------|---|
| Analytical Method: EPA 200.7          | Analy         | yst: RDA     |             | Preparati    | on Method: | EPA 1638 |         |   |
| * Boron, Total                        | 8/10/20 15:00 | 8/12/20 09:5 | 7 1.015     | 0.168        | mg/L       | 0.03     | 0.1     |   |
| * Calcium, Total                      | 8/10/20 15:00 | 8/12/20 12:1 | 9 101.5     | 218          | mg/L       | 10.15    | 50.75   |   |
| * Iron, Total                         | 8/10/20 15:00 | 8/12/20 12:1 | 9 101.5     | 57.3         | mg/L       | 2.03     | 5.075   |   |
| * Lithium, Total                      | 8/10/20 15:00 | 8/12/20 09:5 | 7 1.015     | 1.39         | mg/L       | 0.01     | 0.02    |   |
| * Magnesium, Total                    | 8/10/20 15:00 | 8/12/20 12:1 | 9 101.5     | 150          | mg/L       | 10.15    | 50.75   |   |
| * Sodium, Total                       | 8/10/20 15:00 | 8/12/20 09:5 | 7 1.015     | 18.9         | mg/L       | 0.1      | 0.5     |   |
| Analytical Method: EPA 200.7          | Analy         | yst: RDA     |             |              |            |          |         |   |
| * Iron, Dissolved                     | 8/10/20 13:30 | 8/11/20 13:4 | 0 101.5     | 47.9         | mg/L       | 2.03     | 5.075   |   |
| Analytical Method: EPA 200.8          | Analy         | yst: DLJ     |             | Preparati    | on Method: | EPA 1638 |         |   |
| * Antimony, Total                     | 8/7/20 12:54  | 8/10/20 11:2 | 0 1.015     | Not Detected | mg/L       | 0.0008   | 0.003   | U |
| * Arsenic, Total                      | 8/7/20 12:54  | 8/10/20 11:2 | 0 1.015     | 0.00495      | mg/L       | 0.001    | 0.005   | J |
| * Barium, Total                       | 8/7/20 12:54  | 8/10/20 11:2 | 0 1.015     | 0.0181       | mg/L       | 0.002    | 0.01    |   |
| * Beryllium, Total                    | 8/7/20 12:54  | 8/10/20 11:2 | 0 1.015     | 0.0145       | mg/L       | 0.0006   | 0.003   |   |
| * Cadmium, Total                      | 8/7/20 12:54  | 8/10/20 11:2 | 0 1.015     | 0.00197      | mg/L       | 0.0003   | 0.001   |   |
| * Chromium, Total                     | 8/7/20 12:54  | 8/10/20 11:2 | 0 1.015     | 0.00254      | mg/L       | 0.002    | 0.01    | J |
| * Cobalt, Total                       | 8/7/20 12:54  | 8/10/20 11:2 | 0 1.015     | 0.471        | mg/L       | 0.002    | 0.005   |   |
| * Lead, Total                         | 8/7/20 12:54  | 8/10/20 11:2 | 0 1.015     | 0.00582      | mg/L       | 0.001    | 0.005   |   |
| <ul> <li>Molybdenum, Total</li> </ul> | 8/7/20 12:54  | 8/10/20 11:2 | 0 1.015     | Not Detected | mg/L       | 0.002    | 0.01    | U |
| * Potassium, Total                    | 8/7/20 12:54  | 8/10/20 11:2 | 0 1.015     | 6.77         | mg/L       | 0.3      | 2.5     |   |
| * Manganese, Total                    | 8/7/20 12:54  | 8/11/20 14:0 | 5 10.15     | 12.4         | mg/L       | 0.01015  | 0.05075 |   |
| * Selenium, Total                     | 8/7/20 12:54  | 8/10/20 11:2 | 0 1.015     | 0.0135       | mg/L       | 0.002    | 0.01    |   |
| * Thallium, Total                     | 8/7/20 12:54  | 8/10/20 11:2 | 0 1.015     | 0.000242     | mg/L       | 0.0002   | 0.001   | J |
| Analytical Method: EPA 200.8          | Analy         | yst: DLJ     |             |              |            |          |         |   |
| * Manganese, Dissolved                | 8/7/20 14:00  | 8/11/20 15:2 | 8 10.15     | 12.6         | mg/L       | 0.01015  | 0.05075 |   |
| Analytical Method: EPA 245.1          | Analy         | yst: GAS     |             |              |            |          |         |   |
| * Mercury, Total by CVAA              | 8/11/20 09:20 | 8/11/20 13:2 | 0 1         | Not Detected | mg/L       | 0.0003   | 0.0005  | U |
| Analytical Method: SM 2320 B          | Analy         | yst: JAG     |             |              |            |          |         |   |
| Alkalinity, Total as CaCO3            | 8/14/20 10:00 | 8/14/20 11:0 | 5 1         | NA           | mg/L       |          | 0.10    |   |
| Analytical Method: SM 2540C           | Analy         | yst: TJW     |             |              |            |          |         |   |
| * Solids, Dissolved                   | 8/7/20 14:25  | 8/11/20 12:2 | 0 1         | 2160         | mg/L       |          | 100     |   |

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. NA result for Alkalinity is due to the initial sample pH reading below the alkalinity titration point of 4.5. LBM 08/19/2020

#### Certificate Of Analysis



Description: Gorgas Gypsum - PZ-17

Laboratory ID Number: BA14549

**Location Code:** 

**WMWGORG** 

Collected:

**Customer ID:** 

8/4/20 11:20

Submittal Date: 8/6/20 11:01

| Name                                  | Prepared      | Analyzed     | Vio Spec | DF | Results      | Units | MDL   | RL  | Q  |
|---------------------------------------|---------------|--------------|----------|----|--------------|-------|-------|-----|----|
| Analytical Method: SM 4500CO2 D       | Anai          | yst: JAG     |          |    |              |       |       |     |    |
| Bicarbonate Alkalinity, (calc.)       | 8/14/20 10:00 | 8/14/20 11:0 | )5       | 1  | NA           | mg/L  |       |     |    |
| Carbonate Alkalinity, (calc.)         | 8/14/20 10:00 | 8/14/20 11:0 | )5       | 1  | NA           | mg/L  |       |     |    |
| Analytical Method: SM4500Cl E         | Anai          | lyst: JCC    |          |    |              |       |       |     |    |
| * Chloride                            | 8/10/20 12:39 | 8/10/20 12:3 | 39       | 1  | 1.70         | mg/L  | 0.50  | 1   |    |
| Analytical Method: SM4500F G 2017     | Anai          | lyst: JCC    |          |    |              |       |       |     |    |
| * Fluoride                            | 8/11/20 10:54 | 8/11/20 10:5 | 54       | 1  | Not Detected | mg/L  | 0.06  | 0.1 | U  |
| Analytical Method: SM4500SO4 E 2011   | Anai          | lyst: JCC    |          |    |              |       |       |     |    |
| * Sulfate                             | 8/7/20 11:36  | 8/7/20 11:36 | 6        | 50 | 1310         | mg/L  | 25.00 | 50  |    |
| Analytical Method: Field Measurements | Anal          | lyst: DKG    |          |    |              |       |       |     |    |
| Conductivity                          | 8/4/20 11:17  | 8/4/20 11:17 | ,        |    | 1883.10      | uS/cm |       |     | FA |
| рН                                    | 8/4/20 11:17  | 8/4/20 11:17 | 7        |    | 4.08         | SU    |       |     | FA |
| Temperature                           | 8/4/20 11:17  | 8/4/20 11:17 | ,        |    | 23.57        | С     |       |     | FA |
| Turbidity                             | 8/4/20 11:17  | 8/4/20 11:17 | 7        |    | 5.56         | NTU   |       |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. NA result for Alkalinity is due to the initial sample pH reading below the alkalinity titration point of 4.5. LBM 08/19/2020

#### **Batch QC Summary**



Customer Account: WMWGORG Sample Date: 8/4/20 11:20

Customer ID:

**Delivery Date:** 8/6/20 11:01

Description: Gorgas Gypsum - PZ-17

Laboratory ID Number: BA14549

|         |                        |       |             | MB        |       |         |         |          | Standard         |      | Rec       |       | Prec          |
|---------|------------------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|------|-----------|-------|---------------|
| Sample  | Analysis               | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | Limit            | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA14550 | Thallium, Total        | mg/L  | 0.0000135   | 0.0001474 | 0.10  | 0.105   | 0.111   | 0.0999   | 0.085 to 0.115   | 105  | 70 to 130 | 5.56  | 20            |
| BA14550 | Mercury, Total by CVAA | mg/L  | 0.0000256   | 0.0005    | 0.004 | 0.00332 | 0.00316 | 0.00364  | 0.0034 to 0.0046 | 83.0 | 70 to 130 | 4.94  | 20            |
| BA14550 | Magnesium, Total       | mg/L  | 0.000661    | 0.0462    | 5.00  | 247     | 241     | 5.13     | 4.25 to 5.75     | 80.0 | 70 to 130 | 2.46  | 20            |
| BA14550 | Barium, Total          | mg/L  | 0.00000766  | 0.0002    | 0.10  | 0.113   | 0.121   | 0.0897   | 0.085 to 0.115   | 96.0 | 70 to 130 | 6.84  | 20            |
| BA14550 | Molybdenum, Total      | mg/L  | 0.00000555  | 0.0001474 | 0.10  | 0.104   | 0.110   | 0.0966   | 0.085 to 0.115   | 104  | 70 to 130 | 5.61  | 20            |
| BA14550 | Chromium, Total        | mg/L  | -0.0000152  | 0.00044   | 0.10  | 0.106   | 0.112   | 0.104    | 0.085 to 0.115   | 106  | 70 to 130 | 5.50  | 20            |
| BA14550 | Manganese, Total       | mg/L  | 0.0000036   | 0.0001474 | 0.10  | 15.0    | 12.6    | 0.0985   | 0.085 to 0.115   | 100  | 70 to 130 | 17.4  | 20            |
| BA14550 | Calcium, Total         | mg/L  | -0.00321    | 0.1518    | 5.00  | 447     | 438     | 5.03     | 4.25 to 5.75     | 80.0 | 70 to 130 | 2.03  | 20            |
| BA14550 | Iron, Total            | mg/L  | 0.00220     | 0.0176    | 0.2   | 34.8    | 34.0    | 0.202    | 0.17 to 0.23     | 250  | 70 to 130 | 2.33  | 20            |
| BA14550 | Potassium, Total       | mg/L  | -0.00825    | 0.3674    | 10.0  | 23.0    | 23.9    | 10.8     | 8.5 to 11.5      | 112  | 70 to 130 | 3.84  | 20            |
| BA14550 | Sodium, Total          | mg/L  | 0.000367    | 0.044     | 5.00  | 219     | 215     | 4.84     | 4.25 to 5.75     | 80.0 | 70 to 130 | 1.84  | 20            |
| BA14550 | Antimony, Total        | mg/L  | 0.000196    | 0.001     | 0.10  | 0.0928  | 0.0984  | 0.0872   | 0.085 to 0.115   | 92.8 | 70 to 130 | 5.86  | 20            |
| BA14552 | Manganese, Dissolved   | mg/L  | 0.0000168   | 0.0001474 | 0.10  | 0.183   | 0.190   | 0.103    | 0.085 to 0.115   | 91.5 | 70 to 130 | 3.75  | 20            |
| BA14550 | Cobalt, Total          | mg/L  | -0.0000239  | 0.0001474 | 0.10  | 0.118   | 0.124   | 0.104    | 0.085 to 0.115   | 105  | 70 to 130 | 4.96  | 20            |
| BA14550 | Selenium, Total        | mg/L  | -0.0000679  | 0.001     | 0.10  | 0.103   | 0.111   | 0.100    | 0.085 to 0.115   | 103  | 70 to 130 | 7.48  | 20            |
| BA14550 | Beryllium, Total       | mg/L  | -0.00000532 | 0.00088   | 0.10  | 0.0910  | 0.0921  | 0.0878   | 0.085 to 0.115   | 91.0 | 70 to 130 | 1.20  | 20            |
| BA14550 | Lithium, Total         | mg/L  | -0.000168   | 0.0154    | 0.20  | 0.643   | 0.642   | 0.190    | 0.17 to 0.23     | 124  | 70 to 130 | 0.156 | 20            |
| BA14550 | Lead, Total            | mg/L  | 0.00000456  | 0.0001474 | 0.10  | 0.110   | 0.117   | 0.106    | 0.085 to 0.115   | 110  | 70 to 130 | 6.17  | 20            |
| BA14550 | Arsenic, Total         | mg/L  | 0.00000093  | 0.0001474 | 0.10  | 0.110   | 0.119   | 0.105    | 0.085 to 0.115   | 110  | 70 to 130 | 7.86  | 20            |
| BA14550 | Boron, Total           | mg/L  | 0.000558    | 0.0650254 | 1.00  | 3.78    | 3.76    | 0.964    | 0.85 to 1.15     | 98.0 | 70 to 130 | 0.531 | 20            |
| BA14550 | Cadmium, Total         | mg/L  | -0.00000379 | 0.0001474 | 0.10  | 0.0982  | 0.104   | 0.0962   | 0.085 to 0.115   | 98.2 | 70 to 130 | 5.74  | 20            |
| BA14552 | Iron, Dissolved        | mg/L  | -0.000944   | 0.0176    | 0.2   | 0.241   | 0.245   | 0.206    | 0.17 to 0.23     | 100  | 70 to 130 | 1.65  | 20            |

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. NA result for Alkalinity is due to the initial sample pH reading below the alkalinity titration point of 4.5. LBM 08/19/2020

# **Batch QC Summary**



Customer Account: WMWGORG Sample Date: 8/4/20 11:20

8/6/20 11:01

**Delivery Date:** 

**Customer ID:** 

Description: Gorgas Gypsum - PZ-17

Laboratory ID Number: BA14549

|         |                            |       |        | MB    |       |      | Sample    |          | Standard     |      | Rec       |       | Prec          |
|---------|----------------------------|-------|--------|-------|-------|------|-----------|----------|--------------|------|-----------|-------|---------------|
| Sample  | Analysis                   | Units | MB     | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA14550 | Chloride                   | mg/L  | 0.0146 | 0.50  | 250   | 546  | 302       | 10.2     | 9 to 11      | 96.4 | 80 to 120 | 0.988 | 20            |
| BA14550 | Fluoride                   | mg/L  | 0.0233 | 0.05  | 2.50  | 2.91 | 0.377     | 2.45     | 2.25 to 2.75 | 102  | 80 to 120 | 7.71  | 20            |
| BA14550 | Sulfate                    | mg/L  | -0.397 | 0.50  | 2000  | 3770 | 1830      | 18.9     | 18 to 22     | 95.5 | 80 to 120 | 1.63  | 20            |
| BA14550 | Solids, Dissolved          | mg/L  | 0.0000 | 25    |       |      | 3530      | 52.0     | 40 to 60     |      |           | 0.00  | 5             |
| BA14563 | Alkalinity, Total as CaCO3 | mg/L  |        |       |       |      | 116       | 49.0     | 45.0 to 55.0 |      |           | 2.72  | 10            |

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. NA result for Alkalinity is due to the initial sample pH reading below the alkalinity titration point of 4.5. LBM 08/19/2020

### Certificate Of Analysis



Description: Gorgas Gypsum - MW-3VLocation Code:WMWGORGCollected:8/4/20 13:01

Customer ID:

**Submittal Date:** 8/6/20 11:01

Laboratory ID Number: BA14550

| Name                         | Prepared      | Analyzed     | Vio Spec DF | Results      | Units       | MDL      | RL       | Q   |
|------------------------------|---------------|--------------|-------------|--------------|-------------|----------|----------|-----|
| Analytical Method: EPA 200.7 | Anal          | yst: RDA     |             | Preparati    | ion Method: | EPA 1638 |          |     |
| * Boron, Total               | 8/10/20 15:00 | 8/12/20 10:0 | 0 1.015     | 2.80         | mg/L        | 0.03     | 0.1      |     |
| * Calcium, Total             | 8/10/20 15:00 | 8/12/20 12:2 | 2 101.5     | 443          | mg/L        | 10.15    | 50.75    | R.A |
| * Iron, Total                | 8/10/20 15:00 | 8/12/20 12:2 | 2 101.5     | 34.3         | mg/L        | 2.03     | 5.075    | R.A |
| * Lithium, Total             | 8/10/20 15:00 | 8/12/20 10:0 | 0 1.015     | 0.395        | mg/L        | 0.01     | 0.02     |     |
| * Magnesium, Total           | 8/10/20 15:00 | 8/12/20 12:2 | 2 101.5     | 243          | mg/L        | 10.15    | 50.75    | R.A |
| * Sodium, Total              | 8/10/20 15:00 | 8/12/20 12:2 | 2 101.5     | 215          | mg/L        | 10.15    | 50.75    | R/  |
| Analytical Method: EPA 200.7 | Anal          | yst: RDA     |             |              |             |          |          |     |
| * Iron, Dissolved            | 8/10/20 13:30 | 8/11/20 13:4 | 2 101.5     | 32.2         | mg/L        | 2.03     | 5.075    |     |
| Analytical Method: EPA 200.8 | Anal          | yst: DLJ     |             | Preparati    | ion Method: | EPA 1638 |          |     |
| * Antimony, Total            | 8/7/20 12:54  | 8/10/20 11:2 | 3 1.015     | Not Detected | mg/L        | 0.0008   | 0.003    | U   |
| * Arsenic, Total             | 8/7/20 12:54  | 8/10/20 11:2 | 3 1.015     | Not Detected | mg/L        | 0.001    | 0.005    | U   |
| * Barium, Total              | 8/7/20 12:54  | 8/10/20 11:2 | 3 1.015     | 0.0170       | mg/L        | 0.002    | 0.01     |     |
| * Beryllium, Total           | 8/7/20 12:54  | 8/10/20 11:2 | 3 1.015     | Not Detected | mg/L        | 0.0006   | 0.003    | U   |
| * Cadmium, Total             | 8/7/20 12:54  | 8/10/20 11:2 | 3 1.015     | Not Detected | mg/L        | 0.0003   | 0.001    | U   |
| * Chromium, Total            | 8/7/20 12:54  | 8/10/20 11:2 | 3 1.015     | Not Detected | mg/L        | 0.002    | 0.01     | U   |
| * Cobalt, Total              | 8/7/20 12:54  | 8/10/20 11:2 | 3 1.015     | 0.0133       | mg/L        | 0.002    | 0.005    |     |
| * Lead, Total                | 8/7/20 12:54  | 8/10/20 11:2 | 3 1.015     | Not Detected | mg/L        | 0.001    | 0.005    | U   |
| * Molybdenum, Total          | 8/7/20 12:54  | 8/10/20 11:2 | 3 1.015     | Not Detected | mg/L        | 0.002    | 0.01     | U   |
| * Potassium, Total           | 8/7/20 12:54  | 8/10/20 11:2 | 3 1.015     | 11.8         | mg/L        | 0.3      | 2.5      |     |
| * Manganese, Total           | 8/7/20 12:54  | 8/11/20 14:0 | 8 92.365    | 14.9         | mg/L        | 0.092365 | 0.461825 | R/  |
| * Selenium, Total            | 8/7/20 12:54  | 8/10/20 11:2 | 3 1.015     | Not Detected | mg/L        | 0.002    | 0.01     | U   |
| * Thallium, Total            | 8/7/20 12:54  | 8/10/20 11:2 | 3 1.015     | Not Detected | mg/L        | 0.0002   | 0.001    | U   |
| Analytical Method: EPA 200.8 | Anal          | yst: DLJ     |             |              |             |          |          |     |
| * Manganese, Dissolved       | 8/7/20 14:00  | 8/11/20 15:3 | 1 92.365    | 15.4         | mg/L        | 0.092365 | 0.461825 |     |
| Analytical Method: EPA 245.1 | Anal          | yst: GAS     |             |              |             |          |          |     |
| * Mercury, Total by CVAA     | 8/11/20 09:20 |              | 2 1         | Not Detected | mg/L        | 0.0003   | 0.0005   | U   |
| Analytical Method: SM 2320 B | Anal          | yst: JAG     |             |              |             |          |          |     |
| Alkalinity, Total as CaCO3   | 8/14/20 10:00 | •            | 5 1         | 214          | mg/L        |          | 0.1      |     |
| Analytical Method: SM 2540C  | Anal          | yst: TJW     |             |              |             |          |          |     |
| * Solids, Dissolved          | 8/7/20 14:25  | 8/11/20 12:2 | 0 1         | 3530         | mg/L        |          | 250      |     |

MDL's and RL's are adjusted for sample dilution, as applicable

### Certificate Of Analysis



Description: Gorgas Gypsum - MW-3VLocation Code:WMWGORGCollected:8/4/20 13:01

Customer ID:

Submittal Date: 8/6/20 11:01

Laboratory ID Number: BA14550

| Name                                  | Prepared      | Analyzed     | Vio Spec | DF  | Results | Units | MDL   | RL  | Q  |
|---------------------------------------|---------------|--------------|----------|-----|---------|-------|-------|-----|----|
| Analytical Method: SM 4500CO2 D       | Anal          | yst: JAG     |          |     |         |       |       |     |    |
| Bicarbonate Alkalinity, (calc.)       | 8/14/20 10:00 | 8/14/20 11:0 | )5       | 1   | 214     | mg/L  |       |     |    |
| Carbonate Alkalinity, (calc.)         | 8/14/20 10:00 | 8/14/20 11:0 | )5       | 1   | 0.03    | mg/L  |       |     |    |
| Analytical Method: SM4500Cl E         | Anal          | yst: JCC     |          |     |         |       |       |     |    |
| * Chloride                            | 8/10/20 12:40 | 8/10/20 12:4 | 0        | 25  | 305     | mg/L  | 12.50 | 25  |    |
| Analytical Method: SM4500F G 2017     | Anal          | yst: JCC     |          |     |         |       |       |     |    |
| * Fluoride                            | 8/11/20 10:56 | 8/11/20 10:5 | 66       | 1   | 0.349   | mg/L  | 0.06  | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Anal          | yst: JCC     |          |     |         |       |       |     |    |
| * Sulfate                             | 8/7/20 11:37  | 8/7/20 11:37 | •        | 100 | 1860    | mg/L  | 50.00 | 100 |    |
| Analytical Method: Field Measurements | Anal          | yst: DKG     |          |     |         |       |       |     |    |
| Conductivity                          | 8/4/20 12:58  | 8/4/20 12:58 | 3        |     | 3805.18 | uS/cm |       |     | FA |
| рН                                    | 8/4/20 12:58  | 8/4/20 12:58 | 3        |     | 5.90    | SU    |       |     | FA |
| Temperature                           | 8/4/20 12:58  | 8/4/20 12:58 | 3        |     | 25.20   | С     |       |     | FA |
| Turbidity                             | 8/4/20 12:58  | 8/4/20 12:58 | 3        |     | 1.01    | NTU   |       |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

### **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 8/4/20 13:01

Customer ID:

**Delivery Date:** 8/6/20 11:01

Description: Gorgas Gypsum - MW-3V

Laboratory ID Number: BA14550

|         |                        |       |             | MB        |       |         |         |          | Standard         |      | Rec       |       | Prec          |
|---------|------------------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|------|-----------|-------|---------------|
| Sample  | Analysis               | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | Limit            | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA14550 | Thallium, Total        | mg/L  | 0.0000135   | 0.0001474 | 0.10  | 0.105   | 0.111   | 0.0999   | 0.085 to 0.115   | 105  | 70 to 130 | 5.56  | 20            |
| BA14550 | Barium, Total          | mg/L  | 0.00000766  | 0.0002    | 0.10  | 0.113   | 0.121   | 0.0897   | 0.085 to 0.115   | 96.0 | 70 to 130 | 6.84  | 20            |
| BA14550 | Molybdenum, Total      | mg/L  | 0.00000555  | 0.0001474 | 0.10  | 0.104   | 0.110   | 0.0966   | 0.085 to 0.115   | 104  | 70 to 130 | 5.61  | 20            |
| BA14550 | Chromium, Total        | mg/L  | -0.0000152  | 0.00044   | 0.10  | 0.106   | 0.112   | 0.104    | 0.085 to 0.115   | 106  | 70 to 130 | 5.50  | 20            |
| BA14550 | Manganese, Total       | mg/L  | 0.0000036   | 0.0001474 | 0.10  | 15.0    | 12.6    | 0.0985   | 0.085 to 0.115   | 100  | 70 to 130 | 17.4  | 20            |
| BA14550 | Arsenic, Total         | mg/L  | 0.00000093  | 0.0001474 | 0.10  | 0.110   | 0.119   | 0.105    | 0.085 to 0.115   | 110  | 70 to 130 | 7.86  | 20            |
| BA14550 | Boron, Total           | mg/L  | 0.000558    | 0.0650254 | 1.00  | 3.78    | 3.76    | 0.964    | 0.85 to 1.15     | 98.0 | 70 to 130 | 0.531 | 20            |
| BA14550 | Cadmium, Total         | mg/L  | -0.00000379 | 0.0001474 | 0.10  | 0.0982  | 0.104   | 0.0962   | 0.085 to 0.115   | 98.2 | 70 to 130 | 5.74  | 20            |
| BA14552 | Iron, Dissolved        | mg/L  | -0.000944   | 0.0176    | 0.2   | 0.241   | 0.245   | 0.206    | 0.17 to 0.23     | 100  | 70 to 130 | 1.65  | 20            |
| BA14550 | Mercury, Total by CVAA | mg/L  | 0.0000256   | 0.0005    | 0.004 | 0.00332 | 0.00316 | 0.00364  | 0.0034 to 0.0046 | 83.0 | 70 to 130 | 4.94  | 20            |
| BA14550 | Magnesium, Total       | mg/L  | 0.000661    | 0.0462    | 5.00  | 247     | 241     | 5.13     | 4.25 to 5.75     | 80.0 | 70 to 130 | 2.46  | 20            |
| BA14550 | Cobalt, Total          | mg/L  | -0.0000239  | 0.0001474 | 0.10  | 0.118   | 0.124   | 0.104    | 0.085 to 0.115   | 105  | 70 to 130 | 4.96  | 20            |
| BA14550 | Selenium, Total        | mg/L  | -0.0000679  | 0.001     | 0.10  | 0.103   | 0.111   | 0.100    | 0.085 to 0.115   | 103  | 70 to 130 | 7.48  | 20            |
| BA14550 | Calcium, Total         | mg/L  | -0.00321    | 0.1518    | 5.00  | 447     | 438     | 5.03     | 4.25 to 5.75     | 80.0 | 70 to 130 | 2.03  | 20            |
| BA14550 | Iron, Total            | mg/L  | 0.00220     | 0.0176    | 0.2   | 34.8    | 34.0    | 0.202    | 0.17 to 0.23     | 250  | 70 to 130 | 2.33  | 20            |
| BA14550 | Potassium, Total       | mg/L  | -0.00825    | 0.3674    | 10.0  | 23.0    | 23.9    | 10.8     | 8.5 to 11.5      | 112  | 70 to 130 | 3.84  | 20            |
| BA14550 | Sodium, Total          | mg/L  | 0.000367    | 0.044     | 5.00  | 219     | 215     | 4.84     | 4.25 to 5.75     | 80.0 | 70 to 130 | 1.84  | 20            |
| BA14550 | Antimony, Total        | mg/L  | 0.000196    | 0.001     | 0.10  | 0.0928  | 0.0984  | 0.0872   | 0.085 to 0.115   | 92.8 | 70 to 130 | 5.86  | 20            |
| BA14552 | Manganese, Dissolved   | mg/L  | 0.0000168   | 0.0001474 | 0.10  | 0.183   | 0.190   | 0.103    | 0.085 to 0.115   | 91.5 | 70 to 130 | 3.75  | 20            |
| BA14550 | Beryllium, Total       | mg/L  | -0.00000532 | 0.00088   | 0.10  | 0.0910  | 0.0921  | 0.0878   | 0.085 to 0.115   | 91.0 | 70 to 130 | 1.20  | 20            |
| BA14550 | Lithium, Total         | mg/L  | -0.000168   | 0.0154    | 0.20  | 0.643   | 0.642   | 0.190    | 0.17 to 0.23     | 124  | 70 to 130 | 0.156 | 20            |
| BA14550 | Lead, Total            | mg/L  | 0.00000456  | 0.0001474 | 0.10  | 0.110   | 0.117   | 0.106    | 0.085 to 0.115   | 110  | 70 to 130 | 6.17  | 20            |
|         |                        |       |             |           |       |         |         |          |                  |      |           |       |               |

### **Batch QC Summary**



Customer Account: WMWGORG

Sample Date:

8/4/20 13:01

**Customer ID:** 

Delivery Date:

8/6/20 11:01

Description: Gorgas Gypsum - MW-3V

Laboratory ID Number: BA14550

|         |                            |       |        | MB    |       |      | Sample    |          | Standard     |      | Rec       |       | Prec          |
|---------|----------------------------|-------|--------|-------|-------|------|-----------|----------|--------------|------|-----------|-------|---------------|
| Sample  | Analysis                   | Units | MB     | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA14550 | Chloride                   | mg/L  | 0.0146 | 0.50  | 250   | 546  | 302       | 10.2     | 9 to 11      | 96.4 | 80 to 120 | 0.988 | 20            |
| BA14550 | Fluoride                   | mg/L  | 0.0233 | 0.05  | 2.50  | 2.91 | 0.377     | 2.45     | 2.25 to 2.75 | 102  | 80 to 120 | 7.71  | 20            |
| BA14550 | Sulfate                    | mg/L  | -0.397 | 0.50  | 2000  | 3770 | 1830      | 18.9     | 18 to 22     | 95.5 | 80 to 120 | 1.63  | 20            |
| BA14550 | Solids, Dissolved          | mg/L  | 0.0000 | 25    |       |      | 3530      | 52.0     | 40 to 60     |      |           | 0.00  | 5             |
| BA14563 | Alkalinity, Total as CaCO3 | mg/L  |        |       |       |      | 116       | 49.0     | 45.0 to 55.0 |      |           | 2.72  | 10            |

## **Certificate Of Analysis**



Description: Gorgas Gypsum - MW-3Location Code:WMWGORGCollected:8/4/20 15:35

**Customer ID:** 

**Submittal Date:** 8/6/20 11:01

| · · · · · · · · · · · · · · · · · · · | Analyzed<br>yst: RDA<br>8/12/20 10:                                                                                                                                                                                                                                                                                        | Vio Spec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8/10/20 15:00<br>8/10/20 15:00        |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8/10/20 15:00                         | 8/12/20 10:                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Preparati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | on Method: E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PA 1638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       |                                                                                                                                                                                                                                                                                                                            | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8/10/20 15:00                         | 8/12/20 12:3                                                                                                                                                                                                                                                                                                               | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 101.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       | 8/12/20 12:3                                                                                                                                                                                                                                                                                                               | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 101.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8/10/20 15:00                         | 8/12/20 10:                                                                                                                                                                                                                                                                                                                | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.468                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8/10/20 15:00                         | 8/12/20 12:3                                                                                                                                                                                                                                                                                                               | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 101.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 322                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8/10/20 15:00                         | 8/12/20 12:3                                                                                                                                                                                                                                                                                                               | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 101.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Anal                                  | yst: RDA                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8/10/20 13:30                         | 8/11/20 13:4                                                                                                                                                                                                                                                                                                               | <b>1</b> 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 101.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Anal                                  | yst: DLJ                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Preparati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | on Method: E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PA 1638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8/7/20 12:54                          | 8/10/20 11:3                                                                                                                                                                                                                                                                                                               | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8/7/20 12:54                          | 8/10/20 11:3                                                                                                                                                                                                                                                                                                               | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8/7/20 12:54                          | 8/10/20 11:3                                                                                                                                                                                                                                                                                                               | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8/7/20 12:54                          | 8/10/20 11:3                                                                                                                                                                                                                                                                                                               | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8/7/20 12:54                          | 8/10/20 11:3                                                                                                                                                                                                                                                                                                               | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8/7/20 12:54                          | 8/10/20 11:3                                                                                                                                                                                                                                                                                                               | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8/7/20 12:54                          | 8/10/20 11:3                                                                                                                                                                                                                                                                                                               | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0862                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8/7/20 12:54                          | 8/10/20 11:3                                                                                                                                                                                                                                                                                                               | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8/7/20 12:54                          | 8/10/20 11:3                                                                                                                                                                                                                                                                                                               | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8/7/20 12:54                          | 8/11/20 12:                                                                                                                                                                                                                                                                                                                | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8/7/20 12:54                          | 8/11/20 14:                                                                                                                                                                                                                                                                                                                | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 92.365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.092365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.461825                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8/7/20 12:54                          | 8/10/20 11:3                                                                                                                                                                                                                                                                                                               | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8/7/20 12:54                          | 8/10/20 11:3                                                                                                                                                                                                                                                                                                               | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Anal                                  | yst: DLJ                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8/7/20 14:00                          | 8/11/20 15:3                                                                                                                                                                                                                                                                                                               | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 92.365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 34.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.092365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.461825                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Anal                                  | yst: GAS                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8/11/20 09:20                         | 8/11/20 13:4                                                                                                                                                                                                                                                                                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Anal                                  | yst: JAG                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8/14/20 10:00                         | 8/14/20 11:0                                                                                                                                                                                                                                                                                                               | )5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Anal <u>.</u>                         | yst: TJW                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8/7/20 14:25                          | 8/11/20 12:2                                                                                                                                                                                                                                                                                                               | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       | 8/10/20 15:00 8/10/20 15:00 Anal, 8/10/20 13:30 Anal, 8/7/20 12:54 8/7/20 12:54 8/7/20 12:54 8/7/20 12:54 8/7/20 12:54 8/7/20 12:54 8/7/20 12:54 8/7/20 12:54 8/7/20 12:54 8/7/20 12:54 8/7/20 12:54 8/7/20 12:54 8/7/20 12:54 8/7/20 12:54 8/7/20 12:54 8/7/20 12:54 8/7/20 12:54 Anal, 8/11/20 09:20 Anal, 8/14/20 10:00 | 8/10/20 15:00 8/12/20 12:3 8/10/20 15:00 8/12/20 12:3  Analyst: RDA  8/10/20 13:30 8/11/20 13:4  Analyst: DLJ  8/7/20 12:54 8/10/20 11:3 8/7/20 12:54 8/10/20 11:3 8/7/20 12:54 8/10/20 11:3 8/7/20 12:54 8/10/20 11:3 8/7/20 12:54 8/10/20 11:3 8/7/20 12:54 8/10/20 11:3 8/7/20 12:54 8/10/20 11:3 8/7/20 12:54 8/10/20 11:3 8/7/20 12:54 8/10/20 11:3 8/7/20 12:54 8/10/20 11:3 8/7/20 12:54 8/10/20 11:3 8/7/20 12:54 8/10/20 11:3 8/7/20 12:54 8/10/20 11:3 8/7/20 12:54 8/10/20 11:3 8/7/20 12:54 8/10/20 11:3 8/7/20 12:54 8/10/20 11:3 Analyst: DLJ  8/7/20 14:00 8/11/20 13:4 Analyst: JAG  8/14/20 10:00 8/14/20 11:0 Analyst: TJW | 8/10/20 15:00 8/12/20 12:37 8/10/20 15:00 8/12/20 12:37  Analyst: RDA  8/10/20 13:30 8/11/20 13:45  Analyst: DLJ  8/7/20 12:54 8/10/20 11:39  8/7/20 12:54 8/10/20 11:39  8/7/20 12:54 8/10/20 11:39  8/7/20 12:54 8/10/20 11:39  8/7/20 12:54 8/10/20 11:39  8/7/20 12:54 8/10/20 11:39  8/7/20 12:54 8/10/20 11:39  8/7/20 12:54 8/10/20 11:39  8/7/20 12:54 8/10/20 11:39  8/7/20 12:54 8/10/20 11:39  8/7/20 12:54 8/10/20 11:39  8/7/20 12:54 8/10/20 11:39  8/7/20 12:54 8/10/20 11:39  8/7/20 12:54 8/11/20 12:15  8/7/20 12:54 8/10/20 11:39  8/7/20 12:54 8/10/20 11:39  8/7/20 12:54 8/10/20 11:39  8/7/20 12:54 8/10/20 11:39  8/7/20 12:54 8/10/20 11:39  8/7/20 12:54 8/10/20 11:39  Analyst: DLJ  8/7/20 14:00 8/11/20 15:33  Analyst: GAS  8/11/20 09:20 8/11/20 13:40  Analyst: JAG  8/14/20 10:00 8/14/20 11:05  Analyst: TJW | 8/10/20 15:00 8/12/20 12:37 101.5 8/10/20 15:00 8/12/20 12:37 101.5  Analyst: RDA  8/10/20 13:30 8/11/20 13:45 101.5  Analyst: DLJ  8/7/20 12:54 8/10/20 11:39 1.015  8/7/20 12:54 8/10/20 11:39 1.015  8/7/20 12:54 8/10/20 11:39 1.015  8/7/20 12:54 8/10/20 11:39 1.015  8/7/20 12:54 8/10/20 11:39 1.015  8/7/20 12:54 8/10/20 11:39 1.015  8/7/20 12:54 8/10/20 11:39 1.015  8/7/20 12:54 8/10/20 11:39 1.015  8/7/20 12:54 8/10/20 11:39 1.015  8/7/20 12:54 8/10/20 11:39 1.015  8/7/20 12:54 8/10/20 11:39 1.015  8/7/20 12:54 8/10/20 11:39 1.015  8/7/20 12:54 8/10/20 11:39 1.015  8/7/20 12:54 8/10/20 11:39 1.015  8/7/20 12:54 8/10/20 11:39 1.015  8/7/20 12:54 8/10/20 11:39 1.015  8/7/20 12:54 8/10/20 11:39 1.015  8/7/20 12:54 8/10/20 11:39 1.015  8/7/20 12:54 8/10/20 11:39 1.015  Analyst: DLJ  8/7/20 14:00 8/11/20 15:33 92.365  Analyst: GAS  8/11/20 09:20 8/11/20 13:40 1  Analyst: JAG  8/14/20 10:00 8/14/20 11:05 1 | 8/10/20 15:00 8/12/20 12:37 101.5 322  Analyst: RDA  8/10/20 13:30 8/11/20 13:45 101.5 261  Analyst: DLJ Preparati  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected  8/7/20 12:54 8/10/20 11:39 1.015 0.0139  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected  8/7/20 12:54 8/11/20 12:15 1.015 12.5  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected  Analyst: DLJ  8/7/20 14:00 8/11/20 15:33 92.365 34.2  Analyst: GAS  8/11/20 09:20 8/11/20 13:40 1 Not Detected  Analyst: JAG  8/14/20 10:00 8/14/20 11:05 1 Not Detected | 8/10/20 15:00 8/12/20 12:37 101.5 322 mg/L  8/10/20 15:00 8/12/20 12:37 101.5 222 mg/L  Analyst: RDA  8/10/20 13:30 8/11/20 13:45 101.5 261 mg/L  Analyst: DLJ Preparation Method: El  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L  8/7/20 12:54 8/11/20 12:15 1.015 12.5 mg/L  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L  Analyst: DLJ  8/7/20 14:00 8/11/20 15:33 92.365 34.2 mg/L  Analyst: JAG  8/11/20 09:20 8/11/20 13:40 1 Not Detected mg/L  Analyst: TJW | 8/10/20 15:00 8/12/20 12:37 101.5 322 mg/L 10.15 8/10/20 15:00 8/12/20 12:37 101.5 222 mg/L 10.15  Analyst: RDA  8/10/20 13:30 8/11/20 13:45 101.5 261 mg/L 2.03  Analyst: DLJ  Analyst: DLJ  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.0008  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.001  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.002  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.0006  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.0006  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.0006  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.0003  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.002  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.002  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.002  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.002  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.001  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.002  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.002  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.002  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.002  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.002  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.002  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.002  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.002  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.002  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.002  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.002  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.002  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.002  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.0002  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.0002  8/7/20 10:00 8/11/20 15:33 92:365 34.2 mg/L 0.0003 | 8/10/20 15:00 8/12/20 12:37 101.5 322 mg/L 10.15 50.75 8/10/20 15:00 8/12/20 12:37 101.5 222 mg/L 10.15 50.75  Analyst: RDA  8/10/20 13:30 8/11/20 13:45 101.5 261 mg/L 2.03 5.075  Analyst: DLJ Preparation Method: EPA 1638  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.0008 0.003  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.001 0.005  8/7/20 12:54 8/10/20 11:39 1.015 0.0139 mg/L 0.002 0.01  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.0006 0.003  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.0006 0.003  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.0000 0.001  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.0002 0.01  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.002 0.01  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.002 0.005  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.002 0.005  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.002 0.005  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.002 0.001  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.002 0.01  8/7/20 12:54 8/11/20 12:15 1.015 12.5 mg/L 0.3 2.5  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.002 0.01  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.002 0.01  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.002 0.01  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.002 0.01  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.002 0.01  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.002 0.01  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.002 0.001  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.002 0.001  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.002 0.001  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.0002 0.001  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.0002 0.001  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.0002 0.001  8/7/20 12:54 8/10/20 11:39 1.015 Not Detected mg/L 0.0003 0.0005 |

MDL's and RL's are adjusted for sample dilution, as applicable

## Certificate Of Analysis



Description: Gorgas Gypsum - MW-3

Location Code:

WMWGORG 8/4/20 15:35

Collected: Customer ID:

Submittal Date:

8/6/20 11:01

| Laboratory ID Number: BA14551         |               |              |             | Subn    | nittai Date: | 8/6/20 11:0 | 1   |    |
|---------------------------------------|---------------|--------------|-------------|---------|--------------|-------------|-----|----|
| Name                                  | Prepared      | Analyzed     | Vio Spec DF | Results | Units        | MDL         | RL  | Q  |
| Analytical Method: SM 4500CO2 D       | Anal          | lyst: JAG    |             |         |              |             |     |    |
| Bicarbonate Alkalinity, (calc.)       | 8/14/20 10:00 | 8/14/20 11:0 | 5 1         | 114     | mg/L         |             |     |    |
| Carbonate Alkalinity, (calc.)         | 8/14/20 10:00 | 8/14/20 11:0 | 5 1         | 0.01    | mg/L         |             |     |    |
| Analytical Method: SM4500CI E         | Anal          | lyst: JCC    |             |         |              |             |     |    |
| * Chloride                            | 8/10/20 13:08 | 8/10/20 13:0 | 8 25        | 222     | mg/L         | 12.50       | 25  |    |
| Analytical Method: SM4500F G 2017     | Anal          | lyst: JCC    |             |         |              |             |     |    |
| * Fluoride                            | 8/11/20 12:10 | 8/11/20 12:1 | 0 1         | 0.389   | mg/L         | 0.06        | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Anal          | lyst: JCC    |             |         |              |             |     |    |
| * Sulfate                             | 8/7/20 12:36  | 8/7/20 12:36 | 200         | 2820    | mg/L         | 100.00      | 200 |    |
| Analytical Method: Field Measurements | Anal          | lyst: DKG    |             |         |              |             |     |    |
| Conductivity                          | 8/4/20 15:31  | 8/4/20 15:31 |             | 4345.17 | uS/cm        |             |     | FA |
| рН                                    | 8/4/20 15:31  | 8/4/20 15:31 |             | 6.09    | SU           |             |     | FA |
| Temperature                           | 8/4/20 15:31  | 8/4/20 15:31 |             | 21.30   | С            |             |     | FA |
| Turbidity                             | 8/4/20 15:31  | 8/4/20 15:31 |             | 8.88    | NTU          |             |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

### **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 8/4/20 15:35

Customer ID:

Delivery Date:

8/6/20 11:01

Description: Gorgas Gypsum - MW-3

Laboratory ID Number: BA14551

|         |                        |       |             | MB        |       |         |         |          | Standard         |      | Rec       |       | Prec          |
|---------|------------------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|------|-----------|-------|---------------|
| Sample  | Analysis               | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | Limit            | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA14560 | Beryllium, Total       | mg/L  | -0.00000532 | 0.00088   | 0.10  | 0.102   | 0.0973  | 0.0878   | 0.085 to 0.115   | 98.0 | 70 to 130 | 4.72  | 20            |
| BA14552 | Manganese, Dissolved   | mg/L  | 0.0000168   | 0.0001474 | 0.10  | 0.183   | 0.190   | 0.103    | 0.085 to 0.115   | 91.5 | 70 to 130 | 3.75  | 20            |
| BA14560 | Boron, Total           | mg/L  | 0.000558    | 0.0650254 | 1.00  | 1.08    | 1.08    | 0.964    | 0.85 to 1.15     | 104  | 70 to 130 | 0.00  | 20            |
| BA14560 | Chromium, Total        | mg/L  | -0.0000152  | 0.00044   | 0.10  | 0.117   | 0.116   | 0.104    | 0.085 to 0.115   | 117  | 70 to 130 | 0.858 | 20            |
| BA14560 | Lithium, Total         | mg/L  | -0.000168   | 0.0154    | 0.20  | 0.529   | 0.522   | 0.190    | 0.17 to 0.23     | 130  | 70 to 130 | 1.33  | 20            |
| BA14560 | Barium, Total          | mg/L  | 0.00000766  | 0.0002    | 0.10  | 0.121   | 0.124   | 0.0897   | 0.085 to 0.115   | 104  | 70 to 130 | 2.45  | 20            |
| BA14560 | Potassium, Total       | mg/L  | -0.00825    | 0.3674    | 10.0  | 19.7    | 19.5    | 10.8     | 8.5 to 11.5      | 110  | 70 to 130 | 1.02  | 20            |
| BA14560 | Cadmium, Total         | mg/L  | -0.00000379 | 0.0001474 | 0.10  | 0.116   | 0.112   | 0.0962   | 0.085 to 0.115   | 109  | 70 to 130 | 3.51  | 20            |
| BA14560 | Mercury, Total by CVAA | mg/L  | 0.0000190   | 0.0005    | 0.004 | 0.00368 | 0.00359 | 0.00359  | 0.0034 to 0.0046 | 92.0 | 70 to 130 | 2.48  | 20            |
| BA14560 | Calcium, Total         | mg/L  | -0.00321    | 0.1518    | 5.00  | 289     | 281     | 5.03     | 4.25 to 5.75     | 80.0 | 70 to 130 | 2.81  | 20            |
| BA14560 | Iron, Total            | mg/L  | 0.00220     | 0.0176    | 0.2   | 12.6    | 12.4    | 0.202    | 0.17 to 0.23     | 0.00 | 70 to 130 | 1.60  | 20            |
| BA14560 | Sodium, Total          | mg/L  | 0.000367    | 0.044     | 5.00  | 39.6    | 39.0    | 4.84     | 4.25 to 5.75     | 84.0 | 70 to 130 | 1.53  | 20            |
| BA14560 | Arsenic, Total         | mg/L  | 0.00000093  | 0.0001474 | 0.10  | 0.122   | 0.120   | 0.105    | 0.085 to 0.115   | 118  | 70 to 130 | 1.65  | 20            |
| BA14560 | Antimony, Total        | mg/L  | 0.000196    | 0.001     | 0.10  | 0.0946  | 0.0915  | 0.0872   | 0.085 to 0.115   | 94.6 | 70 to 130 | 3.33  | 20            |
| BA14552 | Iron, Dissolved        | mg/L  | -0.000944   | 0.0176    | 0.2   | 0.241   | 0.245   | 0.206    | 0.17 to 0.23     | 100  | 70 to 130 | 1.65  | 20            |
| BA14560 | Manganese, Total       | mg/L  | 0.0000036   | 0.0001474 | 0.10  | 11.0    | 12.3    | 0.0985   | 0.085 to 0.115   | -900 | 70 to 130 | 11.2  | 20            |
| BA14560 | Molybdenum, Total      | mg/L  | 0.00000555  | 0.0001474 | 0.10  | 0.112   | 0.109   | 0.0966   | 0.085 to 0.115   | 112  | 70 to 130 | 2.71  | 20            |
| BA14560 | Thallium, Total        | mg/L  | 0.0000135   | 0.0001474 | 0.10  | 0.115   | 0.114   | 0.0999   | 0.085 to 0.115   | 115  | 70 to 130 | 0.873 | 20            |
| BA14560 | Cobalt, Total          | mg/L  | -0.0000239  | 0.0001474 | 0.10  | 0.735   | 0.717   | 0.104    | 0.085 to 0.115   | 95.0 | 70 to 130 | 2.48  | 20            |
| BA14560 | Magnesium, Total       | mg/L  | 0.000661    | 0.0462    | 5.00  | 434     | 424     | 5.13     | 4.25 to 5.75     | 40.0 | 70 to 130 | 2.33  | 20            |
| BA14560 | Lead, Total            | mg/L  | 0.00000456  | 0.0001474 | 0.10  | 0.122   | 0.121   | 0.106    | 0.085 to 0.115   | 120  | 70 to 130 | 0.823 | 20            |
| BA14560 | Selenium, Total        | mg/L  | -0.0000679  | 0.001     | 0.10  | 0.124   | 0.122   | 0.100    | 0.085 to 0.115   | 109  | 70 to 130 | 1.63  | 20            |

### **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 8/4/20 15:35

Customer ID:

**Delivery Date:** 8/6/20 11:01

Description: Gorgas Gypsum - MW-3

Laboratory ID Number: BA14551

|         |                            |       |         | MB    |       |      | Sample    |          | Standard     |        | Rec       |       | Prec          |
|---------|----------------------------|-------|---------|-------|-------|------|-----------|----------|--------------|--------|-----------|-------|---------------|
| Sample  | Analysis                   | Units | MB      | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec    | Limit     | Prec  | <u>Li</u> mit |
| BA14565 | Solids, Dissolved          | mg/L  | 0.0000  | 25    |       |      | 3110      | 52.0     | 40 to 60     |        |           | 0.485 | 5             |
| BA14560 | Chloride                   | mg/L  | 0.0166  | 0.50  | 10.0  | 11.1 | 1.25      | 10.2     | 9 to 11      | 99.3 8 | 30 to 120 | 6.61  | 20            |
| BA14563 | Alkalinity, Total as CaCO3 | mg/L  |         |       |       |      | 116       | 49.0     | 45.0 to 55.0 |        |           | 2.72  | 10            |
| BA14560 | Fluoride                   | mg/L  | 0.00346 | 0.05  | 2.50  | 1.22 | 0.0776    | 2.33     | 2.25 to 2.75 | 45.7 8 | 30 to 120 | 1.30  | 20            |
| BA14560 | Sulfate                    | mg/L  | -0.449  | 0.50  | 4000  | 6090 | 2350      | 18.2     | 18 to 22     | 94.0 8 | 30 to 120 | 0.855 | 20            |

# Certificate Of Analysis



Description: Gorgas Gypsum - MW-8VLocation Code:WMWGORGCollected:8/5/20 10:20

**Customer ID:** 

**Submittal Date:** 8/6/20 11:01

Laboratory ID Number: BA14552

| Name                                  | Prepared      | Analyzed ∖    | io Spec DF | Results      | Units      | MDL      | RL     | Q |
|---------------------------------------|---------------|---------------|------------|--------------|------------|----------|--------|---|
| Analytical Method: EPA 200.7          | Analy         | st: RDA       |            | Preparati    | on Method: | EPA 1638 |        |   |
| * Boron, Total                        | 8/10/20 15:00 | 8/12/20 10:18 | 1.015      | 0.131        | mg/L       | 0.03     | 0.1    |   |
| * Calcium, Total                      | 8/10/20 15:00 | 8/12/20 10:18 | 1.015      | 31.9         | mg/L       | 0.1      | 0.5    |   |
| * Iron, Total                         | 8/10/20 15:00 | 8/12/20 10:18 | 1.015      | 0.0669       | mg/L       | 0.02     | 0.05   |   |
| * Lithium, Total                      | 8/10/20 15:00 | 8/12/20 10:18 | 1.015      | 0.275        | mg/L       | 0.01     | 0.02   |   |
| * Magnesium, Total                    | 8/10/20 15:00 | 8/12/20 10:18 | 1.015      | 14.8         | mg/L       | 0.1      | 0.5    |   |
| * Sodium, Total                       | 8/10/20 15:00 | 8/12/20 12:40 | 10.15      | 369          | mg/L       | 1.015    | 5.075  |   |
| Analytical Method: EPA 200.7          | Analy         | st: RDA       |            |              |            |          |        |   |
| * Iron, Dissolved                     | 8/10/20 13:30 | 8/11/20 11:15 | 1.015      | 0.0404       | mg/L       | 0.02     | 0.05   | J |
| Analytical Method: EPA 200.8          | Analy         | st: DLJ       |            | Preparati    | on Method: | EPA 1638 |        |   |
| * Antimony, Total                     | 8/7/20 12:54  | 8/10/20 11:41 | 1.015      | Not Detected | mg/L       | 0.0008   | 0.003  | U |
| * Arsenic, Total                      | 8/7/20 12:54  | 8/10/20 11:41 | 1.015      | 0.00476      | mg/L       | 0.001    | 0.005  | J |
| * Barium, Total                       | 8/7/20 12:54  | 8/10/20 11:41 | 1.015      | 0.125        | mg/L       | 0.002    | 0.01   |   |
| * Beryllium, Total                    | 8/7/20 12:54  | 8/10/20 11:41 | 1.015      | Not Detected | mg/L       | 0.0006   | 0.003  | U |
| * Cadmium, Total                      | 8/7/20 12:54  | 8/10/20 11:41 | 1.015      | Not Detected | mg/L       | 0.0003   | 0.001  | U |
| * Chromium, Total                     | 8/7/20 12:54  | 8/10/20 11:41 | 1.015      | Not Detected | mg/L       | 0.002    | 0.01   | U |
| * Cobalt, Total                       | 8/7/20 12:54  | 8/10/20 11:41 | 1.015      | Not Detected | mg/L       | 0.002    | 0.005  | U |
| * Lead, Total                         | 8/7/20 12:54  | 8/10/20 11:41 | 1.015      | Not Detected | mg/L       | 0.001    | 0.005  | U |
| <ul> <li>Molybdenum, Total</li> </ul> | 8/7/20 12:54  | 8/10/20 11:41 | 1.015      | Not Detected | mg/L       | 0.002    | 0.01   | U |
| * Potassium, Total                    | 8/7/20 12:54  | 8/11/20 12:17 | 1.015      | 3.91         | mg/L       | 0.3      | 2.5    |   |
| <ul> <li>Manganese, Total</li> </ul>  | 8/7/20 12:54  | 8/10/20 11:41 | 1.015      | 0.100        | mg/L       | 0.001    | 0.005  |   |
| * Selenium, Total                     | 8/7/20 12:54  | 8/10/20 11:41 | 1.015      | Not Detected | mg/L       | 0.002    | 0.01   | U |
| * Thallium, Total                     | 8/7/20 12:54  | 8/10/20 11:41 | 1.015      | Not Detected | mg/L       | 0.0002   | 0.001  | U |
| Analytical Method: EPA 200.8          | Analy         | st: DLJ       |            |              |            |          |        |   |
| * Manganese, Dissolved                | 8/7/20 14:00  | 8/10/20 10:52 | 1.015      | 0.0915       | mg/L       | 0.001    | 0.005  |   |
| Analytical Method: EPA 245.1          | Analy         | st: GAS       |            |              |            |          |        |   |
| * Mercury, Total by CVAA              | •             | 8/11/20 13:42 | 1          | Not Detected | mg/L       | 0.0003   | 0.0005 | U |
| Analytical Method: SM 2320 B          |               | st: JAG       |            |              |            |          |        |   |
| Alkalinity, Total as CaCO3            | -             | 8/14/20 11:05 | 1          | 744          | mg/L       |          | 0.1    |   |
| Analytical Method: SM 2540C           | Analy         | /st: TJW      |            |              |            |          |        |   |
| * Solids, Dissolved                   | -             | 8/14/20 09:50 | 1          | 1100         | mg/L       |          | 100    |   |

MDL's and RL's are adjusted for sample dilution, as applicable

## Certificate Of Analysis



Description: Gorgas Gypsum - MW-8VLocation Code:WMWGORGCollected:8/5/20 10:20

Customer ID:

Submittal Date: 8/6/20 11:01

Laboratory ID Number: BA14552

| Name                                  | Prepared      | Analyzed     | Vio Spec | DF | Results | Units | MDL   | RL  | Q  |
|---------------------------------------|---------------|--------------|----------|----|---------|-------|-------|-----|----|
| Analytical Method: SM 4500CO2 D       | Anal          | yst: JAG     |          |    |         |       |       |     |    |
| Bicarbonate Alkalinity, (calc.)       | 8/14/20 10:00 | 8/14/20 11:0 | 5        | 1  | 741     | mg/L  |       |     |    |
| Carbonate Alkalinity, (calc.)         | 8/14/20 10:00 | 8/14/20 11:0 | 5        | 1  | 3.41    | mg/L  |       |     |    |
| Analytical Method: SM4500Cl E         | Anal          | yst: JCC     |          |    |         |       |       |     |    |
| * Chloride                            | 8/10/20 13:10 | 8/10/20 13:1 | 0        | 1  | 13.9    | mg/L  | 0.50  | 1   |    |
| Analytical Method: SM4500F G 2017     | Anal          | yst: JCC     |          |    |         |       |       |     |    |
| * Fluoride                            | 8/11/20 12:11 | 8/11/20 12:1 | 1        | 1  | 0.256   | mg/L  | 0.06  | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Anal          | yst: JCC     |          |    |         |       |       |     |    |
| * Sulfate                             | 8/7/20 12:37  | 8/7/20 12:37 | •        | 40 | 243     | mg/L  | 20.00 | 40  |    |
| Analytical Method: Field Measurements | Anal          | yst: DKG     |          |    |         |       |       |     |    |
| Conductivity                          | 8/5/20 10:16  | 8/5/20 10:16 | i        |    | 1635.82 | uS/cm |       |     | FA |
| рН                                    | 8/5/20 10:16  | 8/5/20 10:16 | i        |    | 7.58    | SU    |       |     | FA |
| Temperature                           | 8/5/20 10:16  | 8/5/20 10:16 | i        |    | 22.32   | С     |       |     | FA |
| Turbidity                             | 8/5/20 10:16  | 8/5/20 10:16 | i        |    | 1.62    | NTU   |       |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

### **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 8/5/20 10:20

**Customer ID:** 

**Delivery Date:** 8/6/20 11:01

**Description**: Gorgas Gypsum - MW-8V

Laboratory ID Number: BA14552

|                                |       |             | MB        |       |         |         |          | Standard         |      | Rec       |       | Prec          |
|--------------------------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|------|-----------|-------|---------------|
| Sample Analysis                | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | Limit            | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA14560 Beryllium, Total       | mg/L  | -0.00000532 | 0.00088   | 0.10  | 0.102   | 0.0973  | 0.0878   | 0.085 to 0.115   | 98.0 | 70 to 130 | 4.72  | 20            |
| BA14552 Iron, Dissolved        | mg/L  | -0.000944   | 0.0176    | 0.2   | 0.241   | 0.245   | 0.206    | 0.17 to 0.23     | 100  | 70 to 130 | 1.65  | 20            |
| BA14560 Manganese, Total       | mg/L  | 0.0000036   | 0.0001474 | 0.10  | 11.0    | 12.3    | 0.0985   | 0.085 to 0.115   | -900 | 70 to 130 | 11.2  | 20            |
| BA14560 Molybdenum, Total      | mg/L  | 0.00000555  | 0.0001474 | 0.10  | 0.112   | 0.109   | 0.0966   | 0.085 to 0.115   | 112  | 70 to 130 | 2.71  | 20            |
| BA14560 Thallium, Total        | mg/L  | 0.0000135   | 0.0001474 | 0.10  | 0.115   | 0.114   | 0.0999   | 0.085 to 0.115   | 115  | 70 to 130 | 0.873 | 20            |
| BA14560 Arsenic, Total         | mg/L  | 0.00000093  | 0.0001474 | 0.10  | 0.122   | 0.120   | 0.105    | 0.085 to 0.115   | 118  | 70 to 130 | 1.65  | 20            |
| BA14560 Antimony, Total        | mg/L  | 0.000196    | 0.001     | 0.10  | 0.0946  | 0.0915  | 0.0872   | 0.085 to 0.115   | 94.6 | 70 to 130 | 3.33  | 20            |
| BA14560 Cadmium, Total         | mg/L  | -0.00000379 | 0.0001474 | 0.10  | 0.116   | 0.112   | 0.0962   | 0.085 to 0.115   | 109  | 70 to 130 | 3.51  | 20            |
| BA14560 Mercury, Total by CVAA | mg/L  | 0.0000190   | 0.0005    | 0.004 | 0.00368 | 0.00359 | 0.00359  | 0.0034 to 0.0046 | 92.0 | 70 to 130 | 2.48  | 20            |
| BA14552 Manganese, Dissolved   | mg/L  | 0.0000168   | 0.0001474 | 0.10  | 0.183   | 0.190   | 0.103    | 0.085 to 0.115   | 91.5 | 70 to 130 | 3.75  | 20            |
| BA14560 Boron, Total           | mg/L  | 0.000558    | 0.0650254 | 1.00  | 1.08    | 1.08    | 0.964    | 0.85 to 1.15     | 104  | 70 to 130 | 0.00  | 20            |
| BA14560 Chromium, Total        | mg/L  | -0.0000152  | 0.00044   | 0.10  | 0.117   | 0.116   | 0.104    | 0.085 to 0.115   | 117  | 70 to 130 | 0.858 | 20            |
| BA14560 Lithium, Total         | mg/L  | -0.000168   | 0.0154    | 0.20  | 0.529   | 0.522   | 0.190    | 0.17 to 0.23     | 130  | 70 to 130 | 1.33  | 20            |
| BA14560 Cobalt, Total          | mg/L  | -0.0000239  | 0.0001474 | 0.10  | 0.735   | 0.717   | 0.104    | 0.085 to 0.115   | 95.0 | 70 to 130 | 2.48  | 20            |
| BA14560 Magnesium, Total       | mg/L  | 0.000661    | 0.0462    | 5.00  | 434     | 424     | 5.13     | 4.25 to 5.75     | 40.0 | 70 to 130 | 2.33  | 20            |
| BA14560 Lead, Total            | mg/L  | 0.00000456  | 0.0001474 | 0.10  | 0.122   | 0.121   | 0.106    | 0.085 to 0.115   | 120  | 70 to 130 | 0.823 | 20            |
| BA14560 Selenium, Total        | mg/L  | -0.0000679  | 0.001     | 0.10  | 0.124   | 0.122   | 0.100    | 0.085 to 0.115   | 109  | 70 to 130 | 1.63  | 20            |
| BA14560 Calcium, Total         | mg/L  | -0.00321    | 0.1518    | 5.00  | 289     | 281     | 5.03     | 4.25 to 5.75     | 80.0 | 70 to 130 | 2.81  | 20            |
| BA14560 Iron, Total            | mg/L  | 0.00220     | 0.0176    | 0.2   | 12.6    | 12.4    | 0.202    | 0.17 to 0.23     | 0.00 | 70 to 130 | 1.60  | 20            |
| BA14560 Sodium, Total          | mg/L  | 0.000367    | 0.044     | 5.00  | 39.6    | 39.0    | 4.84     | 4.25 to 5.75     | 84.0 | 70 to 130 | 1.53  | 20            |
| BA14560 Barium, Total          | mg/L  | 0.00000766  | 0.0002    | 0.10  | 0.121   | 0.124   | 0.0897   | 0.085 to 0.115   | 104  | 70 to 130 | 2.45  | 20            |
| BA14560 Potassium, Total       | mg/L  | -0.00825    | 0.3674    | 10.0  | 19.7    | 19.5    | 10.8     | 8.5 to 11.5      | 110  | 70 to 130 | 1.02  | 20            |

### **Batch QC Summary**



Customer Account: WMWGORG Sample Date:

8/5/20 10:20

**Customer ID:** 

**Delivery Date:** 

8/6/20 11:01

Description: Gorgas Gypsum - MW-8V

Laboratory ID Number: BA14552

|         |                            |       |         | MB    |       |      | Sample    |          | Standard     |        | Rec       |       | Prec  |
|---------|----------------------------|-------|---------|-------|-------|------|-----------|----------|--------------|--------|-----------|-------|-------|
| Sample  | Analysis                   | Units | MB      | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec    | Limit     | Prec  | Limit |
| BA14552 | Solids, Dissolved          | mg/L  | 2.00    | 25    |       |      | 1110      | 53.0     | 40 to 60     |        |           | 0.452 | 5     |
| BA14560 | Fluoride                   | mg/L  | 0.00346 | 0.05  | 2.50  | 1.22 | 0.0776    | 2.33     | 2.25 to 2.75 | 45.7 8 | 80 to 120 | 1.30  | 20    |
| BA14560 | Sulfate                    | mg/L  | -0.449  | 0.50  | 4000  | 6090 | 2350      | 18.2     | 18 to 22     | 94.0 8 | 80 to 120 | 0.855 | 20    |
| BA14560 | Chloride                   | mg/L  | 0.0166  | 0.50  | 10.0  | 11.1 | 1.25      | 10.2     | 9 to 11      | 99.3 8 | 80 to 120 | 6.61  | 20    |
| BA14563 | Alkalinity, Total as CaCO3 | mg/L  |         |       |       |      | 116       | 49.0     | 45.0 to 55.0 |        |           | 2.72  | 10    |

### Certificate Of Analysis



Description: Gorgas Gypsum - MW-8Location Code:WMWGORGCollected:8/5/20 11:24

**Customer ID:** 

**Submittal Date:** 8/6/20 11:01

Laboratory ID Number: BA14553

| Name                         | Prepared      | Analyzed     | Vio Spec DF | Results      | Units        | MDL      | RL       | Q |
|------------------------------|---------------|--------------|-------------|--------------|--------------|----------|----------|---|
| Analytical Method: EPA 200.7 | Anal          | yst: RDA     |             | Preparat     | tion Method: | EPA 1638 |          |   |
| * Boron, Total               | 8/10/20 15:00 | 8/12/20 10:2 | 1 1.015     | 2.16         | mg/L         | 0.03     | 0.1      |   |
| * Calcium, Total             | 8/10/20 15:00 | 8/12/20 12:4 | 3 20.3      | 497          | mg/L         | 2.03     | 10.15    |   |
| * Iron, Total                | 8/10/20 15:00 | 8/12/20 12:4 | 3 20.3      | 9.79         | mg/L         | 0.406    | 1.015    |   |
| * Lithium, Total             | 8/10/20 15:00 | 8/12/20 10:2 | 1 1.015     | 0.206        | mg/L         | 0.01     | 0.02     |   |
| * Magnesium, Total           | 8/10/20 15:00 | 8/12/20 12:4 | 3 20.3      | 326          | mg/L         | 2.03     | 10.15    |   |
| * Sodium, Total              | 8/10/20 15:00 | 8/12/20 12:4 | 3 20.3      | 169          | mg/L         | 2.03     | 10.15    |   |
| Analytical Method: EPA 200.7 | Anal          | yst: RDA     |             |              |              |          |          |   |
| * Iron, Dissolved            | 8/10/20 13:30 | 8/11/20 13:4 | 8 10.15     | 9.32         | mg/L         | 0.203    | 0.5075   |   |
| Analytical Method: EPA 200.8 | Anal          | yst: DLJ     |             | Preparat     | tion Method: | EPA 1638 |          |   |
| * Antimony, Total            | 8/7/20 12:54  | 8/10/20 11:4 | 4 1.015     | Not Detected | mg/L         | 0.0008   | 0.003    | U |
| * Arsenic, Total             | 8/7/20 12:54  | 8/10/20 11:4 | 4 1.015     | Not Detected | mg/L         | 0.001    | 0.005    | U |
| * Barium, Total              | 8/7/20 12:54  | 8/10/20 11:4 | 4 1.015     | 0.0216       | mg/L         | 0.002    | 0.01     |   |
| * Beryllium, Total           | 8/7/20 12:54  | 8/10/20 11:4 | 4 1.015     | Not Detected | mg/L         | 0.0006   | 0.003    | U |
| * Cadmium, Total             | 8/7/20 12:54  | 8/10/20 11:4 | 4 1.015     | Not Detected | mg/L         | 0.0003   | 0.001    | U |
| * Chromium, Total            | 8/7/20 12:54  | 8/10/20 11:4 | 4 1.015     | Not Detected | mg/L         | 0.002    | 0.01     | U |
| * Cobalt, Total              | 8/7/20 12:54  | 8/10/20 11:4 | 4 1.015     | Not Detected | mg/L         | 0.002    | 0.005    | U |
| * Lead, Total                | 8/7/20 12:54  | 8/10/20 11:4 | 4 1.015     | Not Detected | mg/L         | 0.001    | 0.005    | U |
| * Molybdenum, Total          | 8/7/20 12:54  | 8/10/20 11:4 | 4 1.015     | Not Detected | mg/L         | 0.002    | 0.01     | U |
| * Potassium, Total           | 8/7/20 12:54  | 8/11/20 12:2 | 0 1.015     | 8.96         | mg/L         | 0.3      | 2.5      |   |
| * Manganese, Total           | 8/7/20 12:54  | 8/11/20 14:1 | 9 92.365    | 12.4         | mg/L         | 0.092365 | 0.461825 |   |
| * Selenium, Total            | 8/7/20 12:54  | 8/10/20 11:4 | 4 1.015     | Not Detected | mg/L         | 0.002    | 0.01     | U |
| * Thallium, Total            | 8/7/20 12:54  | 8/10/20 11:4 | 4 1.015     | Not Detected | mg/L         | 0.0002   | 0.001    | U |
| Analytical Method: EPA 200.8 | Anal          | yst: DLJ     |             |              |              |          |          |   |
| * Manganese, Dissolved       | 8/7/20 14:00  | 8/11/20 15:3 | 6 92.365    | 16.2         | mg/L         | 0.092365 | 0.461825 |   |
| Analytical Method: EPA 245.1 | Anal          | yst: GAS     |             |              |              |          |          |   |
| * Mercury, Total by CVAA     | 8/11/20 09:20 | 8/11/20 13:4 | 4 1         | Not Detected | mg/L         | 0.0003   | 0.0005   | U |
| Analytical Method: SM 2320 B | Anal          | yst: JAG     |             |              |              |          |          |   |
| Alkalinity, Total as CaCO3   | 8/14/20 10:00 |              | 5 1         | 531          | mg/L         |          | 0.1      |   |
| Analytical Method: SM 2540C  |               | yst: TJW     |             |              | -            |          |          |   |
| * Solids, Dissolved          | 8/10/20 12:25 |              | 0 1         | 3610         | mg/L         |          | 250      |   |

MDL's and RL's are adjusted for sample dilution, as applicable

### Certificate Of Analysis



**Description:** Gorgas Gypsum - MW-8

Location Code: Collected:

WMWGORG 8/5/20 11:24

Customer ID:

Submittal Date:

8/6/20 11:01

| Laboratory ID Number: BA14553         |               |              |             | Subr    | nittai Date: | 8/6/20 11:0 | )1  |    |
|---------------------------------------|---------------|--------------|-------------|---------|--------------|-------------|-----|----|
| Name                                  | Prepared      | Analyzed     | Vio Spec DF | Results | Units        | MDL         | RL  | Q  |
| Analytical Method: SM 4500CO2 D       | Anal          | lyst: JAG    |             |         |              |             |     |    |
| Bicarbonate Alkalinity, (calc.)       | 8/14/20 10:00 | 8/14/20 11:0 | 5 1         | 530     | mg/L         |             |     |    |
| Carbonate Alkalinity, (calc.)         | 8/14/20 10:00 | 8/14/20 11:0 | 5 1         | 0.40    | mg/L         |             |     |    |
| Analytical Method: SM4500CI E         | Anal          | lyst: JCC    |             |         |              |             |     |    |
| * Chloride                            | 8/10/20 13:11 | 8/10/20 13:1 | 1 25        | 146     | mg/L         | 12.50       | 25  |    |
| Analytical Method: SM4500F G 2017     | Anal          | lyst: JCC    |             |         |              |             |     |    |
| * Fluoride                            | 8/11/20 12:12 | 8/11/20 12:1 | 2 1         | 0.119   | mg/L         | 0.06        | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Anal          | lyst: JCC    |             |         |              |             |     |    |
| * Sulfate                             | 8/7/20 12:39  | 8/7/20 12:39 | 100         | 1880    | mg/L         | 50.00       | 100 |    |
| Analytical Method: Field Measurements | Anal          | lyst: DKG    |             |         |              |             |     |    |
| Conductivity                          | 8/5/20 11:21  | 8/5/20 11:21 |             | 3686.49 | uS/cm        |             |     | FA |
| рН                                    | 8/5/20 11:21  | 8/5/20 11:21 |             | 6.76    | SU           |             |     | FA |
| Temperature                           | 8/5/20 11:21  | 8/5/20 11:21 |             | 22.37   | С            |             |     | FA |
| Turbidity                             | 8/5/20 11:21  | 8/5/20 11:21 |             | 3.86    | NTU          |             |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

### **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 8/5/20 11:24

**Customer ID:** 

**Delivery Date:** 8/6/20 11:01

Description: Gorgas Gypsum - MW-8

Laboratory ID Number: BA14553

|                                |       |             | MB        |       |         |         |          | Standard         |      | Rec       |       | Prec          |
|--------------------------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|------|-----------|-------|---------------|
| Sample Analysis                | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | Limit            | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA14560 Beryllium, Total       | mg/L  | -0.00000532 | 0.00088   | 0.10  | 0.102   | 0.0973  | 0.0878   | 0.085 to 0.115   | 98.0 | 70 to 130 | 4.72  | 20            |
| BA14560 Boron, Total           | mg/L  | 0.000558    | 0.0650254 | 1.00  | 1.08    | 1.08    | 0.964    | 0.85 to 1.15     | 104  | 70 to 130 | 0.00  | 20            |
| BA14560 Chromium, Total        | mg/L  | -0.0000152  | 0.00044   | 0.10  | 0.117   | 0.116   | 0.104    | 0.085 to 0.115   | 117  | 70 to 130 | 0.858 | 20            |
| BA14560 Lithium, Total         | mg/L  | -0.000168   | 0.0154    | 0.20  | 0.529   | 0.522   | 0.190    | 0.17 to 0.23     | 130  | 70 to 130 | 1.33  | 20            |
| BA14560 Barium, Total          | mg/L  | 0.00000766  | 0.0002    | 0.10  | 0.121   | 0.124   | 0.0897   | 0.085 to 0.115   | 104  | 70 to 130 | 2.45  | 20            |
| BA14560 Potassium, Total       | mg/L  | -0.00825    | 0.3674    | 10.0  | 19.7    | 19.5    | 10.8     | 8.5 to 11.5      | 110  | 70 to 130 | 1.02  | 20            |
| BA14560 Manganese, Total       | mg/L  | 0.0000036   | 0.0001474 | 0.10  | 11.0    | 12.3    | 0.0985   | 0.085 to 0.115   | -900 | 70 to 130 | 11.2  | 20            |
| BA14560 Molybdenum, Total      | mg/L  | 0.00000555  | 0.0001474 | 0.10  | 0.112   | 0.109   | 0.0966   | 0.085 to 0.115   | 112  | 70 to 130 | 2.71  | 20            |
| BA14560 Thallium, Total        | mg/L  | 0.0000135   | 0.0001474 | 0.10  | 0.115   | 0.114   | 0.0999   | 0.085 to 0.115   | 115  | 70 to 130 | 0.873 | 20            |
| BA14560 Cadmium, Total         | mg/L  | -0.00000379 | 0.0001474 | 0.10  | 0.116   | 0.112   | 0.0962   | 0.085 to 0.115   | 109  | 70 to 130 | 3.51  | 20            |
| BA14560 Mercury, Total by CVAA | mg/L  | 0.0000190   | 0.0005    | 0.004 | 0.00368 | 0.00359 | 0.00359  | 0.0034 to 0.0046 | 92.0 | 70 to 130 | 2.48  | 20            |
| BA14560 Cobalt, Total          | mg/L  | -0.0000239  | 0.0001474 | 0.10  | 0.735   | 0.717   | 0.104    | 0.085 to 0.115   | 95.0 | 70 to 130 | 2.48  | 20            |
| BA14560 Magnesium, Total       | mg/L  | 0.000661    | 0.0462    | 5.00  | 434     | 424     | 5.13     | 4.25 to 5.75     | 40.0 | 70 to 130 | 2.33  | 20            |
| BA14560 Lead, Total            | mg/L  | 0.00000456  | 0.0001474 | 0.10  | 0.122   | 0.121   | 0.106    | 0.085 to 0.115   | 120  | 70 to 130 | 0.823 | 20            |
| BA14560 Selenium, Total        | mg/L  | -0.0000679  | 0.001     | 0.10  | 0.124   | 0.122   | 0.100    | 0.085 to 0.115   | 109  | 70 to 130 | 1.63  | 20            |
| BA14563 Manganese, Dissolved   | mg/L  | 0.0000168   | 0.0001474 | 0.10  | 13.2    | 13.0    | 0.103    | 0.085 to 0.115   | 200  | 70 to 130 | 1.53  | 20            |
| BA14560 Calcium, Total         | mg/L  | -0.00321    | 0.1518    | 5.00  | 289     | 281     | 5.03     | 4.25 to 5.75     | 80.0 | 70 to 130 | 2.81  | 20            |
| BA14560 Iron, Total            | mg/L  | 0.00220     | 0.0176    | 0.2   | 12.6    | 12.4    | 0.202    | 0.17 to 0.23     | 0.00 | 70 to 130 | 1.60  | 20            |
| BA14560 Sodium, Total          | mg/L  | 0.000367    | 0.044     | 5.00  | 39.6    | 39.0    | 4.84     | 4.25 to 5.75     | 84.0 | 70 to 130 | 1.53  | 20            |
| BA14560 Arsenic, Total         | mg/L  | 0.00000093  | 0.0001474 | 0.10  | 0.122   | 0.120   | 0.105    | 0.085 to 0.115   | 118  | 70 to 130 | 1.65  | 20            |
| BA14560 Antimony, Total        | mg/L  | 0.000196    | 0.001     | 0.10  | 0.0946  | 0.0915  | 0.0872   | 0.085 to 0.115   | 94.6 | 70 to 130 | 3.33  | 20            |
| BA14563 Iron, Dissolved        | mg/L  | -0.000944   | 0.0176    | 0.2   | 37.5    | 37.5    | 0.206    | 0.17 to 0.23     | 150  | 70 to 130 | 0.00  | 20            |

### **Batch QC Summary**



Customer Account: WMWGORG Sample Date: 8/5/20 11:24

**Customer ID:** 

**Delivery Date:** 8/6/20 11:01

Description: Gorgas Gypsum - MW-8

Laboratory ID Number: BA14553

|                                    |       |         | MB    |       |      | Sample    |          | Standard     |      | Rec       |       | Prec          |
|------------------------------------|-------|---------|-------|-------|------|-----------|----------|--------------|------|-----------|-------|---------------|
| Sample Analysis                    | Units | MB      | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA14566 Solids, Dissolved          | mg/L  | 2.00    | 25    |       |      | 3200      | 53.0     | 40 to 60     |      |           | 0.00  | 5             |
| BA14560 Fluoride                   | mg/L  | 0.00346 | 0.05  | 2.50  | 1.22 | 0.0776    | 2.33     | 2.25 to 2.75 | 45.7 | 80 to 120 | 1.30  | 20            |
| BA14560 Sulfate                    | mg/L  | -0.449  | 0.50  | 4000  | 6090 | 2350      | 18.2     | 18 to 22     | 94.0 | 80 to 120 | 0.855 | 20            |
| BA14560 Chloride                   | mg/L  | 0.0166  | 0.50  | 10.0  | 11.1 | 1.25      | 10.2     | 9 to 11      | 99.3 | 80 to 120 | 6.61  | 20            |
| BA14563 Alkalinity, Total as CaCO3 | mg/L  |         |       |       |      | 116       | 49.0     | 45.0 to 55.0 |      |           | 2.72  | 10            |

#### Certificate Of Analysis



Description: Gorgas Gypsum - MW-12HLocation Code:WMWGORGCollected:8/5/20 12:50

Customer ID:

Laboratory ID Number: BA14554 Submittal Date: 8/6/20 11:01

| Name                                  | Prepared      | Analyzed     | Vio Spec DF | Results   | Units           | MDL      | RL       | Q |
|---------------------------------------|---------------|--------------|-------------|-----------|-----------------|----------|----------|---|
| Analytical Method: EPA 200.7          | Anal          | yst: RDA     |             | Prepa     | aration Method: | EPA 1638 |          |   |
| * Boron, Total                        | 8/10/20 15:00 | 8/12/20 10:2 | 4 1.015     | 0.0748    | mg/L            | 0.03     | 0.1      | J |
| * Calcium, Total                      | 8/10/20 15:00 | 8/12/20 12:4 | 5 10.15     | 126       | mg/L            | 1.015    | 5.075    |   |
| * Iron, Total                         | 8/10/20 15:00 | 8/12/20 10:2 | 4 1.015     | 2.10      | mg/L            | 0.02     | 0.05     |   |
| * Lithium, Total                      | 8/10/20 15:00 | 8/12/20 10:2 | 4 1.015     | 0.441     | mg/L            | 0.01     | 0.02     |   |
| * Magnesium, Total                    | 8/10/20 15:00 | 8/12/20 12:4 | 5 10.15     | 124       | mg/L            | 1.015    | 5.075    |   |
| * Sodium, Total                       | 8/10/20 15:00 | 8/12/20 10:2 | 4 1.015     | 26.1      | mg/L            | 0.1      | 0.5      |   |
| Analytical Method: EPA 200.7          | Anal          | yst: RDA     |             |           |                 |          |          |   |
| * Iron, Dissolved                     | 8/10/20 13:30 | 8/11/20 11:3 | 3 1.015     | 1.96      | mg/L            | 0.02     | 0.05     |   |
| Analytical Method: EPA 200.8          | Anal          | yst: DLJ     |             | Prepa     | aration Method: | EPA 1638 |          |   |
| * Antimony, Total                     | 8/7/20 12:54  | 8/10/20 11:4 | 6 1.015     | Not Detec | ted mg/L        | 0.0008   | 0.003    | U |
| * Arsenic, Total                      | 8/7/20 12:54  | 8/10/20 11:4 | 6 1.015     | 0.00158   | mg/L            | 0.001    | 0.005    | J |
| * Barium, Total                       | 8/7/20 12:54  | 8/10/20 11:4 | 6 1.015     | 0.0160    | mg/L            | 0.002    | 0.01     |   |
| * Beryllium, Total                    | 8/7/20 12:54  | 8/10/20 11:4 | 6 1.015     | 0.00747   | mg/L            | 0.0006   | 0.003    |   |
| * Cadmium, Total                      | 8/7/20 12:54  | 8/10/20 11:4 | 6 1.015     | 0.00393   | mg/L            | 0.0003   | 0.001    |   |
| * Chromium, Total                     | 8/7/20 12:54  | 8/10/20 11:4 | 6 1.015     | Not Detec | ted mg/L        | 0.002    | 0.01     | U |
| * Cobalt, Total                       | 8/7/20 12:54  | 8/10/20 11:4 | 6 1.015     | 0.436     | mg/L            | 0.002    | 0.005    |   |
| * Lead, Total                         | 8/7/20 12:54  | 8/10/20 11:4 | 6 1.015     | 0.00329   | mg/L            | 0.001    | 0.005    | J |
| <ul> <li>Molybdenum, Total</li> </ul> | 8/7/20 12:54  | 8/10/20 11:4 | 6 1.015     | Not Detec | ted mg/L        | 0.002    | 0.01     | U |
| * Potassium, Total                    | 8/7/20 12:54  | 8/11/20 12:2 | 2 1.015     | 5.53      | mg/L            | 0.3      | 2.5      |   |
| * Manganese, Total                    | 8/7/20 12:54  | 8/11/20 14:2 | 1 92.36     | 55 18.6   | mg/L            | 0.092365 | 0.461825 |   |
| * Selenium, Total                     | 8/7/20 12:54  | 8/10/20 11:4 | 6 1.015     | 0.00417   | mg/L            | 0.002    | 0.01     | J |
| * Thallium, Total                     | 8/7/20 12:54  | 8/10/20 11:4 | 6 1.015     | 0.000297  | mg/L            | 0.0002   | 0.001    | J |
| Analytical Method: EPA 200.8          | Anal          | yst: DLJ     |             |           |                 |          |          |   |
| * Manganese, Dissolved                | 8/7/20 14:00  | 8/11/20 15:3 | 92.36       | 55 20.1   | mg/L            | 0.092365 | 0.461825 |   |
| Analytical Method: EPA 245.1          | Anal          | yst: GAS     |             |           |                 |          |          |   |
| * Mercury, Total by CVAA              | 8/11/20 09:20 |              | 7 1         | Not Detec | ted mg/L        | 0.0003   | 0.0005   | U |
| Analytical Method: SM 2320 B          | Anal          | yst: JAG     |             |           |                 |          |          |   |
| Alkalinity, Total as CaCO3            | 8/14/20 10:00 | 8/14/20 11:0 | 5 1         | NA        | mg/L            |          | 0.10     |   |
| Analytical Method: SM 2540C           | Anal          | yst: TJW     |             |           |                 |          |          |   |
| * Solids, Dissolved                   | 8/10/20 12:25 | -            | 60 1        | 1380      | mg/L            |          | 83.3     |   |

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. NA result for Alkalinity is due to the initial sample pH reading below the alkalinity titration point of 4.5. LBM 08/19/2020

#### Certificate Of Analysis



Description: Gorgas Gypsum - MW-12HLocation Code:WMWGORGCollected:8/5/20 12:50

Customer ID:

Submittal Date: 8/6/20 11:01

Laboratory ID Number: BA14554

| Name                                  | Prepared      | Analyzed     | Vio Spec | DF | Results      | Units | MDL   | RL  | Q  |
|---------------------------------------|---------------|--------------|----------|----|--------------|-------|-------|-----|----|
| Analytical Method: SM 4500CO2 D       | Anai          | lyst: JAG    |          |    |              |       |       |     |    |
| Bicarbonate Alkalinity, (calc.)       | 8/14/20 10:00 | 8/14/20 11:0 | 5        | 1  | NA           | mg/L  |       |     |    |
| Carbonate Alkalinity, (calc.)         | 8/14/20 10:00 | 8/14/20 11:0 | 5        | 1  | NA           | mg/L  |       |     |    |
| Analytical Method: SM4500Cl E         | Anai          | lyst: JCC    |          |    |              |       |       |     |    |
| * Chloride                            | 8/10/20 13:12 | 8/10/20 13:1 | 2        | 1  | 2.00         | mg/L  | 0.50  | 1   |    |
| Analytical Method: SM4500F G 2017     | Anal          | lyst: JCC    |          |    |              |       |       |     |    |
| * Fluoride                            | 8/11/20 12:14 | 8/11/20 12:1 | 4        | 1  | Not Detected | mg/L  | 0.06  | 0.1 | U  |
| Analytical Method: SM4500SO4 E 2011   | Anai          | lyst: JCC    |          |    |              |       |       |     |    |
| * Sulfate                             | 8/7/20 12:40  | 8/7/20 12:40 | )        | 40 | 811          | mg/L  | 20.00 | 40  |    |
| Analytical Method: Field Measurements | Anai          | lyst: DKG    |          |    |              |       |       |     |    |
| Conductivity                          | 8/5/20 12:46  | 8/5/20 12:46 | i        |    | 1325.81      | uS/cm |       |     | FA |
| рН                                    | 8/5/20 12:46  | 8/5/20 12:46 | i        |    | 4.13         | SU    |       |     | FA |
| Temperature                           | 8/5/20 12:46  | 8/5/20 12:46 | i        |    | 20.32        | С     |       |     | FA |
| Turbidity                             | 8/5/20 12:46  | 8/5/20 12:46 | i        |    | 7.94         | NTU   |       |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. NA result for Alkalinity is due to the initial sample pH reading below the alkalinity titration point of 4.5. LBM 08/19/2020

#### **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 8/5/20 12:50

**Customer ID:** 

**Delivery Date:** 8/6/20 11:01

Description: Gorgas Gypsum - MW-12H

Laboratory ID Number: BA14554

|                                |       |             | MB        |       |         |         |          | Standard         |      | Rec       |       | Prec          |
|--------------------------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|------|-----------|-------|---------------|
| Sample Analysis                | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | Limit            | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA14560 Barium, Total          | mg/L  | 0.00000766  | 0.0002    | 0.10  | 0.121   | 0.124   | 0.0897   | 0.085 to 0.115   | 104  | 70 to 130 | 2.45  | 20            |
| BA14560 Potassium, Total       | mg/L  | -0.00825    | 0.3674    | 10.0  | 19.7    | 19.5    | 10.8     | 8.5 to 11.5      | 110  | 70 to 130 | 1.02  | 20            |
| BA14560 Boron, Total           | mg/L  | 0.000558    | 0.0650254 | 1.00  | 1.08    | 1.08    | 0.964    | 0.85 to 1.15     | 104  | 70 to 130 | 0.00  | 20            |
| BA14560 Chromium, Total        | mg/L  | -0.0000152  | 0.00044   | 0.10  | 0.117   | 0.116   | 0.104    | 0.085 to 0.115   | 117  | 70 to 130 | 0.858 | 20            |
| BA14560 Lithium, Total         | mg/L  | -0.000168   | 0.0154    | 0.20  | 0.529   | 0.522   | 0.190    | 0.17 to 0.23     | 130  | 70 to 130 | 1.33  | 20            |
| BA14560 Cadmium, Total         | mg/L  | -0.00000379 | 0.0001474 | 0.10  | 0.116   | 0.112   | 0.0962   | 0.085 to 0.115   | 109  | 70 to 130 | 3.51  | 20            |
| BA14560 Mercury, Total by CVAA | mg/L  | 0.0000190   | 0.0005    | 0.004 | 0.00368 | 0.00359 | 0.00359  | 0.0034 to 0.0046 | 92.0 | 70 to 130 | 2.48  | 20            |
| BA14560 Arsenic, Total         | mg/L  | 0.00000093  | 0.0001474 | 0.10  | 0.122   | 0.120   | 0.105    | 0.085 to 0.115   | 118  | 70 to 130 | 1.65  | 20            |
| BA14560 Antimony, Total        | mg/L  | 0.000196    | 0.001     | 0.10  | 0.0946  | 0.0915  | 0.0872   | 0.085 to 0.115   | 94.6 | 70 to 130 | 3.33  | 20            |
| BA14563 Iron, Dissolved        | mg/L  | -0.000944   | 0.0176    | 0.2   | 37.5    | 37.5    | 0.206    | 0.17 to 0.23     | 150  | 70 to 130 | 0.00  | 20            |
| BA14560 Manganese, Total       | mg/L  | 0.0000036   | 0.0001474 | 0.10  | 11.0    | 12.3    | 0.0985   | 0.085 to 0.115   | -900 | 70 to 130 | 11.2  | 20            |
| BA14560 Molybdenum, Total      | mg/L  | 0.00000555  | 0.0001474 | 0.10  | 0.112   | 0.109   | 0.0966   | 0.085 to 0.115   | 112  | 70 to 130 | 2.71  | 20            |
| BA14560 Thallium, Total        | mg/L  | 0.0000135   | 0.0001474 | 0.10  | 0.115   | 0.114   | 0.0999   | 0.085 to 0.115   | 115  | 70 to 130 | 0.873 | 20            |
| BA14560 Calcium, Total         | mg/L  | -0.00321    | 0.1518    | 5.00  | 289     | 281     | 5.03     | 4.25 to 5.75     | 80.0 | 70 to 130 | 2.81  | 20            |
| BA14560 Iron, Total            | mg/L  | 0.00220     | 0.0176    | 0.2   | 12.6    | 12.4    | 0.202    | 0.17 to 0.23     | 0.00 | 70 to 130 | 1.60  | 20            |
| BA14560 Sodium, Total          | mg/L  | 0.000367    | 0.044     | 5.00  | 39.6    | 39.0    | 4.84     | 4.25 to 5.75     | 84.0 | 70 to 130 | 1.53  | 20            |
| BA14560 Cobalt, Total          | mg/L  | -0.0000239  | 0.0001474 | 0.10  | 0.735   | 0.717   | 0.104    | 0.085 to 0.115   | 95.0 | 70 to 130 | 2.48  | 20            |
| BA14560 Magnesium, Total       | mg/L  | 0.000661    | 0.0462    | 5.00  | 434     | 424     | 5.13     | 4.25 to 5.75     | 40.0 | 70 to 130 | 2.33  | 20            |
| BA14560 Lead, Total            | mg/L  | 0.00000456  | 0.0001474 | 0.10  | 0.122   | 0.121   | 0.106    | 0.085 to 0.115   | 120  | 70 to 130 | 0.823 | 20            |
| BA14560 Selenium, Total        | mg/L  | -0.0000679  | 0.001     | 0.10  | 0.124   | 0.122   | 0.100    | 0.085 to 0.115   | 109  | 70 to 130 | 1.63  | 20            |
| BA14563 Manganese, Dissolved   | mg/L  | 0.0000168   | 0.0001474 | 0.10  | 13.2    | 13.0    | 0.103    | 0.085 to 0.115   | 200  | 70 to 130 | 1.53  | 20            |
| BA14560 Beryllium, Total       | mg/L  | -0.00000532 | 0.00088   | 0.10  | 0.102   | 0.0973  | 0.0878   | 0.085 to 0.115   | 98.0 | 70 to 130 | 4.72  | 20            |

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. NA result for Alkalinity is due to the initial sample pH reading below the alkalinity titration point of 4.5. LBM 08/19/2020

## **Batch QC Summary**



Customer Account: WMWGORG

Sample Date:

8/5/20 12:50

**Customer ID:** 

**Delivery Date:** 8/6/20 11:01

Description: Gorgas Gypsum - MW-12H

Laboratory ID Number: BA14554

|         |                            |       |         | MB    |       |      | Sample    |          | Standard     |        | Rec       |       | Prec          |
|---------|----------------------------|-------|---------|-------|-------|------|-----------|----------|--------------|--------|-----------|-------|---------------|
| Sample  | Analysis                   | Units | MB      | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec    | Limit     | Prec  | <u>Li</u> mit |
| BA14566 | Solids, Dissolved          | mg/L  | 2.00    | 25    |       |      | 3200      | 53.0     | 40 to 60     |        |           | 0.00  | 5             |
| BA14560 | Chloride                   | mg/L  | 0.0166  | 0.50  | 10.0  | 11.1 | 1.25      | 10.2     | 9 to 11      | 99.3 8 | 30 to 120 | 6.61  | 20            |
| BA14563 | Alkalinity, Total as CaCO3 | mg/L  |         |       |       |      | 116       | 49.0     | 45.0 to 55.0 |        |           | 2.72  | 10            |
| BA14560 | Fluoride                   | mg/L  | 0.00346 | 0.05  | 2.50  | 1.22 | 0.0776    | 2.33     | 2.25 to 2.75 | 45.7 8 | 30 to 120 | 1.30  | 20            |
| BA14560 | Sulfate                    | mg/L  | -0.449  | 0.50  | 4000  | 6090 | 2350      | 18.2     | 18 to 22     | 94.0 8 | 30 to 120 | 0.855 | 20            |

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. NA result for Alkalinity is due to the initial sample pH reading below the alkalinity titration point of 4.5. LBM 08/19/2020

## Certificate Of Analysis



Description: Gorgas Gypsum - MW-12VLocation Code:WMWGORGCollected:8/5/20 13:47

**Customer ID:** 

**Submittal Date:** 8/6/20 11:01

Laboratory ID Number: BA14555

| Name                                  | Prepared      | Analyzed     | Vio Spec DF | Results      | Units        | MDL      | RL       | Q |
|---------------------------------------|---------------|--------------|-------------|--------------|--------------|----------|----------|---|
| Analytical Method: EPA 200.7          | Anal          | yst: RDA     |             | Prepara      | tion Method: | EPA 1638 |          |   |
| * Boron, Total                        | 8/10/20 15:00 | 8/12/20 10:2 | 7 1.015     | 1.55         | mg/L         | 0.03     | 0.1      |   |
| * Calcium, Total                      | 8/10/20 15:00 | 8/12/20 12:4 | 8 101.5     | 350          | mg/L         | 10.15    | 50.75    |   |
| * Iron, Total                         | 8/10/20 15:00 | 8/12/20 12:4 | 8 101.5     | 37.3         | mg/L         | 2.03     | 5.075    |   |
| * Lithium, Total                      | 8/10/20 15:00 | 8/12/20 10:2 | 7 1.015     | 0.334        | mg/L         | 0.01     | 0.02     |   |
| * Magnesium, Total                    | 8/10/20 15:00 | 8/12/20 12:4 | 8 101.5     | 220          | mg/L         | 10.15    | 50.75    |   |
| * Sodium, Total                       | 8/10/20 15:00 | 8/12/20 12:4 | 8 101.5     | 288          | mg/L         | 10.15    | 50.75    |   |
| Analytical Method: EPA 200.7          | Anal          | yst: RDA     |             |              |              |          |          |   |
| * Iron, Dissolved                     | 8/10/20 13:30 | 8/11/20 13:5 | 1 101.5     | 38.2         | mg/L         | 2.03     | 5.075    |   |
| Analytical Method: EPA 200.8          | Anal          | yst: DLJ     |             | Prepara      | tion Method: | EPA 1638 |          |   |
| * Antimony, Total                     | 8/7/20 12:54  | 8/10/20 11:4 | 9 1.015     | Not Detected | mg/L         | 0.0008   | 0.003    | U |
| * Arsenic, Total                      | 8/7/20 12:54  | 8/10/20 11:4 | 9 1.015     | Not Detected | mg/L         | 0.001    | 0.005    | U |
| * Barium, Total                       | 8/7/20 12:54  | 8/10/20 11:4 | 9 1.015     | 0.0157       | mg/L         | 0.002    | 0.01     |   |
| * Beryllium, Total                    | 8/7/20 12:54  | 8/10/20 11:4 | 9 1.015     | Not Detected | mg/L         | 0.0006   | 0.003    | U |
| * Cadmium, Total                      | 8/7/20 12:54  | 8/10/20 11:4 | 9 1.015     | Not Detected | mg/L         | 0.0003   | 0.001    | U |
| * Chromium, Total                     | 8/7/20 12:54  | 8/10/20 11:4 | 9 1.015     | Not Detected | mg/L         | 0.002    | 0.01     | U |
| * Cobalt, Total                       | 8/7/20 12:54  | 8/10/20 11:4 | 9 1.015     | Not Detected | mg/L         | 0.002    | 0.005    | U |
| * Lead, Total                         | 8/7/20 12:54  | 8/10/20 11:4 | 9 1.015     | Not Detected | mg/L         | 0.001    | 0.005    | U |
| <ul> <li>Molybdenum, Total</li> </ul> | 8/7/20 12:54  | 8/10/20 11:4 | 9 1.015     | 0.00247      | mg/L         | 0.002    | 0.01     | J |
| * Potassium, Total                    | 8/7/20 12:54  | 8/11/20 12:2 | 5 1.015     | 8.49         | mg/L         | 0.3      | 2.5      |   |
| * Manganese, Total                    | 8/7/20 12:54  | 8/11/20 14:2 | 4 92.365    | 25.1         | mg/L         | 0.092365 | 0.461825 |   |
| * Selenium, Total                     | 8/7/20 12:54  | 8/10/20 11:4 | 9 1.015     | Not Detected | mg/L         | 0.002    | 0.01     | U |
| * Thallium, Total                     | 8/7/20 12:54  | 8/10/20 11:4 | 9 1.015     | Not Detected | mg/L         | 0.0002   | 0.001    | U |
| Analytical Method: EPA 200.8          | Anal          | yst: DLJ     |             |              |              |          |          |   |
| * Manganese, Dissolved                | 8/7/20 14:00  | 8/11/20 15:4 | 1 92.365    | 27.3         | mg/L         | 0.092365 | 0.461825 |   |
| Analytical Method: EPA 245.1          | Anal          | yst: GAS     |             |              |              |          |          |   |
| * Mercury, Total by CVAA              | 8/11/20 09:20 | 8/11/20 13:4 | 9 1         | Not Detected | mg/L         | 0.0003   | 0.0005   | U |
| Analytical Method: SM 2320 B          | Anal          | yst: JAG     |             |              |              |          |          |   |
| Alkalinity, Total as CaCO3            | 8/14/20 10:00 |              | 5 1         | 276          | mg/L         |          | 0.1      |   |
| Analytical Method: SM 2540C           |               | yst: TJW     |             |              | -            |          |          |   |
| * Solids, Dissolved                   | 8/10/20 12:25 |              | 0 1         | 3330         | mg/L         |          | 250      |   |

MDL's and RL's are adjusted for sample dilution, as applicable

#### Certificate Of Analysis



Description: Gorgas Gypsum - MW-12V

Location Code:

Submittal Date:

WMWGORG

Collected:

Customer ID:

8/5/20 13:47

8/6/20 11:01

Laboratory ID Number: BA14555

| Laboratory ID Number: BA14555         |               |              |          |     |         |       |       |     |    |
|---------------------------------------|---------------|--------------|----------|-----|---------|-------|-------|-----|----|
| Name                                  | Prepared      | Analyzed     | Vio Spec | DF  | Results | Units | MDL   | RL  | Q  |
| Analytical Method: SM 4500CO2 D       | Ana           | lyst: JAG    |          |     |         |       |       |     |    |
| Bicarbonate Alkalinity, (calc.)       | 8/14/20 10:00 | 8/14/20 11:0 | 05       | 1   | 275     | mg/L  |       |     |    |
| Carbonate Alkalinity, (calc.)         | 8/14/20 10:00 | 8/14/20 11:0 | 05       | 1   | 0.06    | mg/L  |       |     |    |
| Analytical Method: SM4500CI E         | Ana           | lyst: JCC    |          |     |         |       |       |     |    |
| * Chloride                            | 8/10/20 13:13 | 8/10/20 13:  | 13       | 25  | 159     | mg/L  | 12.50 | 25  |    |
| Analytical Method: SM4500F G 2017     | Ana           | lyst: JCC    |          |     |         |       |       |     |    |
| * Fluoride                            | 8/11/20 12:15 | 8/11/20 12:  | 15       | 1   | 0.217   | mg/L  | 0.06  | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Ana           | lyst: JCC    |          |     |         |       |       |     |    |
| * Sulfate                             | 8/7/20 12:41  | 8/7/20 12:4  | 1        | 100 | 1830    | mg/L  | 50.00 | 100 |    |
| Analytical Method: Field Measurements | Ana           | lyst: DKG    |          |     |         |       |       |     |    |
| Conductivity                          | 8/5/20 13:43  | 8/5/20 13:43 | 3        |     | 3604.38 | uS/cm |       |     | FA |
| рН                                    | 8/5/20 13:43  | 8/5/20 13:43 | 3        |     | 6.15    | SU    |       |     | FA |
| Temperature                           | 8/5/20 13:43  | 8/5/20 13:43 | 3        |     | 20.10   | С     |       |     | FA |
| Turbidity                             | 8/5/20 13:43  | 8/5/20 13:43 | 3        |     | 6.84    | NTU   |       |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

#### **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 8/5/20 13:47

**Customer ID:** 

**Delivery Date:** 8/6/20 11:01

Description: Gorgas Gypsum - MW-12V

Laboratory ID Number: BA14555

|                                |       |             | MB        |       |         |         |          | Standard         |      | Rec       |       | Prec          |
|--------------------------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|------|-----------|-------|---------------|
| Sample Analysis                | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | Limit            | Rec  | Limit     | Prec  | <u>Li</u> mit |
| 3A14560 Beryllium, Total       | mg/L  | -0.00000532 | 0.00088   | 0.10  | 0.102   | 0.0973  | 0.0878   | 0.085 to 0.115   | 98.0 | 70 to 130 | 4.72  | 20            |
| 3A14560 Boron, Total           | mg/L  | 0.000558    | 0.0650254 | 1.00  | 1.08    | 1.08    | 0.964    | 0.85 to 1.15     | 104  | 70 to 130 | 0.00  | 20            |
| 3A14560 Chromium, Total        | mg/L  | -0.0000152  | 0.00044   | 0.10  | 0.117   | 0.116   | 0.104    | 0.085 to 0.115   | 117  | 70 to 130 | 0.858 | 20            |
| 3A14560 Lithium, Total         | mg/L  | -0.000168   | 0.0154    | 0.20  | 0.529   | 0.522   | 0.190    | 0.17 to 0.23     | 130  | 70 to 130 | 1.33  | 20            |
| 3A14560 Calcium, Total         | mg/L  | -0.00321    | 0.1518    | 5.00  | 289     | 281     | 5.03     | 4.25 to 5.75     | 80.0 | 70 to 130 | 2.81  | 20            |
| BA14560 Iron, Total            | mg/L  | 0.00220     | 0.0176    | 0.2   | 12.6    | 12.4    | 0.202    | 0.17 to 0.23     | 0.00 | 70 to 130 | 1.60  | 20            |
| 3A14560 Sodium, Total          | mg/L  | 0.000367    | 0.044     | 5.00  | 39.6    | 39.0    | 4.84     | 4.25 to 5.75     | 84.0 | 70 to 130 | 1.53  | 20            |
| 3A14560 Arsenic, Total         | mg/L  | 0.00000093  | 0.0001474 | 0.10  | 0.122   | 0.120   | 0.105    | 0.085 to 0.115   | 118  | 70 to 130 | 1.65  | 20            |
| 3A14560 Antimony, Total        | mg/L  | 0.000196    | 0.001     | 0.10  | 0.0946  | 0.0915  | 0.0872   | 0.085 to 0.115   | 94.6 | 70 to 130 | 3.33  | 20            |
| BA14563 Iron, Dissolved        | mg/L  | -0.000944   | 0.0176    | 0.2   | 37.5    | 37.5    | 0.206    | 0.17 to 0.23     | 150  | 70 to 130 | 0.00  | 20            |
| BA14560 Manganese, Total       | mg/L  | 0.0000036   | 0.0001474 | 0.10  | 11.0    | 12.3    | 0.0985   | 0.085 to 0.115   | -900 | 70 to 130 | 11.2  | 20            |
| BA14560 Molybdenum, Total      | mg/L  | 0.00000555  | 0.0001474 | 0.10  | 0.112   | 0.109   | 0.0966   | 0.085 to 0.115   | 112  | 70 to 130 | 2.71  | 20            |
| 3A14560 Thallium, Total        | mg/L  | 0.0000135   | 0.0001474 | 0.10  | 0.115   | 0.114   | 0.0999   | 0.085 to 0.115   | 115  | 70 to 130 | 0.873 | 20            |
| BA14560 Cobalt, Total          | mg/L  | -0.0000239  | 0.0001474 | 0.10  | 0.735   | 0.717   | 0.104    | 0.085 to 0.115   | 95.0 | 70 to 130 | 2.48  | 20            |
| BA14560 Magnesium, Total       | mg/L  | 0.000661    | 0.0462    | 5.00  | 434     | 424     | 5.13     | 4.25 to 5.75     | 40.0 | 70 to 130 | 2.33  | 20            |
| BA14560 Lead, Total            | mg/L  | 0.00000456  | 0.0001474 | 0.10  | 0.122   | 0.121   | 0.106    | 0.085 to 0.115   | 120  | 70 to 130 | 0.823 | 20            |
| BA14560 Selenium, Total        | mg/L  | -0.0000679  | 0.001     | 0.10  | 0.124   | 0.122   | 0.100    | 0.085 to 0.115   | 109  | 70 to 130 | 1.63  | 20            |
| BA14563 Manganese, Dissolved   | mg/L  | 0.0000168   | 0.0001474 | 0.10  | 13.2    | 13.0    | 0.103    | 0.085 to 0.115   | 200  | 70 to 130 | 1.53  | 20            |
| 3A14560 Cadmium, Total         | mg/L  | -0.00000379 | 0.0001474 | 0.10  | 0.116   | 0.112   | 0.0962   | 0.085 to 0.115   | 109  | 70 to 130 | 3.51  | 20            |
| BA14560 Mercury, Total by CVAA | mg/L  | 0.0000190   | 0.0005    | 0.004 | 0.00368 | 0.00359 | 0.00359  | 0.0034 to 0.0046 | 92.0 | 70 to 130 | 2.48  | 20            |
| 3A14560 Barium, Total          | mg/L  | 0.00000766  | 0.0002    | 0.10  | 0.121   | 0.124   | 0.0897   | 0.085 to 0.115   | 104  | 70 to 130 | 2.45  | 20            |
| 3A14560 Potassium, Total       | mg/L  | -0.00825    | 0.3674    | 10.0  | 19.7    | 19.5    | 10.8     | 8.5 to 11.5      | 110  | 70 to 130 | 1.02  | 20            |

## **Batch QC Summary**



Customer Account: WMWGORG

Customer ID:

**Sample Date:** 8/5/20 13:47

Dallarana Data

**Delivery Date:** 8/6/20 11:01

Description: Gorgas Gypsum - MW-12V

Laboratory ID Number: BA14555

|                                    |       |         | MB    |       |      | Sample    |          | Standard     |        | Rec       |       | Prec          |
|------------------------------------|-------|---------|-------|-------|------|-----------|----------|--------------|--------|-----------|-------|---------------|
| Sample Analysis                    | Units | MB      | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec    | Limit     | Prec  | <u>Li</u> mit |
| BA14566 Solids, Dissolved          | mg/L  | 2.00    | 25    |       |      | 3200      | 53.0     | 40 to 60     |        |           | 0.00  | 5             |
| BA14560 Chloride                   | mg/L  | 0.0166  | 0.50  | 10.0  | 11.1 | 1.25      | 10.2     | 9 to 11      | 99.3 8 | 30 to 120 | 6.61  | 20            |
| BA14563 Alkalinity, Total as CaCO3 | mg/L  |         |       |       |      | 116       | 49.0     | 45.0 to 55.0 |        |           | 2.72  | 10            |
| BA14560 Fluoride                   | mg/L  | 0.00346 | 0.05  | 2.50  | 1.22 | 0.0776    | 2.33     | 2.25 to 2.75 | 45.7 8 | 30 to 120 | 1.30  | 20            |
| BA14560 Sulfate                    | mg/L  | -0.449  | 0.50  | 4000  | 6090 | 2350      | 18.2     | 18 to 22     | 94.0 8 | 30 to 120 | 0.855 | 20            |

## **Certificate Of Analysis**



Description: Gorgas Gypsum Field Blank-3Location Code:WMWGORGFBCollected:8/5/20 14:10

**Customer ID:** 

**Submittal Date:** 8/6/20 11:01

Laboratory ID Number: BA14556

| Name                                | Prepared      | Analyzed          | Vio Spec DF | Results      | Units       | MDL      | RL     | Q |
|-------------------------------------|---------------|-------------------|-------------|--------------|-------------|----------|--------|---|
| Analytical Method: EPA 200.7        | Analy         | yst: RDA          |             | Preparati    | ion Method: | EPA 1638 |        |   |
| * Boron, Total                      | 8/10/20 15:00 | 8/12/20 10:3      | 0 1.015     | Not Detected | mg/L        | 0.03     | 0.1    | U |
| * Calcium, Total                    | 8/10/20 15:00 | 8/12/20 10:3      | 0 1.015     | Not Detected | mg/L        | 0.1      | 0.5    | U |
| * Iron, Total                       | 8/10/20 15:00 | 8/12/20 10:3      | 1.015       | Not Detected | mg/L        | 0.02     | 0.05   | U |
| * Lithium, Total                    | 8/10/20 15:00 | 8/12/20 10:3      | 1.015       | Not Detected | mg/L        | 0.01     | 0.02   | U |
| * Magnesium, Total                  | 8/10/20 15:00 | 8/12/20 10:3      | 1.015       | Not Detected | mg/L        | 0.1      | 0.5    | U |
| * Sodium, Total                     | 8/10/20 15:00 | 8/12/20 10:3      | 1.015       | Not Detected | mg/L        | 0.1      | 0.5    | U |
| Analytical Method: EPA 200.8        | Analy         | yst: DLJ          |             | Preparati    | ion Method: | EPA 1638 |        |   |
| * Antimony, Total                   | 8/7/20 12:54  | 8/10/20 11:5      | 2 1.015     | Not Detected | mg/L        | 0.0008   | 0.003  | U |
| * Arsenic, Total                    | 8/7/20 12:54  | 8/10/20 11:5      | 2 1.015     | Not Detected | mg/L        | 0.001    | 0.005  | U |
| * Barium, Total                     | 8/7/20 12:54  | 8/10/20 11:5      | 2 1.015     | Not Detected | mg/L        | 0.002    | 0.01   | U |
| * Beryllium, Total                  | 8/7/20 12:54  | 8/10/20 11:5      | 2 1.015     | Not Detected | mg/L        | 0.0006   | 0.003  | U |
| * Cadmium, Total                    | 8/7/20 12:54  | 8/10/20 11:5      | 2 1.015     | Not Detected | mg/L        | 0.0003   | 0.001  | U |
| * Chromium, Total                   | 8/7/20 12:54  | 8/10/20 11:5      | 2 1.015     | Not Detected | mg/L        | 0.002    | 0.01   | U |
| * Cobalt, Total                     | 8/7/20 12:54  | 8/10/20 11:5      | 2 1.015     | Not Detected | mg/L        | 0.002    | 0.005  | U |
| * Lead, Total                       | 8/7/20 12:54  | 8/10/20 11:5      | 2 1.015     | Not Detected | mg/L        | 0.001    | 0.005  | U |
| * Molybdenum, Total                 | 8/7/20 12:54  | 8/10/20 11:5      | 2 1.015     | Not Detected | mg/L        | 0.002    | 0.01   | U |
| * Manganese, Total                  | 8/7/20 12:54  | 8/10/20 11:5      | 2 1.015     | Not Detected | mg/L        | 0.001    | 0.005  | U |
| * Potassium, Total                  | 8/7/20 12:54  | 8/11/20 12:2      | 1.015       | Not Detected | mg/L        | 0.3      | 2.5    | U |
| * Selenium, Total                   | 8/7/20 12:54  | 8/10/20 11:5      | 2 1.015     | Not Detected | mg/L        | 0.002    | 0.01   | U |
| * Thallium, Total                   | 8/7/20 12:54  | 8/10/20 11:5      | 1.015       | Not Detected | mg/L        | 0.0002   | 0.001  | U |
| Analytical Method: EPA 245.1        | Analy         | yst: GAS          |             |              |             |          |        |   |
| * Mercury, Total by CVAA            | 8/11/20 09:20 | 8/11/20 13:5      | 1 1         | Not Detected | mg/L        | 0.0003   | 0.0005 | U |
| Analytical Method: SM 2540C         | Analy         | yst: TJW          |             |              |             |          |        |   |
| * Solids, Dissolved                 | 8/10/20 12:25 | 8/14/20 09:5      | 0 1         | Not Detected | mg/L        |          | 25     | U |
| Analytical Method: SM4500Cl E       | Analy         | yst: JCC          |             |              |             |          |        |   |
| * Chloride                          | 8/10/20 13:14 | 8/10/20 13:1      | 4 1         | Not Detected | mg/L        | 0.50     | 1      | U |
| Analytical Method: SM4500F G 2017   | Analy         | yst: JCC          |             |              |             |          |        |   |
| * Fluoride                          | 8/11/20 12:16 |                   | 6 1         | Not Detected | mg/L        | 0.06     | 0.1    | U |
| Analytical Method: SM4500SO4 E 2011 |               | yst: JCC          |             |              |             |          |        |   |
| * Sulfate                           | 8/7/20 12:42  | ,<br>8/7/20 12:42 | ! 1         | Not Detected | mg/L        | 0.50     | 1      | U |

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

## **Batch QC Summary**



**Customer Account:** WMWGORGFB **Sample Date:** 8/5/20 14:10

**Customer ID:** 

**Delivery Date:** 8/6/20 11:01

Description: Gorgas Gypsum Field Blank-3

Laboratory ID Number: BA14556

|         |                        |       |             | MB        |       |         |         |          | Standard         |      | Rec       |       | Prec          |
|---------|------------------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|------|-----------|-------|---------------|
| Sample  | Analysis               | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | Limit            | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA14560 | Beryllium, Total       | mg/L  | -0.00000532 | 0.00088   | 0.10  | 0.102   | 0.0973  | 0.0878   | 0.085 to 0.115   | 98.0 | 70 to 130 | 4.72  | 20            |
| BA14560 | Cadmium, Total         | mg/L  | -0.00000379 | 0.0001474 | 0.10  | 0.116   | 0.112   | 0.0962   | 0.085 to 0.115   | 109  | 70 to 130 | 3.51  | 20            |
| BA14560 | Mercury, Total by CVAA | mg/L  | 0.0000190   | 0.0005    | 0.004 | 0.00368 | 0.00359 | 0.00359  | 0.0034 to 0.0046 | 92.0 | 70 to 130 | 2.48  | 20            |
| BA14560 | Manganese, Total       | mg/L  | 0.0000036   | 0.0001474 | 0.10  | 11.0    | 12.3    | 0.0985   | 0.085 to 0.115   | -900 | 70 to 130 | 11.2  | 20            |
| BA14560 | Molybdenum, Total      | mg/L  | 0.00000555  | 0.0001474 | 0.10  | 0.112   | 0.109   | 0.0966   | 0.085 to 0.115   | 112  | 70 to 130 | 2.71  | 20            |
| BA14560 | Thallium, Total        | mg/L  | 0.0000135   | 0.0001474 | 0.10  | 0.115   | 0.114   | 0.0999   | 0.085 to 0.115   | 115  | 70 to 130 | 0.873 | 20            |
| BA14560 | Calcium, Total         | mg/L  | -0.00321    | 0.1518    | 5.00  | 289     | 281     | 5.03     | 4.25 to 5.75     | 80.0 | 70 to 130 | 2.81  | 20            |
| BA14560 | Iron, Total            | mg/L  | 0.00220     | 0.0176    | 0.2   | 12.6    | 12.4    | 0.202    | 0.17 to 0.23     | 0.00 | 70 to 130 | 1.60  | 20            |
| BA14560 | Sodium, Total          | mg/L  | 0.000367    | 0.044     | 5.00  | 39.6    | 39.0    | 4.84     | 4.25 to 5.75     | 84.0 | 70 to 130 | 1.53  | 20            |
| BA14560 | Cobalt, Total          | mg/L  | -0.0000239  | 0.0001474 | 0.10  | 0.735   | 0.717   | 0.104    | 0.085 to 0.115   | 95.0 | 70 to 130 | 2.48  | 20            |
| BA14560 | Magnesium, Total       | mg/L  | 0.000661    | 0.0462    | 5.00  | 434     | 424     | 5.13     | 4.25 to 5.75     | 40.0 | 70 to 130 | 2.33  | 20            |
| BA14560 | Lead, Total            | mg/L  | 0.00000456  | 0.0001474 | 0.10  | 0.122   | 0.121   | 0.106    | 0.085 to 0.115   | 120  | 70 to 130 | 0.823 | 20            |
| BA14560 | Selenium, Total        | mg/L  | -0.0000679  | 0.001     | 0.10  | 0.124   | 0.122   | 0.100    | 0.085 to 0.115   | 109  | 70 to 130 | 1.63  | 20            |
| BA14560 | Boron, Total           | mg/L  | 0.000558    | 0.0650254 | 1.00  | 1.08    | 1.08    | 0.964    | 0.85 to 1.15     | 104  | 70 to 130 | 0.00  | 20            |
| BA14560 | Chromium, Total        | mg/L  | -0.0000152  | 0.00044   | 0.10  | 0.117   | 0.116   | 0.104    | 0.085 to 0.115   | 117  | 70 to 130 | 0.858 | 20            |
| BA14560 | Lithium, Total         | mg/L  | -0.000168   | 0.0154    | 0.20  | 0.529   | 0.522   | 0.190    | 0.17 to 0.23     | 130  | 70 to 130 | 1.33  | 20            |
| BA14560 | Arsenic, Total         | mg/L  | 0.00000093  | 0.0001474 | 0.10  | 0.122   | 0.120   | 0.105    | 0.085 to 0.115   | 118  | 70 to 130 | 1.65  | 20            |
| BA14560 | Antimony, Total        | mg/L  | 0.000196    | 0.001     | 0.10  | 0.0946  | 0.0915  | 0.0872   | 0.085 to 0.115   | 94.6 | 70 to 130 | 3.33  | 20            |
| BA14560 | Barium, Total          | mg/L  | 0.00000766  | 0.0002    | 0.10  | 0.121   | 0.124   | 0.0897   | 0.085 to 0.115   | 104  | 70 to 130 | 2.45  | 20            |
| BA14560 | Potassium, Total       | mg/L  | -0.00825    | 0.3674    | 10.0  | 19.7    | 19.5    | 10.8     | 8.5 to 11.5      | 110  | 70 to 130 | 1.02  | 20            |

Comments:

## **Batch QC Summary**



Customer Account: WMWGORGFB

Sample Date:

8/5/20 14:10

Customer ID:

**Delivery Date:** 8/6/20 11:01

Description: Gorgas Gypsum Field Blank-3

Laboratory ID Number: BA14556

|         |                   |       |         | MB    |       |      | Sample    |          | Standard     |        | Rec      |       | Prec          |
|---------|-------------------|-------|---------|-------|-------|------|-----------|----------|--------------|--------|----------|-------|---------------|
| Sample  | Analysis          | Units | MB      | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec    | Limit    | Prec  | <u>Li</u> mit |
| BA14566 | Solids, Dissolved | mg/L  | 2.00    | 25    |       |      | 3200      | 53.0     | 40 to 60     |        |          | 0.00  | 5             |
| BA14560 | Chloride          | mg/L  | 0.0166  | 0.50  | 10.0  | 11.1 | 1.25      | 10.2     | 9 to 11      | 99.3 8 | 0 to 120 | 6.61  | 20            |
| BA14560 | Fluoride          | mg/L  | 0.00346 | 0.05  | 2.50  | 1.22 | 0.0776    | 2.33     | 2.25 to 2.75 | 45.7 8 | 0 to 120 | 1.30  | 20            |
| BA14560 | Sulfate           | mg/L  | -0.449  | 0.50  | 4000  | 6090 | 2350      | 18.2     | 18 to 22     | 94.0 8 | 0 to 120 | 0.855 | 20            |

Comments:

# Certificate Of Analysis



Description: Gorgas Gypsum - MW-1LLocation Code:WMWGORGCollected:8/3/20 11:45

Customer ID:

**Submittal Date:** 8/6/20 11:01

| Labor | atory | ID | Num | ber: | BA14557 |
|-------|-------|----|-----|------|---------|
|       |       |    |     |      |         |

| Name                         | Prepared      | Analyzed    | Vio Spe | DF    | Results      | Units         | MDL     | RL      | Q |
|------------------------------|---------------|-------------|---------|-------|--------------|---------------|---------|---------|---|
| Analytical Method: EPA 200.7 | Anai          | lyst: RDA   |         |       | Preparati    | on Method: El | PA 1638 |         |   |
| * Boron, Total               | 8/10/20 15:00 | 8/12/20 10: | :33     | 1.015 | Not Detected | mg/L          | 0.03    | 0.1     | U |
| * Calcium, Total             | 8/10/20 15:00 | 8/12/20 12: | :51     | 10.15 | 148          | mg/L          | 1.015   | 5.075   |   |
| * Iron, Total                | 8/10/20 15:00 | 8/12/20 10: | :33     | 1.015 | Not Detected | mg/L          | 0.02    | 0.05    | U |
| * Lithium, Total             | 8/10/20 15:00 | 8/12/20 10: | :33     | 1.015 | 0.0259       | mg/L          | 0.01    | 0.02    |   |
| * Magnesium, Total           | 8/10/20 15:00 | 8/12/20 12: | :51     | 10.15 | 281          | mg/L          | 1.015   | 5.075   |   |
| * Sodium, Total              | 8/10/20 15:00 | 8/12/20 10: | :33     | 1.015 | 38.3         | mg/L          | 0.1     | 0.5     |   |
| Analytical Method: EPA 200.7 | Anai          | lyst: RDA   |         |       |              |               |         |         |   |
| * Iron, Dissolved            | 8/10/20 13:30 | 8/11/20 11: | :39     | 1.015 | Not Detected | mg/L          | 0.02    | 0.05    | U |
| Analytical Method: EPA 200.8 | Anai          | lyst: DLJ   |         |       | Preparati    | on Method: El | PA 1638 |         |   |
| * Antimony, Total            | 8/7/20 12:54  | 8/10/20 11: | :54     | 1.015 | Not Detected | mg/L          | 0.0008  | 0.003   | U |
| * Arsenic, Total             | 8/7/20 12:54  | 8/10/20 11: | :54     | 1.015 | Not Detected | mg/L          | 0.001   | 0.005   | U |
| * Barium, Total              | 8/7/20 12:54  | 8/10/20 11: | :54     | 1.015 | 0.0107       | mg/L          | 0.002   | 0.01    |   |
| * Beryllium, Total           | 8/7/20 12:54  | 8/10/20 11: | :54     | 1.015 | Not Detected | mg/L          | 0.0006  | 0.003   | U |
| * Cadmium, Total             | 8/7/20 12:54  | 8/10/20 11: | :54     | 1.015 | 0.00237      | mg/L          | 0.0003  | 0.001   |   |
| * Chromium, Total            | 8/7/20 12:54  | 8/10/20 11: | :54     | 1.015 | Not Detected | mg/L          | 0.002   | 0.01    | U |
| * Cobalt, Total              | 8/7/20 12:54  | 8/10/20 11: | :54     | 1.015 | 0.0722       | mg/L          | 0.002   | 0.005   |   |
| * Lead, Total                | 8/7/20 12:54  | 8/10/20 11: | :54     | 1.015 | Not Detected | mg/L          | 0.001   | 0.005   | U |
| * Molybdenum, Total          | 8/7/20 12:54  | 8/10/20 11: | :54     | 1.015 | Not Detected | mg/L          | 0.002   | 0.01    | U |
| * Potassium, Total           | 8/7/20 12:54  | 8/11/20 12: | :30     | 1.015 | 7.96         | mg/L          | 0.3     | 2.5     |   |
| * Manganese, Total           | 8/7/20 12:54  | 8/11/20 14  | :27     | 10.15 | 11.8         | mg/L          | 0.01015 | 0.05075 |   |
| * Selenium, Total            | 8/7/20 12:54  | 8/10/20 11: | :54     | 1.015 | 0.00278      | mg/L          | 0.002   | 0.01    | J |
| * Thallium, Total            | 8/7/20 12:54  | 8/10/20 11: | :54     | 1.015 | Not Detected | mg/L          | 0.0002  | 0.001   | U |
| Analytical Method: EPA 200.8 | Anai          | lyst: DLJ   |         |       |              |               |         |         |   |
| * Manganese, Dissolved       | 8/7/20 14:00  | 8/11/20 15  | :52     | 10.15 | 11.6         | mg/L          | 0.01015 | 0.05075 |   |
| Analytical Method: EPA 245.1 | Anai          | lyst: GAS   |         |       |              |               |         |         |   |
| * Mercury, Total by CVAA     | 8/11/20 09:20 | 8/11/20 13: | :54     | 1     | Not Detected | mg/L          | 0.0003  | 0.0005  | U |
| Analytical Method: SM 2320 B | Anai          | lyst: JAG   |         |       |              |               |         |         |   |
| Alkalinity, Total as CaCO3   | 8/14/20 10:00 | -           | :05     | 1     | 15.0         | mg/L          |         | 0.1     |   |
| Analytical Method: SM 2540C  |               | lyst: TJW   |         |       |              | -             |         |         |   |
| * Solids, Dissolved          | 8/7/20 14:25  | 8/11/20 12  | 20      | 1     | 2200         | mg/L          |         | 125     |   |

MDL's and RL's are adjusted for sample dilution, as applicable

## Certificate Of Analysis



Description: Gorgas Gypsum - MW-1L

**Location Code:** 

WMWGORG 8/3/20 11:45

Collected:

Customer ID: Submittal Date:

8/6/20 11:01

Laboratory ID Number: BA14557

| Name                                  | Prepared      | Analyzed     | Vio Spec | DF | Results      | Units | MDL   | RL  | Q  |
|---------------------------------------|---------------|--------------|----------|----|--------------|-------|-------|-----|----|
| Analytical Method: SM 4500CO2 D       | Anal          | yst: JAG     |          |    |              |       |       |     |    |
| Bicarbonate Alkalinity, (calc.)       | 8/14/20 10:00 | 8/14/20 11:0 | )5       | 1  | 15.2         | mg/L  |       |     |    |
| Carbonate Alkalinity, (calc.)         | 8/14/20 10:00 | 8/14/20 11:0 | )5       | 1  | 0.00         | mg/L  |       |     |    |
| Analytical Method: SM4500Cl E         | Anal          | yst: JCC     |          |    |              |       |       |     |    |
| * Chloride                            | 8/10/20 13:16 | 8/10/20 13:1 | 6        | 1  | 2.05         | mg/L  | 0.50  | 1   |    |
| Analytical Method: SM4500F G 2017     | Anal          | yst: JCC     |          |    |              |       |       |     |    |
| * Fluoride                            | 8/11/20 12:17 | 8/11/20 12:1 | 7        | 1  | Not Detected | mg/L  | 0.06  | 0.1 | U  |
| Analytical Method: SM4500SO4 E 2011   | Anal          | yst: JCC     |          |    |              |       |       |     |    |
| * Sulfate                             | 8/7/20 12:43  | 8/7/20 12:43 | 3 ;      | 50 | 1370         | mg/L  | 25.00 | 50  |    |
| Analytical Method: Field Measurements | Anal          | yst: TJD     |          |    |              |       |       |     |    |
| Conductivity                          | 8/3/20 11:38  | 8/3/20 11:38 | 3        |    | 1647.17      | uS/cm |       |     | FA |
| рН                                    | 8/3/20 11:38  | 8/3/20 11:38 | 3        |    | 5.08         | SU    |       |     | FA |
| Temperature                           | 8/3/20 11:38  | 8/3/20 11:38 | 3        |    | 20.09        | С     |       |     | FA |
| Turbidity                             | 8/3/20 11:38  | 8/3/20 11:38 | 3        |    | 2.06         | NTU   |       |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

#### **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 8/3/20 11:45

**Customer ID:** 

**Delivery Date:** 8/6/20 11:01

Description: Gorgas Gypsum - MW-1L

Laboratory ID Number: BA14557

|                                |       |             | MB        |       |         |         |          | Standard         |      | Rec       |       | Prec         |
|--------------------------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|------|-----------|-------|--------------|
| Sample Analysis                | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | Limit            | Rec  | Limit     | Prec  | <u>Li</u> mi |
| 3A14560 Beryllium, Total       | mg/L  | -0.00000532 | 0.00088   | 0.10  | 0.102   | 0.0973  | 0.0878   | 0.085 to 0.115   | 98.0 | 70 to 130 | 4.72  | 20           |
| 3A14560 Boron, Total           | mg/L  | 0.000558    | 0.0650254 | 1.00  | 1.08    | 1.08    | 0.964    | 0.85 to 1.15     | 104  | 70 to 130 | 0.00  | 20           |
| 3A14560 Chromium, Total        | mg/L  | -0.0000152  | 0.00044   | 0.10  | 0.117   | 0.116   | 0.104    | 0.085 to 0.115   | 117  | 70 to 130 | 0.858 | 20           |
| 3A14560 Lithium, Total         | mg/L  | -0.000168   | 0.0154    | 0.20  | 0.529   | 0.522   | 0.190    | 0.17 to 0.23     | 130  | 70 to 130 | 1.33  | 20           |
| 3A14560 Calcium, Total         | mg/L  | -0.00321    | 0.1518    | 5.00  | 289     | 281     | 5.03     | 4.25 to 5.75     | 80.0 | 70 to 130 | 2.81  | 20           |
| BA14560 Iron, Total            | mg/L  | 0.00220     | 0.0176    | 0.2   | 12.6    | 12.4    | 0.202    | 0.17 to 0.23     | 0.00 | 70 to 130 | 1.60  | 20           |
| 3A14560 Sodium, Total          | mg/L  | 0.000367    | 0.044     | 5.00  | 39.6    | 39.0    | 4.84     | 4.25 to 5.75     | 84.0 | 70 to 130 | 1.53  | 20           |
| BA14560 Manganese, Total       | mg/L  | 0.0000036   | 0.0001474 | 0.10  | 11.0    | 12.3    | 0.0985   | 0.085 to 0.115   | -900 | 70 to 130 | 11.2  | 20           |
| BA14560 Molybdenum, Total      | mg/L  | 0.00000555  | 0.0001474 | 0.10  | 0.112   | 0.109   | 0.0966   | 0.085 to 0.115   | 112  | 70 to 130 | 2.71  | 20           |
| 3A14560 Thallium, Total        | mg/L  | 0.0000135   | 0.0001474 | 0.10  | 0.115   | 0.114   | 0.0999   | 0.085 to 0.115   | 115  | 70 to 130 | 0.873 | 20           |
| BA14560 Cadmium, Total         | mg/L  | -0.00000379 | 0.0001474 | 0.10  | 0.116   | 0.112   | 0.0962   | 0.085 to 0.115   | 109  | 70 to 130 | 3.51  | 20           |
| BA14560 Mercury, Total by CVAA | mg/L  | 0.0000190   | 0.0005    | 0.004 | 0.00368 | 0.00359 | 0.00359  | 0.0034 to 0.0046 | 92.0 | 70 to 130 | 2.48  | 20           |
| BA14560 Barium, Total          | mg/L  | 0.00000766  | 0.0002    | 0.10  | 0.121   | 0.124   | 0.0897   | 0.085 to 0.115   | 104  | 70 to 130 | 2.45  | 20           |
| BA14560 Potassium, Total       | mg/L  | -0.00825    | 0.3674    | 10.0  | 19.7    | 19.5    | 10.8     | 8.5 to 11.5      | 110  | 70 to 130 | 1.02  | 20           |
| 3A14560 Arsenic, Total         | mg/L  | 0.00000093  | 0.0001474 | 0.10  | 0.122   | 0.120   | 0.105    | 0.085 to 0.115   | 118  | 70 to 130 | 1.65  | 20           |
| 3A14560 Antimony, Total        | mg/L  | 0.000196    | 0.001     | 0.10  | 0.0946  | 0.0915  | 0.0872   | 0.085 to 0.115   | 94.6 | 70 to 130 | 3.33  | 20           |
| BA14563 Iron, Dissolved        | mg/L  | -0.000944   | 0.0176    | 0.2   | 37.5    | 37.5    | 0.206    | 0.17 to 0.23     | 150  | 70 to 130 | 0.00  | 20           |
| 3A14560 Cobalt, Total          | mg/L  | -0.0000239  | 0.0001474 | 0.10  | 0.735   | 0.717   | 0.104    | 0.085 to 0.115   | 95.0 | 70 to 130 | 2.48  | 20           |
| 3A14560 Magnesium, Total       | mg/L  | 0.000661    | 0.0462    | 5.00  | 434     | 424     | 5.13     | 4.25 to 5.75     | 40.0 | 70 to 130 | 2.33  | 20           |
| 3A14560 Lead, Total            | mg/L  | 0.00000456  | 0.0001474 | 0.10  | 0.122   | 0.121   | 0.106    | 0.085 to 0.115   | 120  | 70 to 130 | 0.823 | 20           |
| 3A14560 Selenium, Total        | mg/L  | -0.0000679  | 0.001     | 0.10  | 0.124   | 0.122   | 0.100    | 0.085 to 0.115   | 109  | 70 to 130 | 1.63  | 20           |
| 3A14563 Manganese, Dissolved   | mg/L  | 0.0000168   | 0.0001474 | 0.10  | 13.2    | 13.0    | 0.103    | 0.085 to 0.115   | 200  | 70 to 130 | 1.53  | 20           |

## **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 8/3/20 11:45

Customer ID:

**Delivery Date:** 8/6/20 11:01

Description: Gorgas Gypsum - MW-1L

Laboratory ID Number: BA14557

|         |                            |       |         | MB    |       |      | Sample    |          | Standard     |        | Rec       |       | Prec          |
|---------|----------------------------|-------|---------|-------|-------|------|-----------|----------|--------------|--------|-----------|-------|---------------|
| Sample  | Analysis                   | Units | MB      | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec    | Limit     | Prec  | <u>Li</u> mit |
| BA14565 | Solids, Dissolved          | mg/L  | 0.0000  | 25    |       |      | 3110      | 52.0     | 40 to 60     |        |           | 0.485 | 5             |
| BA14560 | Chloride                   | mg/L  | 0.0166  | 0.50  | 10.0  | 11.1 | 1.25      | 10.2     | 9 to 11      | 99.3 8 | 30 to 120 | 6.61  | 20            |
| BA14563 | Alkalinity, Total as CaCO3 | mg/L  |         |       |       |      | 116       | 49.0     | 45.0 to 55.0 |        |           | 2.72  | 10            |
| BA14560 | Fluoride                   | mg/L  | 0.00346 | 0.05  | 2.50  | 1.22 | 0.0776    | 2.33     | 2.25 to 2.75 | 45.7 8 | 30 to 120 | 1.30  | 20            |
| BA14560 | Sulfate                    | mg/L  | -0.449  | 0.50  | 4000  | 6090 | 2350      | 18.2     | 18 to 22     | 94.0 8 | 30 to 120 | 0.855 | 20            |

# Certificate Of Analysis



Description: Gorgas Gypsum - MW-1L DUPLocation Code:WMWGORGCollected:8/3/20 11:45

Customer ID:

**Submittal Date:** 8/6/20 11:01

Laboratory ID Number: BA14558

| Name                         | Prepared      | Analyzed     | Vio Spec DF | Results      | Units         | MDL      | RL      | Q |
|------------------------------|---------------|--------------|-------------|--------------|---------------|----------|---------|---|
| Analytical Method: EPA 200.7 | Ana           | lyst: RDA    |             | Preparat     | ion Method: I | EPA 1638 |         |   |
| * Boron, Total               | 8/10/20 15:00 | 8/12/20 10:3 | 35 1.015    | Not Detected | mg/L          | 0.03     | 0.1     | U |
| * Calcium, Total             | 8/10/20 15:00 | 8/12/20 12:  | 54 10.15    | 148          | mg/L          | 1.015    | 5.075   |   |
| * Iron, Total                | 8/10/20 15:00 | 8/12/20 10:  | 35 1.015    | Not Detected | mg/L          | 0.02     | 0.05    | U |
| * Lithium, Total             | 8/10/20 15:00 | 8/12/20 10:3 | 35 1.015    | 0.0262       | mg/L          | 0.01     | 0.02    |   |
| * Magnesium, Total           | 8/10/20 15:00 | 8/12/20 12:  | 54 10.15    | 282          | mg/L          | 1.015    | 5.075   |   |
| * Sodium, Total              | 8/10/20 15:00 | 8/12/20 10:3 | 35 1.015    | 37.7         | mg/L          | 0.1      | 0.5     |   |
| Analytical Method: EPA 200.7 | Ana           | lyst: RDA    |             |              |               |          |         |   |
| * Iron, Dissolved            | 8/10/20 13:30 | 8/11/20 11:4 | 42 1.015    | Not Detected | mg/L          | 0.02     | 0.05    | U |
| Analytical Method: EPA 200.8 | Ana           | lyst: DLJ    |             | Preparat     | ion Method: I | EPA 1638 |         |   |
| * Antimony, Total            | 8/7/20 12:54  | 8/10/20 11:  | 57 1.015    | Not Detected | mg/L          | 0.0008   | 0.003   | U |
| * Arsenic, Total             | 8/7/20 12:54  | 8/10/20 11:  | 57 1.015    | Not Detected | mg/L          | 0.001    | 0.005   | U |
| * Barium, Total              | 8/7/20 12:54  | 8/10/20 11:  | 57 1.015    | 0.0103       | mg/L          | 0.002    | 0.01    |   |
| * Beryllium, Total           | 8/7/20 12:54  | 8/10/20 11:  | 57 1.015    | Not Detected | mg/L          | 0.0006   | 0.003   | U |
| * Cadmium, Total             | 8/7/20 12:54  | 8/10/20 11:  | 57 1.015    | 0.00219      | mg/L          | 0.0003   | 0.001   |   |
| * Chromium, Total            | 8/7/20 12:54  | 8/10/20 11:  | 57 1.015    | Not Detected | mg/L          | 0.002    | 0.01    | U |
| * Cobalt, Total              | 8/7/20 12:54  | 8/10/20 11:  | 57 1.015    | 0.0711       | mg/L          | 0.002    | 0.005   |   |
| * Lead, Total                | 8/7/20 12:54  | 8/10/20 11:  | 57 1.015    | Not Detected | mg/L          | 0.001    | 0.005   | U |
| * Molybdenum, Total          | 8/7/20 12:54  | 8/10/20 11:  | 57 1.015    | Not Detected | mg/L          | 0.002    | 0.01    | U |
| * Potassium, Total           | 8/7/20 12:54  | 8/11/20 12:3 | 33 1.015    | 8.03         | mg/L          | 0.3      | 2.5     |   |
| * Manganese, Total           | 8/7/20 12:54  | 8/11/20 14:3 | 37 10.15    | 11.8         | mg/L          | 0.01015  | 0.05075 |   |
| * Selenium, Total            | 8/7/20 12:54  | 8/10/20 11:  | 57 1.015    | 0.00245      | mg/L          | 0.002    | 0.01    | J |
| * Thallium, Total            | 8/7/20 12:54  | 8/10/20 11:  | 57 1.015    | Not Detected | mg/L          | 0.0002   | 0.001   | U |
| Analytical Method: EPA 200.8 | Ana           | lyst: DLJ    |             |              |               |          |         |   |
| * Manganese, Dissolved       | 8/7/20 14:00  | 8/11/20 15:  | 54 10.15    | 11.9         | mg/L          | 0.01015  | 0.05075 |   |
| Analytical Method: EPA 245.1 | Ana           | lyst: GAS    |             |              |               |          |         |   |
| * Mercury, Total by CVAA     | 8/11/20 09:20 | 8/11/20 13:  | 56 1        | Not Detected | mg/L          | 0.0003   | 0.0005  | U |
| Analytical Method: SM 2320 B | Ana           | lyst: JAG    |             |              |               |          |         |   |
| Alkalinity, Total as CaCO3   | 8/14/20 10:00 | 8/14/20 11:0 | 05 1        | 14.8         | mg/L          |          | 0.1     |   |
| Analytical Method: SM 2540C  | Ana           | lyst: TJW    |             |              |               |          |         |   |
| * Solids, Dissolved          | 8/7/20 14:25  | 8/11/20 12:  | 20 1        | 2200         | mg/L          |          | 125     |   |
|                              | 5,.,25 . 1.20 |              | •           |              | 0             |          |         |   |

MDL's and RL's are adjusted for sample dilution, as applicable

## Certificate Of Analysis



Description: Gorgas Gypsum - MW-1L DUPLocation Code:WMWGORGCollected:8/3/20 11:45

Customer ID:

Submittal Date: 8/6/20 11:01

Laboratory ID Number: BA14558

| Name                                  | Prepared      | Analyzed     | Vio Spec | DF | Results      | Units | MDL   | RL  | Q  |
|---------------------------------------|---------------|--------------|----------|----|--------------|-------|-------|-----|----|
| Analytical Method: SM 4500CO2 D       | Anal          | yst: JAG     |          |    |              |       |       |     |    |
| Bicarbonate Alkalinity, (calc.)       | 8/14/20 10:00 | 8/14/20 11:0 | 5        | 1  | 14.8         | mg/L  |       |     |    |
| Carbonate Alkalinity, (calc.)         | 8/14/20 10:00 | 8/14/20 11:0 | 5        | 1  | 0.00         | mg/L  |       |     |    |
| Analytical Method: SM4500Cl E         | Anal          | yst: JCC     |          |    |              |       |       |     |    |
| * Chloride                            | 8/10/20 13:17 | 8/10/20 13:1 | 7        | 1  | 2.06         | mg/L  | 0.50  | 1   |    |
| Analytical Method: SM4500F G 2017     | Anal          | yst: JCC     |          |    |              |       |       |     |    |
| * Fluoride                            | 8/11/20 12:18 | 8/11/20 12:1 | 8        | 1  | Not Detected | mg/L  | 0.06  | 0.1 | U  |
| Analytical Method: SM4500SO4 E 2011   | Anal          | yst: JCC     |          |    |              |       |       |     |    |
| * Sulfate                             | 8/7/20 12:45  | 8/7/20 12:45 | ;        | 50 | 1480         | mg/L  | 25.00 | 50  |    |
| Analytical Method: Field Measurements | Anal          | yst: TJD     |          |    |              |       |       |     |    |
| Conductivity                          | 8/3/20 11:38  | 8/3/20 11:38 | }        |    | 1647.17      | uS/cm |       |     | FA |
| рН                                    | 8/3/20 11:38  | 8/3/20 11:38 | }        |    | 5.08         | SU    |       |     | FA |
| Temperature                           | 8/3/20 11:38  | 8/3/20 11:38 | }        |    | 20.09        | С     |       |     | FA |
| Turbidity                             | 8/3/20 11:38  | 8/3/20 11:38 | ;        |    | 2.06         | NTU   |       |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

## **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 8/3/20 11:45

Customer ID:

**Delivery Date:** 8/6/20 11:01

Description: Gorgas Gypsum - MW-1L DUP

Laboratory ID Number: BA14558

|                                |       |             | MB        |       |         |         |          | Standard         |      | Rec       |       | Prec         |
|--------------------------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|------|-----------|-------|--------------|
| Sample Analysis                | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | Limit            | Rec  | Limit     | Prec  | <u>Li</u> mi |
| BA14560 Beryllium, Total       | mg/L  | -0.00000532 | 0.00088   | 0.10  | 0.102   | 0.0973  | 0.0878   | 0.085 to 0.115   | 98.0 | 70 to 130 | 4.72  | 20           |
| BA14560 Cadmium, Total         | mg/L  | -0.00000379 | 0.0001474 | 0.10  | 0.116   | 0.112   | 0.0962   | 0.085 to 0.115   | 109  | 70 to 130 | 3.51  | 20           |
| BA14560 Mercury, Total by CVAA | mg/L  | 0.0000190   | 0.0005    | 0.004 | 0.00368 | 0.00359 | 0.00359  | 0.0034 to 0.0046 | 92.0 | 70 to 130 | 2.48  | 20           |
| BA14560 Manganese, Total       | mg/L  | 0.0000036   | 0.0001474 | 0.10  | 11.0    | 12.3    | 0.0985   | 0.085 to 0.115   | -900 | 70 to 130 | 11.2  | 20           |
| BA14560 Molybdenum, Total      | mg/L  | 0.00000555  | 0.0001474 | 0.10  | 0.112   | 0.109   | 0.0966   | 0.085 to 0.115   | 112  | 70 to 130 | 2.71  | 20           |
| BA14560 Thallium, Total        | mg/L  | 0.0000135   | 0.0001474 | 0.10  | 0.115   | 0.114   | 0.0999   | 0.085 to 0.115   | 115  | 70 to 130 | 0.873 | 20           |
| BA14560 Boron, Total           | mg/L  | 0.000558    | 0.0650254 | 1.00  | 1.08    | 1.08    | 0.964    | 0.85 to 1.15     | 104  | 70 to 130 | 0.00  | 20           |
| BA14560 Chromium, Total        | mg/L  | -0.0000152  | 0.00044   | 0.10  | 0.117   | 0.116   | 0.104    | 0.085 to 0.115   | 117  | 70 to 130 | 0.858 | 20           |
| BA14560 Lithium, Total         | mg/L  | -0.000168   | 0.0154    | 0.20  | 0.529   | 0.522   | 0.190    | 0.17 to 0.23     | 130  | 70 to 130 | 1.33  | 20           |
| BA14560 Calcium, Total         | mg/L  | -0.00321    | 0.1518    | 5.00  | 289     | 281     | 5.03     | 4.25 to 5.75     | 80.0 | 70 to 130 | 2.81  | 20           |
| BA14560 Iron, Total            | mg/L  | 0.00220     | 0.0176    | 0.2   | 12.6    | 12.4    | 0.202    | 0.17 to 0.23     | 0.00 | 70 to 130 | 1.60  | 20           |
| BA14560 Sodium, Total          | mg/L  | 0.000367    | 0.044     | 5.00  | 39.6    | 39.0    | 4.84     | 4.25 to 5.75     | 84.0 | 70 to 130 | 1.53  | 20           |
| BA14560 Cobalt, Total          | mg/L  | -0.0000239  | 0.0001474 | 0.10  | 0.735   | 0.717   | 0.104    | 0.085 to 0.115   | 95.0 | 70 to 130 | 2.48  | 20           |
| BA14560 Magnesium, Total       | mg/L  | 0.000661    | 0.0462    | 5.00  | 434     | 424     | 5.13     | 4.25 to 5.75     | 40.0 | 70 to 130 | 2.33  | 20           |
| BA14560 Lead, Total            | mg/L  | 0.00000456  | 0.0001474 | 0.10  | 0.122   | 0.121   | 0.106    | 0.085 to 0.115   | 120  | 70 to 130 | 0.823 | 20           |
| BA14560 Selenium, Total        | mg/L  | -0.0000679  | 0.001     | 0.10  | 0.124   | 0.122   | 0.100    | 0.085 to 0.115   | 109  | 70 to 130 | 1.63  | 20           |
| BA14563 Manganese, Dissolved   | mg/L  | 0.0000168   | 0.0001474 | 0.10  | 13.2    | 13.0    | 0.103    | 0.085 to 0.115   | 200  | 70 to 130 | 1.53  | 20           |
| BA14560 Barium, Total          | mg/L  | 0.00000766  | 0.0002    | 0.10  | 0.121   | 0.124   | 0.0897   | 0.085 to 0.115   | 104  | 70 to 130 | 2.45  | 20           |
| BA14560 Potassium, Total       | mg/L  | -0.00825    | 0.3674    | 10.0  | 19.7    | 19.5    | 10.8     | 8.5 to 11.5      | 110  | 70 to 130 | 1.02  | 20           |
| BA14560 Arsenic, Total         | mg/L  | 0.00000093  | 0.0001474 | 0.10  | 0.122   | 0.120   | 0.105    | 0.085 to 0.115   | 118  | 70 to 130 | 1.65  | 20           |
| BA14560 Antimony, Total        | mg/L  | 0.000196    | 0.001     | 0.10  | 0.0946  | 0.0915  | 0.0872   | 0.085 to 0.115   | 94.6 | 70 to 130 | 3.33  | 20           |
| BA14563 Iron, Dissolved        | mg/L  | -0.000944   | 0.0176    | 0.2   | 37.5    | 37.5    | 0.206    | 0.17 to 0.23     | 150  | 70 to 130 | 0.00  | 20           |

## **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 8/3/20 11:45

Customer ID:

**Delivery Date:** 8/6/20 11:01

Description: Gorgas Gypsum - MW-1L DUP

Laboratory ID Number: BA14558

|         |                            |       |         | MB    |       |      | Sample    |          | Standard     |        | Rec       |       | Prec          |
|---------|----------------------------|-------|---------|-------|-------|------|-----------|----------|--------------|--------|-----------|-------|---------------|
| Sample  | Analysis                   | Units | MB      | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec    | Limit     | Prec  | <u>Li</u> mit |
| BA14565 | Solids, Dissolved          | mg/L  | 0.0000  | 25    |       |      | 3110      | 52.0     | 40 to 60     |        |           | 0.485 | 5             |
| BA14560 | Chloride                   | mg/L  | 0.0166  | 0.50  | 10.0  | 11.1 | 1.25      | 10.2     | 9 to 11      | 99.3 8 | 30 to 120 | 6.61  | 20            |
| BA14563 | Alkalinity, Total as CaCO3 | mg/L  |         |       |       |      | 116       | 49.0     | 45.0 to 55.0 |        |           | 2.72  | 10            |
| BA14560 | Fluoride                   | mg/L  | 0.00346 | 0.05  | 2.50  | 1.22 | 0.0776    | 2.33     | 2.25 to 2.75 | 45.7 8 | 30 to 120 | 1.30  | 20            |
| BA14560 | Sulfate                    | mg/L  | -0.449  | 0.50  | 4000  | 6090 | 2350      | 18.2     | 18 to 22     | 94.0 8 | 30 to 120 | 0.855 | 20            |

## Certificate Of Analysis



Description: Gorgas Gypsum - MW-2LLocation Code:WMWGORGCollected:8/3/20 12:55

Customer ID:

**Submittal Date:** 8/6/20 11:01

Laboratory ID Number: BA14559

| Name                         | Prepared      | Analyzed     | Vio Spec DF | Results      | Units      | MDL      | RL      | Q |
|------------------------------|---------------|--------------|-------------|--------------|------------|----------|---------|---|
| Analytical Method: EPA 200.7 | Analy         | yst: RDA     |             | Preparat     | on Method: | EPA 1638 |         |   |
| * Boron, Total               | 8/10/20 15:00 | 8/12/20 10:3 | 8 1.015     | 0.0317       | mg/L       | 0.03     | 0.1     | J |
| * Calcium, Total             | 8/10/20 15:00 | 8/12/20 12:5 | 7 10.15     | 172          | mg/L       | 1.015    | 5.075   |   |
| * Iron, Total                | 8/10/20 15:00 | 8/12/20 12:5 | 7 10.15     | 6.07         | mg/L       | 0.203    | 0.5075  |   |
| * Lithium, Total             | 8/10/20 15:00 | 8/12/20 10:3 | 8 1.015     | 0.0611       | mg/L       | 0.01     | 0.02    |   |
| * Magnesium, Total           | 8/10/20 15:00 | 8/12/20 12:5 | 7 10.15     | 194          | mg/L       | 1.015    | 5.075   |   |
| * Sodium, Total              | 8/10/20 15:00 | 8/12/20 10:3 | 8 1.015     | 24.6         | mg/L       | 0.1      | 0.5     |   |
| Analytical Method: EPA 200.7 | Anal          | yst: RDA     |             |              |            |          |         |   |
| * Iron, Dissolved            | 8/10/20 13:30 | 8/11/20 13:5 | 4 10.15     | 6.03         | mg/L       | 0.203    | 0.5075  |   |
| Analytical Method: EPA 200.8 | Anal          | yst: DLJ     |             | Preparati    | on Method: | EPA 1638 |         |   |
| * Antimony, Total            | 8/7/20 12:54  | 8/10/20 12:0 | 0 1.015     | Not Detected | mg/L       | 0.0008   | 0.003   | U |
| * Arsenic, Total             | 8/7/20 12:54  | 8/10/20 12:0 | 0 1.015     | Not Detected | mg/L       | 0.001    | 0.005   | U |
| * Barium, Total              | 8/7/20 12:54  | 8/10/20 12:0 | 0 1.015     | 0.0147       | mg/L       | 0.002    | 0.01    |   |
| * Beryllium, Total           | 8/7/20 12:54  | 8/10/20 12:0 | 0 1.015     | Not Detected | mg/L       | 0.0006   | 0.003   | U |
| * Cadmium, Total             | 8/7/20 12:54  | 8/10/20 12:0 | 0 1.015     | Not Detected | mg/L       | 0.0003   | 0.001   | U |
| * Chromium, Total            | 8/7/20 12:54  | 8/10/20 12:0 | 0 1.015     | Not Detected | mg/L       | 0.002    | 0.01    | U |
| * Cobalt, Total              | 8/7/20 12:54  | 8/10/20 12:0 | 0 1.015     | 0.0589       | mg/L       | 0.002    | 0.005   |   |
| * Lead, Total                | 8/7/20 12:54  | 8/10/20 12:0 | 0 1.015     | Not Detected | mg/L       | 0.001    | 0.005   | U |
| * Molybdenum, Total          | 8/7/20 12:54  | 8/10/20 12:0 | 0 1.015     | Not Detected | mg/L       | 0.002    | 0.01    | U |
| * Potassium, Total           | 8/7/20 12:54  | 8/11/20 12:3 | 6 1.015     | 6.59         | mg/L       | 0.3      | 2.5     |   |
| * Manganese, Total           | 8/7/20 12:54  | 8/11/20 14:4 | 0 10.15     | 8.34         | mg/L       | 0.01015  | 0.05075 |   |
| * Selenium, Total            | 8/7/20 12:54  | 8/10/20 12:0 | 0 1.015     | Not Detected | mg/L       | 0.002    | 0.01    | U |
| * Thallium, Total            | 8/7/20 12:54  | 8/10/20 12:0 | 0 1.015     | Not Detected | mg/L       | 0.0002   | 0.001   | U |
| Analytical Method: EPA 200.8 | Anal          | yst: DLJ     |             |              |            |          |         |   |
| * Manganese, Dissolved       | 8/7/20 14:00  | 8/11/20 15:5 | 7 10.15     | 8.63         | mg/L       | 0.01015  | 0.05075 |   |
| Analytical Method: EPA 245.1 | Anal          | yst: GAS     |             |              |            |          |         |   |
| * Mercury, Total by CVAA     | 8/11/20 09:20 | •            | 9 1         | Not Detected | mg/L       | 0.0003   | 0.0005  | U |
| Analytical Method: SM 2320 B | Anal          | yst: JAG     |             |              |            |          |         |   |
| Alkalinity, Total as CaCO3   | 8/14/20 10:00 | •            | 5 1         | 204          | mg/L       |          | 0.1     |   |
| Analytical Method: SM 2540C  |               | yst: TJW     |             |              | -          |          |         |   |
| * Solids, Dissolved          | 8/7/20 14:25  | 8/11/20 12:2 | 0 1         | 1650         | mg/L       |          | 100     |   |

MDL's and RL's are adjusted for sample dilution, as applicable

## Certificate Of Analysis



Description: Gorgas Gypsum - MW-2LLocation Code:WMWGORGCollected:8/3/20 12:55

Customer ID:

Submittal Date: 8/6/20 11:01

Laboratory ID Number: BA14559

| Name                                  | Prepared      | Analyzed     | Vio Spec | DF | Results | Units | MDL   | RL  | Q  |
|---------------------------------------|---------------|--------------|----------|----|---------|-------|-------|-----|----|
| Analytical Method: SM 4500CO2 D       | Anal          | yst: JAG     |          |    |         |       |       |     |    |
| Bicarbonate Alkalinity, (calc.)       | 8/14/20 10:00 | 8/14/20 11:0 | 5        | 1  | 204     | mg/L  |       |     |    |
| Carbonate Alkalinity, (calc.)         | 8/14/20 10:00 | 8/14/20 11:0 | 5        | 1  | 0.03    | mg/L  |       |     |    |
| Analytical Method: SM4500Cl E         | Anal          | yst: JCC     |          |    |         |       |       |     |    |
| * Chloride                            | 8/10/20 13:18 | 8/10/20 13:1 | 8        | 1  | 4.03    | mg/L  | 0.50  | 1   |    |
| Analytical Method: SM4500F G 2017     | Anal          | yst: JCC     |          |    |         |       |       |     |    |
| * Fluoride                            | 8/11/20 12:20 | 8/11/20 12:2 | .0       | 1  | 0.122   | mg/L  | 0.06  | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Anal          | yst: JCC     |          |    |         |       |       |     |    |
| * Sulfate                             | 8/7/20 12:46  | 8/7/20 12:46 | , 4      | 40 | 907     | mg/L  | 20.00 | 40  |    |
| Analytical Method: Field Measurements | Anal          | yst: TJD     |          |    |         |       |       |     |    |
| Conductivity                          | 8/3/20 12:51  | 8/3/20 12:51 |          |    | 1280.91 | uS/cm |       |     | FA |
| рН                                    | 8/3/20 12:51  | 8/3/20 12:51 |          |    | 5.95    | SU    |       |     | FA |
| Temperature                           | 8/3/20 12:51  | 8/3/20 12:51 |          |    | 20.21   | С     |       |     | FA |
| Turbidity                             | 8/3/20 12:51  | 8/3/20 12:51 |          |    | 3.65    | NTU   |       |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

## **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 8/3/20 12:55

Customer ID:

Delivery Date:

8/6/20 11:01

Description: Gorgas Gypsum - MW-2L

Laboratory ID Number: BA14559

| •                              |       |             | MB        |       |         |         |          | Standard         |      | Rec       |       | Prec          |
|--------------------------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|------|-----------|-------|---------------|
| Sample Analysis                | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | l Limit          | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA14560 Beryllium, Total       | mg/L  | -0.00000532 | 0.00088   | 0.10  | 0.102   | 0.0973  | 0.0878   | 0.085 to 0.115   | 98.0 | 70 to 130 | 4.72  | 20            |
| BA14560 Manganese, Total       | mg/L  | 0.0000036   | 0.0001474 | 0.10  | 11.0    | 12.3    | 0.0985   | 0.085 to 0.115   | -900 | 70 to 130 | 11.2  | 20            |
| BA14560 Molybdenum, Total      | mg/L  | 0.00000555  | 0.0001474 | 0.10  | 0.112   | 0.109   | 0.0966   | 0.085 to 0.115   | 112  | 70 to 130 | 2.71  | 20            |
| BA14560 Thallium, Total        | mg/L  | 0.0000135   | 0.0001474 | 0.10  | 0.115   | 0.114   | 0.0999   | 0.085 to 0.115   | 115  | 70 to 130 | 0.873 | 20            |
| BA14560 Boron, Total           | mg/L  | 0.000558    | 0.0650254 | 1.00  | 1.08    | 1.08    | 0.964    | 0.85 to 1.15     | 104  | 70 to 130 | 0.00  | 20            |
| BA14560 Chromium, Total        | mg/L  | -0.0000152  | 0.00044   | 0.10  | 0.117   | 0.116   | 0.104    | 0.085 to 0.115   | 117  | 70 to 130 | 0.858 | 20            |
| BA14560 Lithium, Total         | mg/L  | -0.000168   | 0.0154    | 0.20  | 0.529   | 0.522   | 0.190    | 0.17 to 0.23     | 130  | 70 to 130 | 1.33  | 20            |
| BA14560 Calcium, Total         | mg/L  | -0.00321    | 0.1518    | 5.00  | 289     | 281     | 5.03     | 4.25 to 5.75     | 80.0 | 70 to 130 | 2.81  | 20            |
| BA14560 Iron, Total            | mg/L  | 0.00220     | 0.0176    | 0.2   | 12.6    | 12.4    | 0.202    | 0.17 to 0.23     | 0.00 | 70 to 130 | 1.60  | 20            |
| BA14560 Sodium, Total          | mg/L  | 0.000367    | 0.044     | 5.00  | 39.6    | 39.0    | 4.84     | 4.25 to 5.75     | 84.0 | 70 to 130 | 1.53  | 20            |
| BA14560 Cadmium, Total         | mg/L  | -0.00000379 | 0.0001474 | 0.10  | 0.116   | 0.112   | 0.0962   | 0.085 to 0.115   | 109  | 70 to 130 | 3.51  | 20            |
| BA14560 Mercury, Total by CVAA | mg/L  | 0.0000190   | 0.0005    | 0.004 | 0.00368 | 0.00359 | 0.00359  | 0.0034 to 0.0046 | 92.0 | 70 to 130 | 2.48  | 20            |
| BA14560 Barium, Total          | mg/L  | 0.00000766  | 0.0002    | 0.10  | 0.121   | 0.124   | 0.0897   | 0.085 to 0.115   | 104  | 70 to 130 | 2.45  | 20            |
| BA14560 Potassium, Total       | mg/L  | -0.00825    | 0.3674    | 10.0  | 19.7    | 19.5    | 10.8     | 8.5 to 11.5      | 110  | 70 to 130 | 1.02  | 20            |
| BA14560 Arsenic, Total         | mg/L  | 0.00000093  | 0.0001474 | 0.10  | 0.122   | 0.120   | 0.105    | 0.085 to 0.115   | 118  | 70 to 130 | 1.65  | 20            |
| BA14560 Antimony, Total        | mg/L  | 0.000196    | 0.001     | 0.10  | 0.0946  | 0.0915  | 0.0872   | 0.085 to 0.115   | 94.6 | 70 to 130 | 3.33  | 20            |
| BA14563 Iron, Dissolved        | mg/L  | -0.000944   | 0.0176    | 0.2   | 37.5    | 37.5    | 0.206    | 0.17 to 0.23     | 150  | 70 to 130 | 0.00  | 20            |
| BA14560 Cobalt, Total          | mg/L  | -0.0000239  | 0.0001474 | 0.10  | 0.735   | 0.717   | 0.104    | 0.085 to 0.115   | 95.0 | 70 to 130 | 2.48  | 20            |
| BA14560 Magnesium, Total       | mg/L  | 0.000661    | 0.0462    | 5.00  | 434     | 424     | 5.13     | 4.25 to 5.75     | 40.0 | 70 to 130 | 2.33  | 20            |
| BA14560 Lead, Total            | mg/L  | 0.00000456  | 0.0001474 | 0.10  | 0.122   | 0.121   | 0.106    | 0.085 to 0.115   | 120  | 70 to 130 | 0.823 | 20            |
| BA14560 Selenium, Total        | mg/L  | -0.0000679  | 0.001     | 0.10  | 0.124   | 0.122   | 0.100    | 0.085 to 0.115   | 109  | 70 to 130 | 1.63  | 20            |
| BA14563 Manganese, Dissolved   | mg/L  | 0.0000168   | 0.0001474 | 0.10  | 13.2    | 13.0    | 0.103    | 0.085 to 0.115   | 200  | 70 to 130 | 1.53  | 20            |
|                                |       |             |           |       |         |         |          |                  |      |           |       |               |

## **Batch QC Summary**



Customer Account: WMWGORG

Sample Date:

8/3/20 12:55

**Customer ID:** 

**Delivery Date:** 

8/6/20 11:01

Description: Gorgas Gypsum - MW-2L

Laboratory ID Number: BA14559

|         |                            |       |         | MB    |       |      | Sample    |          | Standard     |        | Rec       |       | Prec  |
|---------|----------------------------|-------|---------|-------|-------|------|-----------|----------|--------------|--------|-----------|-------|-------|
| Sample  | Analysis                   | Units | MB      | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec    | Limit     | Prec  | Limit |
| BA14565 | Solids, Dissolved          | mg/L  | 0.0000  | 25    |       |      | 3110      | 52.0     | 40 to 60     |        |           | 0.485 | 5     |
| BA14560 | Chloride                   | mg/L  | 0.0166  | 0.50  | 10.0  | 11.1 | 1.25      | 10.2     | 9 to 11      | 99.3 8 | 30 to 120 | 6.61  | 20    |
| BA14563 | Alkalinity, Total as CaCO3 | mg/L  |         |       |       |      | 116       | 49.0     | 45.0 to 55.0 |        |           | 2.72  | 10    |
| BA14560 | Fluoride                   | mg/L  | 0.00346 | 0.05  | 2.50  | 1.22 | 0.0776    | 2.33     | 2.25 to 2.75 | 45.7 8 | 30 to 120 | 1.30  | 20    |
| BA14560 | Sulfate                    | mg/L  | -0.449  | 0.50  | 4000  | 6090 | 2350      | 18.2     | 18 to 22     | 94.0 8 | 30 to 120 | 0.855 | 20    |

#### Certificate Of Analysis



Description: Gorgas Gypsum - MW-3LLocation Code:WMWGORGCollected:8/3/20 14:28

Customer ID:

Laboratory ID Number: BA14560 Submittal Date: 8/6/20 11:01

| Name                         | Prepared      | Analyzed     | Vio Spec DF | Results     | Units         | MDL      | RL       | Q  |
|------------------------------|---------------|--------------|-------------|-------------|---------------|----------|----------|----|
| Analytical Method: EPA 200.7 | Anal          | yst: RDA     |             | Prepar      | ation Method: | EPA 1638 |          |    |
| * Boron, Total               | 8/10/20 15:00 | 8/12/20 10:4 | 1.015       | 0.0424      | mg/L          | 0.03     | 0.1      | J  |
| * Calcium, Total             | 8/10/20 15:00 | 8/12/20 13:0 | 00 20.3     | 285         | mg/L          | 2.03     | 10.15    | R/ |
| * Iron, Total                | 8/10/20 15:00 | 8/12/20 13:0 | 00 20.3     | 12.6        | mg/L          | 0.406    | 1.015    | R/ |
| * Lithium, Total             | 8/10/20 15:00 | 8/12/20 10:4 | 1.015       | 0.270       | mg/L          | 0.01     | 0.02     |    |
| * Magnesium, Total           | 8/10/20 15:00 | 8/12/20 13:0 | 00 20.3     | 432         | mg/L          | 2.03     | 10.15    | R/ |
| * Sodium, Total              | 8/10/20 15:00 | 8/12/20 13:0 | 00 20.3     | 35.4        | mg/L          | 2.03     | 10.15    |    |
| Analytical Method: EPA 200.7 | Anal          | yst: RDA     |             |             |               |          |          |    |
| * Iron, Dissolved            | 8/10/20 13:30 | 8/11/20 14:0 | 10.15       | 6.25        | mg/L          | 0.203    | 0.5075   |    |
| Analytical Method: EPA 200.8 | Anal          | yst: DLJ     |             | Prepar      | ation Method: | EPA 1638 |          |    |
| * Antimony, Total            | 8/7/20 12:54  | 8/10/20 12:0 | 1.015       | Not Detecte | ed mg/L       | 8000.0   | 0.003    | U  |
| * Arsenic, Total             | 8/7/20 12:54  | 8/10/20 12:0 | 1.015       | 0.00426     | mg/L          | 0.001    | 0.005    | J  |
| * Barium, Total              | 8/7/20 12:54  | 8/10/20 12:0 | 1.015       | 0.0166      | mg/L          | 0.002    | 0.01     |    |
| * Beryllium, Total           | 8/7/20 12:54  | 8/10/20 12:0 | 1.015       | 0.00405     | mg/L          | 0.0006   | 0.003    |    |
| * Cadmium, Total             | 8/7/20 12:54  | 8/10/20 12:0 | 1.015       | 0.00652     | mg/L          | 0.0003   | 0.001    |    |
| * Chromium, Total            | 8/7/20 12:54  | 8/10/20 12:0 | 1.015       | Not Detecte | d mg/L        | 0.002    | 0.01     | U  |
| * Cobalt, Total              | 8/7/20 12:54  | 8/10/20 12:0 | 1.015       | 0.640       | mg/L          | 0.002    | 0.005    |    |
| * Lead, Total                | 8/7/20 12:54  | 8/10/20 12:0 | 1.015       | 0.00200     | mg/L          | 0.001    | 0.005    | J  |
| * Molybdenum, Total          | 8/7/20 12:54  | 8/10/20 12:0 | 1.015       | Not Detecte | d mg/L        | 0.002    | 0.01     | U  |
| * Potassium, Total           | 8/7/20 12:54  | 8/11/20 12:3 | 1.015       | 8.68        | mg/L          | 0.3      | 2.5      |    |
| * Manganese, Total           | 8/7/20 12:54  | 8/11/20 14:4 | 92.36       | 5 11.9      | mg/L          | 0.092365 | 0.461825 | R/ |
| * Selenium, Total            | 8/7/20 12:54  | 8/10/20 12:0 | 1.015       | 0.0146      | mg/L          | 0.002    | 0.01     |    |
| * Thallium, Total            | 8/7/20 12:54  | 8/10/20 12:0 | 1.015       | Not Detecte | d mg/L        | 0.0002   | 0.001    | U  |
| Analytical Method: EPA 200.8 | Anal          | yst: DLJ     |             |             |               |          |          |    |
| * Manganese, Dissolved       | 8/7/20 14:00  | 8/11/20 16:0 | 92.36       | 5 12.4      | mg/L          | 0.092365 | 0.461825 |    |
| Analytical Method: EPA 245.1 | Anal          | yst: GAS     |             |             |               |          |          |    |
| * Mercury, Total by CVAA     | 8/11/20 09:20 |              | )1 1        | Not Detecte | d mg/L        | 0.0003   | 0.0005   | U  |
| Analytical Method: SM 2320 B | Anal          | yst: JAG     |             |             |               |          |          |    |
| Alkalinity, Total as CaCO3   | 8/14/20 10:00 | •            | )5 1        | 8.32        | mg/L          |          | 0.1      |    |
| Analytical Method: SM 2540C  |               | yst: TJW     |             |             | •             |          |          |    |
| * Solids, Dissolved          | 8/7/20 14:25  | 8/11/20 12:2 | 20 1        | 3760        | mg/L          |          | 250      |    |

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. Matrix spike recovery for Fluoride was outside of the specification limit. LBM 8/19/2020

#### Certificate Of Analysis



Description: Gorgas Gypsum - MW-3LLocation Code:WMWGORGCollected:8/3/20 14:28

Customer ID:

Submittal Date: 8/6/20 11:01

Laboratory ID Number: BA14560

| Name                                  | Prepared      | Analyzed     | Vio Spec D | )F | Results | Units | MDL    | RL  | Q  |
|---------------------------------------|---------------|--------------|------------|----|---------|-------|--------|-----|----|
| Analytical Method: SM 4500CO2 D       | Ana           | lyst: JAG    |            |    |         |       |        |     |    |
| Bicarbonate Alkalinity, (calc.)       | 8/14/20 10:00 | 8/14/20 11:0 | )5 1       |    | 8.32    | mg/L  |        |     |    |
| Carbonate Alkalinity, (calc.)         | 8/14/20 10:00 | 8/14/20 11:0 | )5 1       |    | 0.00    | mg/L  |        |     |    |
| Analytical Method: SM4500Cl E         | Ana           | lyst: JCC    |            |    |         |       |        |     |    |
| * Chloride                            | 8/10/20 13:19 | 8/10/20 13:1 | 9 1        |    | 1.17    | mg/L  | 0.50   | 1   |    |
| Analytical Method: SM4500F G 2017     | Ana           | lyst: JCC    |            |    |         |       |        |     |    |
| * Fluoride                            | 8/11/20 12:21 | 8/11/20 12:2 | 21 1       |    | 0.0766  | mg/L  | 0.06   | 0.1 | J  |
| Analytical Method: SM4500SO4 E 2011   | Ana           | lyst: JCC    |            |    |         |       |        |     |    |
| * Sulfate                             | 8/7/20 12:47  | 8/7/20 12:47 | 20         | 0  | 2330    | mg/L  | 100.00 | 200 |    |
| Analytical Method: Field Measurements | Ana           | lyst: TJD    |            |    |         |       |        |     |    |
| Conductivity                          | 8/3/20 14:23  | 8/3/20 14:23 | 3          |    | 2198.42 | uS/cm |        |     | FA |
| рН                                    | 8/3/20 14:23  | 8/3/20 14:23 | 3          |    | 5.06    | SU    |        |     | FA |
| Temperature                           | 8/3/20 14:23  | 8/3/20 14:23 | 3          |    | 24.12   | С     |        |     | FA |
| Turbidity                             | 8/3/20 14:23  | 8/3/20 14:23 | 3          |    | 6.72    | NTU   |        |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. Matrix spike recovery for Fluoride was outside of the specification limit. LBM 8/19/2020

#### **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 8/3/20 14:28

Customer ID:

**Delivery Date:** 8/6/20 11:01

Description: Gorgas Gypsum - MW-3L

Laboratory ID Number: BA14560

|         |                        |       |             | MB        |       |         |         |          | Standard         |      | Rec       |       | Prec          |
|---------|------------------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|------|-----------|-------|---------------|
| Sample  | Analysis               | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | Limit            | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA14560 | Beryllium, Total       | mg/L  | -0.00000532 | 0.00088   | 0.10  | 0.102   | 0.0973  | 0.0878   | 0.085 to 0.115   | 98.0 | 70 to 130 | 4.72  | 20            |
| BA14560 | Calcium, Total         | mg/L  | -0.00321    | 0.1518    | 5.00  | 289     | 281     | 5.03     | 4.25 to 5.75     | 80.0 | 70 to 130 | 2.81  | 20            |
| BA14560 | Iron, Total            | mg/L  | 0.00220     | 0.0176    | 0.2   | 12.6    | 12.4    | 0.202    | 0.17 to 0.23     | 0.00 | 70 to 130 | 1.60  | 20            |
| BA14560 | Sodium, Total          | mg/L  | 0.000367    | 0.044     | 5.00  | 39.6    | 39.0    | 4.84     | 4.25 to 5.75     | 84.0 | 70 to 130 | 1.53  | 20            |
| BA14560 | Manganese, Total       | mg/L  | 0.0000036   | 0.0001474 | 0.10  | 11.0    | 12.3    | 0.0985   | 0.085 to 0.115   | -900 | 70 to 130 | 11.2  | 20            |
| BA14560 | Molybdenum, Total      | mg/L  | 0.00000555  | 0.0001474 | 0.10  | 0.112   | 0.109   | 0.0966   | 0.085 to 0.115   | 112  | 70 to 130 | 2.71  | 20            |
| BA14560 | Thallium, Total        | mg/L  | 0.0000135   | 0.0001474 | 0.10  | 0.115   | 0.114   | 0.0999   | 0.085 to 0.115   | 115  | 70 to 130 | 0.873 | 20            |
| BA14560 | Cadmium, Total         | mg/L  | -0.00000379 | 0.0001474 | 0.10  | 0.116   | 0.112   | 0.0962   | 0.085 to 0.115   | 109  | 70 to 130 | 3.51  | 20            |
| BA14560 | Mercury, Total by CVAA | mg/L  | 0.0000190   | 0.0005    | 0.004 | 0.00368 | 0.00359 | 0.00359  | 0.0034 to 0.0046 | 92.0 | 70 to 130 | 2.48  | 20            |
| BA14560 | Arsenic, Total         | mg/L  | 0.00000093  | 0.0001474 | 0.10  | 0.122   | 0.120   | 0.105    | 0.085 to 0.115   | 118  | 70 to 130 | 1.65  | 20            |
| BA14560 | Antimony, Total        | mg/L  | 0.000196    | 0.001     | 0.10  | 0.0946  | 0.0915  | 0.0872   | 0.085 to 0.115   | 94.6 | 70 to 130 | 3.33  | 20            |
| BA14563 | Iron, Dissolved        | mg/L  | -0.000944   | 0.0176    | 0.2   | 37.5    | 37.5    | 0.206    | 0.17 to 0.23     | 150  | 70 to 130 | 0.00  | 20            |
| BA14560 | Boron, Total           | mg/L  | 0.000558    | 0.0650254 | 1.00  | 1.08    | 1.08    | 0.964    | 0.85 to 1.15     | 104  | 70 to 130 | 0.00  | 20            |
| BA14560 | Chromium, Total        | mg/L  | -0.0000152  | 0.00044   | 0.10  | 0.117   | 0.116   | 0.104    | 0.085 to 0.115   | 117  | 70 to 130 | 0.858 | 20            |
| BA14560 | Lithium, Total         | mg/L  | -0.000168   | 0.0154    | 0.20  | 0.529   | 0.522   | 0.190    | 0.17 to 0.23     | 130  | 70 to 130 | 1.33  | 20            |
| BA14560 | Barium, Total          | mg/L  | 0.00000766  | 0.0002    | 0.10  | 0.121   | 0.124   | 0.0897   | 0.085 to 0.115   | 104  | 70 to 130 | 2.45  | 20            |
| BA14560 | Potassium, Total       | mg/L  | -0.00825    | 0.3674    | 10.0  | 19.7    | 19.5    | 10.8     | 8.5 to 11.5      | 110  | 70 to 130 | 1.02  | 20            |
| BA14560 | Cobalt, Total          | mg/L  | -0.0000239  | 0.0001474 | 0.10  | 0.735   | 0.717   | 0.104    | 0.085 to 0.115   | 95.0 | 70 to 130 | 2.48  | 20            |
| BA14560 | Magnesium, Total       | mg/L  | 0.000661    | 0.0462    | 5.00  | 434     | 424     | 5.13     | 4.25 to 5.75     | 40.0 | 70 to 130 | 2.33  | 20            |
| BA14560 | Lead, Total            | mg/L  | 0.00000456  | 0.0001474 | 0.10  | 0.122   | 0.121   | 0.106    | 0.085 to 0.115   | 120  | 70 to 130 | 0.823 | 20            |
| BA14560 | Selenium, Total        | mg/L  | -0.0000679  | 0.001     | 0.10  | 0.124   | 0.122   | 0.100    | 0.085 to 0.115   | 109  | 70 to 130 | 1.63  | 20            |
| BA14563 | Manganese, Dissolved   | mg/L  | 0.0000168   | 0.0001474 | 0.10  | 13.2    | 13.0    | 0.103    | 0.085 to 0.115   | 200  | 70 to 130 | 1.53  | 20            |

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. Matrix spike recovery for Fluoride was outside of the specification limit. LBM 8/19/2020

## **Batch QC Summary**



Customer Account: WMWGORG Sample Date:

8/3/20 14:28

**Customer ID:** 

**Delivery Date:** 8/6/20 11:01

Description: Gorgas Gypsum - MW-3L

Laboratory ID Number: BA14560

|         |                            |       |         | MB    |       |      | Sample    |          | Standard     |        | Rec       |       | Prec  |
|---------|----------------------------|-------|---------|-------|-------|------|-----------|----------|--------------|--------|-----------|-------|-------|
| Sample  | Analysis                   | Units | MB      | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec    | Limit     | Prec  | Limit |
| BA14565 | Solids, Dissolved          | mg/L  | 0.0000  | 25    |       |      | 3110      | 52.0     | 40 to 60     |        |           | 0.485 | 5     |
| BA14560 | Fluoride                   | mg/L  | 0.00346 | 0.05  | 2.50  | 1.22 | 0.0776    | 2.33     | 2.25 to 2.75 | 45.7 8 | 30 to 120 | 1.30  | 20    |
| BA14560 | Sulfate                    | mg/L  | -0.449  | 0.50  | 4000  | 6090 | 2350      | 18.2     | 18 to 22     | 94.0 8 | 30 to 120 | 0.855 | 20    |
| BA14560 | Chloride                   | mg/L  | 0.0166  | 0.50  | 10.0  | 11.1 | 1.25      | 10.2     | 9 to 11      | 99.3 8 | 30 to 120 | 6.61  | 20    |
| BA14563 | Alkalinity, Total as CaCO3 | mg/L  |         |       |       |      | 116       | 49.0     | 45.0 to 55.0 |        |           | 2.72  | 10    |

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. Matrix spike recovery for Fluoride was outside of the specification limit. LBM 8/19/2020

## Certificate Of Analysis



Description: Gorgas Gypsum - MW-11HLocation Code:WMWGORGCollected:8/4/20 09:35

**Customer ID:** 

**Submittal Date:** 8/6/20 11:01

Laboratory ID Number: BA14561

| Name                         | Prepared      | Analyzed     | Vio Spec DF | Results      | Units         | MDL      | RL       | Q |
|------------------------------|---------------|--------------|-------------|--------------|---------------|----------|----------|---|
| Analytical Method: EPA 200.7 | Analy         | yst: RDA     |             | Preparati    | ion Method: I | EPA 1638 |          |   |
| * Boron, Total               | 8/10/20 15:00 | 8/12/20 11:0 | 2 1.015     | Not Detected | mg/L          | 0.03     | 0.1      | U |
| * Calcium, Total             | 8/10/20 15:00 | 8/12/20 11:4 | 5 10.15     | 139          | mg/L          | 1.015    | 5.075    |   |
| * Iron, Total                | 8/10/20 15:00 | 8/12/20 11:0 | 2 1.015     | 1.62         | mg/L          | 0.02     | 0.05     |   |
| * Lithium, Total             | 8/10/20 15:00 | 8/12/20 11:0 | 2 1.015     | Not Detected | mg/L          | 0.01     | 0.02     | U |
| * Magnesium, Total           | 8/10/20 15:00 | 8/12/20 11:4 | 5 10.15     | 126          | mg/L          | 1.015    | 5.075    |   |
| * Sodium, Total              | 8/10/20 15:00 | 8/12/20 11:4 | 5 10.15     | 44.0         | mg/L          | 1.015    | 5.075    |   |
| Analytical Method: EPA 200.7 | Analy         | yst: RDA     |             |              |               |          |          |   |
| * Iron, Dissolved            | 8/10/20 13:30 | 8/11/20 11:5 | 1 1.015     | 1.41         | mg/L          | 0.02     | 0.05     |   |
| Analytical Method: EPA 200.8 | Analy         | yst: DLJ     |             | Preparati    | ion Method: I | EPA 1638 |          |   |
| * Antimony, Total            | 8/7/20 12:54  | 8/10/20 12:2 | 3 1.015     | Not Detected | mg/L          | 0.0008   | 0.003    | U |
| * Arsenic, Total             | 8/7/20 12:54  | 8/10/20 12:2 | 3 1.015     | Not Detected | mg/L          | 0.001    | 0.005    | U |
| * Barium, Total              | 8/7/20 12:54  | 8/10/20 12:2 | 3 1.015     | 0.0138       | mg/L          | 0.002    | 0.01     |   |
| * Beryllium, Total           | 8/7/20 12:54  | 8/10/20 12:2 | 3 1.015     | Not Detected | mg/L          | 0.0006   | 0.003    | U |
| * Cadmium, Total             | 8/7/20 12:54  | 8/10/20 12:2 | 3 1.015     | Not Detected | mg/L          | 0.0003   | 0.001    | U |
| * Chromium, Total            | 8/7/20 12:54  | 8/10/20 12:2 | 3 1.015     | Not Detected | mg/L          | 0.002    | 0.01     | U |
| * Cobalt, Total              | 8/7/20 12:54  | 8/10/20 12:2 | 3 1.015     | 0.00610      | mg/L          | 0.002    | 0.005    |   |
| * Lead, Total                | 8/7/20 12:54  | 8/10/20 12:2 | 3 1.015     | Not Detected | mg/L          | 0.001    | 0.005    | U |
| * Molybdenum, Total          | 8/7/20 12:54  | 8/10/20 12:2 | 3 1.015     | Not Detected | mg/L          | 0.002    | 0.01     | U |
| * Potassium, Total           | 8/7/20 12:54  | 8/11/20 12:5 | 9 1.015     | 1.14         | mg/L          | 0.3      | 2.5      | J |
| * Manganese, Total           | 8/7/20 12:54  | 8/11/20 14:5 | 0 5.075     | 2.05         | mg/L          | 0.005075 | 0.025375 |   |
| * Selenium, Total            | 8/7/20 12:54  | 8/10/20 12:2 | 3 1.015     | Not Detected | mg/L          | 0.002    | 0.01     | U |
| * Thallium, Total            | 8/7/20 12:54  | 8/10/20 12:2 | 3 1.015     | Not Detected | mg/L          | 0.0002   | 0.001    | U |
| Analytical Method: EPA 200.8 | Analy         | yst: DLJ     |             |              |               |          |          |   |
| * Manganese, Dissolved       | 8/7/20 14:00  | 8/11/20 16:0 | 2 5.075     | 2.16         | mg/L          | 0.005075 | 0.025375 |   |
| Analytical Method: EPA 245.1 | Analy         | yst: GAS     |             |              |               |          |          |   |
| * Mercury, Total by CVAA     | 8/11/20 09:20 | 8/11/20 14:1 | 7 1         | Not Detected | mg/L          | 0.0003   | 0.0005   | U |
| Analytical Method: SM 2320 B | Analy         | yst: JAG     |             |              |               |          |          |   |
| Alkalinity, Total as CaCO3   | 8/14/20 10:00 |              | 5 1         | 93.0         | mg/L          |          | 0.1      |   |
| Analytical Method: SM 2540C  |               | yst: TJW     |             |              | -             |          |          |   |
| * Solids, Dissolved          | 8/7/20 14:25  | 8/11/20 12:2 | 0 1         | 1230         | mg/L          |          | 83.3     |   |

MDL's and RL's are adjusted for sample dilution, as applicable

## Certificate Of Analysis



Description: Gorgas Gypsum - MW-11H

**Location Code:** 

WMWGORG 8/4/20 09:35

Collected:

Customer ID: Submittal Date:

8/6/20 11:01

| Laboratory ID Number: BA14561         |               |              |            | 3         | ubmittai Date: | 6/6/20 113 | JI  |    |
|---------------------------------------|---------------|--------------|------------|-----------|----------------|------------|-----|----|
| Name                                  | Prepared      | Analyzed     | Vio Spec D | F Results | Units          | MDL        | RL  | Q  |
| Analytical Method: SM 4500CO2 D       | Anal          | lyst: JAG    |            |           |                |            |     |    |
| Bicarbonate Alkalinity, (calc.)       | 8/14/20 10:00 | 8/14/20 11:0 | 05 1       | 93.0      | mg/L           |            |     |    |
| Carbonate Alkalinity, (calc.)         | 8/14/20 10:00 | 8/14/20 11:0 | 05 1       | 0.01      | mg/L           |            |     |    |
| Analytical Method: SM4500CI E         | Anal          | yst: JCC     |            |           |                |            |     |    |
| * Chloride                            | 8/10/20 13:31 | 8/10/20 13:3 | 31 1       | 4.51      | mg/L           | 0.50       | 1   |    |
| Analytical Method: SM4500F G 2017     | Anal          | lyst: JCC    |            |           |                |            |     |    |
| * Fluoride                            | 8/11/20 12:32 | 8/11/20 12:3 | 32 1       | 0.109     | mg/L           | 0.06       | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Anal          | lyst: JCC    |            |           |                |            |     |    |
| * Sulfate                             | 8/7/20 13:30  | 8/7/20 13:30 | 40         | 694       | mg/L           | 20.00      | 40  |    |
| Analytical Method: Field Measurements | Anal          | lyst: TJD    |            |           |                |            |     |    |
| Conductivity                          | 8/4/20 09:29  | 8/4/20 09:29 | 9          | 1267.3    | 7 uS/cm        |            |     | FA |
| рН                                    | 8/4/20 09:29  | 8/4/20 09:29 | 9          | 5.74      | SU             |            |     | FA |
| Temperature                           | 8/4/20 09:29  | 8/4/20 09:29 | 9          | 20.41     | С              |            |     | FA |
| Turbidity                             | 8/4/20 09:29  | 8/4/20 09:29 | 9          | 9.44      | NTU            |            |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

#### **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 8/4/20 09:35

Customer ID:

**Delivery Date:** 8/6/20 11:01

Description: Gorgas Gypsum - MW-11H

Laboratory ID Number: BA14561

|                                |       |             | MB        |       |         |         |          | Standard         |      | Rec       |       | Prec          |
|--------------------------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|------|-----------|-------|---------------|
| Sample Analysis                | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | Limit            | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA14570 Manganese, Total       | mg/L  | 0.000140    | 0.0001474 | 0.10  | 0.118   | 0.116   | 0.109    | 0.085 to 0.115   | 118  | 70 to 130 | 1.71  | 20            |
| BA14570 Selenium, Total        | mg/L  | -0.0000834  | 0.001     | 0.10  | 0.114   | 0.117   | 0.109    | 0.085 to 0.115   | 114  | 70 to 130 | 2.60  | 20            |
| BA14570 Thallium, Total        | mg/L  | 0.0000155   | 0.0001474 | 0.10  | 0.119   | 0.114   | 0.106    | 0.085 to 0.115   | 119  | 70 to 130 | 4.29  | 20            |
| BA14570 Beryllium, Total       | mg/L  | -0.00000074 | 0.00088   | 0.10  | 0.0964  | 0.101   | 0.0957   | 0.085 to 0.115   | 96.4 | 70 to 130 | 4.66  | 20            |
| BA14570 Iron, Total            | mg/L  | 0.000169    | 0.0176    | 0.2   | 0.205   | 0.201   | 0.206    | 0.17 to 0.23     | 102  | 70 to 130 | 1.97  | 20            |
| BA14570 Mercury, Total by CVAA | mg/L  | 0.0000240   | 0.0005    | 0.004 | 0.00365 | 0.00367 | 0.00374  | 0.0034 to 0.0046 | 91.2 | 70 to 130 | 0.546 | 20            |
| BA14570 Boron, Total           | mg/L  | 0.000611    | 0.0650254 | 1.00  | 0.977   | 0.974   | 0.989    | 0.85 to 1.15     | 97.7 | 70 to 130 | 0.308 | 20            |
| BA14570 Calcium, Total         | mg/L  | -0.00124    | 0.1518    | 5.00  | 5.12    | 5.02    | 5.15     | 4.25 to 5.75     | 102  | 70 to 130 | 1.97  | 20            |
| BA14570 Chromium, Total        | mg/L  | -0.0000938  | 0.00044   | 0.10  | 0.121   | 0.121   | 0.114    | 0.085 to 0.115   | 121  | 70 to 130 | 0.00  | 20            |
| BA14563 Manganese, Dissolved   | mg/L  | 0.0000168   | 0.0001474 | 0.10  | 13.2    | 13.0    | 0.103    | 0.085 to 0.115   | 200  | 70 to 130 | 1.53  | 20            |
| BA14570 Molybdenum, Total      | mg/L  | 0.00000625  | 0.0001474 | 0.10  | 0.118   | 0.118   | 0.107    | 0.085 to 0.115   | 118  | 70 to 130 | 0.00  | 20            |
| BA14570 Cobalt, Total          | mg/L  | -0.0000254  | 0.0001474 | 0.10  | 0.121   | 0.120   | 0.113    | 0.085 to 0.115   | 121  | 70 to 130 | 0.830 | 20            |
| BA14570 Potassium, Total       | mg/L  | 0.0286      | 0.3674    | 10.0  | 10.6    | 10.7    | 11.3     | 8.5 to 11.5      | 106  | 70 to 130 | 0.939 | 20            |
| BA14570 Magnesium, Total       | mg/L  | 0.00212     | 0.0462    | 5.00  | 5.17    | 5.12    | 5.22     | 4.25 to 5.75     | 103  | 70 to 130 | 0.972 | 20            |
| BA14563 Iron, Dissolved        | mg/L  | -0.000944   | 0.0176    | 0.2   | 37.5    | 37.5    | 0.206    | 0.17 to 0.23     | 150  | 70 to 130 | 0.00  | 20            |
| BA14570 Arsenic, Total         | mg/L  | -0.0000203  | 0.0001474 | 0.10  | 0.120   | 0.121   | 0.115    | 0.085 to 0.115   | 120  | 70 to 130 | 0.830 | 20            |
| BA14570 Barium, Total          | mg/L  | 0.00000147  | 0.0002    | 0.10  | 0.109   | 0.105   | 0.101    | 0.085 to 0.115   | 109  | 70 to 130 | 3.74  | 20            |
| BA14570 Lithium, Total         | mg/L  | -0.000227   | 0.0154    | 0.20  | 0.196   | 0.193   | 0.195    | 0.17 to 0.23     | 98.0 | 70 to 130 | 1.54  | 20            |
| BA14570 Antimony, Total        | mg/L  | 0.000196    | 0.001     | 0.10  | 0.105   | 0.105   | 0.0966   | 0.085 to 0.115   | 105  | 70 to 130 | 0.00  | 20            |
| BA14570 Cadmium, Total         | mg/L  | -0.00000379 | 0.0001474 | 0.10  | 0.117   | 0.116   | 0.107    | 0.085 to 0.115   | 117  | 70 to 130 | 0.858 | 20            |
| BA14570 Sodium, Total          | mg/L  | 0.0149      | 0.044     | 5.00  | 4.96    | 4.86    | 4.94     | 4.25 to 5.75     | 99.2 | 70 to 130 | 2.04  | 20            |
| BA14570 Lead, Total            | mg/L  | 0.00000688  | 0.0001474 | 0.10  | 0.126   | 0.122   | 0.112    | 0.085 to 0.115   | 126  | 70 to 130 | 3.23  | 20            |

## **Batch QC Summary**



Customer Account: WMWGORG Sample Date:

**Customer ID:** 

8/4/20 09:35

**Delivery Date:** 8/6/20 11:01

Description: Gorgas Gypsum - MW-11H

Laboratory ID Number: BA14561

|                                    |       |        | MB    |       |      | Sample    |          | Standard     |      | Rec       |       | Prec          |
|------------------------------------|-------|--------|-------|-------|------|-----------|----------|--------------|------|-----------|-------|---------------|
| Sample Analysis                    | Units | MB     | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA14565 Solids, Dissolved          | mg/L  | 0.0000 | 25    |       |      | 3110      | 52.0     | 40 to 60     |      |           | 0.485 | 5             |
| BA14570 Sulfate                    | mg/L  | -0.599 | 0.50  | 20.0  | 19.0 | -0.361    | 18.3     | 18 to 22     | 95.0 | 80 to 120 | 0.00  | 20            |
| BA14563 Alkalinity, Total as CaCO3 | mg/L  |        |       |       |      | 116       | 49.0     | 45.0 to 55.0 |      |           | 2.72  | 10            |
| BA14570 Chloride                   | mg/L  | 0.028  | 0.50  | 10.0  | 10.1 | 0.0231    | 10.2     | 9 to 11      | 101  | 80 to 120 | 0.00  | 20            |
| BA14570 Fluoride                   | mg/L  | 0.0346 | 0.05  | 2.50  | 2.39 | 0.000748  | 2.47     | 2.25 to 2.75 | 95.6 | 80 to 120 | 0.00  | 20            |

# Certificate Of Analysis



Description: Gorgas Gypsum - MW-11H DUPLocation Code:WMWGORGCollected:8/4/20 09:35

Customer ID:

**Submittal Date:** 8/6/20 11:01

Laboratory ID Number: BA14562

| Name                                       | Prepared      | Analyzed V    | io Spec DF | Results      | Units      | MDL      | RL       | Q |
|--------------------------------------------|---------------|---------------|------------|--------------|------------|----------|----------|---|
| Analytical Method: EPA 200.7               | Analy         | st: RDA       |            | Preparati    | on Method: | EPA 1638 |          |   |
| * Boron, Total                             | 8/10/20 15:00 | 8/12/20 11:05 | 1.015      | Not Detected | mg/L       | 0.03     | 0.1      | U |
| * Calcium, Total                           | 8/10/20 15:00 | 8/12/20 11:48 | 10.15      | 139          | mg/L       | 1.015    | 5.075    |   |
| * Iron, Total                              | 8/10/20 15:00 | 8/12/20 11:05 | 1.015      | 1.70         | mg/L       | 0.02     | 0.05     |   |
| * Lithium, Total                           | 8/10/20 15:00 | 8/12/20 11:05 | 1.015      | Not Detected | mg/L       | 0.01     | 0.02     | U |
| * Magnesium, Total                         | 8/10/20 15:00 | 8/12/20 11:48 | 10.15      | 126          | mg/L       | 1.015    | 5.075    |   |
| * Sodium, Total                            | 8/10/20 15:00 | 8/12/20 11:48 | 10.15      | 44.1         | mg/L       | 1.015    | 5.075    |   |
| Analytical Method: EPA 200.7               | Analy         | st: RDA       |            |              |            |          |          |   |
| * Iron, Dissolved                          | 8/10/20 13:30 | 8/11/20 11:53 | 1.015      | 1.38         | mg/L       | 0.02     | 0.05     |   |
| Analytical Method: EPA 200.8               | Analy         | st: DLJ       |            | Preparati    | on Method: | EPA 1638 |          |   |
| * Antimony, Total                          | 8/7/20 12:54  | 8/10/20 12:26 | 1.015      | Not Detected | mg/L       | 0.0008   | 0.003    | U |
| * Arsenic, Total                           | 8/7/20 12:54  | 8/10/20 12:26 | 1.015      | Not Detected | mg/L       | 0.001    | 0.005    | U |
| * Barium, Total                            | 8/7/20 12:54  | 8/10/20 12:26 | 1.015      | 0.0141       | mg/L       | 0.002    | 0.01     |   |
| * Beryllium, Total                         | 8/7/20 12:54  | 8/10/20 12:26 | 1.015      | Not Detected | mg/L       | 0.0006   | 0.003    | U |
| * Cadmium, Total                           | 8/7/20 12:54  | 8/10/20 12:26 | 1.015      | Not Detected | mg/L       | 0.0003   | 0.001    | U |
| * Chromium, Total                          | 8/7/20 12:54  | 8/10/20 12:26 | 1.015      | Not Detected | mg/L       | 0.002    | 0.01     | U |
| * Cobalt, Total                            | 8/7/20 12:54  | 8/10/20 12:26 | 1.015      | 0.00615      | mg/L       | 0.002    | 0.005    |   |
| * Lead, Total                              | 8/7/20 12:54  | 8/10/20 12:26 | 1.015      | Not Detected | mg/L       | 0.001    | 0.005    | U |
| * Molybdenum, Total                        | 8/7/20 12:54  | 8/10/20 12:26 | 1.015      | Not Detected | mg/L       | 0.002    | 0.01     | U |
| * Potassium, Total                         | 8/7/20 12:54  | 8/11/20 13:02 | 1.015      | 1.10         | mg/L       | 0.3      | 2.5      | J |
| <ul> <li>Manganese, Total</li> </ul>       | 8/7/20 12:54  | 8/11/20 14:53 | 5.075      | 1.99         | mg/L       | 0.005075 | 0.025375 |   |
| * Selenium, Total                          | 8/7/20 12:54  | 8/10/20 12:26 | 1.015      | Not Detected | mg/L       | 0.002    | 0.01     | U |
| * Thallium, Total                          | 8/7/20 12:54  | 8/10/20 12:26 | 1.015      | Not Detected | mg/L       | 0.0002   | 0.001    | U |
| Analytical Method: EPA 200.8               | Analy         | st: DLJ       |            |              |            |          |          |   |
| * Manganese, Dissolved                     | 8/7/20 14:00  | 8/11/20 16:05 | 5.075      | 2.10         | mg/L       | 0.005075 | 0.025375 |   |
| Analytical Method: EPA 245.1               | Analy         | st: GAS       |            |              |            |          |          |   |
| <ul> <li>Mercury, Total by CVAA</li> </ul> | 8/11/20 09:20 | 8/11/20 14:20 | 1          | Not Detected | mg/L       | 0.0003   | 0.0005   | U |
| Analytical Method: SM 2320 B               | Analy         | st: JAG       |            |              |            |          |          |   |
| Alkalinity, Total as CaCO3                 | -             | 8/14/20 11:05 | 1          | 79.5         | mg/L       |          | 0.1      |   |
| Analytical Method: SM 2540C                | Analy         | /st: TJW      |            |              |            |          |          |   |
| * Solids, Dissolved                        | 8/7/20 14:25  | 8/11/20 12:20 | 1          | 1230         | mg/L       |          | 83.3     |   |

MDL's and RL's are adjusted for sample dilution, as applicable

Laboratory ID Number: BA14562

## Certificate Of Analysis



**Location Code: WMWGORG** Description: Gorgas Gypsum - MW-11H DUP Collected:

**Customer ID:** 

8/4/20 09:35

Submittal Date: 8/6/20 11:01

| Name                                  | Prepared      | Analyzed     | Vio Spec | DF | Results | Units | MDL   | RL  | Q  |
|---------------------------------------|---------------|--------------|----------|----|---------|-------|-------|-----|----|
| Analytical Method: SM 4500CO2 D       | Ana           | lyst: JAG    |          |    |         |       |       |     |    |
| Bicarbonate Alkalinity, (calc.)       | 8/14/20 10:00 | 8/14/20 11:0 | )5 1     |    | 79.5    | mg/L  |       |     |    |
| Carbonate Alkalinity, (calc.)         | 8/14/20 10:00 | 8/14/20 11:0 | )5 1     |    | 0.01    | mg/L  |       |     |    |
| Analytical Method: SM4500Cl E         | Ana           | lyst: JCC    |          |    |         |       |       |     |    |
| * Chloride                            | 8/10/20 13:32 | 8/10/20 13:3 | 32 1     |    | 4.47    | mg/L  | 0.50  | 1   |    |
| Analytical Method: SM4500F G 2017     | Ana           | lyst: JCC    |          |    |         |       |       |     |    |
| * Fluoride                            | 8/11/20 12:33 | 8/11/20 12:3 | 33 1     |    | 0.0952  | mg/L  | 0.06  | 0.1 | J  |
| Analytical Method: SM4500SO4 E 2011   | Ana           | lyst: JCC    |          |    |         |       |       |     |    |
| * Sulfate                             | 8/7/20 13:31  | 8/7/20 13:31 | 4        | 0  | 734     | mg/L  | 20.00 | 40  |    |
| Analytical Method: Field Measurements | Ana           | lyst: TJD    |          |    |         |       |       |     |    |
| Conductivity                          | 8/4/20 09:29  | 8/4/20 09:29 | )        |    | 1267.37 | uS/cm |       |     | FA |
| рН                                    | 8/4/20 09:29  | 8/4/20 09:29 | )        |    | 5.74    | SU    |       |     | FA |
| Temperature                           | 8/4/20 09:29  | 8/4/20 09:29 | )        |    | 20.41   | С     |       |     | FA |
| Turbidity                             | 8/4/20 09:29  | 8/4/20 09:29 | )        |    | 9.44    | NTU   |       |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

#### **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 8/4/20 09:35

Customer ID:

**Delivery Date:** 8/6/20 11:01

Description: Gorgas Gypsum - MW-11H DUP

Laboratory ID Number: BA14562

|                                | •     |             | MB        |       | •       | •       |          | Standard         |      | Rec       |       | Prec          |
|--------------------------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|------|-----------|-------|---------------|
| Sample Analysis                | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | Limit            | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA14570 Manganese, Total       | mg/L  | 0.000140    | 0.0001474 | 0.10  | 0.118   | 0.116   | 0.109    | 0.085 to 0.115   | 118  | 70 to 130 | 1.71  | 20            |
| BA14570 Selenium, Total        | mg/L  | -0.0000834  | 0.001     | 0.10  | 0.114   | 0.117   | 0.109    | 0.085 to 0.115   | 114  | 70 to 130 | 2.60  | 20            |
| BA14570 Thallium, Total        | mg/L  | 0.0000155   | 0.0001474 | 0.10  | 0.119   | 0.114   | 0.106    | 0.085 to 0.115   | 119  | 70 to 130 | 4.29  | 20            |
| BA14563 Manganese, Dissolved   | mg/L  | 0.0000168   | 0.0001474 | 0.10  | 13.2    | 13.0    | 0.103    | 0.085 to 0.115   | 200  | 70 to 130 | 1.53  | 20            |
| BA14570 Molybdenum, Total      | mg/L  | 0.00000625  | 0.0001474 | 0.10  | 0.118   | 0.118   | 0.107    | 0.085 to 0.115   | 118  | 70 to 130 | 0.00  | 20            |
| BA14570 Boron, Total           | mg/L  | 0.000611    | 0.0650254 | 1.00  | 0.977   | 0.974   | 0.989    | 0.85 to 1.15     | 97.7 | 70 to 130 | 0.308 | 20            |
| BA14570 Calcium, Total         | mg/L  | -0.00124    | 0.1518    | 5.00  | 5.12    | 5.02    | 5.15     | 4.25 to 5.75     | 102  | 70 to 130 | 1.97  | 20            |
| BA14570 Chromium, Total        | mg/L  | -0.0000938  | 0.00044   | 0.10  | 0.121   | 0.121   | 0.114    | 0.085 to 0.115   | 121  | 70 to 130 | 0.00  | 20            |
| BA14570 Beryllium, Total       | mg/L  | -0.00000074 | 0.00088   | 0.10  | 0.0964  | 0.101   | 0.0957   | 0.085 to 0.115   | 96.4 | 70 to 130 | 4.66  | 20            |
| BA14570 Iron, Total            | mg/L  | 0.000169    | 0.0176    | 0.2   | 0.205   | 0.201   | 0.206    | 0.17 to 0.23     | 102  | 70 to 130 | 1.97  | 20            |
| BA14570 Mercury, Total by CVAA | mg/L  | 0.0000240   | 0.0005    | 0.004 | 0.00365 | 0.00367 | 0.00374  | 0.0034 to 0.0046 | 91.2 | 70 to 130 | 0.546 | 20            |
| BA14570 Cadmium, Total         | mg/L  | -0.00000379 | 0.0001474 | 0.10  | 0.117   | 0.116   | 0.107    | 0.085 to 0.115   | 117  | 70 to 130 | 0.858 | 20            |
| BA14570 Sodium, Total          | mg/L  | 0.0149      | 0.044     | 5.00  | 4.96    | 4.86    | 4.94     | 4.25 to 5.75     | 99.2 | 70 to 130 | 2.04  | 20            |
| BA14570 Lead, Total            | mg/L  | 0.00000688  | 0.0001474 | 0.10  | 0.126   | 0.122   | 0.112    | 0.085 to 0.115   | 126  | 70 to 130 | 3.23  | 20            |
| BA14570 Cobalt, Total          | mg/L  | -0.0000254  | 0.0001474 | 0.10  | 0.121   | 0.120   | 0.113    | 0.085 to 0.115   | 121  | 70 to 130 | 0.830 | 20            |
| BA14570 Potassium, Total       | mg/L  | 0.0286      | 0.3674    | 10.0  | 10.6    | 10.7    | 11.3     | 8.5 to 11.5      | 106  | 70 to 130 | 0.939 | 20            |
| BA14570 Magnesium, Total       | mg/L  | 0.00212     | 0.0462    | 5.00  | 5.17    | 5.12    | 5.22     | 4.25 to 5.75     | 103  | 70 to 130 | 0.972 | 20            |
| BA14563 Iron, Dissolved        | mg/L  | -0.000944   | 0.0176    | 0.2   | 37.5    | 37.5    | 0.206    | 0.17 to 0.23     | 150  | 70 to 130 | 0.00  | 20            |
| BA14570 Arsenic, Total         | mg/L  | -0.0000203  | 0.0001474 | 0.10  | 0.120   | 0.121   | 0.115    | 0.085 to 0.115   | 120  | 70 to 130 | 0.830 | 20            |
| BA14570 Barium, Total          | mg/L  | 0.00000147  | 0.0002    | 0.10  | 0.109   | 0.105   | 0.101    | 0.085 to 0.115   | 109  | 70 to 130 | 3.74  | 20            |
| BA14570 Lithium, Total         | mg/L  | -0.000227   | 0.0154    | 0.20  | 0.196   | 0.193   | 0.195    | 0.17 to 0.23     | 98.0 | 70 to 130 | 1.54  | 20            |
| BA14570 Antimony, Total        | mg/L  | 0.000196    | 0.001     | 0.10  | 0.105   | 0.105   | 0.0966   | 0.085 to 0.115   | 105  | 70 to 130 | 0.00  | 20            |

## **Batch QC Summary**



Customer Account: WMWGORG

Sample Date:

8/4/20 09:35

Customer ID:

**Delivery Date:** 8/6/20 11:01

Description: Gorgas Gypsum - MW-11H DUP

Laboratory ID Number: BA14562

|         |                            |       |        | MB    |       |      | Sample    |          | Standard     |      | Rec       |       | Prec          |
|---------|----------------------------|-------|--------|-------|-------|------|-----------|----------|--------------|------|-----------|-------|---------------|
| Sample  | Analysis                   | Units | MB     | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA14570 | Fluoride                   | mg/L  | 0.0346 | 0.05  | 2.50  | 2.39 | 0.000748  | 2.47     | 2.25 to 2.75 | 95.6 | 80 to 120 | 0.00  | 20            |
| BA14565 | Solids, Dissolved          | mg/L  | 0.0000 | 25    |       |      | 3110      | 52.0     | 40 to 60     |      |           | 0.485 | 5             |
| BA14570 | Sulfate                    | mg/L  | -0.599 | 0.50  | 20.0  | 19.0 | -0.361    | 18.3     | 18 to 22     | 95.0 | 80 to 120 | 0.00  | 20            |
| BA14563 | Alkalinity, Total as CaCO3 | mg/L  |        |       |       |      | 116       | 49.0     | 45.0 to 55.0 |      |           | 2.72  | 10            |
| BA14570 | Chloride                   | mg/L  | 0.028  | 0.50  | 10.0  | 10.1 | 0.0231    | 10.2     | 9 to 11      | 101  | 80 to 120 | 0.00  | 20            |

## Certificate Of Analysis



Description: Gorgas Gypsum - MW-13HLocation Code:WMWGORGCollected:8/4/20 11:10

Customer ID:

Laboratory ID Number: BA14563 Submittal Date: 8/6/20 11:01

| Name                         | Prepared      | Analyzed    | Vio Spec | DF     | Results      | Units        | MDL      | RL       | Q  |
|------------------------------|---------------|-------------|----------|--------|--------------|--------------|----------|----------|----|
| Analytical Method: EPA 200.7 | Anal          | yst: RDA    |          |        | Preparati    | on Method: E | PA 1638  |          |    |
| * Boron, Total               | 8/10/20 15:00 | 8/12/20 11: | 08       | 1.015  | 0.263        | mg/L         | 0.03     | 0.1      |    |
| * Calcium, Total             | 8/10/20 15:00 | 8/12/20 11: | 51       | 20.3   | 192          | mg/L         | 2.03     | 10.15    |    |
| * Iron, Total                | 8/10/20 15:00 | 8/12/20 11: | 51       | 20.3   | 42.5         | mg/L         | 0.406    | 1.015    |    |
| * Lithium, Total             | 8/10/20 15:00 | 8/12/20 11: | 08       | 1.015  | 0.0534       | mg/L         | 0.01     | 0.02     |    |
| * Magnesium, Total           | 8/10/20 15:00 | 8/12/20 11: | 51       | 20.3   | 113          | mg/L         | 2.03     | 10.15    |    |
| * Sodium, Total              | 8/10/20 15:00 | 8/12/20 11: | 51       | 20.3   | 53.8         | mg/L         | 2.03     | 10.15    |    |
| Analytical Method: EPA 200.7 | Anal          | yst: RDA    |          |        |              |              |          |          |    |
| * Iron, Dissolved            | 8/10/20 13:30 | 8/11/20 14: | 06       | 101.5  | 37.2         | mg/L         | 2.03     | 5.075    | R  |
| Analytical Method: EPA 200.8 | Anal          | yst: DLJ    |          |        | Preparati    | on Method: E | PA 1638  |          |    |
| * Antimony, Total            | 8/7/20 12:54  | 8/10/20 12: | 28       | 1.015  | Not Detected | mg/L         | 0.0008   | 0.003    | U  |
| * Arsenic, Total             | 8/7/20 12:54  | 8/10/20 12: | 28       | 1.015  | 0.103        | mg/L         | 0.001    | 0.005    |    |
| * Barium, Total              | 8/7/20 12:54  | 8/10/20 12: | 28       | 1.015  | 0.0275       | mg/L         | 0.002    | 0.01     |    |
| * Beryllium, Total           | 8/7/20 12:54  | 8/10/20 12: | 28       | 1.015  | Not Detected | mg/L         | 0.0006   | 0.003    | U  |
| * Cadmium, Total             | 8/7/20 12:54  | 8/10/20 12: | 28       | 1.015  | Not Detected | mg/L         | 0.0003   | 0.001    | U  |
| * Chromium, Total            | 8/7/20 12:54  | 8/10/20 12: | 28       | 1.015  | Not Detected | mg/L         | 0.002    | 0.01     | U  |
| * Cobalt, Total              | 8/7/20 12:54  | 8/10/20 12: | 28       | 1.015  | 0.111        | mg/L         | 0.002    | 0.005    |    |
| * Lead, Total                | 8/7/20 12:54  | 8/10/20 12: | 28       | 1.015  | Not Detected | mg/L         | 0.001    | 0.005    | U  |
| * Molybdenum, Total          | 8/7/20 12:54  | 8/10/20 12: | 28       | 1.015  | Not Detected | mg/L         | 0.002    | 0.01     | U  |
| * Potassium, Total           | 8/7/20 12:54  | 8/11/20 13: | 04       | 1.015  | 6.20         | mg/L         | 0.3      | 2.5      |    |
| * Manganese, Total           | 8/7/20 12:54  | 8/11/20 14: | 56       | 92.365 | 12.3         | mg/L         | 0.092365 | 0.461825 |    |
| * Selenium, Total            | 8/7/20 12:54  | 8/10/20 12: | 28       | 1.015  | Not Detected | mg/L         | 0.002    | 0.01     | U  |
| * Thallium, Total            | 8/7/20 12:54  | 8/10/20 12: | 28       | 1.015  | Not Detected | mg/L         | 0.0002   | 0.001    | U  |
| Analytical Method: EPA 200.8 | Anal          | yst: DLJ    |          |        |              |              |          |          |    |
| * Manganese, Dissolved       | 8/7/20 14:00  | 8/11/20 16: | 08       | 92.365 | 13.0         | mg/L         | 0.092365 | 0.461825 | RA |
| Analytical Method: EPA 245.1 | Anal          | yst: GAS    |          |        |              |              |          |          |    |
| * Mercury, Total by CVAA     | 8/11/20 09:20 | •           | 22       | 1      | Not Detected | mg/L         | 0.0003   | 0.0005   | U  |
| Analytical Method: SM 2320 B | Anal          | yst: JAG    |          |        |              |              |          |          |    |
| Alkalinity, Total as CaCO3   | 8/14/20 10:00 |             | 05       | 1      | 113          | mg/L         |          | 0.1      |    |
| Analytical Method: SM 2540C  |               | yst: TJW    |          |        |              | -            |          |          |    |
| * Solids, Dissolved          | 8/7/20 14:25  | 8/11/20 12: | 20       | 1      | 1350         | mg/L         |          | 100      |    |

MDL's and RL's are adjusted for sample dilution, as applicable

## Certificate Of Analysis



**Description:** Gorgas Gypsum - MW-13H

**Location Code:** 

WMWGORG 8/4/20 11:10

Collected:

Customer ID: Submittal Date:

8/6/20 11:01

| Laboratory ID Number: BA14563         |               |              |          |    | Subn    | nittai Date: | 8/6/20 11:0 | ) 1 |    |
|---------------------------------------|---------------|--------------|----------|----|---------|--------------|-------------|-----|----|
| Name                                  | Prepared      | Analyzed     | Vio Spec | DF | Results | Units        | MDL         | RL  | Q  |
| Analytical Method: SM 4500CO2 D       | Anal          | yst: JAG     |          |    |         |              |             |     |    |
| Bicarbonate Alkalinity, (calc.)       | 8/14/20 10:00 | 8/14/20 11:0 | )5       | 1  | 113     | mg/L         |             |     |    |
| Carbonate Alkalinity, (calc.)         | 8/14/20 10:00 | 8/14/20 11:0 | )5       | 1  | 0.01    | mg/L         |             |     |    |
| Analytical Method: SM4500CI E         | Anal          | yst: JCC     |          |    |         |              |             |     |    |
| * Chloride                            | 8/10/20 13:33 | 8/10/20 13:3 | 33       | 1  | 12.7    | mg/L         | 0.50        | 1   |    |
| Analytical Method: SM4500F G 2017     | Anal          | yst: JCC     |          |    |         |              |             |     |    |
| * Fluoride                            | 8/11/20 12:35 | 8/11/20 12:3 | 35       | 1  | 0.113   | mg/L         | 0.06        | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Anal          | yst: JCC     |          |    |         |              |             |     |    |
| * Sulfate                             | 8/7/20 13:32  | 8/7/20 13:32 | 2        | 40 | 773     | mg/L         | 20.00       | 40  |    |
| Analytical Method: Field Measurements | Anal          | yst: TJD     |          |    |         |              |             |     |    |
| Conductivity                          | 8/4/20 11:05  | 8/4/20 11:05 | 5        |    | 1199.6  | uS/cm        |             |     | FA |
| рН                                    | 8/4/20 11:05  | 8/4/20 11:05 | 5        |    | 5.89    | SU           |             |     | FA |
| Temperature                           | 8/4/20 11:05  | 8/4/20 11:05 | 5        |    | 20.11   | С            |             |     | FA |
| Turbidity                             | 8/4/20 11:05  | 8/4/20 11:05 | 5        |    | 4.08    | NTU          |             |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

#### **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 8/4/20 11:10

Customer ID:

**Delivery Date:** 8/6/20 11:01

Description: Gorgas Gypsum - MW-13H

Laboratory ID Number: BA14563

|                     |              |       |             | MB        |       |         |         |          | Standard         |      | Rec       |       | Prec          |
|---------------------|--------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|------|-----------|-------|---------------|
| Sample Analysis     |              | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | Limit            | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA14570 Manganes    | e, Total     | mg/L  | 0.000140    | 0.0001474 | 0.10  | 0.118   | 0.116   | 0.109    | 0.085 to 0.115   | 118  | 70 to 130 | 1.71  | 20            |
| BA14570 Selenium,   | Total        | mg/L  | -0.0000834  | 0.001     | 0.10  | 0.114   | 0.117   | 0.109    | 0.085 to 0.115   | 114  | 70 to 130 | 2.60  | 20            |
| BA14570 Thallium,   | Γotal        | mg/L  | 0.0000155   | 0.0001474 | 0.10  | 0.119   | 0.114   | 0.106    | 0.085 to 0.115   | 119  | 70 to 130 | 4.29  | 20            |
| BA14570 Cobalt, To  | tal          | mg/L  | -0.0000254  | 0.0001474 | 0.10  | 0.121   | 0.120   | 0.113    | 0.085 to 0.115   | 121  | 70 to 130 | 0.830 | 20            |
| BA14570 Potassium   | , Total      | mg/L  | 0.0286      | 0.3674    | 10.0  | 10.6    | 10.7    | 11.3     | 8.5 to 11.5      | 106  | 70 to 130 | 0.939 | 20            |
| BA14570 Magnesiur   | n, Total     | mg/L  | 0.00212     | 0.0462    | 5.00  | 5.17    | 5.12    | 5.22     | 4.25 to 5.75     | 103  | 70 to 130 | 0.972 | 20            |
| BA14563 Manganes    | e, Dissolved | mg/L  | 0.0000168   | 0.0001474 | 0.10  | 13.2    | 13.0    | 0.103    | 0.085 to 0.115   | 200  | 70 to 130 | 1.53  | 20            |
| BA14570 Molybdenu   | um, Total    | mg/L  | 0.00000625  | 0.0001474 | 0.10  | 0.118   | 0.118   | 0.107    | 0.085 to 0.115   | 118  | 70 to 130 | 0.00  | 20            |
| BA14570 Boron, Tot  | al           | mg/L  | 0.000611    | 0.0650254 | 1.00  | 0.977   | 0.974   | 0.989    | 0.85 to 1.15     | 97.7 | 70 to 130 | 0.308 | 20            |
| BA14570 Calcium, T  | otal         | mg/L  | -0.00124    | 0.1518    | 5.00  | 5.12    | 5.02    | 5.15     | 4.25 to 5.75     | 102  | 70 to 130 | 1.97  | 20            |
| BA14570 Chromium    | , Total      | mg/L  | -0.0000938  | 0.00044   | 0.10  | 0.121   | 0.121   | 0.114    | 0.085 to 0.115   | 121  | 70 to 130 | 0.00  | 20            |
| BA14570 Beryllium,  | Total        | mg/L  | -0.00000074 | 0.00088   | 0.10  | 0.0964  | 0.101   | 0.0957   | 0.085 to 0.115   | 96.4 | 70 to 130 | 4.66  | 20            |
| BA14570 Iron, Total |              | mg/L  | 0.000169    | 0.0176    | 0.2   | 0.205   | 0.201   | 0.206    | 0.17 to 0.23     | 102  | 70 to 130 | 1.97  | 20            |
| BA14570 Mercury, T  | otal by CVAA | mg/L  | 0.0000240   | 0.0005    | 0.004 | 0.00365 | 0.00367 | 0.00374  | 0.0034 to 0.0046 | 91.2 | 70 to 130 | 0.546 | 20            |
| BA14563 Iron, Disso | olved        | mg/L  | -0.000944   | 0.0176    | 0.2   | 37.5    | 37.5    | 0.206    | 0.17 to 0.23     | 150  | 70 to 130 | 0.00  | 20            |
| BA14570 Arsenic, To | otal         | mg/L  | -0.0000203  | 0.0001474 | 0.10  | 0.120   | 0.121   | 0.115    | 0.085 to 0.115   | 120  | 70 to 130 | 0.830 | 20            |
| BA14570 Barium, To  | otal         | mg/L  | 0.00000147  | 0.0002    | 0.10  | 0.109   | 0.105   | 0.101    | 0.085 to 0.115   | 109  | 70 to 130 | 3.74  | 20            |
| BA14570 Lithium, To | otal         | mg/L  | -0.000227   | 0.0154    | 0.20  | 0.196   | 0.193   | 0.195    | 0.17 to 0.23     | 98.0 | 70 to 130 | 1.54  | 20            |
| BA14570 Antimony,   | Total        | mg/L  | 0.000196    | 0.001     | 0.10  | 0.105   | 0.105   | 0.0966   | 0.085 to 0.115   | 105  | 70 to 130 | 0.00  | 20            |
| BA14570 Cadmium,    | Total        | mg/L  | -0.00000379 | 0.0001474 | 0.10  | 0.117   | 0.116   | 0.107    | 0.085 to 0.115   | 117  | 70 to 130 | 0.858 | 20            |
| BA14570 Sodium, T   | otal         | mg/L  | 0.0149      | 0.044     | 5.00  | 4.96    | 4.86    | 4.94     | 4.25 to 5.75     | 99.2 | 70 to 130 | 2.04  | 20            |
| BA14570 Lead, Tota  | al           | mg/L  | 0.00000688  | 0.0001474 | 0.10  | 0.126   | 0.122   | 0.112    | 0.085 to 0.115   | 126  | 70 to 130 | 3.23  | 20            |
|                     |              |       |             |           |       |         |         |          |                  |      |           |       |               |

## **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 8/4/20 11:10

Customer ID:

**Delivery Date:** 8/6/20 11:01

Description: Gorgas Gypsum - MW-13H

Laboratory ID Number: BA14563

|         |                            |       |        | MB    |       |      | Sample    |          | Standard     |       | Rec       |       | Prec          |
|---------|----------------------------|-------|--------|-------|-------|------|-----------|----------|--------------|-------|-----------|-------|---------------|
| Sample  | Analysis                   | Units | MB     | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec   | Limit     | Prec  | <u>Li</u> mit |
| BA14565 | Solids, Dissolved          | mg/L  | 0.0000 | 25    |       |      | 3110      | 52.0     | 40 to 60     |       |           | 0.485 | 5             |
| BA14570 | Sulfate                    | mg/L  | -0.599 | 0.50  | 20.0  | 19.0 | -0.361    | 18.3     | 18 to 22     | 95.0  | 80 to 120 | 0.00  | 20            |
| BA14563 | Alkalinity, Total as CaCO3 | mg/L  |        |       |       |      | 116       | 49.0     | 45.0 to 55.0 |       |           | 2.72  | 10            |
| BA14570 | Chloride                   | mg/L  | 0.028  | 0.50  | 10.0  | 10.1 | 0.0231    | 10.2     | 9 to 11      | 101 8 | 80 to 120 | 0.00  | 20            |
| BA14570 | Fluoride                   | mg/L  | 0.0346 | 0.05  | 2.50  | 2.39 | 0.000748  | 2.47     | 2.25 to 2.75 | 95.6  | 80 to 120 | 0.00  | 20            |

## Certificate Of Analysis



Description: Gorgas Gypsum - MW-9HLocation Code:WMWGORGCollected:8/4/20 12:20

**Customer ID:** 

Submittal Date: 8/6/20 11:01

Laboratory ID Number: BA14564

| Name                         | Prepared      | Analyzed '    | Vio Spec DF | Results      | Units      | MDL      | RL       | Q |
|------------------------------|---------------|---------------|-------------|--------------|------------|----------|----------|---|
| Analytical Method: EPA 200.7 | Analy         | st: RDA       |             | Preparati    | on Method: | EPA 1638 |          |   |
| * Boron, Total               | 8/10/20 15:00 | 8/12/20 11:11 | 1.015       | 8.53         | mg/L       | 0.03     | 0.1      |   |
| * Calcium, Total             | 8/10/20 15:00 | 8/12/20 11:54 | 10.15       | 346          | mg/L       | 1.015    | 5.075    |   |
| * Iron, Total                | 8/10/20 15:00 | 8/12/20 11:54 | 10.15       | 22.1         | mg/L       | 0.203    | 0.5075   |   |
| * Lithium, Total             | 8/10/20 15:00 | 8/12/20 11:11 | 1.015       | 0.166        | mg/L       | 0.01     | 0.02     |   |
| * Magnesium, Total           | 8/10/20 15:00 | 8/12/20 11:54 | 10.15       | 244          | mg/L       | 1.015    | 5.075    |   |
| * Sodium, Total              | 8/10/20 15:00 | 8/12/20 11:54 | 10.15       | 140          | mg/L       | 1.015    | 5.075    |   |
| Analytical Method: EPA 200.7 | Analy         | st: RDA       |             |              |            |          |          |   |
| * Iron, Dissolved            | 8/10/20 13:30 | 8/11/20 14:15 | 101.5       | 21.5         | mg/L       | 2.03     | 5.075    |   |
| Analytical Method: EPA 200.8 | Analy         | st: DLJ       |             | Preparati    | on Method: | EPA 1638 |          |   |
| * Antimony, Total            | 8/7/20 12:54  | 8/10/20 12:31 | 1.015       | Not Detected | mg/L       | 0.0008   | 0.003    | U |
| * Arsenic, Total             | 8/7/20 12:54  | 8/10/20 12:31 | 1.015       | 0.00137      | mg/L       | 0.001    | 0.005    | J |
| * Barium, Total              | 8/7/20 12:54  | 8/10/20 12:31 | 1.015       | 0.0153       | mg/L       | 0.002    | 0.01     |   |
| * Beryllium, Total           | 8/7/20 12:54  | 8/10/20 12:31 | 1.015       | 0.000882     | mg/L       | 0.0006   | 0.003    | J |
| * Cadmium, Total             | 8/7/20 12:54  | 8/10/20 12:31 | 1.015       | 0.000308     | mg/L       | 0.0003   | 0.001    | J |
| * Chromium, Total            | 8/7/20 12:54  | 8/10/20 12:31 | 1.015       | Not Detected | mg/L       | 0.002    | 0.01     | U |
| * Cobalt, Total              | 8/7/20 12:54  | 8/10/20 12:31 | 1.015       | 0.178        | mg/L       | 0.002    | 0.005    |   |
| * Lead, Total                | 8/7/20 12:54  | 8/10/20 12:31 | 1.015       | Not Detected | mg/L       | 0.001    | 0.005    | U |
| * Molybdenum, Total          | 8/7/20 12:54  | 8/10/20 12:31 | 1.015       | Not Detected | mg/L       | 0.002    | 0.01     | U |
| * Potassium, Total           | 8/7/20 12:54  | 8/11/20 13:07 | 1.015       | 8.97         | mg/L       | 0.3      | 2.5      |   |
| * Manganese, Total           | 8/7/20 12:54  | 8/11/20 14:58 | 92.365      | 21.5         | mg/L       | 0.092365 | 0.461825 |   |
| * Selenium, Total            | 8/7/20 12:54  | 8/10/20 12:31 | 1.015       | Not Detected | mg/L       | 0.002    | 0.01     | U |
| * Thallium, Total            | 8/7/20 12:54  | 8/10/20 12:31 | 1.015       | 0.000265     | mg/L       | 0.0002   | 0.001    | J |
| Analytical Method: EPA 200.8 | Analy         | st: DLJ       |             |              |            |          |          |   |
| * Manganese, Dissolved       | 8/7/20 14:00  | 8/11/20 16:23 | 92.365      | 22.8         | mg/L       | 0.092365 | 0.461825 |   |
| Analytical Method: EPA 245.1 | Analy         | st: GAS       |             |              |            |          |          |   |
| * Mercury, Total by CVAA     | 8/11/20 09:20 |               | 5 1         | Not Detected | mg/L       | 0.0003   | 0.0005   | U |
| Analytical Method: SM 2320 B |               | /st: JAG      |             |              |            |          |          |   |
| Alkalinity, Total as CaCO3   | 8/14/20 11:06 |               | ) 1         | 49.8         | mg/L       |          | 0.1      |   |
| Analytical Method: SM 2540C  |               | /st: TJW      | · •         |              | Ü          |          |          |   |
| * Solids, Dissolved          | 8/7/20 14:25  | 8/11/20 12:20 | ) 1         | 2920         | mg/L       |          | 156.2    |   |

MDL's and RL's are adjusted for sample dilution, as applicable

## Certificate Of Analysis



Description: Gorgas Gypsum - MW-9HLocation Code:WMWGORGCollected:8/4/20 12:20

Customer ID:

**Submittal Date:** 8/6/20 11:01

Laboratory ID Number: BA14564

| Name                                  | Prepared      | Analyzed     | Vio Spec | DF  | Results | Units | MDL   | RL  | Q  |
|---------------------------------------|---------------|--------------|----------|-----|---------|-------|-------|-----|----|
| Analytical Method: SM 4500CO2 D       | Anal          | yst: JAG     |          |     |         |       |       |     |    |
| Bicarbonate Alkalinity, (calc.)       | 8/14/20 11:06 | 8/14/20 11:3 | 0        | 1   | 49.8    | mg/L  |       |     |    |
| Carbonate Alkalinity, (calc.)         | 8/14/20 11:06 | 8/14/20 11:3 | 0        | 1   | 0.00    | mg/L  |       |     |    |
| Analytical Method: SM4500Cl E         | Anal          | yst: JCC     |          |     |         |       |       |     |    |
| * Chloride                            | 8/10/20 13:42 | 8/10/20 13:4 | 2        | 10  | 109     | mg/L  | 5.00  | 10  |    |
| Analytical Method: SM4500F G 2017     | Anal          | yst: JCC     |          |     |         |       |       |     |    |
| * Fluoride                            | 8/11/20 12:36 | 8/11/20 12:3 | 6        | 1   | 0.127   | mg/L  | 0.06  | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Anal          | yst: JCC     |          |     |         |       |       |     |    |
| * Sulfate                             | 8/7/20 13:33  | 8/7/20 13:33 | }        | 100 | 1790    | mg/L  | 50.00 | 100 |    |
| Analytical Method: Field Measurements | Anal          | yst: TJD     |          |     |         |       |       |     |    |
| Conductivity                          | 8/4/20 12:15  | 8/4/20 12:15 | ;        |     | 2019.87 | uS/cm |       |     | FA |
| рН                                    | 8/4/20 12:15  | 8/4/20 12:15 | i        |     | 5.33    | SU    |       |     | FA |
| Temperature                           | 8/4/20 12:15  | 8/4/20 12:15 | i        |     | 22.10   | С     |       |     | FA |
| Turbidity                             | 8/4/20 12:15  | 8/4/20 12:15 | i        |     | 8.29    | NTU   |       |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

#### **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 8/4/20 12:20

Customer ID:

**Delivery Date:** 8/6/20 11:01

Description: Gorgas Gypsum - MW-9H

Laboratory ID Number: BA14564

|                                |       |             | MB        |       |         |         |          | Standard         |       | Rec       |       | Prec          |
|--------------------------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|-------|-----------|-------|---------------|
| Sample Analysis                | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | Limit            | Rec   | Limit     | Prec  | <u>Li</u> mit |
| BA14569 Manganese, Dissolved   | mg/L  | 0.000120    | 0.0001474 | 0.10  | 5.36    | 5.25    | 0.0999   | 0.085 to 0.115   | 260   | 70 to 130 | 2.07  | 20            |
| BA14570 Molybdenum, Total      | mg/L  | 0.00000625  | 0.0001474 | 0.10  | 0.118   | 0.118   | 0.107    | 0.085 to 0.115   | 118   | 70 to 130 | 0.00  | 20            |
| BA14570 Manganese, Total       | mg/L  | 0.000140    | 0.0001474 | 0.10  | 0.118   | 0.116   | 0.109    | 0.085 to 0.115   | 118   | 70 to 130 | 1.71  | 20            |
| BA14570 Selenium, Total        | mg/L  | -0.0000834  | 0.001     | 0.10  | 0.114   | 0.117   | 0.109    | 0.085 to 0.115   | 114   | 70 to 130 | 2.60  | 20            |
| BA14570 Thallium, Total        | mg/L  | 0.0000155   | 0.0001474 | 0.10  | 0.119   | 0.114   | 0.106    | 0.085 to 0.115   | 119   | 70 to 130 | 4.29  | 20            |
| BA14570 Cobalt, Total          | mg/L  | -0.0000254  | 0.0001474 | 0.10  | 0.121   | 0.120   | 0.113    | 0.085 to 0.115   | 121   | 70 to 130 | 0.830 | 20            |
| BA14570 Potassium, Total       | mg/L  | 0.0286      | 0.3674    | 10.0  | 10.6    | 10.7    | 11.3     | 8.5 to 11.5      | 106   | 70 to 130 | 0.939 | 20            |
| BA14570 Magnesium, Total       | mg/L  | 0.00212     | 0.0462    | 5.00  | 5.17    | 5.12    | 5.22     | 4.25 to 5.75     | 103   | 70 to 130 | 0.972 | 20            |
| BA14570 Beryllium, Total       | mg/L  | -0.00000074 | 0.00088   | 0.10  | 0.0964  | 0.101   | 0.0957   | 0.085 to 0.115   | 96.4  | 70 to 130 | 4.66  | 20            |
| BA14570 Iron, Total            | mg/L  | 0.000169    | 0.0176    | 0.2   | 0.205   | 0.201   | 0.206    | 0.17 to 0.23     | 102   | 70 to 130 | 1.97  | 20            |
| BA14570 Mercury, Total by CVAA | mg/L  | 0.0000240   | 0.0005    | 0.004 | 0.00365 | 0.00367 | 0.00374  | 0.0034 to 0.0046 | 91.2  | 70 to 130 | 0.546 | 20            |
| BA14569 Iron, Dissolved        | mg/L  | -0.000578   | 0.0176    | 0.2   | 38.3    | 37.9    | 0.208    | 0.17 to 0.23     | -50.0 | 70 to 130 | 1.05  | 20            |
| BA14570 Cadmium, Total         | mg/L  | -0.00000379 | 0.0001474 | 0.10  | 0.117   | 0.116   | 0.107    | 0.085 to 0.115   | 117   | 70 to 130 | 0.858 | 20            |
| BA14570 Sodium, Total          | mg/L  | 0.0149      | 0.044     | 5.00  | 4.96    | 4.86    | 4.94     | 4.25 to 5.75     | 99.2  | 70 to 130 | 2.04  | 20            |
| BA14570 Lead, Total            | mg/L  | 0.00000688  | 0.0001474 | 0.10  | 0.126   | 0.122   | 0.112    | 0.085 to 0.115   | 126   | 70 to 130 | 3.23  | 20            |
| BA14570 Arsenic, Total         | mg/L  | -0.0000203  | 0.0001474 | 0.10  | 0.120   | 0.121   | 0.115    | 0.085 to 0.115   | 120   | 70 to 130 | 0.830 | 20            |
| BA14570 Barium, Total          | mg/L  | 0.00000147  | 0.0002    | 0.10  | 0.109   | 0.105   | 0.101    | 0.085 to 0.115   | 109   | 70 to 130 | 3.74  | 20            |
| BA14570 Lithium, Total         | mg/L  | -0.000227   | 0.0154    | 0.20  | 0.196   | 0.193   | 0.195    | 0.17 to 0.23     | 98.0  | 70 to 130 | 1.54  | 20            |
| BA14570 Antimony, Total        | mg/L  | 0.000196    | 0.001     | 0.10  | 0.105   | 0.105   | 0.0966   | 0.085 to 0.115   | 105   | 70 to 130 | 0.00  | 20            |
| BA14570 Boron, Total           | mg/L  | 0.000611    | 0.0650254 | 1.00  | 0.977   | 0.974   | 0.989    | 0.85 to 1.15     | 97.7  | 70 to 130 | 0.308 | 20            |
| BA14570 Calcium, Total         | mg/L  | -0.00124    | 0.1518    | 5.00  | 5.12    | 5.02    | 5.15     | 4.25 to 5.75     | 102   | 70 to 130 | 1.97  | 20            |
| BA14570 Chromium, Total        | mg/L  | -0.0000938  | 0.00044   | 0.10  | 0.121   | 0.121   | 0.114    | 0.085 to 0.115   | 121   | 70 to 130 | 0.00  | 20            |

## **Batch QC Summary**



Customer Account: WMWGORG

Sample Date: 8/4/20 12:20

**Customer ID:** 

**Delivery Date:** 8/6/20 11:01

Description: Gorgas Gypsum - MW-9H

Laboratory ID Number: BA14564

|                                    |       |        | MB    |       |      | Sample    |          | Standard     |      | Rec       |       | Prec          |
|------------------------------------|-------|--------|-------|-------|------|-----------|----------|--------------|------|-----------|-------|---------------|
| Sample Analysis                    | Units | MB     | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA14565 Solids, Dissolved          | mg/L  | 0.0000 | 25    |       |      | 3110      | 52.0     | 40 to 60     |      |           | 0.485 | 5             |
| BA14570 Chloride                   | mg/L  | 0.028  | 0.50  | 10.0  | 10.1 | 0.0231    | 10.2     | 9 to 11      | 101  | 80 to 120 | 0.00  | 20            |
| BA14570 Sulfate                    | mg/L  | -0.599 | 0.50  | 20.0  | 19.0 | -0.361    | 18.3     | 18 to 22     | 95.0 | 80 to 120 | 0.00  | 20            |
| BA14569 Alkalinity, Total as CaCO3 | mg/L  |        |       |       |      | 43.8      | 49.0     | 45.0 to 55.0 |      |           | 2.26  | 10            |
| BA14570 Fluoride                   | mg/L  | 0.0346 | 0.05  | 2.50  | 2.39 | 0.000748  | 2.47     | 2.25 to 2.75 | 95.6 | 80 to 120 | 0.00  | 20            |

# Certificate Of Analysis



Description: Gorgas Gypsum - MW-9VLocation Code:WMWGORGCollected:8/4/20 15:30

**Customer ID:** 

**Submittal Date:** 8/6/20 11:01

| Laboratory ID Number: BA14565 |               |            |          |       | Submit       | al Date:     | 8/6/20 11:01 |          |   |
|-------------------------------|---------------|------------|----------|-------|--------------|--------------|--------------|----------|---|
| Name                          | Prepared      | Analyzed   | Vio Spec | DF    | Results      | Units        | MDL          | RL       | Q |
| Analytical Method: EPA 200.7  | Anal          | yst: RDA   |          |       | Preparati    | on Method: E | EPA 1638     |          |   |
| * Boron, Total                | 8/10/20 15:00 | 8/12/20 11 | :13      | 1.015 | 0.149        | mg/L         | 0.03         | 0.1      |   |
| * Calcium, Total              | 8/10/20 15:00 | 8/12/20 11 | :57      | 20.3  | 434          | mg/L         | 2.03         | 10.15    |   |
| * Iron, Total                 | 8/10/20 15:00 | 8/12/20 11 | :13      | 1.015 | 0.464        | mg/L         | 0.02         | 0.05     |   |
| * Lithium, Total              | 8/10/20 15:00 | 8/12/20 11 | :13      | 1.015 | 0.364        | mg/L         | 0.01         | 0.02     |   |
| * Magnesium, Total            | 8/10/20 15:00 | 8/12/20 11 | :57      | 20.3  | 183          | mg/L         | 2.03         | 10.15    |   |
| * Sodium, Total               | 8/10/20 15:00 | 8/12/20 11 | :57      | 20.3  | 315          | mg/L         | 2.03         | 10.15    |   |
| Analytical Method: EPA 200.7  | Anal          | yst: RDA   |          |       |              |              |              |          |   |
| * Iron, Dissolved             | 8/10/20 13:30 | 8/11/20 12 | :20      | 1.015 | 0.407        | mg/L         | 0.02         | 0.05     |   |
| Analytical Method: EPA 200.8  | Anal          | yst: DLJ   |          |       | Preparati    | on Method: E | EPA 1638     |          |   |
| * Antimony, Total             | 8/7/20 12:54  | 8/10/20 12 | :34      | 1.015 | Not Detected | mg/L         | 0.0008       | 0.003    | U |
| * Arsenic, Total              | 8/7/20 12:54  | 8/10/20 12 | :34      | 1.015 | Not Detected | mg/L         | 0.001        | 0.005    | U |
| * Barium, Total               | 8/7/20 12:54  | 8/10/20 12 | :34      | 1.015 | 0.0155       | mg/L         | 0.002        | 0.01     |   |
| * Beryllium, Total            | 8/7/20 12:54  | 8/10/20 12 | :34      | 1.015 | Not Detected | mg/L         | 0.0006       | 0.003    | U |
| * Cadmium, Total              | 8/7/20 12:54  | 8/10/20 12 | :34      | 1.015 | Not Detected | mg/L         | 0.0003       | 0.001    | U |
| * Chromium, Total             | 8/7/20 12:54  | 8/10/20 12 | :34      | 1.015 | Not Detected | mg/L         | 0.002        | 0.01     | U |
| * Cobalt, Total               | 8/7/20 12:54  | 8/10/20 12 | :34      | 1.015 | 0.00412      | mg/L         | 0.002        | 0.005    | J |
| * Lead, Total                 | 8/7/20 12:54  | 8/10/20 12 | :34      | 1.015 | Not Detected | mg/L         | 0.001        | 0.005    | U |
| * Molybdenum, Total           | 8/7/20 12:54  | 8/10/20 12 | :34      | 1.015 | 0.00423      | mg/L         | 0.002        | 0.01     | J |
| * Potassium, Total            | 8/7/20 12:54  | 8/11/20 13 | :10      | 1.015 | 9.01         | mg/L         | 0.3          | 2.5      |   |
| * Manganese, Total            | 8/7/20 12:54  | 8/11/20 15 | :01      | 5.075 | 1.71         | mg/L         | 0.005075     | 0.025375 |   |
| * Selenium, Total             | 8/7/20 12:54  | 8/10/20 12 | :34      | 1.015 | Not Detected | mg/L         | 0.002        | 0.01     | U |
| * Thallium, Total             | 8/7/20 12:54  | 8/10/20 12 | :34      | 1.015 | Not Detected | mg/L         | 0.0002       | 0.001    | U |
| Analytical Method: EPA 200.8  | Anal          | yst: DLJ   |          |       |              |              |              |          |   |
| * Manganese, Dissolved        | 8/7/20 14:00  | 8/11/20 16 | :26      | 5.075 | 1.82         | mg/L         | 0.005075     | 0.025375 |   |
| Analytical Method: EPA 245.1  | Anal          | yst: GAS   |          |       |              |              |              |          |   |
| * Mercury, Total by CVAA      | 8/11/20 09:20 | 8/11/20 14 | :27      | 1     | Not Detected | mg/L         | 0.0003       | 0.0005   | U |
| Analytical Method: SM 2320 B  | Anal          | yst: JAG   |          |       |              |              |              |          |   |
| Alkalinity, Total as CaCO3    | 8/14/20 11:06 | 8/14/20 11 | :30      | 1     | 301          | mg/L         |              | 0.1      |   |
| Analytical Method: SM 2540C   | Anal          | yst: TJW   |          |       |              |              |              |          |   |
| * Solids, Dissolved           | 8/7/20 14:25  | 8/11/20 12 | .20      | 1     | 3080         | mg/L         |              | 250      |   |

MDL's and RL's are adjusted for sample dilution, as applicable

## Certificate Of Analysis



Description: Gorgas Gypsum - MW-9V

Location Code: Collected:

WMWGORG 8/4/20 15:30

Customer ID:

Submittal Date:

8/6/20 11:01

| Laboratory ID Number: BA14565         |               |              |          |     | Subn    | iittai Date: | 8/6/20 11:0 | ) 1 |    |
|---------------------------------------|---------------|--------------|----------|-----|---------|--------------|-------------|-----|----|
| Name                                  | Prepared      | Analyzed     | Vio Spec | DF  | Results | Units        | MDL         | RL  | Q  |
| Analytical Method: SM 4500CO2 D       | Anal          | lyst: JAG    |          |     |         |              |             |     | _  |
| Bicarbonate Alkalinity, (calc.)       | 8/14/20 11:06 | 8/14/20 11:3 | 30       | 1   | 301     | mg/L         |             |     |    |
| Carbonate Alkalinity, (calc.)         | 8/14/20 11:06 | 8/14/20 11:3 | 30       | 1   | 0.32    | mg/L         |             |     |    |
| Analytical Method: SM4500CI E         | Anal          | lyst: JCC    |          |     |         |              |             |     |    |
| * Chloride                            | 8/10/20 13:43 | 8/10/20 13:4 | 13       | 10  | 58.6    | mg/L         | 5.00        | 10  |    |
| Analytical Method: SM4500F G 2017     | Anal          | lyst: JCC    |          |     |         |              |             |     |    |
| * Fluoride                            | 8/11/20 12:37 | 8/11/20 12:3 | 37       | 1   | 0.135   | mg/L         | 0.06        | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Anal          | lyst: JCC    |          |     |         |              |             |     |    |
| * Sulfate                             | 8/7/20 13:34  | 8/7/20 13:34 | 1        | 100 | 1700    | mg/L         | 50.00       | 100 |    |
| Analytical Method: Field Measurements | Anal          | lyst: TJD    |          |     |         |              |             |     |    |
| Conductivity                          | 8/4/20 15:29  | 8/4/20 15:29 | )        |     | 2563.32 | uS/cm        |             |     | FA |
| рН                                    | 8/4/20 15:29  | 8/4/20 15:29 | )        |     | 6.88    | SU           |             |     | FA |
| Temperature                           | 8/4/20 15:29  | 8/4/20 15:29 | )        |     | 25.02   | С            |             |     | FA |
| Turbidity                             | 8/4/20 15:29  | 8/4/20 15:29 | )        |     | 3.07    | NTU          |             |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

## **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 8/4/20 15:30

Customer ID:

Delivery Date:

8/6/20 11:01

Description: Gorgas Gypsum - MW-9V

Laboratory ID Number: BA14565

|                                |       |             | MB        |       |         |         |          | Standard         |       | Rec       |       | Prec          |
|--------------------------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|-------|-----------|-------|---------------|
| Sample Analysis                | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | Limit            | Rec   | Limit     | Prec  | <u>Li</u> mit |
| BA14569 Manganese, Dissolved   | mg/L  | 0.000120    | 0.0001474 | 0.10  | 5.36    | 5.25    | 0.0999   | 0.085 to 0.115   | 260   | 70 to 130 | 2.07  | 20            |
| BA14570 Molybdenum, Total      | mg/L  | 0.00000625  | 0.0001474 | 0.10  | 0.118   | 0.118   | 0.107    | 0.085 to 0.115   | 118   | 70 to 130 | 0.00  | 20            |
| BA14570 Manganese, Total       | mg/L  | 0.000140    | 0.0001474 | 0.10  | 0.118   | 0.116   | 0.109    | 0.085 to 0.115   | 118   | 70 to 130 | 1.71  | 20            |
| BA14570 Selenium, Total        | mg/L  | -0.0000834  | 0.001     | 0.10  | 0.114   | 0.117   | 0.109    | 0.085 to 0.115   | 114   | 70 to 130 | 2.60  | 20            |
| BA14570 Thallium, Total        | mg/L  | 0.0000155   | 0.0001474 | 0.10  | 0.119   | 0.114   | 0.106    | 0.085 to 0.115   | 119   | 70 to 130 | 4.29  | 20            |
| BA14569 Iron, Dissolved        | mg/L  | -0.000578   | 0.0176    | 0.2   | 38.3    | 37.9    | 0.208    | 0.17 to 0.23     | -50.0 | 70 to 130 | 1.05  | 20            |
| BA14570 Cadmium, Total         | mg/L  | -0.00000379 | 0.0001474 | 0.10  | 0.117   | 0.116   | 0.107    | 0.085 to 0.115   | 117   | 70 to 130 | 0.858 | 20            |
| BA14570 Sodium, Total          | mg/L  | 0.0149      | 0.044     | 5.00  | 4.96    | 4.86    | 4.94     | 4.25 to 5.75     | 99.2  | 70 to 130 | 2.04  | 20            |
| BA14570 Lead, Total            | mg/L  | 0.00000688  | 0.0001474 | 0.10  | 0.126   | 0.122   | 0.112    | 0.085 to 0.115   | 126   | 70 to 130 | 3.23  | 20            |
| BA14570 Cobalt, Total          | mg/L  | -0.0000254  | 0.0001474 | 0.10  | 0.121   | 0.120   | 0.113    | 0.085 to 0.115   | 121   | 70 to 130 | 0.830 | 20            |
| BA14570 Potassium, Total       | mg/L  | 0.0286      | 0.3674    | 10.0  | 10.6    | 10.7    | 11.3     | 8.5 to 11.5      | 106   | 70 to 130 | 0.939 | 20            |
| BA14570 Magnesium, Total       | mg/L  | 0.00212     | 0.0462    | 5.00  | 5.17    | 5.12    | 5.22     | 4.25 to 5.75     | 103   | 70 to 130 | 0.972 | 20            |
| BA14570 Arsenic, Total         | mg/L  | -0.0000203  | 0.0001474 | 0.10  | 0.120   | 0.121   | 0.115    | 0.085 to 0.115   | 120   | 70 to 130 | 0.830 | 20            |
| BA14570 Barium, Total          | mg/L  | 0.00000147  | 0.0002    | 0.10  | 0.109   | 0.105   | 0.101    | 0.085 to 0.115   | 109   | 70 to 130 | 3.74  | 20            |
| BA14570 Lithium, Total         | mg/L  | -0.000227   | 0.0154    | 0.20  | 0.196   | 0.193   | 0.195    | 0.17 to 0.23     | 98.0  | 70 to 130 | 1.54  | 20            |
| BA14570 Antimony, Total        | mg/L  | 0.000196    | 0.001     | 0.10  | 0.105   | 0.105   | 0.0966   | 0.085 to 0.115   | 105   | 70 to 130 | 0.00  | 20            |
| BA14570 Boron, Total           | mg/L  | 0.000611    | 0.0650254 | 1.00  | 0.977   | 0.974   | 0.989    | 0.85 to 1.15     | 97.7  | 70 to 130 | 0.308 | 20            |
| BA14570 Calcium, Total         | mg/L  | -0.00124    | 0.1518    | 5.00  | 5.12    | 5.02    | 5.15     | 4.25 to 5.75     | 102   | 70 to 130 | 1.97  | 20            |
| BA14570 Chromium, Total        | mg/L  | -0.0000938  | 0.00044   | 0.10  | 0.121   | 0.121   | 0.114    | 0.085 to 0.115   | 121   | 70 to 130 | 0.00  | 20            |
| BA14570 Beryllium, Total       | mg/L  | -0.00000074 | 0.00088   | 0.10  | 0.0964  | 0.101   | 0.0957   | 0.085 to 0.115   | 96.4  | 70 to 130 | 4.66  | 20            |
| BA14570 Iron, Total            | mg/L  | 0.000169    | 0.0176    | 0.2   | 0.205   | 0.201   | 0.206    | 0.17 to 0.23     | 102   | 70 to 130 | 1.97  | 20            |
| BA14570 Mercury, Total by CVAA | mg/L  | 0.0000240   | 0.0005    | 0.004 | 0.00365 | 0.00367 | 0.00374  | 0.0034 to 0.0046 | 91.2  | 70 to 130 | 0.546 | 20            |

## **Batch QC Summary**



Customer Account: WMWGORG

Customer ID:

**Sample Date:** 8/4/20 15:30

Customer ib.

**Delivery Date:** 8/6/20 11:01

Description: Gorgas Gypsum - MW-9V

Laboratory ID Number: BA14565

|                                    |       |        | MB    |       |      | Sample    |          | Standard     |      | Rec       |       | Prec          |
|------------------------------------|-------|--------|-------|-------|------|-----------|----------|--------------|------|-----------|-------|---------------|
| Sample Analysis                    | Units | MB     | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA14565 Solids, Dissolved          | mg/L  | 0.0000 | 25    |       |      | 3110      | 52.0     | 40 to 60     |      |           | 0.485 | 5             |
| BA14570 Sulfate                    | mg/L  | -0.599 | 0.50  | 20.0  | 19.0 | -0.361    | 18.3     | 18 to 22     | 95.0 | 80 to 120 | 0.00  | 20            |
| BA14570 Chloride                   | mg/L  | 0.028  | 0.50  | 10.0  | 10.1 | 0.0231    | 10.2     | 9 to 11      | 101  | 80 to 120 | 0.00  | 20            |
| BA14569 Alkalinity, Total as CaCO3 | mg/L  |        |       |       |      | 43.8      | 49.0     | 45.0 to 55.0 |      |           | 2.26  | 10            |
| BA14570 Fluoride                   | mg/L  | 0.0346 | 0.05  | 2.50  | 2.39 | 0.000748  | 2.47     | 2.25 to 2.75 | 95.6 | 80 to 120 | 0.00  | 20            |

## Certificate Of Analysis



Description: Gorgas Gypsum - MW-4LLocation Code:WMWGORGCollected:8/5/20 09:55

Customer ID:

Laboratory ID Number: BA14566 Submittal Date: 8/6/20 11:01

| Name                                  | Prepared      | Analyzed     | Vio Spec | DF    | Results      | Units        | MDL      | RL     | Q |
|---------------------------------------|---------------|--------------|----------|-------|--------------|--------------|----------|--------|---|
| Analytical Method: EPA 200.7          | Anal          | yst: RDA     |          |       | Preparati    | on Method:   | EPA 1638 |        |   |
| * Boron, Total                        | 8/10/20 15:00 | 8/12/20 11:1 | 6 1      | 1.015 | 0.0459       | mg/L         | 0.03     | 0.1    | J |
| * Calcium, Total                      | 8/10/20 15:00 | 8/12/20 12:0 | 0 2      | 20.3  | 281          | mg/L         | 2.03     | 10.15  |   |
| * Iron, Total                         | 8/10/20 15:00 | 8/12/20 11:1 | 6 1      | 1.015 | 0.0713       | mg/L         | 0.02     | 0.05   |   |
| * Lithium, Total                      | 8/10/20 15:00 | 8/12/20 11:1 | 6 1      | 1.015 | 0.0519       | mg/L         | 0.01     | 0.02   |   |
| * Magnesium, Total                    | 8/10/20 15:00 | 8/12/20 12:0 | 0 2      | 20.3  | 459          | mg/L         | 2.03     | 10.15  |   |
| * Sodium, Total                       | 8/10/20 15:00 | 8/12/20 11:1 | 6 1      | 1.015 | 35.2         | mg/L         | 0.1      | 0.5    |   |
| Analytical Method: EPA 200.7          | Anal          | yst: RDA     |          |       |              |              |          |        |   |
| * Iron, Dissolved                     | 8/10/20 13:30 | 8/11/20 12:2 | 3 1      | 1.015 | Not Detected | mg/L         | 0.02     | 0.05   | U |
| Analytical Method: EPA 200.8          | Anal          | yst: DLJ     |          |       | Preparati    | on Method: I | EPA 1638 |        |   |
| * Antimony, Total                     | 8/7/20 12:54  | 8/10/20 12:3 | 6 1      | 1.015 | Not Detected | mg/L         | 0.0008   | 0.003  | U |
| * Arsenic, Total                      | 8/7/20 12:54  | 8/10/20 12:3 | 6 1      | 1.015 | Not Detected | mg/L         | 0.001    | 0.005  | U |
| * Barium, Total                       | 8/7/20 12:54  | 8/10/20 12:3 | 6 1      | 1.015 | 0.0125       | mg/L         | 0.002    | 0.01   |   |
| * Beryllium, Total                    | 8/7/20 12:54  | 8/10/20 12:3 | 6 1      | 1.015 | Not Detected | mg/L         | 0.0006   | 0.003  | U |
| * Cadmium, Total                      | 8/7/20 12:54  | 8/10/20 12:3 | 6 1      | 1.015 | Not Detected | mg/L         | 0.0003   | 0.001  | U |
| * Chromium, Total                     | 8/7/20 12:54  | 8/10/20 12:3 | 6 1      | 1.015 | Not Detected | mg/L         | 0.002    | 0.01   | U |
| * Cobalt, Total                       | 8/7/20 12:54  | 8/10/20 12:3 | 6 1      | 1.015 | Not Detected | mg/L         | 0.002    | 0.005  | U |
| * Lead, Total                         | 8/7/20 12:54  | 8/10/20 12:3 | 6 1      | 1.015 | Not Detected | mg/L         | 0.001    | 0.005  | U |
| <ul> <li>Molybdenum, Total</li> </ul> | 8/7/20 12:54  | 8/10/20 12:3 | 6 1      | 1.015 | Not Detected | mg/L         | 0.002    | 0.01   | U |
| * Potassium, Total                    | 8/7/20 12:54  | 8/11/20 13:1 | 2 1      | 1.015 | 8.89         | mg/L         | 0.3      | 2.5    |   |
| * Manganese, Total                    | 8/7/20 12:54  | 8/10/20 12:3 | 6 1      | 1.015 | 0.00295      | mg/L         | 0.001    | 0.005  | J |
| * Selenium, Total                     | 8/7/20 12:54  | 8/10/20 12:3 | 6 1      | 1.015 | 0.00232      | mg/L         | 0.002    | 0.01   | J |
| * Thallium, Total                     | 8/7/20 12:54  | 8/10/20 12:3 | 6 1      | 1.015 | Not Detected | mg/L         | 0.0002   | 0.001  | U |
| Analytical Method: EPA 200.8          | Anal          | yst: DLJ     |          |       |              |              |          |        |   |
| * Manganese, Dissolved                | 8/7/20 14:00  | 8/10/20 11:5 | 8 1      | 1.015 | Not Detected | mg/L         | 0.001    | 0.005  | U |
| Analytical Method: EPA 245.1          | Anal          | yst: GAS     |          |       |              |              |          |        |   |
| * Mercury, Total by CVAA              | 8/11/20 09:20 | 8/11/20 14:2 | .9 1     | 1     | Not Detected | mg/L         | 0.0003   | 0.0005 | U |
| Analytical Method: SM 2320 B          |               | yst: JAG     |          |       |              |              |          |        |   |
| Alkalinity, Total as CaCO3            | 8/14/20 11:06 | 8/14/20 11:3 | so 1     | 1     | 168          | mg/L         |          | 0.1    |   |
| Analytical Method: SM 2540C           |               | yst: TJW     |          |       |              |              |          |        |   |
| * Solids, Dissolved                   | 8/10/20 12:25 | -            | in 1     | 1     | 3200         | mg/L         |          | 156.2  |   |

MDL's and RL's are adjusted for sample dilution, as applicable

#### Certificate Of Analysis



FΑ

FΑ

FΑ

FΑ

Description: Gorgas Gypsum - MW-4L

Location Code:

WMWGORG

Collected:

2442.43

6.15

20.77

4.87

Customer ID: Submittal Date:

uS/cm

SU

С

NTU

8/5/20 09:55

8/6/20 11:01

Laboratory ID Number: BA14566

Conductivity

Temperature

Turbidity

рΗ

MDL Q Results Units RL Name Prepared Analyzed Vio Spec DF Analytical Method: SM 4500CO2 D Analyst: JAG Bicarbonate Alkalinity, (calc.) 8/14/20 11:06 8/14/20 11:30 168 mg/L 1 Carbonate Alkalinity, (calc.) 8/14/20 11:06 8/14/20 11:30 1 0.05 mg/L Analyst: JCC Analytical Method: SM4500CI E \* Chloride 8/10/20 13:37 8/10/20 13:37 1.57 mg/L 0.50 1 Analyst: JCC Analytical Method: SM4500F G 2017 mg/L 0.1 \* Fluoride 8/11/20 12:38 8/11/20 12:38 0.359 0.06 Analytical Method: SM4500SO4 E 2011 Analyst: JCC mg/L 50.00 100 \* Sulfate 8/7/20 13:36 100 1930 8/7/20 13:36 Analytical Method: Field Measurements Analyst: TJD

8/5/20 09:52

8/5/20 09:52

8/5/20 09:52

8/5/20 09:52

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 8/19/2020

8/5/20 09:52

8/5/20 09:52

8/5/20 09:52

8/5/20 09:52

## **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 8/5/20 09:55

Customer ID:

**Delivery Date:** 8/6/20 11:01

Description: Gorgas Gypsum - MW-4L

Laboratory ID Number: BA14566

|                                |       |             | MB        |       |         |         |          | Standard         |       | Rec       |       | Prec          |
|--------------------------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|-------|-----------|-------|---------------|
| Sample Analysis                | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | Limit            | Rec   | Limit     | Prec  | <u>Li</u> mit |
| BA14570 Molybdenum, Total      | mg/L  | 0.00000625  | 0.0001474 | 0.10  | 0.118   | 0.118   | 0.107    | 0.085 to 0.115   | 118   | 70 to 130 | 0.00  | 20            |
| BA14570 Boron, Total           | mg/L  | 0.000611    | 0.0650254 | 1.00  | 0.977   | 0.974   | 0.989    | 0.85 to 1.15     | 97.7  | 70 to 130 | 0.308 | 20            |
| BA14570 Calcium, Total         | mg/L  | -0.00124    | 0.1518    | 5.00  | 5.12    | 5.02    | 5.15     | 4.25 to 5.75     | 102   | 70 to 130 | 1.97  | 20            |
| BA14570 Chromium, Total        | mg/L  | -0.0000938  | 0.00044   | 0.10  | 0.121   | 0.121   | 0.114    | 0.085 to 0.115   | 121   | 70 to 130 | 0.00  | 20            |
| BA14570 Beryllium, Total       | mg/L  | -0.00000074 | 0.00088   | 0.10  | 0.0964  | 0.101   | 0.0957   | 0.085 to 0.115   | 96.4  | 70 to 130 | 4.66  | 20            |
| BA14570 Iron, Total            | mg/L  | 0.000169    | 0.0176    | 0.2   | 0.205   | 0.201   | 0.206    | 0.17 to 0.23     | 102   | 70 to 130 | 1.97  | 20            |
| BA14570 Mercury, Total by CVAA | mg/L  | 0.0000240   | 0.0005    | 0.004 | 0.00365 | 0.00367 | 0.00374  | 0.0034 to 0.0046 | 91.2  | 70 to 130 | 0.546 | 20            |
| BA14570 Manganese, Total       | mg/L  | 0.000140    | 0.0001474 | 0.10  | 0.118   | 0.116   | 0.109    | 0.085 to 0.115   | 118   | 70 to 130 | 1.71  | 20            |
| BA14570 Selenium, Total        | mg/L  | -0.0000834  | 0.001     | 0.10  | 0.114   | 0.117   | 0.109    | 0.085 to 0.115   | 114   | 70 to 130 | 2.60  | 20            |
| BA14570 Thallium, Total        | mg/L  | 0.0000155   | 0.0001474 | 0.10  | 0.119   | 0.114   | 0.106    | 0.085 to 0.115   | 119   | 70 to 130 | 4.29  | 20            |
| BA14570 Cobalt, Total          | mg/L  | -0.0000254  | 0.0001474 | 0.10  | 0.121   | 0.120   | 0.113    | 0.085 to 0.115   | 121   | 70 to 130 | 0.830 | 20            |
| BA14570 Potassium, Total       | mg/L  | 0.0286      | 0.3674    | 10.0  | 10.6    | 10.7    | 11.3     | 8.5 to 11.5      | 106   | 70 to 130 | 0.939 | 20            |
| BA14570 Magnesium, Total       | mg/L  | 0.00212     | 0.0462    | 5.00  | 5.17    | 5.12    | 5.22     | 4.25 to 5.75     | 103   | 70 to 130 | 0.972 | 20            |
| BA14569 Iron, Dissolved        | mg/L  | -0.000578   | 0.0176    | 0.2   | 38.3    | 37.9    | 0.208    | 0.17 to 0.23     | -50.0 | 70 to 130 | 1.05  | 20            |
| BA14570 Cadmium, Total         | mg/L  | -0.00000379 | 0.0001474 | 0.10  | 0.117   | 0.116   | 0.107    | 0.085 to 0.115   | 117   | 70 to 130 | 0.858 | 20            |
| BA14570 Sodium, Total          | mg/L  | 0.0149      | 0.044     | 5.00  | 4.96    | 4.86    | 4.94     | 4.25 to 5.75     | 99.2  | 70 to 130 | 2.04  | 20            |
| BA14570 Lead, Total            | mg/L  | 0.00000688  | 0.0001474 | 0.10  | 0.126   | 0.122   | 0.112    | 0.085 to 0.115   | 126   | 70 to 130 | 3.23  | 20            |
| BA14570 Arsenic, Total         | mg/L  | -0.0000203  | 0.0001474 | 0.10  | 0.120   | 0.121   | 0.115    | 0.085 to 0.115   | 120   | 70 to 130 | 0.830 | 20            |
| BA14570 Barium, Total          | mg/L  | 0.00000147  | 0.0002    | 0.10  | 0.109   | 0.105   | 0.101    | 0.085 to 0.115   | 109   | 70 to 130 | 3.74  | 20            |
| BA14570 Lithium, Total         | mg/L  | -0.000227   | 0.0154    | 0.20  | 0.196   | 0.193   | 0.195    | 0.17 to 0.23     | 98.0  | 70 to 130 | 1.54  | 20            |
| BA14570 Antimony, Total        | mg/L  | 0.000196    | 0.001     | 0.10  | 0.105   | 0.105   | 0.0966   | 0.085 to 0.115   | 105   | 70 to 130 | 0.00  | 20            |
| BA14569 Manganese, Dissolved   | mg/L  | 0.000120    | 0.0001474 | 0.10  | 5.36    | 5.25    | 0.0999   | 0.085 to 0.115   | 260   | 70 to 130 | 2.07  | 20            |

## **Batch QC Summary**



Customer Account: WMWGORG

Sample Date:

8/5/20 09:55

**Customer ID:** 

**Delivery Date:** 

8/6/20 11:01

Description: Gorgas Gypsum - MW-4L

Laboratory ID Number: BA14566

|         |                            |       |        | MB    |       |      | Sample    |          | Standard     |      | Rec       |      | Prec          |
|---------|----------------------------|-------|--------|-------|-------|------|-----------|----------|--------------|------|-----------|------|---------------|
| Sample  | Analysis                   | Units | MB     | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit     | Prec | <u>Li</u> mit |
| BA14570 | Sulfate                    | mg/L  | -0.599 | 0.50  | 20.0  | 19.0 | -0.361    | 18.3     | 18 to 22     | 95.0 | 80 to 120 | 0.00 | 20            |
| BA14570 | Chloride                   | mg/L  | 0.028  | 0.50  | 10.0  | 10.1 | 0.0231    | 10.2     | 9 to 11      | 101  | 80 to 120 | 0.00 | 20            |
| BA14569 | Alkalinity, Total as CaCO3 | mg/L  |        |       |       |      | 43.8      | 49.0     | 45.0 to 55.0 |      |           | 2.26 | 10            |
| BA14570 | Fluoride                   | mg/L  | 0.0346 | 0.05  | 2.50  | 2.39 | 0.000748  | 2.47     | 2.25 to 2.75 | 95.6 | 80 to 120 | 0.00 | 20            |
| BA14566 | Solids, Dissolved          | mg/L  | 2.00   | 25    |       |      | 3200      | 53.0     | 40 to 60     |      |           | 0.00 | 5             |

### Certificate Of Analysis



Description: Gorgas Gypsum - MW-14HLocation Code:WMWGORGCollected:8/5/20 11:10

Customer ID:

Laboratory ID Number: BA14567 Submittal Date: 8/6/20 11:01

| Name                                  | Prepared      | Analyzed     | Vio Spec | DF    | Results      | Units        | MDL      | RL      | Q |
|---------------------------------------|---------------|--------------|----------|-------|--------------|--------------|----------|---------|---|
| Analytical Method: EPA 200.7          | Anal          | yst: RDA     |          |       | Preparati    | on Method: I | EPA 1638 |         |   |
| * Boron, Total                        | 8/10/20 15:00 | 8/12/20 11:1 | 9 1      | 1.015 | 0.158        | mg/L         | 0.03     | 0.1     |   |
| * Calcium, Total                      | 8/10/20 15:00 | 8/12/20 12:0 | 3 1      | 10.15 | 141          | mg/L         | 1.015    | 5.075   |   |
| * Iron, Total                         | 8/10/20 15:00 | 8/12/20 12:0 | 3 1      | 10.15 | 14.6         | mg/L         | 0.203    | 0.5075  |   |
| * Lithium, Total                      | 8/10/20 15:00 | 8/12/20 11:1 | 9 1      | 1.015 | 0.512        | mg/L         | 0.01     | 0.02    |   |
| * Magnesium, Total                    | 8/10/20 15:00 | 8/12/20 12:0 | 3 1      | 10.15 | 104          | mg/L         | 1.015    | 5.075   |   |
| * Sodium, Total                       | 8/10/20 15:00 | 8/12/20 11:1 | 9 1      | 1.015 | 17.9         | mg/L         | 0.1      | 0.5     |   |
| Analytical Method: EPA 200.7          | Anal          | yst: RDA     |          |       |              |              |          |         |   |
| * Iron, Dissolved                     | 8/10/20 13:30 | 8/11/20 14:1 | 8 1      | 10.15 | 12.6         | mg/L         | 0.203    | 0.5075  |   |
| Analytical Method: EPA 200.8          | Anal          | yst: DLJ     |          |       | Preparati    | on Method: I | EPA 1638 |         |   |
| * Antimony, Total                     | 8/7/20 12:54  | 8/10/20 12:3 | 9 1      | 1.015 | Not Detected | mg/L         | 0.0008   | 0.003   | U |
| * Arsenic, Total                      | 8/7/20 12:54  | 8/10/20 12:3 | 9 1      | 1.015 | 0.00181      | mg/L         | 0.001    | 0.005   | J |
| * Barium, Total                       | 8/7/20 12:54  | 8/10/20 12:3 | 9 1      | 1.015 | 0.0113       | mg/L         | 0.002    | 0.01    |   |
| * Beryllium, Total                    | 8/7/20 12:54  | 8/10/20 12:3 | 9 1      | 1.015 | 0.00879      | mg/L         | 0.0006   | 0.003   |   |
| * Cadmium, Total                      | 8/7/20 12:54  | 8/10/20 12:3 | 9 1      | 1.015 | 0.00180      | mg/L         | 0.0003   | 0.001   |   |
| * Chromium, Total                     | 8/7/20 12:54  | 8/10/20 12:3 | 9 1      | 1.015 | Not Detected | mg/L         | 0.002    | 0.01    | U |
| * Cobalt, Total                       | 8/7/20 12:54  | 8/10/20 12:3 | 9 1      | 1.015 | 0.237        | mg/L         | 0.002    | 0.005   |   |
| * Lead, Total                         | 8/7/20 12:54  | 8/10/20 12:3 | 9 1      | 1.015 | 0.00122      | mg/L         | 0.001    | 0.005   | J |
| <ul> <li>Molybdenum, Total</li> </ul> | 8/7/20 12:54  | 8/10/20 12:3 | 9 1      | 1.015 | Not Detected | mg/L         | 0.002    | 0.01    | U |
| * Potassium, Total                    | 8/7/20 12:54  | 8/11/20 13:1 | 5 1      | 1.015 | 3.92         | mg/L         | 0.3      | 2.5     |   |
| * Manganese, Total                    | 8/7/20 12:54  | 8/11/20 15:0 | 4 1      | 10.15 | 9.48         | mg/L         | 0.01015  | 0.05075 |   |
| * Selenium, Total                     | 8/7/20 12:54  | 8/10/20 12:3 | 9 1      | 1.015 | 0.00571      | mg/L         | 0.002    | 0.01    | J |
| * Thallium, Total                     | 8/7/20 12:54  | 8/10/20 12:3 | 9 1      | 1.015 | Not Detected | mg/L         | 0.0002   | 0.001   | U |
| Analytical Method: EPA 200.8          | Anal          | yst: DLJ     |          |       |              |              |          |         |   |
| * Manganese, Dissolved                | 8/7/20 14:00  | 8/11/20 16:2 | 9 1      | 10.15 | 10.2         | mg/L         | 0.01015  | 0.05075 |   |
| Analytical Method: EPA 245.1          | Anal          | yst: GAS     |          |       |              |              |          |         |   |
| * Mercury, Total by CVAA              | 8/11/20 09:20 | 8/11/20 14:3 | 2 1      | I     | Not Detected | mg/L         | 0.0003   | 0.0005  | U |
| Analytical Method: SM 2320 B          |               | yst: JAG     |          |       |              |              |          |         |   |
| Alkalinity, Total as CaCO3            | 8/14/20 11:06 |              | 0 1      | I     | NA           | mg/L         |          | 0.10    |   |
| Analytical Method: SM 2540C           |               | yst: TJW     |          |       |              | Ü            |          |         |   |
| * Solids, Dissolved                   | 8/10/20 12:25 | •            | n 1      | 1     | 1280         | mg/L         |          | 83.3    |   |

MDL's and RL's are adjusted for sample dilution, as applicable

#### Certificate Of Analysis



Description: Gorgas Gypsum - MW-14H

**Location Code:** 

WMWGORG

Collected:

Customer ID:

8/5/20 11:10

8/6/20 11:01

Laboratory ID Number: BA14567

Submittal Date:

| Name                                  | Prepared      | Analyzed     | Vio Spec DF | Results | Units | MDL   | RL  | Q  |
|---------------------------------------|---------------|--------------|-------------|---------|-------|-------|-----|----|
| Analytical Method: SM 4500CO2 D       | Anai          | lyst: JAG    | ·           |         |       |       |     |    |
| Bicarbonate Alkalinity, (calc.)       | 8/14/20 11:06 | 8/14/20 11:3 | 30 1        | NA      | mg/L  |       |     |    |
| Carbonate Alkalinity, (calc.)         | 8/14/20 11:06 | 8/14/20 11:3 | 30 1        | NA      | mg/L  |       |     |    |
| Analytical Method: SM4500Cl E         | Anai          | lyst: JCC    |             |         |       |       |     |    |
| * Chloride                            | 8/10/20 13:38 | 8/10/20 13:3 | 38 1        | 3.28    | mg/L  | 0.50  | 1   |    |
| Analytical Method: SM4500F G 2017     | Anai          | lyst: JCC    |             |         |       |       |     |    |
| * Fluoride                            | 8/11/20 12:39 | 8/11/20 12:3 | 39 1        | 0.0820  | mg/L  | 0.06  | 0.1 | J  |
| Analytical Method: SM4500SO4 E 2011   | Anai          | lyst: JCC    |             |         |       |       |     |    |
| * Sulfate                             | 8/7/20 13:37  | 8/7/20 13:37 | 7 40        | 796     | mg/L  | 20.00 | 40  |    |
| Analytical Method: Field Measurements | Anai          | lyst: TJD    |             |         |       |       |     |    |
| Conductivity                          | 8/5/20 11:06  | 8/5/20 11:06 | 5           | 1379.37 | uS/cm |       |     | FA |
| рН                                    | 8/5/20 11:06  | 8/5/20 11:06 | 5           | 3.83    | SU    |       |     | FA |
| Temperature                           | 8/5/20 11:06  | 8/5/20 11:06 | 5           | 20.84   | С     |       |     | FA |
| Turbidity                             | 8/5/20 11:06  | 8/5/20 11:06 | 3           | 2.93    | NTU   |       |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

#### **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 8/5/20 11:10

Customer ID:

**Delivery Date:** 8/6/20 11:01

Description: Gorgas Gypsum - MW-14H

Laboratory ID Number: BA14567

|                   |                       |       |             | MB        |       |         |         |          | Standard         |       | Rec       |       | Prec          |
|-------------------|-----------------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|-------|-----------|-------|---------------|
| S <u>ample An</u> | nalysis               | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | Limit            | Rec   | Limit     | Prec  | <u>Li</u> mit |
| BA14569 Ma        | anganese, Dissolved   | mg/L  | 0.000120    | 0.0001474 | 0.10  | 5.36    | 5.25    | 0.0999   | 0.085 to 0.115   | 260   | 70 to 130 | 2.07  | 20            |
| BA14570 Mo        | olybdenum, Total      | mg/L  | 0.00000625  | 0.0001474 | 0.10  | 0.118   | 0.118   | 0.107    | 0.085 to 0.115   | 118   | 70 to 130 | 0.00  | 20            |
| BA14570 Ma        | anganese, Total       | mg/L  | 0.000140    | 0.0001474 | 0.10  | 0.118   | 0.116   | 0.109    | 0.085 to 0.115   | 118   | 70 to 130 | 1.71  | 20            |
| BA14570 Se        | lenium, Total         | mg/L  | -0.0000834  | 0.001     | 0.10  | 0.114   | 0.117   | 0.109    | 0.085 to 0.115   | 114   | 70 to 130 | 2.60  | 20            |
| BA14570 Th        | allium, Total         | mg/L  | 0.0000155   | 0.0001474 | 0.10  | 0.119   | 0.114   | 0.106    | 0.085 to 0.115   | 119   | 70 to 130 | 4.29  | 20            |
| BA14570 Bo        | oron, Total           | mg/L  | 0.000611    | 0.0650254 | 1.00  | 0.977   | 0.974   | 0.989    | 0.85 to 1.15     | 97.7  | 70 to 130 | 0.308 | 20            |
| BA14570 Ca        | alcium, Total         | mg/L  | -0.00124    | 0.1518    | 5.00  | 5.12    | 5.02    | 5.15     | 4.25 to 5.75     | 102   | 70 to 130 | 1.97  | 20            |
| BA14570 Ch        | romium, Total         | mg/L  | -0.0000938  | 0.00044   | 0.10  | 0.121   | 0.121   | 0.114    | 0.085 to 0.115   | 121   | 70 to 130 | 0.00  | 20            |
| BA14570 Ars       | senic, Total          | mg/L  | -0.0000203  | 0.0001474 | 0.10  | 0.120   | 0.121   | 0.115    | 0.085 to 0.115   | 120   | 70 to 130 | 0.830 | 20            |
| BA14570 Ba        | arium, Total          | mg/L  | 0.00000147  | 0.0002    | 0.10  | 0.109   | 0.105   | 0.101    | 0.085 to 0.115   | 109   | 70 to 130 | 3.74  | 20            |
| BA14570 Litl      | hium, Total           | mg/L  | -0.000227   | 0.0154    | 0.20  | 0.196   | 0.193   | 0.195    | 0.17 to 0.23     | 98.0  | 70 to 130 | 1.54  | 20            |
| BA14570 An        | timony, Total         | mg/L  | 0.000196    | 0.001     | 0.10  | 0.105   | 0.105   | 0.0966   | 0.085 to 0.115   | 105   | 70 to 130 | 0.00  | 20            |
| BA14570 Be        | eryllium, Total       | mg/L  | -0.00000074 | 0.00088   | 0.10  | 0.0964  | 0.101   | 0.0957   | 0.085 to 0.115   | 96.4  | 70 to 130 | 4.66  | 20            |
| BA14570 Iro       | n, Total              | mg/L  | 0.000169    | 0.0176    | 0.2   | 0.205   | 0.201   | 0.206    | 0.17 to 0.23     | 102   | 70 to 130 | 1.97  | 20            |
| BA14570 Me        | ercury, Total by CVAA | mg/L  | 0.0000240   | 0.0005    | 0.004 | 0.00365 | 0.00367 | 0.00374  | 0.0034 to 0.0046 | 91.2  | 70 to 130 | 0.546 | 20            |
| BA14570 Co        | balt, Total           | mg/L  | -0.0000254  | 0.0001474 | 0.10  | 0.121   | 0.120   | 0.113    | 0.085 to 0.115   | 121   | 70 to 130 | 0.830 | 20            |
| BA14570 Po        | otassium, Total       | mg/L  | 0.0286      | 0.3674    | 10.0  | 10.6    | 10.7    | 11.3     | 8.5 to 11.5      | 106   | 70 to 130 | 0.939 | 20            |
| BA14570 Ma        | agnesium, Total       | mg/L  | 0.00212     | 0.0462    | 5.00  | 5.17    | 5.12    | 5.22     | 4.25 to 5.75     | 103   | 70 to 130 | 0.972 | 20            |
| BA14569 Iro       | n, Dissolved          | mg/L  | -0.000578   | 0.0176    | 0.2   | 38.3    | 37.9    | 0.208    | 0.17 to 0.23     | -50.0 | 70 to 130 | 1.05  | 20            |
| BA14570 Ca        | ndmium, Total         | mg/L  | -0.00000379 | 0.0001474 | 0.10  | 0.117   | 0.116   | 0.107    | 0.085 to 0.115   | 117   | 70 to 130 | 0.858 | 20            |
| BA14570 So        | odium, Total          | mg/L  | 0.0149      | 0.044     | 5.00  | 4.96    | 4.86    | 4.94     | 4.25 to 5.75     | 99.2  | 70 to 130 | 2.04  | 20            |
| BA14570 Le        | ad, Total             | mg/L  | 0.00000688  | 0.0001474 | 0.10  | 0.126   | 0.122   | 0.112    | 0.085 to 0.115   | 126   | 70 to 130 | 3.23  | 20            |

## **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 8/5/20 11:10

Customer ID:

**Delivery Date:** 8/6/20 11:01

Description: Gorgas Gypsum - MW-14H

Laboratory ID Number: BA14567

|         |                            |       |        | MB    |       |      | Sample    |          | Standard     |      | Rec       |      | Prec          |
|---------|----------------------------|-------|--------|-------|-------|------|-----------|----------|--------------|------|-----------|------|---------------|
| Sample  | Analysis                   | Units | MB     | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit     | Prec | <u>Li</u> mit |
| BA14566 | Solids, Dissolved          | mg/L  | 2.00   | 25    |       |      | 3200      | 53.0     | 40 to 60     |      |           | 0.00 | 5             |
| BA14570 | Chloride                   | mg/L  | 0.028  | 0.50  | 10.0  | 10.1 | 0.0231    | 10.2     | 9 to 11      | 101  | 80 to 120 | 0.00 | 20            |
| BA14569 | Alkalinity, Total as CaCO3 | mg/L  |        |       |       |      | 43.8      | 49.0     | 45.0 to 55.0 |      |           | 2.26 | 10            |
| BA14570 | Fluoride                   | mg/L  | 0.0346 | 0.05  | 2.50  | 2.39 | 0.000748  | 2.47     | 2.25 to 2.75 | 95.6 | 80 to 120 | 0.00 | 20            |
| BA14570 | Sulfate                    | mg/L  | -0.599 | 0.50  | 20.0  | 19.0 | -0.361    | 18.3     | 18 to 22     | 95.0 | 80 to 120 | 0.00 | 20            |

#### Certificate Of Analysis



Description: Gorgas Gypsum - MW-4Location Code:WMWGORGCollected:8/5/20 12:08

Customer ID:

Submittal Date: 8/6/20 11:01

| Prepared      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fiehaled      | Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Vio Spec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RL                                                                                                                                                                                                                                                                                                                                                                                   | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Analy         | yst: RDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Preparati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | on Method: El                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PA 1638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 8/10/20 15:00 | 8/12/20 11:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 8/10/20 15:00 | 8/12/20 12:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 94.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.075                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 8/10/20 15:00 | 8/12/20 12:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5075                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 8/10/20 15:00 | 8/12/20 11:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.02                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 8/10/20 15:00 | 8/12/20 12:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 83.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.075                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 8/10/20 15:00 | 8/12/20 11:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Analy         | yst: RDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 8/10/20 13:30 | 8/11/20 14:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5075                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Analy         | yst: DLJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Preparati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | on Method: El                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PA 1638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 8/7/20 12:54  | 8/10/20 12:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.003                                                                                                                                                                                                                                                                                                                                                                                | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 8/7/20 12:54  | 8/10/20 12:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.005                                                                                                                                                                                                                                                                                                                                                                                | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 8/7/20 12:54  | 8/10/20 12:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 8/7/20 12:54  | 8/10/20 12:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.003                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 8/7/20 12:54  | 8/10/20 12:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.001                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 8/7/20 12:54  | 8/10/20 12:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01                                                                                                                                                                                                                                                                                                                                                                                 | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 8/7/20 12:54  | 8/10/20 12:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.005                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 8/7/20 12:54  | 8/10/20 12:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.005                                                                                                                                                                                                                                                                                                                                                                                | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 8/7/20 12:54  | 8/10/20 12:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01                                                                                                                                                                                                                                                                                                                                                                                 | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 8/7/20 12:54  | 8/11/20 13:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.5                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 8/7/20 12:54  | 8/11/20 15:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.01015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.05075                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 8/7/20 12:54  | 8/10/20 12:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01                                                                                                                                                                                                                                                                                                                                                                                 | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 8/7/20 12:54  | 8/10/20 12:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.000205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.001                                                                                                                                                                                                                                                                                                                                                                                | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Analy         | yst: DLJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 8/7/20 14:00  | 8/11/20 16:3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.01015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.05075                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Analy         | yst: GAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0005                                                                                                                                                                                                                                                                                                                                                                               | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Analy         | yst: JAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| •             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.10                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|               | 8/10/20 15:00 8/10/20 15:00 8/10/20 15:00 8/10/20 15:00 8/10/20 15:00 8/10/20 15:00 8/10/20 15:00 Analy 8/10/20 13:30 Analy 8/7/20 12:54 8/7/20 12:54 8/7/20 12:54 8/7/20 12:54 8/7/20 12:54 8/7/20 12:54 8/7/20 12:54 8/7/20 12:54 8/7/20 12:54 8/7/20 12:54 8/7/20 12:54 8/7/20 12:54 8/7/20 12:54 8/7/20 12:54 8/7/20 12:54 8/7/20 12:54 8/7/20 12:54 8/7/20 12:54 8/7/20 12:54 8/7/20 12:54 8/7/20 12:54 8/7/20 12:54 8/7/20 12:54 8/7/20 12:54 8/7/20 12:54 8/7/20 12:54 8/7/20 12:54 8/7/20 12:54 8/7/20 12:54 Analy 8/14/20 11:06 Analy | 8/10/20 15:00 8/12/20 12:0 8/10/20 15:00 8/12/20 12:0 8/10/20 15:00 8/12/20 11:2 8/10/20 15:00 8/12/20 11:2 8/10/20 15:00 8/12/20 11:2 8/10/20 15:00 8/12/20 11:2 8/10/20 13:30 8/11/20 14:2 Analyst: DLJ 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:54 8/10/20 12:4 8/7/20 12:50 8/11/20 14:5 | 8/10/20 15:00 8/12/20 11:22 8/10/20 15:00 8/12/20 12:06 8/10/20 15:00 8/12/20 12:06 8/10/20 15:00 8/12/20 11:22 8/10/20 15:00 8/12/20 12:06 8/10/20 15:00 8/12/20 12:06 8/10/20 15:00 8/12/20 11:22  Analyst: RDA 8/10/20 13:30 8/11/20 14:20  Analyst: DLJ  8/7/20 12:54 8/10/20 12:41 8/7/20 12:54 8/10/20 12:41 8/7/20 12:54 8/10/20 12:41 8/7/20 12:54 8/10/20 12:41 8/7/20 12:54 8/10/20 12:41 8/7/20 12:54 8/10/20 12:41 8/7/20 12:54 8/10/20 12:41 8/7/20 12:54 8/10/20 12:41 8/7/20 12:54 8/10/20 12:41 8/7/20 12:54 8/10/20 12:41 8/7/20 12:54 8/10/20 12:41 8/7/20 12:54 8/10/20 12:41 8/7/20 12:54 8/10/20 12:41 8/7/20 12:54 8/10/20 12:41 8/7/20 12:54 8/10/20 12:41 8/7/20 12:54 8/10/20 12:41 8/7/20 12:54 8/10/20 12:41 8/7/20 12:54 8/10/20 12:41 8/7/20 12:54 8/10/20 12:41 Analyst: DLJ  8/7/20 14:00 8/11/20 16:31  Analyst: GAS 8/11/20 09:20 8/11/20 14:34  Analyst: JAG 8/14/20 11:06 8/14/20 11:30  Analyst: TJW | 8/10/20 15:00 8/12/20 11:22 1.015 8/10/20 15:00 8/12/20 12:06 10.15 8/10/20 15:00 8/12/20 12:06 10.15 8/10/20 15:00 8/12/20 11:22 1.015 8/10/20 15:00 8/12/20 12:06 10.15 8/10/20 15:00 8/12/20 12:06 10.15 8/10/20 15:00 8/12/20 11:22 1.015  Analyst: RDA 8/10/20 13:30 8/11/20 14:20 10.15  Analyst: DLJ  8/7/20 12:54 8/10/20 12:41 1.015 8/7/20 12:54 8/10/20 12:41 1.015 8/7/20 12:54 8/10/20 12:41 1.015 8/7/20 12:54 8/10/20 12:41 1.015 8/7/20 12:54 8/10/20 12:41 1.015 8/7/20 12:54 8/10/20 12:41 1.015 8/7/20 12:54 8/10/20 12:41 1.015 8/7/20 12:54 8/10/20 12:41 1.015 8/7/20 12:54 8/10/20 12:41 1.015 8/7/20 12:54 8/10/20 12:41 1.015 8/7/20 12:54 8/10/20 12:41 1.015 8/7/20 12:54 8/10/20 12:41 1.015 8/7/20 12:54 8/10/20 12:41 1.015 8/7/20 12:54 8/10/20 12:41 1.015 8/7/20 12:54 8/10/20 12:41 1.015 8/7/20 12:54 8/10/20 12:41 1.015 8/7/20 12:54 8/10/20 12:41 1.015 8/7/20 12:54 8/10/20 12:41 1.015 8/7/20 12:54 8/10/20 12:41 1.015 8/7/20 12:54 8/10/20 12:41 1.015 8/7/20 12:54 8/10/20 12:41 1.015 8/7/20 12:54 8/10/20 12:41 1.015 8/7/20 12:54 8/10/20 12:41 1.015 8/7/20 12:54 8/10/20 12:41 1.015 8/7/20 12:54 8/10/20 12:41 1.015 8/7/20 12:54 8/10/20 12:41 1.015 8/7/20 12:54 8/10/20 12:41 1.015 8/7/20 12:54 8/10/20 12:41 1.015 8/7/20 12:54 8/10/20 12:41 1.015 8/7/20 12:54 8/10/20 12:41 1.015 8/7/20 12:54 8/10/20 12:41 1.015 8/7/20 12:54 8/10/20 12:41 1.015 8/7/20 12:54 8/10/20 12:41 1.015 8/7/20 12:54 8/10/20 12:41 1.015 8/7/20 12:54 8/10/20 12:41 1.015 | 8/10/20 15:00 8/12/20 12:06 10.15 94.7 8/10/20 15:00 8/12/20 12:06 10.15 94.7 8/10/20 15:00 8/12/20 12:06 10.15 12.6 8/10/20 15:00 8/12/20 11:22 1.015 0.273 8/10/20 15:00 8/12/20 12:06 10.15 83.0 8/10/20 15:00 8/12/20 11:22 1.015 13.8  Analyst: RDA 8/10/20 13:30 8/11/20 14:20 10.15 10.6  Analyst: DLJ Preparati 8/7/20 12:54 8/10/20 12:41 1.015 0.00115 8/7/20 12:54 8/10/20 12:41 1.015 0.00142 8/7/20 12:54 8/10/20 12:41 1.015 0.00157 8/7/20 12:54 8/10/20 12:41 1.015 0.00157 8/7/20 12:54 8/10/20 12:41 1.015 0.00157 8/7/20 12:54 8/10/20 12:41 1.015 0.00157 8/7/20 12:54 8/10/20 12:41 1.015 0.00157 8/7/20 12:54 8/10/20 12:41 1.015 Not Detected 8/7/20 12:54 8/10/20 12:41 1.015 0.235 8/7/20 12:54 8/10/20 12:41 1.015 Not Detected 8/7/20 12:54 8/10/20 12:41 1.015 0.00298 8/7/20 12:54 8/10/20 12:41 1.015 0.00298 8/7/20 12:54 8/10/20 12:41 1.015 0.00298 8/7/20 12:54 8/10/20 12:41 1.015 0.000205  Analyst: DLJ  8/7/20 14:00 8/11/20 16:31 10.15 9.44  Analyst: GAS 8/11/20 09:20 8/11/20 14:34 1 Not Detected Analyst: JAG  8/14/20 11:06 8/14/20 11:30 1 NA  Analyst: TJW | 8/10/20 15:00 8/12/20 12:06 10.15 94.7 mg/L 8/10/20 15:00 8/12/20 12:06 10.15 94.7 mg/L 8/10/20 15:00 8/12/20 12:06 10.15 12.6 mg/L 8/10/20 15:00 8/12/20 11:22 1.015 0.273 mg/L 8/10/20 15:00 8/12/20 12:06 10.15 83.0 mg/L 8/10/20 15:00 8/12/20 11:22 1.015 13.8 mg/L 8/10/20 15:00 8/12/20 11:22 1.015 13.8 mg/L Analyst: RDA 8/10/20 13:30 8/11/20 14:20 10.15 10.6 mg/L Analyst: DLJ Preparation Method: El 8/7/20 12:54 8/10/20 12:41 1.015 Not Detected mg/L 8/7/20 12:54 8/10/20 12:41 1.015 0.00115 mg/L 8/7/20 12:54 8/10/20 12:41 1.015 0.00185 mg/L 8/7/20 12:54 8/10/20 12:41 1.015 0.00385 mg/L 8/7/20 12:54 8/10/20 12:41 1.015 0.00157 mg/L 8/7/20 12:54 8/10/20 12:41 1.015 0.00157 mg/L 8/7/20 12:54 8/10/20 12:41 1.015 Not Detected mg/L 8/7/20 12:54 8/10/20 12:41 1.015 0.235 mg/L 8/7/20 12:54 8/10/20 12:41 1.015 Not Detected mg/L 8/7/20 12:54 8/10/20 12:41 1.015 0.00298 mg/L | 8/10/20 15:00 8/12/20 11:22 1.015 2.51 mg/L 0.03 8/10/20 15:00 8/12/20 12:06 10.15 94.7 mg/L 1.015 8/10/20 15:00 8/12/20 12:06 10.15 12.6 mg/L 0.203 8/10/20 15:00 8/12/20 11:22 1.015 0.273 mg/L 0.01 8/10/20 15:00 8/12/20 12:06 10.15 83.0 mg/L 1.015 8/10/20 15:00 8/12/20 11:22 1.015 13.8 mg/L 0.1  Analyst: RDA 8/10/20 13:30 8/11/20 14:20 10.15 13.8 mg/L 0.1  Analyst: DLJ | 8/10/20 15:00 8/12/20 11:22 1.015 2.51 mg/L 0.03 0.1 8/10/20 15:00 8/12/20 12:06 10.15 94.7 mg/L 1.015 5.075 8/10/20 15:00 8/12/20 12:06 10.15 12.6 mg/L 0.203 0.5075 8/10/20 15:00 8/12/20 11:22 1.015 0.273 mg/L 0.01 0.02 8/10/20 15:00 8/12/20 11:22 1.015 0.273 mg/L 0.01 0.02 8/10/20 15:00 8/12/20 11:22 1.015 13.8 mg/L 0.1 0.5  Analyst: RDA 8/10/20 13:30 8/11/20 14:20 10.15 10.6 mg/L 0.203 0.5075  Analyst: DLJ Preparation Method: EPA 1638  8/7/20 12:54 8/10/20 12:41 1.015 0.00115 mg/L 0.0008 0.003 8/7/20 12:54 8/10/20 12:41 1.015 0.00115 mg/L 0.001 0.005 8/7/20 12:54 8/10/20 12:41 1.015 0.00115 mg/L 0.000 0.003 8/7/20 12:54 8/10/20 12:41 1.015 0.00142 mg/L 0.000 0.003 8/7/20 12:54 8/10/20 12:41 1.015 0.00142 mg/L 0.000 0.003 8/7/20 12:54 8/10/20 12:41 1.015 0.00157 mg/L 0.0006 0.003 8/7/20 12:54 8/10/20 12:41 1.015 0.00157 mg/L 0.0000 0.001 8/7/20 12:54 8/10/20 12:41 1.015 0.00157 mg/L 0.0002 0.01 8/7/20 12:54 8/10/20 12:41 1.015 0.235 mg/L 0.000 0.001 8/7/20 12:54 8/10/20 12:41 1.015 0.235 mg/L 0.002 0.01 8/7/20 12:54 8/10/20 12:41 1.015 Not Detected mg/L 0.002 0.01 8/7/20 12:54 8/10/20 12:41 1.015 Not Detected mg/L 0.002 0.01 8/7/20 12:54 8/10/20 12:41 1.015 Not Detected mg/L 0.002 0.01 8/7/20 12:54 8/10/20 12:41 1.015 Not Detected mg/L 0.002 0.01 8/7/20 12:54 8/10/20 12:41 1.015 Not Detected mg/L 0.002 0.005 8/7/20 12:54 8/10/20 12:41 1.015 Not Detected mg/L 0.002 0.005 8/7/20 12:54 8/10/20 12:41 1.015 Not Detected mg/L 0.002 0.01 8/7/20 12:54 8/10/20 12:41 1.015 Not Detected mg/L 0.002 0.01 8/7/20 12:54 8/10/20 12:41 1.015 0.0029 mg/L 0.002 0.001 8/7/20 12:54 8/10/20 12:41 1.015 0.0029 mg/L 0.002 0.001 8/7/20 12:54 8/10/20 12:41 1.015 0.00298 mg/L 0.0002 0.001 8/7/20 12:54 8/10/20 12:41 1.015 0.00298 mg/L 0.0002 0.001 8/7/20 12:54 8/10/20 12:41 1.015 0.000205 mg/L 0.0002 0.001 8/7/20 14:00 8/11/20 16:31 10.15 9.44 mg/L 0.01015 0.05075 8/11/20 10:08 8/11/20 11:30 1 NA mg/L 0.0003 0.0005 |

MDL's and RL's are adjusted for sample dilution, as applicable

#### Certificate Of Analysis



Description: Gorgas Gypsum - MW-4

**Location Code:** 

WMWGORG 8/5/20 12:08

Collected: Customer ID:

Submittal Date:

8/6/20 11:01

| Laboratory ID Number: BA14568         |               |              |          |    |              |       |       |     |    |
|---------------------------------------|---------------|--------------|----------|----|--------------|-------|-------|-----|----|
| Name                                  | Prepared      | Analyzed     | Vio Spec | DF | Results      | Units | MDL   | RL  | Q  |
| Analytical Method: SM 4500CO2 D       | Ana           | lyst: JAG    |          |    |              |       |       |     |    |
| Bicarbonate Alkalinity, (calc.)       | 8/14/20 11:06 | 8/14/20 11:3 | 30       | 1  | NA           | mg/L  |       |     |    |
| Carbonate Alkalinity, (calc.)         | 8/14/20 11:06 | 8/14/20 11:3 | 30       | 1  | NA           | mg/L  |       |     |    |
| Analytical Method: SM4500Cl E         | Ana           | lyst: JCC    |          |    |              |       |       |     |    |
| * Chloride                            | 8/10/20 13:48 | 8/10/20 13:4 | 18       | 8  | 41.0         | mg/L  | 4.00  | 8   |    |
| Analytical Method: SM4500F G 2017     | Ana           | lyst: JCC    |          |    |              |       |       |     |    |
| * Fluoride                            | 8/11/20 12:41 | 8/11/20 12:4 | 11       | 1  | Not Detected | mg/L  | 0.06  | 0.1 | U  |
| Analytical Method: SM4500SO4 E 2011   | Ana           | lyst: JCC    |          |    |              |       |       |     |    |
| * Sulfate                             | 8/7/20 13:38  | 8/7/20 13:38 | 3        | 32 | 519          | mg/L  | 16.00 | 32  |    |
| Analytical Method: Field Measurements | Ana           | lyst: TJD    |          |    |              |       |       |     |    |
| Conductivity                          | 8/5/20 12:05  | 8/5/20 12:05 | 5        |    | 1150.86      | uS/cm |       |     | FA |
| рН                                    | 8/5/20 12:05  | 8/5/20 12:05 | 5        |    | 3.86         | SU    |       |     | FA |
| Temperature                           | 8/5/20 12:05  | 8/5/20 12:05 | 5        |    | 21.53        | С     |       |     | FA |
| Turbidity                             | 8/5/20 12:05  | 8/5/20 12:05 | 5        |    | 8.94         | NTU   |       |     | FA |

MDL's and RL's are adjusted for sample dilution, as applicable

#### **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 8/5/20 12:08

Customer ID:

**Delivery Date:** 8/6/20 11:01

Description: Gorgas Gypsum - MW-4

Laboratory ID Number: BA14568

|                                |       |             | MB        |       |         |         |          | Standard         |       | Rec       |       | Prec          |
|--------------------------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|-------|-----------|-------|---------------|
| Sample Analysis                | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | l Limit          | Rec   | Limit     | Prec  | <u>Li</u> mit |
| BA14569 Manganese, Dissolved   | mg/L  | 0.000120    | 0.0001474 | 0.10  | 5.36    | 5.25    | 0.0999   | 0.085 to 0.115   | 260   | 70 to 130 | 2.07  | 20            |
| BA14570 Molybdenum, Total      | mg/L  | 0.00000625  | 0.0001474 | 0.10  | 0.118   | 0.118   | 0.107    | 0.085 to 0.115   | 118   | 70 to 130 | 0.00  | 20            |
| BA14570 Manganese, Total       | mg/L  | 0.000140    | 0.0001474 | 0.10  | 0.118   | 0.116   | 0.109    | 0.085 to 0.115   | 118   | 70 to 130 | 1.71  | 20            |
| BA14570 Selenium, Total        | mg/L  | -0.0000834  | 0.001     | 0.10  | 0.114   | 0.117   | 0.109    | 0.085 to 0.115   | 114   | 70 to 130 | 2.60  | 20            |
| BA14570 Thallium, Total        | mg/L  | 0.0000155   | 0.0001474 | 0.10  | 0.119   | 0.114   | 0.106    | 0.085 to 0.115   | 119   | 70 to 130 | 4.29  | 20            |
| BA14570 Boron, Total           | mg/L  | 0.000611    | 0.0650254 | 1.00  | 0.977   | 0.974   | 0.989    | 0.85 to 1.15     | 97.7  | 70 to 130 | 0.308 | 20            |
| BA14570 Calcium, Total         | mg/L  | -0.00124    | 0.1518    | 5.00  | 5.12    | 5.02    | 5.15     | 4.25 to 5.75     | 102   | 70 to 130 | 1.97  | 20            |
| BA14570 Chromium, Total        | mg/L  | -0.0000938  | 0.00044   | 0.10  | 0.121   | 0.121   | 0.114    | 0.085 to 0.115   | 121   | 70 to 130 | 0.00  | 20            |
| BA14570 Cobalt, Total          | mg/L  | -0.0000254  | 0.0001474 | 0.10  | 0.121   | 0.120   | 0.113    | 0.085 to 0.115   | 121   | 70 to 130 | 0.830 | 20            |
| BA14570 Potassium, Total       | mg/L  | 0.0286      | 0.3674    | 10.0  | 10.6    | 10.7    | 11.3     | 8.5 to 11.5      | 106   | 70 to 130 | 0.939 | 20            |
| BA14570 Magnesium, Total       | mg/L  | 0.00212     | 0.0462    | 5.00  | 5.17    | 5.12    | 5.22     | 4.25 to 5.75     | 103   | 70 to 130 | 0.972 | 20            |
| BA14569 Iron, Dissolved        | mg/L  | -0.000578   | 0.0176    | 0.2   | 38.3    | 37.9    | 0.208    | 0.17 to 0.23     | -50.0 | 70 to 130 | 1.05  | 20            |
| BA14570 Cadmium, Total         | mg/L  | -0.00000379 | 0.0001474 | 0.10  | 0.117   | 0.116   | 0.107    | 0.085 to 0.115   | 117   | 70 to 130 | 0.858 | 20            |
| BA14570 Sodium, Total          | mg/L  | 0.0149      | 0.044     | 5.00  | 4.96    | 4.86    | 4.94     | 4.25 to 5.75     | 99.2  | 70 to 130 | 2.04  | 20            |
| BA14570 Lead, Total            | mg/L  | 0.00000688  | 0.0001474 | 0.10  | 0.126   | 0.122   | 0.112    | 0.085 to 0.115   | 126   | 70 to 130 | 3.23  | 20            |
| BA14570 Arsenic, Total         | mg/L  | -0.0000203  | 0.0001474 | 0.10  | 0.120   | 0.121   | 0.115    | 0.085 to 0.115   | 120   | 70 to 130 | 0.830 | 20            |
| BA14570 Barium, Total          | mg/L  | 0.00000147  | 0.0002    | 0.10  | 0.109   | 0.105   | 0.101    | 0.085 to 0.115   | 109   | 70 to 130 | 3.74  | 20            |
| BA14570 Lithium, Total         | mg/L  | -0.000227   | 0.0154    | 0.20  | 0.196   | 0.193   | 0.195    | 0.17 to 0.23     | 98.0  | 70 to 130 | 1.54  | 20            |
| BA14570 Antimony, Total        | mg/L  | 0.000196    | 0.001     | 0.10  | 0.105   | 0.105   | 0.0966   | 0.085 to 0.115   | 105   | 70 to 130 | 0.00  | 20            |
| BA14570 Beryllium, Total       | mg/L  | -0.00000074 | 0.00088   | 0.10  | 0.0964  | 0.101   | 0.0957   | 0.085 to 0.115   | 96.4  | 70 to 130 | 4.66  | 20            |
| BA14570 Iron, Total            | mg/L  | 0.000169    | 0.0176    | 0.2   | 0.205   | 0.201   | 0.206    | 0.17 to 0.23     | 102   | 70 to 130 | 1.97  | 20            |
| BA14570 Mercury, Total by CVAA | mg/L  | 0.0000240   | 0.0005    | 0.004 | 0.00365 | 0.00367 | 0.00374  | 0.0034 to 0.0046 | 91.2  | 70 to 130 | 0.546 | 20            |

## **Batch QC Summary**



Customer Account: WMWGORG Sample Date:

8/5/20 12:08

**Customer ID:** 

**Delivery Date:** 8/6/20 11:01

Description: Gorgas Gypsum - MW-4

Laboratory ID Number: BA14568

|                                    |       |        | MB    |       |      | Sample    |          | Standard     | R         | ec    |      | Prec          |
|------------------------------------|-------|--------|-------|-------|------|-----------|----------|--------------|-----------|-------|------|---------------|
| Sample Analysis                    | Units | MB     | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec Li    | mit   | Prec | <u>Li</u> mit |
| BA14570 Sulfate                    | mg/L  | -0.599 | 0.50  | 20.0  | 19.0 | -0.361    | 18.3     | 18 to 22     | 95.0 80 t | o 120 | 0.00 | 20            |
| BA14570 Chloride                   | mg/L  | 0.028  | 0.50  | 10.0  | 10.1 | 0.0231    | 10.2     | 9 to 11      | 101 80 t  | o 120 | 0.00 | 20            |
| BA14566 Solids, Dissolved          | mg/L  | 2.00   | 25    |       |      | 3200      | 53.0     | 40 to 60     |           |       | 0.00 | 5             |
| BA14569 Alkalinity, Total as CaCO3 | mg/L  |        |       |       |      | 43.8      | 49.0     | 45.0 to 55.0 |           |       | 2.26 | 10            |
| BA14570 Fluoride                   | mg/L  | 0.0346 | 0.05  | 2.50  | 2.39 | 0.000748  | 2.47     | 2.25 to 2.75 | 95.6 80 t | o 120 | 0.00 | 20            |

## Certificate Of Analysis



Description: Gorgas Gypsum - MW-4VLocation Code:WMWGORGCollected:8/5/20 13:05

**Customer ID:** 

**Submittal Date:** 8/6/20 11:01

Laboratory ID Number: BA14569

| Name                                  | Prepared      | Analyzed    | Vio Spec [ | )F   | Results      | Units         | MDL     | RL      | Q  |
|---------------------------------------|---------------|-------------|------------|------|--------------|---------------|---------|---------|----|
| Analytical Method: EPA 200.7          | Anal          | yst: RDA    |            |      | Preparati    | on Method: EF | PA 1638 |         |    |
| * Boron, Total                        | 8/10/20 15:00 | 8/12/20 11: | 25 1.      | 015  | 4.41         | mg/L          | 0.03    | 0.1     |    |
| * Calcium, Total                      | 8/10/20 15:00 | 8/12/20 12: | 09 20      | 0.3  | 167          | mg/L          | 2.03    | 10.15   |    |
| * Iron, Total                         | 8/10/20 15:00 | 8/12/20 12: | 09 20      | 0.3  | 40.1         | mg/L          | 0.406   | 1.015   |    |
| * Lithium, Total                      | 8/10/20 15:00 | 8/12/20 11: | 25 1.      | 015  | 0.322        | mg/L          | 0.01    | 0.02    |    |
| * Magnesium, Total                    | 8/10/20 15:00 | 8/12/20 12: | 09 20      | 0.3  | 114          | mg/L          | 2.03    | 10.15   |    |
| * Sodium, Total                       | 8/10/20 15:00 | 8/12/20 11: | 25 1.      | 015  | 29.1         | mg/L          | 0.1     | 0.5     |    |
| Analytical Method: EPA 200.7          | Anal          | yst: RDA    |            |      |              |               |         |         |    |
| * Iron, Dissolved                     | 8/10/20 13:30 | 8/11/20 14: | 23 10      | 01.5 | 38.4         | mg/L          | 2.03    | 5.075   | RA |
| Analytical Method: EPA 200.8          | Anal          | yst: DLJ    |            |      | Preparati    | on Method: EF | PA 1638 |         |    |
| * Antimony, Total                     | 8/7/20 12:54  | 8/10/20 12: | 44 1.      | 015  | Not Detected | mg/L          | 0.0008  | 0.003   | U  |
| * Arsenic, Total                      | 8/7/20 12:54  | 8/10/20 12: | 44 1.      | 015  | 0.00116      | mg/L          | 0.001   | 0.005   | J  |
| * Barium, Total                       | 8/7/20 12:54  | 8/10/20 12: | 44 1.      | 015  | 0.0112       | mg/L          | 0.002   | 0.01    |    |
| * Beryllium, Total                    | 8/7/20 12:54  | 8/10/20 12: | 44 1.      | 015  | 0.00416      | mg/L          | 0.0006  | 0.003   |    |
| * Cadmium, Total                      | 8/7/20 12:54  | 8/10/20 12: | 44 1.      | 015  | Not Detected | mg/L          | 0.0003  | 0.001   | U  |
| * Chromium, Total                     | 8/7/20 12:54  | 8/10/20 12: | 44 1.      | 015  | Not Detected | mg/L          | 0.002   | 0.01    | U  |
| * Cobalt, Total                       | 8/7/20 12:54  | 8/10/20 12: | 44 1.      | 015  | 0.141        | mg/L          | 0.002   | 0.005   |    |
| * Lead, Total                         | 8/7/20 12:54  | 8/10/20 12: | 44 1.      | 015  | Not Detected | mg/L          | 0.001   | 0.005   | U  |
| <ul> <li>Molybdenum, Total</li> </ul> | 8/7/20 12:54  | 8/10/20 12: | 44 1.      | 015  | Not Detected | mg/L          | 0.002   | 0.01    | U  |
| * Potassium, Total                    | 8/7/20 12:54  | 8/11/20 13: | 20 1.      | 015  | 4.68         | mg/L          | 0.3     | 2.5     |    |
| * Manganese, Total                    | 8/7/20 12:54  | 8/17/20 14: | 12 10      | ).15 | 4.72         | mg/L          | 0.01015 | 0.05075 |    |
| * Selenium, Total                     | 8/7/20 12:54  | 8/10/20 12: | 44 1.      | 015  | Not Detected | mg/L          | 0.002   | 0.01    | U  |
| * Thallium, Total                     | 8/7/20 12:54  | 8/10/20 12: | 44 1.      | 015  | Not Detected | mg/L          | 0.0002  | 0.001   | U  |
| Analytical Method: EPA 200.8          | Anal          | yst: DLJ    |            |      |              |               |         |         |    |
| * Manganese, Dissolved                | 8/7/20 14:00  | 8/11/20 16: | 34 10      | 0.15 | 5.10         | mg/L          | 0.01015 | 0.05075 | RA |
| Analytical Method: EPA 245.1          | Anal          | yst: GAS    |            |      |              |               |         |         |    |
| Mercury, Total by CVAA                | 8/11/20 09:20 | -           | 36 1       |      | Not Detected | mg/L          | 0.0003  | 0.0005  | U  |
| Analytical Method: SM 2320 B          |               | yst: JAG    |            |      |              | •             |         |         |    |
| Alkalinity, Total as CaCO3            | 8/14/20 11:06 | -           | 30 1       |      | 44.8         | mg/L          |         | 0.1     |    |
| Analytical Method: SM 2540C           |               | lyst: TJW   | ·          |      |              | <del>-</del>  |         |         |    |
| * Solids, Dissolved                   | 8/10/20 12:25 | •           | 50 1       |      | 1330         | mg/L          |         | 83.3    |    |

MDL's and RL's are adjusted for sample dilution, as applicable

## Certificate Of Analysis



Description: Gorgas Gypsum - MW-4V

Location Code: Collected:

WMWGORG 8/5/20 13:05

Customer ID:

Submittal Date:

8/6/20 11:01

| Laboratory ID Number: BA14569         |               |             |          |    | Subn    | iittai Date: | 8/6/20 11:0 | ) 1 |    |
|---------------------------------------|---------------|-------------|----------|----|---------|--------------|-------------|-----|----|
| Name                                  | Prepared      | Analyzed    | Vio Spec | DF | Results | Units        | MDL         | RL  | Q  |
| Analytical Method: SM 4500CO2 D       | Ana           | lyst: JAG   |          |    |         |              |             |     |    |
| Bicarbonate Alkalinity, (calc.)       | 8/14/20 11:06 | 8/14/20 11: | 30 1     |    | 44.8    | mg/L         |             |     |    |
| Carbonate Alkalinity, (calc.)         | 8/14/20 11:06 | 8/14/20 11: | 30 1     | l  | 0.00    | mg/L         |             |     |    |
| Analytical Method: SM4500Cl E         | Ana           | lyst: JCC   |          |    |         |              |             |     |    |
| * Chloride                            | 8/10/20 13:49 | 8/10/20 13: | 49 1     | 10 | 80.9    | mg/L         | 5.00        | 10  |    |
| Analytical Method: SM4500F G 2017     | Ana           | lyst: JCC   |          |    |         |              |             |     |    |
| * Fluoride                            | 8/11/20 12:42 | 8/11/20 12: | 42 1     | l  | 0.363   | mg/L         | 0.06        | 0.1 |    |
| Analytical Method: SM4500SO4 E 2011   | Ana           | lyst: JCC   |          |    |         |              |             |     |    |
| * Sulfate                             | 8/7/20 13:39  | 8/7/20 13:3 | 9 4      | 10 | 761     | mg/L         | 20.00       | 40  |    |
| Analytical Method: Field Measurements | Ana           | lyst: TJD   |          |    |         |              |             |     |    |
| Conductivity                          | 8/5/20 13:00  | 8/5/20 13:0 | 0        |    | 1386.95 | uS/cm        |             |     | FA |
| рН                                    | 8/5/20 13:00  | 8/5/20 13:0 | 0        |    | 5.81    | SU           |             |     | FA |
| Temperature                           | 8/5/20 13:00  | 8/5/20 13:0 | 0        |    | 21.70   | С            |             |     | FA |
| Turbidity                             | 8/5/20 13:00  | 8/5/20 13:0 | 0        |    | 9.04    | NTU          |             |     | FA |
|                                       |               |             |          |    |         |              |             |     |    |

MDL's and RL's are adjusted for sample dilution, as applicable

## **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 8/5/20 13:05

Customer ID:

**Delivery Date:** 8/6/20 11:01

Description: Gorgas Gypsum - MW-4V

Laboratory ID Number: BA14569

|                                |       |             | MB        |       |         |         |          | Standard         |       | Rec       |       | Prec          |
|--------------------------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|-------|-----------|-------|---------------|
| Sample Analysis                | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | Limit            | Rec   | Limit     | Prec  | <u>Li</u> mit |
| BA14570 Molybdenum, Total      | mg/L  | 0.00000625  | 0.0001474 | 0.10  | 0.118   | 0.118   | 0.107    | 0.085 to 0.115   | 118   | 70 to 130 | 0.00  | 20            |
| BA14570 Manganese, Total       | mg/L  | 0.000140    | 0.0001474 | 0.10  | 0.118   | 0.116   | 0.109    | 0.085 to 0.115   | 118   | 70 to 130 | 1.71  | 20            |
| BA14570 Selenium, Total        | mg/L  | -0.0000834  | 0.001     | 0.10  | 0.114   | 0.117   | 0.109    | 0.085 to 0.115   | 114   | 70 to 130 | 2.60  | 20            |
| BA14570 Thallium, Total        | mg/L  | 0.0000155   | 0.0001474 | 0.10  | 0.119   | 0.114   | 0.106    | 0.085 to 0.115   | 119   | 70 to 130 | 4.29  | 20            |
| BA14570 Beryllium, Total       | mg/L  | -0.00000074 | 0.00088   | 0.10  | 0.0964  | 0.101   | 0.0957   | 0.085 to 0.115   | 96.4  | 70 to 130 | 4.66  | 20            |
| BA14570 Iron, Total            | mg/L  | 0.000169    | 0.0176    | 0.2   | 0.205   | 0.201   | 0.206    | 0.17 to 0.23     | 102   | 70 to 130 | 1.97  | 20            |
| BA14570 Mercury, Total by CVAA | mg/L  | 0.0000240   | 0.0005    | 0.004 | 0.00365 | 0.00367 | 0.00374  | 0.0034 to 0.0046 | 91.2  | 70 to 130 | 0.546 | 20            |
| BA14570 Boron, Total           | mg/L  | 0.000611    | 0.0650254 | 1.00  | 0.977   | 0.974   | 0.989    | 0.85 to 1.15     | 97.7  | 70 to 130 | 0.308 | 20            |
| BA14570 Calcium, Total         | mg/L  | -0.00124    | 0.1518    | 5.00  | 5.12    | 5.02    | 5.15     | 4.25 to 5.75     | 102   | 70 to 130 | 1.97  | 20            |
| BA14570 Chromium, Total        | mg/L  | -0.0000938  | 0.00044   | 0.10  | 0.121   | 0.121   | 0.114    | 0.085 to 0.115   | 121   | 70 to 130 | 0.00  | 20            |
| BA14570 Arsenic, Total         | mg/L  | -0.0000203  | 0.0001474 | 0.10  | 0.120   | 0.121   | 0.115    | 0.085 to 0.115   | 120   | 70 to 130 | 0.830 | 20            |
| BA14570 Barium, Total          | mg/L  | 0.00000147  | 0.0002    | 0.10  | 0.109   | 0.105   | 0.101    | 0.085 to 0.115   | 109   | 70 to 130 | 3.74  | 20            |
| BA14570 Lithium, Total         | mg/L  | -0.000227   | 0.0154    | 0.20  | 0.196   | 0.193   | 0.195    | 0.17 to 0.23     | 98.0  | 70 to 130 | 1.54  | 20            |
| BA14570 Antimony, Total        | mg/L  | 0.000196    | 0.001     | 0.10  | 0.105   | 0.105   | 0.0966   | 0.085 to 0.115   | 105   | 70 to 130 | 0.00  | 20            |
| BA14570 Cobalt, Total          | mg/L  | -0.0000254  | 0.0001474 | 0.10  | 0.121   | 0.120   | 0.113    | 0.085 to 0.115   | 121   | 70 to 130 | 0.830 | 20            |
| BA14570 Potassium, Total       | mg/L  | 0.0286      | 0.3674    | 10.0  | 10.6    | 10.7    | 11.3     | 8.5 to 11.5      | 106   | 70 to 130 | 0.939 | 20            |
| BA14570 Magnesium, Total       | mg/L  | 0.00212     | 0.0462    | 5.00  | 5.17    | 5.12    | 5.22     | 4.25 to 5.75     | 103   | 70 to 130 | 0.972 | 20            |
| BA14569 Iron, Dissolved        | mg/L  | -0.000578   | 0.0176    | 0.2   | 38.3    | 37.9    | 0.208    | 0.17 to 0.23     | -50.0 | 70 to 130 | 1.05  | 20            |
| BA14570 Cadmium, Total         | mg/L  | -0.00000379 | 0.0001474 | 0.10  | 0.117   | 0.116   | 0.107    | 0.085 to 0.115   | 117   | 70 to 130 | 0.858 | 20            |
| BA14570 Sodium, Total          | mg/L  | 0.0149      | 0.044     | 5.00  | 4.96    | 4.86    | 4.94     | 4.25 to 5.75     | 99.2  | 70 to 130 | 2.04  | 20            |
| BA14570 Lead, Total            | mg/L  | 0.00000688  | 0.0001474 | 0.10  | 0.126   | 0.122   | 0.112    | 0.085 to 0.115   | 126   | 70 to 130 | 3.23  | 20            |
| BA14569 Manganese, Dissolved   | mg/L  | 0.000120    | 0.0001474 | 0.10  | 5.36    | 5.25    | 0.0999   | 0.085 to 0.115   | 260   | 70 to 130 | 2.07  | 20            |

## **Batch QC Summary**



Customer Account: WMWGORG

Sample Date:

8/5/20 13:05

**Customer ID:** 

**Delivery Date:** 

8/6/20 11:01

Description: Gorgas Gypsum - MW-4V

Laboratory ID Number: BA14569

|         |                            |       |        | MB    |       |      | Sample    |          | Standard     |        | Rec       |      | Prec  |
|---------|----------------------------|-------|--------|-------|-------|------|-----------|----------|--------------|--------|-----------|------|-------|
| Sample  | Analysis                   | Units | MB     | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec    | Limit     | Prec | Limit |
| BA14570 | Sulfate                    | mg/L  | -0.599 | 0.50  | 20.0  | 19.0 | -0.361    | 18.3     | 18 to 22     | 95.0 8 | 80 to 120 | 0.00 | 20    |
| BA14566 | Solids, Dissolved          | mg/L  | 2.00   | 25    |       |      | 3200      | 53.0     | 40 to 60     |        |           | 0.00 | 5     |
| BA14570 | Chloride                   | mg/L  | 0.028  | 0.50  | 10.0  | 10.1 | 0.0231    | 10.2     | 9 to 11      | 101 8  | 80 to 120 | 0.00 | 20    |
| BA14569 | Alkalinity, Total as CaCO3 | mg/L  |        |       |       |      | 43.8      | 49.0     | 45.0 to 55.0 |        |           | 2.26 | 10    |
| BA14570 | Fluoride                   | mg/L  | 0.0346 | 0.05  | 2.50  | 2.39 | 0.000748  | 2.47     | 2.25 to 2.75 | 95.6 8 | 80 to 120 | 0.00 | 20    |

## **Certificate Of Analysis**



Description: Gorgas Gypsum Field Blank-2Location Code:WMWGORGFBCollected:8/5/20 13:30

Customer ID:

**Submittal Date:** 8/6/20 11:01

Laboratory ID Number: BA14570

| Name                                | Prepared      | Analyzed     | Vio Spec DF | Results      | Units       | MDL      | RL     | Q |
|-------------------------------------|---------------|--------------|-------------|--------------|-------------|----------|--------|---|
| Analytical Method: EPA 200.7        | Analy         | st: RDA      |             | Preparati    | ion Method: | EPA 1638 |        |   |
| * Boron, Total                      | 8/10/20 15:00 | 8/12/20 11:2 | 28 1.015    | Not Detected | mg/L        | 0.03     | 0.1    | U |
| * Calcium, Total                    | 8/10/20 15:00 | 8/12/20 11:2 | 28 1.015    | Not Detected | mg/L        | 0.1      | 0.5    | U |
| * Iron, Total                       | 8/10/20 15:00 | 8/12/20 11:2 | 28 1.015    | Not Detected | mg/L        | 0.02     | 0.05   | U |
| * Lithium, Total                    | 8/10/20 15:00 | 8/12/20 11:2 | 28 1.015    | Not Detected | mg/L        | 0.01     | 0.02   | U |
| * Magnesium, Total                  | 8/10/20 15:00 | 8/12/20 11:2 | 28 1.015    | Not Detected | mg/L        | 0.1      | 0.5    | U |
| * Sodium, Total                     | 8/10/20 15:00 | 8/12/20 11:2 | 28 1.015    | Not Detected | mg/L        | 0.1      | 0.5    | U |
| Analytical Method: EPA 200.8        | Analy         | st: DLJ      |             | Preparati    | ion Method: | EPA 1638 |        |   |
| * Antimony, Total                   | 8/7/20 12:54  | 8/10/20 12:4 | 1.015       | Not Detected | mg/L        | 0.0008   | 0.003  | U |
| * Arsenic, Total                    | 8/7/20 12:54  | 8/10/20 12:4 | 1.015       | Not Detected | mg/L        | 0.001    | 0.005  | U |
| * Barium, Total                     | 8/7/20 12:54  | 8/10/20 12:4 | 1.015       | Not Detected | mg/L        | 0.002    | 0.01   | U |
| * Beryllium, Total                  | 8/7/20 12:54  | 8/10/20 12:4 | 1.015       | Not Detected | mg/L        | 0.0006   | 0.003  | U |
| * Cadmium, Total                    | 8/7/20 12:54  | 8/10/20 12:4 | 1.015       | Not Detected | mg/L        | 0.0003   | 0.001  | U |
| * Chromium, Total                   | 8/7/20 12:54  | 8/10/20 12:4 | 1.015       | Not Detected | mg/L        | 0.002    | 0.01   | U |
| * Cobalt, Total                     | 8/7/20 12:54  | 8/10/20 12:4 | 1.015       | Not Detected | mg/L        | 0.002    | 0.005  | U |
| * Lead, Total                       | 8/7/20 12:54  | 8/10/20 12:4 | 1.015       | Not Detected | mg/L        | 0.001    | 0.005  | U |
| * Molybdenum, Total                 | 8/7/20 12:54  | 8/10/20 12:4 | 1.015       | Not Detected | mg/L        | 0.002    | 0.01   | U |
| * Manganese, Total                  | 8/7/20 12:54  | 8/10/20 12:4 | 1.015       | Not Detected | mg/L        | 0.001    | 0.005  | U |
| * Potassium, Total                  | 8/7/20 12:54  | 8/11/20 13:2 | 23 1.015    | Not Detected | mg/L        | 0.3      | 2.5    | U |
| * Selenium, Total                   | 8/7/20 12:54  | 8/10/20 12:4 | 1.015       | Not Detected | mg/L        | 0.002    | 0.01   | U |
| * Thallium, Total                   | 8/7/20 12:54  | 8/10/20 12:4 | 1.015       | Not Detected | mg/L        | 0.0002   | 0.001  | U |
| Analytical Method: EPA 245.1        | Analy         | st: GAS      |             |              |             |          |        |   |
| * Mercury, Total by CVAA            | 8/11/20 09:20 | 8/11/20 14:3 | 39 1        | Not Detected | mg/L        | 0.0003   | 0.0005 | U |
| Analytical Method: SM 2540C         | Analy         | st: TJW      |             |              |             |          |        |   |
| * Solids, Dissolved                 | 8/10/20 12:25 | 8/14/20 09:5 | 50 1        | Not Detected | mg/L        |          | 25     | U |
| Analytical Method: SM4500Cl E       | Analy         | st: JCC      |             |              |             |          |        |   |
| * Chloride                          | 8/10/20 13:44 | 8/10/20 13:4 | 14 1        | Not Detected | mg/L        | 0.50     | 1      | U |
| Analytical Method: SM4500F G 2017   | Analy         | st: JCC      |             |              |             |          |        |   |
| * Fluoride                          | 8/11/20 12:43 |              | 13 1        | Not Detected | mg/L        | 0.06     | 0.1    | U |
| Analytical Method: SM4500SO4 E 2011 |               | st: JCC      |             |              | -           |          |        |   |
| * Sulfate                           | 8/7/20 13:40  | 8/7/20 13:40 | ) 1         | Not Detected | ma/L        | 0.50     | 1      | U |

MDL's and RL's are adjusted for sample dilution, as applicable

#### **Batch QC Summary**



**Customer Account:** WMWGORGFB **Sample Date:** 8/5/20 13:30

**Customer ID:** 

**Delivery Date:** 8/6/20 11:01

Description: Gorgas Gypsum Field Blank-2

Laboratory ID Number: BA14570

|         |                        |       |             | MB        |       |         |         |          | Standard         |      | Rec       |       | Prec          |
|---------|------------------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|------|-----------|-------|---------------|
| Sample  | Analysis               | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | Limit            | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA14570 | Molybdenum, Total      | mg/L  | 0.00000625  | 0.0001474 | 0.10  | 0.118   | 0.118   | 0.107    | 0.085 to 0.115   | 118  | 70 to 130 | 0.00  | 20            |
| BA14570 | Manganese, Total       | mg/L  | 0.000140    | 0.0001474 | 0.10  | 0.118   | 0.116   | 0.109    | 0.085 to 0.115   | 118  | 70 to 130 | 1.71  | 20            |
| BA14570 | Selenium, Total        | mg/L  | -0.0000834  | 0.001     | 0.10  | 0.114   | 0.117   | 0.109    | 0.085 to 0.115   | 114  | 70 to 130 | 2.60  | 20            |
| BA14570 | Thallium, Total        | mg/L  | 0.0000155   | 0.0001474 | 0.10  | 0.119   | 0.114   | 0.106    | 0.085 to 0.115   | 119  | 70 to 130 | 4.29  | 20            |
| BA14570 | Beryllium, Total       | mg/L  | -0.00000074 | 0.00088   | 0.10  | 0.0964  | 0.101   | 0.0957   | 0.085 to 0.115   | 96.4 | 70 to 130 | 4.66  | 20            |
| BA14570 | Iron, Total            | mg/L  | 0.000169    | 0.0176    | 0.2   | 0.205   | 0.201   | 0.206    | 0.17 to 0.23     | 102  | 70 to 130 | 1.97  | 20            |
| BA14570 | Mercury, Total by CVAA | mg/L  | 0.0000240   | 0.0005    | 0.004 | 0.00365 | 0.00367 | 0.00374  | 0.0034 to 0.0046 | 91.2 | 70 to 130 | 0.546 | 20            |
| BA14570 | Boron, Total           | mg/L  | 0.000611    | 0.0650254 | 1.00  | 0.977   | 0.974   | 0.989    | 0.85 to 1.15     | 97.7 | 70 to 130 | 0.308 | 20            |
| BA14570 | Calcium, Total         | mg/L  | -0.00124    | 0.1518    | 5.00  | 5.12    | 5.02    | 5.15     | 4.25 to 5.75     | 102  | 70 to 130 | 1.97  | 20            |
| BA14570 | Chromium, Total        | mg/L  | -0.0000938  | 0.00044   | 0.10  | 0.121   | 0.121   | 0.114    | 0.085 to 0.115   | 121  | 70 to 130 | 0.00  | 20            |
| BA14570 | Cobalt, Total          | mg/L  | -0.0000254  | 0.0001474 | 0.10  | 0.121   | 0.120   | 0.113    | 0.085 to 0.115   | 121  | 70 to 130 | 0.830 | 20            |
| BA14570 | Potassium, Total       | mg/L  | 0.0286      | 0.3674    | 10.0  | 10.6    | 10.7    | 11.3     | 8.5 to 11.5      | 106  | 70 to 130 | 0.939 | 20            |
| BA14570 | Magnesium, Total       | mg/L  | 0.00212     | 0.0462    | 5.00  | 5.17    | 5.12    | 5.22     | 4.25 to 5.75     | 103  | 70 to 130 | 0.972 | 20            |
| BA14570 | Cadmium, Total         | mg/L  | -0.00000379 | 0.0001474 | 0.10  | 0.117   | 0.116   | 0.107    | 0.085 to 0.115   | 117  | 70 to 130 | 0.858 | 20            |
| BA14570 | Sodium, Total          | mg/L  | 0.0149      | 0.044     | 5.00  | 4.96    | 4.86    | 4.94     | 4.25 to 5.75     | 99.2 | 70 to 130 | 2.04  | 20            |
| BA14570 | Lead, Total            | mg/L  | 0.00000688  | 0.0001474 | 0.10  | 0.126   | 0.122   | 0.112    | 0.085 to 0.115   | 126  | 70 to 130 | 3.23  | 20            |
| BA14570 | Arsenic, Total         | mg/L  | -0.0000203  | 0.0001474 | 0.10  | 0.120   | 0.121   | 0.115    | 0.085 to 0.115   | 120  | 70 to 130 | 0.830 | 20            |
| BA14570 | Barium, Total          | mg/L  | 0.00000147  | 0.0002    | 0.10  | 0.109   | 0.105   | 0.101    | 0.085 to 0.115   | 109  | 70 to 130 | 3.74  | 20            |
| BA14570 | Lithium, Total         | mg/L  | -0.000227   | 0.0154    | 0.20  | 0.196   | 0.193   | 0.195    | 0.17 to 0.23     | 98.0 | 70 to 130 | 1.54  | 20            |
| BA14570 | Antimony, Total        | mg/L  | 0.000196    | 0.001     | 0.10  | 0.105   | 0.105   | 0.0966   | 0.085 to 0.115   | 105  | 70 to 130 | 0.00  | 20            |

## **Batch QC Summary**



Customer Account: WMWGORGFB

Sample Date:

8/5/20 13:30

**Customer ID:** 

**Delivery Date:** 

8/6/20 11:01

Description: Gorgas Gypsum Field Blank-2

Laboratory ID Number: BA14570

|             |                  |       |        | MB    |       |      | Sample    |          | Standard     |      | Rec       |      | Prec          |
|-------------|------------------|-------|--------|-------|-------|------|-----------|----------|--------------|------|-----------|------|---------------|
| Sample Ar   | nalysis          | Units | MB     | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit     | Prec | <u>Li</u> mit |
| BA14570 Flu | uoride           | mg/L  | 0.0346 | 0.05  | 2.50  | 2.39 | 0.000748  | 2.47     | 2.25 to 2.75 | 95.6 | 80 to 120 | 0.00 | 20            |
| BA14570 Su  | ılfate           | mg/L  | -0.599 | 0.50  | 20.0  | 19.0 | -0.361    | 18.3     | 18 to 22     | 95.0 | 80 to 120 | 0.00 | 20            |
| BA14566 Sc  | olids, Dissolved | mg/L  | 2.00   | 25    |       |      | 3200      | 53.0     | 40 to 60     |      |           | 0.00 | 5             |
| BA14570 Ch  | nloride          | mg/L  | 0.028  | 0.50  | 10.0  | 10.1 | 0.0231    | 10.2     | 9 to 11      | 101  | 80 to 120 | 0.00 | 20            |

## **Certificate Of Analysis**



Description: Gorgas Gypsum Equipment Blank-1Location Code:WMWGORGEBCollected:8/5/20 13:45

Customer ID:

Submittal Date: 8/6/20 11:01

Laboratory ID Number: BA14571

| Name                                | Prepared      | Analyzed      | Vio Spec DF | Results      | Units      | MDL      | RL     | Q |
|-------------------------------------|---------------|---------------|-------------|--------------|------------|----------|--------|---|
| Analytical Method: EPA 200.7        | Analy         | st: RDA       |             | Preparati    | on Method: | EPA 1638 |        |   |
| * Boron, Total                      | 8/10/20 15:00 | 8/12/20 11:43 | 3 1.015     | Not Detected | mg/L       | 0.03     | 0.1    | U |
| * Calcium, Total                    | 8/10/20 15:00 | 8/12/20 11:43 | 3 1.015     | Not Detected | mg/L       | 0.1      | 0.5    | U |
| * Iron, Total                       | 8/10/20 15:00 | 8/12/20 11:43 | 3 1.015     | Not Detected | mg/L       | 0.02     | 0.05   | U |
| * Lithium, Total                    | 8/10/20 15:00 | 8/12/20 11:43 | 3 1.015     | Not Detected | mg/L       | 0.01     | 0.02   | U |
| * Magnesium, Total                  | 8/10/20 15:00 | 8/12/20 11:43 | 3 1.015     | Not Detected | mg/L       | 0.1      | 0.5    | U |
| * Sodium, Total                     | 8/10/20 15:00 | 8/12/20 11:43 | 3 1.015     | Not Detected | mg/L       | 0.1      | 0.5    | U |
| Analytical Method: EPA 200.8        | Analy         | st: DLJ       |             | Preparati    | on Method: | EPA 1638 |        |   |
| * Antimony, Total                   | 8/7/20 12:54  | 8/10/20 13:02 | 2 1.015     | Not Detected | mg/L       | 0.0008   | 0.003  | U |
| * Arsenic, Total                    | 8/7/20 12:54  | 8/10/20 13:02 | 2 1.015     | Not Detected | mg/L       | 0.001    | 0.005  | U |
| * Barium, Total                     | 8/7/20 12:54  | 8/10/20 13:02 | 2 1.015     | Not Detected | mg/L       | 0.002    | 0.01   | U |
| * Beryllium, Total                  | 8/7/20 12:54  | 8/10/20 13:02 | 2 1.015     | Not Detected | mg/L       | 0.0006   | 0.003  | U |
| * Cadmium, Total                    | 8/7/20 12:54  | 8/10/20 13:02 | 2 1.015     | Not Detected | mg/L       | 0.0003   | 0.001  | U |
| * Chromium, Total                   | 8/7/20 12:54  | 8/11/20 13:39 | 9 1.015     | Not Detected | mg/L       | 0.002    | 0.01   | U |
| * Cobalt, Total                     | 8/7/20 12:54  | 8/10/20 13:02 | 2 1.015     | Not Detected | mg/L       | 0.002    | 0.005  | U |
| * Lead, Total                       | 8/7/20 12:54  | 8/10/20 13:02 | 2 1.015     | Not Detected | mg/L       | 0.001    | 0.005  | U |
| * Molybdenum, Total                 | 8/7/20 12:54  | 8/10/20 13:02 | 2 1.015     | Not Detected | mg/L       | 0.002    | 0.01   | U |
| * Manganese, Total                  | 8/7/20 12:54  | 8/10/20 13:02 | 2 1.015     | Not Detected | mg/L       | 0.001    | 0.005  | U |
| * Potassium, Total                  | 8/7/20 12:54  | 8/11/20 13:39 | 9 1.015     | Not Detected | mg/L       | 0.3      | 2.5    | U |
| * Selenium, Total                   | 8/7/20 12:54  | 8/10/20 13:02 | 2 1.015     | Not Detected | mg/L       | 0.002    | 0.01   | U |
| * Thallium, Total                   | 8/7/20 12:54  | 8/10/20 13:02 | 2 1.015     | Not Detected | mg/L       | 0.0002   | 0.001  | U |
| Analytical Method: EPA 245.1        | Analy         | st: GAS       |             |              |            |          |        |   |
| * Mercury, Total by CVAA            | 8/11/20 09:20 | 8/11/20 14:5  | 5 1         | Not Detected | mg/L       | 0.0003   | 0.0005 | U |
| Analytical Method: SM 2540C         | Analy         | st: TJW       |             |              |            |          |        |   |
| * Solids, Dissolved                 | 8/10/20 12:25 | 8/14/20 09:50 | 0 1         | Not Detected | mg/L       |          | 25     | U |
| Analytical Method: SM4500Cl E       | Analy         | st: JCC       |             |              |            |          |        |   |
| * Chloride                          | 8/10/20 13:59 | 8/10/20 13:59 | 9 1         | Not Detected | mg/L       | 0.50     | 1      | U |
| Analytical Method: SM4500F G 2017   | Analy         | st: JCC       |             |              |            |          |        |   |
| * Fluoride                          | 8/11/20 12:55 |               | 5 1         | Not Detected | mg/L       | 0.06     | 0.1    | U |
| Analytical Method: SM4500SO4 E 2011 | Analy         | st: JCC       |             |              |            |          |        |   |
| * Sulfate                           | 8/7/20 13:53  | 8/7/20 13:53  | 1           | Not Detected | mg/L       | 0.50     | 1      | U |

MDL's and RL's are adjusted for sample dilution, as applicable

## **Batch QC Summary**



**Customer Account:** WMWGORGEB **Sample Date:** 8/5/20 13:45

**Customer ID:** 

**Delivery Date:** 8/6/20 11:01

Description: Gorgas Gypsum Equipment Blank-1

Laboratory ID Number: BA14571

|         |                        |       |             |           |       |         |         |          |                  |      |           |       | _             |
|---------|------------------------|-------|-------------|-----------|-------|---------|---------|----------|------------------|------|-----------|-------|---------------|
|         |                        |       |             | MB        |       |         |         |          | Standard         |      | Rec       |       | Prec          |
| Sample  | Analysis               | Units | MB          | Limit     | Spike | MS      | MSD     | Standard | Limit            | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA14571 | Manganese, Total       | mg/L  | 0.000140    | 0.0001474 | 0.10  | 0.113   | 0.114   | 0.109    | 0.085 to 0.115   | 113  | 70 to 130 | 0.881 | 20            |
| BA14571 | Magnesium, Total       | mg/L  | 0.00212     | 0.0462    | 5.00  | 5.13    | 5.08    | 5.22     | 4.25 to 5.75     | 103  | 70 to 130 | 0.979 | 20            |
| BA14571 | Iron, Total            | mg/L  | 0.000169    | 0.0176    | 0.2   | 0.203   | 0.202   | 0.206    | 0.17 to 0.23     | 102  | 70 to 130 | 0.494 | 20            |
| BA14571 | Sodium, Total          | mg/L  | 0.0149      | 0.044     | 5.00  | 4.81    | 4.77    | 4.94     | 4.25 to 5.75     | 96.2 | 70 to 130 | 0.835 | 20            |
| BA14571 | Arsenic, Total         | mg/L  | -0.0000203  | 0.0001474 | 0.10  | 0.118   | 0.118   | 0.115    | 0.085 to 0.115   | 118  | 70 to 130 | 0.00  | 20            |
| BA14571 | Boron, Total           | mg/L  | 0.000611    | 0.0650254 | 1.00  | 0.980   | 0.964   | 0.989    | 0.85 to 1.15     | 98.0 | 70 to 130 | 1.65  | 20            |
| BA14571 | Lead, Total            | mg/L  | 0.00000688  | 0.0001474 | 0.10  | 0.116   | 0.116   | 0.112    | 0.085 to 0.115   | 116  | 70 to 130 | 0.00  | 20            |
| BA14571 | Barium, Total          | mg/L  | 0.00000147  | 0.0002    | 0.10  | 0.101   | 0.101   | 0.101    | 0.085 to 0.115   | 101  | 70 to 130 | 0.00  | 20            |
| BA14571 | Cadmium, Total         | mg/L  | -0.00000379 | 0.0001474 | 0.10  | 0.113   | 0.109   | 0.107    | 0.085 to 0.115   | 113  | 70 to 130 | 3.60  | 20            |
| BA14571 | Chromium, Total        | mg/L  | -0.0000938  | 0.00044   | 0.10  | 0.116   | 0.116   | 0.114    | 0.085 to 0.115   | 116  | 70 to 130 | 0.00  | 20            |
| BA14571 | Lithium, Total         | mg/L  | -0.000227   | 0.0154    | 0.20  | 0.193   | 0.190   | 0.195    | 0.17 to 0.23     | 96.5 | 70 to 130 | 1.57  | 20            |
| BA14571 | Selenium, Total        | mg/L  | -0.0000834  | 0.001     | 0.10  | 0.114   | 0.112   | 0.109    | 0.085 to 0.115   | 114  | 70 to 130 | 1.77  | 20            |
| BA14571 | Calcium, Total         | mg/L  | -0.00124    | 0.1518    | 5.00  | 5.04    | 5.00    | 5.15     | 4.25 to 5.75     | 101  | 70 to 130 | 0.797 | 20            |
| BA14571 | Mercury, Total by CVAA | mg/L  | 0.0000278   | 0.0005    | 0.004 | 0.00383 | 0.00365 | 0.00361  | 0.0034 to 0.0046 | 95.8 | 70 to 130 | 4.81  | 20            |
| BA14571 | Molybdenum, Total      | mg/L  | 0.00000625  | 0.0001474 | 0.10  | 0.113   | 0.111   | 0.107    | 0.085 to 0.115   | 113  | 70 to 130 | 1.79  | 20            |
| BA14571 | Antimony, Total        | mg/L  | 0.000196    | 0.001     | 0.10  | 0.100   | 0.0990  | 0.0966   | 0.085 to 0.115   | 100  | 70 to 130 | 1.01  | 20            |
| BA14571 | Beryllium, Total       | mg/L  | -0.00000074 | 0.00088   | 0.10  | 0.0942  | 0.0966  | 0.0957   | 0.085 to 0.115   | 94.2 | 70 to 130 | 2.52  | 20            |
| BA14571 | Cobalt, Total          | mg/L  | -0.0000254  | 0.0001474 | 0.10  | 0.117   | 0.117   | 0.113    | 0.085 to 0.115   | 117  | 70 to 130 | 0.00  | 20            |
| BA14571 | Potassium, Total       | mg/L  | 0.0286      | 0.3674    | 10.0  | 11.0    | 10.7    | 11.3     | 8.5 to 11.5      | 110  | 70 to 130 | 2.76  | 20            |
| BA14571 | Thallium, Total        | mg/L  | 0.0000155   | 0.0001474 | 0.10  | 0.109   | 0.109   | 0.106    | 0.085 to 0.115   | 109  | 70 to 130 | 0.00  | 20            |

## **Batch QC Summary**



Customer Account: WMWGORGEB

Sample Date:

8/5/20 13:45

Customer ID: Delivery Date:

8/6/20 11:01

Description: Gorgas Gypsum Equipment Blank-1

Laboratory ID Number: BA14571

|         |                   |       |        | MB    |       |      | Sample    |          | Standard     |      | Rec       |      | Prec          |
|---------|-------------------|-------|--------|-------|-------|------|-----------|----------|--------------|------|-----------|------|---------------|
| Sample  | Analysis          | Units | MB     | Limit | Spike | MS   | Duplicate | Standard | Limit        | Rec  | Limit     | Prec | <u>Li</u> mit |
| BA14566 | Solids, Dissolved | mg/L  | 2.00   | 25    |       |      | 3200      | 53.0     | 40 to 60     |      |           | 0.00 | 5             |
| BA14571 | Fluoride          | mg/L  | 0.0328 | 0.05  | 2.50  | 2.45 | 0.0131    | 2.51     | 2.25 to 2.75 | 98.0 | 80 to 120 | 0.00 | 20            |
| BA14571 | Chloride          | mg/L  | 0.0188 | 0.50  | 10.0  | 10.7 | 0.0826    | 10.2     | 9 to 11      | 107  | 80 to 120 | 0.00 | 20            |
| BA14571 | Sulfate           | mg/L  | -0.586 | 0.50  | 20.0  | 17.9 | -0.529    | 18.3     | 18 to 22     | 89.5 | 80 to 120 | 0.00 | 20            |

U

Compound was analyzed, but not detected.



| Abbreviation  | Description                                                                                                     |
|---------------|-----------------------------------------------------------------------------------------------------------------|
| DF            | Dilution Factor                                                                                                 |
| LCS           | Lab Control Sample                                                                                              |
| LFM           | Lab Fortified Matrix                                                                                            |
| MB            | Method Blank                                                                                                    |
| MDL           | Method Detection Limit; minimum concentration of an analyte that can be determined with 99% confidence that the |
|               | concentration is greater than zero.                                                                             |
| MS            | Matrix Spike                                                                                                    |
| MSD           | Matrix Spike Duplicate                                                                                          |
| Prec          | Precision (% RPD)                                                                                               |
| Q             | Qualifier; comment used to note deviations or additional information associated with analytical results.        |
| QC            | Quality Control                                                                                                 |
| Rec           | Recovery of Matrix Spike                                                                                        |
| RL            | Reporting Limit; lowest concentration at which an analyte can be quantitatively measured.                       |
| Vio Spec      | Violation Specification; regulatory limit which has been exceeded by the sample analyzed.                       |
|               |                                                                                                                 |
|               |                                                                                                                 |
| <br>Qualifier | Description                                                                                                     |
| FA            | Field results were reviewed by the Water Field Group.                                                           |
| J             | Reported value is an estimate because concentration is less than reporting limit.                               |
| RA            | Matrix spike is invalid due to sample concentration.                                                            |

| Alabama Pow                                          | Chain d                | of Cu                | isto             | dy            | <b>✓</b> Fi | eld C    | om          | plete       |         | Outsi           | de Lab    |      |                 |         |        |       |
|------------------------------------------------------|------------------------|----------------------|------------------|---------------|-------------|----------|-------------|-------------|---------|-----------------|-----------|------|-----------------|---------|--------|-------|
| Field                                                | Ground                 |                      |                  |               |             | ab Co    | mp          | lete        |         |                 |           |      |                 |         |        |       |
|                                                      | APC Gener              |                      |                  | abor          |             |          | r           |             |         |                 | L         | ab   | ETA             |         |        |       |
| Reques                                               | sted Complet           | e Date               | Routi            | ine           |             |          |             |             | 1       | Results To      | Dustin Br | rook | ooks, Greg Dyer |         |        |       |
| •                                                    | Site Represer          |                      |                  |               | <u> </u>    |          |             |             | 1 I     | Requested B     | y Greg Dy | er   |                 |         |        |       |
|                                                      | •                      | llector              |                  | ıs Ge         | entry       |          |             |             | 1       | -               | Gorgas    | Gy   | Gypsum          |         |        |       |
| Bottles                                              | 1 Metals               | 500 1                |                  | $\overline{}$ | Hg          | 25       | 50 m        | . 1         | <br>    | 5 Anions 250 mL |           |      | 7 N/A           |         | N/A    |       |
| Domes                                                | 2 Dissolved Me         | _                    |                  | $\sqcup$      | TDS         |          | 00 m        |             | 6       | Alkalinity      | 250 mL    | 41   | B N/A           |         | N/A    |       |
|                                                      |                        | 10001                |                  |               |             |          |             |             | لــّــا | 7 incaminty     | 200 1112  |      | - 110//1        |         | 111//  |       |
|                                                      | Comments               |                      |                  |               |             |          |             |             |         |                 |           |      |                 |         |        |       |
|                                                      |                        |                      |                  |               |             | Bott     | -16         |             |         |                 |           | Ī    | ab              |         |        |       |
|                                                      | Sample #               |                      | Date             |               | Time        | Cou      |             |             |         | Description     | l         |      | ilter           | Lab :   | ld     |       |
| E                                                    | B-2                    | _                    | 03/202           | 20            | 10:15       | 4        |             | Equip       | me      | nt Blank        |           |      |                 | BA145   |        |       |
| P                                                    | PZ-18 08/03/2020 11:00 |                      |                  |               | 11:00       | 6        |             | Grour       | ndw     | ater            |           |      | 7               | BA145   | 542    |       |
| P                                                    | PZ-19 08/03/2020 12:50 |                      |                  |               |             | 6        |             | Grour       | ndw     | ater            |           |      |                 | BA145   | 343    |       |
| P                                                    | Z-20                   | 08/                  | 03/202           | 20            | 13:59       | 6        |             | Grour       | ndw     | ater            | -         |      |                 | BA145   | 544    |       |
| P                                                    | 30,00,2020 10.00       |                      |                  |               | 13:59       | 6        |             | Samp        | le [    | Duplicate       |           |      |                 | BA145   | 45     |       |
| F                                                    | B-1                    | 08/                  | 03/202           | 20            | 14:45       | 4        |             | Field       | Bla     | nk              |           |      |                 | BA145   | 46     |       |
| P                                                    | Z-21                   | 08/                  | 04/202           | 20            | 08:53       | 6        |             | Grour       | ndw     | ater            |           |      |                 | BA145   | 547    |       |
| P                                                    | Z-22                   | 08/04/2020 10:00     |                  |               | 6           |          | Groundwater |             |         |                 |           |      | BA14548         |         |        |       |
| P                                                    | Z-17                   | 08/                  | 08/04/2020 11:20 |               |             | 6        |             | Groundwater |         |                 |           |      |                 | BA145   | 349    |       |
| M                                                    | IW-3V                  | 08/                  | 04/202           | 20            | 13:01       | 6        |             | Groundwater |         |                 |           |      |                 | BA145   | 550    |       |
| М                                                    | IW-3                   | 08/                  | 04/202           | 20            | 15:35       | 6        |             | Groundwater |         |                 |           |      |                 | BA145   | 51     |       |
| М                                                    | IW-8V                  | 08/                  | 05/202           | 20            | 10:20       | 6        |             | Grour       | ndw     | ater            |           |      |                 | BA145   | 52     |       |
| М                                                    | IW-8                   | 08/                  | 05/202           | 20            | 11:24       | 6        |             | Grour       | ndw     | ater            |           |      |                 | BA145   | 53     |       |
| М                                                    | IW-12H                 | 08/                  | 05/202           | 20            | 12:50       | 6        |             | Grour       | ndw     | ater            |           |      |                 | BA145   | 54     |       |
| М                                                    | IW-12V                 | 08/                  | 05/202           | 20            | 13:47       | 6        |             | Grour       | ndw     | ater            |           |      |                 | BA145   | 555    |       |
| F                                                    | B-3                    | 08/                  | 05/202           | 20            | 14:10       | 4        |             | Field       | Bla     | nk              |           |      |                 | BA145   | 56     |       |
|                                                      |                        |                      |                  |               |             |          |             |             |         |                 |           |      |                 |         |        |       |
|                                                      |                        |                      |                  |               |             |          |             |             |         |                 |           |      |                 |         |        |       |
|                                                      |                        |                      |                  |               |             |          |             |             |         |                 |           |      |                 |         |        |       |
|                                                      |                        |                      |                  | $\dashv$      |             |          |             |             |         |                 |           |      | $\Box$          |         |        |       |
|                                                      |                        |                      |                  |               |             |          |             |             |         |                 |           |      |                 |         |        |       |
|                                                      | Reline                 | quished              | d By             |               |             |          |             |             |         | Received By     | 7         |      |                 | Date    | e/Tim  | ie    |
|                                                      | fa                     | Us Taty              | :<br>•           |               |             |          |             |             |         | Laur Melly      |           |      |                 | 08/06/2 | 2020 0 | 8:09  |
|                                                      |                        |                      |                  |               |             |          |             |             |         |                 |           |      |                 |         |        |       |
|                                                      |                        |                      |                  |               |             |          |             |             |         |                 |           | -    |                 |         |        |       |
|                                                      |                        |                      |                  |               |             |          |             |             |         |                 |           |      | <u>L</u>        |         |        |       |
| Sn                                                   | narTroll ID            | 7586-4 <sup>-1</sup> | 1446-5           | 5-5           |             |          |             | Д11         | m       | etals and rad   | iological | hot  | tles k          | nave nH | < 2 L  | <br>Л |
|                                                      | -                      |                      |                  |               |             | $\dashv$ |             | 1111        |         | Cooler Temp     |           |      |                 |         |        |       |
| Turbidity ID   7081-38476-1-1<br>Sample Event   1289 |                        |                      |                  |               | П           |          | mometer ID  |             |         |                 | acgices ( |      |                 |         |        |       |
|                                                      |                        |                      |                  |               | 11          |          | pH Strip ID |             |         |                 |           |      |                 |         |        |       |
|                                                      |                        |                      |                  |               |             |          |             |             |         | 1 F 12          |           |      |                 |         |        |       |

Page 144 of 147

Bottles/Pre-Preserved Bottles are provided by the GTL

7.1

| Chain of Custody Field Comp                             | lete Outside Lab |
|---------------------------------------------------------|------------------|
| Groundwater  APC General Testing Laboratory  Lab Comple | ete              |

| APC General Testing Laboratory  Lab ETA 08/06/202 |                  |                     |                |           |                                                  |              |           | 20 10:00  |           |      |
|---------------------------------------------------|------------------|---------------------|----------------|-----------|--------------------------------------------------|--------------|-----------|-----------|-----------|------|
| Reque                                             | ested Complete I | Date Routine        |                |           |                                                  | Results To   | Dustin Br | ooks, Gre | g Dyer    |      |
| •                                                 | Site Representa  | ative John Pat      | e              |           |                                                  | Requested By | Greg Dy   | er        |           |      |
|                                                   | Colle            | ctor TJ Daug        | herty          |           |                                                  | Location     | Gorgas    | Gypsun    | n         |      |
| Bottles                                           | 1 Metals         | 500 mL 3            | Hg             | 250 n     | nL [                                             | 5 Anions     | 250 mL    | 7 N/A     |           | N/A  |
| 20000                                             | 2 Diss Metals    | 500 mL 4            | TDS            | 500 n     | nL                                               | 6 Alkalinity | 250 mL    | 8 N/A     |           | N/A  |
|                                                   | Commonto         |                     |                | 2110/5/20 |                                                  |              |           |           |           |      |
|                                                   | Comments   Co    | rrecting bottle cou | nt for MW-4. L | BM 8/6/20 |                                                  |              |           |           |           |      |
|                                                   |                  |                     |                | Bottle    |                                                  |              |           | Lab       |           |      |
|                                                   | Sample #         | Date                | Time           | Count     |                                                  | Description  |           | Filter    | Lab Id    |      |
|                                                   | MW-1L            | 08/03/2020          | 11:45          | 6         | Groun                                            | dwater       | •         | TITCI     | BA1455    | 7    |
| ⊢                                                 | MW-1L Dup        | 08/03/2020          | 11:45          | 6         | <u> </u>                                         | e Duplicate  |           |           | BA1455    |      |
| -                                                 | MW-2L            | 08/03/2020          | 12:55          | 6         | <del></del>                                      | dwater       |           | BA14559   |           |      |
| -                                                 | MW-3L            | 08/03/2020          | 14:28          | 6         | -                                                | dwater       |           |           | BA14560   |      |
| ŀ                                                 | MW-11H           | 08/04/2020          | 09:35          | 6         | -                                                | dwater       |           | BA1456    |           |      |
| ľ                                                 | ИW-11H Dup       | 08/04/2020          | 09:35          | 6         | Sampl                                            | e Duplicate  |           |           | BA14562   | 2    |
| -                                                 | ИW-13H           | 08/04/2020          | 11:10          | 6         | <del>                                     </del> | dwater       |           | BA14563   | 3         |      |
| Ī                                                 | MW-9H            | 08/04/2020          | 12:20          | 6         | Groun                                            | dwater       |           | BA14564   | 1         |      |
| r                                                 | MW-9V            | 08/04/2020          | 15:30          | 6         | Groun                                            | dwater       |           | BA14565   | 5         |      |
| Ī                                                 | MW-4L            | 08/05/2020          | 09:55          | 6         | Groun                                            |              | BA14566   | 5         |           |      |
| ı                                                 | ИW-14H           | 08/05/2020          | 11:10          | 6         | Groun                                            | dwater       |           |           | BA14567   | 7    |
| r                                                 | MW-4             | 08/05/2020          | 12:08          | 6         | Groun                                            | dwater       |           |           | BA14568   | 3    |
| Ī                                                 | MW-4V            | 08/05/2020          | 13:05          | 6         | Groun                                            | dwater       |           |           | BA14569   | )    |
| F                                                 | -B-2             | 08/05/2020          | 13:30          | 4         | Field E                                          | Blank        |           |           | BA14570   | )    |
| F                                                 | EB-1             | 08/05/2020          | 13:45          | 4         | Equipr                                           | nent Blank   |           |           | BA1457    |      |
|                                                   |                  |                     |                |           |                                                  |              |           |           |           |      |
|                                                   |                  |                     |                |           |                                                  |              |           |           |           |      |
|                                                   |                  |                     |                |           |                                                  |              |           |           |           |      |
|                                                   |                  |                     |                |           |                                                  |              |           |           |           |      |
|                                                   |                  |                     |                |           |                                                  |              |           |           |           |      |
| L                                                 |                  |                     |                |           |                                                  |              |           |           |           |      |
|                                                   | Relinau          | ished By            |                |           |                                                  | Received By  | 7         |           | Date/     | Time |
|                                                   | 1 Ada            | <u> </u>            |                |           |                                                  | Anathy       |           |           | 08/06/202 |      |
|                                                   | 7                | • •                 |                |           |                                                  | · m          |           |           |           |      |
|                                                   |                  |                     |                |           |                                                  |              |           |           |           |      |
|                                                   |                  |                     |                |           |                                                  |              |           |           |           |      |

SmarTroll ID | 7586-41445-5-4 Turbidity ID | 4677-23342-4-1 Sample Event | 1289

All metals and radiological bottles have pH < 2 🔽

Cooler Temp | 0.1 degrees C Thermometer ID 5408-27568-2-2 pH Strip ID 8129-45506-2-1

Bottles/Pre-Preserved Bottles are provided by the GTL

| Alabama Pov                            | Chain of          | vater           | La                          | eld Com | _     |          | Outsi         | de Lab<br>L | .al    | b ET                    | ГА        |            |       |  |
|----------------------------------------|-------------------|-----------------|-----------------------------|---------|-------|----------|---------------|-------------|--------|-------------------------|-----------|------------|-------|--|
| Regues                                 | sted Complete     | Date Boutine    | -                           |         |       | Т        | Results To    | Ductin Br   | _      | aks C                   | Greg Dyer |            |       |  |
| reques                                 | Site Representa   |                 |                             |         |       | $\dashv$ | Requested By  |             |        |                         | neg Dyei  |            |       |  |
|                                        |                   |                 |                             |         |       | ┨        | 1 ,           |             |        |                         |           |            |       |  |
|                                        | Colle             | ector Dallas (  | Jentry                      |         |       | ᆜ        | Location      | 1 Gorgas    |        | ayps                    | um        |            |       |  |
| Bottles                                | 1 Radium          | 1 L 3           | N/A                         | N/A     |       | 5        | N/A           | N/A         |        | 7 1                     | N/A       | N/A        |       |  |
|                                        | 2 N/A             | N/A 4           | N/A                         | N/A     |       | 6        | N/A           | N/A         |        | 8 1                     | N/A       | N/A        |       |  |
|                                        | Comments          | adium MS/MSD co | ollected at PZ              | -19     |       |          |               |             | _<br>_ |                         |           |            |       |  |
|                                        |                   |                 |                             | Bottle  |       |          |               |             |        | Lab                     | )         |            |       |  |
|                                        | Sample #          | Date            | Time                        | Count   |       |          | Description   |             | ]      | Filte                   | er Lab l  | d          |       |  |
| E                                      | B-2               | 08/03/2020      | 10:15                       | 1       | Equip | ome      | ent Blank     |             | L      |                         | BA145     | 572        |       |  |
| Р                                      | <sup>2</sup> Z-18 | 08/03/2020      | 11:00                       | 1       | Grou  | ndv      | vater         |             | L      |                         | BA145     | 73         |       |  |
| Р                                      | Z-19              | 08/03/2020      | 12:50                       | 3       | Grou  | ndv      | vater         |             |        |                         | BA145     | 74         |       |  |
| Р                                      | Z-20              | 08/03/2020      | 13:59                       | 1       | Grou  | ndv      | vater         |             |        |                         | BA145     | 75         |       |  |
| PZ-20 dup 08/03/2020 13:59 1 Sample Du |                   |                 |                             |         |       |          | Duplicate     |             |        |                         | BA145     | 76         |       |  |
| F                                      | B-1               | 08/03/2020      | 03/2020 14:45 1 Field Blank |         |       |          |               |             |        |                         | BA145     | 77         |       |  |
| Р                                      | Z-21              | 08/04/2020      | 08:53                       | 1       | Grou  | ndv      | vater         | _           | L      |                         | BA145     | 78         |       |  |
| Р                                      | Z-22              | 08/04/2020      | 10:00                       | 1       | Grou  | ndwater  |               |             |        |                         | BA145     | 79         |       |  |
| Р                                      | Z-17              | 08/04/2020      | 11:20                       | 1       | Grou  | undwater |               |             |        |                         | BA145     | 80         |       |  |
| N                                      | 1W-3V             | 08/04/2020      | 13:01                       | 1       | Grou  | ndv      | vater         | -           | I      |                         | BA145     | BA14581    |       |  |
| Ν                                      | 1W-3              | 08/04/2020      | 15:35                       | 1       | Grou  | ndv      | vater         |             |        |                         | BA145     | 82         |       |  |
| N                                      | 1W-8V             | 08/05/2020      | 10:20                       | 1       | Grou  | ndv      | vater         |             |        |                         | BA145     | 83         |       |  |
| N                                      | 1W-8              | 08/05/2020      | 11:24                       | 1       | Grou  | ndv      | vater         |             |        |                         | BA145     | 84         |       |  |
| Ν                                      | 1W-12H            | 08/05/2020      | 12:50                       | 1       | Grou  | ndv      | vater         |             |        |                         | BA145     | 85         |       |  |
| N                                      | 1W-12V            | 08/05/2020      | 13:47                       | 1       | Grou  | ndv      | vater         |             | I      |                         | BA145     | 86         |       |  |
| F                                      | B-3               | 08/05/2020      | 14:10                       | 1       | Field | Bla      | ınk           |             | Γ      |                         | BA145     | 87         |       |  |
|                                        |                   |                 |                             |         |       |          |               |             | Γ      |                         |           |            |       |  |
|                                        |                   |                 |                             |         |       |          |               |             |        |                         |           |            |       |  |
|                                        |                   |                 |                             |         |       |          |               |             | Г      |                         |           |            |       |  |
|                                        |                   |                 |                             |         |       |          |               |             | Γ      |                         |           |            |       |  |
|                                        |                   |                 |                             |         |       |          |               |             | Γ      |                         |           |            |       |  |
|                                        | D 1:              | · 1 1 D         |                             |         |       |          | n · 1n        |             | _      |                         | D 4       | /1731      |       |  |
|                                        |                   | ished By        |                             | 1       |       |          | Received By   | <del></del> | _      |                         |           | e/Tim      |       |  |
| Polles Dety                            |                   |                 |                             |         |       |          | Laura Mily    |             |        |                         | 08/06/2   | 020 0      | 8:08  |  |
|                                        |                   |                 |                             |         |       |          |               |             |        |                         |           |            |       |  |
|                                        |                   |                 |                             |         |       |          |               |             |        |                         | $\dashv$  |            | -     |  |
| <u> </u>                               |                   |                 |                             |         |       |          |               |             | _      |                         |           |            |       |  |
| Sn                                     | narTroll ID 75    | 86-41446-5-5    |                             | 7       | A 11  | m        | etals and rad | iological l | bα     | - <del>-</del><br>ottle | s have pH | <br>ر 2 آر | <br>7 |  |

 SmarTroll ID
 7586-41446-5-5

 Turbidity ID
 7081-38476-1-1

 Sample Event
 1289

All metals and radiological bottles have pH < 2 Cooler Temp N/A

Thermometer ID N/A

pH Strip ID 8129-45506-2-1

Bottles/Pre-Preserved Bottles are provided by the GTL

Page 146 of 147

| 📤 Alabama Power |                                 |
|-----------------|---------------------------------|
| <b>≥</b> ab&    | Chain of Custody                |
| Field           | Chain of Custody<br>Groundwater |
|                 | APC General Testing Labors      |

Field Complete

| <b>/</b> | Outside | Lab |
|----------|---------|-----|
|          | 1       |     |

Lab Complete

| APC General Testing Laboratory  |          |          |          |           |              |                 |               |                          | L            | ab I     | ET        | A 08/06/20 | )20 10   | ):00 |  |
|---------------------------------|----------|----------|----------|-----------|--------------|-----------------|---------------|--------------------------|--------------|----------|-----------|------------|----------|------|--|
| Requested Complete Date Routine |          |          |          |           |              | Results To      | Dustin Bro    | Dustin Brooks, Greg Dyer |              |          |           |            |          |      |  |
| Site Representative Jo          |          |          |          | John Pate |              |                 |               | ] ]                      | Requested By | Greg Dye | Greg Dyer |            |          |      |  |
| Collector TJ Daugherty          |          |          |          |           |              | Location        | Gorgas Gypsum |                          |              |          |           |            |          |      |  |
| Bottles                         | 1 Radium | 1 L      |          | 3         | N/A          | N/A             |               | 5                        | N/A          | N/A      | 7         | N          | /A       | N/A  |  |
|                                 | 2 N/A    | N/A      |          | 4         | N/A          | N/A             |               | 6                        | N/A          | N/A      | 8         | N.         | /A       | N/A  |  |
|                                 | Comments | Radium I | MS/MSD o | col       | lected at MV | V-4L            |               |                          |              |          |           |            |          |      |  |
|                                 | Sample # |          | Date     |           | Time         | Bottle<br>Count |               |                          | Description  |          |           | ab<br>ltei | r Lab Io | d    |  |
| Ī                               | MW-1L    | 08/      | 03/2020  |           | 11:45        | 1               | Groun         | dw                       | 1            |          |           |            | BA145    | 88   |  |
|                                 |          |          |          | 一         |              |                 | 1_            |                          |              |          |           |            |          |      |  |

|            |            |       | Bottle |                  | Lab    |         |
|------------|------------|-------|--------|------------------|--------|---------|
| Sample #   | Date       | Time  | Count  | Description      | Filter | Lab Id  |
| MW-1L      | 08/03/2020 | 11:45 | 1      | Groundwater      |        | BA14588 |
| MW-1L Dup  | 08/03/2020 | 11:45 | 1      | Sample Duplicate |        | BA14589 |
| MW-2L      | 08/03/2020 | 12:55 | 1      | 1 Groundwater    |        | BA14590 |
| MW-3L      | 08/03/2020 | 14:28 | 1      | Groundwater      |        | BA14591 |
| MW-11H     | 08/04/2020 | 09:35 | 1      | Groundwater      |        | BA14592 |
| MW-11H Dup | 08/04/2020 | 09:35 | 1      | Sample Duplicate |        | BA14593 |
| MW-13H     | 08/04/2020 | 11:10 | 1      | Groundwater      |        | BA14594 |
| MW-9H      | 08/04/2020 | 12:20 | 1      | Groundwater      |        | BA14595 |
| MW-9V      | 08/04/2020 | 15:30 | 1      | Groundwater      |        | BA14596 |
| MW-4L      | 08/05/2020 | 09:55 | 3      | Groundwater      |        | BA14597 |
| MW-14H     | 08/05/2020 | 11:10 | 1      | Groundwater      |        | BA14598 |
| MW-4       | 08/05/2020 | 12:08 | 1      | Groundwater      |        | BA14599 |
| MW-4V      | 08/05/2020 | 13:05 | 1      | Groundwater      |        | BA14600 |
| FB-2       | 08/05/2020 | 13:30 | 1      | Field Blank      |        | BA14601 |
| EB-1       | 08/05/2020 | 13:45 | 1      | Equipment Blank  |        | BA14602 |
|            |            |       |        |                  |        |         |
|            |            |       |        |                  |        |         |
|            |            |       |        |                  |        |         |
|            |            |       |        |                  |        |         |
|            |            |       |        |                  |        |         |
|            |            |       |        |                  |        |         |

| Received By | Date/Time                             |
|-------------|---------------------------------------|
| Anathy      | 08/06/2020 09:35                      |
|             |                                       |
|             |                                       |
|             | · · · · · · · · · · · · · · · · · · · |

SmarTroll ID | 7586-41445-5-4 Turbidity ID | 4677-23342-4-1 Sample Event | 1289

Cooler Temp N/A Thermometer ID N/A pH Strip ID 8129-45506-2-1

Bottles/Pre-Preserved Bottles are provided by the GTL



# **Environment Testing America**

## ANALYTICAL REPORT

Eurofins TestAmerica, Pensacola 3355 McLemore Drive Pensacola, FL 32514 Tel: (850)474-1001

Laboratory Job ID: 400-191957-1

Laboratory Sample Delivery Group: Gorgas Gypsum 1289

Client Project/Site: CCR Plant Gorgas

#### For:

Alabama Power General Test Laboratory 744 County Rd 87 GSC #8 Calera, Alabama 35040

Attn: Laura Midkiff

Cheyrodewhitmin

Authorized for release by: 9/28/2020 4:29:53 PM

Cheyenne Whitmire, Project Manager II (850)471-6222

Cheyenne.Whitmire@Eurofinset.com

·····LINKS ······

Review your project results through
Total Access

**Have a Question?** 



Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

# **Table of Contents**

| Cover Page            | 1  |
|-----------------------|----|
| Table of Contents     | 2  |
| Case Narrative        | 3  |
| Method Summary        |    |
| Sample Summary        |    |
| Client Sample Results | 7  |
| Definitions           | 38 |
| Chronicle             | 39 |
| QC Association        | 47 |
| QC Sample Results     | 49 |
| Chain of Custody      | 54 |
| Receipt Checklists    | 56 |
| Certification Summary | 58 |

#### **Case Narrative**

Client: Alabama Power General Test Laboratory

Job ID: 400-191957-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1289

Job ID: 400-191957-1

Laboratory: Eurofins TestAmerica, Pensacola

Narrative

Job Narrative 400-191957-1

#### **RAD**

Method 9315: Radium-226 prep batch 160-479478. Any minimum detectable concentration (MDC), critical value (DLC), or Safe Drinking Water Act detection limit (SDWA DL) is sample-specific unless otherwise stated elsewhere in this narrative. Radiochemistry sample results are reported with the count date/time applied as the Activity Reference Date. BA14572 EB-2 (400-191957-1), BA14573 PZ-18 (400-191957-2), BA14574 PZ-19 (400-191957-3), BA14574 PZ-19 (400-191957-3[MSI), BA14574 PZ-19 (400-191957-3[MSDI), BA14575 PZ-20 (400-191957-4), BA14576 PZ-20 DUP (400-191957-5), BA14577 FB-1 (400-191957-6), BA14578 PZ-21 (400-191957-7), BA14579 PZ-22 (400-191957-8), BA14580 PZ-17 (400-191957-9), BA14581 MW-3V (400-191957-10), BA14582 MW-3 (400-191957-11), BA14583 MW-8V (400-191957-12), (LCS 160-479478/1-A) and (MB 160-479478/23-A)

Method 9315: Radium-226 prep batch 160-482544. Any minimum detectable concentration (MDC), critical value (DLC), or Safe Drinking Water Act detection limit (SDWA DL) is sample-specific unless otherwise stated elsewhere in this narrative. Radiochemistry sample results are reported with the count date/time applied as the Activity Reference Date. BA14584 MW-8 (400-191957-13), BA14585 MW-12H (400-191957-14), BA14586 MW-12V (400-191957-15), BA14587 FB-3 (400-191957-16), BA14588 MW-1L (400-191957-17), BA14589 MW-1L DUP (400-191957-18), BA14590 MW-2L (400-191957-19), BA14591 MW-3L (400-191957-20), BA14592 MW-11H (400-191957-21), BA14593 MW-11H DUP (400-191957-22), BA14594 MW-13H (400-191957-23), BA14595 MW-9H (400-191957-24), BA14596 MW-9V (400-191957-25), BA14597 MW-4L (400-191957-26), BA14597 MW-4L (400-191957-26[MS]), BA14597 MW-4L (400-191957-26IMSDI), BA14598 MW-14H (400-191957-27), BA14599 MW-4 (400-191957-28), BA14600 MW-4V (400-191957-29). BA14601 FB-2 (400-191957-30), BA14602 EB-1 (400-191957-31), (LCS 160-482544/1-A) and (MB 160-482544/23-A)

Method 9320: Radium-228 prep batch 160-479482. Any minimum detectable concentration (MDC), critical value (DLC), or Safe Drinking Water Act detection limit (SDWA DL) is sample-specific unless otherwise stated elsewhere in this narrative. Radiochemistry sample results are reported with the count date/time applied as the Activity Reference Date. BA14572 EB-2 (400-191957-1), BA14573 PZ-18 (400-191957-2), BA14574 PZ-19 (400-191957-3), BA14574 PZ-19 (400-191957-3[MS]), BA14574 PZ-19 (400-191957-3[MSD]), BA14575 PZ-20 (400-191957-4), BA14576 PZ-20 DUP (400-191957-5), BA14577 FB-1 (400-191957-6), BA14578 PZ-21 (400-191957-7), BA14579 PZ-22 (400-191957-8), BA14580 PZ-17 (400-191957-9), BA14581 MW-3V (400-191957-10), BA14582 MW-3 (400-191957-11), BA14583 MW-8V (400-191957-12), (LCS 160-479482/1-A) and (MB 160-479482/23-A)

Method 9320: Radium-228 prep batch 160-481587. The following samples did not meet the requested limit (RL) due to the reduced sample volume. There was insufficient volume remaining due to re-analysis. The data have been reported with this narrative. BA14584 MW-8 (400-191957-13), BA14585 MW-12H (400-191957-14), BA14586 MW-12V (400-191957-15), BA14587 FB-3 (400-191957-16), BA14588 MW-1L (400-191957-17), BA14589 MW-1L DUP (400-191957-18), BA14590 MW-2L (400-191957-19), BA14591 MW-3L (400-191957-20), BA14592 MW-11H (400-191957-21), BA14593 MW-11H DUP (400-191957-22), BA14594 MW-13H (400-191957-23), BA14595 MW-9H (400-191957-24), BA14596 MW-9V (400-191957-25), BA14597 MW-4L (400-191957-26), BA14597 MW-4L (400-191957-26[MS]), BA14597 MW-4L (400-191957-26[MSD]), BA14598 MW-14H (400-191957-27), BA14599 MW-4 (400-191957-28), BA14600 MW-4V (400-191957-29), BA14601 FB-2 (400-191957-30), BA14602 EB-1 (400-191957-31), (LCS 160-481587/1-A) and (MB 160-481587/23-A)

Method 9320: Radium-228 prep batch 160-481587. Any minimum detectable concentration (MDC), critical value (DLC), or Safe Drinking Water Act detection limit (SDWA DL) is sample-specific unless otherwise stated elsewhere in this narrative. Radiochemistry sample results are reported with the count date/time applied as the Activity Reference Date. BA14584 MW-8 (400-191957-13), BA14585 MW-12H (400-191957-14), BA14586 MW-12V (400-191957-15), BA14587 FB-3 (400-191957-16), BA14588 MW-1L (400-191957-17), BA14589 MW-1L DUP (400-191957-18), BA14590 MW-2L (400-191957-19), BA14591 MW-3L (400-191957-20), BA14592 MW-11H (400-191957-21), BA14593 MW-11H DUP (400-191957-22), BA14594 MW-13H (400-191957-23), BA14595 MW-9H (400-191957-24), BA14596 MW-9V (400-191957-25), BA14597 MW-4L (400-191957-26), BA14597 MW-4L (400-191957-26[MS]), BA14597 MW-4L (400-191957-26IMSDI), BA14598 MW-14H (400-191957-27), BA14599 MW-4 (400-191957-28), BA14600 MW-4V (400-191957-29). BA14601 FB-2 (400-191957-30), BA14602 EB-1 (400-191957-31), (LCS 160-481587/1-A) and (MB 160-481587/23-A)

Method PrecSep 0: Radium 228 Prep Batch 160-479482. The following samples were prepared at a reduced aliquot to insure sufficient volume remains if needed for analysis: BA14572 EB-2 (400-191957-1), BA14573 PZ-18 (400-191957-2), BA14574 PZ-19 (400-191957-3), BA14574 PZ-19 (400-191957-3[MS]), BA14574 PZ-19 (400-191957-3[MSD]), BA14575 PZ-20 (400-191957-4), BA14576 PZ-20 DUP (400-191957-5), BA14577 FB-1 (400-191957-6), BA14578 PZ-21 (400-191957-7), BA14579 PZ-22 (400-191957-8), BA14580 PZ-17 (400-191957-9), BA14581 MW-3V (400-191957-10), BA14582 MW-3 (400-191957-11) and BA14583 MW-8V (400-191957-12).

3

#### **Case Narrative**

Client: Alabama Power General Test Laboratory

Job ID: 400-191957-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1289

#### Job ID: 400-191957-1 (Continued)

#### Laboratory: Eurofins TestAmerica, Pensacola (Continued)

Method PrecSep 0: Radium 228 Prep Batch 160-479486. The following samples were prepared at a reduced aliquot to insure sufficient volume remains if needed for analysis: BA14584 MW-8 (400-191957-13), BA14585 MW-12H (400-191957-14), BA14586 MW-12V (400-191957-15), BA14587 FB-3 (400-191957-16), BA14588 MW-1L (400-191957-17), BA14589 MW-1L DUP (400-191957-18), BA14590 MW-2L (400-191957-19), BA14591 MW-3L (400-191957-20), BA14592 MW-11H (400-191957-21), BA14593 MW-11H DUP (400-191957-22), BA14594 MW-13H (400-191957-23), BA14595 MW-9H (400-191957-24), BA14596 MW-9V (400-191957-25), BA14597 MW-4L (400-191957-26), BA14597 MW-4L (400-191957-26[MS]), BA14597 MW-4L (400-191957-26[MSD]), BA14598 MW-14H (400-191957-27), BA14599 MW-4 (400-191957-28), BA14600 MW-4V (400-191957-29), BA14601 FB-2 (400-191957-30) and BA14602 EB-1 (400-191957-31).

Method PrecSep 0: Radium 228 Prep Batch 160-481587. The following samples were prepared at a reduced aliquot due to insufficient volume remaining due to re-analysis. BA14584 MW-8 (400-191957-13), BA14585 MW-12H (400-191957-14), BA14586 MW-12V (400-191957-15), BA14587 FB-3 (400-191957-16), BA14588 MW-1L (400-191957-17), BA14589 MW-1L DUP (400-191957-18), BA14590 MW-2L (400-191957-19), BA14591 MW-3L (400-191957-20), BA14592 MW-11H (400-191957-21), BA14593 MW-11H DUP (400-191957-22), BA14594 MW-13H (400-191957-23), BA14595 MW-9H (400-191957-24), BA14596 MW-9V (400-191957-25), BA14597 MW-4L (400-191957-26), BA14597 MW-4L (400-191957-26[MS]), BA14597 MW-4L (400-191957-26[MSD]), BA14598 MW-14H (400-191957-27), BA14599 MW-4 (400-191957-28), BA14600 MW-4V (400-191957-29), BA14601 FB-2 (400-191957-30) and BA14602 EB-1 (400-191957-31)

Method PrecSep-21: Radium 226 Prep Batch 160-479478. The following samples were prepared at a reduced aliquot to insure sufficient volume remains if needed for analysis: BA14572 EB-2 (400-191957-1), BA14573 PZ-18 (400-191957-2), BA14574 PZ-19 (400-191957-3), BA14574 PZ-19 (400-191957-3[MS]), BA14574 PZ-19 (400-191957-3[MSD]), BA14575 PZ-20 (400-191957-4), BA14576 PZ-20 DUP (400-191957-5), BA14577 FB-1 (400-191957-6), BA14578 PZ-21 (400-191957-7), BA14579 PZ-22 (400-191957-8), BA14580 PZ-17 (400-191957-9), BA14581 MW-3V (400-191957-10), BA14582 MW-3 (400-191957-11) and BA14583 MW-8V (400-191957-12).

Method PrecSep-21: Radium 226 Prep Batch 160-479484. The following samples were prepared at a reduced aliquot to insure sufficient volume remains if needed for analysis: BA14584 MW-8 (400-191957-13), BA14585 MW-12H (400-191957-14), BA14586 MW-12V (400-191957-15), BA14587 FB-3 (400-191957-16), BA14588 MW-1L (400-191957-17), BA14589 MW-1L DUP (400-191957-18), BA14590 MW-2L (400-191957-19), BA14591 MW-3L (400-191957-20), BA14592 MW-11H (400-191957-21), BA14593 MW-11H DUP (400-191957-22), BA14594 MW-13H (400-191957-23), BA14595 MW-9H (400-191957-24), BA14596 MW-9V (400-191957-25), BA14597 MW-4L (400-191957-26), BA14597 MW-4L (400-191957-26[MS]), BA14597 MW-4L (400-191957-26[MSD]), BA14598 MW-14H (400-191957-27), BA14599 MW-4 (400-191957-28), BA14600 MW-4V (400-191957-29), BA14601 FB-2 (400-191957-30) and BA14602 EB-1 (400-191957-31).

Method PrecSep-21: Radium-226 Prep Batch 160-482544. The following samples were prepared at a reduced aliquot to insure sufficient volume remains if needed for analysis: BA14584 MW-8 (400-191957-13), BA14585 MW-12H (400-191957-14), BA14586 MW-12V (400-191957-15), BA14587 FB-3 (400-191957-16), BA14588 MW-1L (400-191957-17), BA14589 MW-1L DUP (400-191957-18), BA14590 MW-2L (400-191957-19), BA14591 MW-3L (400-191957-20), BA14592 MW-11H (400-191957-21), BA14593 MW-11H DUP (400-191957-22), BA14594 MW-13H (400-191957-23), BA14595 MW-9H (400-191957-24), BA14596 MW-9V (400-191957-25), BA14597 MW-4L (400-191957-26), BA14597 MW-4L (400-191957-26[MS]), BA14597 MW-4L (400-191957-26[MSD]), BA14598 MW-14H (400-191957-27), BA14599 MW-4 (400-191957-28), BA14600 MW-4V (400-191957-29), BA14601 FB-2 (400-191957-30) and BA14602 EB-1 (400-191957-31).

**3** 

#### **Method Summary**

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gorgas

| Method      | Method Description                                     | Protocol | Laboratory |
|-------------|--------------------------------------------------------|----------|------------|
| 9315        | Radium-226 (GFPC)                                      | SW846    | TAL SL     |
| 9320        | Radium-228 (GFPC)                                      | SW846    | TAL SL     |
| Ra226_Ra228 | Combined Radium-226 and Radium-228                     | TAL-STL  | TAL SL     |
| PrecSep_0   | Preparation, Precipitate Separation                    | None     | TAL SL     |
| PrecSep-21  | Preparation, Precipitate Separation (21-Day In-Growth) | None     | TAL SL     |

#### **Protocol References:**

None = None

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL-STL = TestAmerica Laboratories, St. Louis, Facility Standard Operating Procedure.

#### Laboratory References:

TAL SL = Eurofins TestAmerica, St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Job ID: 400-191957-1

SDG: Gorgas Gypsum 1289

### **Sample Summary**

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gorgas

Job ID: 400-191957-1 SDG: Gorgas Gypsum 1289

| Lab Sample ID | Client Sample ID   | Matrix | Collected      | Received       | Asset ID |
|---------------|--------------------|--------|----------------|----------------|----------|
| 400-191957-1  | BA14572 EB-2       | Water  | 08/03/20 10:15 | 08/10/20 14:30 |          |
| 400-191957-2  | BA14573 PZ-18      | Water  | 08/03/20 11:00 | 08/10/20 14:30 |          |
| 400-191957-3  | BA14574 PZ-19      | Water  | 08/03/20 12:50 | 08/10/20 14:30 |          |
| 400-191957-4  | BA14575 PZ-20      | Water  | 08/03/20 13:59 | 08/10/20 14:30 |          |
| 400-191957-5  | BA14576 PZ-20 DUP  | Water  | 08/03/20 13:59 | 08/10/20 14:30 |          |
| 400-191957-6  | BA14577 FB-1       | Water  | 08/03/20 14:45 | 08/10/20 14:30 |          |
| 400-191957-7  | BA14578 PZ-21      | Water  | 08/04/20 08:53 | 08/10/20 14:30 |          |
| 400-191957-8  | BA14579 PZ-22      | Water  | 08/04/20 10:00 | 08/10/20 14:30 |          |
| 400-191957-9  | BA14580 PZ-17      | Water  | 08/04/20 11:20 | 08/10/20 14:30 |          |
| 400-191957-10 | BA14581 MW-3V      | Water  | 08/04/20 13:01 | 08/10/20 14:30 |          |
| 400-191957-11 | BA14582 MW-3       | Water  | 08/04/20 15:35 | 08/10/20 14:30 |          |
| 400-191957-12 | BA14583 MW-8V      | Water  | 08/05/20 10:20 | 08/10/20 14:30 |          |
| 400-191957-13 | BA14584 MW-8       | Water  | 08/05/20 11:24 | 08/10/20 14:30 |          |
| 400-191957-14 | BA14585 MW-12H     | Water  | 08/05/20 12:50 | 08/10/20 14:30 |          |
| 400-191957-15 | BA14586 MW-12V     | Water  | 08/05/20 13:47 | 08/10/20 14:30 |          |
| 400-191957-16 | BA14587 FB-3       | Water  | 08/05/20 14:10 | 08/10/20 14:30 |          |
| 400-191957-17 | BA14588 MW-1L      | Water  | 08/03/20 11:45 | 08/10/20 14:30 |          |
| 400-191957-18 | BA14589 MW-1L DUP  | Water  | 08/03/20 11:45 | 08/10/20 14:30 |          |
| 400-191957-19 | BA14590 MW-2L      | Water  | 08/03/20 12:55 | 08/10/20 14:30 |          |
| 400-191957-20 | BA14591 MW-3L      | Water  | 08/03/20 14:28 | 08/10/20 14:30 |          |
| 400-191957-21 | BA14592 MW-11H     | Water  | 08/04/20 09:35 | 08/10/20 14:30 |          |
| 400-191957-22 | BA14593 MW-11H DUP | Water  | 08/04/20 09:35 | 08/10/20 14:30 |          |
| 400-191957-23 | BA14594 MW-13H     | Water  | 08/04/20 11:10 | 08/10/20 14:30 |          |
| 400-191957-24 | BA14595 MW-9H      | Water  | 08/04/20 12:20 | 08/10/20 14:30 |          |
| 400-191957-25 | BA14596 MW-9V      | Water  | 08/04/20 15:30 | 08/10/20 14:30 |          |
| 400-191957-26 | BA14597 MW-4L      | Water  | 08/05/20 09:55 | 08/10/20 14:30 |          |
| 400-191957-27 | BA14598 MW-14H     | Water  | 08/05/20 11:10 | 08/10/20 14:30 |          |
| 400-191957-28 | BA14599 MW-4       | Water  | 08/05/20 12:08 | 08/10/20 14:30 |          |
| 400-191957-29 | BA14600 MW-4V      | Water  | 08/05/20 13:05 | 08/10/20 14:30 |          |
| 400-191957-30 | BA14601 FB-2       | Water  | 08/05/20 13:30 | 08/10/20 14:30 |          |
| 400-191957-31 | BA14602 EB-1       | Water  | 08/05/20 13:45 | 08/10/20 14:30 |          |

Eurofins TestAmerica, Pensacola

Client: Alabama Power General Test Laboratory

Job ID: 400-191957-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1289

Client Sample ID: BA14572 EB-2

Lab Sample ID: 400-191957-1 Date Collected: 08/03/20 10:15 **Matrix: Water** Date Received: 08/10/20 14:30

| Analyte    | Result | Qualifier | Count<br>Uncert.<br>(2σ+/-) | Total<br>Uncert.<br>(2σ+/-) | RL   | MDC   | Unit | Prepared       | Analyzed       | Dil Fac |
|------------|--------|-----------|-----------------------------|-----------------------------|------|-------|------|----------------|----------------|---------|
| Radium-226 | 0.0510 |           | 0.0890                      | 0.0891                      | 1.00 | 0.158 |      |                |                | 1       |
| Carrier    | %Yield | Qualifier | Limits                      |                             |      |       |      | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier | 86.1   |           | 40 - 110                    |                             |      |       |      | 08/13/20 15:23 | 09/06/20 12:29 | 1       |

| Method: 9320 - I | Radium-228 ( | (GFPC)    |                  |                  |      |       |       |                |                |         |
|------------------|--------------|-----------|------------------|------------------|------|-------|-------|----------------|----------------|---------|
|                  |              | •         | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |
| Analyte          | Result       | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-228       | 0.477        | U         | 0.392            | 0.395            | 1.00 | 0.624 | pCi/L | 08/13/20 16:06 | 09/01/20 11:56 | 1       |
| Carrier          | %Yield       | Qualifier | Limits           |                  |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier       | 86.1         |           | 40 - 110         |                  |      |       |       | 08/13/20 16:06 | 09/01/20 11:56 | 1       |
| Y Carrier        | 81.1         |           | 40 - 110         |                  |      |       |       | 08/13/20 16:06 | 09/01/20 11:56 | 1       |

| Method: Ra226_Ra2            | 28 - Con | nbined Rad | dium-226 a | nd Radium | -228 |       |       |          |                |         |
|------------------------------|----------|------------|------------|-----------|------|-------|-------|----------|----------------|---------|
| _                            |          |            | Count      | Total     |      |       |       |          |                |         |
|                              |          |            | Uncert.    | Uncert.   |      |       |       |          |                |         |
| Analyte                      | Result   | Qualifier  | (2σ+/-)    | (2σ+/-)   | RL   | MDC   | Unit  | Prepared | Analyzed       | Dil Fac |
| Combined Radium 226<br>+ 228 | 0.528    | U          | 0.402      | 0.405     | 5.00 | 0.624 | pCi/L |          | 09/28/20 11:10 | 1       |

Client: Alabama Power General Test Laboratory

Job ID: 400-191957-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1289

Client Sample ID: BA14573 PZ-18

Date Collected: 08/03/20 11:00 Date Received: 08/10/20 14:30

Lab Sample ID: 400-191957-2

**Matrix: Water** 

| adium-226 ( | GFPC)                    |                                                  |                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------|--------------------------|--------------------------------------------------|------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | ,                        | Count Uncert.                                    | Total<br>Uncert. |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Result      | Qualifier                | (2σ+/-)                                          | (2σ+/-)          | RL                    | MDC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Prepared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dil Fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.0663      | U                        | 0.0946                                           | 0.0948           | 1.00                  | 0.161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pCi/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 08/13/20 15:23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 09/06/20 12:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| %Yield      | Qualifier                | Limits                                           |                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Prepared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dil Fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 91.8        |                          | 40 - 110                                         |                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 08/13/20 15:23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 09/06/20 12:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | Result   0.0663   %Yield | Result Qualifier 0.0663 U  WYield Qualifier 91.8 | Count Uncert.    | Count Uncert. Uncert. | Count   Total   Uncert.   Uncert.   Uncert.   Uncert.   Uncert.   O.0663   U   O.0946   O.0948   O. | Count   Total   Uncert.   Uncert. | Count   Total   Uncert.   Uncert.   Uncert.   Uncert.   Uncert.   O.0663   U   O.0946   O.0948   O.0948   O.0161   O. | Count Uncert. Uncert. Uncert.   Variety   V | Count Uncert. Uncert. Uncert.   Variety   V |

|            |        |           | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |
|------------|--------|-----------|------------------|------------------|------|-------|-------|----------------|----------------|---------|
| Analyte    | Result | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-228 | 0.444  | U         | 0.377            | 0.380            | 1.00 | 0.603 | pCi/L | 08/13/20 16:06 | 09/01/20 11:56 | 1       |
| Carrier    | %Yield | Qualifier | Limits           |                  |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier | 91.8   |           | 40 - 110         |                  |      |       |       | 08/13/20 16:06 | 09/01/20 11:56 | 1       |
| Y Carrier  | 78.9   |           | 40 - 110         |                  |      |       |       | 08/13/20 16:06 | 09/01/20 11:56 | 1       |

| Method: Ra226_Ra2            | 28 - Con | nbined Rad | dium-226 a | nd Radium | <b>-228</b> |       |       |          |                |         |
|------------------------------|----------|------------|------------|-----------|-------------|-------|-------|----------|----------------|---------|
| _                            |          |            | Count      | Total     |             |       |       |          |                |         |
|                              |          |            | Uncert.    | Uncert.   |             |       |       |          |                |         |
| Analyte                      | Result   | Qualifier  | (2σ+/-)    | (2σ+/-)   | RL          | MDC   | Unit  | Prepared | Analyzed       | Dil Fac |
| Combined Radium 226<br>+ 228 | 0.511    | U          | 0.389      | 0.392     | 5.00        | 0.603 | pCi/L |          | 09/28/20 11:11 | 1       |

Client: Alabama Power General Test Laboratory

Job ID: 400-191957-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1289

Client Sample ID: BA14574 PZ-19

Lab Sample ID: 400-191957-3 Date Collected: 08/03/20 12:50 **Matrix: Water** Date Received: 08/10/20 14:30

|            |        |           | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |
|------------|--------|-----------|------------------|------------------|------|-------|-------|----------------|----------------|---------|
| Analyte    | Result | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-226 | 0.109  | U         | 0.106            | 0.107            | 1.00 | 0.163 | pCi/L | 08/13/20 15:23 | 09/06/20 15:30 | 1       |
| Carrier    | %Yield | Qualifier | Limits           |                  |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier | 79.8   |           | 40 - 110         |                  |      |       |       | 08/13/20 15:23 | 09/06/20 15:30 | 1       |

| Method: 9320 - I | Radium-228 ( | GFPC)     |                  |                  |      |       |       |                |                |         |
|------------------|--------------|-----------|------------------|------------------|------|-------|-------|----------------|----------------|---------|
|                  | ·            | ,         | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |
| Analyte          | Result       | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-228       | 0.543        | U         | 0.453            | 0.456            | 1.00 | 0.717 | pCi/L | 08/13/20 16:06 | 09/01/20 11:56 | 1       |
| Carrier          | %Yield       | Qualifier | Limits           |                  |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier       | 79.8         |           | 40 - 110         |                  |      |       |       | 08/13/20 16:06 | 09/01/20 11:56 | 1       |
| Y Carrier        | 68.8         |           | 40 - 110         |                  |      |       |       | 08/13/20 16:06 | 09/01/20 11:56 | 1       |

| Method: Ra226_Ra2            | 28 - Con | bined Rad | dium-226 a | nd Radium | <b>-228</b> |       |       |          |                |         |
|------------------------------|----------|-----------|------------|-----------|-------------|-------|-------|----------|----------------|---------|
| _                            |          |           | Count      | Total     |             |       |       |          |                |         |
|                              |          |           | Uncert.    | Uncert.   |             |       |       |          |                |         |
| Analyte                      | Result   | Qualifier | (2σ+/-)    | (2σ+/-)   | RL          | MDC   | Unit  | Prepared | Analyzed       | Dil Fac |
| Combined Radium 226<br>+ 228 | 0.652    | U         | 0.465      | 0.468     | 5.00        | 0.717 | pCi/L |          | 09/28/20 11:11 | 1       |

Client: Alabama Power General Test Laboratory

Job ID: 400-191957-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1289

Client Sample ID: BA14575 PZ-20

Lab Sample ID: 400-191957-4 Date Collected: 08/03/20 13:59 **Matrix: Water** Date Received: 08/10/20 14:30

| Method: 9315 - Rad | dium-226 ( | (GFPC)    |                  |                  |      |       |       |                |                |         |
|--------------------|------------|-----------|------------------|------------------|------|-------|-------|----------------|----------------|---------|
|                    |            | ,         | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |
| Analyte            | Result     | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-226         | 0.0788     | U         | 0.0925           | 0.0928           | 1.00 | 0.149 | pCi/L | 08/13/20 15:23 | 09/06/20 15:32 | 1       |
| Carrier            | %Yield     | Qualifier | Limits           |                  |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier         | 80.4       |           | 40 - 110         |                  |      |       |       | 08/13/20 15:23 | 09/06/20 15:32 | 1       |
|                    |            |           |                  |                  |      |       |       |                |                |         |

| Method: 9320 - | , taaram 220 ( | (3.1.0)   | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |
|----------------|----------------|-----------|------------------|------------------|------|-------|-------|----------------|----------------|---------|
| Analyte        | Posult         | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
|                |                |           | <del></del>      | <del>`</del>     |      |       |       |                |                | Diriac  |
| Radium-228     | 0.0105         | U         | 0.358            | 0.358            | 1.00 | 0.639 | pCi/L | 08/13/20 16:06 | 09/01/20 11:59 | 1       |
| Carrier        | %Yield         | Qualifier | Limits           |                  |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier     | 80.4           |           | 40 - 110         |                  |      |       |       | 08/13/20 16:06 | 09/01/20 11:59 | 1       |
| Y Carrier      | 85.6           |           | 40 - 110         |                  |      |       |       | 08/13/20 16:06 | 09/01/20 11:59 | 1       |

| Method: Ra226_Ra2   | 28 - Con | bined Rad | dium-226 a         | nd Radium          | <b>-228</b> |       |      |          |                |         |
|---------------------|----------|-----------|--------------------|--------------------|-------------|-------|------|----------|----------------|---------|
| _                   |          |           | Count              | Total              |             |       |      |          |                |         |
| Analyte             | Result   | Qualifier | Uncert.<br>(2σ+/-) | Uncert.<br>(2σ+/-) | RL          | MDC   | Unit | Prepared | Analyzed       | Dil Fac |
| Combined Radium 226 | 0.0893   |           | 0.370              | 0.370              | 5.00        | 0.639 |      |          | 09/28/20 11:11 | 1       |
| + 228               | 0.0000   | Ü         | 0.070              | 0.070              | 0.00        | 0.000 | PO"L |          | 00/20/20 11.11 | '       |

Client: Alabama Power General Test Laboratory

Job ID: 400-191957-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1289

Client Sample ID: BA14576 PZ-20 DUP

Lab Sample ID: 400-191957-5 Date Collected: 08/03/20 13:59 **Matrix: Water** Date Received: 08/10/20 14:30

|                |              |           | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |
|----------------|--------------|-----------|------------------|------------------|------|-------|-------|----------------|----------------|---------|
| Analyte        | Result       | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-226     | 0.102        | U         | 0.101            | 0.101            | 1.00 | 0.154 | pCi/L | 08/13/20 15:23 | 09/06/20 15:32 | 1       |
| Carrier        | %Yield       | Qualifier | Limits           |                  |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier     | 75.8         |           | 40 - 110         |                  |      |       |       | 08/13/20 15:23 | 09/06/20 15:32 | 1       |
| -              |              |           |                  |                  |      |       |       |                |                |         |
| Method: 9320 - | Radium-228 ( | (GFPC)    |                  |                  |      |       |       |                |                |         |
| Method: 9320 - | Radium-228 ( | (GFPC)    | Count            | Total            |      |       |       |                |                |         |
| Method: 9320 - | Radium-228(  | (GFPC)    | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |

| Radium-228 | 0.0565 | U         | 0.489    | 0.489 | 1.00 | 0.865 | pCi/L | 08/13/20 16:06 | 09/01/20 11:59 | 1       |
|------------|--------|-----------|----------|-------|------|-------|-------|----------------|----------------|---------|
| Carrier    | %Yield | Qualifier | Limits   |       |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier | 75.8   |           | 40 - 110 |       |      |       |       | 08/13/20 16:06 | 09/01/20 11:59 | 1       |
| Y Carrier  | 68.0   |           | 40 - 110 |       |      |       |       | 08/13/20 16:06 | 09/01/20 11:59 | 1       |

| Method: Ra226_Ra2            | 228 - Con | bined Rad | dium-226 a | nd Radium | 1-228 |       |       |          |                |         |
|------------------------------|-----------|-----------|------------|-----------|-------|-------|-------|----------|----------------|---------|
| _                            |           |           | Count      | Total     |       |       |       |          |                |         |
|                              |           |           | Uncert.    | Uncert.   |       |       |       |          |                |         |
| Analyte                      | Result    | Qualifier | (2σ+/-)    | (2σ+/-)   | RL    | MDC   | Unit  | Prepared | Analyzed       | Dil Fac |
| Combined Radium 226<br>+ 228 | 0.158     | U         | 0.499      | 0.499     | 5.00  | 0.865 | pCi/L |          | 09/28/20 11:11 | 1       |

Client: Alabama Power General Test Laboratory

Job ID: 400-191957-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1289

Client Sample ID: BA14577 FB-1

Lab Sample ID: 400-191957-6 Date Collected: 08/03/20 14:45 **Matrix: Water** Date Received: 08/10/20 14:30

|            |         |           | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |
|------------|---------|-----------|------------------|------------------|------|-------|-------|----------------|----------------|---------|
| Analyte    | Result  | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-226 | -0.0121 | U         | 0.0637           | 0.0637           | 1.00 | 0.153 | pCi/L | 08/13/20 15:23 | 09/06/20 15:33 | 1       |
| Carrier    | %Yield  | Qualifier | Limits           |                  |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier | 75.8    |           | 40 - 110         |                  |      |       |       | 08/13/20 15:23 | 09/06/20 15:33 | 1       |

| Analyte    | Result  | Qualifier | Count<br>Uncert.<br>(2σ+/-) | Total<br>Uncert.<br>(2σ+/-) | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
|------------|---------|-----------|-----------------------------|-----------------------------|------|-------|-------|----------------|----------------|---------|
| Radium-228 | -0.0590 | U         | 0.408                       | 0.408                       | 1.00 | 0.739 | pCi/L | 08/13/20 16:06 | 09/01/20 11:59 | 1       |
| Carrier    | %Yield  | Qualifier | Limits                      |                             |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier | 75.8    |           | 40 - 110                    |                             |      |       |       | 08/13/20 16:06 | 09/01/20 11:59 | 1       |
| Y Carrier  | 80.7    |           | 40 - 110                    |                             |      |       |       | 08/13/20 16:06 | 09/01/20 11:59 | 1       |

| Method: Ra226_Ra2            | 228 - Con | nbined Rad | dium-226 a | nd Radium | <b>-228</b> |       |       |          |                |         |
|------------------------------|-----------|------------|------------|-----------|-------------|-------|-------|----------|----------------|---------|
| _                            |           |            | Count      | Total     |             |       |       |          |                |         |
|                              |           |            | Uncert.    | Uncert.   |             |       |       |          |                |         |
| Analyte                      | Result    | Qualifier  | (2σ+/-)    | (2σ+/-)   | RL          | MDC   | Unit  | Prepared | Analyzed       | Dil Fac |
| Combined Radium 226<br>+ 228 | -0.0711   | U          | 0.413      | 0.413     | 5.00        | 0.739 | pCi/L |          | 09/28/20 11:11 | 1       |

Client: Alabama Power General Test Laboratory

Job ID: 400-191957-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1289

Client Sample ID: BA14578 PZ-21

Lab Sample ID: 400-191957-7 Date Collected: 08/04/20 08:53 **Matrix: Water** Date Received: 08/10/20 14:30

|            |        |           | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |
|------------|--------|-----------|------------------|------------------|------|-------|-------|----------------|----------------|---------|
| Analyte    | Result | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-226 | 0.321  |           | 0.144            | 0.147            | 1.00 | 0.142 | pCi/L | 08/13/20 15:23 | 09/06/20 15:33 | 1       |
| Carrier    | %Yield | Qualifier | Limits           |                  |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier | 79.2   |           | 40 - 110         |                  |      |       |       | 08/13/20 15:23 | 09/06/20 15:33 |         |

| Method: 9320 - I | Radium-228 ( | (GFPC)    |                  |                  |      |       |       |                |                |         |
|------------------|--------------|-----------|------------------|------------------|------|-------|-------|----------------|----------------|---------|
|                  |              |           | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |
| Analyte          | Result       | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-228       | 0.518        | U         | 0.424            | 0.427            | 1.00 | 0.675 | pCi/L | 08/13/20 16:06 | 09/01/20 11:59 | 1       |
| Carrier          | %Yield       | Qualifier | Limits           |                  |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier       | 79.2         |           | 40 - 110         |                  |      |       |       | 08/13/20 16:06 | 09/01/20 11:59 | 1       |
| Y Carrier        | 83.7         |           | 40 - 110         |                  |      |       |       | 08/13/20 16:06 | 09/01/20 11:59 | 1       |

| Method: Ra226_Ra          | 228 - Con | nbined Ra | dium-226 a | nd Radium | 1-228 |       |       |          |                |         |
|---------------------------|-----------|-----------|------------|-----------|-------|-------|-------|----------|----------------|---------|
|                           |           |           | Count      | Total     |       |       |       |          |                |         |
|                           |           |           | Uncert.    | Uncert.   |       |       |       |          |                |         |
| Analyte                   | Result    | Qualifier | (2σ+/-)    | (2σ+/-)   | RL    | MDC   | Unit  | Prepared | Analyzed       | Dil Fac |
| Combined Radium 226 + 228 | 0.839     |           | 0.448      | 0.452     | 5.00  | 0.675 | pCi/L |          | 09/28/20 11:11 | 1       |

Client: Alabama Power General Test Laboratory

Job ID: 400-191957-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1289

Client Sample ID: BA14579 PZ-22

Lab Sample ID: 400-191957-8 Date Collected: 08/04/20 10:00 **Matrix: Water** Date Received: 08/10/20 14:30

|            |        |           | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |
|------------|--------|-----------|------------------|------------------|------|-------|-------|----------------|----------------|---------|
| Analyte    | Result | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-226 | 0.204  |           | 0.119            | 0.121            | 1.00 | 0.146 | pCi/L | 08/13/20 15:23 | 09/06/20 15:33 | 1       |
| Carrier    | %Yield | Qualifier | Limits           |                  |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier | 87.3   |           | 40 - 110         |                  |      |       |       | 08/13/20 15:23 | 09/06/20 15:33 | 1       |

| Method: 9320 - | Radium-228 ( | (GFPC)    |                  |                  |      |       |       |                |                |         |
|----------------|--------------|-----------|------------------|------------------|------|-------|-------|----------------|----------------|---------|
|                |              |           | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |
| Analyte        | Result       | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-228     | -0.0907      | U         | 0.333            | 0.333            | 1.00 | 0.615 | pCi/L | 08/13/20 16:06 | 09/01/20 11:59 | 1       |
| Carrier        | %Yield       | Qualifier | Limits           |                  |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier     | 87.3         |           | 40 - 110         |                  |      |       |       | 08/13/20 16:06 | 09/01/20 11:59 | 1       |
| Y Carrier      | 81.1         |           | 40 - 110         |                  |      |       |       | 08/13/20 16:06 | 09/01/20 11:59 | 1       |

| Method: Ra226_Ra2            | 228 - Con | bined Rad | dium-226 a | nd Radium | 1-228 |       |       |          |                |         |
|------------------------------|-----------|-----------|------------|-----------|-------|-------|-------|----------|----------------|---------|
| _                            |           |           | Count      | Total     |       |       |       |          |                |         |
| Amalusta                     | Danult    | O., -1:6: | Uncert.    | Uncert.   | D.    | MDC   | 11    | D        | A a lo a d     | Dil Faa |
| Analyte                      | Result    | Qualifier | (2σ+/-)    | (2σ+/-)   | RL    | MDC   | Unit  | Prepared | Analyzed       | Dil Fac |
| Combined Radium 226<br>+ 228 | 0.114     | U         | 0.354      | 0.354     | 5.00  | 0.615 | pCi/L |          | 09/28/20 11:11 | 1       |

Client: Alabama Power General Test Laboratory

Job ID: 400-191957-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1289

Client Sample ID: BA14580 PZ-17

Date Collected: 08/04/20 11:20 Date Received: 08/10/20 14:30

Lab Sample ID: 400-191957-9

**Matrix: Water** 

|            |        |           | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |
|------------|--------|-----------|------------------|------------------|------|-------|-------|----------------|----------------|---------|
| Analyte    | Result | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-226 | 0.0512 | U         | 0.104            | 0.105            | 1.00 | 0.189 | pCi/L | 08/13/20 15:23 | 09/06/20 15:34 | 1       |
| Carrier    | %Yield | Qualifier | Limits           |                  |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier | 77.9   |           | 40 - 110         |                  |      |       |       | 08/13/20 15:23 | 09/06/20 15:34 | 1       |

|            | Radium-228 ( | ,         | Count    | Total   |      |       |       |                |                |         |
|------------|--------------|-----------|----------|---------|------|-------|-------|----------------|----------------|---------|
|            |              |           | Uncert.  | Uncert. |      |       |       |                |                |         |
| Analyte    | Result       | Qualifier | (2σ+/-)  | (2σ+/-) | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-228 | 0.356        | U         | 0.398    | 0.399   | 1.00 | 0.653 | pCi/L | 08/13/20 16:06 | 09/01/20 11:59 | 1       |
| Carrier    | %Yield       | Qualifier | Limits   |         |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier | 77.9         |           | 40 - 110 |         |      |       |       | 08/13/20 16:06 | 09/01/20 11:59 | 1       |
| Y Carrier  | 82.6         |           | 40 - 110 |         |      |       |       | 08/13/20 16:06 | 09/01/20 11:59 | 1       |

| Method: Ra226_Ra2            | 28 - Con | nbined Rad | dium-226 a | nd Radium | <b>-228</b> |       |       |          |                |         |
|------------------------------|----------|------------|------------|-----------|-------------|-------|-------|----------|----------------|---------|
| _                            |          |            | Count      | Total     |             |       |       |          |                |         |
|                              |          |            | Uncert.    | Uncert.   |             |       |       |          |                |         |
| Analyte                      | Result   | Qualifier  | (2σ+/-)    | (2σ+/-)   | RL          | MDC   | Unit  | Prepared | Analyzed       | Dil Fac |
| Combined Radium 226<br>+ 228 | 0.407    | U          | 0.411      | 0.413     | 5.00        | 0.653 | pCi/L |          | 09/28/20 11:11 | 1       |

Client: Alabama Power General Test Laboratory

Job ID: 400-191957-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1289

Client Sample ID: BA14581 MW-3V

Date Collected: 08/04/20 13:01 Date Received: 08/10/20 14:30

Lab Sample ID: 400-191957-10

**Matrix: Water** 

|            |        |           | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |
|------------|--------|-----------|------------------|------------------|------|-------|-------|----------------|----------------|---------|
| Analyte    | Result | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-226 | 0.0648 | U         | 0.0944           | 0.0946           | 1.00 | 0.161 | pCi/L | 08/13/20 15:23 | 09/06/20 15:34 | 1       |
| Carrier    | %Yield | Qualifier | Limits           |                  |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier | 82.8   |           | 40 - 110         |                  |      |       |       | 08/13/20 15:23 | 09/06/20 15:34 | 1       |

| Method: 9320 - I | Radium-228 ( | GFPC)       |                  |                  |      |       |       |                   |                |         |
|------------------|--------------|-------------|------------------|------------------|------|-------|-------|-------------------|----------------|---------|
| A                | D16          | O. all flam | Count<br>Uncert. | Total<br>Uncert. | Di . | MDO   | 11-24 | <b>D</b> anis and | Avelowed       | DU E.   |
| Analyte          | Result       | Qualifier   | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared          | Analyzed       | Dil Fac |
| Radium-228       | -0.0715      | U           | 0.343            | 0.343            | 1.00 | 0.630 | pCi/L | 08/13/20 16:06    | 09/01/20 12:00 | 1       |
| Carrier          | %Yield       | Qualifier   | Limits           |                  |      |       |       | Prepared          | Analyzed       | Dil Fac |
| Ba Carrier       | 82.8         |             | 40 - 110         |                  |      |       |       | 08/13/20 16:06    | 09/01/20 12:00 | 1       |
| Y Carrier        | 81.1         |             | 40 - 110         |                  |      |       |       | 08/13/20 16:06    | 09/01/20 12:00 | 1       |

| Method: Ra226_Ra             | 228 - Con | nbined Ra | dium-226 a | nd Radium | 1-228 |       |       |          |                |         |
|------------------------------|-----------|-----------|------------|-----------|-------|-------|-------|----------|----------------|---------|
| _                            |           |           | Count      | Total     |       |       |       |          |                |         |
|                              |           |           | Uncert.    | Uncert.   |       |       |       |          |                |         |
| Analyte                      | Result    | Qualifier | (2σ+/-)    | (2σ+/-)   | RL    | MDC   | Unit  | Prepared | Analyzed       | Dil Fac |
| Combined Radium 226<br>+ 228 | -0.00668  | U         | 0.356      | 0.356     | 5.00  | 0.630 | pCi/L |          | 09/28/20 11:11 | 1       |

Client: Alabama Power General Test Laboratory

Job ID: 400-191957-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1289

Client Sample ID: BA14582 MW-3

Method: 9315 - Radium-226 (GFPC)

Lab Sample ID: 400-191957-11 Date Collected: 08/04/20 15:35

**Matrix: Water** Date Received: 08/10/20 14:30

|                |              |           | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |
|----------------|--------------|-----------|------------------|------------------|------|-------|-------|----------------|----------------|---------|
| Analyte        | Result       | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-226     | 0.0190       | U         | 0.0821           | 0.0821           | 1.00 | 0.161 | pCi/L | 08/13/20 15:23 | 09/06/20 15:34 | 1       |
| Carrier        | %Yield       | Qualifier | Limits           |                  |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier     | 90.6         |           | 40 - 110         |                  |      |       |       | 08/13/20 15:23 | 09/06/20 15:34 | 1       |
| Method: 9320 - | Radium-228 ( | (GFPC)    |                  |                  |      |       |       |                |                |         |
|                |              |           | Count            | Total            |      |       |       |                |                |         |
|                |              |           | Uncert.          | Uncert.          |      |       |       |                |                |         |
| Analyto        | Pocult       | Qualifier | (2441)           | (201)            | DI   | MDC   | Linit | Dropared       | Analyzod       | Dil Eac |

| Analyte    | Result | Qualifier | (2σ+/-)  | (2σ+/-) | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
|------------|--------|-----------|----------|---------|------|-------|-------|----------------|----------------|---------|
| Radium-228 | 0.431  | U         | 0.308    | 0.310   | 1.00 | 0.477 | pCi/L | 08/13/20 16:06 | 09/01/20 12:00 | 1       |
| Carrier    | %Yield | Qualifier | Limits   |         |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier | 90.6   |           | 40 - 110 |         |      |       |       | 08/13/20 16:06 | 09/01/20 12:00 | 1       |
| Y Carrier  | 88.6   |           | 40 - 110 |         |      |       |       | 08/13/20 16:06 | 09/01/20 12:00 | 1       |

| Method: Ra226_Ra2            | 28 - Con | bined Rad | dium-226 a | nd Radium | <b>-228</b> |       |       |          |                |         |
|------------------------------|----------|-----------|------------|-----------|-------------|-------|-------|----------|----------------|---------|
| _                            |          |           | Count      | Total     |             |       |       |          |                |         |
|                              |          |           | Uncert.    | Uncert.   |             |       |       |          |                |         |
| Analyte                      | Result   | Qualifier | (2σ+/-)    | (2σ+/-)   | RL          | MDC   | Unit  | Prepared | Analyzed       | Dil Fac |
| Combined Radium 226<br>+ 228 | 0.450    | U         | 0.319      | 0.321     | 5.00        | 0.477 | pCi/L |          | 09/28/20 11:11 | 1       |

Client: Alabama Power General Test Laboratory

Job ID: 400-191957-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1289

Client Sample ID: BA14583 MW-8V

Lab Sample ID: 400-191957-12 Date Collected: 08/05/20 10:20 **Matrix: Water** 

Date Received: 08/10/20 14:30

| Method: 9315 - I             | Radium-226 (                | (GIFC)            |                                      |                    |                |                  |       |                         |                                  |         |
|------------------------------|-----------------------------|-------------------|--------------------------------------|--------------------|----------------|------------------|-------|-------------------------|----------------------------------|---------|
|                              |                             |                   | Count Uncert.                        | Total<br>Uncert.   |                |                  |       |                         |                                  |         |
| Analyte                      | Result                      | Qualifier         | (2σ+/-)                              | (2σ+/-)            | RL             | MDC              | Unit  | Prepared                | Analyzed                         | Dil Fac |
| Radium-226                   | 0.340                       |                   | 0.159                                | 0.162              | 1.00           | 0.174            | pCi/L | 08/13/20 15:23          | 09/06/20 17:28                   | 1       |
| Carrier                      | %Yield                      | Qualifier         | Limits                               |                    |                |                  |       | Prepared                | Analyzed                         | Dil Fac |
| D- O- mile                   | 70.4                        |                   | 10 110                               |                    |                |                  |       | 00/40/00 45:00          | 00/00/00 47:00                   |         |
| Ba Carrier  Method: 9320 - I | 73.1<br><b>Radium-228 (</b> | (GFPC)            | 40 - 110                             |                    |                |                  |       | 08/13/20 15:23          | 09/06/20 17:28                   |         |
| Method: 9320 - I             |                             | (GFPC)            | Count                                | Total              |                |                  |       | 08/13/20 15:23          | 09/06/20 17:28                   | ,       |
| -                            |                             | (GFPC)            |                                      | Total<br>Uncert.   |                |                  |       | 08/13/20 15:23          | 09/06/20 17:28                   | ,       |
| -                            | Radium-228 (                | (GFPC)  Qualifier | Count                                |                    | RL             | MDC              | Unit  | 08/13/20 15:23          | Analyzed                         | Dil Fac |
| Method: 9320 - I             | Radium-228 (                | `                 | Count<br>Uncert.                     | Uncert.            | <b>RL</b> 1.00 | <b>MDC</b> 0.693 |       |                         |                                  | Dil Fac |
| Method: 9320 - I             | Radium-228 (  Result 1.51   | ` '               | Count<br>Uncert.<br>(2σ+/-)          | Uncert.<br>(2σ+/-) |                |                  |       | Prepared                | Analyzed                         | 1       |
| Method: 9320 - I             | Radium-228 (  Result 1.51   | Qualifier         | Count<br>Uncert.<br>(2σ+/-)<br>0.516 | Uncert.<br>(2σ+/-) |                |                  |       | Prepared 08/13/20 16:06 | Analyzed 09/01/20 12:00 Analyzed | Dil Fac |

| Method: Ra226_Ra             | 228 - Con | bined Rad | dium-226 a | nd Radium | 1-228 |       |       |          |                |         |
|------------------------------|-----------|-----------|------------|-----------|-------|-------|-------|----------|----------------|---------|
| _                            |           |           | Count      | Total     |       |       |       |          |                |         |
|                              |           |           | Uncert.    | Uncert.   |       |       |       |          |                |         |
| Analyte                      | Result    | Qualifier | (2σ+/-)    | (2σ+/-)   | RL    | MDC   | Unit  | Prepared | Analyzed       | Dil Fac |
| Combined Radium<br>226 + 228 | 1.85      |           | 0.540      | 0.558     | 5.00  | 0.693 | pCi/L |          | 09/28/20 11:11 | 1       |

Client: Alabama Power General Test Laboratory

Job ID: 400-191957-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1289

Client Sample ID: BA14584 MW-8

Lab Sample ID: 400-191957-13 Date Collected: 08/05/20 11:24 **Matrix: Water** Date Received: 08/10/20 14:30

| 6 (GFPC) | Radium-226 | 9315 | Method: |  |
|----------|------------|------|---------|--|
|----------|------------|------|---------|--|

|            |    |          |           | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |
|------------|----|----------|-----------|------------------|------------------|------|-------|-------|----------------|----------------|---------|
| Analyte    |    | Result   | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-2   | 26 | -0.00893 | U         | 0.148            | 0.148            | 1.00 | 0.315 | pCi/L | 09/15/20 23:38 | 09/25/20 14:24 | 1       |
| Carrier    |    | %Yield   | Qualifier | Limits           |                  |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier | •  | 87.2     |           | 40 - 110         |                  |      |       |       | 09/15/20 23:38 | 09/25/20 14:24 |         |

| Method: 9320 - |        | J. 1 J,   | Count<br>Uncert. | Total<br>Uncert. |      |      |       |                |                |         |
|----------------|--------|-----------|------------------|------------------|------|------|-------|----------------|----------------|---------|
| Analyte        | Result | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC  | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-228     | -0.106 | U G       | 0.929            | 0.929            | 1.00 | 1.68 | pCi/L | 09/03/20 15:00 | 09/15/20 13:10 | 1       |
| Carrier        | %Yield | Qualifier | Limits           |                  |      |      |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier     | 87.2   |           | 40 - 110         |                  |      |      |       | 09/03/20 15:00 | 09/15/20 13:10 | 1       |
| Y Carrier      | 76.3   |           | 40 - 110         |                  |      |      |       | 09/03/20 15:00 | 09/15/20 13:10 | 1       |

Method: Ra226 Ra228 - Combined Radium-226 and Radium-228

| Method. Nazzo_Na    | 220 - 0011 | ibilieu iva | ululli-220 a | iiu itauiui | 11-220 |      |       |          |                |         |
|---------------------|------------|-------------|--------------|-------------|--------|------|-------|----------|----------------|---------|
|                     |            |             | Count        | Total       |        |      |       |          |                |         |
|                     |            |             | Uncert.      | Uncert.     |        |      |       |          |                |         |
| Analyte             | Result     | Qualifier   | (2σ+/-)      | (2σ+/-)     | RL     | MDC  | Unit  | Prepared | Analyzed       | Dil Fac |
| Combined Radium 226 | -0.115     | U           | 0.941        | 0.941       | 5.00   | 1.68 | pCi/L |          | 09/27/20 15:23 | 1       |

+ 228

Client: Alabama Power General Test Laboratory

Job ID: 400-191957-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1289

Client Sample ID: BA14585 MW-12H

Date Collected: 08/05/20 12:50 Date Received: 08/10/20 14:30

Lab Sample ID: 400-191957-14

**Matrix: Water** 

| Method: 9315 | - Radium-226 ( | (GFPC)    |                  |         |      |       |       |                |                |         |
|--------------|----------------|-----------|------------------|---------|------|-------|-------|----------------|----------------|---------|
|              |                |           | Count<br>Uncert. | Total   |      |       |       |                |                |         |
|              |                |           | Uncert.          | Uncert. |      |       |       |                |                |         |
| Analyte      | Result         | Qualifier | (2σ+/-)          | (2σ+/-) | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-226   | 0.171          | U         | 0.191            | 0.192   | 1.00 | 0.306 | pCi/L | 09/15/20 23:38 | 09/25/20 14:24 | 1       |
| Carrier      | %Yield         | Qualifier | Limits           |         |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier   | 88.4           |           | 40 - 110         |         |      |       |       | 09/15/20 23:38 | 09/25/20 14:24 | 1       |

| Method: 9320 - I | Radium-228 ( | (GFPC)    |                  |                  |      |      |       |                |                |         |
|------------------|--------------|-----------|------------------|------------------|------|------|-------|----------------|----------------|---------|
|                  |              |           | Count<br>Uncert. | Total<br>Uncert. |      |      |       |                |                |         |
| Analyte          | Result       | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC  | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-228       | -0.477       | UG        | 0.915            | 0.916            | 1.00 | 1.70 | pCi/L | 09/03/20 15:00 | 09/15/20 13:10 | 1       |
| Carrier          | %Yield       | Qualifier | Limits           |                  |      |      |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier       | 88.4         |           | 40 - 110         |                  |      |      |       | 09/03/20 15:00 | 09/15/20 13:10 | 1       |
| Y Carrier        | 80.7         |           | 40 - 110         |                  |      |      |       | 09/03/20 15:00 | 09/15/20 13:10 | 1       |

| Method: Ra226_Ra2            | 28 - Con | nbined Rad | dium-226 a | nd Radium | 1-228 |      |       |          |                |         |
|------------------------------|----------|------------|------------|-----------|-------|------|-------|----------|----------------|---------|
| _                            |          |            | Count      | Total     |       |      |       |          |                |         |
|                              |          |            | Uncert.    | Uncert.   |       |      |       |          |                |         |
| Analyte                      | Result   | Qualifier  | (2σ+/-)    | (2σ+/-)   | RL    | MDC  | Unit  | Prepared | Analyzed       | Dil Fac |
| Combined Radium 226<br>+ 228 | -0.306   | U          | 0.935      | 0.936     | 5.00  | 1.70 | pCi/L |          | 09/27/20 15:23 | 1       |

Client: Alabama Power General Test Laboratory

Job ID: 400-191957-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1289

Client Sample ID: BA14586 MW-12V

Date Collected: 08/05/20 13:47 Date Received: 08/10/20 14:30

Lab Sample ID: 400-191957-15 **Matrix: Water** 

|            |        |           | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |
|------------|--------|-----------|------------------|------------------|------|-------|-------|----------------|----------------|---------|
| Analyte    | Result | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-226 | 0.143  | U         | 0.156            | 0.157            | 1.00 | 0.244 | pCi/L | 09/15/20 23:38 | 09/25/20 20:19 | 1       |
| Carrier    | %Yield | Qualifier | Limits           |                  |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier | 84.4   |           | 40 - 110         |                  |      |       |       | 09/15/20 23:38 | 09/25/20 20:19 | 1       |

| Method: 9320 - I | Radium-228 ( | GFPC)     |                  |                  |      |      |       |                |                |         |
|------------------|--------------|-----------|------------------|------------------|------|------|-------|----------------|----------------|---------|
|                  |              | ·         | Count<br>Uncert. | Total<br>Uncert. |      |      |       |                |                |         |
| Analyte          | Result       | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC  | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-228       | -0.427       | UG        | 0.847            | 0.848            | 1.00 | 1.60 | pCi/L | 09/03/20 15:00 | 09/15/20 13:10 | 1       |
| Carrier          | %Yield       | Qualifier | Limits           |                  |      |      |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier       | 84.4         |           | 40 - 110         |                  |      |      |       | 09/03/20 15:00 | 09/15/20 13:10 | 1       |
| Y Carrier        | 75.9         |           | 40 - 110         |                  |      |      |       | 09/03/20 15:00 | 09/15/20 13:10 | 1       |

| Method: Ra226_Ra2            | 228 - Con | nbined Rad | dium-226 a | nd Radium | -228 |      |       |          |                |         |
|------------------------------|-----------|------------|------------|-----------|------|------|-------|----------|----------------|---------|
| _                            |           |            | Count      | Total     |      |      |       |          |                |         |
|                              |           |            | Uncert.    | Uncert.   |      |      |       |          |                |         |
| Analyte                      | Result    | Qualifier  | (2σ+/-)    | (2σ+/-)   | RL   | MDC  | Unit  | Prepared | Analyzed       | Dil Fac |
| Combined Radium 226<br>+ 228 | -0.284    | U          | 0.861      | 0.862     | 5.00 | 1.60 | pCi/L |          | 09/27/20 15:23 | 1       |

Client: Alabama Power General Test Laboratory

Job ID: 400-191957-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1289

Client Sample ID: BA14587 FB-3

Date Collected: 08/05/20 14:10 Date Received: 08/10/20 14:30

Lab Sample ID: 400-191957-16 **Matrix: Water** 

| Method: 9315 - F | Radium-226 ( | GFPC)     |                  |                  |      |       |       |                |                |         |
|------------------|--------------|-----------|------------------|------------------|------|-------|-------|----------------|----------------|---------|
|                  | ·            | •         | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |
| Analyte          | Result       | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-226       | 0.0498       | U         | 0.127            | 0.127            | 1.00 | 0.243 | pCi/L | 09/15/20 23:38 | 09/25/20 20:19 | 1       |
| Carrier          | %Yield       | Qualifier | Limits           |                  |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier       | 84.7         |           | 40 - 110         |                  |      |       |       | 09/15/20 23:38 | 09/25/20 20:19 | 1       |

| Method: 9320 - | Radium-228 ( | GFPC)     |                  |                  |      |      |       |                |                |         |
|----------------|--------------|-----------|------------------|------------------|------|------|-------|----------------|----------------|---------|
|                | `            | ,         | Count<br>Uncert. | Total<br>Uncert. |      |      |       |                |                |         |
| Analyte        | Result       | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC  | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-228     | -0.0751      | U G       | 0.777            | 0.777            | 1.00 | 1.42 | pCi/L | 09/03/20 15:00 | 09/15/20 13:10 | 1       |
| Carrier        | %Yield       | Qualifier | Limits           |                  |      |      |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier     | 84.7         |           | 40 - 110         |                  |      |      |       | 09/03/20 15:00 | 09/15/20 13:10 | 1       |
| Y Carrier      | 80.4         |           | 40 - 110         |                  |      |      |       | 09/03/20 15:00 | 09/15/20 13:10 | 1       |

| Method: Ra226_Ra    | 228 - Con | nbined Ra | dium-226 a | nd Radiun | n- <b>22</b> 8 |      |       |          |                |         |
|---------------------|-----------|-----------|------------|-----------|----------------|------|-------|----------|----------------|---------|
| _                   |           |           | Count      | Total     |                |      |       |          |                |         |
|                     |           |           | Uncert.    | Uncert.   |                |      |       |          |                |         |
| Analyte             | Result    | Qualifier | (2σ+/-)    | (2σ+/-)   | RL             | MDC  | Unit  | Prepared | Analyzed       | Dil Fac |
| Combined Radium 226 | -0.0252   | U         | 0.787      | 0.787     | 5.00           | 1.42 | pCi/L |          | 09/27/20 15:23 | 1       |
| + 228               |           |           |            |           |                |      |       |          |                |         |

Client: Alabama Power General Test Laboratory

Job ID: 400-191957-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1289

Client Sample ID: BA14588 MW-1L

Lab Sample ID: 400-191957-17 Date Collected: 08/03/20 11:45 **Matrix: Water** Date Received: 08/10/20 14:30

|            |        |           | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |
|------------|--------|-----------|------------------|------------------|------|-------|-------|----------------|----------------|---------|
| Analyte    | Result | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-226 | 0.152  | U         | 0.212            | 0.213            | 1.00 | 0.359 | pCi/L | 09/15/20 23:38 | 09/25/20 20:19 | 1       |
| Carrier    | %Yield | Qualifier | Limits           |                  |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier | 90.5   |           | 40 - 110         |                  |      |       |       | 09/15/20 23:38 | 09/25/20 20:19 | 1       |

| Method: 9320 - | Radium-228 ( | GFPC)     |                  |                  |      |      |       |                |                |         |
|----------------|--------------|-----------|------------------|------------------|------|------|-------|----------------|----------------|---------|
|                |              | •         | Count<br>Uncert. | Total<br>Uncert. |      |      |       |                |                |         |
| Analyte        | Result       | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC  | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-228     | -0.278       | U G       | 0.801            | 0.802            | 1.00 | 1.49 | pCi/L | 09/03/20 15:00 | 09/15/20 13:10 | 1       |
| Carrier        | %Yield       | Qualifier | Limits           |                  |      |      |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier     | 90.5         |           | 40 - 110         |                  |      |      |       | 09/03/20 15:00 | 09/15/20 13:10 | 1       |
| Y Carrier      | 77.4         |           | 40 - 110         |                  |      |      |       | 09/03/20 15:00 | 09/15/20 13:10 | 1       |

| Method: Ra226_Ra2            | 28 - Con | nbined Rad | dium-226 a | nd Radium | <b>-228</b> |      |       |          |                |         |
|------------------------------|----------|------------|------------|-----------|-------------|------|-------|----------|----------------|---------|
| _                            |          |            | Count      | Total     |             |      |       |          |                |         |
|                              |          |            | Uncert.    | Uncert.   |             |      |       |          |                |         |
| Analyte                      | Result   | Qualifier  | (2σ+/-)    | (2σ+/-)   | RL          | MDC  | Unit  | Prepared | Analyzed       | Dil Fac |
| Combined Radium 226<br>+ 228 | -0.127   | U          | 0.829      | 0.830     | 5.00        | 1.49 | pCi/L |          | 09/27/20 15:23 | 1       |

Client: Alabama Power General Test Laboratory

Job ID: 400-191957-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1289

Client Sample ID: BA14589 MW-1L DUP

Lab Sample ID: 400-191957-18 Date Collected: 08/03/20 11:45 **Matrix: Water** 

Date Received: 08/10/20 14:30

|            |        |           | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |
|------------|--------|-----------|------------------|------------------|------|-------|-------|----------------|----------------|---------|
| Analyte    | Result | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-226 | 0.0729 | U         | 0.163            | 0.164            | 1.00 | 0.301 | pCi/L | 09/15/20 23:38 | 09/25/20 20:20 | 1       |
| Carrier    | %Yield | Qualifier | Limits           |                  |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier | 82.6   |           | 40 - 110         |                  |      |       |       | 09/15/20 23:38 | 09/25/20 20:20 | 1       |

| Method: 9320 - | Kaululli-220 ( | GIFC)     | Count<br>Uncert. | Total<br>Uncert. |      |      |       |                |                |         |
|----------------|----------------|-----------|------------------|------------------|------|------|-------|----------------|----------------|---------|
| Analyte        | Result         | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC  | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-228     | 0.530          | U G       | 0.993            | 0.994            | 1.00 | 1.69 | pCi/L | 09/03/20 15:00 | 09/15/20 13:10 | 1       |
| Carrier        | %Yield         | Qualifier | Limits           |                  |      |      |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier     | 82.6           |           | 40 - 110         |                  |      |      |       | 09/03/20 15:00 | 09/15/20 13:10 | 1       |
| Y Carrier      | 77.0           |           | 40 - 110         |                  |      |      |       | 09/03/20 15:00 | 09/15/20 13:10 | 1       |

| Method: Ra226_Ra2            | 28 - Con | bined Rad | dium-226 a | nd Radium | 1-228 |      |       |          |                |         |
|------------------------------|----------|-----------|------------|-----------|-------|------|-------|----------|----------------|---------|
| _                            |          |           | Count      | Total     |       |      |       |          |                |         |
|                              |          |           | Uncert.    | Uncert.   |       |      |       |          |                |         |
| Analyte                      | Result   | Qualifier | (2σ+/-)    | (2σ+/-)   | RL    | MDC  | Unit  | Prepared | Analyzed       | Dil Fac |
| Combined Radium 226<br>+ 228 | 0.603    | U         | 1.01       | 1.01      | 5.00  | 1.69 | pCi/L | _        | 09/27/20 15:23 | 1       |

Client: Alabama Power General Test Laboratory

78.3

Job ID: 400-191957-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1289

Client Sample ID: BA14590 MW-2L

Ba Carrier

Lab Sample ID: 400-191957-19 Date Collected: 08/03/20 12:55 Date Received: 08/10/20 14:30

40 - 110

**Matrix: Water** 

09/15/20 23:38 09/25/20 20:18

| Method: 9315 - I | Radium-226 ( | (GFPC)    |                  |                  |      |       |       |                |                |         |
|------------------|--------------|-----------|------------------|------------------|------|-------|-------|----------------|----------------|---------|
|                  |              |           | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |
| Analyte          | Result       | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-226       | -0.0330      | U         | 0.132            | 0.132            | 1.00 | 0.306 | pCi/L | 09/15/20 23:38 | 09/25/20 20:18 | 1       |
| Carrier          | %Yield       | Qualifier | Limits           |                  |      |       |       | Prepared       | Analyzed       | Dil Fac |

|            |        |           | Count<br>Uncert. | Total<br>Uncert. |      |      |       |                |                |         |
|------------|--------|-----------|------------------|------------------|------|------|-------|----------------|----------------|---------|
| Analyte    | Result | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC  | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-228 | 0.921  | UG        | 1.10             | 1.10             | 1.00 | 1.81 | pCi/L | 09/03/20 15:00 | 09/15/20 13:11 | 1       |
| Carrier    | %Yield | Qualifier | Limits           |                  |      |      |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier | 78.3   |           | 40 - 110         |                  |      |      |       | 09/03/20 15:00 | 09/15/20 13:11 | 1       |
| Y Carrier  | 75.5   |           | 40 - 110         |                  |      |      |       | 09/03/20 15:00 | 09/15/20 13:11 | 1       |

| Method: Ra226_Ra2            | 28 - Con | bined Rad | dium-226 a | nd Radium | 1-228 |      |       |          |                |         |
|------------------------------|----------|-----------|------------|-----------|-------|------|-------|----------|----------------|---------|
| _                            |          |           | Count      | Total     |       |      |       |          |                |         |
|                              |          |           | Uncert.    | Uncert.   |       |      |       |          |                |         |
| Analyte                      | Result   | Qualifier | (2σ+/-)    | (2σ+/-)   | RL    | MDC  | Unit  | Prepared | Analyzed       | Dil Fac |
| Combined Radium 226<br>+ 228 | 0.888    | U         | 1.11       | 1.11      | 5.00  | 1.81 | pCi/L |          | 09/27/20 15:23 | 1       |

Client: Alabama Power General Test Laboratory

Job ID: 400-191957-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1289

Client Sample ID: BA14591 MW-3L

Lab Sample ID: 400-191957-20 Date Collected: 08/03/20 14:28 Date Received: 08/10/20 14:30

|                    |               |           | Count<br>Uncert.       | Total<br>Uncert. |      |       |       |                                |                         |         |
|--------------------|---------------|-----------|------------------------|------------------|------|-------|-------|--------------------------------|-------------------------|---------|
| Analyte            | Result C      | Qualifier | (2σ+/-)                | (2σ+/-)          | RL   | MDC   | Unit  | Prepared                       | Analyzed                | Dil Fac |
| Radium-226         | 0.0334 U      | J         | 0.123                  | 0.123            | 1.00 | 0.245 | pCi/L | 09/15/20 23:38                 | 09/25/20 20:18          | 1       |
| Carrier Ba Carrier | 87.2 <b>6</b> | Qualifier | <b>Limits</b> 40 - 110 |                  |      |       |       | <b>Prepared</b> 09/15/20 23:38 | Analyzed 09/25/20 20:18 | Dil Fac |

| Method: 9320 - F | Radium-228 ( | GFPC)     | Count<br>Uncert. | Total<br>Uncert. |      |      |       |                |                |         |
|------------------|--------------|-----------|------------------|------------------|------|------|-------|----------------|----------------|---------|
| Analyte          | Result       | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC  | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-228       | 0.731        | UG        | 1.00             | 1.00             | 1.00 | 1.67 | pCi/L | 09/03/20 15:00 | 09/15/20 13:11 | 1       |
| Carrier          | %Yield       | Qualifier | Limits           |                  |      |      |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier       | 87.2         |           | 40 - 110         |                  |      |      |       | 09/03/20 15:00 | 09/15/20 13:11 | 1       |
| Y Carrier        | 76.3         |           | 40 - 110         |                  |      |      |       | 09/03/20 15:00 | 09/15/20 13:11 | 1       |

| Welliou. Razzo_Ra.  | 220 - CUII | ibilieu Ka | ululli-220 a | iliu Kaululi | 1-220 |      |       |          |                |         |
|---------------------|------------|------------|--------------|--------------|-------|------|-------|----------|----------------|---------|
|                     |            |            | Count        | Total        |       |      |       |          |                |         |
|                     |            |            | Uncert.      | Uncert.      |       |      |       |          |                |         |
| Analyte             | Result     | Qualifier  | (2σ+/-)      | (2σ+/-)      | RL    | MDC  | Unit  | Prepared | Analyzed       | Dil Fac |
| Combined Radium 226 | 0.765      | U          | 1.01         | 1.01         | 5.00  | 1.67 | pCi/L |          | 09/27/20 15:23 | 1       |

+ 228

**Matrix: Water** 

Client: Alabama Power General Test Laboratory

Job ID: 400-191957-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1289

Client Sample ID: BA14592 MW-11H

Carrier

Ba Carrier

Y Carrier

%Yield Qualifier

87.5

78.9

Limits

40 - 110

40 - 110

Lab Sample ID: 400-191957-21 Date Collected: 08/04/20 09:35 **Matrix: Water** Date Received: 08/10/20 14:30

|                        |            | <u> </u>  |          |         |      |       |       |                |                |         |
|------------------------|------------|-----------|----------|---------|------|-------|-------|----------------|----------------|---------|
| _<br>Method: 9315 - Ra | dium-226 ( | (GFPC)    |          |         |      |       |       |                |                |         |
|                        |            | ,         | Count    | Total   |      |       |       |                |                |         |
|                        |            |           | Uncert.  | Uncert. |      |       |       |                |                |         |
| Analyte                | Result     | Qualifier | (2σ+/-)  | (2σ+/-) | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-226             | 0.0481     | U         | 0.130    | 0.130   | 1.00 | 0.250 | pCi/L | 09/15/20 23:38 | 09/25/20 20:18 | 1       |
| Carrier                | %Yield     | Qualifier | Limits   |         |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier             | 87.5       |           | 40 - 110 |         |      |       |       | 09/15/20 23:38 | 09/25/20 20:18 |         |
| -<br>Method: 9320 - Ra | dium-228 ( | (GFPC)    |          |         |      |       |       |                |                |         |
|                        |            |           | Count    | Total   |      |       |       |                |                |         |
|                        |            |           | Uncert.  | Uncert. |      |       |       |                |                |         |
| Analyte                | Result     | Qualifier | (2σ+/-)  | (2σ+/-) | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-228             | -0.0166    | UG        | 0.757    | 0.757   | 1.00 | 1.37  | pCi/L | 09/03/20 15:00 | 09/15/20 13:11 | 1       |

| Method: Ra226_Ra2            | 228 - Con | ibined Rad | dium-226 a | nd Radium | 1-228 |      |       |          |                |         |
|------------------------------|-----------|------------|------------|-----------|-------|------|-------|----------|----------------|---------|
| _                            |           |            | Count      | Total     |       |      |       |          |                |         |
|                              |           |            | Uncert.    | Uncert.   |       |      |       |          |                |         |
| Analyte                      | Result    | Qualifier  | (2σ+/-)    | (2σ+/-)   | RL    | MDC  | Unit  | Prepared | Analyzed       | Dil Fac |
| Combined Radium 226<br>+ 228 | 0.0315    | U          | 0.768      | 0.768     | 5.00  | 1.37 | pCi/L |          | 09/27/20 15:23 | 1       |

Prepared

<u>09/03/20 15:00</u> <u>09/15/20 13:11</u>

09/03/20 15:00 09/15/20 13:11

Analyzed

Client: Alabama Power General Test Laboratory

Job ID: 400-191957-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1289

Client Sample ID: BA14593 MW-11H DUP

Lab Sample ID: 400-191957-22 Date Collected: 08/04/20 09:35 **Matrix: Water** Date Received: 08/10/20 14:30

|            |        |           | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |
|------------|--------|-----------|------------------|------------------|------|-------|-------|----------------|----------------|---------|
| Analyte    | Result | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-226 | 0.137  | U         | 0.157            | 0.157            | 1.00 | 0.252 | pCi/L | 09/15/20 23:38 | 09/25/20 20:18 | 1       |
| Carrier    | %Yield | Qualifier | Limits           |                  |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier | 92.7   |           | 40 - 110         |                  |      |       |       | 09/15/20 23:38 | 09/25/20 20:18 | 1       |

| Analyta    | Popult  | Qualifier | Count<br>Uncert. | Total<br>Uncert. | ы    | MDC  | Unit  | Dronored       | Analyzad       | Dil Fac |
|------------|---------|-----------|------------------|------------------|------|------|-------|----------------|----------------|---------|
| Analyte    | Result  | Qualifier | (2σ+/-)          | (2σ+/-)          | RL _ | MIDC | Unit  | Prepared       | Analyzed       | DII Fac |
| Radium-228 | -0.0321 | UG        | 0.835            | 0.835            | 1.00 | 1.50 | pCi/L | 09/03/20 15:00 | 09/15/20 13:12 | 1       |
| Carrier    | %Yield  | Qualifier | Limits           |                  |      |      |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier | 92.7    |           | 40 - 110         |                  |      |      |       | 09/03/20 15:00 | 09/15/20 13:12 | 1       |
| Y Carrier  | 78.9    |           | 40 - 110         |                  |      |      |       | 09/03/20 15:00 | 09/15/20 13:12 | 1       |

| Method: Ra226_Ra2            | 28 - Con | nbined Rad | dium-226 a | nd Radium | <b>-228</b> |      |       |          |                |         |
|------------------------------|----------|------------|------------|-----------|-------------|------|-------|----------|----------------|---------|
|                              |          |            | Count      | Total     |             |      |       |          |                |         |
|                              |          |            | Uncert.    | Uncert.   |             |      |       |          |                |         |
| Analyte                      | Result   | Qualifier  | (2σ+/-)    | (2σ+/-)   | RL          | MDC  | Unit  | Prepared | Analyzed       | Dil Fac |
| Combined Radium 226<br>+ 228 | 0.105    | U          | 0.850      | 0.850     | 5.00        | 1.50 | pCi/L |          | 09/27/20 15:23 | 1       |

Client: Alabama Power General Test Laboratory

Job ID: 400-191957-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1289

Client Sample ID: BA14594 MW-13H

Lab Sample ID: 400-191957-23 Date Collected: 08/04/20 11:10 Date Received: 08/10/20 14:30

| –<br>Method: 9315 - Rad | lium-226 (            | GFPC)     |                  |                  |      |       |       |                                |                         |         |
|-------------------------|-----------------------|-----------|------------------|------------------|------|-------|-------|--------------------------------|-------------------------|---------|
|                         | ·                     | ,         | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                                |                         |         |
| Analyte                 | Result                | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared                       | Analyzed                | Dil Fac |
| Radium-226              | 0.0681                | U         | 0.149            | 0.149            | 1.00 | 0.275 | pCi/L | 09/15/20 23:38                 | 09/25/20 20:18          | 1       |
| Carrier<br>Ba Carrier   | <b>%Yield</b><br>88.4 | Qualifier | Limits 40 - 110  |                  |      |       |       | <b>Prepared</b> 09/15/20 23:38 | Analyzed 09/25/20 20:18 | Dil Fac |

|            |        |           | Count<br>Uncert. | Total<br>Uncert. |      |      |       |                |                |         |
|------------|--------|-----------|------------------|------------------|------|------|-------|----------------|----------------|---------|
| Analyte    | Result | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC  | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-228 | -0.470 | UG        | 0.851            | 0.852            | 1.00 | 1.61 | pCi/L | 09/03/20 15:00 | 09/15/20 13:12 | 1       |
| Carrier    | %Yield | Qualifier | Limits           |                  |      |      |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier | 88.4   |           | 40 - 110         |                  |      |      |       | 09/03/20 15:00 | 09/15/20 13:12 | 1       |
| Y Carrier  | 80.7   |           | 40 - 110         |                  |      |      |       | 09/03/20 15:00 | 09/15/20 13:12 | 1       |

| Method: Ra226_Ra2            | 28 - Con | bined Rad | dium-226 a | nd Radium | -228 |      |       |          |                |         |
|------------------------------|----------|-----------|------------|-----------|------|------|-------|----------|----------------|---------|
| _                            |          |           | Count      | Total     |      |      |       |          |                |         |
|                              |          |           | Uncert.    | Uncert.   |      |      |       |          |                |         |
| Analyte                      | Result   | Qualifier | (2σ+/-)    | (2σ+/-)   | RL   | MDC  | Unit  | Prepared | Analyzed       | Dil Fac |
| Combined Radium 226<br>+ 228 | -0.402   | U         | 0.864      | 0.865     | 5.00 | 1.61 | pCi/L |          | 09/27/20 15:23 | 1       |

**Matrix: Water** 

Client: Alabama Power General Test Laboratory

Job ID: 400-191957-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1289

Client Sample ID: BA14595 MW-9H

Lab Sample ID: 400-191957-24 Date Collected: 08/04/20 12:20 **Matrix: Water** Date Received: 08/10/20 14:30

|            |        |           | Uncert.  | Uncert. |      |       |       |                |                |         |
|------------|--------|-----------|----------|---------|------|-------|-------|----------------|----------------|---------|
| Analyte    | Result | Qualifier | (2σ+/-)  | (2σ+/-) | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-226 | 0.168  | U         | 0.163    | 0.163   | 1.00 | 0.247 | pCi/L | 09/15/20 23:38 | 09/25/20 20:18 | 1       |
| Carrier    | %Yield | Qualifier | Limits   |         |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier | 92.7   |           | 40 - 110 |         |      |       |       | 09/15/20 23:38 | 09/25/20 20:18 |         |

|            |        |           | Uncert.  | Uncert. |      |      |       |                |                |         |
|------------|--------|-----------|----------|---------|------|------|-------|----------------|----------------|---------|
| Analyte    | Result | Qualifier | (2σ+/-)  | (2σ+/-) | RL   | MDC  | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-228 | -0.554 | UG        | 0.707    | 0.709   | 1.00 | 1.39 | pCi/L | 09/03/20 15:00 | 09/15/20 13:12 | 1       |
| Carrier    | %Yield | Qualifier | Limits   |         |      |      |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier | 92.7   |           | 40 - 110 |         |      |      |       | 09/03/20 15:00 | 09/15/20 13:12 | 1       |
| Y Carrier  |        |           | 40 - 110 |         |      |      |       | 00/00/00 45 00 | 09/15/20 13:12 |         |

| Method: Ra226_Ra2            | 28 - Con | nbined Rad | dium-226 a | nd Radium | 1-228 |      |       |          |                |         |
|------------------------------|----------|------------|------------|-----------|-------|------|-------|----------|----------------|---------|
|                              |          |            | Count      | Total     |       |      |       |          |                |         |
|                              |          |            | Uncert.    | Uncert.   |       |      |       |          |                |         |
| Analyte                      | Result   | Qualifier  | (2σ+/-)    | (2σ+/-)   | RL    | MDC  | Unit  | Prepared | Analyzed       | Dil Fac |
| Combined Radium 226<br>+ 228 | -0.385   | U          | 0.726      | 0.727     | 5.00  | 1.39 | pCi/L |          | 09/27/20 15:23 | 1       |

Client: Alabama Power General Test Laboratory

Job ID: 400-191957-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1289

Client Sample ID: BA14596 MW-9V

Lab Sample ID: 400-191957-25 Date Collected: 08/04/20 15:30 **Matrix: Water** 

Date Received: 08/10/20 14:30

|            |        |           | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |
|------------|--------|-----------|------------------|------------------|------|-------|-------|----------------|----------------|---------|
| Analyte    | Result | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-226 | 0.109  | U         | 0.176            | 0.176            | 1.00 | 0.306 | pCi/L | 09/15/20 23:38 | 09/25/20 20:15 | 1       |
| Carrier    | %Yield | Qualifier | Limits           |                  |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier | 90.8   |           | 40 - 110         |                  |      |       |       | 09/15/20 23:38 | 09/25/20 20:15 | 1       |

| Method: 9320 - I | Radium-228 ( | (GFPC)    |                  |                  |      |      |       |                |                |         |
|------------------|--------------|-----------|------------------|------------------|------|------|-------|----------------|----------------|---------|
|                  |              | ,         | Count<br>Uncert. | Total<br>Uncert. |      |      |       |                |                |         |
| Analyte          | Result       | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC  | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-228       | 0.729        | UG        | 0.845            | 0.848            | 1.00 | 1.39 | pCi/L | 09/03/20 15:00 | 09/15/20 13:12 | 1       |
| Carrier          | %Yield       | Qualifier | Limits           |                  |      |      |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier       | 90.8         |           | 40 - 110         |                  |      |      |       | 09/03/20 15:00 | 09/15/20 13:12 | 1       |
| Y Carrier        | 81.5         |           | 40 - 110         |                  |      |      |       | 09/03/20 15:00 | 09/15/20 13:12 | 1       |

| Method: Ra226_Ra2            | 28 - Con | nbined Rad | dium-226 a | nd Radium | <b>-228</b> |      |       |          |                |         |
|------------------------------|----------|------------|------------|-----------|-------------|------|-------|----------|----------------|---------|
| _                            |          |            | Count      | Total     |             |      |       |          |                |         |
|                              |          |            | Uncert.    | Uncert.   |             |      |       |          |                |         |
| Analyte                      | Result   | Qualifier  | (2σ+/-)    | (2σ+/-)   | RL          | MDC  | Unit  | Prepared | Analyzed       | Dil Fac |
| Combined Radium 226<br>+ 228 | 0.837    | U          | 0.863      | 0.866     | 5.00        | 1.39 | pCi/L |          | 09/27/20 15:23 | 1       |

Client: Alabama Power General Test Laboratory

Job ID: 400-191957-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1289

Client Sample ID: BA14597 MW-4L

Lab Sample ID: 400-191957-26 Date Collected: 08/05/20 09:55 Date Received: 08/10/20 14:30

**Matrix: Water** 

| Method: 9315 - Radium-226 (GFPC) |
|----------------------------------|
|                                  |

|            |         |           | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |
|------------|---------|-----------|------------------|------------------|------|-------|-------|----------------|----------------|---------|
| Analyte    | Result  | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-226 | -0.0556 | U         | 0.139            | 0.139            | 1.00 | 0.327 | pCi/L | 09/15/20 23:38 | 09/25/20 20:16 | 1       |
| Carrier    | %Yield  | Qualifier | Limits           |                  |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier | 83.5    |           | 40 - 110         |                  |      |       |       | 09/15/20 23:38 | 09/25/20 20:16 | 1       |

| Method: 9320 - Rad | dium-228 ( | GFPC)     |                  |                  |      |      |       |                |                |         |
|--------------------|------------|-----------|------------------|------------------|------|------|-------|----------------|----------------|---------|
|                    |            |           | Count<br>Uncert. | Total<br>Uncert. |      |      |       |                |                |         |
| Analyte            | Result     | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC  | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-228         | 0.620      | U G       | 1.01             | 1.01             | 1.00 | 1.70 | pCi/L | 09/03/20 15:00 | 09/15/20 13:12 | 1       |
| Carrier            | %Yield     | Qualifier | Limits           |                  |      |      |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier         | 83.5       |           | 40 - 110         |                  |      |      |       | 09/03/20 15:00 | 09/15/20 13:12 | 1       |
| Y Carrier          | 82.6       |           | 40 - 110         |                  |      |      |       | 09/03/20 15:00 | 09/15/20 13:12 | 1       |

| Method: Ra226_Ra2   | 228 - Com | ibined Ra | idium-226 a | ind Radiur | n-228 |      |       |          |                |         |
|---------------------|-----------|-----------|-------------|------------|-------|------|-------|----------|----------------|---------|
|                     |           |           | Count       | Total      |       |      |       |          |                |         |
|                     |           |           | Uncert.     | Uncert.    |       |      |       |          |                |         |
| Analyte             | Result    | Qualifier | (2σ+/-)     | (2σ+/-)    | RL    | MDC  | Unit  | Prepared | Analyzed       | Dil Fac |
| Combined Radium 226 | 0.565     | U         | 1.02        | 1.02       | 5.00  | 1.70 | pCi/L |          | 09/27/20 15:23 | 1       |

+ 228

Client: Alabama Power General Test Laboratory

Job ID: 400-191957-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1289

Client Sample ID: BA14598 MW-14H

Date Collected: 08/05/20 11:10 Date Received: 08/10/20 14:30

Lab Sample ID: 400-191957-27

**Matrix: Water** 

| Method: 9315 - Ra | adium-226 ( | (GFPC)    |                  |                  |      |       |       |                |                |         |
|-------------------|-------------|-----------|------------------|------------------|------|-------|-------|----------------|----------------|---------|
|                   |             | ,         | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |
| Analyte           | Result      | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-226        | 0.0304      | U         | 0.138            | 0.138            | 1.00 | 0.279 | pCi/L | 09/15/20 23:38 | 09/25/20 22:42 | 1       |
| Carrier           | %Yield      | Qualifier | Limits           |                  |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier        | 81.0        |           | 40 - 110         |                  |      |       |       | 09/15/20 23:38 | 09/25/20 22:42 | 1       |
| _                 |             |           |                  |                  |      |       |       |                |                |         |

| Method: 9320 - I | Radium-228 ( | (GFPC)    |                  |                  |      |      |       |                |                |         |
|------------------|--------------|-----------|------------------|------------------|------|------|-------|----------------|----------------|---------|
|                  |              | •         | Count<br>Uncert. | Total<br>Uncert. |      |      |       |                |                |         |
| Analyte          | Result       | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC  | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-228       | 0.728        | UG        | 1.02             | 1.03             | 1.00 | 1.71 | pCi/L | 09/03/20 15:00 | 09/15/20 13:14 | 1       |
| Carrier          | %Yield       | Qualifier | Limits           |                  |      |      |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier       | 81.0         |           | 40 - 110         |                  |      |      |       | 09/03/20 15:00 | 09/15/20 13:14 | 1       |
| Y Carrier        | 83.0         |           | 40 - 110         |                  |      |      |       | 09/03/20 15:00 | 09/15/20 13:14 | 1       |

| Method: Ra226_Ra2            | 28 - Con | bined Rad | dium-226 a | nd Radium | <b>-228</b> |      |       |          |                |         |
|------------------------------|----------|-----------|------------|-----------|-------------|------|-------|----------|----------------|---------|
| _                            |          |           | Count      | Total     |             |      |       |          |                |         |
|                              |          |           | Uncert.    | Uncert.   |             |      |       |          |                |         |
| Analyte                      | Result   | Qualifier | (2σ+/-)    | (2σ+/-)   | RL          | MDC  | Unit  | Prepared | Analyzed       | Dil Fac |
| Combined Radium 226<br>+ 228 | 0.758    | U         | 1.03       | 1.04      | 5.00        | 1.71 | pCi/L |          | 09/27/20 15:23 | 1       |

Client: Alabama Power General Test Laboratory

Job ID: 400-191957-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1289

Client Sample ID: BA14599 MW-4

Lab Sample ID: 400-191957-28 Date Collected: 08/05/20 12:08 Date Received: 08/10/20 14:30

**Matrix: Water** 

| Date | Received. | 00/10/20 | 14.30 |  |
|------|-----------|----------|-------|--|
|      |           |          |       |  |
| _    |           |          |       |  |

+ 228

| Method: 9315 - Ra | adium-226 ( | (GFPC)    |                  |                  |      |       |       |                |                |         |
|-------------------|-------------|-----------|------------------|------------------|------|-------|-------|----------------|----------------|---------|
|                   |             |           | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |
| Analyte           | Result      | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-226        | 0.136       | U         | 0.164            | 0.165            | 1.00 | 0.269 | pCi/L | 09/15/20 23:38 | 09/25/20 22:42 | 1       |
| Carrier           | %Yield      | Qualifier | Limits           |                  |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier        | 88.1        |           | 40 - 110         |                  |      |       |       | 09/15/20 23:38 | 09/25/20 22:42 | 1       |

|            |        |           | Count<br>Uncert. | Total<br>Uncert. |      |      |       |                |                |         |
|------------|--------|-----------|------------------|------------------|------|------|-------|----------------|----------------|---------|
| Analyte    | Result | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC  | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-228 | 0.253  | UG        | 0.821            | 0.822            | 1.00 | 1.43 | pCi/L | 09/03/20 15:00 | 09/15/20 13:14 | 1       |
| Carrier    | %Yield | Qualifier | Limits           |                  |      |      |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier | 88.1   |           | 40 - 110         |                  |      |      |       | 09/03/20 15:00 | 09/15/20 13:14 | 1       |
| Y Carrier  | 84.9   |           | 40 - 110         |                  |      |      |       | 09/03/20 15:00 | 09/15/20 13:14 | 1       |

| <br>Method: Ra226_Ra2 | 228 - Com | nbined Ra | dium-226 a | ınd Radiur | m-228 |      |       |          |                |         |
|-----------------------|-----------|-----------|------------|------------|-------|------|-------|----------|----------------|---------|
|                       |           |           | Count      | Total      |       |      |       |          |                |         |
|                       |           |           | Uncert.    | Uncert.    |       |      |       |          |                |         |
| Analyte               | Result    | Qualifier | (2σ+/-)    | (2σ+/-)    | RL    | MDC  | Unit  | Prepared | Analyzed       | Dil Fac |
| Combined Radium 226   | 0.389     | U         | 0.837      | 0.838      | 5.00  | 1.43 | pCi/L |          | 09/27/20 15:23 | 1       |

Client: Alabama Power General Test Laboratory

Job ID: 400-191957-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1289

Client Sample ID: BA14600 MW-4V

Lab Sample ID: 400-191957-29 Date Collected: 08/05/20 13:05 **Matrix: Water** 

Date Received: 08/10/20 14:30

| Method: 9315 - R | Radium-226 ( | (GFPC)    |                  |                  |      |       |       |                |                |         |
|------------------|--------------|-----------|------------------|------------------|------|-------|-------|----------------|----------------|---------|
|                  |              | ,         | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |
| Analyte          | Result       | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-226       | 0.0258       | U         | 0.202            | 0.202            | 1.00 | 0.393 | pCi/L | 09/15/20 23:38 | 09/25/20 22:40 | 1       |
| Carrier          | %Yield       | Qualifier | Limits           |                  |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier       | 81.7         |           | 40 - 110         |                  |      |       |       | 09/15/20 23:38 | 09/25/20 22:40 | 1       |

| Method: 9320 - | Radium-228 ( | (GFPC)    | Count    | Total   |      |      |       |                |                |         |
|----------------|--------------|-----------|----------|---------|------|------|-------|----------------|----------------|---------|
|                |              |           | Uncert.  | Uncert. |      |      |       |                |                |         |
| Analyte        | Result       | Qualifier | (2σ+/-)  | (2σ+/-) | RL   | MDC  | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-228     | 0.508        | UG        | 0.976    | 0.977   | 1.00 | 1.66 | pCi/L | 09/03/20 15:00 | 09/15/20 13:14 | 1       |
| Carrier        | %Yield       | Qualifier | Limits   |         |      |      |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier     | 81.7         |           | 40 - 110 |         |      |      |       | 09/03/20 15:00 | 09/15/20 13:14 | 1       |
| Y Carrier      | 83.0         |           | 40 - 110 |         |      |      |       | 09/03/20 15:00 | 09/15/20 13:14 | 1       |

| Method: Ra226_Ra2            | 28 - Con | nbined Rad | dium-226 a | nd Radium | -228 |      |       |          |                |         |
|------------------------------|----------|------------|------------|-----------|------|------|-------|----------|----------------|---------|
| _                            |          |            | Count      | Total     |      |      |       |          |                |         |
|                              |          |            | Uncert.    | Uncert.   |      |      |       |          |                |         |
| Analyte                      | Result   | Qualifier  | (2σ+/-)    | (2σ+/-)   | RL   | MDC  | Unit  | Prepared | Analyzed       | Dil Fac |
| Combined Radium 226<br>+ 228 | 0.533    | U          | 0.997      | 0.998     | 5.00 | 1.66 | pCi/L |          | 09/27/20 15:23 | 1       |

Client: Alabama Power General Test Laboratory

Job ID: 400-191957-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1289

Client Sample ID: BA14601 FB-2

Date Collected: 08/05/20 13:30 Date Received: 08/10/20 14:30 Lab Sample ID: 400-191957-30

**Matrix: Water** 

| Method: 9315 - | Radium-226 ( | GFPC)     | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |
|----------------|--------------|-----------|------------------|------------------|------|-------|-------|----------------|----------------|---------|
| Analyte        | Result       | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-226     | 0.238        | U         | 0.184            | 0.186            | 1.00 | 0.251 | pCi/L | 09/15/20 23:38 | 09/25/20 22:40 | 1       |
| Carrier        | %Yield       | Qualifier | Limits           |                  |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier     | 84.4         |           | 40 - 110         |                  |      |       |       | 09/15/20 23:38 | 09/25/20 22:40 | 1       |

| Method: 9320 - I | Radium-228 ( | (GFPC)    |                  |                  |      |      |       |                |                |         |
|------------------|--------------|-----------|------------------|------------------|------|------|-------|----------------|----------------|---------|
|                  |              | •         | Count<br>Uncert. | Total<br>Uncert. |      |      |       |                |                |         |
| Analyte          | Result       | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC  | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-228       | 0.000        | UG        | 0.801            | 0.801            | 1.00 | 1.44 | pCi/L | 09/03/20 15:00 | 09/15/20 13:14 | 1       |
| Carrier          | %Yield       | Qualifier | Limits           |                  |      |      |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier       | 84.4         |           | 40 - 110         |                  |      |      |       | 09/03/20 15:00 | 09/15/20 13:14 | 1       |
| Y Carrier        | 86.4         |           | 40 - 110         |                  |      |      |       | 09/03/20 15:00 | 09/15/20 13:14 | 1       |

| Method: Ra226_Ra2            | 28 - Con | bined Rad | dium-226 a | nd Radium | -228 |      |       |          |                |         |
|------------------------------|----------|-----------|------------|-----------|------|------|-------|----------|----------------|---------|
| _                            |          |           | Count      | Total     |      |      |       |          |                |         |
|                              |          |           | Uncert.    | Uncert.   |      |      |       |          |                |         |
| Analyte                      | Result   | Qualifier | (2σ+/-)    | (2σ+/-)   | RL   | MDC  | Unit  | Prepared | Analyzed       | Dil Fac |
| Combined Radium 226<br>+ 228 | 0.238    | U         | 0.822      | 0.822     | 5.00 | 1.44 | pCi/L |          | 09/27/20 15:23 | 1       |

### **Client Sample Results**

Client: Alabama Power General Test Laboratory

Job ID: 400-191957-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1289

Client Sample ID: BA14602 EB-1

Date Collected: 08/05/20 13:45 Date Received: 08/10/20 14:30

Lab Sample ID: 400-191957-31

**Matrix: Water** 

|            |        |           | Count<br>Uncert. | Total<br>Uncert. |      |       |       |                |                |         |
|------------|--------|-----------|------------------|------------------|------|-------|-------|----------------|----------------|---------|
| Analyte    | Result | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC   | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-226 | 0.108  | U         | 0.161            | 0.161            | 1.00 | 0.276 | pCi/L | 09/15/20 23:38 | 09/25/20 22:41 | 1       |
| Carrier    | %Yield | Qualifier | Limits           |                  |      |       |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier | 87.2   |           | 40 - 110         |                  |      |       |       | 09/15/20 23:38 | 09/25/20 22:41 | 1       |

| Method: 9320 - |        | , ,       | Count<br>Uncert. | Total<br>Uncert. |      |      |       |                |                |         |
|----------------|--------|-----------|------------------|------------------|------|------|-------|----------------|----------------|---------|
| Analyte        | Result | Qualifier | (2σ+/-)          | (2σ+/-)          | RL   | MDC  | Unit  | Prepared       | Analyzed       | Dil Fac |
| Radium-228     | -0.808 | UG        | 0.779            | 0.782            | 1.00 | 1.52 | pCi/L | 09/03/20 15:00 | 09/15/20 13:14 | 1       |
| Carrier        | %Yield | Qualifier | Limits           |                  |      |      |       | Prepared       | Analyzed       | Dil Fac |
| Ba Carrier     | 87.2   |           | 40 - 110         |                  |      |      |       | 09/03/20 15:00 | 09/15/20 13:14 | 1       |
| Y Carrier      | 88.6   |           | 40 - 110         |                  |      |      |       | 09/03/20 15:00 | 09/15/20 13:14 | 1       |

| Method: Ra226_Ra2            | 228 - Con | nbined Rad | dium-226 a | nd Radium | 1-228 |      |       |          |                |         |
|------------------------------|-----------|------------|------------|-----------|-------|------|-------|----------|----------------|---------|
| _                            |           |            | Count      | Total     |       |      |       |          |                |         |
|                              |           |            | Uncert.    | Uncert.   |       |      |       |          |                |         |
| Analyte                      | Result    | Qualifier  | (2σ+/-)    | (2σ+/-)   | RL    | MDC  | Unit  | Prepared | Analyzed       | Dil Fac |
| Combined Radium 226<br>+ 228 | -0.700    | U          | 0.795      | 0.798     | 5.00  | 1.52 | pCi/L |          | 09/27/20 15:23 | 1       |

### **Definitions/Glossary**

Client: Alabama Power General Test Laboratory

Job ID: 400-191957-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1289

#### **Qualifiers**

| Qualifier | Qualifier Description                            |
|-----------|--------------------------------------------------|
| G         | The Sample MDC is greater than the requested RL. |
| U         | Result is less than the sample detection limit.  |

| Glossary       |                                                                                                             |
|----------------|-------------------------------------------------------------------------------------------------------------|
| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                 |
| ¤              | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |
| %R             | Percent Recovery                                                                                            |
| CFL            | Contains Free Liquid                                                                                        |
| CFU            | Colony Forming Unit                                                                                         |
| CNF            | Contains No Free Liquid                                                                                     |
| DER            | Duplicate Error Ratio (normalized absolute difference)                                                      |
| Dil Fac        | Dilution Factor                                                                                             |
| DL             | Detection Limit (DoD/DOE)                                                                                   |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |
| DLC            | Decision Level Concentration (Radiochemistry)                                                               |
| EDL            | Estimated Detection Limit (Dioxin)                                                                          |
| LOD            | Limit of Detection (DoD/DOE)                                                                                |
| LOQ            | Limit of Quantitation (DoD/DOE)                                                                             |

MCL EPA recommended "Maximum Contaminant Level" Minimum Detectable Activity (Radiochemistry) MDA MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit Minimum Level (Dioxin) ML Most Probable Number MPN MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

Practical Quantitation Limit PQL

Presumptive **PRES Quality Control** QC

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

**TEF** Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ** 

TNTC Too Numerous To Count

Project/Site: CCR Plant Gorgas

Client Sample ID: BA14572 EB-2

Client: Alabama Power General Test Laboratory

Date Collected: 08/03/20 10:15 Date Received: 08/10/20 14:30

Lab Sample ID: 400-191957-1

**Matrix: Water** 

|           | Batch    | Batch       |     | Dilution | Batch  | Prepared       |         |        |
|-----------|----------|-------------|-----|----------|--------|----------------|---------|--------|
| Prep Type | Type     | Method      | Run | Factor   | Number | or Analyzed    | Analyst | Lab    |
| Total/NA  | Prep     | PrecSep-21  |     |          | 479478 | 08/13/20 15:23 | MNH     | TAL SL |
| Total/NA  | Analysis | 9315        |     | 1        | 481674 | 09/06/20 12:29 | JLW     | TAL SL |
| Total/NA  | Prep     | PrecSep_0   |     |          | 479482 | 08/13/20 16:06 | MNH     | TAL SL |
| Total/NA  | Analysis | 9320        |     | 1        | 481318 | 09/01/20 11:56 | SCB     | TAL SL |
| Total/NA  | Analysis | Ra226_Ra228 |     | 1        | 484013 | 09/28/20 11:10 | CMM     | TAL SL |

Client Sample ID: BA14573 PZ-18

Date Collected: 08/03/20 11:00 Date Received: 08/10/20 14:30

Lab Sample ID: 400-191957-2

**Matrix: Water** 

|           | Batch    | Batch       |     | Dilution | Batch  | Prepared       |         |        |
|-----------|----------|-------------|-----|----------|--------|----------------|---------|--------|
| Prep Type | Type     | Method      | Run | Factor   | Number | or Analyzed    | Analyst | Lab    |
| Total/NA  | Prep     | PrecSep-21  |     |          | 479478 | 08/13/20 15:23 | MNH     | TAL SL |
| Total/NA  | Analysis | 9315        |     | 1        | 481674 | 09/06/20 12:30 | JLW     | TAL SL |
| Total/NA  | Prep     | PrecSep_0   |     |          | 479482 | 08/13/20 16:06 | MNH     | TAL SL |
| Total/NA  | Analysis | 9320        |     | 1        | 481318 | 09/01/20 11:56 | SCB     | TAL SL |
| Total/NA  | Analysis | Ra226_Ra228 |     | 1        | 484013 | 09/28/20 11:11 | CMM     | TAL SL |

Client Sample ID: BA14574 PZ-19

Date Collected: 08/03/20 12:50 Date Received: 08/10/20 14:30

Lab Sample ID: 400-191957-3

**Matrix: Water** 

|           | Batch    | Batch       |     | Dilution | Batch  | Prepared       |         |        |
|-----------|----------|-------------|-----|----------|--------|----------------|---------|--------|
| Prep Type | Type     | Method      | Run | Factor   | Number | or Analyzed    | Analyst | Lab    |
| Total/NA  | Prep     | PrecSep-21  |     |          | 479478 | 08/13/20 15:23 | MNH     | TAL SL |
| Total/NA  | Analysis | 9315        |     | 1        | 481674 | 09/06/20 15:30 | JLW     | TAL SL |
| Total/NA  | Prep     | PrecSep_0   |     |          | 479482 | 08/13/20 16:06 | MNH     | TAL SL |
| Total/NA  | Analysis | 9320        |     | 1        | 481318 | 09/01/20 11:56 | SCB     | TAL SL |
| Total/NA  | Analysis | Ra226_Ra228 |     | 1        | 484013 | 09/28/20 11:11 | CMM     | TAL SL |

Client Sample ID: BA14575 PZ-20

Date Collected: 08/03/20 13:59 Date Received: 08/10/20 14:30

Lab Sample ID: 400-191957-4 **Matrix: Water** 

Batch Batch Dilution Batch Prepared Method or Analyzed **Prep Type** Type Run **Factor** Number Analyst Lab Total/NA PrecSep-21 479478 08/13/20 15:23 MNH TAL SL Prep Total/NA Analysis 9315 481674 09/06/20 15:32 JLW TAL SL 1 479482 08/13/20 16:06 MNH TAL SL Total/NA Prep PrecSep\_0 Total/NA Analysis 9320 481274 09/01/20 11:59 JLW TAL SL Total/NA Analysis Ra226 Ra228 484013 09/28/20 11:11 CMM TAL SL

Job ID: 400-191957-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1289

Client Sample ID: BA14576 PZ-20 DUP

Lab Sample ID: 400-191957-5 Date Collected: 08/03/20 13:59 **Matrix: Water** Date Received: 08/10/20 14:30

|           | Batch    | Batch       |     | Dilution | Batch  | Prepared       |         |        |
|-----------|----------|-------------|-----|----------|--------|----------------|---------|--------|
| Prep Type | Type     | Method      | Run | Factor   | Number | or Analyzed    | Analyst | Lab    |
| Total/NA  | Prep     | PrecSep-21  |     |          | 479478 | 08/13/20 15:23 | MNH     | TAL SL |
| Total/NA  | Analysis | 9315        |     | 1        | 481674 | 09/06/20 15:32 | JLW     | TAL SL |
| Total/NA  | Prep     | PrecSep_0   |     |          | 479482 | 08/13/20 16:06 | MNH     | TAL SL |
| Total/NA  | Analysis | 9320        |     | 1        | 481274 | 09/01/20 11:59 | JLW     | TAL SL |
| Total/NA  | Analysis | Ra226_Ra228 |     | 1        | 484013 | 09/28/20 11:11 | CMM     | TAL SL |

Client Sample ID: BA14577 FB-1

Lab Sample ID: 400-191957-6 Date Collected: 08/03/20 14:45 **Matrix: Water** 

Date Received: 08/10/20 14:30

|           | Batch    | Batch       |     | Dilution | Batch  | Prepared       |         |        |
|-----------|----------|-------------|-----|----------|--------|----------------|---------|--------|
| Prep Type | Type     | Method      | Run | Factor   | Number | or Analyzed    | Analyst | Lab    |
| Total/NA  | Prep     | PrecSep-21  |     |          | 479478 | 08/13/20 15:23 | MNH     | TAL SL |
| Total/NA  | Analysis | 9315        |     | 1        | 481674 | 09/06/20 15:33 | JLW     | TAL SL |
| Total/NA  | Prep     | PrecSep_0   |     |          | 479482 | 08/13/20 16:06 | MNH     | TAL SL |
| Total/NA  | Analysis | 9320        |     | 1        | 481274 | 09/01/20 11:59 | JLW     | TAL SL |
| Total/NA  | Analysis | Ra226_Ra228 |     | 1        | 484013 | 09/28/20 11:11 | CMM     | TAL SL |

Client Sample ID: BA14578 PZ-21

Lab Sample ID: 400-191957-7 Date Collected: 08/04/20 08:53 **Matrix: Water** Date Received: 08/10/20 14:30

|           | Batch    | Batch       |     | Dilution | Batch  | Prepared       |         |        |
|-----------|----------|-------------|-----|----------|--------|----------------|---------|--------|
| Prep Type | Туре     | Method      | Run | Factor   | Number | or Analyzed    | Analyst | Lab    |
| Total/NA  | Prep     | PrecSep-21  |     |          | 479478 | 08/13/20 15:23 | MNH     | TAL SL |
| Total/NA  | Analysis | 9315        |     | 1        | 481674 | 09/06/20 15:33 | JLW     | TAL SL |
| Total/NA  | Prep     | PrecSep_0   |     |          | 479482 | 08/13/20 16:06 | MNH     | TAL SL |
| Total/NA  | Analysis | 9320        |     | 1        | 481274 | 09/01/20 11:59 | JLW     | TAL SL |
| Total/NA  | Analysis | Ra226_Ra228 |     | 1        | 484013 | 09/28/20 11:11 | CMM     | TAL SL |

Client Sample ID: BA14579 PZ-22

Lab Sample ID: 400-191957-8 Date Collected: 08/04/20 10:00 **Matrix: Water** Date Received: 08/10/20 14:30

| _         | Batch    | Batch       |     | Dilution | Batch  | Prepared       |         |        |
|-----------|----------|-------------|-----|----------|--------|----------------|---------|--------|
| Prep Type | Туре     | Method      | Run | Factor   | Number | or Analyzed    | Analyst | Lab    |
| Total/NA  | Prep     | PrecSep-21  |     |          | 479478 | 08/13/20 15:23 | MNH     | TAL SL |
| Total/NA  | Analysis | 9315        |     | 1        | 481674 | 09/06/20 15:33 | JLW     | TAL SL |
| Total/NA  | Prep     | PrecSep_0   |     |          | 479482 | 08/13/20 16:06 | MNH     | TAL SL |
| Total/NA  | Analysis | 9320        |     | 1        | 481274 | 09/01/20 11:59 | JLW     | TAL SL |
| Total/NA  | Analysis | Ra226_Ra228 |     | 1        | 484013 | 09/28/20 11:11 | CMM     | TAL SL |

Client: Alabama Power General Test Laboratory

Job ID: 400-191957-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1289

Client Sample ID: BA14580 PZ-17

Lab Sample ID: 400-191957-9 Date Collected: 08/04/20 11:20 **Matrix: Water** Date Received: 08/10/20 14:30

|           | Batch    | Batch       |     | Dilution | Batch  | Prepared       |         |        |
|-----------|----------|-------------|-----|----------|--------|----------------|---------|--------|
| Prep Type | Type     | Method      | Run | Factor   | Number | or Analyzed    | Analyst | Lab    |
| Total/NA  | Prep     | PrecSep-21  |     |          | 479478 | 08/13/20 15:23 | MNH     | TAL SL |
| Total/NA  | Analysis | 9315        |     | 1        | 481674 | 09/06/20 15:34 | JLW     | TAL SL |
| Total/NA  | Prep     | PrecSep_0   |     |          | 479482 | 08/13/20 16:06 | MNH     | TAL SL |
| Total/NA  | Analysis | 9320        |     | 1        | 481274 | 09/01/20 11:59 | JLW     | TAL SL |
| Total/NA  | Analysis | Ra226_Ra228 |     | 1        | 484013 | 09/28/20 11:11 | CMM     | TAL SL |

Client Sample ID: BA14581 MW-3V

Lab Sample ID: 400-191957-10 Date Collected: 08/04/20 13:01 **Matrix: Water** 

Date Received: 08/10/20 14:30

|          | Batc    | n Batch     |      | Dilution | Batch  | Prepared       |         |        |
|----------|---------|-------------|------|----------|--------|----------------|---------|--------|
| Prep Typ | ре Туре | Method      | Run  | Factor   | Number | or Analyzed    | Analyst | Lab    |
| Total/NA | Prep    | PrecSep-2   | 21   |          | 479478 | 08/13/20 15:23 | MNH     | TAL SL |
| Total/NA | Analy   | rsis 9315   |      | 1        | 481674 | 09/06/20 15:34 | JLW     | TAL SL |
| Total/NA | Prep    | PrecSep_    | .0   |          | 479482 | 08/13/20 16:06 | MNH     | TAL SL |
| Total/NA | Analy   | rsis 9320   |      | 1        | 481274 | 09/01/20 12:00 | JLW     | TAL SL |
| Total/NA | Analy   | sis Ra226_R | a228 | 1        | 484013 | 09/28/20 11:11 | CMM     | TAL SL |

Lab Sample ID: 400-191957-11 Client Sample ID: BA14582 MW-3 **Matrix: Water** 

Date Collected: 08/04/20 15:35 Date Received: 08/10/20 14:30

|           | Batch    | Batch       |     | Dilution | Batch  | Prepared       |         |        |
|-----------|----------|-------------|-----|----------|--------|----------------|---------|--------|
| Prep Type | Type     | Method      | Run | Factor   | Number | or Analyzed    | Analyst | Lab    |
| Total/NA  | Prep     | PrecSep-21  |     |          | 479478 | 08/13/20 15:23 | MNH     | TAL SL |
| Total/NA  | Analysis | 9315        |     | 1        | 481674 | 09/06/20 15:34 | JLW     | TAL SL |
| Total/NA  | Prep     | PrecSep_0   |     |          | 479482 | 08/13/20 16:06 | MNH     | TAL SL |
| Total/NA  | Analysis | 9320        |     | 1        | 481274 | 09/01/20 12:00 | JLW     | TAL SL |
| Total/NA  | Analysis | Ra226_Ra228 |     | 1        | 484013 | 09/28/20 11:11 | CMM     | TAL SL |

Client Sample ID: BA14583 MW-8V Lab Sample ID: 400-191957-12

Date Collected: 08/05/20 10:20 Date Received: 08/10/20 14:30

| _         | Batch    | Batch       |     | Dilution | Batch  | Prepared       |         |        |
|-----------|----------|-------------|-----|----------|--------|----------------|---------|--------|
| Prep Type | Type     | Method      | Run | Factor   | Number | or Analyzed    | Analyst | Lab    |
| Total/NA  | Prep     | PrecSep-21  |     |          | 479478 | 08/13/20 15:23 | MNH     | TAL SL |
| Total/NA  | Analysis | 9315        |     | 1        | 481674 | 09/06/20 17:28 | JLW     | TAL SL |
| Total/NA  | Prep     | PrecSep_0   |     |          | 479482 | 08/13/20 16:06 | MNH     | TAL SL |
| Total/NA  | Analysis | 9320        |     | 1        | 481274 | 09/01/20 12:00 | JLW     | TAL SL |
| Total/NA  | Analysis | Ra226_Ra228 |     | 1        | 484013 | 09/28/20 11:11 | CMM     | TAL SL |

**Matrix: Water** 

Client: Alabama Power General Test Laboratory

Job ID: 400-191957-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1289

Client Sample ID: BA14584 MW-8

Lab Sample ID: 400-191957-13 Date Collected: 08/05/20 11:24 **Matrix: Water** Date Received: 08/10/20 14:30

|           | Batch    | Batch       |     | Dilution | Batch  | Prepared       |         |        |
|-----------|----------|-------------|-----|----------|--------|----------------|---------|--------|
| Prep Type | Type     | Method      | Run | Factor   | Number | or Analyzed    | Analyst | Lab    |
| Total/NA  | Prep     | PrecSep-21  |     |          | 482544 | 09/15/20 23:38 | CMM     | TAL SL |
| Total/NA  | Analysis | 9315        |     | 1        | 483637 | 09/25/20 14:24 | SCB     | TAL SL |
| Total/NA  | Prep     | PrecSep_0   |     |          | 481587 | 09/03/20 15:00 | AVB     | TAL SL |
| Total/NA  | Analysis | 9320        |     | 1        | 482524 | 09/15/20 13:10 | CMM     | TAL SL |
| Total/NA  | Analysis | Ra226_Ra228 |     | 1        | 483928 | 09/27/20 15:23 | GRW     | TAL SL |

Client Sample ID: BA14585 MW-12H

Lab Sample ID: 400-191957-14 Date Collected: 08/05/20 12:50 **Matrix: Water** Date Received: 08/10/20 14:30

|           | Batch    | Batch       |     | Dilution | Batch  | Prepared       |         |        |
|-----------|----------|-------------|-----|----------|--------|----------------|---------|--------|
| Prep Type | Type     | Method      | Run | Factor   | Number | or Analyzed    | Analyst | Lab    |
| Total/NA  | Prep     | PrecSep-21  |     |          | 482544 | 09/15/20 23:38 | CMM     | TAL SL |
| Total/NA  | Analysis | 9315        |     | 1        | 483637 | 09/25/20 14:24 | SCB     | TAL SL |
| Total/NA  | Prep     | PrecSep_0   |     |          | 481587 | 09/03/20 15:00 | AVB     | TAL SL |
| Total/NA  | Analysis | 9320        |     | 1        | 482524 | 09/15/20 13:10 | CMM     | TAL SL |
| Total/NA  | Analysis | Ra226_Ra228 |     | 1        | 483928 | 09/27/20 15:23 | GRW     | TAL SL |

Client Sample ID: BA14586 MW-12V

Lab Sample ID: 400-191957-15 Date Collected: 08/05/20 13:47 **Matrix: Water** Date Received: 08/10/20 14:30

|           | Batch    | Batch       |     | Dilution | Batch  | Prepared       |         |        |
|-----------|----------|-------------|-----|----------|--------|----------------|---------|--------|
| Prep Type | Туре     | Method      | Run | Factor   | Number | or Analyzed    | Analyst | Lab    |
| Total/NA  | Prep     | PrecSep-21  |     |          | 482544 | 09/15/20 23:38 | CMM     | TAL SL |
| Total/NA  | Analysis | 9315        |     | 1        | 483637 | 09/25/20 20:19 | SCB     | TAL SL |
| Total/NA  | Prep     | PrecSep_0   |     |          | 481587 | 09/03/20 15:00 | AVB     | TAL SL |
| Total/NA  | Analysis | 9320        |     | 1        | 482524 | 09/15/20 13:10 | CMM     | TAL SL |
| Total/NA  | Analysis | Ra226_Ra228 |     | 1        | 483928 | 09/27/20 15:23 | GRW     | TAL SL |

Client Sample ID: BA14587 FB-3

Lab Sample ID: 400-191957-16 Date Collected: 08/05/20 14:10 **Matrix: Water** Date Received: 08/10/20 14:30

| -         | Batch    | Batch       |     | Dilution | Batch  | Prepared       |         |        |
|-----------|----------|-------------|-----|----------|--------|----------------|---------|--------|
| Prep Type | Туре     | Method      | Run | Factor   | Number | or Analyzed    | Analyst | Lab    |
| Total/NA  | Prep     | PrecSep-21  |     |          | 482544 | 09/15/20 23:38 | CMM     | TAL SL |
| Total/NA  | Analysis | 9315        |     | 1        | 483637 | 09/25/20 20:19 | SCB     | TAL SL |
| Total/NA  | Prep     | PrecSep_0   |     |          | 481587 | 09/03/20 15:00 | AVB     | TAL SL |
| Total/NA  | Analysis | 9320        |     | 1        | 482524 | 09/15/20 13:10 | CMM     | TAL SL |
| Total/NA  | Analysis | Ra226_Ra228 |     | 1        | 483928 | 09/27/20 15:23 | GRW     | TAL SL |

Eurofins TestAmerica, Pensacola

Page 42 of 58

Client: Alabama Power General Test Laboratory

Job ID: 400-191957-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1289

Client Sample ID: BA14588 MW-1L

Lab Sample ID: 400-191957-17 Date Collected: 08/03/20 11:45 **Matrix: Water** Date Received: 08/10/20 14:30

|           | Batch    | Batch       |     | Dilution | Batch  | Prepared       |         |        |
|-----------|----------|-------------|-----|----------|--------|----------------|---------|--------|
| Prep Type | Type     | Method      | Run | Factor   | Number | or Analyzed    | Analyst | Lab    |
| Total/NA  | Prep     | PrecSep-21  |     |          | 482544 | 09/15/20 23:38 | CMM     | TAL SL |
| Total/NA  | Analysis | 9315        |     | 1        | 483637 | 09/25/20 20:19 | SCB     | TAL SL |
| Total/NA  | Prep     | PrecSep_0   |     |          | 481587 | 09/03/20 15:00 | AVB     | TAL SL |
| Total/NA  | Analysis | 9320        |     | 1        | 482524 | 09/15/20 13:10 | CMM     | TAL SL |
| Total/NA  | Analysis | Ra226_Ra228 |     | 1        | 483928 | 09/27/20 15:23 | GRW     | TAL SL |

Client Sample ID: BA14589 MW-1L DUP

Lab Sample ID: 400-191957-18 Date Collected: 08/03/20 11:45 **Matrix: Water** Date Received: 08/10/20 14:30

| Batch     | Batch    | Batch       |     | Dilution | Batch  |                |         |        |
|-----------|----------|-------------|-----|----------|--------|----------------|---------|--------|
| Prep Type | Type     | Method      | Run | Factor   | Number | or Analyzed    | Analyst | Lab    |
| Total/NA  | Prep     | PrecSep-21  |     |          | 482544 | 09/15/20 23:38 | CMM     | TAL SL |
| Total/NA  | Analysis | 9315        |     | 1        | 483637 | 09/25/20 20:20 | SCB     | TAL SL |
| Total/NA  | Prep     | PrecSep_0   |     |          | 481587 | 09/03/20 15:00 | AVB     | TAL SL |
| Total/NA  | Analysis | 9320        |     | 1        | 482524 | 09/15/20 13:10 | CMM     | TAL SL |
| Total/NA  | Analysis | Ra226_Ra228 |     | 1        | 483928 | 09/27/20 15:23 | GRW     | TAL SL |

Client Sample ID: BA14590 MW-2L

Lab Sample ID: 400-191957-19 Date Collected: 08/03/20 12:55 **Matrix: Water** Date Received: 08/10/20 14:30

|           | Batch    | Batch       |     | Dilution | Batch  | Prepared       |         |        |
|-----------|----------|-------------|-----|----------|--------|----------------|---------|--------|
| Prep Type | Type     | Method      | Run | Factor   | Number | or Analyzed    | Analyst | Lab    |
| Total/NA  | Prep     | PrecSep-21  |     |          | 482544 | 09/15/20 23:38 | CMM     | TAL SL |
| Total/NA  | Analysis | 9315        |     | 1        | 483637 | 09/25/20 20:18 | SCB     | TAL SL |
| Total/NA  | Prep     | PrecSep_0   |     |          | 481587 | 09/03/20 15:00 | AVB     | TAL SL |
| Total/NA  | Analysis | 9320        |     | 1        | 482524 | 09/15/20 13:11 | CMM     | TAL SL |
| Total/NA  | Analysis | Ra226_Ra228 |     | 1        | 483928 | 09/27/20 15:23 | GRW     | TAL SL |

Client Sample ID: BA14591 MW-3L

Lab Sample ID: 400-191957-20 Date Collected: 08/03/20 14:28 **Matrix: Water** Date Received: 08/10/20 14:30

| Batch     |          | Batch       |     | Dilution | Batch  | Prepared       | Prepared |        |  |
|-----------|----------|-------------|-----|----------|--------|----------------|----------|--------|--|
| Prep Type | Type     | Method      | Run | Factor   | Number | or Analyzed    | Analyst  | Lab    |  |
| Total/NA  | Prep     | PrecSep-21  |     |          | 482544 | 09/15/20 23:38 | CMM      | TAL SL |  |
| Total/NA  | Analysis | 9315        |     | 1        | 483637 | 09/25/20 20:18 | SCB      | TAL SL |  |
| Total/NA  | Prep     | PrecSep_0   |     |          | 481587 | 09/03/20 15:00 | AVB      | TAL SL |  |
| Total/NA  | Analysis | 9320        |     | 1        | 482524 | 09/15/20 13:11 | CMM      | TAL SL |  |
| Total/NA  | Analysis | Ra226_Ra228 |     | 1        | 483928 | 09/27/20 15:23 | GRW      | TAL SL |  |

Eurofins TestAmerica, Pensacola

Page 43 of 58

Client: Alabama Power General Test Laboratory

Job ID: 400-191957-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1289

Client Sample ID: BA14592 MW-11H

Lab Sample ID: 400-191957-21 Date Collected: 08/04/20 09:35 **Matrix: Water** Date Received: 08/10/20 14:30

|           | Batch    | Batch       |     | Dilution | Batch  | Prepared       |         |        |
|-----------|----------|-------------|-----|----------|--------|----------------|---------|--------|
| Prep Type | Type     | Method      | Run | Factor   | Number | or Analyzed    | Analyst | Lab    |
| Total/NA  | Prep     | PrecSep-21  |     |          | 482544 | 09/15/20 23:38 | CMM     | TAL SL |
| Total/NA  | Analysis | 9315        |     | 1        | 483637 | 09/25/20 20:18 | SCB     | TAL SL |
| Total/NA  | Prep     | PrecSep_0   |     |          | 481587 | 09/03/20 15:00 | AVB     | TAL SL |
| Total/NA  | Analysis | 9320        |     | 1        | 482524 | 09/15/20 13:11 | CMM     | TAL SL |
| Total/NA  | Analysis | Ra226_Ra228 |     | 1        | 483928 | 09/27/20 15:23 | GRW     | TAL SL |

Client Sample ID: BA14593 MW-11H DUP

Lab Sample ID: 400-191957-22 Date Collected: 08/04/20 09:35 **Matrix: Water** Date Received: 08/10/20 14:30

| Batch     | Batch    |             | Dilution | Dilution Batch Prepared |        |                |         |        |
|-----------|----------|-------------|----------|-------------------------|--------|----------------|---------|--------|
| Prep Type | Туре     | Method      | Run      | Factor                  | Number | or Analyzed    | Analyst | Lab    |
| Total/NA  | Prep     | PrecSep-21  |          |                         | 482544 | 09/15/20 23:38 | CMM     | TAL SL |
| Total/NA  | Analysis | 9315        |          | 1                       | 483637 | 09/25/20 20:18 | SCB     | TAL SL |
| Total/NA  | Prep     | PrecSep_0   |          |                         | 481587 | 09/03/20 15:00 | AVB     | TAL SL |
| Total/NA  | Analysis | 9320        |          | 1                       | 482524 | 09/15/20 13:12 | CMM     | TAL SL |
| Total/NA  | Analysis | Ra226_Ra228 |          | 1                       | 483928 | 09/27/20 15:23 | GRW     | TAL SL |

Client Sample ID: BA14594 MW-13H

Lab Sample ID: 400-191957-23 Date Collected: 08/04/20 11:10 **Matrix: Water** Date Received: 08/10/20 14:30

| Batch     | Batch    | Batch       |     | Dilution | Batch  | Prepared       |         |        |
|-----------|----------|-------------|-----|----------|--------|----------------|---------|--------|
| Prep Type | Туре     | Method      | Run | Factor   | Number | or Analyzed    | Analyst | Lab    |
| Total/NA  | Prep     | PrecSep-21  |     |          | 482544 | 09/15/20 23:38 | CMM     | TAL SL |
| Total/NA  | Analysis | 9315        |     | 1        | 483637 | 09/25/20 20:18 | SCB     | TAL SL |
| Total/NA  | Prep     | PrecSep_0   |     |          | 481587 | 09/03/20 15:00 | AVB     | TAL SL |
| Total/NA  | Analysis | 9320        |     | 1        | 482524 | 09/15/20 13:12 | CMM     | TAL SL |
| Total/NA  | Analysis | Ra226_Ra228 |     | 1        | 483928 | 09/27/20 15:23 | GRW     | TAL SL |

Client Sample ID: BA14595 MW-9H

Lab Sample ID: 400-191957-24 Date Collected: 08/04/20 12:20 **Matrix: Water** Date Received: 08/10/20 14:30

|           | Batch    | Batch       |     | Dilution | Batch  | Prepared       |         |        |
|-----------|----------|-------------|-----|----------|--------|----------------|---------|--------|
| Prep Type | Туре     | Method      | Run | Factor   | Number | or Analyzed    | Analyst | Lab    |
| Total/NA  | Prep     | PrecSep-21  |     |          | 482544 | 09/15/20 23:38 | CMM     | TAL SL |
| Total/NA  | Analysis | 9315        |     | 1        | 483637 | 09/25/20 20:18 | SCB     | TAL SL |
| Total/NA  | Prep     | PrecSep_0   |     |          | 481587 | 09/03/20 15:00 | AVB     | TAL SL |
| Total/NA  | Analysis | 9320        |     | 1        | 482524 | 09/15/20 13:12 | CMM     | TAL SL |
| Total/NA  | Analysis | Ra226 Ra228 |     | 1        | 483928 | 09/27/20 15:23 | GRW     | TAL SL |

Eurofins TestAmerica, Pensacola

Page 44 of 58

9/28/2020

Client: Alabama Power General Test Laboratory

Job ID: 400-191957-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1289

Client Sample ID: BA14596 MW-9V

Lab Sample ID: 400-191957-25 Date Collected: 08/04/20 15:30 **Matrix: Water** Date Received: 08/10/20 14:30

|           | Batch    | Batch       |     | Dilution | Batch  | Prepared       |         |        |
|-----------|----------|-------------|-----|----------|--------|----------------|---------|--------|
| Prep Type | Type     | Method      | Run | Factor   | Number | or Analyzed    | Analyst | Lab    |
| Total/NA  | Prep     | PrecSep-21  |     |          | 482544 | 09/15/20 23:38 | CMM     | TAL SL |
| Total/NA  | Analysis | 9315        |     | 1        | 483637 | 09/25/20 20:15 | SCB     | TAL SL |
| Total/NA  | Prep     | PrecSep_0   |     |          | 481587 | 09/03/20 15:00 | AVB     | TAL SL |
| Total/NA  | Analysis | 9320        |     | 1        | 482524 | 09/15/20 13:12 | CMM     | TAL SL |
| Total/NA  | Analysis | Ra226_Ra228 |     | 1        | 483928 | 09/27/20 15:23 | GRW     | TAL SL |

Client Sample ID: BA14597 MW-4L Lab Sample ID: 400-191957-26

Date Collected: 08/05/20 09:55 **Matrix: Water** 

Date Received: 08/10/20 14:30

|           | Batch    | Batch       |     | Dilution | Batch  | Prepared       |         |        |
|-----------|----------|-------------|-----|----------|--------|----------------|---------|--------|
| Prep Type | Туре     | Method      | Run | Factor   | Number | or Analyzed    | Analyst | Lab    |
| Total/NA  | Prep     | PrecSep-21  |     |          | 482544 | 09/15/20 23:38 | CMM     | TAL SL |
| Total/NA  | Analysis | 9315        |     | 1        | 483637 | 09/25/20 20:16 | SCB     | TAL SL |
| Total/NA  | Prep     | PrecSep_0   |     |          | 481587 | 09/03/20 15:00 | AVB     | TAL SL |
| Total/NA  | Analysis | 9320        |     | 1        | 482524 | 09/15/20 13:12 | CMM     | TAL SL |
| Total/NA  | Analysis | Ra226_Ra228 |     | 1        | 483928 | 09/27/20 15:23 | GRW     | TAL SL |

Lab Sample ID: 400-191957-27 Client Sample ID: BA14598 MW-14H **Matrix: Water** 

Date Collected: 08/05/20 11:10 Date Received: 08/10/20 14:30

| Batch     | Batch    | Batch       |     | Dilution | Batch  | Prepared       |         |        |
|-----------|----------|-------------|-----|----------|--------|----------------|---------|--------|
| Prep Type | Туре     | Method      | Run | Factor   | Number | or Analyzed    | Analyst | Lab    |
| Total/NA  | Prep     | PrecSep-21  |     |          | 482544 | 09/15/20 23:38 | CMM     | TAL SL |
| Total/NA  | Analysis | 9315        |     | 1        | 483637 | 09/25/20 22:42 | SCB     | TAL SL |
| Total/NA  | Prep     | PrecSep_0   |     |          | 481587 | 09/03/20 15:00 | AVB     | TAL SL |
| Total/NA  | Analysis | 9320        |     | 1        | 482538 | 09/15/20 13:14 | SCB     | TAL SL |
| Total/NA  | Analysis | Ra226_Ra228 |     | 1        | 483928 | 09/27/20 15:23 | GRW     | TAL SL |

Client Sample ID: BA14599 MW-4 Lab Sample ID: 400-191957-28

Date Collected: 08/05/20 12:08 Date Received: 08/10/20 14:30

| Batch     |          | Batch       |     | Dilution | Batch  | Prepared       |         |        |
|-----------|----------|-------------|-----|----------|--------|----------------|---------|--------|
| Prep Type | Type     | Method      | Run | Factor   | Number | or Analyzed    | Analyst | Lab    |
| Total/NA  | Prep     | PrecSep-21  |     |          | 482544 | 09/15/20 23:38 | CMM     | TAL SL |
| Total/NA  | Analysis | 9315        |     | 1        | 483637 | 09/25/20 22:42 | SCB     | TAL SL |
| Total/NA  | Prep     | PrecSep_0   |     |          | 481587 | 09/03/20 15:00 | AVB     | TAL SL |
| Total/NA  | Analysis | 9320        |     | 1        | 482538 | 09/15/20 13:14 | SCB     | TAL SL |
| Total/NA  | Analysis | Ra226_Ra228 |     | 1        | 483928 | 09/27/20 15:23 | GRW     | TAL SL |

**Matrix: Water** 

Client: Alabama Power General Test Laboratory

Job ID: 400-191957-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1289

Client Sample ID: BA14600 MW-4V

Lab Sample ID: 400-191957-29 Date Collected: 08/05/20 13:05 **Matrix: Water** Date Received: 08/10/20 14:30

|           | Batch    | Batch       |     | Dilution | Batch  | Prepared       |         |        |
|-----------|----------|-------------|-----|----------|--------|----------------|---------|--------|
| Prep Type | Type     | Method      | Run | Factor   | Number | or Analyzed    | Analyst | Lab    |
| Total/NA  | Prep     | PrecSep-21  |     |          | 482544 | 09/15/20 23:38 | CMM     | TAL SL |
| Total/NA  | Analysis | 9315        |     | 1        | 483637 | 09/25/20 22:40 | SCB     | TAL SL |
| Total/NA  | Prep     | PrecSep_0   |     |          | 481587 | 09/03/20 15:00 | AVB     | TAL SL |
| Total/NA  | Analysis | 9320        |     | 1        | 482538 | 09/15/20 13:14 | SCB     | TAL SL |
| Total/NA  | Analysis | Ra226_Ra228 |     | 1        | 483928 | 09/27/20 15:23 | GRW     | TAL SL |

Client Sample ID: BA14601 FB-2

Lab Sample ID: 400-191957-30 Date Collected: 08/05/20 13:30 **Matrix: Water** Date Received: 08/10/20 14:30

|           | Batch    | Batch       |     | Dilution | Batch  | Prepared       |         |        |
|-----------|----------|-------------|-----|----------|--------|----------------|---------|--------|
| Prep Type | Type     | Method      | Run | Factor   | Number | or Analyzed    | Analyst | Lab    |
| Total/NA  | Prep     | PrecSep-21  |     |          | 482544 | 09/15/20 23:38 | CMM     | TAL SL |
| Total/NA  | Analysis | 9315        |     | 1        | 483637 | 09/25/20 22:40 | SCB     | TAL SL |
| Total/NA  | Prep     | PrecSep_0   |     |          | 481587 | 09/03/20 15:00 | AVB     | TAL SL |
| Total/NA  | Analysis | 9320        |     | 1        | 482538 | 09/15/20 13:14 | SCB     | TAL SL |
| Total/NA  | Analysis | Ra226_Ra228 |     | 1        | 483928 | 09/27/20 15:23 | GRW     | TAL SL |

Client Sample ID: BA14602 EB-1

Lab Sample ID: 400-191957-31 Date Collected: 08/05/20 13:45 **Matrix: Water** Date Received: 08/10/20 14:30

| Batch     | Batch    | Batch       |     | Dilution | Batch  | Prepared       |         |        |
|-----------|----------|-------------|-----|----------|--------|----------------|---------|--------|
| Prep Type | Туре     | Method      | Run | Factor   | Number | or Analyzed    | Analyst | Lab    |
| Total/NA  | Prep     | PrecSep-21  |     |          | 482544 | 09/15/20 23:38 | CMM     | TAL SL |
| Total/NA  | Analysis | 9315        |     | 1        | 483637 | 09/25/20 22:41 | SCB     | TAL SL |
| Total/NA  | Prep     | PrecSep_0   |     |          | 481587 | 09/03/20 15:00 | AVB     | TAL SL |
| Total/NA  | Analysis | 9320        |     | 1        | 482538 | 09/15/20 13:14 | SCB     | TAL SL |
| Total/NA  | Analysis | Ra226_Ra228 |     | 1        | 483928 | 09/27/20 15:23 | GRW     | TAL SL |

#### **Laboratory References:**

TAL SL = Eurofins TestAmerica, St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

## **QC Association Summary**

Client: Alabama Power General Test Laboratory

Job ID: 400-191957-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1289

### Rad

### **Prep Batch: 479478**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method     | Prep Batch |
|--------------------|--------------------|-----------|--------|------------|------------|
| 400-191957-1       | BA14572 EB-2       | Total/NA  | Water  | PrecSep-21 |            |
| 400-191957-2       | BA14573 PZ-18      | Total/NA  | Water  | PrecSep-21 |            |
| 400-191957-3       | BA14574 PZ-19      | Total/NA  | Water  | PrecSep-21 |            |
| 400-191957-4       | BA14575 PZ-20      | Total/NA  | Water  | PrecSep-21 |            |
| 400-191957-5       | BA14576 PZ-20 DUP  | Total/NA  | Water  | PrecSep-21 |            |
| 400-191957-6       | BA14577 FB-1       | Total/NA  | Water  | PrecSep-21 |            |
| 400-191957-7       | BA14578 PZ-21      | Total/NA  | Water  | PrecSep-21 |            |
| 400-191957-8       | BA14579 PZ-22      | Total/NA  | Water  | PrecSep-21 |            |
| 400-191957-9       | BA14580 PZ-17      | Total/NA  | Water  | PrecSep-21 |            |
| 400-191957-10      | BA14581 MW-3V      | Total/NA  | Water  | PrecSep-21 |            |
| 400-191957-11      | BA14582 MW-3       | Total/NA  | Water  | PrecSep-21 |            |
| 400-191957-12      | BA14583 MW-8V      | Total/NA  | Water  | PrecSep-21 |            |
| MB 160-479478/23-A | Method Blank       | Total/NA  | Water  | PrecSep-21 |            |
| LCS 160-479478/1-A | Lab Control Sample | Total/NA  | Water  | PrecSep-21 |            |
| 400-191957-3 MS    | BA14574 PZ-19      | Total/NA  | Water  | PrecSep-21 |            |
| 400-191957-3 MSD   | BA14574 PZ-19      | Total/NA  | Water  | PrecSep-21 |            |
| 160-39069-B-1-A DU | Duplicate          | Total/NA  | Water  | PrecSep-21 |            |

#### **Prep Batch: 479482**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method    | Prep Batch |
|--------------------|--------------------|-----------|--------|-----------|------------|
| 400-191957-1       | BA14572 EB-2       | Total/NA  | Water  | PrecSep_0 |            |
| 400-191957-2       | BA14573 PZ-18      | Total/NA  | Water  | PrecSep_0 |            |
| 400-191957-3       | BA14574 PZ-19      | Total/NA  | Water  | PrecSep_0 |            |
| 400-191957-4       | BA14575 PZ-20      | Total/NA  | Water  | PrecSep_0 |            |
| 400-191957-5       | BA14576 PZ-20 DUP  | Total/NA  | Water  | PrecSep_0 |            |
| 400-191957-6       | BA14577 FB-1       | Total/NA  | Water  | PrecSep_0 |            |
| 400-191957-7       | BA14578 PZ-21      | Total/NA  | Water  | PrecSep_0 |            |
| 400-191957-8       | BA14579 PZ-22      | Total/NA  | Water  | PrecSep_0 |            |
| 400-191957-9       | BA14580 PZ-17      | Total/NA  | Water  | PrecSep_0 |            |
| 400-191957-10      | BA14581 MW-3V      | Total/NA  | Water  | PrecSep_0 |            |
| 400-191957-11      | BA14582 MW-3       | Total/NA  | Water  | PrecSep_0 |            |
| 400-191957-12      | BA14583 MW-8V      | Total/NA  | Water  | PrecSep_0 |            |
| MB 160-479482/23-A | Method Blank       | Total/NA  | Water  | PrecSep_0 |            |
| LCS 160-479482/1-A | Lab Control Sample | Total/NA  | Water  | PrecSep_0 |            |
| 400-191957-3 MS    | BA14574 PZ-19      | Total/NA  | Water  | PrecSep_0 |            |
| 400-191957-3 MSD   | BA14574 PZ-19      | Total/NA  | Water  | PrecSep_0 |            |
| 160-39069-B-1-B DU | Duplicate          | Total/NA  | Water  | PrecSep_0 |            |

#### **Prep Batch: 481587**

| Lab Sample ID | Client Sample ID   | Prep Type | Matrix | Method    | Prep Batch |
|---------------|--------------------|-----------|--------|-----------|------------|
| 400-191957-13 | BA14584 MW-8       | Total/NA  | Water  | PrecSep_0 |            |
| 400-191957-14 | BA14585 MW-12H     | Total/NA  | Water  | PrecSep_0 |            |
| 400-191957-15 | BA14586 MW-12V     | Total/NA  | Water  | PrecSep_0 |            |
| 400-191957-16 | BA14587 FB-3       | Total/NA  | Water  | PrecSep_0 |            |
| 400-191957-17 | BA14588 MW-1L      | Total/NA  | Water  | PrecSep_0 |            |
| 400-191957-18 | BA14589 MW-1L DUP  | Total/NA  | Water  | PrecSep_0 |            |
| 400-191957-19 | BA14590 MW-2L      | Total/NA  | Water  | PrecSep_0 |            |
| 400-191957-20 | BA14591 MW-3L      | Total/NA  | Water  | PrecSep_0 |            |
| 400-191957-21 | BA14592 MW-11H     | Total/NA  | Water  | PrecSep_0 |            |
| 400-191957-22 | BA14593 MW-11H DUP | Total/NA  | Water  | PrecSep_0 |            |
| 400-191957-23 | BA14594 MW-13H     | Total/NA  | Water  | PrecSep_0 |            |

Eurofins TestAmerica, Pensacola

Page 47 of 58 9/28/2020

## **QC Association Summary**

Client: Alabama Power General Test Laboratory

Job ID: 400-191957-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1289

### Rad (Continued)

### Prep Batch: 481587 (Continued)

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method    | Prep Batch |
|--------------------|--------------------|-----------|--------|-----------|------------|
| 400-191957-24      | BA14595 MW-9H      | Total/NA  | Water  | PrecSep_0 |            |
| 400-191957-25      | BA14596 MW-9V      | Total/NA  | Water  | PrecSep_0 |            |
| 400-191957-26      | BA14597 MW-4L      | Total/NA  | Water  | PrecSep_0 |            |
| 400-191957-27      | BA14598 MW-14H     | Total/NA  | Water  | PrecSep_0 |            |
| 400-191957-28      | BA14599 MW-4       | Total/NA  | Water  | PrecSep_0 |            |
| 400-191957-29      | BA14600 MW-4V      | Total/NA  | Water  | PrecSep_0 |            |
| 400-191957-30      | BA14601 FB-2       | Total/NA  | Water  | PrecSep_0 |            |
| 400-191957-31      | BA14602 EB-1       | Total/NA  | Water  | PrecSep_0 |            |
| MB 160-481587/23-A | Method Blank       | Total/NA  | Water  | PrecSep_0 |            |
| LCS 160-481587/1-A | Lab Control Sample | Total/NA  | Water  | PrecSep_0 |            |
| 400-191957-26 MS   | BA14597 MW-4L      | Total/NA  | Water  | PrecSep_0 |            |
| 400-191957-26 MSD  | BA14597 MW-4L      | Total/NA  | Water  | PrecSep_0 |            |

### **Prep Batch: 482544**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method     | Prep Batcl |
|--------------------|--------------------|-----------|--------|------------|------------|
| 400-191957-13      | BA14584 MW-8       | Total/NA  | Water  | PrecSep-21 |            |
| 400-191957-14      | BA14585 MW-12H     | Total/NA  | Water  | PrecSep-21 |            |
| 400-191957-15      | BA14586 MW-12V     | Total/NA  | Water  | PrecSep-21 |            |
| 400-191957-16      | BA14587 FB-3       | Total/NA  | Water  | PrecSep-21 |            |
| 400-191957-17      | BA14588 MW-1L      | Total/NA  | Water  | PrecSep-21 |            |
| 400-191957-18      | BA14589 MW-1L DUP  | Total/NA  | Water  | PrecSep-21 |            |
| 400-191957-19      | BA14590 MW-2L      | Total/NA  | Water  | PrecSep-21 |            |
| 400-191957-20      | BA14591 MW-3L      | Total/NA  | Water  | PrecSep-21 |            |
| 400-191957-21      | BA14592 MW-11H     | Total/NA  | Water  | PrecSep-21 |            |
| 400-191957-22      | BA14593 MW-11H DUP | Total/NA  | Water  | PrecSep-21 |            |
| 400-191957-23      | BA14594 MW-13H     | Total/NA  | Water  | PrecSep-21 |            |
| 400-191957-24      | BA14595 MW-9H      | Total/NA  | Water  | PrecSep-21 |            |
| 400-191957-25      | BA14596 MW-9V      | Total/NA  | Water  | PrecSep-21 |            |
| 400-191957-26      | BA14597 MW-4L      | Total/NA  | Water  | PrecSep-21 |            |
| 400-191957-27      | BA14598 MW-14H     | Total/NA  | Water  | PrecSep-21 |            |
| 400-191957-28      | BA14599 MW-4       | Total/NA  | Water  | PrecSep-21 |            |
| 400-191957-29      | BA14600 MW-4V      | Total/NA  | Water  | PrecSep-21 |            |
| 400-191957-30      | BA14601 FB-2       | Total/NA  | Water  | PrecSep-21 |            |
| 400-191957-31      | BA14602 EB-1       | Total/NA  | Water  | PrecSep-21 |            |
| MB 160-482544/23-A | Method Blank       | Total/NA  | Water  | PrecSep-21 |            |
| LCS 160-482544/1-A | Lab Control Sample | Total/NA  | Water  | PrecSep-21 |            |
| 400-191957-26 MS   | BA14597 MW-4L      | Total/NA  | Water  | PrecSep-21 |            |
| 400-191957-26 MSD  | BA14597 MW-4L      | Total/NA  | Water  | PrecSep-21 |            |

10

Client: Alabama Power General Test Laboratory

Job ID: 400-191957-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1289

Method: 9315 - Radium-226 (GFPC)

Lab Sample ID: MB 160-479478/23-A

Lab Sample ID: LCS 160-479478/1-A

**Matrix: Water** 

Analysis Batch: 481674

Client Sample ID: Method Blank

Prep Type: Total/NA

**Prep Batch: 479478** 

MB MB Uncert. Uncert. Analyte Result Qualifier  $(2\sigma + / -)$  $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac Radium-226 -0.005710 U 0.0989 0.0989 1.00 0.199 pCi/L 08/13/20 15:23 09/06/20 17:28

Total

MB

Carrier %Yield Qualifier Limits Prepared Analyzed Dil Fac Ba Carrier 92.1 40 - 110 08/13/20 15:23 09/06/20 17:28

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

**Prep Batch: 479478** 

Total LCS LCS %Rec. **Spike** Uncert.

Count

Analyte Added Result Qual  $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits Radium-226 15.1 13.92 1.49 1.00 0.202 pCi/L 92 75 - 125

LCS LCS Carrier %Yield Qualifier Limits Ba Carrier 92.1 40 - 110

Lab Sample ID: 400-191957-3 MS Client Sample ID: BA14574 PZ-19

**Matrix: Water** 

**Matrix: Water** 

Analysis Batch: 481674

Analysis Batch: 481674

Prep Type: Total/NA Prep Batch: 479478 Total

Uncert. %Rec. Sample Sample Spike MS MS Analyte Result Qual Added  $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits Result Qual Radium-226 0.109 U 15.1 1.48 1.00 0.223 pCi/L 89 75 - 138 13.54

MS MS Carrier %Yield Qualifier Limits Ba Carrier 81.3 40 - 110

Lab Sample ID: 400-191957-3 MSD Client Sample ID: BA14574 PZ-19

**Matrix: Water** 

Prep Type: Total/NA Analysis Batch: 481674 Prep Batch: 479478 Total

Sample Sample Spike MSD MSD Uncert. %Rec. **RER** Analyte Result Qual Added Result Qual  $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits RER Limit 0.109 U Radium-226 15.1 12.32 1.36 1.00 0.177 pCi/L 81 75 - 138 0.43

MSD MSD %Yield Qualifier Limits

Carrier Ba Carrier 81.6 40 - 110

Lab Sample ID: 160-39069-B-1-A DU **Client Sample ID: Duplicate** Prep Type: Total/NA

**Matrix: Water** 

**Analysis Batch: 481674** 

Total DU DU Sample Sample Uncert. **RER** Analyte Result Qual Result Qual  $(2\sigma + / -)$ RL **MDC** Unit RER Limit Radium-226 -0.0263 U 0.1225 U 0.101 1.00 0.142 pCi/L 0.89

Eurofins TestAmerica, Pensacola

**Prep Batch: 479478** 

10

Job ID: 400-191957-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1289

Method: 9315 - Radium-226 (GFPC) (Continued)

Lab Sample ID: 160-39069-B-1-A DU **Client Sample ID: Duplicate** Prep Type: Total/NA

**Matrix: Water** 

Analysis Batch: 481674

DU DU

Carrier %Yield Qualifier Limits Ba Carrier 619 40 - 110

Lab Sample ID: MB 160-482544/23-A **Client Sample ID: Method Blank** 

**Analysis Batch: 483637** 

**Matrix: Water** Prep Type: Total/NA **Prep Batch: 482544** 

Total

**Prep Batch: 479478** 

MB MB Uncert. Uncert. Analyte Result Qualifier  $(2\sigma + / -)$  $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac Radium-226 0.08992 0.169 0.169 1.00 0.306 pCi/L 09/15/20 23:38 09/25/20 22:40

> MB MB

Carrier %Yield Qualifier Limits Prepared Analyzed Dil Fac Ba Carrier 74.9 40 - 110 09/15/20 23:38 09/25/20 22:40

**Client Sample ID: Lab Control Sample** 

**Matrix: Water** Prep Type: Total/NA **Analysis Batch: 483637 Prep Batch: 482544** 

Total

Count

Spike LCS LCS %Rec. Uncert. Analyte Added Result Qual  $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits 37.8 1.00 75 - 125 Radium-226 34.32 3.66 0.403 pCi/L 91

LCS LCS

Carrier %Yield Qualifier Limits Ba Carrier 74.6 40 - 110

Lab Sample ID: LCS 160-482544/1-A

Lab Sample ID: 400-191957-26 MS Client Sample ID: BA14597 MW-4L

**Matrix: Water** 

Analysis Batch: 483637

Prep Type: Total/NA **Prep Batch: 482544** 

Total Sample Sample **Spike** MS MS

Uncert. %Rec. Result Qual Added  $(2\sigma + / -)$ RL **MDC** Unit Limits Analyte Result Qual %Rec Radium-226 -0.0556 U 75 - 138 35.6 31.87 3.33 1.00 0.306 pCi/L 89

MS MS

Carrier %Yield Qualifier Limits 40 - 110 Ba Carrier 89.6

Lab Sample ID: 400-191957-26 MSD Client Sample ID: BA14597 MW-4L Prep Type: Total/NA

**Matrix: Water** 

Analysis Batch: 483637 **Prep Batch: 482544** 

Total Sample Sample Spike MSD MSD Uncert.

%Rec. **RER** Analyte Result Qual Added RL **MDC** Unit %Rec Limits RER Limit Result Qual  $(2\sigma + / -)$ Radium-226 -0.0556 U 35.8 30.25 1.00 0.247 pCi/L 75 - 138 0.25 3.16 85

MSD MSD

Carrier %Yield Qualifier Limits Ba Carrier 91.4 40 - 110

Eurofins TestAmerica, Pensacola

10

Client: Alabama Power General Test Laboratory

Job ID: 400-191957-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1289

Method: 9320 - Radium-228 (GFPC)

Lab Sample ID: MB 160-479482/23-A

**Matrix: Water** 

Analysis Batch: 481274

Client Sample ID: Method Blank

Prep Type: Total/NA

**Prep Batch: 479482** 

MB MB Uncert. Uncert. Analyte Result Qualifier  $(2\sigma + / -)$  $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac Radium-228 0.5001 U 0.382 0.385 1.00 0.601 pCi/L 08/13/20 16:06 09/01/20 12:00

Total

Count

MB

Carrier %Yield Qualifier Limits Prepared Analyzed Dil Fac Ba Carrier 92.1 40 - 110 08/13/20 16:06 09/01/20 12:00 Y Carrier 75.9 40 - 110 08/13/20 16:06 09/01/20 12:00

Lab Sample ID: LCS 160-479482/1-A

**Matrix: Water** 

Analysis Batch: 481318

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA

**Prep Batch: 479482** 

Total Spike LCS LCS Uncert. %Rec. Added RL **MDC** Unit %Rec Limits Analyte Result Qual  $(2\sigma + / -)$ 1.00 Radium-228 10.5 9.576 1.24 0.602 pCi/L 92 75 - 125

LCS LCS

Carrier %Yield Qualifier Limits 40 - 110 Ba Carrier 92.1 Y Carrier 76.6 40 - 110

Lab Sample ID: 400-191957-3 MS Client Sample ID: BA14574 PZ-19

**Matrix: Water** 

**Analysis Batch: 481318** 

Prep Type: Total/NA

**Prep Batch: 479482** 

Total Sample Sample Spike MS MS Uncert. %Rec. Analyte Result Qual Added Result Qual  $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits Radium-228 0.543 U 10.5 9.332 1.25 1.00 0.647 pCi/L 84 45 - 150

MS MS Carrier %Yield Qualifier Limits Ba Carrier 81.3 40 - 110 Y Carrier 78.5 40 - 110

Lab Sample ID: 400-191957-3 MSD Client Sample ID: BA14574 PZ-19

**Matrix: Water** 

**Analysis Batch: 481318** 

Prep Type: Total/NA

**Prep Batch: 479482** 

Total

Spike Sample Sample MSD MSD Uncert. %Rec. **RER** Added Analyte Result Qual Result Qual  $(2\sigma + / -)$ RL MDC Unit %Rec Limits RER Limit Radium-228 0.543 U 10.5 9.850 1.28 1.00 0.646 pCi/L 89 45 - 150 0.20

MSD MSD

%Yield Qualifier Carrier Limits Ba Carrier 81.6 40 - 110 Y Carrier 83.0 40 - 110

Eurofins TestAmerica, Pensacola

Client: Alabama Power General Test Laboratory

Job ID: 400-191957-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1289

Method: 9320 - Radium-228 (GFPC) (Continued)

Lab Sample ID: 160-39069-B-1-B DU

**Matrix: Water** 

**Analysis Batch: 481318** 

Client Sample ID: Duplicate Prep Type: Total/NA

**Prep Batch: 479482** 

Total DU DU Uncert. **RER** Sample Sample Analyte Result Qual Result Qual  $(2\sigma + / -)$ RL**MDC** Unit RER Limit Radium-228 0.244 U 0.1961 U 0.440 1.00 0.754 pCi/L 0.06

DU DU

Carrier %Yield Qualifier Limits Ba Carrier 61.9 40 - 110 Y Carrier 68.0 40 - 110

Lab Sample ID: MB 160-481587/23-A Client Sample ID: Method Blank

**Matrix: Water** 

**Analysis Batch: 482538** 

Prep Type: Total/NA

**Prep Batch: 481587** 

Count Total MB MB Uncert. Uncert. Result Qualifier RL **MDC** Unit Analyte  $(2\sigma + / -)$  $(2\sigma + / -)$ Prepared Analyzed Dil Fac Radium-228 1.72 pCi/L 09/03/20 15:00 09/15/20 13:15 0.0000 UΘ 0.954 0.954 1.00

> MB MB

Carrier %Yield Qualifier Limits Prepared Analyzed Dil Fac 40 - 110 09/03/20 15:00 09/15/20 13:15 Ba Carrier 74.9 40 - 110 09/03/20 15:00 09/15/20 13:15 Y Carrier 89.0

Lab Sample ID: LCS 160-481587/1-A **Client Sample ID: Lab Control Sample** 

**Matrix: Water** 

**Analysis Batch: 482524** 

Prep Type: Total/NA

**Prep Batch: 481587** 

Total

Spike LCS LCS Uncert. %Rec. Analyte Added Result Qual  $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits Radium-228 26.0 25.72 3.52 1.00 2.07 pCi/L 99 75 - 125

LCS LCS Carrier %Yield Qualifier Limits Ba Carrier 74.6 40 - 110 Y Carrier 80.7 40 - 110

Lab Sample ID: 400-191957-26 MS Client Sample ID: BA14597 MW-4L

**Matrix: Water** 

**Analysis Batch: 482538** 

Prep Type: Total/NA **Prep Batch: 481587** 

Total

Spike Sample Sample MS MS Uncert. %Rec. Added Analyte Result Qual Result Qual  $(2\sigma + / -)$ RL MDC Unit %Rec Limits Radium-228 0.620 U G 3.15 24.5 24.88 1.00 1.48 pCi/L 99 45 - 150

MS MS

%Yield Qualifier Carrier Limits Ba Carrier 89.6 40 - 110 Y Carrier 84.5 40 - 110

Eurofins TestAmerica, Pensacola

9/28/2020

10

### **QC Sample Results**

Client: Alabama Power General Test Laboratory

Job ID: 400-191957-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1289

### Method: 9320 - Radium-228 (GFPC) (Continued)

Lab Sample ID: 400-191957-26 MSD Client Sample ID: BA14597 MW-4L

**Matrix: Water** 

**Analysis Batch: 482538** 

**Prep Type: Total/NA Prep Batch: 481587** 

|            |        |        |       |        |      | Total   |      |      |       |      |          |      |       |
|------------|--------|--------|-------|--------|------|---------|------|------|-------|------|----------|------|-------|
|            | Sample | Sample | Spike | MSD    | MSD  | Uncert. |      |      |       |      | %Rec.    |      | RER   |
| Analyte    | Result | Qual   | Added | Result | Qual | (2σ+/-) | RL   | MDC  | Unit  | %Rec | Limits   | RER  | Limit |
| Radium-228 | 0.620  | U G    | 24.6  | 20.77  |      | 2.75    | 1.00 | 1.44 | pCi/L | 82   | 45 - 150 | 0.70 | 1     |
|            |        |        |       |        |      |         |      |      |       |      |          |      |       |

MSD MSD Carrier %Yield Qualifier Limits Ba Carrier 91.4 40 - 110 Y Carrier 87.1 40 - 110



400-191957 COC

| 3355 McLemore Drive<br>Pensacola, FL 32514<br>Phone (850) 474-1001 Fax (850) 478-2671                                                                                                                                                                                                                                                                                                                                                    | Cha                                                                       | in of         | Custoc              | Chain of Custody Record                                               | p.d           |               |                                            |                             |                                 | DESCAPERME                                                                                                                                    | THE KLADER IN CNURCOMMENTAL TESTINO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------|---------------------|-----------------------------------------------------------------------|---------------|---------------|--------------------------------------------|-----------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Client Information (Sub Contract Lab)                                                                                                                                                                                                                                                                                                                                                                                                    | Sampler:<br>Dallas Gentry                                                 |               |                     | Lab PM<br>Whitmire, Cheyenne R                                        | Cheyenne      | œ             |                                            |                             | ng No(s).                       | COC No<br>400-56525-24537.1                                                                                                                   | 37.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Client Contact.<br>Laura Midkif                                                                                                                                                                                                                                                                                                                                                                                                          | Phone:                                                                    |               |                     | E-Mail:<br>cheyenne.                                                  | whitmire@     | testame       | icainc,com                                 | State of Origin:<br>Alabama |                                 | Page:<br>Page 1 of 2                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Сотрапу:<br>Alabama Power General Test Laboratory                                                                                                                                                                                                                                                                                                                                                                                        |                                                                           |               |                     | Accreditations Required (See note).                                   | itations Requ | uired (See r  | iote).                                     |                             |                                 | Job #.                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Address:<br>744 County Rd 87 GSC#8                                                                                                                                                                                                                                                                                                                                                                                                       | Due Date Requested:                                                       |               |                     |                                                                       |               | Ā             | nalysis R                                  | Analysis Requested          |                                 | Preservation Codes:                                                                                                                           | des:<br>M - Heyane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Olty:<br>Calera                                                                                                                                                                                                                                                                                                                                                                                                                          | TAT Requested (days):                                                     | Routine       |                     |                                                                       |               |               |                                            |                             |                                 | B - NaOH<br>C - Zn Acetate                                                                                                                    | N - None<br>O - AsNaO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| State, Zlp.<br>AL, 35040                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                           |               |                     |                                                                       |               | SFPC          |                                            | _                           |                                 | D - Nitric Acid<br>E - NaHSO4                                                                                                                 | P - Na204S<br>Q - Na2SO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Phone:<br>205-664-6197                                                                                                                                                                                                                                                                                                                                                                                                                   | # 0d                                                                      |               |                     | (0)                                                                   |               | 8228          |                                            | _                           | _                               | G - Amchlor<br>H - Ascorbic Acid                                                                                                              | S - HZSO4<br>T - TSP Dodecahydra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Email.<br>Ibmidkif@southernco.com                                                                                                                                                                                                                                                                                                                                                                                                        | WO#                                                                       |               |                     |                                                                       | 70.0          | 1226R         |                                            | _                           | _                               | 1 - Ice<br>J - DI Water                                                                                                                       | U - Acetone<br>V - MCAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Project Name                                                                                                                                                                                                                                                                                                                                                                                                                             | Project #                                                                 |               |                     |                                                                       |               | 28, Ra        |                                            | _                           |                                 | K-EDTA<br>L-EDA                                                                                                                               | W - pH 4-5<br>Z - other (specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Site<br>Site<br>Gordas Gvpsum 1289                                                                                                                                                                                                                                                                                                                                                                                                       | \$\$OW#.                                                                  |               |                     |                                                                       |               |               |                                            | _                           |                                 | of con                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| sanda Idaelification Citare III is b III                                                                                                                                                                                                                                                                                                                                                                                                 | Sample Date                                                               | Sample (C     | Sample N<br>Type (V | Matrix<br>(Winwater,<br>Swoolid,<br>Onwasteroll,<br>includit Hillored | W 4200 E.C    | 315_R3226, 93 |                                            |                             |                                 | redrnuM isto                                                                                                                                  | o de la la companya de la companya d |
|                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                         | 1             |                     | X                                                                     |               | 5             |                                            |                             |                                 |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BA14572                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8/3/20                                                                    | 10:15         | 0                   | Water                                                                 |               | ×             |                                            |                             | F                               | 1 EB-2 (Equipment Blank)                                                                                                                      | it Blank)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| BA14573                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8/3/20 1                                                                  | 11:00         | 0                   | Water                                                                 |               | ×             |                                            |                             |                                 | 1 PZ-18                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BA14574                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8/3/20 1                                                                  | 12:50         | O                   | Water                                                                 | ×             | ×             |                                            |                             |                                 | 3 PZ-19                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BA14575                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8/3/20 1                                                                  | 13:59         | O                   | Water                                                                 |               | ×             |                                            |                             |                                 | 1 PZ-20                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BA14576                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8/3/20                                                                    | 13:59         | O                   | Water                                                                 |               | ×             |                                            |                             |                                 | 1 PZ-20 DUP (Sample Duplicate)                                                                                                                | mple Duplicate)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BA14577                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8/3/20                                                                    | 14:45         | O                   | Water                                                                 |               | ×             |                                            |                             |                                 | 1 FB-1 (Field Blank)                                                                                                                          | ik)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| BA14578                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8/4/20 0                                                                  | 08:53         | O                   | Water                                                                 |               | ×             |                                            |                             |                                 | 4 PZ-21                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BA14579                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8/4/20                                                                    | 10:00         | D                   | Water                                                                 |               | ×             |                                            |                             |                                 | 1 PZ-22                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BA14580                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8/4/20                                                                    | 11:20         | D                   | Water                                                                 |               | ×             |                                            |                             |                                 | 1 PZ-17                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BA14581                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8/4/20                                                                    | 13:01         | O                   | Water                                                                 |               | ×             |                                            |                             |                                 | 1 MW-3V                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BA14582                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8/4/20                                                                    | 15:35         | O                   | Water                                                                 |               | ×             |                                            |                             |                                 | 1 MW-3                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BA14583                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8/5/20                                                                    | 10:20         | O                   | Water                                                                 |               | ×             |                                            |                             |                                 | 4 MW-8V                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BA14584                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8/5/20                                                                    | 11:24         | 9                   | Water                                                                 |               | ^             | ×                                          |                             |                                 | 1 MW-8                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BA14585                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8/5/20                                                                    | 12:50         | 0                   | Water                                                                 |               | _             | ×                                          |                             |                                 | 1 MW-12H                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BA14586                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8/5/20                                                                    | 13:47         | 9                   | Water                                                                 |               |               | ×                                          |                             |                                 | 1 MW-12V                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BA14587                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8/5/20                                                                    | 14:10         | 9                   | Water                                                                 |               |               | ×                                          |                             |                                 | 1 FB-3 (Field Blank)                                                                                                                          | nk)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                           |               |                     |                                                                       |               |               |                                            |                             |                                 |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                           |               |                     |                                                                       |               |               |                                            |                             |                                 |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                           | 1             |                     |                                                                       | 1             | 7             | 1                                          |                             |                                 | ist.                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Note Since laboratory accreditations are subject to change, TestAmerica, Laboratories, Inc., places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This sample sit currently maintain accreditation in the State of Origin listed above for analysis/less/smatrix being analyzed, the samples must be shipped back to the TestAmerica laboratory or other instructions will be provided. | ica Laboratories, Inc. places the ow inalysis/tests/matrix being analyzed | mership of me | ethod, analyte &    | accreditation co                                                      | mpliance up   | on out subc   | ontract labora                             | tories. This samp           | le shipment is<br>ed. Any chang | shipment is forwarded under chan-of-custody. If the laboratory does not Any changes to accreditation status should be brought to TestAmerica. | ody. If the laboratory do<br>uld be brought to TestAm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Laboratories, Inc. attention immediately. If all requested accreditations  Possible Hazard Identification                                                                                                                                                                                                                                                                                                                                | s are current to date, return the sign                                    | ned Chain of  | Custody attestir    | g to said complic                                                     | Sample D      | Merica La     | ( A fee ma                                 | be assesse                  | d if sample                     | Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)                                                           | nan 1 month)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Oriconifrinda<br>Deliverable Reguested: I. III. IV. Other (specify)                                                                                                                                                                                                                                                                                                                                                                      |                                                                           |               |                     | 44048                                                                 | Special In    | struction     | 44048 Special Instructions/OC Requirements | rements:                    | sy Lab                          | Archive For                                                                                                                                   | Months                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Emoty Kit Dalinanished hy                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           | oto.          |                     | Time                                                                  |               | -             |                                            | Meth                        | Method of Shinmen               |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Relinguished by: Laura Midkiff                                                                                                                                                                                                                                                                                                                                                                                                           | Date/Time 08/07/2020 08:10                                                | 08.10         | × 4                 | 1                                                                     | Received      | T DE          |                                            |                             | Date                            | 1920 142h                                                                                                                                     | 1 Complete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Relinquished by:                                                                                                                                                                                                                                                                                                                                                                                                                         | Date/Time:                                                                |               | Ö                   | Company                                                               | Received by   | od by:        |                                            |                             | Date/Tir                        |                                                                                                                                               | Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Relinquished by                                                                                                                                                                                                                                                                                                                                                                                                                          | Date/Time:                                                                |               | ŏ                   | Company                                                               | Received by   | ed by         |                                            |                             | Date/Time                       | ne                                                                                                                                            | Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                         |               | 1                   |                                                                       | +             | 1             |                                            |                             | -                               |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

TestAmerica

Chain of Custody Record

**TestAmerica Pensacola** 

I laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does restructions will be provided. Any changes to accreditation status should be brought to TestAmeric Special Instructions/Note MW-11H DUP (Sample Duplicate) Sample Disposal ( 4 fee may be assessed if samples are retained longer than 1 month)

Clent Disposal By Lab Months
Months MW-1L DUP (Sample Duplicate) EB-1 (Equipment Blank) 400-56525-24537.1 FB-2 (Field Blank) MW-14H MW-13H MW-9H **V6-WM** Analysis Requested 3315\_Ra226, 9320\_Ra228, Ra226Ra228\_GFPC Lab PM Whitmire, Cheyenne R E-Mail. before the street blooms are subject to change. TestAmerica Laboratories Inc., places the conventing of method analytic & accreditation compliance upon unrently mantain accreditation in the State of Origin Institute above for analysisfratational being analysed. The samples must be shipped back to the TestAmerica lab alonatories, Inc. attention immediately. If all expessed becauseful acceptations are current to date, return to date, return to date, return to origin and consistent of the acceptance to respect or acceptance to the species of the properties of the species of the properties of the species of the specie 2 4200 CI E 2 4200 FC (off to say) GEMIEM miorias (C=Comp, Swold, G=grab) BT=TISSUE, AvAIL) Preservation Code. Water O O O O O O O O O O O O O O O 13:30 13:45 11:10 12:08 13:05 11:10 15:30 09:55 Sample 11:45 11:45 12:55 14:28 09:35 09:35 12:20 (AT Requested (days) **Due Date Requested** Sample Date Sampler TJ Daugherty Phone 8/5/20 8/5/20 8/5/20 8/5/20 8/3/20 8/3/20 8/4/20 8/4/20 8/4/20 8/4/20 8/4/20 8/5/20 8/5/20 8/3/20 8/3/20 Project # 40007143 Client Information (Sub Contract Lab) Custody Seals Intact: Custody Seal No Sample Identification - Client ID (Lab ID) 3355 McLemore Drive Pensacola, FL 32514 Phone (850) 474-1001 Fax (850) 478-2671 Mabama Power General Test Laboratory Possible Hazard Identification 744 County Rd 87 GSC#8 rgas Gypsum 1289 205-664-6197 aura Midkif e. Zip. BA14598 BA14599 BA14600 BA14590 BA14591 BA14593 BA14594 BA14595 BA14596 BA14597 BA14589 3A14592 BA14601 BA14602 BA14588

Client: Alabama Power General Test Laboratory

Job Number: 400-191957-1 SDG Number: Gorgas Gypsum 1289

Login Number: 191957 List Source: Eurofins TestAmerica, Pensacola

List Number: 1

Creator: Perez, Trina M

| Creator: Perez, Irina M                                                                                   |        |                     |
|-----------------------------------------------------------------------------------------------------------|--------|---------------------|
| Question                                                                                                  | Answer | Comment             |
| Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td> | N/A    |                     |
| The cooler's custody seal, if present, is intact.                                                         | True   |                     |
| Sample custody seals, if present, are intact.                                                             | N/A    |                     |
| The cooler or samples do not appear to have been compromised or tampered with.                            | True   |                     |
| Samples were received on ice.                                                                             | N/A    |                     |
| Cooler Temperature is acceptable.                                                                         | True   |                     |
| Cooler Temperature is recorded.                                                                           | True   | 30.0°C, 29.0°C IR-8 |
| COC is present.                                                                                           | True   |                     |
| COC is filled out in ink and legible.                                                                     | True   |                     |
| COC is filled out with all pertinent information.                                                         | True   |                     |
| Is the Field Sampler's name present on COC?                                                               | True   |                     |
| There are no discrepancies between the containers received and the COC.                                   | True   |                     |
| Samples are received within Holding Time (excluding tests with immediate HTs)                             | True   |                     |
| Sample containers have legible labels.                                                                    | True   |                     |
| Containers are not broken or leaking.                                                                     | True   |                     |
| Sample collection date/times are provided.                                                                | True   |                     |
| Appropriate sample containers are used.                                                                   | True   |                     |
| Sample bottles are completely filled.                                                                     | True   |                     |
| Sample Preservation Verified.                                                                             | N/A    |                     |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs                          | True   |                     |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").                           | N/A    |                     |
| Multiphasic samples are not present.                                                                      | True   |                     |
| Samples do not require splitting or compositing.                                                          | True   |                     |
| Residual Chlorine Checked.                                                                                | N/A    |                     |

Client: Alabama Power General Test Laboratory

Job Number: 400-191957-1 SDG Number: Gorgas Gypsum 1289

Login Number: 191957 List Source: Eurofins TestAmerica, St. Louis
List Number: 2 List Creation: 08/12/20 05:51 PM

Creator: Boyd, Jacob C

| oreator. Boya, sacob o                                                                                     |        |         |
|------------------------------------------------------------------------------------------------------------|--------|---------|
| Question                                                                                                   | Answer | Comment |
| Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td> | True   |         |
| The cooler's custody seal, if present, is intact.                                                          | True   |         |
| Sample custody seals, if present, are intact.                                                              | True   |         |
| The cooler or samples do not appear to have been compromised or tampered with.                             | True   |         |
| Samples were received on ice.                                                                              | N/A    |         |
| Cooler Temperature is acceptable.                                                                          | True   |         |
| Cooler Temperature is recorded.                                                                            | True   |         |
| COC is present.                                                                                            | True   |         |
| COC is filled out in ink and legible.                                                                      | True   |         |
| COC is filled out with all pertinent information.                                                          | True   |         |
| Is the Field Sampler's name present on COC?                                                                | True   |         |
| There are no discrepancies between the containers received and the COC.                                    | True   |         |
| Samples are received within Holding Time (excluding tests with immediate HTs)                              | True   |         |
| Sample containers have legible labels.                                                                     | True   |         |
| Containers are not broken or leaking.                                                                      | True   |         |
| Sample collection date/times are provided.                                                                 | True   |         |
| Appropriate sample containers are used.                                                                    | True   |         |
| Sample bottles are completely filled.                                                                      | True   |         |
| Sample Preservation Verified.                                                                              | True   |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs                           | True   |         |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").                            | True   |         |
| Multiphasic samples are not present.                                                                       | True   |         |
| Samples do not require splitting or compositing.                                                           | True   |         |
|                                                                                                            |        |         |

N/A

Residual Chlorine Checked.

### **Accreditation/Certification Summary**

Client: Alabama Power General Test Laboratory

Job ID: 400-191957-1 Project/Site: CCR Plant Gorgas SDG: Gorgas Gypsum 1289

### Laboratory: Eurofins TestAmerica, St. Louis

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

| Authority                | Program                                 | <b>Identification Number</b> | Expiration Date |
|--------------------------|-----------------------------------------|------------------------------|-----------------|
| Alaska (UST)             | State                                   | 20-001                       | 05-06-22        |
| ANAB                     | Dept. of Defense ELAP                   | L2305                        | 04-06-22        |
| ANAB                     | Dept. of Energy                         | L2305.01                     | 04-06-22        |
| ANAB                     | ISO/IEC 17025                           | L2305                        | 04-06-22        |
| Arizona                  | State                                   | AZ0813                       | 12-08-20        |
| California               | Los Angeles County Sanitation Districts | 10259                        | 06-30-21        |
| California               | State                                   | 2886                         | 06-30-21        |
| Connecticut              | State                                   | PH-0241                      | 03-31-21        |
| Florida                  | NELAP                                   | E87689                       | 06-30-21        |
| HI - RadChem Recognition | State                                   | n/a                          | 06-30-21        |
| Illinois                 | NELAP                                   | 004553                       | 11-30-20        |
| Kansas                   | NELAP                                   | E-10236                      | 10-31-20        |
| Kentucky (DW)            | State                                   | KY90125                      | 12-31-20        |
| Louisiana                | NELAP                                   | 04080                        | 07-01-21        |
| Louisiana (DW)           | State                                   | LA011                        | 12-31-20        |
| Maryland                 | State                                   | 310                          | 09-30-20        |
| MI - RadChem Recognition | State                                   | 9005                         | 06-30-21        |
| Missouri                 | State                                   | 780                          | 06-30-22        |
| Nevada                   | State                                   | MO000542020-1                | 07-31-21        |
| New Jersey               | NELAP                                   | MO002                        | 06-30-21        |
| New York                 | NELAP                                   | 11616                        | 04-01-21        |
| North Dakota             | State                                   | R-207                        | 06-30-21        |
| NRC                      | NRC                                     | 24-24817-01                  | 12-31-22        |
| Oklahoma                 | State                                   | 9997                         | 08-31-21        |
| Oregon                   | NELAP                                   | 4157                         | 09-01-21        |
| Pennsylvania             | NELAP                                   | 68-00540                     | 02-28-21        |
| Texas                    | NELAP                                   | T104704193-19-13             | 07-31-21        |
| US Fish & Wildlife       | US Federal Programs                     | 058448                       | 07-31-21        |
| JSDA                     | US Federal Programs                     | P330-17-00028                | 03-11-23        |
| Utah                     | NELAP                                   | MO000542019-11               | 07-31-21        |
| Virginia                 | NELAP                                   | 10310                        | 06-14-21        |
| Virginia                 | NELAP                                   | 10310                        | 06-14-21        |
| Washington               | State                                   | C592                         | 08-30-21        |
| West Virginia DEP        | State                                   | 381                          | 10-31-21        |

| WELL ID     | READING TIME   | DESCRIPTION                   | VALUE   | UNIT  |
|-------------|----------------|-------------------------------|---------|-------|
| GS-GSA-MW-3 | 8/4/2020 13:56 | Conductivity                  | 4762.46 | uS/cm |
| GS-GSA-MW-3 | 8/4/2020 13:56 | DO                            | 0.27    | mg/L  |
| GS-GSA-MW-3 | 8/4/2020 13:56 | Depth to Water Detail         | 107.54  | ft    |
| GS-GSA-MW-3 |                | Oxidation Reduction Potention | -9.08   | mv    |
| GS-GSA-MW-3 | 8/4/2020 13:56 | рН                            | 5.79    | рН    |
| GS-GSA-MW-3 | 8/4/2020 13:56 | Temperature                   | 21.71   | С     |
| GS-GSA-MW-3 | 8/4/2020 13:56 | Turbidity                     | 100     | NTU   |
| GS-GSA-MW-3 | 8/4/2020 14:01 | Conductivity                  | 4726.52 | uS/cm |
| GS-GSA-MW-3 | 8/4/2020 14:01 | DO                            | 0.19    | mg/L  |
| GS-GSA-MW-3 | 8/4/2020 14:01 | Depth to Water Detail         | 107.54  | ft    |
| GS-GSA-MW-3 |                | Oxidation Reduction Potention | -13.2   | mv    |
| GS-GSA-MW-3 | 8/4/2020 14:01 | рН                            | 5.83    | рН    |
| GS-GSA-MW-3 | 8/4/2020 14:01 | Temperature                   | 21.54   | С     |
| GS-GSA-MW-3 | 8/4/2020 14:01 | Turbidity                     | 23      | NTU   |
| GS-GSA-MW-3 | 8/4/2020 14:06 | Conductivity                  | 4707.12 | uS/cm |
| GS-GSA-MW-3 | 8/4/2020 14:06 | DO                            | 0.16    | mg/L  |
| GS-GSA-MW-3 | 8/4/2020 14:06 | Depth to Water Detail         | 107.54  | ft    |
| GS-GSA-MW-3 |                | Oxidation Reduction Potention | -16.73  | mv    |
| GS-GSA-MW-3 | 8/4/2020 14:06 | рН                            | 5.86    | рН    |
| GS-GSA-MW-3 | 8/4/2020 14:06 | Temperature                   | 21.31   | С     |
| GS-GSA-MW-3 | 8/4/2020 14:06 | Turbidity                     | 92      | NTU   |
| GS-GSA-MW-3 | 8/4/2020 14:11 | Conductivity                  | 4691.15 | uS/cm |
| GS-GSA-MW-3 | 8/4/2020 14:11 | DO                            | 0.16    | mg/L  |
| GS-GSA-MW-3 | 8/4/2020 14:11 | Depth to Water Detail         | 107.54  | ft    |
| GS-GSA-MW-3 | 8/4/2020 14:11 | Oxidation Reduction Potention | -19.01  | mv    |
| GS-GSA-MW-3 | 8/4/2020 14:11 | рН                            | 5.88    | рН    |
| GS-GSA-MW-3 | 8/4/2020 14:11 | Temperature                   | 21.5    | С     |
| GS-GSA-MW-3 | 8/4/2020 14:11 | Turbidity                     | 82      | NTU   |
| GS-GSA-MW-3 | 8/4/2020 14:16 | Conductivity                  | 4662.12 | uS/cm |
| GS-GSA-MW-3 | 8/4/2020 14:16 |                               | 0.15    | mg/L  |
| GS-GSA-MW-3 | 8/4/2020 14:16 | Depth to Water Detail         | 107.54  |       |
| GS-GSA-MW-3 | 8/4/2020 14:16 | Oxidation Reduction Potention | -20.45  | mv    |
| GS-GSA-MW-3 | 8/4/2020 14:16 | рН                            | 5.9     | pН    |
| GS-GSA-MW-3 | 8/4/2020 14:16 | Temperature                   | 21.54   | С     |
| GS-GSA-MW-3 | 8/4/2020 14:16 | Turbidity                     | 52.4    | NTU   |
| GS-GSA-MW-3 | 8/4/2020 14:21 | Conductivity                  | 4652.29 | uS/cm |
| GS-GSA-MW-3 | 8/4/2020 14:21 | DO                            | 0.15    | mg/L  |
| GS-GSA-MW-3 | 8/4/2020 14:21 | Depth to Water Detail         | 107.54  | ft    |
| GS-GSA-MW-3 | 8/4/2020 14:21 | Oxidation Reduction Potention | -21.82  | mv    |
| GS-GSA-MW-3 | 8/4/2020 14:21 | рН                            | 5.92    | рН    |
| GS-GSA-MW-3 | 8/4/2020 14:21 | Temperature                   | 21.54   | С     |
| GS-GSA-MW-3 | 8/4/2020 14:21 | Turbidity                     | 31.5    | NTU   |
| GS-GSA-MW-3 | 8/4/2020 14:26 | Conductivity                  | 4653.47 | uS/cm |
| GS-GSA-MW-3 | 8/4/2020 14:26 | DO                            | 0.16    | mg/L  |

| WELL ID     | READING TIME   | DESCRIPTION                   | VALUE   | UNIT  |
|-------------|----------------|-------------------------------|---------|-------|
| GS-GSA-MW-3 | 8/4/2020 14:26 | Depth to Water Detail         | 107.54  | ft    |
| GS-GSA-MW-3 | 8/4/2020 14:26 | Oxidation Reduction Potention | -23.21  | mv    |
| GS-GSA-MW-3 | 8/4/2020 14:26 | рН                            | 5.94    | рН    |
| GS-GSA-MW-3 | 8/4/2020 14:26 | Temperature                   | 21.38   | C     |
| GS-GSA-MW-3 | 8/4/2020 14:26 | Turbidity                     | 33.5    | NTU   |
| GS-GSA-MW-3 | 8/4/2020 14:31 | Conductivity                  | 4598.3  | uS/cm |
| GS-GSA-MW-3 | 8/4/2020 14:31 | DO                            | 0.16    | mg/L  |
| GS-GSA-MW-3 | 8/4/2020 14:31 | Depth to Water Detail         | 107.54  | ft    |
| GS-GSA-MW-3 |                | Oxidation Reduction Potention | -24.22  | mv    |
| GS-GSA-MW-3 | 8/4/2020 14:31 | рН                            | 5.96    | рН    |
| GS-GSA-MW-3 | 8/4/2020 14:31 | Temperature                   | 21.12   | С     |
| GS-GSA-MW-3 | 8/4/2020 14:31 | Turbidity                     | 21.6    | NTU   |
| GS-GSA-MW-3 | 8/4/2020 14:36 | Conductivity                  | 4572.1  | uS/cm |
| GS-GSA-MW-3 | 8/4/2020 14:36 | DO                            | 0.15    | mg/L  |
| GS-GSA-MW-3 | 8/4/2020 14:36 | Depth to Water Detail         | 107.54  |       |
| GS-GSA-MW-3 |                | Oxidation Reduction Potention | -24.76  | mv    |
| GS-GSA-MW-3 | 8/4/2020 14:36 | рН                            | 5.97    | рН    |
| GS-GSA-MW-3 | 8/4/2020 14:36 | Temperature                   | 21.19   | С     |
| GS-GSA-MW-3 | 8/4/2020 14:36 |                               | 18.1    | NTU   |
| GS-GSA-MW-3 | 8/4/2020 14:41 | Conductivity                  | 4546.86 | uS/cm |
| GS-GSA-MW-3 | 8/4/2020 14:41 | ·                             | 0.15    | mg/L  |
| GS-GSA-MW-3 | 8/4/2020 14:41 | Depth to Water Detail         | 107.54  |       |
| GS-GSA-MW-3 |                | Oxidation Reduction Potention | -25.55  | mv    |
| GS-GSA-MW-3 | 8/4/2020 14:41 | рН                            | 5.99    | рН    |
| GS-GSA-MW-3 | 8/4/2020 14:41 | Temperature                   | 21.19   | C     |
| GS-GSA-MW-3 | 8/4/2020 14:41 | Turbidity                     | 16.1    | NTU   |
| GS-GSA-MW-3 | 8/4/2020 14:46 | Ţ                             | 4520.44 | uS/cm |
| GS-GSA-MW-3 | 8/4/2020 14:46 | DO                            | 0.15    | mg/L  |
| GS-GSA-MW-3 | 8/4/2020 14:46 | Depth to Water Detail         | 107.54  |       |
| GS-GSA-MW-3 |                | Oxidation Reduction Potention | -26.17  |       |
| GS-GSA-MW-3 | 8/4/2020 14:46 |                               | 5.99    |       |
| GS-GSA-MW-3 | 8/4/2020 14:46 | Temperature                   | 21.09   | C     |
| GS-GSA-MW-3 | 8/4/2020 14:46 | Turbidity                     | 16.5    | NTU   |
| GS-GSA-MW-3 | 8/4/2020 14:51 | Conductivity                  | 4605.12 | uS/cm |
| GS-GSA-MW-3 | 8/4/2020 14:51 | DO                            | 0.15    | mg/L  |
| GS-GSA-MW-3 | 8/4/2020 14:51 | Depth to Water Detail         | 107.54  | _     |
| GS-GSA-MW-3 |                | Oxidation Reduction Potention | -26.79  | mv    |
| GS-GSA-MW-3 | 8/4/2020 14:51 | рН                            | 6       | рН    |
| GS-GSA-MW-3 | 8/4/2020 14:51 | Temperature                   | 21.15   | •     |
| GS-GSA-MW-3 | 8/4/2020 14:51 | 1                             | 13.1    | NTU   |
| GS-GSA-MW-3 | 8/4/2020 14:56 | •                             | 4464.21 |       |
| GS-GSA-MW-3 | 8/4/2020 14:56 | ·                             | 0.16    | mg/L  |
| GS-GSA-MW-3 |                | Depth to Water Detail         | 107.54  | -     |
| GS-GSA-MW-3 |                | Oxidation Reduction Potention | -27.23  | mv    |

| WELL ID     | READING TIME   | DESCRIPTION                   | VALUE   | UNIT  |
|-------------|----------------|-------------------------------|---------|-------|
| GS-GSA-MW-3 | 8/4/2020 14:56 | рН                            | 6.01    |       |
| GS-GSA-MW-3 | 8/4/2020 14:56 | Temperature                   | 20.99   | C     |
| GS-GSA-MW-3 | 8/4/2020 14:56 | Turbidity                     | 11.1    | NTU   |
| GS-GSA-MW-3 | 8/4/2020 15:01 | Conductivity                  | 4437.03 | uS/cm |
| GS-GSA-MW-3 | 8/4/2020 15:01 | DO                            | 0.15    | mg/L  |
| GS-GSA-MW-3 | 8/4/2020 15:01 | Depth to Water Detail         | 107.54  | ft    |
| GS-GSA-MW-3 | 8/4/2020 15:01 | Oxidation Reduction Potention | -27.84  | mv    |
| GS-GSA-MW-3 | 8/4/2020 15:01 | рН                            | 6.02    | рН    |
| GS-GSA-MW-3 | 8/4/2020 15:01 | Temperature                   | 21.18   | С     |
| GS-GSA-MW-3 | 8/4/2020 15:01 | Turbidity                     | 11.38   | NTU   |
| GS-GSA-MW-3 | 8/4/2020 15:06 | Conductivity                  | 4460.46 | uS/cm |
| GS-GSA-MW-3 | 8/4/2020 15:06 | DO                            | 0.15    | mg/L  |
| GS-GSA-MW-3 | 8/4/2020 15:06 | Depth to Water Detail         | 107.54  | ft    |
| GS-GSA-MW-3 |                | Oxidation Reduction Potention | -28.73  | mv    |
| GS-GSA-MW-3 | 8/4/2020 15:06 | рН                            | 6.03    | рН    |
| GS-GSA-MW-3 | 8/4/2020 15:06 | Temperature                   | 21.33   | C     |
| GS-GSA-MW-3 | 8/4/2020 15:06 |                               | 12.55   | NTU   |
| GS-GSA-MW-3 | 8/4/2020 15:11 | Conductivity                  | 4381.06 | uS/cm |
| GS-GSA-MW-3 | 8/4/2020 15:11 |                               | 0.15    | mg/L  |
| GS-GSA-MW-3 | 8/4/2020 15:11 | Depth to Water Detail         | 107.54  |       |
| GS-GSA-MW-3 |                | Oxidation Reduction Potention | -29.78  | mv    |
| GS-GSA-MW-3 | 8/4/2020 15:11 | рН                            | 6.05    | рН    |
| GS-GSA-MW-3 | 8/4/2020 15:11 | Temperature                   | 21.35   | C     |
| GS-GSA-MW-3 | 8/4/2020 15:11 |                               | 11.17   | NTU   |
| GS-GSA-MW-3 | 8/4/2020 15:16 |                               | 4522.99 | uS/cm |
| GS-GSA-MW-3 | 8/4/2020 15:16 | ·                             | 0.15    | mg/L  |
| GS-GSA-MW-3 | 8/4/2020 15:16 | Depth to Water Detail         | 107.54  |       |
| GS-GSA-MW-3 | 8/4/2020 15:16 | Oxidation Reduction Potention | -30.78  | mv    |
| GS-GSA-MW-3 | 8/4/2020 15:16 | рН                            | 6.06    | рН    |
| GS-GSA-MW-3 | 8/4/2020 15:16 | Temperature                   | 21.55   | C     |
| GS-GSA-MW-3 | 8/4/2020 15:16 |                               |         | NTU   |
| GS-GSA-MW-3 | 8/4/2020 15:21 | Conductivity                  | 4343.16 | uS/cm |
| GS-GSA-MW-3 | 8/4/2020 15:21 | DO                            | 0.15    | mg/L  |
| GS-GSA-MW-3 | 8/4/2020 15:21 | Depth to Water Detail         | 107.54  | _     |
| GS-GSA-MW-3 | 8/4/2020 15:21 | Oxidation Reduction Potention | -31.36  | mv    |
| GS-GSA-MW-3 | 8/4/2020 15:21 | рН                            | 6.07    |       |
| GS-GSA-MW-3 | 8/4/2020 15:21 | *                             | 21.24   | •     |
| GS-GSA-MW-3 | 8/4/2020 15:21 | *                             |         | NTU   |
| GS-GSA-MW-3 | 8/4/2020 15:26 |                               | 4308.5  | uS/cm |
| GS-GSA-MW-3 | 8/4/2020 15:26 | -                             | 0.15    | mg/L  |
| GS-GSA-MW-3 | 8/4/2020 15:26 | Depth to Water Detail         | 107.54  |       |
| GS-GSA-MW-3 |                | Oxidation Reduction Potention | -31.83  | mv    |
| GS-GSA-MW-3 | 8/4/2020 15:26 |                               | 6.08    |       |
| GS-GSA-MW-3 | 8/4/2020 15:26 | *                             | 21.4    | •     |

| WELL ID     | READING TIME   | DESCRIPTION                   | VALUE   | UNIT  |
|-------------|----------------|-------------------------------|---------|-------|
| GS-GSA-MW-3 | 8/4/2020 15:26 | Turbidity                     | 8.26    | NTU   |
| GS-GSA-MW-3 | 8/4/2020 15:31 | Conductivity                  | 4345.17 | uS/cm |
| GS-GSA-MW-3 | 8/4/2020 15:31 | DO                            | 0.15    | mg/L  |
| GS-GSA-MW-3 | 8/4/2020 15:31 | Depth to Water Detail         | 107.54  | ft    |
| GS-GSA-MW-3 | 8/4/2020 15:31 | Oxidation Reduction Potention | -31.98  | mv    |
| GS-GSA-MW-3 | 8/4/2020 15:31 | рН                            | 6.09    | рН    |
| GS-GSA-MW-3 | 8/4/2020 15:31 | Temperature                   | 21.3    | С     |
| GS-GSA-MW-3 | 8/4/2020 15:31 | Turbidity                     | 8.88    | NTU   |

| WELL ID      | READING TIME   | DESCRIPTION                   | VALUE   | UNIT  |
|--------------|----------------|-------------------------------|---------|-------|
| GS-GSA-MW-3V | 8/4/2020 12:28 | Conductivity                  | 3963.46 | uS/cm |
| GS-GSA-MW-3V | 8/4/2020 12:28 | DO                            | 2.18    | mg/L  |
| GS-GSA-MW-3V | 8/4/2020 12:28 | Depth to Water Detail         | 127.56  | ft    |
| GS-GSA-MW-3V |                | Oxidation Reduction Potention | -99.15  | mv    |
| GS-GSA-MW-3V | 8/4/2020 12:28 | рН                            | 6.34    | рН    |
| GS-GSA-MW-3V | 8/4/2020 12:28 | Temperature                   | 24.97   | С     |
| GS-GSA-MW-3V | 8/4/2020 12:28 | Turbidity                     | 3.36    | NTU   |
| GS-GSA-MW-3V | 8/4/2020 12:33 | Conductivity                  | 3977.93 | uS/cm |
| GS-GSA-MW-3V | 8/4/2020 12:33 |                               | 0.88    | mg/L  |
| GS-GSA-MW-3V | 8/4/2020 12:33 | Depth to Water Detail         | 128     | ft    |
| GS-GSA-MW-3V |                | Oxidation Reduction Potention | -51.25  | mv    |
| GS-GSA-MW-3V | 8/4/2020 12:33 | рН                            | 6.02    | рН    |
| GS-GSA-MW-3V | 8/4/2020 12:33 | Temperature                   | 24.8    | C     |
| GS-GSA-MW-3V | 8/4/2020 12:33 |                               | 5.32    | NTU   |
| GS-GSA-MW-3V | 8/4/2020 12:38 | Conductivity                  | 3892.37 | uS/cm |
| GS-GSA-MW-3V | 8/4/2020 12:38 | Ţ                             | 0.68    | mg/L  |
| GS-GSA-MW-3V | 8/4/2020 12:38 | Depth to Water Detail         | 128.33  | ft    |
| GS-GSA-MW-3V |                | Oxidation Reduction Potention | -30.61  | mv    |
| GS-GSA-MW-3V | 8/4/2020 12:38 | рН                            | 5.92    | рН    |
| GS-GSA-MW-3V | 8/4/2020 12:38 |                               | 25.11   |       |
| GS-GSA-MW-3V | 8/4/2020 12:38 |                               | 2.8     | NTU   |
| GS-GSA-MW-3V | 8/4/2020 12:43 | ·                             | 3820.4  | uS/cm |
| GS-GSA-MW-3V | 8/4/2020 12:43 |                               | 0.62    | mg/L  |
| GS-GSA-MW-3V | 8/4/2020 12:43 | Depth to Water Detail         | 128.61  |       |
| GS-GSA-MW-3V |                | Oxidation Reduction Potention | -19.88  | mv    |
| GS-GSA-MW-3V | 8/4/2020 12:43 |                               | 5.89    | рН    |
| GS-GSA-MW-3V | 8/4/2020 12:43 | Temperature                   | 24.69   | C     |
| GS-GSA-MW-3V | 8/4/2020 12:43 |                               | 2.75    | NTU   |
| GS-GSA-MW-3V | 8/4/2020 12:48 | Conductivity                  | 3811.35 | uS/cm |
| GS-GSA-MW-3V | 8/4/2020 12:48 |                               | 0.62    | mg/L  |
| GS-GSA-MW-3V | 8/4/2020 12:48 | Depth to Water Detail         | 128.76  |       |
| GS-GSA-MW-3V | 8/4/2020 12:48 | Oxidation Reduction Potention | -13.87  | mv    |
| GS-GSA-MW-3V | 8/4/2020 12:48 | рН                            | 5.88    | рН    |
| GS-GSA-MW-3V | 8/4/2020 12:48 | Temperature                   | 24.85   | C     |
| GS-GSA-MW-3V | 8/4/2020 12:48 | Turbidity                     | 1.34    | NTU   |
| GS-GSA-MW-3V | 8/4/2020 12:53 | Conductivity                  | 3805.29 | uS/cm |
| GS-GSA-MW-3V | 8/4/2020 12:53 |                               | 0.61    | mg/L  |
| GS-GSA-MW-3V |                | Depth to Water Detail         | 128.94  | ft    |
| GS-GSA-MW-3V |                | Oxidation Reduction Potention | -10.86  | mv    |
| GS-GSA-MW-3V | 8/4/2020 12:53 |                               | 5.88    |       |
| GS-GSA-MW-3V | 8/4/2020 12:53 | *                             | 24.72   |       |
| GS-GSA-MW-3V | 8/4/2020 12:53 | *                             | _       | NTU   |
| GS-GSA-MW-3V | 8/4/2020 12:58 | -                             | 3805.18 | uS/cm |
| GS-GSA-MW-3V | 8/4/2020 12:58 | DO                            | 0.62    | mg/L  |

| WELL ID      | READING TIME   | DESCRIPTION                   | VALUE  | UNIT |
|--------------|----------------|-------------------------------|--------|------|
| GS-GSA-MW-3V | 8/4/2020 12:58 | Depth to Water Detail         | 128.98 | ft   |
| GS-GSA-MW-3V | 8/4/2020 12:58 | Oxidation Reduction Potention | -10.43 | mv   |
| GS-GSA-MW-3V | 8/4/2020 12:58 | рН                            | 5.9    | рН   |
| GS-GSA-MW-3V | 8/4/2020 12:58 | Temperature                   | 25.2   | С    |
| GS-GSA-MW-3V | 8/4/2020 12:58 | Turbidity                     | 1.01   | NTU  |

| WELL ID     | READING TIME   | DESCRIPTION                   | VALUE   | UNIT  |
|-------------|----------------|-------------------------------|---------|-------|
| GS-GSA-MW-8 | 8/5/2020 11:06 | Conductivity                  | 3568.06 | uS/cm |
| GS-GSA-MW-8 | 8/5/2020 11:06 | DO                            | 0.34    | mg/L  |
| GS-GSA-MW-8 | 8/5/2020 11:06 | Depth to Water Detail         | 81.51   | ft    |
| GS-GSA-MW-8 | 8/5/2020 11:06 | Oxidation Reduction Potention | -110.9  | mv    |
| GS-GSA-MW-8 | 8/5/2020 11:06 | рН                            | 6.73    | pН    |
| GS-GSA-MW-8 | 8/5/2020 11:06 | Temperature                   | 22.6    | С     |
| GS-GSA-MW-8 | 8/5/2020 11:06 | Turbidity                     | 3.51    | NTU   |
| GS-GSA-MW-8 | 8/5/2020 11:11 | Conductivity                  | 3607.71 | uS/cm |
| GS-GSA-MW-8 | 8/5/2020 11:11 | DO                            | 0.25    | mg/L  |
| GS-GSA-MW-8 | 8/5/2020 11:11 | Depth to Water Detail         | 81.61   | ft    |
| GS-GSA-MW-8 | 8/5/2020 11:11 | Oxidation Reduction Potention | -110.39 | mv    |
| GS-GSA-MW-8 | 8/5/2020 11:11 | рН                            | 6.74    | рН    |
| GS-GSA-MW-8 | 8/5/2020 11:11 | Temperature                   | 22.15   | С     |
| GS-GSA-MW-8 | 8/5/2020 11:11 | Turbidity                     | 3.6     | NTU   |
| GS-GSA-MW-8 | 8/5/2020 11:16 | Conductivity                  | 3662.32 | uS/cm |
| GS-GSA-MW-8 | 8/5/2020 11:16 | DO                            | 0.23    | mg/L  |
| GS-GSA-MW-8 | 8/5/2020 11:16 | Depth to Water Detail         | 81.69   | ft    |
| GS-GSA-MW-8 | 8/5/2020 11:16 | Oxidation Reduction Potention | -110.36 | mv    |
| GS-GSA-MW-8 | 8/5/2020 11:16 | рН                            | 6.75    | pН    |
| GS-GSA-MW-8 | 8/5/2020 11:16 | Temperature                   | 22.12   | С     |
| GS-GSA-MW-8 | 8/5/2020 11:16 | Turbidity                     | 3.33    | NTU   |
| GS-GSA-MW-8 | 8/5/2020 11:21 | Conductivity                  | 3686.49 | uS/cm |
| GS-GSA-MW-8 | 8/5/2020 11:21 | DO                            | 0.22    | mg/L  |
| GS-GSA-MW-8 | 8/5/2020 11:21 | Depth to Water Detail         | 81.74   |       |
| GS-GSA-MW-8 | 8/5/2020 11:21 | Oxidation Reduction Potention | -110.97 | mv    |
| GS-GSA-MW-8 | 8/5/2020 11:21 | рН                            | 6.76    | рН    |
| GS-GSA-MW-8 | 8/5/2020 11:21 | Temperature                   | 22.37   | С     |
| GS-GSA-MW-8 | 8/5/2020 11:21 | Turbidity                     | 3.86    | NTU   |

| WELL ID      | READING TIME  | DESCRIPTION                           | VALUE   | UNIT  |
|--------------|---------------|---------------------------------------|---------|-------|
| GS-GSA-MW-8V | 8/5/2020 8:06 | Conductivity                          | 1599.05 | uS/cm |
| GS-GSA-MW-8V | 8/5/2020 8:06 | DO                                    | 0.58    | mg/L  |
| GS-GSA-MW-8V | 8/5/2020 8:06 | Depth to Water Detail                 | 92.9    | ft    |
| GS-GSA-MW-8V | 8/5/2020 8:06 | Oxidation Reduction Potention         | -174.73 | mv    |
| GS-GSA-MW-8V | 8/5/2020 8:06 | рН                                    | 7.69    | рН    |
| GS-GSA-MW-8V | 8/5/2020 8:06 | Temperature                           | 21.52   | С     |
| GS-GSA-MW-8V | 8/5/2020 8:06 | Turbidity                             | 3.46    | NTU   |
| GS-GSA-MW-8V | 8/5/2020 8:11 | Conductivity                          | 1595.14 | uS/cm |
| GS-GSA-MW-8V | 8/5/2020 8:11 | DO                                    | 0.44    | mg/L  |
| GS-GSA-MW-8V | 8/5/2020 8:11 | Depth to Water Detail                 | 93.94   | ft    |
| GS-GSA-MW-8V | 8/5/2020 8:11 | Oxidation Reduction Potention         | -200    | mv    |
| GS-GSA-MW-8V | 8/5/2020 8:11 | рН                                    | 7.71    | рН    |
| GS-GSA-MW-8V | 8/5/2020 8:11 | Temperature                           | 21.5    | С     |
| GS-GSA-MW-8V | 8/5/2020 8:11 | Turbidity                             | 1.71    | NTU   |
| GS-GSA-MW-8V | 8/5/2020 8:16 | Conductivity                          | 1594.94 | uS/cm |
| GS-GSA-MW-8V | 8/5/2020 8:16 | DO                                    | 0.41    | mg/L  |
| GS-GSA-MW-8V | 8/5/2020 8:16 | Depth to Water Detail                 | 94.81   |       |
| GS-GSA-MW-8V |               | Oxidation Reduction Potention         | -215.08 | mv    |
| GS-GSA-MW-8V | 8/5/2020 8:16 | рН                                    | 7.72    | рН    |
| GS-GSA-MW-8V | 8/5/2020 8:16 | Temperature                           | 21.61   |       |
| GS-GSA-MW-8V | 8/5/2020 8:16 | Turbidity                             | 1.64    | NTU   |
| GS-GSA-MW-8V | 8/5/2020 8:21 |                                       | 1594.57 | uS/cm |
| GS-GSA-MW-8V | 8/5/2020 8:21 | DO                                    | 0.39    | mg/L  |
| GS-GSA-MW-8V | 8/5/2020 8:21 | Depth to Water Detail                 | 95.56   |       |
| GS-GSA-MW-8V |               | Oxidation Reduction Potention         | -223.92 | mv    |
| GS-GSA-MW-8V | 8/5/2020 8:21 | рН                                    | 7.73    | рН    |
| GS-GSA-MW-8V | 8/5/2020 8:21 | Temperature                           | 21.76   | C     |
| GS-GSA-MW-8V | 8/5/2020 8:21 | Turbidity                             | 1.65    | NTU   |
| GS-GSA-MW-8V | 8/5/2020 8:26 | Conductivity                          | 1590.7  | uS/cm |
| GS-GSA-MW-8V | 8/5/2020 8:26 | DO                                    | 0.38    | mg/L  |
| GS-GSA-MW-8V |               | Depth to Water Detail                 | 96.32   |       |
| GS-GSA-MW-8V |               | Oxidation Reduction Potention         | -228.77 | mv    |
| GS-GSA-MW-8V | 8/5/2020 8:26 | рН                                    | 7.73    | рН    |
| GS-GSA-MW-8V | 8/5/2020 8:26 | Temperature                           | 21.62   | •     |
| GS-GSA-MW-8V | 8/5/2020 8:26 |                                       | _       | NTU   |
| GS-GSA-MW-8V | 8/5/2020 8:31 | ·                                     | 1601.94 | uS/cm |
| GS-GSA-MW-8V | 8/5/2020 8:31 | · · · · · · · · · · · · · · · · · · · | 0.37    | mg/L  |
| GS-GSA-MW-8V |               | Depth to Water Detail                 | 96.87   | _     |
| GS-GSA-MW-8V |               | Oxidation Reduction Potention         | -231.56 |       |
| GS-GSA-MW-8V | 8/5/2020 8:31 |                                       | 7.74    |       |
| GS-GSA-MW-8V | 8/5/2020 8:31 | 1                                     | 21.65   | •     |
| GS-GSA-MW-8V | 8/5/2020 8:31 | _                                     |         | NTU   |
| GS-GSA-MW-8V | 8/5/2020 8:36 | ·                                     | 1604.86 |       |
| GS-GSA-MW-8V | 8/5/2020 8:36 | ·                                     |         | mg/L  |

| WELL ID      | READING TIME  | DESCRIPTION                   | VALUE   | UNIT  |
|--------------|---------------|-------------------------------|---------|-------|
| GS-GSA-MW-8V | 8/5/2020 8:36 | Depth to Water Detail         | 97.56   | ft    |
| GS-GSA-MW-8V |               | Oxidation Reduction Potention | -232.81 |       |
| GS-GSA-MW-8V | 8/5/2020 8:36 | рН                            | 7.74    | рН    |
| GS-GSA-MW-8V | 8/5/2020 8:36 | Temperature                   | 21.75   | С     |
| GS-GSA-MW-8V | 8/5/2020 8:36 | Turbidity                     | 1.45    | NTU   |
| GS-GSA-MW-8V | 8/5/2020 8:41 | Conductivity                  | 1609.18 | uS/cm |
| GS-GSA-MW-8V | 8/5/2020 8:41 | DO                            | 0.36    | mg/L  |
| GS-GSA-MW-8V | 8/5/2020 8:41 | Depth to Water Detail         | 98.02   | ft    |
| GS-GSA-MW-8V | 8/5/2020 8:41 | Oxidation Reduction Potention | -232.83 | mv    |
| GS-GSA-MW-8V | 8/5/2020 8:41 | рН                            | 7.74    | pН    |
| GS-GSA-MW-8V | 8/5/2020 8:41 | Temperature                   | 21.76   | С     |
| GS-GSA-MW-8V | 8/5/2020 8:41 | Turbidity                     | 1.72    | NTU   |
| GS-GSA-MW-8V | 8/5/2020 8:46 | Conductivity                  | 1610.12 | uS/cm |
| GS-GSA-MW-8V | 8/5/2020 8:46 | DO                            | 0.35    | mg/L  |
| GS-GSA-MW-8V | 8/5/2020 8:46 | Depth to Water Detail         | 98.63   | ft    |
| GS-GSA-MW-8V | 8/5/2020 8:46 | Oxidation Reduction Potention | -232.32 | mv    |
| GS-GSA-MW-8V | 8/5/2020 8:46 | рН                            | 7.74    | рН    |
| GS-GSA-MW-8V | 8/5/2020 8:46 | Temperature                   | 21.89   | С     |
| GS-GSA-MW-8V | 8/5/2020 8:46 | Turbidity                     |         | NTU   |
| GS-GSA-MW-8V | 8/5/2020 8:51 | Conductivity                  | 1606.86 | uS/cm |
| GS-GSA-MW-8V | 8/5/2020 8:51 | DO                            | 0.34    | mg/L  |
| GS-GSA-MW-8V | 8/5/2020 8:51 | Depth to Water Detail         | 99      | ft    |
| GS-GSA-MW-8V | 8/5/2020 8:51 | Oxidation Reduction Potention | -231.09 | mv    |
| GS-GSA-MW-8V | 8/5/2020 8:51 | рН                            | 7.73    | рН    |
| GS-GSA-MW-8V | 8/5/2020 8:51 | Temperature                   | 21.85   | C     |
| GS-GSA-MW-8V | 8/5/2020 8:51 | Turbidity                     | 1.71    | NTU   |
| GS-GSA-MW-8V | 8/5/2020 8:56 | Conductivity                  | 1607.15 | uS/cm |
| GS-GSA-MW-8V | 8/5/2020 8:56 |                               | 0.35    | mg/L  |
| GS-GSA-MW-8V | 8/5/2020 8:56 | Depth to Water Detail         | 99.48   |       |
| GS-GSA-MW-8V | 8/5/2020 8:56 | Oxidation Reduction Potention | -231.04 | mv    |
| GS-GSA-MW-8V | 8/5/2020 8:56 | рН                            | 7.74    | рН    |
| GS-GSA-MW-8V | 8/5/2020 8:56 | Temperature                   | 21.83   | C     |
| GS-GSA-MW-8V | 8/5/2020 8:56 | Turbidity                     | 1.79    | NTU   |
| GS-GSA-MW-8V | 8/5/2020 9:01 | Conductivity                  | 1605.22 | uS/cm |
| GS-GSA-MW-8V | 8/5/2020 9:01 | DO                            | 0.34    | mg/L  |
| GS-GSA-MW-8V | 8/5/2020 9:01 | Depth to Water Detail         | 99.97   | ft    |
| GS-GSA-MW-8V | 8/5/2020 9:01 | Oxidation Reduction Potention | -231.17 | mv    |
| GS-GSA-MW-8V | 8/5/2020 9:01 | pH                            | 7.74    | 1     |
| GS-GSA-MW-8V | 8/5/2020 9:01 | Temperature                   | 21.8    | С     |
| GS-GSA-MW-8V | 8/5/2020 9:01 | · ·                           | 1.74    | NTU   |
| GS-GSA-MW-8V | 8/5/2020 9:06 | Conductivity                  | 1600.7  | uS/cm |
| GS-GSA-MW-8V | 8/5/2020 9:06 | DO                            | 0.33    | mg/L  |
| GS-GSA-MW-8V | 8/5/2020 9:06 | Depth to Water Detail         | 100.36  | ft    |
| GS-GSA-MW-8V | 8/5/2020 9:06 | Oxidation Reduction Potention | -230.96 | mv    |

| WELL ID      | READING TIME  | DESCRIPTION                   | VALUE   | UNIT  |
|--------------|---------------|-------------------------------|---------|-------|
| GS-GSA-MW-8V | 8/5/2020 9:06 | рН                            | 7.74    | рН    |
| GS-GSA-MW-8V | 8/5/2020 9:06 | Temperature                   | 21.86   | С     |
| GS-GSA-MW-8V | 8/5/2020 9:06 | Turbidity                     | 1.39    | NTU   |
| GS-GSA-MW-8V | 8/5/2020 9:11 | Conductivity                  | 1597.89 | uS/cm |
| GS-GSA-MW-8V | 8/5/2020 9:11 | DO                            | 0.33    | mg/L  |
| GS-GSA-MW-8V | 8/5/2020 9:11 | Depth to Water Detail         | 100.81  | ft    |
| GS-GSA-MW-8V | 8/5/2020 9:11 | Oxidation Reduction Potention | -231.2  | mv    |
| GS-GSA-MW-8V | 8/5/2020 9:11 | рН                            | 7.74    | рН    |
| GS-GSA-MW-8V | 8/5/2020 9:11 | Temperature                   | 21.96   | C     |
| GS-GSA-MW-8V | 8/5/2020 9:11 | Turbidity                     | 1.78    | NTU   |
| GS-GSA-MW-8V | 8/5/2020 9:16 | Conductivity                  | 1592.08 | uS/cm |
| GS-GSA-MW-8V | 8/5/2020 9:16 |                               | 0.32    | mg/L  |
| GS-GSA-MW-8V | 8/5/2020 9:16 | Depth to Water Detail         | 101.12  |       |
| GS-GSA-MW-8V |               | Oxidation Reduction Potention | -230.89 | mv    |
| GS-GSA-MW-8V | 8/5/2020 9:16 |                               | 7.73    |       |
| GS-GSA-MW-8V | 8/5/2020 9:16 | 1                             | 22.28   | •     |
| GS-GSA-MW-8V | 8/5/2020 9:16 |                               |         | NTU   |
| GS-GSA-MW-8V | 8/5/2020 9:21 |                               | 1590.68 |       |
| GS-GSA-MW-8V | 8/5/2020 9:21 | ·                             |         | mg/L  |
| GS-GSA-MW-8V |               | Depth to Water Detail         | 101.46  |       |
| GS-GSA-MW-8V |               | Oxidation Reduction Potention | -232.91 |       |
| GS-GSA-MW-8V | 8/5/2020 9:21 |                               | 7.72    |       |
| GS-GSA-MW-8V | 8/5/2020 9:21 |                               | 21.98   | •     |
| GS-GSA-MW-8V | 8/5/2020 9:21 |                               |         | NTU   |
| GS-GSA-MW-8V | 8/5/2020 9:26 |                               | 1587.53 |       |
| GS-GSA-MW-8V | 8/5/2020 9:26 | -                             |         | mg/L  |
| GS-GSA-MW-8V |               | Depth to Water Detail         | 101.83  | _     |
| GS-GSA-MW-8V |               | Oxidation Reduction Potention | -240.86 |       |
| GS-GSA-MW-8V | 8/5/2020 9:26 |                               | 7.69    |       |
| GS-GSA-MW-8V | 8/5/2020 9:26 |                               | 22.08   | C     |
| GS-GSA-MW-8V | 8/5/2020 9:26 |                               |         | NTU   |
| GS-GSA-MW-8V | 8/5/2020 9:31 | ,                             | 1587.77 |       |
| GS-GSA-MW-8V | 8/5/2020 9:31 | <u> </u>                      |         | mg/L  |
| GS-GSA-MW-8V |               | Depth to Water Detail         | 102.19  |       |
| GS-GSA-MW-8V |               | Oxidation Reduction Potention | -249.89 | mv    |
| GS-GSA-MW-8V | 8/5/2020 9:31 | Н                             | 7.67    |       |
| GS-GSA-MW-8V | 8/5/2020 9:31 | 1                             | 22.08   | 1     |
| GS-GSA-MW-8V | 8/5/2020 9:31 | ~                             |         | NTU   |
| GS-GSA-MW-8V | 8/5/2020 9:36 | ·                             | 1589.93 |       |
| GS-GSA-MW-8V | 8/5/2020 9:36 | ,                             |         | mg/L  |
| GS-GSA-MW-8V |               | Depth to Water Detail         | 102.41  |       |
| GS-GSA-MW-8V |               | Oxidation Reduction Potention | -257.41 |       |
| GS-GSA-MW-8V | 8/5/2020 9:36 |                               | 7.66    |       |
| GS-GSA-MW-8V | 8/5/2020 9:36 | *                             | 22.15   | •     |

| WELL ID      | READING TIME   | DESCRIPTION                   | VALUE   | UNIT  |
|--------------|----------------|-------------------------------|---------|-------|
| GS-GSA-MW-8V | 8/5/2020 9:36  | Turbidity                     | 1.76    | NTU   |
| GS-GSA-MW-8V | 8/5/2020 9:41  | Conductivity                  | 1595.74 | uS/cm |
| GS-GSA-MW-8V | 8/5/2020 9:41  | DO                            | 0.26    | mg/L  |
| GS-GSA-MW-8V | 8/5/2020 9:41  | Depth to Water Detail         | 102.71  | ft    |
| GS-GSA-MW-8V | 8/5/2020 9:41  | Oxidation Reduction Potention | -262.29 | mv    |
| GS-GSA-MW-8V | 8/5/2020 9:41  | рН                            | 7.61    | рН    |
| GS-GSA-MW-8V | 8/5/2020 9:41  | Temperature                   | 22.4    | С     |
| GS-GSA-MW-8V | 8/5/2020 9:41  | Turbidity                     | 1.82    | NTU   |
| GS-GSA-MW-8V | 8/5/2020 9:46  | Conductivity                  | 1596.39 | uS/cm |
| GS-GSA-MW-8V | 8/5/2020 9:46  | DO                            | 0.24    | mg/L  |
| GS-GSA-MW-8V | 8/5/2020 9:46  | Depth to Water Detail         | 102.94  | ft    |
| GS-GSA-MW-8V |                | Oxidation Reduction Potention | -267.72 | mv    |
| GS-GSA-MW-8V | 8/5/2020 9:46  | рН                            | 7.62    | рН    |
| GS-GSA-MW-8V | 8/5/2020 9:46  | Temperature                   | 22.03   | С     |
| GS-GSA-MW-8V | 8/5/2020 9:46  |                               | 1.74    | NTU   |
| GS-GSA-MW-8V | 8/5/2020 9:51  | Conductivity                  | 1607.56 | uS/cm |
| GS-GSA-MW-8V | 8/5/2020 9:51  | DO                            | 0.24    | mg/L  |
| GS-GSA-MW-8V | 8/5/2020 9:51  | Depth to Water Detail         | 103.28  |       |
| GS-GSA-MW-8V |                | Oxidation Reduction Potention | -272.49 | mv    |
| GS-GSA-MW-8V | 8/5/2020 9:51  | рН                            | 7.61    | рН    |
| GS-GSA-MW-8V | 8/5/2020 9:51  | Temperature                   | 22.14   | C     |
| GS-GSA-MW-8V | 8/5/2020 9:51  |                               | 1.72    | NTU   |
| GS-GSA-MW-8V | 8/5/2020 9:56  | Conductivity                  | 1613.76 | uS/cm |
| GS-GSA-MW-8V | 8/5/2020 9:56  | -                             | 0.23    | mg/L  |
| GS-GSA-MW-8V | 8/5/2020 9:56  | Depth to Water Detail         | 103.54  |       |
| GS-GSA-MW-8V | 8/5/2020 9:56  | Oxidation Reduction Potention | -276    | mv    |
| GS-GSA-MW-8V | 8/5/2020 9:56  | рН                            | 7.61    | рН    |
| GS-GSA-MW-8V | 8/5/2020 9:56  | Temperature                   | 22.4    | С     |
| GS-GSA-MW-8V | 8/5/2020 9:56  |                               | 1.63    | NTU   |
| GS-GSA-MW-8V | 8/5/2020 10:01 | Conductivity                  | 1619.33 | uS/cm |
| GS-GSA-MW-8V | 8/5/2020 10:01 |                               | +       | mg/L  |
| GS-GSA-MW-8V | 8/5/2020 10:01 | Depth to Water Detail         | 103.68  | ft    |
| GS-GSA-MW-8V | 8/5/2020 10:01 | Oxidation Reduction Potention | -278.6  | mv    |
| GS-GSA-MW-8V | 8/5/2020 10:01 | рН                            | 7.61    |       |
| GS-GSA-MW-8V | 8/5/2020 10:01 | Temperature                   | 22.66   | C     |
| GS-GSA-MW-8V | 8/5/2020 10:01 |                               |         | NTU   |
| GS-GSA-MW-8V | 8/5/2020 10:06 | Conductivity                  | 1624.58 | uS/cm |
| GS-GSA-MW-8V | 8/5/2020 10:06 |                               | 0.23    | mg/L  |
| GS-GSA-MW-8V | 8/5/2020 10:06 | Depth to Water Detail         | 103.86  | ŭ     |
| GS-GSA-MW-8V |                | Oxidation Reduction Potention | -280.53 |       |
| GS-GSA-MW-8V | 8/5/2020 10:06 |                               | 7.59    |       |
| GS-GSA-MW-8V | 8/5/2020 10:06 |                               | 22.65   | •     |
| GS-GSA-MW-8V | 8/5/2020 10:06 | *                             |         | NTU   |
| GS-GSA-MW-8V | 8/5/2020 10:11 |                               | 1623.09 |       |

| WELL ID      | READING TIME   | DESCRIPTION                   | VALUE   | UNIT  |
|--------------|----------------|-------------------------------|---------|-------|
| GS-GSA-MW-8V | 8/5/2020 10:11 | DO                            | 0.21    | mg/L  |
| GS-GSA-MW-8V | 8/5/2020 10:11 | Depth to Water Detail         | 104.02  | ft    |
| GS-GSA-MW-8V | 8/5/2020 10:11 | Oxidation Reduction Potention | -282.08 | mv    |
| GS-GSA-MW-8V | 8/5/2020 10:11 | рН                            | 7.58    | рН    |
| GS-GSA-MW-8V | 8/5/2020 10:11 | Temperature                   | 22.53   | C     |
| GS-GSA-MW-8V | 8/5/2020 10:11 | Turbidity                     | 1.58    | NTU   |
| GS-GSA-MW-8V | 8/5/2020 10:16 | Conductivity                  | 1635.82 | uS/cm |
| GS-GSA-MW-8V | 8/5/2020 10:16 | DO                            | 0.21    | mg/L  |
| GS-GSA-MW-8V | 8/5/2020 10:16 | Depth to Water Detail         | 104.14  | ft    |
| GS-GSA-MW-8V | 8/5/2020 10:16 | Oxidation Reduction Potention | -284.84 | mv    |
| GS-GSA-MW-8V | 8/5/2020 10:16 | рН                            | 7.58    | рН    |
| GS-GSA-MW-8V | 8/5/2020 10:16 | Temperature                   | 22.32   | С     |
| GS-GSA-MW-8V | 8/5/2020 10:16 | Turbidity                     | 1.62    | NTU   |

| WELL ID       | READING TIME   | DESCRIPTION                   | VALUE   | UNIT  |
|---------------|----------------|-------------------------------|---------|-------|
| GS-GSA-MW-12H | 8/5/2020 12:01 | Conductivity                  | 1430.36 | uS/cm |
| GS-GSA-MW-12H | 8/5/2020 12:01 | DO                            | 0.69    | mg/L  |
| GS-GSA-MW-12H | 8/5/2020 12:01 | Depth to Water Detail         | 63.3    | ft    |
| GS-GSA-MW-12H | 8/5/2020 12:01 | Oxidation Reduction Potention | 271.29  | mv    |
| GS-GSA-MW-12H | 8/5/2020 12:01 | рН                            | 4.38    | рН    |
| GS-GSA-MW-12H | 8/5/2020 12:01 | Temperature                   | 20.4    | С     |
| GS-GSA-MW-12H | 8/5/2020 12:01 | Turbidity                     | 78.6    | NTU   |
| GS-GSA-MW-12H | 8/5/2020 12:06 | Conductivity                  | 1409.49 | uS/cm |
| GS-GSA-MW-12H | 8/5/2020 12:06 | DO                            | 0.35    | mg/L  |
| GS-GSA-MW-12H | 8/5/2020 12:06 | Depth to Water Detail         | 63.3    | ft    |
| GS-GSA-MW-12H | 8/5/2020 12:06 | Oxidation Reduction Potention | 298.45  | mv    |
| GS-GSA-MW-12H | 8/5/2020 12:06 | рН                            | 4.19    | рН    |
| GS-GSA-MW-12H | 8/5/2020 12:06 | Temperature                   | 20.59   | С     |
| GS-GSA-MW-12H | 8/5/2020 12:06 | Turbidity                     | 32.4    | NTU   |
| GS-GSA-MW-12H | 8/5/2020 12:11 | Conductivity                  | 1401.93 | uS/cm |
| GS-GSA-MW-12H | 8/5/2020 12:11 | DO                            | 0.29    | mg/L  |
| GS-GSA-MW-12H | 8/5/2020 12:11 | Depth to Water Detail         | 63.3    |       |
| GS-GSA-MW-12H |                | Oxidation Reduction Potention | 314.52  | mv    |
| GS-GSA-MW-12H | 8/5/2020 12:11 | рН                            | 4.15    | рН    |
| GS-GSA-MW-12H | 8/5/2020 12:11 | Temperature                   | 20.49   | С     |
| GS-GSA-MW-12H | 8/5/2020 12:11 | Turbidity                     | 20.1    | NTU   |
| GS-GSA-MW-12H | 8/5/2020 12:16 | Conductivity                  | 1404.25 | uS/cm |
| GS-GSA-MW-12H | 8/5/2020 12:16 | DO                            | 0.24    | mg/L  |
| GS-GSA-MW-12H | 8/5/2020 12:16 | Depth to Water Detail         | 63.3    | ft    |
| GS-GSA-MW-12H |                | Oxidation Reduction Potention | 324.13  | mv    |
| GS-GSA-MW-12H | 8/5/2020 12:16 | рН                            | 4.12    | рН    |
| GS-GSA-MW-12H | 8/5/2020 12:16 | Temperature                   | 20.62   | С     |
| GS-GSA-MW-12H | 8/5/2020 12:16 | Turbidity                     | 14.7    | NTU   |
| GS-GSA-MW-12H | 8/5/2020 12:21 | Conductivity                  | 1376.56 | uS/cm |
| GS-GSA-MW-12H | 8/5/2020 12:21 | DO                            | 0.23    | mg/L  |
| GS-GSA-MW-12H | 8/5/2020 12:21 | Depth to Water Detail         | 63.3    |       |
| GS-GSA-MW-12H | 8/5/2020 12:21 | Oxidation Reduction Potention | 330.23  | mv    |
| GS-GSA-MW-12H | 8/5/2020 12:21 | рН                            | 4.12    | рН    |
| GS-GSA-MW-12H | 8/5/2020 12:21 | Temperature                   | 20.51   | С     |
| GS-GSA-MW-12H | 8/5/2020 12:21 | Turbidity                     | 12.8    | NTU   |
| GS-GSA-MW-12H | 8/5/2020 12:26 | Conductivity                  | 1354    | uS/cm |
| GS-GSA-MW-12H | 8/5/2020 12:26 | DO                            | 0.23    | mg/L  |
| GS-GSA-MW-12H | 8/5/2020 12:26 | Depth to Water Detail         | 63.3    | ft    |
| GS-GSA-MW-12H | 8/5/2020 12:26 | Oxidation Reduction Potention | 335.46  | mv    |
| GS-GSA-MW-12H | 8/5/2020 12:26 | рН                            | 4.11    | рН    |
| GS-GSA-MW-12H | 8/5/2020 12:26 | Temperature                   | 20.52   |       |
| GS-GSA-MW-12H | 8/5/2020 12:26 | Turbidity                     | 12.11   | NTU   |
| GS-GSA-MW-12H | 8/5/2020 12:31 | Conductivity                  | 1355.52 | uS/cm |
| GS-GSA-MW-12H | 8/5/2020 12:31 | DO                            | 0.22    | mg/L  |

| WELL ID       | READING TIME   | DESCRIPTION                   | VALUE   | UNIT  |
|---------------|----------------|-------------------------------|---------|-------|
| GS-GSA-MW-12H | 8/5/2020 12:31 | Depth to Water Detail         | 63.3    | ft    |
| GS-GSA-MW-12H | 8/5/2020 12:31 | Oxidation Reduction Potention | 340.11  | mv    |
| GS-GSA-MW-12H | 8/5/2020 12:31 | pН                            | 4.12    | pН    |
| GS-GSA-MW-12H | 8/5/2020 12:31 | Temperature                   | 20.52   | С     |
| GS-GSA-MW-12H | 8/5/2020 12:31 | Turbidity                     | 12.4    | NTU   |
| GS-GSA-MW-12H | 8/5/2020 12:36 | Conductivity                  | 1330.34 | uS/cm |
| GS-GSA-MW-12H | 8/5/2020 12:36 | DO                            | 0.23    | mg/L  |
| GS-GSA-MW-12H | 8/5/2020 12:36 | Depth to Water Detail         | 63.3    | ft    |
| GS-GSA-MW-12H | 8/5/2020 12:36 | Oxidation Reduction Potention | 342.82  | mv    |
| GS-GSA-MW-12H | 8/5/2020 12:36 | pН                            | 4.12    | pН    |
| GS-GSA-MW-12H | 8/5/2020 12:36 | Temperature                   | 20.35   | С     |
| GS-GSA-MW-12H | 8/5/2020 12:36 | Turbidity                     | 9.15    | NTU   |
| GS-GSA-MW-12H | 8/5/2020 12:41 | Conductivity                  | 1325.68 | uS/cm |
| GS-GSA-MW-12H | 8/5/2020 12:41 | DO                            | 0.23    | mg/L  |
| GS-GSA-MW-12H |                | Depth to Water Detail         | 63.3    | ft    |
| GS-GSA-MW-12H | 8/5/2020 12:41 | Oxidation Reduction Potention | 346.68  | mv    |
| GS-GSA-MW-12H | 8/5/2020 12:41 | рН                            | 4.13    | pН    |
| GS-GSA-MW-12H | 8/5/2020 12:41 | Temperature                   | 20.35   |       |
| GS-GSA-MW-12H | 8/5/2020 12:41 | Turbidity                     | 8.9     | NTU   |
| GS-GSA-MW-12H | 8/5/2020 12:46 | Conductivity                  | 1325.81 | uS/cm |
| GS-GSA-MW-12H | 8/5/2020 12:46 | DO                            | 0.23    | mg/L  |
| GS-GSA-MW-12H | 8/5/2020 12:46 | Depth to Water Detail         | 63.3    | ft    |
| GS-GSA-MW-12H | 8/5/2020 12:46 | Oxidation Reduction Potention | 349.81  | mv    |
| GS-GSA-MW-12H | 8/5/2020 12:46 | рН                            | 4.13    | pН    |
| GS-GSA-MW-12H | 8/5/2020 12:46 | Temperature                   | 20.32   | С     |
| GS-GSA-MW-12H | 8/5/2020 12:46 | Turbidity                     | 7.94    | NTU   |

| WELL ID       | READING TIME   | DESCRIPTION                   | VALUE   | UNIT  |
|---------------|----------------|-------------------------------|---------|-------|
| GS-GSA-MW-12V | 8/5/2020 13:28 | Conductivity                  | 3709.03 | uS/cm |
| GS-GSA-MW-12V | 8/5/2020 13:28 | DO                            | 0.31    | mg/L  |
| GS-GSA-MW-12V | 8/5/2020 13:28 | Depth to Water Detail         | 67.16   | ft    |
| GS-GSA-MW-12V | 8/5/2020 13:28 | Oxidation Reduction Potention | -40.14  | mv    |
| GS-GSA-MW-12V | 8/5/2020 13:28 | рН                            | 6.2     | pН    |
| GS-GSA-MW-12V | 8/5/2020 13:28 | Temperature                   | 20.35   | С     |
| GS-GSA-MW-12V | 8/5/2020 13:28 | Turbidity                     | 17.2    | NTU   |
| GS-GSA-MW-12V | 8/5/2020 13:33 | Conductivity                  | 3655.37 | uS/cm |
| GS-GSA-MW-12V | 8/5/2020 13:33 | DO                            | 0.21    | mg/L  |
| GS-GSA-MW-12V | 8/5/2020 13:33 | Depth to Water Detail         | 67.34   | ft    |
| GS-GSA-MW-12V | 8/5/2020 13:33 | Oxidation Reduction Potention | -41.66  | mv    |
| GS-GSA-MW-12V | 8/5/2020 13:33 | рН                            | 6.15    | рН    |
| GS-GSA-MW-12V | 8/5/2020 13:33 | Temperature                   | 20.27   | С     |
| GS-GSA-MW-12V | 8/5/2020 13:33 | Turbidity                     | 10.29   | NTU   |
| GS-GSA-MW-12V | 8/5/2020 13:38 | Conductivity                  | 3621.63 | uS/cm |
| GS-GSA-MW-12V | 8/5/2020 13:38 | DO                            | 0.19    | mg/L  |
| GS-GSA-MW-12V | 8/5/2020 13:38 | Depth to Water Detail         | 67.4    | ft    |
| GS-GSA-MW-12V | 8/5/2020 13:38 | Oxidation Reduction Potention | -41.64  | mv    |
| GS-GSA-MW-12V | 8/5/2020 13:38 | рН                            | 6.14    | рН    |
| GS-GSA-MW-12V | 8/5/2020 13:38 | Temperature                   | 20.28   | С     |
| GS-GSA-MW-12V | 8/5/2020 13:38 | Turbidity                     | 7.4     | NTU   |
| GS-GSA-MW-12V | 8/5/2020 13:43 | Conductivity                  | 3604.38 | uS/cm |
| GS-GSA-MW-12V | 8/5/2020 13:43 | DO                            | 0.19    | mg/L  |
| GS-GSA-MW-12V | 8/5/2020 13:43 | Depth to Water Detail         | 67.46   |       |
| GS-GSA-MW-12V | 8/5/2020 13:43 | Oxidation Reduction Potention | -42.27  | mv    |
| GS-GSA-MW-12V | 8/5/2020 13:43 | рН                            | 6.15    | рН    |
| GS-GSA-MW-12V | 8/5/2020 13:43 | Temperature                   | 20.1    |       |
| GS-GSA-MW-12V | 8/5/2020 13:43 |                               | 6.84    | NTU   |

| WELL ID      | READING TIME   | DESCRIPTION                   | VALUE   | UNIT  |
|--------------|----------------|-------------------------------|---------|-------|
| GS-GSA-PZ-17 | 8/4/2020 10:57 | Conductivity                  | 1880.94 | uS/cm |
| GS-GSA-PZ-17 | 8/4/2020 10:57 | DO                            | 0.87    | mg/L  |
| GS-GSA-PZ-17 | 8/4/2020 10:57 | Depth to Water Detail         | 46.4    | ft    |
| GS-GSA-PZ-17 | 8/4/2020 10:57 | Oxidation Reduction Potention | 272.84  | mv    |
| GS-GSA-PZ-17 | 8/4/2020 10:57 | рН                            | 4.14    | pН    |
| GS-GSA-PZ-17 | 8/4/2020 10:57 | Temperature                   | 24.06   | С     |
| GS-GSA-PZ-17 | 8/4/2020 10:57 | Turbidity                     | 12.71   | NTU   |
| GS-GSA-PZ-17 | 8/4/2020 11:02 | Conductivity                  | 1878.01 | uS/cm |
| GS-GSA-PZ-17 | 8/4/2020 11:02 | DO                            | 0.62    | mg/L  |
| GS-GSA-PZ-17 | 8/4/2020 11:02 | Depth to Water Detail         | 46.41   | ft    |
| GS-GSA-PZ-17 | 8/4/2020 11:02 | Oxidation Reduction Potention | 279.05  | mv    |
| GS-GSA-PZ-17 | 8/4/2020 11:02 | рН                            | 4.13    | рН    |
| GS-GSA-PZ-17 | 8/4/2020 11:02 | Temperature                   | 23.53   | С     |
| GS-GSA-PZ-17 | 8/4/2020 11:02 | Turbidity                     | 8.94    | NTU   |
| GS-GSA-PZ-17 | 8/4/2020 11:07 | Conductivity                  | 1868.79 | uS/cm |
| GS-GSA-PZ-17 | 8/4/2020 11:07 | DO                            | 0.49    | mg/L  |
| GS-GSA-PZ-17 | 8/4/2020 11:07 | Depth to Water Detail         | 46.42   | ft    |
| GS-GSA-PZ-17 | 8/4/2020 11:07 | Oxidation Reduction Potention | 283.9   | mv    |
| GS-GSA-PZ-17 | 8/4/2020 11:07 | рН                            | 4.13    | рН    |
| GS-GSA-PZ-17 | 8/4/2020 11:07 | Temperature                   | 23.67   | С     |
| GS-GSA-PZ-17 | 8/4/2020 11:07 | Turbidity                     | 9.08    | NTU   |
| GS-GSA-PZ-17 | 8/4/2020 11:12 | Conductivity                  | 1879.11 | uS/cm |
| GS-GSA-PZ-17 | 8/4/2020 11:12 | DO                            | 0.43    | mg/L  |
| GS-GSA-PZ-17 | 8/4/2020 11:12 | Depth to Water Detail         | 46.43   | ft    |
| GS-GSA-PZ-17 | 8/4/2020 11:12 | Oxidation Reduction Potention | 287.26  | mv    |
| GS-GSA-PZ-17 | 8/4/2020 11:12 | рН                            | 4.09    | рН    |
| GS-GSA-PZ-17 | 8/4/2020 11:12 | Temperature                   | 23.47   | С     |
| GS-GSA-PZ-17 | 8/4/2020 11:12 | Turbidity                     | 6.82    | NTU   |
| GS-GSA-PZ-17 | 8/4/2020 11:17 | Conductivity                  | 1883.1  | uS/cm |
| GS-GSA-PZ-17 | 8/4/2020 11:17 | DO                            | 0.38    | mg/L  |
| GS-GSA-PZ-17 | 8/4/2020 11:17 | Depth to Water Detail         | 46.44   |       |
| GS-GSA-PZ-17 | 8/4/2020 11:17 | Oxidation Reduction Potention | 288.29  | mv    |
| GS-GSA-PZ-17 | 8/4/2020 11:17 | рН                            | 4.08    | рН    |
| GS-GSA-PZ-17 | 8/4/2020 11:17 | Temperature                   | 23.57   | С     |
| GS-GSA-PZ-17 | 8/4/2020 11:17 | Turbidity                     | 5.56    | NTU   |

| WELL ID      | READING TIME   | DESCRIPTION                   | VALUE   | UNIT  |
|--------------|----------------|-------------------------------|---------|-------|
| GS-GSA-PZ-18 | 8/3/2020 10:36 | Conductivity                  | 1312.16 | uS/cm |
| GS-GSA-PZ-18 | 8/3/2020 10:36 |                               | 0.89    | mg/L  |
| GS-GSA-PZ-18 | 8/3/2020 10:36 | Depth to Water Detail         | 65.14   | ft    |
| GS-GSA-PZ-18 | 8/3/2020 10:36 | Oxidation Reduction Potention | 241.97  | mv    |
| GS-GSA-PZ-18 | 8/3/2020 10:36 | рН                            | 4.09    | рН    |
| GS-GSA-PZ-18 | 8/3/2020 10:36 | Temperature                   | 20.84   | С     |
| GS-GSA-PZ-18 | 8/3/2020 10:36 | Turbidity                     | 1.32    | NTU   |
| GS-GSA-PZ-18 | 8/3/2020 10:41 | Conductivity                  | 1296.58 | uS/cm |
| GS-GSA-PZ-18 | 8/3/2020 10:41 |                               | 0.68    | mg/L  |
| GS-GSA-PZ-18 | 8/3/2020 10:41 | Depth to Water Detail         | 65.52   | ft    |
| GS-GSA-PZ-18 |                | Oxidation Reduction Potention | 243.92  | mv    |
| GS-GSA-PZ-18 | 8/3/2020 10:41 | рН                            | 4.09    | рН    |
| GS-GSA-PZ-18 | 8/3/2020 10:41 | Temperature                   | 20.84   | С     |
| GS-GSA-PZ-18 | 8/3/2020 10:41 | Turbidity                     | 0.85    | NTU   |
| GS-GSA-PZ-18 | 8/3/2020 10:46 | Conductivity                  | 1309.05 | uS/cm |
| GS-GSA-PZ-18 | 8/3/2020 10:46 | DO                            |         | mg/L  |
| GS-GSA-PZ-18 | 8/3/2020 10:46 | Depth to Water Detail         | 65.75   | ft    |
| GS-GSA-PZ-18 | 8/3/2020 10:46 | Oxidation Reduction Potention | 244.82  | mv    |
| GS-GSA-PZ-18 | 8/3/2020 10:46 | рН                            | 4.09    | рН    |
| GS-GSA-PZ-18 | 8/3/2020 10:46 | Temperature                   | 20.8    | С     |
| GS-GSA-PZ-18 | 8/3/2020 10:46 | Turbidity                     | 1       | NTU   |
| GS-GSA-PZ-18 | 8/3/2020 10:51 | Conductivity                  | 1300.33 | uS/cm |
| GS-GSA-PZ-18 | 8/3/2020 10:51 | DO                            | 0.65    | mg/L  |
| GS-GSA-PZ-18 | 8/3/2020 10:51 | Depth to Water Detail         | 65.76   | ft    |
| GS-GSA-PZ-18 | 8/3/2020 10:51 | Oxidation Reduction Potention | 251.42  | mv    |
| GS-GSA-PZ-18 | 8/3/2020 10:51 | рН                            | 4.09    |       |
| GS-GSA-PZ-18 | 8/3/2020 10:51 | Temperature                   | 22.72   | С     |
| GS-GSA-PZ-18 | 8/3/2020 10:51 | Turbidity                     | 0.82    | NTU   |
| GS-GSA-PZ-18 | 8/3/2020 10:56 | Conductivity                  | 1297.6  | uS/cm |
| GS-GSA-PZ-18 | 8/3/2020 10:56 | DO                            | 0.7     | mg/L  |
| GS-GSA-PZ-18 |                | Depth to Water Detail         | 65.76   |       |
| GS-GSA-PZ-18 | 8/3/2020 10:56 | Oxidation Reduction Potention | 250.58  | mv    |
| GS-GSA-PZ-18 | 8/3/2020 10:56 | рН                            | 4.09    | рН    |
| GS-GSA-PZ-18 | 8/3/2020 10:56 | Temperature                   | 21.91   | С     |
| GS-GSA-PZ-18 | 8/3/2020 10:56 | Turbidity                     | 0.86    | NTU   |

| WELL ID      | READING TIME   | DESCRIPTION                   | VALUE   | UNIT  |
|--------------|----------------|-------------------------------|---------|-------|
| GS-GSA-PZ-19 | 8/3/2020 12:21 | Conductivity                  | 1533.69 | uS/cm |
| GS-GSA-PZ-19 | 8/3/2020 12:21 | DO                            | 0.3     | mg/L  |
| GS-GSA-PZ-19 | 8/3/2020 12:21 | Depth to Water Detail         | 125.61  | ft    |
| GS-GSA-PZ-19 | 8/3/2020 12:21 | Oxidation Reduction Potention | -28.94  | mv    |
| GS-GSA-PZ-19 | 8/3/2020 12:21 | рН                            | 6.35    | рН    |
| GS-GSA-PZ-19 | 8/3/2020 12:21 | Temperature                   | 18.99   | С     |
| GS-GSA-PZ-19 | 8/3/2020 12:21 | Turbidity                     | 12.2    | NTU   |
| GS-GSA-PZ-19 | 8/3/2020 12:26 | Conductivity                  | 1287.97 | uS/cm |
| GS-GSA-PZ-19 | 8/3/2020 12:26 | DO                            | 0.23    | mg/L  |
| GS-GSA-PZ-19 | 8/3/2020 12:26 | Depth to Water Detail         | 125.96  | ft    |
| GS-GSA-PZ-19 | 8/3/2020 12:26 | Oxidation Reduction Potention | -30.16  | mv    |
| GS-GSA-PZ-19 | 8/3/2020 12:26 | рН                            | 6.32    | рН    |
| GS-GSA-PZ-19 | 8/3/2020 12:26 | Temperature                   | 18.7    | С     |
| GS-GSA-PZ-19 | 8/3/2020 12:26 | Turbidity                     | 9.56    | NTU   |
| GS-GSA-PZ-19 | 8/3/2020 12:31 | Conductivity                  | 1237.18 | uS/cm |
| GS-GSA-PZ-19 | 8/3/2020 12:31 | DO                            | 0.21    | mg/L  |
| GS-GSA-PZ-19 | 8/3/2020 12:31 | Depth to Water Detail         | 126.25  | ft    |
| GS-GSA-PZ-19 | 8/3/2020 12:31 | Oxidation Reduction Potention | -29.95  | mv    |
| GS-GSA-PZ-19 | 8/3/2020 12:31 | рН                            | 6.31    | рН    |
| GS-GSA-PZ-19 | 8/3/2020 12:31 | Temperature                   | 18.7    | С     |
| GS-GSA-PZ-19 | 8/3/2020 12:31 | Turbidity                     | 6.15    | NTU   |
| GS-GSA-PZ-19 | 8/3/2020 12:36 | Conductivity                  | 1201.39 | uS/cm |
| GS-GSA-PZ-19 | 8/3/2020 12:36 | DO                            | 0.2     | mg/L  |
| GS-GSA-PZ-19 | 8/3/2020 12:36 | Depth to Water Detail         | 126.51  | ft    |
| GS-GSA-PZ-19 | 8/3/2020 12:36 | Oxidation Reduction Potention | -29.8   | mv    |
| GS-GSA-PZ-19 | 8/3/2020 12:36 | рН                            | 6.31    | рН    |
| GS-GSA-PZ-19 | 8/3/2020 12:36 | Temperature                   | 18.78   | С     |
| GS-GSA-PZ-19 | 8/3/2020 12:36 | Turbidity                     | 5.63    | NTU   |
| GS-GSA-PZ-19 | 8/3/2020 12:41 | Conductivity                  | 1150.01 | uS/cm |
| GS-GSA-PZ-19 | 8/3/2020 12:41 | DO                            | 0.2     | mg/L  |
| GS-GSA-PZ-19 | 8/3/2020 12:41 | Depth to Water Detail         | 126.63  |       |
| GS-GSA-PZ-19 | 8/3/2020 12:41 | Oxidation Reduction Potention | -30.41  | mv    |
| GS-GSA-PZ-19 | 8/3/2020 12:41 | рН                            | 6.32    | рН    |
| GS-GSA-PZ-19 | 8/3/2020 12:41 | Temperature                   | 18.81   | _     |
| GS-GSA-PZ-19 | 8/3/2020 12:41 | Turbidity                     | 3.75    | NTU   |
| GS-GSA-PZ-19 | 8/3/2020 12:46 | Conductivity                  | 1176.09 | uS/cm |
| GS-GSA-PZ-19 | 8/3/2020 12:46 | ·                             | 0.2     | mg/L  |
| GS-GSA-PZ-19 | 8/3/2020 12:46 | Depth to Water Detail         | 126.78  | ft    |
| GS-GSA-PZ-19 | 8/3/2020 12:46 | Oxidation Reduction Potention | -30.67  |       |
| GS-GSA-PZ-19 | 8/3/2020 12:46 | рН                            | 6.32    | рН    |
| GS-GSA-PZ-19 | 8/3/2020 12:46 | Temperature                   | 18.97   |       |
| GS-GSA-PZ-19 | 8/3/2020 12:46 | Turbidity                     | 3.77    | NTU   |

| WELL ID      | READING TIME   | DESCRIPTION                   | VALUE   | UNIT  |
|--------------|----------------|-------------------------------|---------|-------|
| GS-GSA-PZ-20 | 8/3/2020 13:40 | Conductivity                  | 1231.78 | uS/cm |
| GS-GSA-PZ-20 | 8/3/2020 13:40 | DO                            | 0.42    | mg/L  |
| GS-GSA-PZ-20 |                | Depth to Water Detail         | 116.74  | ft    |
| GS-GSA-PZ-20 | 8/3/2020 13:40 | Oxidation Reduction Potention | 3.52    | mv    |
| GS-GSA-PZ-20 | 8/3/2020 13:40 | 1                             | 5.93    | рН    |
| GS-GSA-PZ-20 | 8/3/2020 13:40 | Temperature                   | 19.73   | C     |
| GS-GSA-PZ-20 | 8/3/2020 13:40 |                               | 11.64   | NTU   |
| GS-GSA-PZ-20 | 8/3/2020 13:45 | Conductivity                  | 1222.06 | uS/cm |
| GS-GSA-PZ-20 | 8/3/2020 13:45 | DO                            |         | mg/L  |
| GS-GSA-PZ-20 | 8/3/2020 13:45 | Depth to Water Detail         | 116.74  | ft    |
| GS-GSA-PZ-20 | 8/3/2020 13:45 | Oxidation Reduction Potention | 0.43    | mv    |
| GS-GSA-PZ-20 | 8/3/2020 13:45 | *                             | 5.96    |       |
| GS-GSA-PZ-20 | 8/3/2020 13:45 | Temperature                   | 19.84   | C     |
| GS-GSA-PZ-20 | 8/3/2020 13:45 | Turbidity                     | 7.32    | NTU   |
| GS-GSA-PZ-20 | 8/3/2020 13:50 | Conductivity                  | 1202.22 | uS/cm |
| GS-GSA-PZ-20 | 8/3/2020 13:50 |                               |         | mg/L  |
| GS-GSA-PZ-20 |                | Depth to Water Detail         | 116.74  | ft    |
| GS-GSA-PZ-20 | 8/3/2020 13:50 | Oxidation Reduction Potention | -1.86   | mv    |
| GS-GSA-PZ-20 | 8/3/2020 13:50 | 4                             |         | pН    |
| GS-GSA-PZ-20 | 8/3/2020 13:50 | Temperature                   | 19.67   | C     |
| GS-GSA-PZ-20 | 8/3/2020 13:50 |                               | 5.32    | NTU   |
| GS-GSA-PZ-20 | 8/3/2020 13:55 | Conductivity                  | 1185.16 | uS/cm |
| GS-GSA-PZ-20 | 8/3/2020 13:55 | DO                            |         | mg/L  |
| GS-GSA-PZ-20 | 8/3/2020 13:55 | Depth to Water Detail         | 116.74  | ft    |
| GS-GSA-PZ-20 | 8/3/2020 13:55 | Oxidation Reduction Potention | -3.01   | mv    |
| GS-GSA-PZ-20 | 8/3/2020 13:55 |                               | 6.03    |       |
| GS-GSA-PZ-20 | 8/3/2020 13:55 | Temperature                   | 19.53   | С     |
| GS-GSA-PZ-20 | 8/3/2020 13:55 | Turbidity                     | 4.15    | NTU   |

| WELL ID      | READING TIME  | DESCRIPTION                           | VALUE   | UNIT  |
|--------------|---------------|---------------------------------------|---------|-------|
| GS-GSA-PZ-21 | 8/4/2020 8:09 | Conductivity                          | 763.14  | uS/cm |
| GS-GSA-PZ-21 | 8/4/2020 8:09 | DO                                    | 0.55    | mg/L  |
| GS-GSA-PZ-21 | 8/4/2020 8:09 | Depth to Water Detail                 | 84.08   |       |
| GS-GSA-PZ-21 | 8/4/2020 8:09 | Oxidation Reduction Potention         | -105.89 | mv    |
| GS-GSA-PZ-21 | 8/4/2020 8:09 | рН                                    | 6.87    | рН    |
| GS-GSA-PZ-21 | 8/4/2020 8:09 | Temperature                           | 19.43   | С     |
| GS-GSA-PZ-21 | 8/4/2020 8:09 | Turbidity                             | 2.15    | NTU   |
| GS-GSA-PZ-21 | 8/4/2020 8:14 | Conductivity                          | 760.84  | uS/cm |
| GS-GSA-PZ-21 | 8/4/2020 8:14 | DO                                    | 0.37    | mg/L  |
| GS-GSA-PZ-21 | 8/4/2020 8:14 | Depth to Water Detail                 | 84.5    |       |
| GS-GSA-PZ-21 | 8/4/2020 8:14 | Oxidation Reduction Potention         | -104.13 | mv    |
| GS-GSA-PZ-21 | 8/4/2020 8:14 | рН                                    | 6.9     | рН    |
| GS-GSA-PZ-21 | 8/4/2020 8:14 | Temperature                           | 19.32   | C     |
| GS-GSA-PZ-21 | 8/4/2020 8:14 | •                                     | 1.46    | NTU   |
| GS-GSA-PZ-21 | 8/4/2020 8:19 | Conductivity                          | 760.87  | uS/cm |
| GS-GSA-PZ-21 | 8/4/2020 8:19 | · · · · · · · · · · · · · · · · · · · | 0.33    | mg/L  |
| GS-GSA-PZ-21 | 8/4/2020 8:19 | Depth to Water Detail                 | 84.79   | ft    |
| GS-GSA-PZ-21 |               | Oxidation Reduction Potention         | -101.35 | mv    |
| GS-GSA-PZ-21 | 8/4/2020 8:19 | рН                                    | 6.92    | рН    |
| GS-GSA-PZ-21 | 8/4/2020 8:19 | Temperature                           | 19.22   | C     |
| GS-GSA-PZ-21 | 8/4/2020 8:19 |                                       | 1.28    | NTU   |
| GS-GSA-PZ-21 | 8/4/2020 8:24 | ·                                     | 762.12  | uS/cm |
| GS-GSA-PZ-21 | 8/4/2020 8:24 | <u> </u>                              | 0.3     | mg/L  |
| GS-GSA-PZ-21 | 8/4/2020 8:24 | Depth to Water Detail                 | 85.08   |       |
| GS-GSA-PZ-21 |               | Oxidation Reduction Potention         | -99.29  | mv    |
| GS-GSA-PZ-21 | 8/4/2020 8:24 |                                       | 6.93    |       |
| GS-GSA-PZ-21 | 8/4/2020 8:24 | Temperature                           | 19.27   |       |
| GS-GSA-PZ-21 | 8/4/2020 8:24 | Turbidity                             | 1.17    | NTU   |
| GS-GSA-PZ-21 | 8/4/2020 8:29 | Conductivity                          | 762.11  | uS/cm |
| GS-GSA-PZ-21 | 8/4/2020 8:29 |                                       | 0.29    | mg/L  |
| GS-GSA-PZ-21 | 8/4/2020 8:29 | Depth to Water Detail                 | 85.27   |       |
| GS-GSA-PZ-21 | 8/4/2020 8:29 | Oxidation Reduction Potention         | -97.63  | mv    |
| GS-GSA-PZ-21 | 8/4/2020 8:29 | рН                                    | 6.94    | рН    |
| GS-GSA-PZ-21 | 8/4/2020 8:29 | Temperature                           | 19.36   | _     |
| GS-GSA-PZ-21 | 8/4/2020 8:29 | Turbidity                             | 1.24    | NTU   |
| GS-GSA-PZ-21 | 8/4/2020 8:34 | ·                                     | 762.75  | uS/cm |
| GS-GSA-PZ-21 | 8/4/2020 8:34 | · · · · · · · · · · · · · · · · · · · | 0.28    | mg/L  |
| GS-GSA-PZ-21 | 8/4/2020 8:34 | Depth to Water Detail                 | 85.43   | _     |
| GS-GSA-PZ-21 |               | Oxidation Reduction Potention         | -96.63  |       |
| GS-GSA-PZ-21 | 8/4/2020 8:34 | рН                                    | 6.94    |       |
| GS-GSA-PZ-21 | 8/4/2020 8:34 | 1                                     | 19.41   |       |
| GS-GSA-PZ-21 | 8/4/2020 8:34 |                                       |         | NTU   |
| GS-GSA-PZ-21 | 8/4/2020 8:39 | •                                     |         | uS/cm |
| GS-GSA-PZ-21 | 8/4/2020 8:39 |                                       |         | mg/L  |

| WELL ID      | READING TIME  | DESCRIPTION                   | VALUE  | UNIT  |
|--------------|---------------|-------------------------------|--------|-------|
| GS-GSA-PZ-21 | 8/4/2020 8:39 | Depth to Water Detail         | 85.61  | ft    |
| GS-GSA-PZ-21 | 8/4/2020 8:39 | Oxidation Reduction Potention | -94.94 | mv    |
| GS-GSA-PZ-21 | 8/4/2020 8:39 | рН                            | 6.93   | pН    |
| GS-GSA-PZ-21 | 8/4/2020 8:39 | Temperature                   | 19.48  | С     |
| GS-GSA-PZ-21 | 8/4/2020 8:39 | Turbidity                     | 1.95   | NTU   |
| GS-GSA-PZ-21 | 8/4/2020 8:44 | Conductivity                  | 761.14 | uS/cm |
| GS-GSA-PZ-21 | 8/4/2020 8:44 | DO                            | 0.26   | mg/L  |
| GS-GSA-PZ-21 | 8/4/2020 8:44 | Depth to Water Detail         | 85.75  | ft    |
| GS-GSA-PZ-21 | 8/4/2020 8:44 | Oxidation Reduction Potention | -94.26 | mv    |
| GS-GSA-PZ-21 | 8/4/2020 8:44 | рН                            | 6.93   | pН    |
| GS-GSA-PZ-21 | 8/4/2020 8:44 | Temperature                   | 19.49  | С     |
| GS-GSA-PZ-21 | 8/4/2020 8:44 | Turbidity                     | 1.83   | NTU   |
| GS-GSA-PZ-21 | 8/4/2020 8:49 | Conductivity                  | 762.82 | uS/cm |
| GS-GSA-PZ-21 | 8/4/2020 8:49 | DO                            | 0.26   | mg/L  |
| GS-GSA-PZ-21 | 8/4/2020 8:49 | Depth to Water Detail         | 85.86  | ft    |
| GS-GSA-PZ-21 | 8/4/2020 8:49 | Oxidation Reduction Potention | -93.39 | mv    |
| GS-GSA-PZ-21 | 8/4/2020 8:49 | рН                            | 6.94   | pН    |
| GS-GSA-PZ-21 | 8/4/2020 8:49 | Temperature                   | 19.38  | С     |
| GS-GSA-PZ-21 | 8/4/2020 8:49 | Turbidity                     | 1.86   | NTU   |

| WELL ID      | READING TIME  | DESCRIPTION                   | VALUE  | UNIT  |
|--------------|---------------|-------------------------------|--------|-------|
| GS-GSA-PZ-22 | 8/4/2020 9:42 | Conductivity                  | 836.59 | uS/cm |
| GS-GSA-PZ-22 | 8/4/2020 9:42 |                               | 0.45   | mg/L  |
| GS-GSA-PZ-22 | 8/4/2020 9:42 | Depth to Water Detail         | 56.45  | ft    |
| GS-GSA-PZ-22 |               | Oxidation Reduction Potention | -90.64 | mv    |
| GS-GSA-PZ-22 | 8/4/2020 9:42 | рН                            | 6.41   | pН    |
| GS-GSA-PZ-22 | 8/4/2020 9:42 | Temperature                   | 18.87  | С     |
| GS-GSA-PZ-22 | 8/4/2020 9:42 | Turbidity                     | 4.53   | NTU   |
| GS-GSA-PZ-22 | 8/4/2020 9:47 | Conductivity                  | 854.77 | uS/cm |
| GS-GSA-PZ-22 | 8/4/2020 9:47 | DO                            | 0.3    | mg/L  |
| GS-GSA-PZ-22 | 8/4/2020 9:47 | Depth to Water Detail         | 56.66  |       |
| GS-GSA-PZ-22 | 8/4/2020 9:47 | Oxidation Reduction Potention | -91.15 | mv    |
| GS-GSA-PZ-22 | 8/4/2020 9:47 | рН                            | 6.43   | рН    |
| GS-GSA-PZ-22 | 8/4/2020 9:47 | Temperature                   | 19.1   | С     |
| GS-GSA-PZ-22 | 8/4/2020 9:47 | Turbidity                     | 2.35   | NTU   |
| GS-GSA-PZ-22 | 8/4/2020 9:52 | Conductivity                  | 860.14 | uS/cm |
| GS-GSA-PZ-22 | 8/4/2020 9:52 | DO                            | 0.25   | mg/L  |
| GS-GSA-PZ-22 | 8/4/2020 9:52 | Depth to Water Detail         | 56.74  | ft    |
| GS-GSA-PZ-22 |               | Oxidation Reduction Potention | -90.77 | mv    |
| GS-GSA-PZ-22 | 8/4/2020 9:52 | рН                            | 6.45   | рН    |
| GS-GSA-PZ-22 | 8/4/2020 9:52 | Temperature                   | 19.16  | С     |
| GS-GSA-PZ-22 | 8/4/2020 9:52 | Turbidity                     | 2.79   | NTU   |
| GS-GSA-PZ-22 | 8/4/2020 9:57 | Conductivity                  | 863.41 | uS/cm |
| GS-GSA-PZ-22 | 8/4/2020 9:57 | DO                            | 0.22   | mg/L  |
| GS-GSA-PZ-22 | 8/4/2020 9:57 | Depth to Water Detail         | 56.77  |       |
| GS-GSA-PZ-22 | 8/4/2020 9:57 | Oxidation Reduction Potention | -86.46 | mv    |
| GS-GSA-PZ-22 | 8/4/2020 9:57 | рН                            | 6.42   | рН    |
| GS-GSA-PZ-22 | 8/4/2020 9:57 | Temperature                   | 18.94  | С     |
| GS-GSA-PZ-22 | 8/4/2020 9:57 |                               | 1.3    | NTU   |

| WELL ID            | READING TIME   | DESCRIPTION                   | VALUE   | UNIT  |
|--------------------|----------------|-------------------------------|---------|-------|
| APCO-GS-GYPLF-MW-1 | 8/3/2020 11:23 | Conductivity                  | 1667.32 | uS/cm |
| APCO-GS-GYPLF-MW-1 | 8/3/2020 11:23 | DO                            | 0.98    | mg/L  |
| APCO-GS-GYPLF-MW-1 | 8/3/2020 11:23 | Depth to Water Detail         | 90.32   | ft    |
| APCO-GS-GYPLF-MW-1 | 8/3/2020 11:23 | Oxidation Reduction Potention | 231.7   | mv    |
| APCO-GS-GYPLF-MW-1 | 8/3/2020 11:23 | рН                            | 5.07    | рН    |
| APCO-GS-GYPLF-MW-1 | 8/3/2020 11:23 | Temperature                   | 20.24   |       |
| APCO-GS-GYPLF-MW-1 | 8/3/2020 11:23 | Turbidity                     | 3.36    | NTU   |
| APCO-GS-GYPLF-MW-1 | 8/3/2020 11:28 | Conductivity                  | 1665.03 | uS/cm |
| APCO-GS-GYPLF-MW-1 | 8/3/2020 11:28 | DO                            | 0.67    | mg/L  |
| APCO-GS-GYPLF-MW-1 | 8/3/2020 11:28 | Depth to Water Detail         | 90.32   | ft    |
| APCO-GS-GYPLF-MW-1 | 8/3/2020 11:28 | Oxidation Reduction Potention | 258     | mv    |
| APCO-GS-GYPLF-MW-1 | 8/3/2020 11:28 | рН                            | 5.08    | рН    |
| APCO-GS-GYPLF-MW-1 | 8/3/2020 11:28 | Temperature                   | 20.21   | С     |
| APCO-GS-GYPLF-MW-1 | 8/3/2020 11:28 | Turbidity                     | 1.89    | NTU   |
| APCO-GS-GYPLF-MW-1 | 8/3/2020 11:33 | Conductivity                  | 1655.99 | uS/cm |
| APCO-GS-GYPLF-MW-1 | 8/3/2020 11:33 | DO                            | 0.53    | mg/L  |
| APCO-GS-GYPLF-MW-1 | 8/3/2020 11:33 | Depth to Water Detail         | 90.32   | ft    |
| APCO-GS-GYPLF-MW-1 | 8/3/2020 11:33 | Oxidation Reduction Potention | 274.59  | mv    |
| APCO-GS-GYPLF-MW-1 | 8/3/2020 11:33 | рН                            | 5.08    | pН    |
| APCO-GS-GYPLF-MW-1 | 8/3/2020 11:33 | Temperature                   | 20.26   | С     |
| APCO-GS-GYPLF-MW-1 | 8/3/2020 11:33 | Turbidity                     | 1.83    | NTU   |
| APCO-GS-GYPLF-MW-1 | 8/3/2020 11:38 | Conductivity                  | 1647.17 | uS/cm |
| APCO-GS-GYPLF-MW-1 | 8/3/2020 11:38 |                               | 0.48    | mg/L  |
| APCO-GS-GYPLF-MW-1 | 8/3/2020 11:38 | Depth to Water Detail         | 90.32   |       |
| APCO-GS-GYPLF-MW-1 |                | Oxidation Reduction Potention | 286.16  | mv    |
| APCO-GS-GYPLF-MW-1 | 8/3/2020 11:38 | рН                            | 5.08    | рН    |
| APCO-GS-GYPLF-MW-1 | 8/3/2020 11:38 |                               | 20.09   | С     |
| APCO-GS-GYPLF-MW-1 | 8/3/2020 11:38 | Turbidity                     | 2.06    | NTU   |

| WELL ID            | READING TIME   | DESCRIPTION                   | VALUE   | UNIT  |
|--------------------|----------------|-------------------------------|---------|-------|
| APCO-GS-GYPLF-MW-2 | 8/3/2020 12:36 | Conductivity                  | 1307.36 | uS/cm |
| APCO-GS-GYPLF-MW-2 | 8/3/2020 12:36 | DO                            | 0.31    | mg/L  |
| APCO-GS-GYPLF-MW-2 | 8/3/2020 12:36 | Depth to Water Detail         | 85.09   | ft    |
| APCO-GS-GYPLF-MW-2 | 8/3/2020 12:36 | Oxidation Reduction Potention | 65.57   | mv    |
| APCO-GS-GYPLF-MW-2 | 8/3/2020 12:36 | рН                            | 5.93    | pН    |
| APCO-GS-GYPLF-MW-2 | 8/3/2020 12:36 | Temperature                   | 20.2    | С     |
| APCO-GS-GYPLF-MW-2 | 8/3/2020 12:36 | Turbidity                     | 7.32    | NTU   |
| APCO-GS-GYPLF-MW-2 | 8/3/2020 12:41 | Conductivity                  | 1295.93 | uS/cm |
| APCO-GS-GYPLF-MW-2 | 8/3/2020 12:41 | DO                            | 0.28    | mg/L  |
| APCO-GS-GYPLF-MW-2 | 8/3/2020 12:41 | Depth to Water Detail         | 85.09   | ft    |
| APCO-GS-GYPLF-MW-2 | 8/3/2020 12:41 | Oxidation Reduction Potention | 62.52   | mv    |
| APCO-GS-GYPLF-MW-2 | 8/3/2020 12:41 | рН                            | 5.93    | pН    |
| APCO-GS-GYPLF-MW-2 | 8/3/2020 12:41 | Temperature                   | 20.09   | С     |
| APCO-GS-GYPLF-MW-2 | 8/3/2020 12:41 | Turbidity                     | 4.34    | NTU   |
| APCO-GS-GYPLF-MW-2 | 8/3/2020 12:46 | Conductivity                  | 1291.84 | uS/cm |
| APCO-GS-GYPLF-MW-2 | 8/3/2020 12:46 | DO                            | 0.28    | mg/L  |
| APCO-GS-GYPLF-MW-2 | 8/3/2020 12:46 | Depth to Water Detail         | 85.09   | ft    |
| APCO-GS-GYPLF-MW-2 | 8/3/2020 12:46 | Oxidation Reduction Potention | 60.74   | mv    |
| APCO-GS-GYPLF-MW-2 | 8/3/2020 12:46 | рН                            | 5.94    | pН    |
| APCO-GS-GYPLF-MW-2 | 8/3/2020 12:46 | Temperature                   | 20.25   | С     |
| APCO-GS-GYPLF-MW-2 | 8/3/2020 12:46 | Turbidity                     | 3.64    | NTU   |
| APCO-GS-GYPLF-MW-2 | 8/3/2020 12:51 | Conductivity                  | 1280.91 | uS/cm |
| APCO-GS-GYPLF-MW-2 | 8/3/2020 12:51 | DO                            |         | mg/L  |
| APCO-GS-GYPLF-MW-2 | 8/3/2020 12:51 | Depth to Water Detail         | 85.09   |       |
| APCO-GS-GYPLF-MW-2 | 8/3/2020 12:51 | Oxidation Reduction Potention | 59.52   | mv    |
| APCO-GS-GYPLF-MW-2 | 8/3/2020 12:51 | рН                            | 5.95    | рН    |
| APCO-GS-GYPLF-MW-2 | 8/3/2020 12:51 | Temperature                   | 20.21   | С     |
| APCO-GS-GYPLF-MW-2 | 8/3/2020 12:51 | Turbidity                     | 3.65    | NTU   |

| WELL ID            | READING TIME   | DESCRIPTION                   | VALUE   | UNIT  |
|--------------------|----------------|-------------------------------|---------|-------|
| APCO-GS-GYPLF-MW-3 | 8/3/2020 13:58 | Conductivity                  | 1934.39 | uS/cm |
| APCO-GS-GYPLF-MW-3 | 8/3/2020 13:58 | DO                            | 8.13    | mg/L  |
| APCO-GS-GYPLF-MW-3 | 8/3/2020 13:58 | Depth to Water Detail         | 110.96  | ft    |
| APCO-GS-GYPLF-MW-3 |                | Oxidation Reduction Potention | 154.66  | mv    |
| APCO-GS-GYPLF-MW-3 | 8/3/2020 13:58 | рН                            | 5.76    | рН    |
| APCO-GS-GYPLF-MW-3 | 8/3/2020 13:58 | Temperature                   | 25.81   | С     |
| APCO-GS-GYPLF-MW-3 | 8/3/2020 13:58 |                               | 2.47    | NTU   |
| APCO-GS-GYPLF-MW-3 | 8/3/2020 14:03 | Conductivity                  | 2133.36 | uS/cm |
| APCO-GS-GYPLF-MW-3 | 8/3/2020 14:03 | DO                            | 2.97    | mg/L  |
| APCO-GS-GYPLF-MW-3 | 8/3/2020 14:03 | Depth to Water Detail         | 111.13  | ft    |
| APCO-GS-GYPLF-MW-3 | 8/3/2020 14:03 | Oxidation Reduction Potention | 169.12  | mv    |
| APCO-GS-GYPLF-MW-3 | 8/3/2020 14:03 | рН                            | 5.3     | рН    |
| APCO-GS-GYPLF-MW-3 | 8/3/2020 14:03 | Temperature                   | 25.43   | С     |
| APCO-GS-GYPLF-MW-3 | 8/3/2020 14:03 | Turbidity                     | 10.03   | NTU   |
| APCO-GS-GYPLF-MW-3 | 8/3/2020 14:08 | Conductivity                  | 2135.37 | uS/cm |
| APCO-GS-GYPLF-MW-3 | 8/3/2020 14:08 | DO                            | 1.56    | mg/L  |
| APCO-GS-GYPLF-MW-3 | 8/3/2020 14:08 | Depth to Water Detail         | 111.26  | ft    |
| APCO-GS-GYPLF-MW-3 |                | Oxidation Reduction Potention | 182.22  | mv    |
| APCO-GS-GYPLF-MW-3 | 8/3/2020 14:08 | рН                            | 5.25    | рН    |
| APCO-GS-GYPLF-MW-3 | 8/3/2020 14:08 | Temperature                   | 25.07   | С     |
| APCO-GS-GYPLF-MW-3 | 8/3/2020 14:08 | Turbidity                     | 16.5    | NTU   |
| APCO-GS-GYPLF-MW-3 | 8/3/2020 14:13 | Conductivity                  | 2175.55 | uS/cm |
| APCO-GS-GYPLF-MW-3 | 8/3/2020 14:13 | DO                            | 1.42    | mg/L  |
| APCO-GS-GYPLF-MW-3 | 8/3/2020 14:13 | Depth to Water Detail         | 111.46  | ft    |
| APCO-GS-GYPLF-MW-3 | 8/3/2020 14:13 | Oxidation Reduction Potention | 195.85  | mv    |
| APCO-GS-GYPLF-MW-3 | 8/3/2020 14:13 | рН                            | 5.16    | рН    |
| APCO-GS-GYPLF-MW-3 | 8/3/2020 14:13 | Temperature                   | 24.97   | С     |
| APCO-GS-GYPLF-MW-3 | 8/3/2020 14:13 | Turbidity                     | 12.4    | NTU   |
| APCO-GS-GYPLF-MW-3 | 8/3/2020 14:18 | Conductivity                  | 2194.87 | uS/cm |
| APCO-GS-GYPLF-MW-3 | 8/3/2020 14:18 | DO                            | 1.43    | mg/L  |
| APCO-GS-GYPLF-MW-3 | 8/3/2020 14:18 | Depth to Water Detail         | 111.57  |       |
| APCO-GS-GYPLF-MW-3 | 8/3/2020 14:18 | Oxidation Reduction Potention | 203.89  | mv    |
| APCO-GS-GYPLF-MW-3 | 8/3/2020 14:18 | рН                            | 5.09    | рН    |
| APCO-GS-GYPLF-MW-3 | 8/3/2020 14:18 | Temperature                   | 25.07   | С     |
| APCO-GS-GYPLF-MW-3 | 8/3/2020 14:18 | Turbidity                     | 8.19    | NTU   |
| APCO-GS-GYPLF-MW-3 | 8/3/2020 14:23 | Conductivity                  | 2198.42 | uS/cm |
| APCO-GS-GYPLF-MW-3 | 8/3/2020 14:23 | DO                            |         | mg/L  |
| APCO-GS-GYPLF-MW-3 | 8/3/2020 14:23 | Depth to Water Detail         | 111.72  | ft    |
| APCO-GS-GYPLF-MW-3 | 8/3/2020 14:23 | Oxidation Reduction Potention | 206.72  |       |
| APCO-GS-GYPLF-MW-3 | 8/3/2020 14:23 | рН                            | 5.06    | рН    |
| APCO-GS-GYPLF-MW-3 | 8/3/2020 14:23 | Temperature                   | 24.12   | С     |
| APCO-GS-GYPLF-MW-3 | 8/3/2020 14:23 | Turbidity                     | 6.72    | NTU   |

| WELL ID       | READING TIME  | DESCRIPTION                   | VALUE   | UNIT  |
|---------------|---------------|-------------------------------|---------|-------|
| GS-GSA-MW-11H | 8/4/2020 9:14 | Conductivity                  | 1338.47 | uS/cm |
| GS-GSA-MW-11H | 8/4/2020 9:14 | DO                            | 0.27    | mg/L  |
| GS-GSA-MW-11H | 8/4/2020 9:14 | Depth to Water Detail         | 8.38    | ft    |
| GS-GSA-MW-11H | 8/4/2020 9:14 | Oxidation Reduction Potention | 54.53   | mv    |
| GS-GSA-MW-11H | 8/4/2020 9:14 | рН                            | 5.72    | рН    |
| GS-GSA-MW-11H | 8/4/2020 9:14 | Temperature                   | 20.49   | C     |
| GS-GSA-MW-11H | 8/4/2020 9:14 | Turbidity                     | 16.4    | NTU   |
| GS-GSA-MW-11H | 8/4/2020 9:19 | Conductivity                  | 1313.6  | uS/cm |
| GS-GSA-MW-11H | 8/4/2020 9:19 | DO                            |         | mg/L  |
| GS-GSA-MW-11H | 8/4/2020 9:19 | Depth to Water Detail         | 8.42    | ft    |
| GS-GSA-MW-11H | 8/4/2020 9:19 | Oxidation Reduction Potention | 58.47   | mv    |
| GS-GSA-MW-11H | 8/4/2020 9:19 | *                             | 5.73    |       |
| GS-GSA-MW-11H | 8/4/2020 9:19 | Temperature                   | 20.55   | С     |
| GS-GSA-MW-11H | 8/4/2020 9:19 | Turbidity                     | 12      | NTU   |
| GS-GSA-MW-11H | 8/4/2020 9:24 | Conductivity                  | 1293    | uS/cm |
| GS-GSA-MW-11H | 8/4/2020 9:24 | DO                            | 0.31    | mg/L  |
| GS-GSA-MW-11H | 8/4/2020 9:24 | Depth to Water Detail         | 8.42    | ft    |
| GS-GSA-MW-11H | 8/4/2020 9:24 | Oxidation Reduction Potention | 60.4    | mv    |
| GS-GSA-MW-11H | 8/4/2020 9:24 | рН                            | 5.73    | рН    |
| GS-GSA-MW-11H | 8/4/2020 9:24 | Temperature                   | 20.41   | С     |
| GS-GSA-MW-11H | 8/4/2020 9:24 | Turbidity                     | 11.43   | NTU   |
| GS-GSA-MW-11H | 8/4/2020 9:29 | Conductivity                  | 1267.37 | uS/cm |
| GS-GSA-MW-11H | 8/4/2020 9:29 | DO                            | 0.33    | mg/L  |
| GS-GSA-MW-11H | 8/4/2020 9:29 | Depth to Water Detail         | 8.42    | ft    |
| GS-GSA-MW-11H | 8/4/2020 9:29 | Oxidation Reduction Potention | 60.84   | mv    |
| GS-GSA-MW-11H | 8/4/2020 9:29 | рН                            | 5.74    | рН    |
| GS-GSA-MW-11H | 8/4/2020 9:29 | Temperature                   | 20.41   | С     |
| GS-GSA-MW-11H | 8/4/2020 9:29 | Turbidity                     | 9.44    | NTU   |

| WELL ID       | READING TIME   | DESCRIPTION                   | VALUE   | UNIT  |
|---------------|----------------|-------------------------------|---------|-------|
| GS-GSA-MW-13H | 8/4/2020 10:33 | Conductivity                  | 1243.95 | uS/cm |
| GS-GSA-MW-13H | 8/4/2020 10:33 | DO                            | 0.25    | mg/L  |
| GS-GSA-MW-13H | 8/4/2020 10:33 | Depth to Water Detail         | 10.26   | ft    |
| GS-GSA-MW-13H | 8/4/2020 10:33 | Oxidation Reduction Potention | -3.38   | mv    |
| GS-GSA-MW-13H | 8/4/2020 10:33 | рН                            | 5.87    | рН    |
| GS-GSA-MW-13H | 8/4/2020 10:33 | Temperature                   | 20.46   | С     |
| GS-GSA-MW-13H | 8/4/2020 10:33 | Turbidity                     | 14.6    | NTU   |
| GS-GSA-MW-13H | 8/4/2020 10:38 | Conductivity                  | 1231.55 | uS/cm |
| GS-GSA-MW-13H | 8/4/2020 10:38 |                               | 0.23    | mg/L  |
| GS-GSA-MW-13H | 8/4/2020 10:38 | Depth to Water Detail         | 10.26   | ft    |
| GS-GSA-MW-13H | 8/4/2020 10:38 | Oxidation Reduction Potention | -8.37   | mv    |
| GS-GSA-MW-13H | 8/4/2020 10:38 | рН                            | 5.91    | рН    |
| GS-GSA-MW-13H | 8/4/2020 10:38 | Temperature                   | 20.49   | С     |
| GS-GSA-MW-13H | 8/4/2020 10:38 | Turbidity                     | 12.75   | NTU   |
| GS-GSA-MW-13H | 8/4/2020 10:43 | Conductivity                  | 1207.99 | uS/cm |
| GS-GSA-MW-13H | 8/4/2020 10:43 | DO                            | 0.23    | mg/L  |
| GS-GSA-MW-13H | 8/4/2020 10:43 | Depth to Water Detail         | 10.26   | ft    |
| GS-GSA-MW-13H | 8/4/2020 10:43 | Oxidation Reduction Potention | -10.05  | mv    |
| GS-GSA-MW-13H | 8/4/2020 10:43 | рН                            | 5.9     | рН    |
| GS-GSA-MW-13H | 8/4/2020 10:43 | Temperature                   | 20.34   | С     |
| GS-GSA-MW-13H | 8/4/2020 10:43 | Turbidity                     | 9.26    | NTU   |
| GS-GSA-MW-13H | 8/4/2020 10:48 | Conductivity                  | 1214.27 | uS/cm |
| GS-GSA-MW-13H | 8/4/2020 10:48 | DO                            | 0.23    | mg/L  |
| GS-GSA-MW-13H | 8/4/2020 10:48 | Depth to Water Detail         | 10.26   | ft    |
| GS-GSA-MW-13H | 8/4/2020 10:48 | Oxidation Reduction Potention | -13.92  | mv    |
| GS-GSA-MW-13H | 8/4/2020 10:48 | рН                            | 5.92    | рН    |
| GS-GSA-MW-13H | 8/4/2020 10:48 | Temperature                   | 20.27   | С     |
| GS-GSA-MW-13H | 8/4/2020 10:48 | Turbidity                     | 6.72    | NTU   |
| GS-GSA-MW-13H | 8/4/2020 10:53 |                               | 1208.09 | uS/cm |
| GS-GSA-MW-13H | 8/4/2020 10:53 | DO                            | 0.23    | mg/L  |
| GS-GSA-MW-13H | 8/4/2020 10:53 | Depth to Water Detail         | 10.26   | ft    |
| GS-GSA-MW-13H | 8/4/2020 10:53 | Oxidation Reduction Potention | -13.85  | mv    |
| GS-GSA-MW-13H | 8/4/2020 10:53 | рН                            | 5.91    | рН    |
| GS-GSA-MW-13H | 8/4/2020 10:53 | Temperature                   | 20.24   | С     |
| GS-GSA-MW-13H | 8/4/2020 10:53 | Turbidity                     | 5.06    | NTU   |
| GS-GSA-MW-13H | 8/4/2020 10:55 | Conductivity                  | 1208    | uS/cm |
| GS-GSA-MW-13H | 8/4/2020 10:55 | DO                            | 0.22    | mg/L  |
| GS-GSA-MW-13H | 8/4/2020 10:55 | Depth to Water Detail         | 10.26   | ft    |
| GS-GSA-MW-13H |                | Oxidation Reduction Potention | -17.05  | mv    |
| GS-GSA-MW-13H | 8/4/2020 10:55 | рН                            | 5.92    | рН    |
| GS-GSA-MW-13H | 8/4/2020 10:55 | Temperature                   | 20.36   | С     |
| GS-GSA-MW-13H | 8/4/2020 10:55 | Turbidity                     | 4.91    | NTU   |
| GS-GSA-MW-13H | 8/4/2020 11:00 | Conductivity                  | 1196.04 | uS/cm |
| GS-GSA-MW-13H | 8/4/2020 11:00 |                               | 0.22    | mg/L  |

| WELL ID       | READING TIME   | DESCRIPTION                   | VALUE  | UNIT  |
|---------------|----------------|-------------------------------|--------|-------|
| GS-GSA-MW-13H | 8/4/2020 11:00 | Depth to Water Detail         | 10.26  | ft    |
| GS-GSA-MW-13H | 8/4/2020 11:00 | Oxidation Reduction Potention | -16.53 | mv    |
| GS-GSA-MW-13H | 8/4/2020 11:00 | рН                            | 5.9    | рН    |
| GS-GSA-MW-13H | 8/4/2020 11:00 | Temperature                   | 20.15  | C     |
| GS-GSA-MW-13H | 8/4/2020 11:00 | Turbidity                     | 4.21   | NTU   |
| GS-GSA-MW-13H | 8/4/2020 11:05 | Conductivity                  | 1199.6 | uS/cm |
| GS-GSA-MW-13H | 8/4/2020 11:05 | DO                            | 0.23   | mg/L  |
| GS-GSA-MW-13H | 8/4/2020 11:05 | Depth to Water Detail         | 10.26  | ft    |
| GS-GSA-MW-13H | 8/4/2020 11:05 | Oxidation Reduction Potention | -17.01 | mv    |
| GS-GSA-MW-13H | 8/4/2020 11:05 | рН                            | 5.89   | рН    |
| GS-GSA-MW-13H | 8/4/2020 11:05 | Temperature                   | 20.11  | С     |
| GS-GSA-MW-13H | 8/4/2020 11:05 | Turbidity                     | 4.08   | NTU   |

| WELL ID      | READING TIME   | DESCRIPTION                   | VALUE   | UNIT  |
|--------------|----------------|-------------------------------|---------|-------|
| GS-GSA-MW-9H | 8/4/2020 11:55 | Conductivity                  | 2003.9  | uS/cm |
| GS-GSA-MW-9H | 8/4/2020 11:55 |                               | 0.52    | mg/L  |
| GS-GSA-MW-9H | 8/4/2020 11:55 | Depth to Water Detail         | 49.83   | ft    |
| GS-GSA-MW-9H | 8/4/2020 11:55 | Oxidation Reduction Potention | 125.17  | mv    |
| GS-GSA-MW-9H | 8/4/2020 11:55 | рН                            | 5.14    | рН    |
| GS-GSA-MW-9H | 8/4/2020 11:55 | Temperature                   | 22.12   | C     |
| GS-GSA-MW-9H | 8/4/2020 11:55 | Turbidity                     | 16.5    | NTU   |
| GS-GSA-MW-9H | 8/4/2020 12:00 | Conductivity                  | 2015.84 | uS/cm |
| GS-GSA-MW-9H | 8/4/2020 12:00 | DO                            | 0.5     | mg/L  |
| GS-GSA-MW-9H | 8/4/2020 12:00 | Depth to Water Detail         | 50.41   | ft    |
| GS-GSA-MW-9H | 8/4/2020 12:00 | Oxidation Reduction Potention | 123.67  | mv    |
| GS-GSA-MW-9H | 8/4/2020 12:00 | рН                            | 5.21    | рН    |
| GS-GSA-MW-9H | 8/4/2020 12:00 | Temperature                   | 22.18   | С     |
| GS-GSA-MW-9H | 8/4/2020 12:00 | Turbidity                     | 12      | NTU   |
| GS-GSA-MW-9H | 8/4/2020 12:05 | Conductivity                  | 2018.74 | uS/cm |
| GS-GSA-MW-9H | 8/4/2020 12:05 | DO                            | 0.45    | mg/L  |
| GS-GSA-MW-9H | 8/4/2020 12:05 | Depth to Water Detail         | 50.6    | ft    |
| GS-GSA-MW-9H | 8/4/2020 12:05 | Oxidation Reduction Potention | 118.63  | mv    |
| GS-GSA-MW-9H | 8/4/2020 12:05 | рН                            | 5.28    | рН    |
| GS-GSA-MW-9H | 8/4/2020 12:05 | Temperature                   | 22.07   | С     |
| GS-GSA-MW-9H | 8/4/2020 12:05 | Turbidity                     | 11.4    | NTU   |
| GS-GSA-MW-9H | 8/4/2020 12:10 | Conductivity                  | 2024.78 | uS/cm |
| GS-GSA-MW-9H | 8/4/2020 12:10 | DO                            | 0.44    | mg/L  |
| GS-GSA-MW-9H | 8/4/2020 12:10 | Depth to Water Detail         | 50.66   | ft    |
| GS-GSA-MW-9H | 8/4/2020 12:10 | Oxidation Reduction Potention | 116     | mv    |
| GS-GSA-MW-9H | 8/4/2020 12:10 | рН                            | 5.31    |       |
| GS-GSA-MW-9H | 8/4/2020 12:10 | Temperature                   | 22.27   | С     |
| GS-GSA-MW-9H | 8/4/2020 12:10 |                               | 11.07   | NTU   |
| GS-GSA-MW-9H | 8/4/2020 12:15 | Conductivity                  | 2019.87 | uS/cm |
| GS-GSA-MW-9H | 8/4/2020 12:15 | DO                            | 0.44    | mg/L  |
| GS-GSA-MW-9H |                | Depth to Water Detail         | 50.74   |       |
| GS-GSA-MW-9H | 8/4/2020 12:15 | Oxidation Reduction Potention | 115.04  | mv    |
| GS-GSA-MW-9H | 8/4/2020 12:15 | рН                            | 5.33    | рН    |
| GS-GSA-MW-9H | 8/4/2020 12:15 | Temperature                   | 22.1    | С     |
| GS-GSA-MW-9H | 8/4/2020 12:15 | Turbidity                     | 8.29    | NTU   |

| WELL ID      | READING TIME   | DESCRIPTION                   | VALUE   | UNIT  |
|--------------|----------------|-------------------------------|---------|-------|
| GS-GSA-MW-9V | 8/4/2020 13:02 | Conductivity                  | 2584.66 | uS/cm |
| GS-GSA-MW-9V | 8/4/2020 13:02 | DO                            |         | mg/L  |
| GS-GSA-MW-9V | 8/4/2020 13:02 | Depth to Water Detail         | 47.41   | ft    |
| GS-GSA-MW-9V | 8/4/2020 13:02 | Oxidation Reduction Potention | -48.58  | mv    |
| GS-GSA-MW-9V | 8/4/2020 13:02 | рН                            | 6.93    | рН    |
| GS-GSA-MW-9V | 8/4/2020 13:02 | Temperature                   | 25.2    | C     |
| GS-GSA-MW-9V | 8/4/2020 13:02 | Turbidity                     | 6.1     | NTU   |
| GS-GSA-MW-9V | 8/4/2020 13:07 | Conductivity                  | 2580.11 | uS/cm |
| GS-GSA-MW-9V | 8/4/2020 13:07 | DO                            |         | mg/L  |
| GS-GSA-MW-9V | 8/4/2020 13:07 | Depth to Water Detail         | 48.81   | ft    |
| GS-GSA-MW-9V | 8/4/2020 13:07 | Oxidation Reduction Potention | -50.6   | mv    |
| GS-GSA-MW-9V | 8/4/2020 13:07 | рН                            | 6.92    | рН    |
| GS-GSA-MW-9V | 8/4/2020 13:07 | Temperature                   | 25.48   | С     |
| GS-GSA-MW-9V | 8/4/2020 13:07 | Turbidity                     | 5.56    | NTU   |
| GS-GSA-MW-9V | 8/4/2020 13:12 | Conductivity                  | 2566.25 | uS/cm |
| GS-GSA-MW-9V | 8/4/2020 13:12 | DO                            | 1.05    | mg/L  |
| GS-GSA-MW-9V | 8/4/2020 13:12 | Depth to Water Detail         | 50.26   | ft    |
| GS-GSA-MW-9V |                | Oxidation Reduction Potention | -54.03  | mv    |
| GS-GSA-MW-9V | 8/4/2020 13:12 | рН                            | 6.92    | рН    |
| GS-GSA-MW-9V | 8/4/2020 13:12 | Temperature                   | 25.38   |       |
| GS-GSA-MW-9V | 8/4/2020 13:12 | Turbidity                     | 5.29    | NTU   |
| GS-GSA-MW-9V | 8/4/2020 13:17 | Conductivity                  | 2521.6  | uS/cm |
| GS-GSA-MW-9V | 8/4/2020 13:17 |                               | 1.02    | mg/L  |
| GS-GSA-MW-9V | 8/4/2020 13:17 | Depth to Water Detail         | 50.77   |       |
| GS-GSA-MW-9V |                | Oxidation Reduction Potention | -59.54  | mv    |
| GS-GSA-MW-9V | 8/4/2020 13:17 | рН                            | 6.92    | рН    |
| GS-GSA-MW-9V | 8/4/2020 13:17 | Temperature                   | 25.18   | С     |
| GS-GSA-MW-9V | 8/4/2020 13:17 | Turbidity                     | 4.83    | NTU   |
| GS-GSA-MW-9V | 8/4/2020 13:22 | Conductivity                  | 2498.93 | uS/cm |
| GS-GSA-MW-9V | 8/4/2020 13:22 | DO                            | 0.97    | mg/L  |
| GS-GSA-MW-9V |                | Depth to Water Detail         | 51.14   |       |
| GS-GSA-MW-9V |                | Oxidation Reduction Potention | -65.34  | mv    |
| GS-GSA-MW-9V | 8/4/2020 13:22 | рН                            | 6.92    | рН    |
| GS-GSA-MW-9V | 8/4/2020 13:22 | Temperature                   | 25.33   | C     |
| GS-GSA-MW-9V | 8/4/2020 13:22 | Turbidity                     | 4.68    | NTU   |
| GS-GSA-MW-9V | 8/4/2020 13:27 |                               | 2486.3  |       |
| GS-GSA-MW-9V | 8/4/2020 13:27 |                               | 0.9     | mg/L  |
| GS-GSA-MW-9V | 8/4/2020 13:27 | Depth to Water Detail         | 51.41   |       |
| GS-GSA-MW-9V |                | Oxidation Reduction Potention | -70.99  | mv    |
| GS-GSA-MW-9V | 8/4/2020 13:27 |                               | 6.93    |       |
| GS-GSA-MW-9V | 8/4/2020 13:27 | *                             | 25.29   |       |
| GS-GSA-MW-9V | 8/4/2020 13:27 | *                             |         | NTU   |
| GS-GSA-MW-9V | 8/4/2020 13:32 | Ţ                             | 2454.35 |       |
| GS-GSA-MW-9V | 8/4/2020 13:32 | ·                             |         | mg/L  |

| WELL ID      | READING TIME   | DESCRIPTION                   | VALUE   | UNIT  |
|--------------|----------------|-------------------------------|---------|-------|
| GS-GSA-MW-9V | 8/4/2020 13:32 | Depth to Water Detail         | 52.03   | ft    |
| GS-GSA-MW-9V |                | Oxidation Reduction Potention | -75.26  | mv    |
| GS-GSA-MW-9V | 8/4/2020 13:32 | рН                            | 6.93    | рН    |
| GS-GSA-MW-9V | 8/4/2020 13:32 | Temperature                   | 25.3    | C     |
| GS-GSA-MW-9V | 8/4/2020 13:32 | Turbidity                     | 6.4     | NTU   |
| GS-GSA-MW-9V | 8/4/2020 13:37 | Conductivity                  | 2474.24 | uS/cm |
| GS-GSA-MW-9V | 8/4/2020 13:37 | DO                            | 0.89    | mg/L  |
| GS-GSA-MW-9V | 8/4/2020 13:37 | Depth to Water Detail         | 52.29   |       |
| GS-GSA-MW-9V | 8/4/2020 13:37 | Oxidation Reduction Potention | -77.85  |       |
| GS-GSA-MW-9V | 8/4/2020 13:37 | рН                            | 6.92    | рН    |
| GS-GSA-MW-9V | 8/4/2020 13:37 | Temperature                   | 25.65   | С     |
| GS-GSA-MW-9V | 8/4/2020 13:37 | Turbidity                     | 3.95    | NTU   |
| GS-GSA-MW-9V | 8/4/2020 13:42 | Conductivity                  | 2425.97 | uS/cm |
| GS-GSA-MW-9V | 8/4/2020 13:42 | DO                            | 0.82    | mg/L  |
| GS-GSA-MW-9V | 8/4/2020 13:42 | Depth to Water Detail         | 52.74   | ft    |
| GS-GSA-MW-9V | 8/4/2020 13:42 | Oxidation Reduction Potention | -80.65  | mv    |
| GS-GSA-MW-9V | 8/4/2020 13:42 | рН                            | 6.93    | рН    |
| GS-GSA-MW-9V | 8/4/2020 13:42 | Temperature                   | 25.56   | С     |
| GS-GSA-MW-9V | 8/4/2020 13:42 | Turbidity                     | 3.85    | NTU   |
| GS-GSA-MW-9V | 8/4/2020 13:47 | Conductivity                  | 2421.61 | uS/cm |
| GS-GSA-MW-9V | 8/4/2020 13:47 | DO                            | 0.79    | mg/L  |
| GS-GSA-MW-9V | 8/4/2020 13:47 | Depth to Water Detail         | 53.02   |       |
| GS-GSA-MW-9V | 8/4/2020 13:47 | Oxidation Reduction Potention | -82.26  | mv    |
| GS-GSA-MW-9V | 8/4/2020 13:47 | рН                            | 6.92    | рН    |
| GS-GSA-MW-9V | 8/4/2020 13:47 | Temperature                   | 25.44   | С     |
| GS-GSA-MW-9V | 8/4/2020 13:47 | Turbidity                     | 3.44    | NTU   |
| GS-GSA-MW-9V | 8/4/2020 13:52 | Conductivity                  | 2404.47 | uS/cm |
| GS-GSA-MW-9V | 8/4/2020 13:52 |                               | 0.82    | mg/L  |
| GS-GSA-MW-9V | 8/4/2020 13:52 | Depth to Water Detail         | 53.36   |       |
| GS-GSA-MW-9V | 8/4/2020 13:52 | Oxidation Reduction Potention | -84.42  | mv    |
| GS-GSA-MW-9V | 8/4/2020 13:52 | pН                            | 6.92    | pН    |
| GS-GSA-MW-9V | 8/4/2020 13:52 | Temperature                   | 25.78   | С     |
| GS-GSA-MW-9V | 8/4/2020 13:52 | Turbidity                     | 4.12    | NTU   |
| GS-GSA-MW-9V | 8/4/2020 13:57 | Conductivity                  | 2546.97 | uS/cm |
| GS-GSA-MW-9V | 8/4/2020 13:57 | DO                            | 0.86    | mg/L  |
| GS-GSA-MW-9V | 8/4/2020 13:57 | Depth to Water Detail         | 53.54   | ft    |
| GS-GSA-MW-9V | 8/4/2020 13:57 | Oxidation Reduction Potention | -86.11  | mv    |
| GS-GSA-MW-9V | 8/4/2020 13:57 | рН                            | 6.93    | рН    |
| GS-GSA-MW-9V | 8/4/2020 13:57 | Temperature                   | 25.05   | С     |
| GS-GSA-MW-9V | 8/4/2020 13:57 | Turbidity                     | 3.94    | NTU   |
| GS-GSA-MW-9V | 8/4/2020 14:02 | Conductivity                  | 2508.13 | uS/cm |
| GS-GSA-MW-9V | 8/4/2020 14:02 | DO                            | 0.85    | mg/L  |
| GS-GSA-MW-9V | 8/4/2020 14:02 | Depth to Water Detail         | 53.81   | ft    |
| GS-GSA-MW-9V | 8/4/2020 14:02 | Oxidation Reduction Potention | -88.11  | mv    |

| WELL ID      | READING TIME   | DESCRIPTION                   | VALUE   | UNIT  |
|--------------|----------------|-------------------------------|---------|-------|
| GS-GSA-MW-9V | 8/4/2020 14:02 | рН                            | 6.93    | рН    |
| GS-GSA-MW-9V | 8/4/2020 14:02 | Temperature                   | 24.61   | С     |
| GS-GSA-MW-9V | 8/4/2020 14:02 | Turbidity                     | 3.88    | NTU   |
| GS-GSA-MW-9V | 8/4/2020 14:07 | Conductivity                  | 2484.01 | uS/cm |
| GS-GSA-MW-9V | 8/4/2020 14:07 | DO                            | 0.83    | mg/L  |
| GS-GSA-MW-9V | 8/4/2020 14:07 | Depth to Water Detail         | 54.03   | ft    |
| GS-GSA-MW-9V |                | Oxidation Reduction Potention | -89.43  | mv    |
| GS-GSA-MW-9V | 8/4/2020 14:07 | рН                            | 6.92    | рН    |
| GS-GSA-MW-9V | 8/4/2020 14:07 | Temperature                   | 25.08   | С     |
| GS-GSA-MW-9V | 8/4/2020 14:07 | Turbidity                     | 3.18    | NTU   |
| GS-GSA-MW-9V | 8/4/2020 14:12 | Conductivity                  | 2452.51 | uS/cm |
| GS-GSA-MW-9V | 8/4/2020 14:12 | DO                            | 0.84    | mg/L  |
| GS-GSA-MW-9V | 8/4/2020 14:12 | Depth to Water Detail         | 54.41   | ft    |
| GS-GSA-MW-9V | 8/4/2020 14:12 | Oxidation Reduction Potention | -90.77  | mv    |
| GS-GSA-MW-9V | 8/4/2020 14:12 | рН                            | 6.92    | рН    |
| GS-GSA-MW-9V | 8/4/2020 14:12 | Temperature                   | 25.3    | С     |
| GS-GSA-MW-9V | 8/4/2020 14:12 | Turbidity                     | 3.62    | NTU   |
| GS-GSA-MW-9V | 8/4/2020 14:17 | Conductivity                  | 2489.03 | uS/cm |
| GS-GSA-MW-9V | 8/4/2020 14:17 | DO                            | 0.28    | mg/L  |
| GS-GSA-MW-9V | 8/4/2020 14:17 | Depth to Water Detail         | 58.66   | ft    |
| GS-GSA-MW-9V | 8/4/2020 14:17 | Oxidation Reduction Potention | -86.74  | mv    |
| GS-GSA-MW-9V | 8/4/2020 14:17 | рН                            | 6.97    | рН    |
| GS-GSA-MW-9V | 8/4/2020 14:17 | Temperature                   | 21.33   | С     |
| GS-GSA-MW-9V | 8/4/2020 14:17 | Turbidity                     | 3.57    | NTU   |
| GS-GSA-MW-9V | 8/4/2020 14:19 | Conductivity                  | 2462.94 | uS/cm |
| GS-GSA-MW-9V | 8/4/2020 14:19 | DO                            | 0.25    | mg/L  |
| GS-GSA-MW-9V | 8/4/2020 14:19 | Depth to Water Detail         | 0       | ft    |
| GS-GSA-MW-9V | 8/4/2020 14:19 | Oxidation Reduction Potention | -82.01  | mv    |
| GS-GSA-MW-9V | 8/4/2020 14:19 | рН                            | 6.97    | рН    |
| GS-GSA-MW-9V | 8/4/2020 14:19 | Temperature                   | 21.37   | С     |
| GS-GSA-MW-9V | 8/4/2020 14:19 | Turbidity                     | 0       | NTU   |
| GS-GSA-MW-9V | 8/4/2020 14:24 | Conductivity                  | 2441.31 | uS/cm |
| GS-GSA-MW-9V | 8/4/2020 14:24 | DO                            | 0.24    | mg/L  |
| GS-GSA-MW-9V | 8/4/2020 14:24 | Depth to Water Detail         | 59.54   | ft    |
| GS-GSA-MW-9V | 8/4/2020 14:24 | Oxidation Reduction Potention | -80.93  | mv    |
| GS-GSA-MW-9V | 8/4/2020 14:24 | рН                            | 6.98    | pН    |
| GS-GSA-MW-9V | 8/4/2020 14:24 | Temperature                   | 21.06   | С     |
| GS-GSA-MW-9V | 8/4/2020 14:24 | Turbidity                     | 3.01    | NTU   |
| GS-GSA-MW-9V | 8/4/2020 14:29 | Conductivity                  | 2439.71 | uS/cm |
| GS-GSA-MW-9V | 8/4/2020 14:29 | DO                            | 0.24    | mg/L  |
| GS-GSA-MW-9V | 8/4/2020 14:29 | Depth to Water Detail         | 61.97   | _     |
| GS-GSA-MW-9V | 8/4/2020 14:29 | Oxidation Reduction Potention | -80.52  | mv    |
| GS-GSA-MW-9V | 8/4/2020 14:29 | рН                            | 6.98    | рН    |
| GS-GSA-MW-9V | 8/4/2020 14:29 | Temperature                   | 21.02   | С     |

| WELL ID      | READING TIME   | DESCRIPTION                   | VALUE   | UNIT  |
|--------------|----------------|-------------------------------|---------|-------|
| GS-GSA-MW-9V | 8/4/2020 14:29 | Turbidity                     | 3.69    | NTU   |
| GS-GSA-MW-9V | 8/4/2020 14:34 | Conductivity                  | 2432.95 | uS/cm |
| GS-GSA-MW-9V | 8/4/2020 14:34 |                               | 0.23    | mg/L  |
| GS-GSA-MW-9V | 8/4/2020 14:34 | Depth to Water Detail         | 64.21   | ft    |
| GS-GSA-MW-9V |                | Oxidation Reduction Potention | -80.29  | mv    |
| GS-GSA-MW-9V | 8/4/2020 14:34 | рН                            | 6.97    | рН    |
| GS-GSA-MW-9V | 8/4/2020 14:34 | Temperature                   | 20.99   | C     |
| GS-GSA-MW-9V | 8/4/2020 14:34 |                               | 3.44    | NTU   |
| GS-GSA-MW-9V | 8/4/2020 14:39 | Conductivity                  | 2409.22 | uS/cm |
| GS-GSA-MW-9V | 8/4/2020 14:39 | DO                            | 0.23    | mg/L  |
| GS-GSA-MW-9V | 8/4/2020 14:39 | Depth to Water Detail         | 66.16   | ft    |
| GS-GSA-MW-9V |                | Oxidation Reduction Potention | -79.9   | mv    |
| GS-GSA-MW-9V | 8/4/2020 14:39 | рН                            | 6.95    | рН    |
| GS-GSA-MW-9V | 8/4/2020 14:39 | Temperature                   | 21.01   |       |
| GS-GSA-MW-9V | 8/4/2020 14:39 |                               | 3.84    | NTU   |
| GS-GSA-MW-9V | 8/4/2020 14:44 | Conductivity                  | 2413.67 | uS/cm |
| GS-GSA-MW-9V | 8/4/2020 14:44 | DO                            | 0.26    | mg/L  |
| GS-GSA-MW-9V | 8/4/2020 14:44 | Depth to Water Detail         | 68.34   | ft    |
| GS-GSA-MW-9V | 8/4/2020 14:44 | Oxidation Reduction Potention | -80.23  | mv    |
| GS-GSA-MW-9V | 8/4/2020 14:44 | рН                            | 6.93    | рН    |
| GS-GSA-MW-9V | 8/4/2020 14:44 | Temperature                   | 20.92   | C     |
| GS-GSA-MW-9V | 8/4/2020 14:44 | Turbidity                     | 2.74    | NTU   |
| GS-GSA-MW-9V | 8/4/2020 14:49 | Conductivity                  | 2407.76 | uS/cm |
| GS-GSA-MW-9V | 8/4/2020 14:49 | DO                            | 0.24    | mg/L  |
| GS-GSA-MW-9V | 8/4/2020 14:49 | Depth to Water Detail         | 70.21   | ft    |
| GS-GSA-MW-9V | 8/4/2020 14:49 | Oxidation Reduction Potention | -79.36  | mv    |
| GS-GSA-MW-9V | 8/4/2020 14:49 | рН                            | 6.92    | рН    |
| GS-GSA-MW-9V | 8/4/2020 14:49 | Temperature                   | 20.77   | С     |
| GS-GSA-MW-9V | 8/4/2020 14:49 |                               |         | NTU   |
| GS-GSA-MW-9V | 8/4/2020 14:54 | Conductivity                  | 2404.82 | uS/cm |
| GS-GSA-MW-9V | 8/4/2020 14:54 | DO                            | 0.24    | mg/L  |
| GS-GSA-MW-9V | 8/4/2020 14:54 | Depth to Water Detail         | 72.33   | ft    |
| GS-GSA-MW-9V | 8/4/2020 14:54 | Oxidation Reduction Potention | -78.78  | mv    |
| GS-GSA-MW-9V | 8/4/2020 14:54 | рН                            | 6.9     | pН    |
| GS-GSA-MW-9V | 8/4/2020 14:54 | Temperature                   | 20.79   | С     |
| GS-GSA-MW-9V | 8/4/2020 14:54 | Turbidity                     | 3.6     | NTU   |
| GS-GSA-MW-9V | 8/4/2020 14:59 | Conductivity                  | 2407.39 | uS/cm |
| GS-GSA-MW-9V | 8/4/2020 14:59 | DO                            | 0.24    | mg/L  |
| GS-GSA-MW-9V | 8/4/2020 14:59 | Depth to Water Detail         | 73.71   | ft    |
| GS-GSA-MW-9V | 8/4/2020 14:59 | Oxidation Reduction Potention | -77.42  | mv    |
| GS-GSA-MW-9V | 8/4/2020 14:59 | рН                            | 6.88    | pН    |
| GS-GSA-MW-9V | 8/4/2020 14:59 | Temperature                   | 20.85   | С     |
| GS-GSA-MW-9V | 8/4/2020 14:59 | Turbidity                     | 3.37    | NTU   |
| GS-GSA-MW-9V | 8/4/2020 15:04 | Conductivity                  | 2409.83 | uS/cm |

| WELL ID      | READING TIME   | DESCRIPTION                           | VALUE   | UNIT  |
|--------------|----------------|---------------------------------------|---------|-------|
| GS-GSA-MW-9V | 8/4/2020 15:04 | DO                                    | 0.24    | mg/L  |
| GS-GSA-MW-9V | 8/4/2020 15:04 | Depth to Water Detail                 | 75.72   | ft    |
| GS-GSA-MW-9V | 8/4/2020 15:04 | Oxidation Reduction Potention         | -76.94  | mv    |
| GS-GSA-MW-9V | 8/4/2020 15:04 | рН                                    | 6.86    | рН    |
| GS-GSA-MW-9V | 8/4/2020 15:04 | Temperature                           | 21.16   |       |
| GS-GSA-MW-9V | 8/4/2020 15:04 | Turbidity                             | 2.57    | NTU   |
| GS-GSA-MW-9V | 8/4/2020 15:09 | Conductivity                          | 2409.77 | uS/cm |
| GS-GSA-MW-9V | 8/4/2020 15:09 | DO                                    | 0.25    | mg/L  |
| GS-GSA-MW-9V | 8/4/2020 15:09 | Depth to Water Detail                 | 77.55   | ft    |
| GS-GSA-MW-9V | 8/4/2020 15:09 | Oxidation Reduction Potention         | -75.51  | mv    |
| GS-GSA-MW-9V | 8/4/2020 15:09 | рН                                    | 6.85    | рН    |
| GS-GSA-MW-9V | 8/4/2020 15:09 | Temperature                           | 21.2    |       |
| GS-GSA-MW-9V | 8/4/2020 15:09 | _                                     |         | NTU   |
| GS-GSA-MW-9V | 8/4/2020 15:14 |                                       | 2499.06 | uS/cm |
| GS-GSA-MW-9V | 8/4/2020 15:14 |                                       | 0.69    | mg/L  |
| GS-GSA-MW-9V | 8/4/2020 15:14 | Depth to Water Detail                 | 77.58   |       |
| GS-GSA-MW-9V |                | Oxidation Reduction Potention         | -74.75  |       |
| GS-GSA-MW-9V | 8/4/2020 15:14 | рН                                    | 6.83    | рН    |
| GS-GSA-MW-9V | 8/4/2020 15:14 | Temperature                           | 23.97   |       |
| GS-GSA-MW-9V | 8/4/2020 15:14 | Turbidity                             | 2.96    | NTU   |
| GS-GSA-MW-9V | 8/4/2020 15:19 | · · · · · · · · · · · · · · · · · · · | 2548.27 | uS/cm |
| GS-GSA-MW-9V | 8/4/2020 15:19 | DO                                    | 0.87    | mg/L  |
| GS-GSA-MW-9V | 8/4/2020 15:19 | Depth to Water Detail                 | 77.58   | ft    |
| GS-GSA-MW-9V |                | Oxidation Reduction Potention         | -77.52  | mv    |
| GS-GSA-MW-9V | 8/4/2020 15:19 | рН                                    | 6.83    | рН    |
| GS-GSA-MW-9V | 8/4/2020 15:19 | Temperature                           | 24.71   | C     |
| GS-GSA-MW-9V | 8/4/2020 15:19 | Turbidity                             | 2.28    | NTU   |
| GS-GSA-MW-9V | 8/4/2020 15:24 |                                       | 2577.38 | uS/cm |
| GS-GSA-MW-9V | 8/4/2020 15:24 |                                       | 0.96    | mg/L  |
| GS-GSA-MW-9V | 8/4/2020 15:24 | Depth to Water Detail                 | 77.58   | ft    |
| GS-GSA-MW-9V |                | Oxidation Reduction Potention         | -85.6   |       |
| GS-GSA-MW-9V | 8/4/2020 15:24 | рН                                    | 6.85    | рН    |
| GS-GSA-MW-9V | 8/4/2020 15:24 | Temperature                           | 24.97   |       |
| GS-GSA-MW-9V | 8/4/2020 15:24 |                                       | 2.62    | NTU   |
| GS-GSA-MW-9V | 8/4/2020 15:29 | Conductivity                          | 2563.32 | uS/cm |
| GS-GSA-MW-9V | 8/4/2020 15:29 |                                       | 0.93    | mg/L  |
| GS-GSA-MW-9V |                | Depth to Water Detail                 | 77.58   |       |
| GS-GSA-MW-9V |                | Oxidation Reduction Potention         | -89.8   | mv    |
| GS-GSA-MW-9V | 8/4/2020 15:29 |                                       | 6.88    |       |
| GS-GSA-MW-9V | 8/4/2020 15:29 |                                       | 25.02   | •     |
| GS-GSA-MW-9V | 8/4/2020 15:29 |                                       | 3.07    | NTU   |

| WELL ID            | READING TIME  | DESCRIPTION                   | VALUE   | UNIT  |
|--------------------|---------------|-------------------------------|---------|-------|
| APCO-GS-GYPLF-MW-4 | 8/5/2020 9:32 | Conductivity                  | 2676.02 | uS/cm |
| APCO-GS-GYPLF-MW-4 | 8/5/2020 9:32 | DO                            | 1.92    | mg/L  |
| APCO-GS-GYPLF-MW-4 | 8/5/2020 9:32 | Depth to Water Detail         | 117.41  | ft    |
| APCO-GS-GYPLF-MW-4 | 8/5/2020 9:32 | Oxidation Reduction Potention | 121.44  | mv    |
| APCO-GS-GYPLF-MW-4 | 8/5/2020 9:32 | рН                            | 6.15    | рН    |
| APCO-GS-GYPLF-MW-4 | 8/5/2020 9:32 | Temperature                   | 20.91   | С     |
| APCO-GS-GYPLF-MW-4 | 8/5/2020 9:32 | Turbidity                     | 5.63    | NTU   |
| APCO-GS-GYPLF-MW-4 | 8/5/2020 9:37 | Conductivity                  | 2586.6  | uS/cm |
| APCO-GS-GYPLF-MW-4 | 8/5/2020 9:37 | DO                            | 1.76    | mg/L  |
| APCO-GS-GYPLF-MW-4 | 8/5/2020 9:37 | Depth to Water Detail         | 117.41  | ft    |
| APCO-GS-GYPLF-MW-4 | 8/5/2020 9:37 | Oxidation Reduction Potention | 129.32  | mv    |
| APCO-GS-GYPLF-MW-4 | 8/5/2020 9:37 | рН                            | 6.15    | рН    |
| APCO-GS-GYPLF-MW-4 | 8/5/2020 9:37 | Temperature                   | 20.79   | С     |
| APCO-GS-GYPLF-MW-4 | 8/5/2020 9:37 | Turbidity                     | 7.81    | NTU   |
| APCO-GS-GYPLF-MW-4 | 8/5/2020 9:42 | Conductivity                  | 2526.55 | uS/cm |
| APCO-GS-GYPLF-MW-4 | 8/5/2020 9:42 | DO                            | 1.73    | mg/L  |
| APCO-GS-GYPLF-MW-4 | 8/5/2020 9:42 | Depth to Water Detail         | 117.41  | ft    |
| APCO-GS-GYPLF-MW-4 | 8/5/2020 9:42 | Oxidation Reduction Potention | 135.48  | mv    |
| APCO-GS-GYPLF-MW-4 | 8/5/2020 9:42 | рН                            | 6.15    | pН    |
| APCO-GS-GYPLF-MW-4 | 8/5/2020 9:42 | Temperature                   | 20.76   | С     |
| APCO-GS-GYPLF-MW-4 | 8/5/2020 9:42 | Turbidity                     | 7.27    | NTU   |
| APCO-GS-GYPLF-MW-4 | 8/5/2020 9:47 | Conductivity                  | 2482.76 | uS/cm |
| APCO-GS-GYPLF-MW-4 | 8/5/2020 9:47 | DO                            | 1.69    | mg/L  |
| APCO-GS-GYPLF-MW-4 | 8/5/2020 9:47 | Depth to Water Detail         | 117.41  | ft    |
| APCO-GS-GYPLF-MW-4 | 8/5/2020 9:47 | Oxidation Reduction Potention | 140.92  | mv    |
| APCO-GS-GYPLF-MW-4 | 8/5/2020 9:47 | рН                            | 6.15    | pН    |
| APCO-GS-GYPLF-MW-4 | 8/5/2020 9:47 | Temperature                   | 20.8    | C     |
| APCO-GS-GYPLF-MW-4 | 8/5/2020 9:47 | Turbidity                     | 6.27    | NTU   |
| APCO-GS-GYPLF-MW-4 | 8/5/2020 9:52 |                               | 2442.43 | uS/cm |
| APCO-GS-GYPLF-MW-4 | 8/5/2020 9:52 | DO                            | 1.68    | mg/L  |
| APCO-GS-GYPLF-MW-4 |               | Depth to Water Detail         | 117.41  |       |
| APCO-GS-GYPLF-MW-4 | 8/5/2020 9:52 | Oxidation Reduction Potention | 145.45  | mv    |
| APCO-GS-GYPLF-MW-4 | 8/5/2020 9:52 | рН                            | 6.15    | рН    |
| APCO-GS-GYPLF-MW-4 | 8/5/2020 9:52 | Temperature                   | 20.77   | С     |
| APCO-GS-GYPLF-MW-4 | 8/5/2020 9:52 | Turbidity                     | 4.87    | NTU   |

| WELL ID       | READING TIME   | DESCRIPTION                   | VALUE   | UNIT  |
|---------------|----------------|-------------------------------|---------|-------|
| GS-GSA-MW-14H | 8/5/2020 10:51 | Conductivity                  | 1350.71 | uS/cm |
| GS-GSA-MW-14H | 8/5/2020 10:51 |                               | 0.35    | mg/L  |
| GS-GSA-MW-14H | 8/5/2020 10:51 | Depth to Water Detail         | 19.33   | ft    |
| GS-GSA-MW-14H | 8/5/2020 10:51 | Oxidation Reduction Potention | 293.11  | mv    |
| GS-GSA-MW-14H | 8/5/2020 10:51 | рН                            | 3.83    | pН    |
| GS-GSA-MW-14H | 8/5/2020 10:51 | Temperature                   | 20.82   | С     |
| GS-GSA-MW-14H | 8/5/2020 10:51 | Turbidity                     | 4.23    | NTU   |
| GS-GSA-MW-14H | 8/5/2020 10:56 | Conductivity                  | 1365.59 | uS/cm |
| GS-GSA-MW-14H | 8/5/2020 10:56 | DO                            | 0.32    | mg/L  |
| GS-GSA-MW-14H | 8/5/2020 10:56 | Depth to Water Detail         | 19.33   | ft    |
| GS-GSA-MW-14H | 8/5/2020 10:56 | Oxidation Reduction Potention | 293     | mv    |
| GS-GSA-MW-14H | 8/5/2020 10:56 | рН                            | 3.83    | рН    |
| GS-GSA-MW-14H | 8/5/2020 10:56 | Temperature                   | 20.79   | С     |
| GS-GSA-MW-14H | 8/5/2020 10:56 | Turbidity                     | 3.47    | NTU   |
| GS-GSA-MW-14H | 8/5/2020 11:01 | Conductivity                  | 1373.6  | uS/cm |
| GS-GSA-MW-14H | 8/5/2020 11:01 |                               | 0.31    | mg/L  |
| GS-GSA-MW-14H | 8/5/2020 11:01 | Depth to Water Detail         | 19.33   | ft    |
| GS-GSA-MW-14H | 8/5/2020 11:01 | Oxidation Reduction Potention | 292.19  | mv    |
| GS-GSA-MW-14H | 8/5/2020 11:01 | рН                            | 3.83    | pН    |
| GS-GSA-MW-14H | 8/5/2020 11:01 | Temperature                   | 20.84   | С     |
| GS-GSA-MW-14H | 8/5/2020 11:01 | Turbidity                     | 2.92    | NTU   |
| GS-GSA-MW-14H | 8/5/2020 11:06 | Conductivity                  | 1379.37 | uS/cm |
| GS-GSA-MW-14H | 8/5/2020 11:06 | DO                            | 0.29    | mg/L  |
| GS-GSA-MW-14H | 8/5/2020 11:06 | Depth to Water Detail         | 19.33   |       |
| GS-GSA-MW-14H | 8/5/2020 11:06 | Oxidation Reduction Potention | 291.85  | mv    |
| GS-GSA-MW-14H | 8/5/2020 11:06 | рН                            | 3.83    | рН    |
| GS-GSA-MW-14H | 8/5/2020 11:06 | Temperature                   | 20.84   | С     |
| GS-GSA-MW-14H | 8/5/2020 11:06 | Turbidity                     | 2.93    | NTU   |

| WELL ID     | READING TIME   | DESCRIPTION                   | VALUE   | UNIT  |
|-------------|----------------|-------------------------------|---------|-------|
| GS-GSA-MW-4 | 8/5/2020 11:40 | Conductivity                  | 1149.15 | uS/cm |
| GS-GSA-MW-4 | 8/5/2020 11:40 | DO                            | 0.37    | mg/L  |
| GS-GSA-MW-4 | 8/5/2020 11:40 | Depth to Water Detail         | 92.56   | ft    |
| GS-GSA-MW-4 | 8/5/2020 11:40 | Oxidation Reduction Potention | 307.47  | mv    |
| GS-GSA-MW-4 | 8/5/2020 11:40 | рН                            | 3.83    | рН    |
| GS-GSA-MW-4 | 8/5/2020 11:40 | Temperature                   | 21.52   | С     |
| GS-GSA-MW-4 | 8/5/2020 11:40 | Turbidity                     | 22      | NTU   |
| GS-GSA-MW-4 | 8/5/2020 11:45 | Conductivity                  | 1151.93 | uS/cm |
| GS-GSA-MW-4 | 8/5/2020 11:45 | DO                            | 0.31    | mg/L  |
| GS-GSA-MW-4 | 8/5/2020 11:45 | Depth to Water Detail         | 92.61   | ft    |
| GS-GSA-MW-4 | 8/5/2020 11:45 | Oxidation Reduction Potention | 307.01  | mv    |
| GS-GSA-MW-4 | 8/5/2020 11:45 | рН                            | 3.84    | рН    |
| GS-GSA-MW-4 | 8/5/2020 11:45 | Temperature                   | 21.47   | С     |
| GS-GSA-MW-4 | 8/5/2020 11:45 | Turbidity                     | 18.1    | NTU   |
| GS-GSA-MW-4 | 8/5/2020 11:50 | Conductivity                  | 1151.48 | uS/cm |
| GS-GSA-MW-4 | 8/5/2020 11:50 | DO                            | 0.28    | mg/L  |
| GS-GSA-MW-4 | 8/5/2020 11:50 | Depth to Water Detail         | 92.61   | ft    |
| GS-GSA-MW-4 | 8/5/2020 11:50 | Oxidation Reduction Potention | 306.2   | mv    |
| GS-GSA-MW-4 | 8/5/2020 11:50 | рН                            | 3.85    | рН    |
| GS-GSA-MW-4 | 8/5/2020 11:50 | Temperature                   | 21.42   | С     |
| GS-GSA-MW-4 | 8/5/2020 11:50 | Turbidity                     | 11.7    | NTU   |
| GS-GSA-MW-4 | 8/5/2020 11:55 | Conductivity                  | 1152.76 | uS/cm |
| GS-GSA-MW-4 | 8/5/2020 11:55 | DO                            | 0.27    | mg/L  |
| GS-GSA-MW-4 | 8/5/2020 11:55 | Depth to Water Detail         | 92.61   | ft    |
| GS-GSA-MW-4 | 8/5/2020 11:55 | Oxidation Reduction Potention | 305.7   | mv    |
| GS-GSA-MW-4 | 8/5/2020 11:55 | рН                            | 3.85    | рН    |
| GS-GSA-MW-4 | 8/5/2020 11:55 | Temperature                   | 21.51   | С     |
| GS-GSA-MW-4 | 8/5/2020 11:55 | Turbidity                     | 11.77   | NTU   |
| GS-GSA-MW-4 | 8/5/2020 12:00 | Conductivity                  | 1156.44 | uS/cm |
| GS-GSA-MW-4 | 8/5/2020 12:00 | DO                            | 0.27    | mg/L  |
| GS-GSA-MW-4 | 8/5/2020 12:00 | Depth to Water Detail         | 92.61   |       |
| GS-GSA-MW-4 | 8/5/2020 12:00 | Oxidation Reduction Potention | 304.93  | mv    |
| GS-GSA-MW-4 | 8/5/2020 12:00 | рН                            | 3.86    | pН    |
| GS-GSA-MW-4 | 8/5/2020 12:00 | Temperature                   | 21.55   | С     |
| GS-GSA-MW-4 | 8/5/2020 12:00 | Turbidity                     | 10.07   | NTU   |
| GS-GSA-MW-4 | 8/5/2020 12:05 | Conductivity                  | 1150.86 | uS/cm |
| GS-GSA-MW-4 | 8/5/2020 12:05 | DO                            | 0.27    | mg/L  |
| GS-GSA-MW-4 | 8/5/2020 12:05 | Depth to Water Detail         | 92.61   | ft    |
| GS-GSA-MW-4 | 8/5/2020 12:05 | Oxidation Reduction Potention | 304.37  | mv    |
| GS-GSA-MW-4 | 8/5/2020 12:05 | рН                            | 3.86    | рН    |
| GS-GSA-MW-4 | 8/5/2020 12:05 | Temperature                   | 21.53   | С     |
| GS-GSA-MW-4 | 8/5/2020 12:05 | Turbidity                     | 8.94    | NTU   |

| WELL ID      | READING TIME   | DESCRIPTION                   | VALUE   | UNIT  |
|--------------|----------------|-------------------------------|---------|-------|
| GS-GSA-MW-4V | 8/5/2020 12:45 | Conductivity                  | 1472.99 | uS/cm |
| GS-GSA-MW-4V | 8/5/2020 12:45 | DO                            | 0.7     | mg/L  |
| GS-GSA-MW-4V | 8/5/2020 12:45 | Depth to Water Detail         | 119.92  | ft    |
| GS-GSA-MW-4V | 8/5/2020 12:45 | Oxidation Reduction Potention | 34.26   | mv    |
| GS-GSA-MW-4V | 8/5/2020 12:45 | рН                            | 5.81    | pН    |
| GS-GSA-MW-4V | 8/5/2020 12:45 | Temperature                   | 21.63   | С     |
| GS-GSA-MW-4V | 8/5/2020 12:45 | Turbidity                     | 11.49   | NTU   |
| GS-GSA-MW-4V | 8/5/2020 12:50 | Conductivity                  | 1433.6  | uS/cm |
| GS-GSA-MW-4V | 8/5/2020 12:50 | DO                            | 0.5     | mg/L  |
| GS-GSA-MW-4V | 8/5/2020 12:50 | Depth to Water Detail         | 120.15  | ft    |
| GS-GSA-MW-4V | 8/5/2020 12:50 | Oxidation Reduction Potention | 33.48   | mv    |
| GS-GSA-MW-4V | 8/5/2020 12:50 | рН                            | 5.83    | pН    |
| GS-GSA-MW-4V | 8/5/2020 12:50 | Temperature                   | 21.64   | С     |
| GS-GSA-MW-4V | 8/5/2020 12:50 | Turbidity                     | 11.28   | NTU   |
| GS-GSA-MW-4V | 8/5/2020 12:55 | Conductivity                  | 1411.37 | uS/cm |
| GS-GSA-MW-4V | 8/5/2020 12:55 | DO                            | 0.45    | mg/L  |
| GS-GSA-MW-4V | 8/5/2020 12:55 | Depth to Water Detail         | 120.33  | ft    |
| GS-GSA-MW-4V | 8/5/2020 12:55 | Oxidation Reduction Potention | 33.19   | mv    |
| GS-GSA-MW-4V | 8/5/2020 12:55 | 1                             | 5.83    |       |
| GS-GSA-MW-4V | 8/5/2020 12:55 | Temperature                   | 21.93   | С     |
| GS-GSA-MW-4V | 8/5/2020 12:55 | Turbidity                     | 9.57    | NTU   |
| GS-GSA-MW-4V | 8/5/2020 13:00 | Conductivity                  | 1386.95 | uS/cm |
| GS-GSA-MW-4V | 8/5/2020 13:00 | DO                            | 0.44    | mg/L  |
| GS-GSA-MW-4V | 8/5/2020 13:00 | Depth to Water Detail         | 120.35  | ft    |
| GS-GSA-MW-4V |                | Oxidation Reduction Potention | 35.35   | mv    |
| GS-GSA-MW-4V | 8/5/2020 13:00 |                               | 5.81    | рН    |
| GS-GSA-MW-4V | 8/5/2020 13:00 | Temperature                   | 21.7    | С     |
| GS-GSA-MW-4V | 8/5/2020 13:00 | Turbidity                     | 9.04    | NTU   |

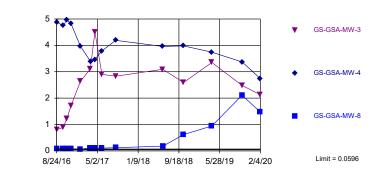
# Appendix C

# 1st Semi-Annual Monitoring Event

#### Interwell Prediction Limits - Significant Results

Plant William C Gorgas Client: Southern Company Data: Gorgas GSA Printed 7/22/2020, 2:36 PM

| Constituent     | <u>Well</u> | Upper Lim. | Lower Lim. | <u>Date</u> | Observ. | Sig. | Bg N | %NDs  | <u>Transform</u> | <u>Alpha</u> | Method               |
|-----------------|-------------|------------|------------|-------------|---------|------|------|-------|------------------|--------------|----------------------|
| Boron (mg/L)    | GS-GSA-MW-3 | 0.0596     | n/a        | 2/3/2020    | 2.13    | Yes  | 83   | 15.66 | n/a              | 0.000        | NP Inter (normality) |
| Boron (mg/L)    | GS-GSA-MW-4 | 0.0596     | n/a        | 2/4/2020    | 2.74    | Yes  | 83   | 15.66 | n/a              | 0.000        | NP Inter (normality) |
| Boron (mg/L)    | GS-GSA-MW-8 | 0.0596     | n/a        | 2/4/2020    | 1.47    | Yes  | 83   | 15.66 | n/a              | 0.000        | NP Inter (normality) |
| Calcium (mg/L)  | GS-GSA-MW-3 | 431        | n/a        | 2/3/2020    | 589     | Yes  | 83   | 0     | n/a              | 0.000        | NP Inter (normality) |
| Calcium (mg/L)  | GS-GSA-MW-8 | 431        | n/a        | 2/4/2020    | 461     | Yes  | 83   | 0     | n/a              | 0.000        | NP Inter (normality) |
| Chloride (mg/L) | GS-GSA-MW-3 | 3.756      | n/a        | 2/3/2020    | 267     | Yes  | 83   | 3.614 | sqrt(x)          | 0.002505     | Param Inter 1 of 2   |
| Chloride (mg/L) | GS-GSA-MW-4 | 3.756      | n/a        | 2/4/2020    | 43.2    | Yes  | 83   | 3.614 | sqrt(x)          | 0.002505     | Param Inter 1 of 2   |
| Chloride (mg/L) | GS-GSA-MW-8 | 3.756      | n/a        | 2/4/2020    | 94.1    | Yes  | 83   | 3.614 | sqrt(x)          | 0.002505     | Param Inter 1 of 2   |


#### Interwell Prediction Limits - All Results

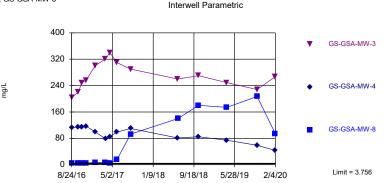
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA Printed 7/22/2020, 2:36 PM

| Constituent     | Well        | Upper Lim. | Lower Lim. | <u>Date</u> | Observ. | Sig. | Bg N | %NDs  | <u>Transform</u> | <u>Alpha</u> | Method               |
|-----------------|-------------|------------|------------|-------------|---------|------|------|-------|------------------|--------------|----------------------|
| Boron (mg/L)    | GS-GSA-MW-3 | 0.0596     | n/a        | 2/3/2020    | 2.13    | Yes  | 83   | 15.66 | n/a              | 0.000        | NP Inter (normality) |
| Boron (mg/L)    | GS-GSA-MW-4 | 0.0596     | n/a        | 2/4/2020    | 2.74    | Yes  | 83   | 15.66 | n/a              | 0.000        | NP Inter (normality) |
| Boron (mg/L)    | GS-GSA-MW-8 | 0.0596     | n/a        | 2/4/2020    | 1.47    | Yes  | 83   | 15.66 | n/a              | 0.000        | NP Inter (normality) |
| Calcium (mg/L)  | GS-GSA-MW-3 | 431        | n/a        | 2/3/2020    | 589     | Yes  | 83   | 0     | n/a              | 0.000        | NP Inter (normality) |
| Calcium (mg/L)  | GS-GSA-MW-4 | 431        | n/a        | 2/4/2020    | 116     | No   | 83   | 0     | n/a              | 0.000        | NP Inter (normality) |
| Calcium (mg/L)  | GS-GSA-MW-8 | 431        | n/a        | 2/4/2020    | 461     | Yes  | 83   | 0     | n/a              | 0.000        | NP Inter (normality) |
| Chloride (mg/L) | GS-GSA-MW-3 | 3.756      | n/a        | 2/3/2020    | 267     | Yes  | 83   | 3.614 | sqrt(x)          | 0.002505     | Param Inter 1 of 2   |
| Chloride (mg/L) | GS-GSA-MW-4 | 3.756      | n/a        | 2/4/2020    | 43.2    | Yes  | 83   | 3.614 | sqrt(x)          | 0.002505     | Param Inter 1 of 2   |
| Chloride (mg/L) | GS-GSA-MW-8 | 3.756      | n/a        | 2/4/2020    | 94.1    | Yes  | 83   | 3.614 | sqrt(x)          | 0.002505     | Param Inter 1 of 2   |
| Fluoride (mg/L) | GS-GSA-MW-3 | 0.4752     | n/a        | 2/3/2020    | 0.427   | No   | 87   | 0     | sqrt(x)          | 0.002505     | Param Inter 1 of 2   |
| Fluoride (mg/L) | GS-GSA-MW-4 | 0.4752     | n/a        | 2/4/2020    | 0.05ND  | No   | 87   | 0     | sqrt(x)          | 0.002505     | Param Inter 1 of 2   |
| Fluoride (mg/L) | GS-GSA-MW-8 | 0.4752     | n/a        | 2/4/2020    | 0.132   | No   | 87   | 0     | sqrt(x)          | 0.002505     | Param Inter 1 of 2   |

Exceeds Limit: GS-GSA-MW-3, GS-GSA-MW-4, GS-GSA-MW-8

Prediction Limit
Interwell Non-parametric



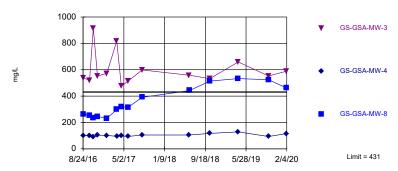

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 83 background values. 15.66% NDs. Annual perconstituent alpha = 0.001687. Individual comparison alpha = 0.0002814 (1 of 2). Comparing 3 points to limit.

Constituent: Boron Analysis Run 7/22/2020 2:32 PM View: Interwell PL Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG

Exceeds Limit: GS-GSA-MW-3, GS-GSA-MW-4, GS-GSA-MW-8

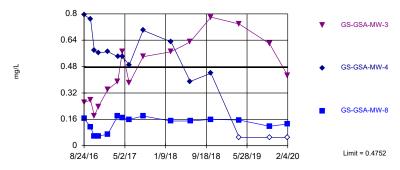
Prediction Limit




Background Data Summary (based on square root transformation): Mean=1.485, Std. Dev.=0.268, n=83, 3.614% NDs. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9668, critical = 0.96. Kappa = 1.689 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.002505. Comparing 3 points to limit.

Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG

Exceeds Limit: GS-GSA-MW-3, GS-GSA-MW-8


Prediction Limit
Interwell Non-parametric



Constituent: Calcium Analysis Run 7/22/2020 2:32 PM View: Interwell PL Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG Hollow symbols indicate censored values.

Within Limit Prediction Limit
Interwell Parametric



Background Data Summary (based on square root transformation): Mean=0.4625, Std. Dev.=0.1346, n=87. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9801, critical = 0.961. Kappa = 1.685 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.002505. Comparing 3 points to limit

Constituent: Boron (mg/L) Analysis Run 7/22/2020 2:36 PM View: Interwell PL Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

|            | MW-4 (bg)  | MW-3 (bg)  | MW-2 (bg)  | MW-1 (bg)  | GS-GSA-MW-3 | GS-GSA-MW-8 | GS-GSA-MW-4 |
|------------|------------|------------|------------|------------|-------------|-------------|-------------|
| 4/25/2016  | 0.0414 (J) | 0.028 (J)  | 0.0241 (J) |            |             |             |             |
| 4/26/2016  |            |            |            | 0.0231 (J) |             |             |             |
| 6/20/2016  | 0.0434 (J) |            | 0.0284 (J) | 0.0227 (J) |             |             |             |
| 6/22/2016  |            | 0.0433 (J) |            |            |             |             |             |
| 8/8/2016   |            |            | 0.034 (J)  | 0.0278 (J) |             |             |             |
| 8/9/2016   | 0.0453 (J) | 0.0429 (J) |            |            |             |             |             |
| 8/24/2016  | 0.0451 (J) | 0.0431 (J) | 0.0316 (J) | 0.0247 (J) | 0.799       | 0.0898 (J)  | 4.88        |
| 10/3/2016  | 0.0511 (J) |            | 0.0367 (J) | 0.0307 (J) | 0.889       | 0.0821 (J)  | 4.75        |
| 10/4/2016  |            | 0.04 (J)   |            |            |             |             |             |
| 10/26/2016 | 0.0507 (J) | 0.0375 (J) | 0.0331 (J) | 0.0241 (J) | 1.23        | 0.0889 (J)  | 4.96        |
| 11/21/2016 | 0.0458 (J) | 0.0406 (J) | 0.035 (J)  | 0.0202 (J) | 1.72        | 0.0788 (J)  | 4.82        |
| 1/17/2017  |            |            | 0.0259 (J) | 0.0201 (J) | 2.63        | 0.0607 (J)  | 3.97        |
| 1/18/2017  | 0.0445 (J) | 0.0548 (J) |            |            |             |             |             |
| 3/20/2017  |            |            |            |            | 3.11        | 0.114       |             |
| 3/21/2017  |            |            |            |            |             |             | 3.39        |
| 3/22/2017  | 0.0432 (J) | 0.0344 (J) | 0.0243 (J) | 0.0224 (J) |             |             |             |
| 4/17/2017  |            |            |            |            | 4.51        |             | 3.46        |
| 4/18/2017  | 0.0409 (J) | <0.1       | 0.0206 (J) | <0.1       |             | 0.108       |             |
| 5/30/2017  |            |            |            | <0.1       | 2.9         | 0.105       | 3.79        |
| 5/31/2017  |            | 0.0454 (J) | 0.0234 (J) |            |             |             |             |
| 8/23/2017  | 0.042 (J)  | 0.0425 (J) | 0.0267 (J) | 0.0253 (J) |             |             |             |
| 8/24/2017  |            |            |            |            | 2.83        | 0.12        | 4.19        |
| 5/22/2018  |            |            | 0.0251 (J) | 0.0224 (J) |             |             |             |
| 5/23/2018  | 0.0433 (J) |            |            |            |             |             |             |
| 5/24/2018  |            | 0.0339 (J) |            |            |             |             |             |
| 6/11/2018  |            |            |            |            | 3.09        |             | 3.96        |
| 6/12/2018  | 0.0478 (J) | 0.0371 (J) | 0.0275 (J) | 0.0214 (J) |             | 0.181       |             |
| 10/17/2018 | 0.0468 (J) | 0.0596 (J) | 0.0321 (J) | 0.0216 (J) | 2.59        | 0.616       | 3.98        |
| 11/19/2018 | 0.0526 (J) | 0.0514 (J) | 0.0324 (J) | 0.0237 (J) |             |             |             |
| 4/10/2019  | 0.0438 (J) | <0.1       | <0.1       | 0.0304 (J) | 3.35        | 0.944       | 3.74        |
| 5/14/2019  | <0.1       | <0.1       | <0.1       | <0.1       |             |             |             |
| 10/8/2019  |            | 0.0537 (J) | 0.0371 (J) | <0.1       |             |             |             |
| 10/10/2019 | 0.0487 (J) |            |            |            |             |             |             |
| 10/14/2019 |            |            |            |            | 2.48        | 2.11        | 3.37        |
| 10/16/2019 | 0.0505 (J) | 0.05 (J)   | 0.0419 (J) | 0.0385 (J) |             |             |             |
| 2/3/2020   | 0.0433 (J) | <0.1       | <0.1       | <0.1       | 2.13        |             |             |
| 2/4/2020   |            |            |            |            |             | 1.47        | 2.74        |
|            |            |            |            |            |             |             |             |

Constituent: Calcium (mg/L) Analysis Run 7/22/2020 2:36 PM View: Interwell PL Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

|            | MW-4 (bg) | MW-3 (bg) | MW-2 (bg) | MW-1 (bg) | GS-GSA-MW-3 | GS-GSA-MW-8 | GS-GSA-MW-4 |
|------------|-----------|-----------|-----------|-----------|-------------|-------------|-------------|
| 4/25/2016  | 261       | 224       | 123       |           |             |             |             |
| 4/26/2016  |           |           |           | 147       |             |             |             |
| 6/20/2016  | 295       |           | 168       | 152       |             |             |             |
| 6/22/2016  |           | 266       |           |           |             |             |             |
| 8/8/2016   |           |           | 180       | 150       |             |             |             |
| 8/9/2016   | 318       | 260       |           |           |             |             |             |
| 8/24/2016  | 319       | 274       | 180       | 142       | 539         | 263         | 102         |
| 10/3/2016  | 293       |           | 184       | 139       | 519.7       | 253         | 98.4        |
| 10/4/2016  |           | 243       |           |           |             |             |             |
| 10/26/2016 | 311       | 254       | 171       | 133       | 916         | 235         | 88.7        |
| 11/21/2016 | 320       | 263       | 179       | 144       | 552         | 246         | 104         |
| 1/17/2017  |           |           | 188       | 131       | 572         | 231         | 102         |
| 1/18/2017  | 417       | 431       |           |           |             |             |             |
| 3/20/2017  |           |           |           |           | 817         | 298         |             |
| 3/21/2017  |           |           |           |           |             |             | 94.7        |
| 3/22/2017  | 292       | 318       | 155       | 141       |             |             |             |
| 4/17/2017  |           |           |           |           | 476         |             | 97.9        |
| 4/18/2017  | 302       | 296       | 156       | 149       |             | 317         |             |
| 5/30/2017  |           |           |           | 140       | 515         | 316         | 93.9        |
| 5/31/2017  |           | 306       | 151       |           |             |             |             |
| 8/23/2017  | 297       | 298       | 155       | 152       |             |             |             |
| 8/24/2017  |           |           |           |           | 598         | 391         | 105         |
| 5/22/2018  |           |           | 172       | 166       |             |             |             |
| 5/23/2018  | 296       |           |           |           |             |             |             |
| 5/24/2018  |           | 297       |           |           |             |             |             |
| 6/11/2018  |           |           |           |           | 558         |             | 105         |
| 6/12/2018  | 355       | 318       | 179       | 203       |             | 442         |             |
| 10/17/2018 | 342       | 392       | 200       | 171       | 533         | 514         | 117         |
| 11/19/2018 | 289       | 387       | 221       | 154       |             |             |             |
| 4/10/2019  | 356       | 348       | 200       | 243       | 659         | 533         | 129         |
| 5/14/2019  | 254       | 254       | 168       | 167       |             |             |             |
| 10/8/2019  |           | 371       | 190       | 157       |             |             |             |
| 10/10/2019 | 302       |           |           |           |             |             |             |
| 10/14/2019 |           |           |           |           | 552         | 524         | 93.5        |
| 10/16/2019 | 356       | 346       | 194       | 157       |             |             |             |
| 2/3/2020   | 265       | 276       | 172       | 172       | 589         |             |             |
| 2/4/2020   |           |           |           |           |             | 461         | 116         |
|            |           |           |           |           |             |             |             |

Constituent: Chloride (mg/L) Analysis Run 7/22/2020 2:36 PM View: Interwell PL Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

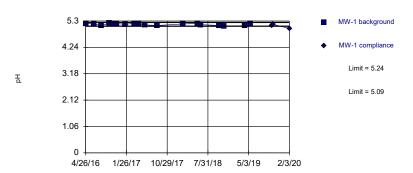
|            | MW-4 (bg) | MW-3 (bg) | MW-2 (bg) | MW-1 (bg) | GS-GSA-MW-3 | GS-GSA-MW-8 | GS-GSA-MW-4 |
|------------|-----------|-----------|-----------|-----------|-------------|-------------|-------------|
| 4/25/2016  | 1.53      | 1.32      | 1.9       |           |             |             |             |
| 4/26/2016  |           |           |           | 1.94      |             |             |             |
| 6/20/2016  | 1.85      |           | 3.43      | 2.09      |             |             |             |
| 6/22/2016  |           | 1.46      |           |           |             |             |             |
| 8/8/2016   |           |           | 3.31      | 2.18      |             |             |             |
| 8/9/2016   | 1.95      | 1.35      |           |           |             |             |             |
| 8/24/2016  | 2.07      | 1.47      | 3.23      | 2.22      | 204         | 4.03        | 112         |
| 10/3/2016  | 2.02      |           | 3.21      | 2.34      | 220         | 3.87        | 115         |
| 10/4/2016  |           | 1.59      |           |           |             |             |             |
| 10/26/2016 | 2.07      | 1.27      | 3.35      | 2.34      | 249         | 4.08        | 115         |
| 11/21/2016 | 2.39      | 1.38      | 3.34      | 2.5       | 256         | 4.39        | 117         |
| 1/17/2017  |           |           | 3.58      | 2.68      | 301         | 7.22        | 99.3        |
| 1/18/2017  | 1.9       | 1.34      |           |           |             |             |             |
| 3/20/2017  |           |           |           |           | 320         | 5.7         |             |
| 3/21/2017  |           |           |           |           |             |             | 79          |
| 3/22/2017  | 1.5 (J)   | 2         | 3.4       | 3.7       |             |             |             |
| 4/17/2017  |           |           |           |           | 340         |             | 85          |
| 4/18/2017  | 1.6 (J)   | 2.2       | 2.6       | 2.4       |             | 4.7         |             |
| 5/30/2017  |           |           |           | 2.6       | 310         | 15          | 99          |
| 5/31/2017  |           | 1.5 (J)   | 4.4       |           |             |             |             |
| 8/23/2017  | 2.3       | 1.8 (J)   | 4.4       | 2.7       |             |             |             |
| 8/24/2017  |           |           |           |           | 290         | 93          | 110         |
| 5/22/2018  |           |           | 3.2       | 2.3       |             |             |             |
| 5/23/2018  | 2         |           |           |           |             |             |             |
| 5/24/2018  |           | 1.6 (J)   |           |           |             |             |             |
| 6/11/2018  |           |           |           |           | 260         |             | 81          |
| 6/12/2018  | 1.7 (J)   | 1.4 (J)   | 3.7       | 2.3       |             | 140         |             |
| 10/17/2018 | 1.5 (J)   | <2        | 4.6       | 1.7 (J)   | 270         | 180         | 85          |
| 11/19/2018 | <2        | <2        | 3         | 1.7 (J)   |             |             |             |
| 4/10/2019  | 1.88      | 2.25      | 1.76      | 2.36      | 249         | 174         | 74.3        |
| 5/14/2019  | 1.82      | 2.28      | 2.98      | 2.28      |             |             |             |
| 10/8/2019  |           | 1.36      | 4.26      | 2.31      |             |             |             |
| 10/10/2019 | 1.93      |           |           |           |             |             |             |
| 10/14/2019 |           |           |           |           | 228         | 207         | 59.1        |
| 10/16/2019 | 1.92      | 1.4       | 4.04      | 2.42      |             |             |             |
| 2/3/2020   | 1.72      | 2.12      | 2.48      | 2.07      | 267         |             |             |
| 2/4/2020   |           |           |           |           |             | 94.1        | 43.2        |
|            |           |           |           |           |             |             |             |

Constituent: Fluoride (mg/L) Analysis Run 7/22/2020 2:36 PM View: Interwell PL Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

|                        | MW-4 (bg) | MW-2 (bg) | MW-3 (bg) | MW-1 (bg)  | GS-GSA-MW-8 | GS-GSA-MW-3 | GS-GSA-MW-4 |
|------------------------|-----------|-----------|-----------|------------|-------------|-------------|-------------|
| 4/25/2016              | 0.372     | 0.149 (J) | 0.243 (J) |            |             |             |             |
| 4/26/2016              |           |           |           | 0.146 (J)  |             |             |             |
| 6/20/2016              | 0.361     | 0.148 (J) |           | 0.148 (J)  |             |             |             |
| 6/22/2016              |           |           | 0.269 (J) |            |             |             |             |
| 8/8/2016               |           | 0.134 (J) |           | 0.137 (J)  |             |             |             |
| 8/9/2016               | 0.326     |           | 0.363     |            |             |             |             |
| 8/24/2016              | 0.329     | 0.129 (J) | 0.346     | 0.133 (J)  | 0.165 (J)   | 0.264 (J)   | 0.793       |
| 10/3/2016              | 0.287 (J) | 0.086 (J) |           | 0.103 (J)  | 0.114 (J)   | 0.276 (J)   | 0.769       |
| 10/4/2016              |           |           | 0.266 (J) |            |             |             |             |
| 10/26/2016             | 0.194 (J) | 0.027 (J) | 0.266 (J) | 0.05 (J)   | 0.056 (J)   | 0.182 (J)   | 0.578       |
| 11/21/2016             | 0.192 (J) | 0.027 (J) | 0.244 (J) | 0.047 (J)  | 0.059 (J)   | 0.238 (J)   | 0.562       |
| 1/17/2017              |           | 0.066 (J) |           | 0.09 (J)   | 0.07 (J)    | 0.34        | 0.571       |
| 1/18/2017              | 0.223 (J) |           | 0.385     |            |             |             |             |
| 3/20/2017              |           |           |           |            | 0.18        | 0.39        |             |
| 3/21/2017              |           |           |           |            |             |             | 0.54        |
| 3/22/2017              | 0.32      | 0.13      | 0.41      | 0.12       |             |             |             |
| 4/17/2017              |           |           |           |            |             | 0.57        | 0.54        |
| 4/18/2017              | 0.32      | 0.16      | 0.29      | 0.12       | 0.17        |             |             |
| 5/30/2017              |           |           |           | 0.13       | 0.16        | 0.38        | 0.49        |
| 5/31/2017              |           | 0.13      | 0.37      |            |             |             |             |
| 8/23/2017              | 0.38      | 0.16      | 0.55      | 0.16       |             |             |             |
| 8/24/2017              |           |           |           |            | 0.18        | 0.54        | 0.7         |
| 2/13/2018              | 0.38 (D)  | 0.22 (D)  | 0.27 (D)  | 0.14 (D)   | 0.15 (D)    | 0.57 (D)    | 0.63 (D)    |
| 5/22/2018              |           | 0.17      |           | 0.16       |             |             |             |
| 5/23/2018              | 0.38      |           |           |            |             |             |             |
| 5/24/2018              |           |           | 0.6       |            |             |             |             |
| 6/11/2018              |           |           |           |            |             | 0.63        | 0.39        |
| 6/12/2018              | 0.39      | 0.16      | 0.53      | 0.16       | 0.15        |             |             |
| 10/17/2018             | 0.39      | 0.16      | 0.63      | 0.18       | 0.16        | 0.78        | 0.44        |
| 11/19/2018             | 0.36      | 0.18      | 0.31      | 0.15       |             |             |             |
| 4/10/2019              | 0.384     | 0.262     | 0.273     | 0.102      | 0.156       | 0.738       | <0.1        |
| 5/14/2019              | 0.335     | 0.17      | 0.281     | 0.119      |             |             |             |
| 10/8/2019              |           | 0.164     | 0.225     | 0.0924 (J) |             |             |             |
| 10/10/2019             | 0.304     |           |           |            |             |             |             |
| 10/14/2019             |           |           |           |            | 0.118       | 0.619       | <0.1        |
|                        | 0.202     | 0.114     | 0.106     | 0.0756 (J) |             |             |             |
| 10/16/2019             | 0.302     | 0.114     | 0.100     | (-)        |             |             |             |
| 10/16/2019<br>2/3/2020 | 0.302     | 0.114     | 0.256     | 0.0982 (J) |             | 0.427       |             |

#### Intrawell Prediction Limits - Significant Results

Plant William C Gorgas Client: Southern Company Data: Gorgas GSA Printed 7/22/2020, 2:42 PM


| Constituent | Well | Upper Lim. | Lower Lim. | <u>Date</u> | Observ. | Sig. | <u>Bg N</u> | %NDs | <u>Transform</u> | <u>Alpha</u> | Method             |
|-------------|------|------------|------------|-------------|---------|------|-------------|------|------------------|--------------|--------------------|
| nH (nH)     | MW-1 | 5.24       | 5.09       | 2/3/2020    | 5       | Yes  | 18          | 0    | No               | 0.001253     | Param Intra 1 of 2 |

#### Intrawell Prediction Limits - All Results

Plant William C Gorgas Client: Southern Company Data: Gorgas GSA Printed 7/22/2020, 2:42 PM

| Constituent            | Well        | Upper Lim. | Lower Lim. | <u>Date</u> | Observ. | Sig. | Bg N | %NDs | <u>Transform</u> | <u>Alpha</u> | Method               |
|------------------------|-------------|------------|------------|-------------|---------|------|------|------|------------------|--------------|----------------------|
| pH (pH)                | MW-1        | 5.24       | 5.09       | 2/3/2020    | 5       | Yes  | 18   | 0    | No               | 0.001253     | Param Intra 1 of 2   |
| pH (pH)                | MW-2        | 6.161      | 5.76       | 2/3/2020    | 5.95    | No   | 18   | 0    | No               | 0.001253     | Param Intra 1 of 2   |
| pH (pH)                | MW-3        | 6.175      | 4.135      | 2/3/2020    | 5.54    | No   | 19   | 0    | x^2              | 0.001253     | Param Intra 1 of 2   |
| pH (pH)                | MW-4        | 6.246      | 6.063      | 2/3/2020    | 6.14    | No   | 18   | 0    | No               | 0.001253     | Param Intra 1 of 2   |
| pH (pH)                | GS-GSA-MW-3 | 6.454      | 5.609      | 2/3/2020    | 5.98    | No   | 13   | 0    | No               | 0.001253     | Param Intra 1 of 2   |
| pH (pH)                | GS-GSA-MW-4 | 3.868      | 3.701      | 2/4/2020    | 3.83    | No   | 13   | 0    | No               | 0.001253     | Param Intra 1 of 2   |
| pH (pH)                | GS-GSA-MW-8 | 7.202      | 6.366      | 2/4/2020    | 6.85    | No   | 13   | 0    | No               | 0.001253     | Param Intra 1 of 2   |
| Sulfate (mg/L)         | MW-1        | 2100       | n/a        | 2/3/2020    | 1510    | No   | 18   | 0    | n/a              | 0.005373     | NP Intra (normality) |
| Sulfate (mg/L)         | MW-2        | 1247       | n/a        | 2/3/2020    | 803     | No   | 18   | 0    | No               | 0.002505     | Param Intra 1 of 2   |
| Sulfate (mg/L)         | MW-3        | 3164       | n/a        | 2/3/2020    | 2290    | No   | 18   | 0    | No               | 0.002505     | Param Intra 1 of 2   |
| Sulfate (mg/L)         | MW-4        | 3023       | n/a        | 2/3/2020    | 1920    | No   | 17   | 0    | No               | 0.002505     | Param Intra 1 of 2   |
| Sulfate (mg/L)         | GS-GSA-MW-3 | 3089       | n/a        | 2/3/2020    | 2840    | No   | 12   | 0    | x^5              | 0.002505     | Param Intra 1 of 2   |
| Sulfate (mg/L)         | GS-GSA-MW-4 | 648.7      | n/a        | 2/4/2020    | 571     | No   | 12   | 0    | No               | 0.002505     | Param Intra 1 of 2   |
| Sulfate (mg/L)         | GS-GSA-MW-8 | 2123       | n/a        | 2/4/2020    | 1570    | No   | 12   | 0    | No               | 0.002505     | Param Intra 1 of 2   |
| Total dissolved solids | MW-1        | 2526       | n/a        | 2/3/2020    | 2380    | No   | 18   | 0    | No               | 0.002505     | Param Intra 1 of 2   |
| Total dissolved solids | MW-2        | 2032       | n/a        | 2/3/2020    | 1440    | No   | 18   | 0    | No               | 0.002505     | Param Intra 1 of 2   |
| Total dissolved solids | MW-3        | 4874       | n/a        | 2/3/2020    | 3530    | No   | 18   | 0    | No               | 0.002505     | Param Intra 1 of 2   |
| Total dissolved solids | MW-4        | 4639       | n/a        | 2/3/2020    | 3240    | No   | 17   | 0    | No               | 0.002505     | Param Intra 1 of 2   |
| Total dissolved solids | GS-GSA-MW-3 | 5416       | n/a        | 2/3/2020    | 4920    | No   | 12   | 0    | x^6              | 0.002505     | Param Intra 1 of 2   |
| Total dissolved solids | GS-GSA-MW-4 | 1100       | n/a        | 2/4/2020    | 978     | No   | 12   | 0    | No               | 0.002505     | Param Intra 1 of 2   |
| Total dissolved solids | GS-GSA-MW-8 | 4264       | n/a        | 2/4/2020    | 3190    | No   | 8    | 0    | No               | 0.002505     | Param Intra 1 of 2   |
|                        |             |            |            |             |         |      |      |      |                  |              |                      |

Exceeds Limits Prediction Limit
Intrawell Parametric



Background Data Summary: Mean=5.165, Std. Dev.=0.03869, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8696, critical = 0.858. Kappa = 1.931 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Constituent: pH Analysis Run 7/22/2020 2:38 PM View: Intrawell PL
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG

Within Limits

Prediction Limit
Intrawell Parametric

MW-3 background

MW-3 compliance

Limit = 6.175

Limit = 4.135

Background Data Summary (based on square transformation): Mean=27.62, Std. Dev.=5.502, n=19. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8755, critical = 0.863. Kappa = 1.912 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG

Within Limits Prediction Limit
Intrawell Parametric



Background Data Summary: Mean=5.961, Std. Dev.=0.1039, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9465, critical = 0.858. Kappa = 1.931 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Constituent: pH Analysis Run 7/22/2020 2:38 PM View: Intrawell PL
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG

Within Limits

Prediction Limit
Intrawell Parametric

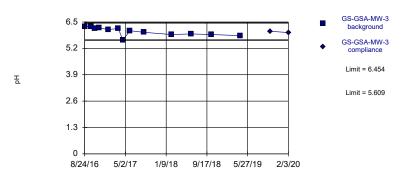
MW-4 background

MW-4 compliance

Limit = 6.246

Limit = 6.063

Background Data Summary: Mean=6.154, Std. Dev.=0.04755, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9068, critical = 0.858. Kappa = 1.931 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.


|            | MW-1     | MW-1 |
|------------|----------|------|
| 4/26/2016  | 5.2      |      |
| 6/20/2016  | 5.18     |      |
| 8/8/2016   | 5.12     |      |
| 10/3/2016  | 5.21 (D) |      |
| 10/26/2016 | 5.2      |      |
| 11/21/2016 | 5.19 (D) |      |
| 1/17/2017  | 5.17 (D) |      |
| 3/22/2017  | 5.2 (D)  |      |
| 4/18/2017  | 5.2      |      |
| 5/30/2017  | 5.14 (D) |      |
| 8/23/2017  | 5.12 (D) |      |
| 2/13/2018  | 5.18     |      |
| 5/22/2018  | 5.2      |      |
| 6/12/2018  | 5.15     |      |
| 10/17/2018 | 5.12     |      |
| 11/19/2018 | 5.09 (D) |      |
| 4/10/2019  | 5.11     |      |
| 5/14/2019  | 5.19     |      |
| 10/8/2019  |          | 5.12 |
| 10/16/2019 |          | 5.16 |
| 2/3/2020   |          | 5    |
|            |          |      |

|            | MW-2     | MW-2 |
|------------|----------|------|
| 4/25/2016  | 5.94     |      |
| 6/20/2016  | 5.96     |      |
| 8/8/2016   | 5.88     |      |
| 10/3/2016  | 5.91 (D) |      |
| 10/26/2016 | 5.84     |      |
| 11/21/2016 | 5.82 (D) |      |
| 1/17/2017  | 5.87 (D) |      |
| 3/22/2017  | 6.01 (D) |      |
| 4/18/2017  | 6.02     |      |
| 5/31/2017  | 5.85 (D) |      |
| 8/23/2017  | 5.89 (D) |      |
| 2/13/2018  | 6.21     |      |
| 5/22/2018  | 6.04     |      |
| 6/12/2018  | 5.95     |      |
| 10/17/2018 | 5.9      |      |
| 11/19/2018 | 6.03 (D) |      |
| 4/10/2019  | 6.1      |      |
| 5/14/2019  | 6.07     |      |
| 10/8/2019  |          | 5.96 |
| 10/16/2019 |          | 5.98 |
| 2/3/2020   |          | 5.95 |

|            | MW-3     | MW-3 |
|------------|----------|------|
| 4/25/2016  | 5.56     |      |
| 6/22/2016  | 5.57     |      |
| 8/9/2016   | 5.67     |      |
| 8/24/2016  | 5.63     |      |
| 10/4/2016  | 5.69 (D) |      |
| 10/26/2016 | 5.56     |      |
| 11/21/2016 | 5.42 (D) |      |
| 1/18/2017  | 5.11 (D) |      |
| 3/22/2017  | 4.52 (D) |      |
| 4/18/2017  | 5.84     |      |
| 5/31/2017  | 4.56 (D) |      |
| 8/23/2017  | 4.77 (D) |      |
| 2/13/2018  | 5.67     |      |
| 5/24/2018  | 5.19     |      |
| 6/12/2018  | 4.79     |      |
| 10/17/2018 | 4.75     |      |
| 11/19/2018 | 3.77 (D) |      |
| 4/10/2019  | 5.54     |      |
| 5/14/2019  | 5.71     |      |
| 10/8/2019  |          | 4.98 |
| 10/16/2019 |          | 4.51 |
| 2/3/2020   |          | 5.54 |
|            |          |      |

|            | MW-4     | MW-4 |
|------------|----------|------|
| 4/25/2016  | 6.22     |      |
| 6/20/2016  | 6.21     |      |
| 8/9/2016   | 6.11     |      |
| 8/24/2016  | 6.11     |      |
| 10/3/2016  | 6.13 (D) |      |
| 10/26/2016 | 6.12     |      |
| 11/21/2016 | 6.09 (D) |      |
| 1/18/2017  | 6.09 (D) |      |
| 3/22/2017  | 6.15 (D) |      |
| 4/18/2017  | 6.19     |      |
| 8/23/2017  | 6.12     |      |
| 2/13/2018  | 6.22     |      |
| 5/23/2018  | 6.21     |      |
| 6/12/2018  | 6.16     |      |
| 10/17/2018 | 6.12     |      |
| 11/19/2018 | 6.16 (D) |      |
| 4/10/2019  | 6.14     |      |
| 5/14/2019  | 6.23     |      |
| 10/10/2019 |          | 6.15 |
| 10/16/2019 |          | 6.19 |
| 2/3/2020   |          | 6.14 |
|            |          |      |

**Prediction Limit** Within Limits Intrawell Parametric



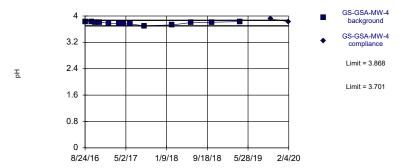
Background Data Summary: Mean=6.032, Std. Dev.=0.2034, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9319, critical = 0.814. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha =

> Constituent: pH Analysis Run 7/22/2020 2:38 PM View: Intrawell PL Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG

**Prediction Limit** Within Limits Intrawell Parametric GS-GSA-MW-8 background GS-GSA-MW-8 5.84 compliance Limit = 7.202 4.38 Ħ Limit = 6.366 2.92 1.46

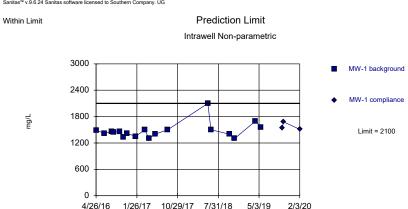
5/2/17


8/24/16

1/9/18

Background Data Summary: Mean=6.784, Std. Dev.=0.2012, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8769, critical = 0.814. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha =

Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG






Background Data Summary: Mean=3.785, Std. Dev.=0.04034, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9065, critical = 0.814. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha =

> Constituent: pH Analysis Run 7/22/2020 2:38 PM View: Intrawell PL Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

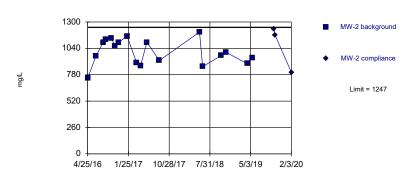
Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 18 background values. Well-constituent pair annual alpha = 0.01072. Individual comparison alpha = 0.005373 (1 of 2).

9/18/18 5/28/19

2/4/20


|            | GS-GSA-MW-3 | GS-GSA-MW-3 |
|------------|-------------|-------------|
| 8/24/2016  | 6.28        |             |
| 10/3/2016  | 6.28        |             |
| 10/26/2016 | 6.19        |             |
| 11/21/2016 | 6.2         |             |
| 1/17/2017  | 6.13        |             |
| 3/20/2017  | 6.17        |             |
| 4/17/2017  | 5.6         |             |
| 5/30/2017  | 6.07        |             |
| 8/24/2017  | 5.99        |             |
| 2/13/2018  | 5.88        |             |
| 6/11/2018  | 5.91        |             |
| 10/17/2018 | 5.88        |             |
| 4/10/2019  | 5.83        |             |
| 10/14/2019 |             | 6.04        |
| 2/3/2020   |             | 5.98        |

|            | GS-GSA-MW-4 | GS-GSA-MW-4 |
|------------|-------------|-------------|
| 8/24/2016  | 3.83 (E)    |             |
| 10/3/2016  | 3.82 (E)    |             |
| 10/26/2016 | 3.81 (E)    |             |
| 11/21/2016 | 3.81        |             |
| 1/17/2017  | 3.78        |             |
| 3/21/2017  | 3.76        |             |
| 4/17/2017  | 3.76        |             |
| 5/30/2017  | 3.76        |             |
| 8/24/2017  | 3.7         |             |
| 2/13/2018  | 3.73        |             |
| 6/11/2018  | 3.8         |             |
| 10/17/2018 | 3.81        |             |
| 4/10/2019  | 3.83        |             |
| 10/14/2019 |             | 3.91        |
| 2/4/2020   |             | 3.83        |

|            | GS-GSA-MW-8 | GS-GSA-MW-8 |
|------------|-------------|-------------|
| 8/24/2016  | 6.78        |             |
| 10/3/2016  | 6.71        |             |
| 10/26/2016 | 6.65        |             |
| 11/21/2016 | 6.7         |             |
| 1/17/2017  | 6.25        |             |
| 3/20/2017  | 7.04        |             |
| 4/18/2017  | 6.99        |             |
| 5/30/2017  | 6.98        |             |
| 8/24/2017  | 6.89        |             |
| 2/13/2018  | 6.85        |             |
| 6/12/2018  | 6.83        |             |
| 10/17/2018 | 6.81        |             |
| 4/10/2019  | 6.71        |             |
| 10/14/2019 |             | 6.88        |
| 2/4/2020   |             | 6.85        |

|            | MW-1 | MW-1 |
|------------|------|------|
| 4/26/2016  | 1490 |      |
| 6/20/2016  | 1420 |      |
| 8/8/2016   | 1460 |      |
| 8/24/2016  | 1450 |      |
| 10/3/2016  | 1460 |      |
| 10/26/2016 | 1330 |      |
| 11/21/2016 | 1420 |      |
| 1/17/2017  | 1350 |      |
| 3/22/2017  | 1500 |      |
| 4/18/2017  | 1300 |      |
| 5/30/2017  | 1400 |      |
| 8/23/2017  | 1500 |      |
| 5/22/2018  | 2100 |      |
| 6/12/2018  | 1500 |      |
| 10/17/2018 | 1400 |      |
| 11/19/2018 | 1300 |      |
| 4/10/2019  | 1700 |      |
| 5/14/2019  | 1560 |      |
| 10/8/2019  |      | 1540 |
| 10/16/2019 |      | 1680 |
| 2/3/2020   |      | 1510 |
|            |      |      |

Within Limit Prediction Limit
Intrawell Parametric

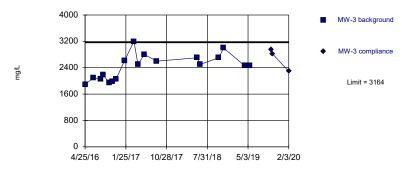


Background Data Summary: Mean=1003, Std. Dev.=126.2, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.957, critical = 0.858. Kappa = 1.931 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.00505

Constituent: Sulfate Analysis Run 7/22/2020 2:38 PM View: Intrawell PL Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG

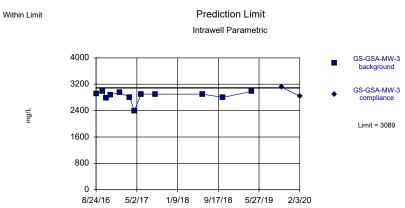
Within Limit Prediction Limit Intrawell Parametric


4000
3200
4000
MW-4 background
MW-4 compliance
Limit = 3023

Background Data Summary: Mean=2558, Std. Dev.=238.2, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.963, critical = 0.851. Kappa = 1.951 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Constituent: Sulfate Analysis Run 7/22/2020 2:38 PM View: Intrawell PL Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG


Within Limit Prediction Limit
Intrawell Parametric



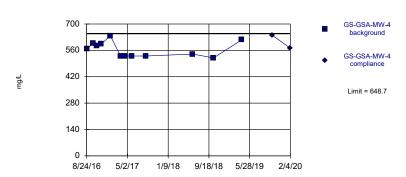
Background Data Summary: Mean=2431, Std. Dev.=379.6, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9476, critical = 0.858. Kappa = 1.931 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.02508

Constituent: Sulfate Analysis Run 7/22/2020 2:38 PM View: Intrawell PL Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG



Background Data Summary (based on x<sup>-5</sup> transformation): Mean=1.9e17, Std. Dev.=4.2e16, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8091, critical = 0.805. Kappa = 2.112 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.


|            | MW-2 | MW-2 |
|------------|------|------|
| 4/25/2016  | 745  |      |
| 6/20/2016  | 964  |      |
| 8/8/2016   | 1100 |      |
| 8/24/2016  | 1130 |      |
| 10/3/2016  | 1140 |      |
| 10/26/2016 | 1060 |      |
| 11/21/2016 | 1100 |      |
| 1/17/2017  | 1160 |      |
| 3/22/2017  | 900  |      |
| 4/18/2017  | 870  |      |
| 5/31/2017  | 1100 |      |
| 8/23/2017  | 920  |      |
| 5/22/2018  | 1200 |      |
| 6/12/2018  | 860  |      |
| 10/17/2018 | 970  |      |
| 11/19/2018 | 1000 |      |
| 4/10/2019  | 889  |      |
| 5/14/2019  | 948  |      |
| 10/8/2019  |      | 1230 |
| 10/16/2019 |      | 1170 |
| 2/3/2020   |      | 803  |

|            | MW-3 | MW-3 |
|------------|------|------|
| 4/25/2016  | 1890 |      |
| 6/22/2016  | 2100 |      |
| 8/9/2016   | 2050 |      |
| 8/24/2016  | 2190 |      |
| 10/4/2016  | 1950 |      |
| 10/26/2016 | 1980 |      |
| 11/21/2016 | 2060 |      |
| 1/18/2017  | 2620 |      |
| 3/22/2017  | 3200 |      |
| 4/18/2017  | 2500 |      |
| 5/31/2017  | 2800 |      |
| 8/23/2017  | 2600 |      |
| 5/24/2018  | 2700 |      |
| 6/12/2018  | 2500 |      |
| 10/17/2018 | 2700 |      |
| 11/19/2018 | 3000 |      |
| 4/10/2019  | 2460 |      |
| 5/14/2019  | 2460 |      |
| 10/8/2019  |      | 2950 |
| 10/16/2019 |      | 2820 |
| 2/3/2020   |      | 2290 |
|            |      |      |

|            | MW-4 | MW-4 |
|------------|------|------|
| 4/25/2016  | 2260 |      |
| 6/20/2016  | 2500 |      |
| 8/9/2016   | 2750 |      |
| 8/24/2016  | 2770 |      |
| 10/3/2016  | 3060 |      |
| 10/26/2016 | 2650 |      |
| 11/21/2016 | 2720 |      |
| 1/18/2017  | 2650 |      |
| 3/22/2017  | 2700 |      |
| 4/18/2017  | 2400 |      |
| 8/23/2017  | 2700 |      |
| 5/23/2018  | 2400 |      |
| 6/12/2018  | 2600 |      |
| 10/17/2018 | 2600 |      |
| 11/19/2018 | 2400 |      |
| 4/10/2019  | 2090 |      |
| 5/14/2019  | 2240 |      |
| 10/10/2019 |      | 2690 |
| 10/16/2019 |      | 3050 |
| 2/3/2020   |      | 1920 |

|            | GS-GSA-MW-3 | GS-GSA-MW-3 |
|------------|-------------|-------------|
| 8/24/2016  | 2910        |             |
| 10/3/2016  | 2980        |             |
| 10/26/2016 | 2790        |             |
| 11/21/2016 | 2880        |             |
| 1/17/2017  | 2950        |             |
| 3/20/2017  | 2800        |             |
| 4/17/2017  | 2400        |             |
| 5/30/2017  | 2900        |             |
| 8/24/2017  | 2900        |             |
| 6/11/2018  | 2900        |             |
| 10/17/2018 | 2800        |             |
| 4/10/2019  | 2980        |             |
| 10/14/2019 |             | 3110        |
| 2/3/2020   |             | 2840        |

Within Limit Prediction Limit
Intrawell Parametric



Background Data Summary: Mean=564.5, Std. Dev.=39.86, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8799, critical = 0.805. Kappa = 2.112 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005132).

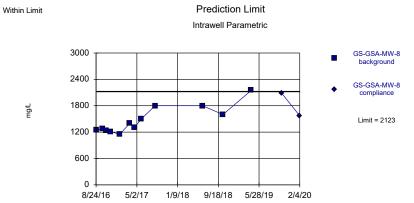
Constituent: Sulfate Analysis Run 7/22/2020 2:38 PM View: Intrawell PL Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG

Within Limit Prediction Limit
Intrawell Parametric

4000

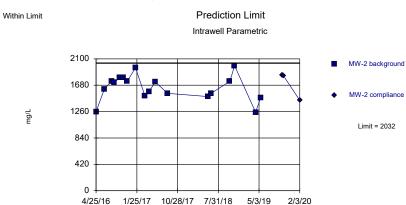
4000


MW-1 background

MW-1 compliance

Limit = 2526

Background Data Summary: Mean=2183, Std. Dev.=178, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9142, critical = 0.858. Kappa = 1.931 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.


Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG



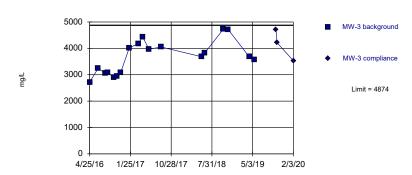
Background Data Summary: Mean=1473, Std. Dev.=307.9, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8741, critical = 0.805. Kappa = 2.112 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Constituent: Sulfate Analysis Run 7/22/2020 2:38 PM View: Intrawell PL Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG



Background Data Summary: Mean=1640, Std. Dev.=202.8, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.952, critical = 0.858. Kappa = 1.931 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.


|            | GS-GSA-MW-4 | GS-GSA-MW-4 |
|------------|-------------|-------------|
| 8/24/2016  | 567         |             |
| 10/3/2016  | 596         |             |
| 10/26/2016 | 585         |             |
| 11/21/2016 | 593         |             |
| 1/17/2017  | 637         |             |
| 3/21/2017  | 530         |             |
| 4/17/2017  | 530         |             |
| 5/30/2017  | 530         |             |
| 8/24/2017  | 530         |             |
| 6/11/2018  | 540         |             |
| 10/17/2018 | 520         |             |
| 4/10/2019  | 616         |             |
| 10/14/2019 |             | 641         |
| 2/4/2020   |             | 571         |

|            | GS-GSA-MW-8 | GS-GSA-MW-8 |
|------------|-------------|-------------|
| 8/24/2016  | 1250        |             |
| 10/3/2016  | 1270        |             |
| 10/26/2016 | 1240        |             |
| 11/21/2016 | 1210        |             |
| 1/17/2017  | 1150        |             |
| 3/20/2017  | 1400        |             |
| 4/18/2017  | 1300        |             |
| 5/30/2017  | 1500        |             |
| 8/24/2017  | 1800        |             |
| 6/12/2018  | 1800        |             |
| 10/17/2018 | 1600        |             |
| 4/10/2019  | 2150        |             |
| 10/14/2019 |             | 2090        |
| 2/4/2020   |             | 1570        |

|            | MW-1     | MW-1 |
|------------|----------|------|
| 4/26/2016  | 2080     |      |
| 6/20/2016  | 2060     |      |
| 8/8/2016   | 2070     |      |
| 8/24/2016  | 2040     |      |
| 10/3/2016  | 2110     |      |
| 10/26/2016 | 2000     |      |
| 11/21/2016 | 2070     |      |
| 1/17/2017  | 1930     |      |
| 3/22/2017  | 2060     |      |
| 4/18/2017  | 2140     |      |
| 5/30/2017  | 2240     |      |
| 8/23/2017  | 2160     |      |
| 5/22/2018  | 2380     |      |
| 6/12/2018  | 2400     |      |
| 10/17/2018 | 2220     |      |
| 11/19/2018 | 2360     |      |
| 4/10/2019  | 2630     |      |
| 5/14/2019  | 2340 (D) |      |
| 10/8/2019  |          | 2330 |
| 10/16/2019 |          | 3650 |
| 2/3/2020   |          | 2380 |

|            | MW-2 | MW-2 |
|------------|------|------|
| 4/25/2016  | 1260 |      |
| 6/20/2016  | 1620 |      |
| 8/8/2016   | 1740 |      |
| 8/24/2016  | 1720 |      |
| 10/3/2016  | 1800 |      |
| 10/26/2016 | 1800 |      |
| 11/21/2016 | 1740 |      |
| 1/17/2017  | 1960 |      |
| 3/22/2017  | 1510 |      |
| 4/18/2017  | 1580 |      |
| 5/31/2017  | 1730 |      |
| 8/23/2017  | 1550 |      |
| 5/22/2018  | 1500 |      |
| 6/12/2018  | 1550 |      |
| 10/17/2018 | 1740 |      |
| 11/19/2018 | 1990 |      |
| 4/10/2019  | 1250 |      |
| 5/14/2019  | 1480 |      |
| 10/8/2019  |      | 1840 |
| 10/16/2019 |      | 1830 |
| 2/3/2020   |      | 1440 |

Within Limit Prediction Limit
Intrawell Parametric



Background Data Summary: Mean=3661, Std. Dev.=628.6, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9455, critical = 0.858. Kappa = 1.931 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005132).

Constituent: Total dissolved solids Analysis Run 7/22/2020 2:38 PM View: Intrawell PL Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG

**Prediction Limit** Within Limit Intrawell Parametric 6000 GS-GSA-MW-3 background 4800 GS-GSA-MW-3 compliance 3600 Limit = 5416 2400 1200 5/2/17 1/9/18 9/17/18 5/27/19 8/24/16 2/3/20

Background Data Summary (based on x^6 transformation): Mean=1.4e22, Std. Dev.=5.4e21, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8255, critical = 0.805. Kappa = 2.112 (c=7, w=3, 1 of 2, event alpha = 0.00132). Report alpha = 0.002505.

Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG





Background Data Summary: Mean=3923, Std. Dev.=367.3, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8694, critical = 0.851. Kappa = 1.951 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

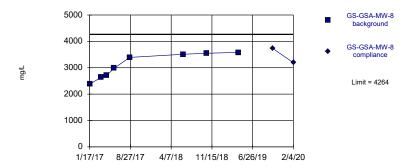
Constituent: Total dissolved solids Analysis Run 7/22/2020 2:38 PM View: Intrawell PL Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG

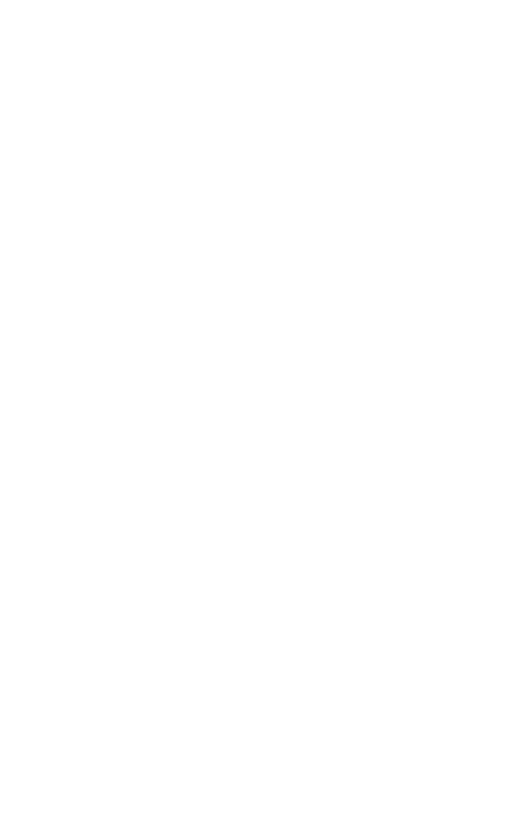
**Prediction Limit** Within Limit Intrawell Parametric 1100 GS-GSA-MW-4 background 880 GS-GSA-MW-4 compliance 660 Limit = 1100 440 220 5/2/17 1/9/18 9/18/18 5/28/19 8/24/16 2/4/20

Background Data Summary: Mean=990.3, Std. Dev.=51.88, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9383, critical = 0.805. Kappa = 2.112 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

|            | MW-3     | MW-3 |
|------------|----------|------|
| 4/25/2016  | 2720     |      |
| 6/22/2016  | 3250     |      |
| 8/9/2016   | 3050     |      |
| 8/24/2016  | 3080     |      |
| 10/4/2016  | 2900     |      |
| 10/26/2016 | 2940     |      |
| 11/21/2016 | 3090     |      |
| 1/18/2017  | 4020     |      |
| 3/22/2017  | 4180     |      |
| 4/18/2017  | 4440     |      |
| 5/31/2017  | 3970     |      |
| 8/23/2017  | 4050     |      |
| 5/24/2018  | 3680     |      |
| 6/12/2018  | 3820     |      |
| 10/17/2018 | 4730     |      |
| 11/19/2018 | 4710     |      |
| 4/10/2019  | 3680     |      |
| 5/14/2019  | 3580 (D) |      |
| 10/8/2019  |          | 4720 |
| 10/16/2019 |          | 4210 |
| 2/3/2020   |          | 3530 |


|     |          | MW-4     | MW-4 |
|-----|----------|----------|------|
| 4/2 | 25/2016  | 3300     |      |
| 6/2 | 20/2016  | 3870     |      |
| 8/9 | 9/2016   | 4140     |      |
| 8/2 | 24/2016  | 4190     |      |
| 10  | /3/2016  | 4190     |      |
| 10  | /26/2016 | 4400     |      |
| 11  | /21/2016 | 4230     |      |
| 1/  | 18/2017  | 4120     |      |
| 3/2 | 22/2017  | 3980     |      |
| 4/  | 18/2017  | 3880     |      |
| 8/2 | 23/2017  | 3990     |      |
| 5/2 | 23/2018  | 3740     |      |
| 6/  | 12/2018  | 4080     |      |
| 10  | /17/2018 | 4250     |      |
| 11  | /19/2018 | 3920     |      |
| 4/  | 10/2019  | 3280     |      |
| 5/  | 14/2019  | 3130 (D) |      |
| 10  | /10/2019 |          | 4000 |
| 10  | /16/2019 |          | 4060 |
| 2/3 | 3/2020   |          | 3240 |

|            | GS-GSA-MW-3 | GS-GSA-MW-3 |
|------------|-------------|-------------|
| 8/24/2016  | 5020        |             |
| 10/3/2016  | 4880        |             |
| 10/26/2016 | 5020        |             |
| 11/21/2016 | 5090        |             |
| 1/17/2017  | 4330        |             |
| 3/20/2017  | 2690        |             |
| 4/17/2017  | 4780        |             |
| 5/30/2017  | 5170        |             |
| 8/24/2017  | 5140        |             |
| 6/11/2018  | 4960        |             |
| 10/17/2018 | 4910        |             |
| 4/10/2019  | 5090        |             |
| 10/14/2019 |             | 5110        |
| 2/3/2020   |             | 4920        |

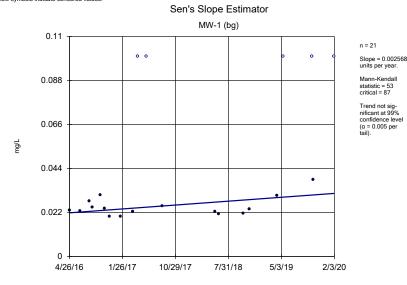

|            | GS-GSA-MW-4 | GS-GSA-MW-4 |
|------------|-------------|-------------|
| 8/24/2016  | 992         |             |
| 10/3/2016  | 988         |             |
| 10/26/2016 | 1030        |             |
| 11/21/2016 | 1020        |             |
| 1/17/2017  | 988         |             |
| 3/21/2017  | 990         |             |
| 4/17/2017  | 884         |             |
| 5/30/2017  | 1060        |             |
| 8/24/2017  | 1060        |             |
| 6/11/2018  | 944         |             |
| 10/17/2018 | 928         |             |
| 4/10/2019  | 1000        |             |
| 10/14/2019 |             | 967         |
| 2/4/2020   |             | 978         |

Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG

Within Limit Prediction Limit
Intrawell Parametric

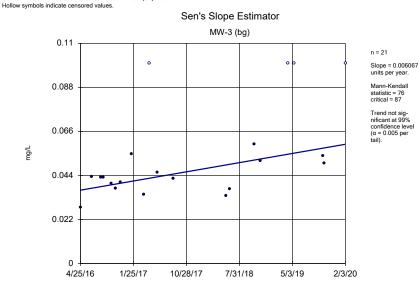


Background Data Summary: Mean=3090, Std. Dev.=477.8, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8736, critical = 0.749. Kappa = 0.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.




|            | GS-GSA-MW-8 | GS-GSA-MW-8 |
|------------|-------------|-------------|
| 8/24/2016  | 2280        |             |
| 10/3/2016  | 2370        |             |
| 10/26/2016 | 2350        |             |
| 11/21/2016 | 2530        |             |
| 1/17/2017  | 2380        |             |
| 3/20/2017  | 2630        |             |
| 4/18/2017  | 2700        |             |
| 5/30/2017  | 2980        |             |
| 8/24/2017  | 3390        |             |
| 6/12/2018  | 3510        |             |
| 10/17/2018 | 3550        |             |
| 4/10/2019  | 3580        |             |
| 10/14/2019 |             | 3730        |
| 2/4/2020   |             | 3190        |

# Trend Tests - All Results


|                 | Plant William C Gorgas | Client: Sout | hern Compa | ny Data: Go | orgas G | SA Prir  | nted 6/5/2 | 020, 7:56 AM |              |              |        |
|-----------------|------------------------|--------------|------------|-------------|---------|----------|------------|--------------|--------------|--------------|--------|
| Constituent     | Well                   | <u>Slope</u> | Calc.      | Critical    | Sig.    | <u>N</u> | %NDs       | Normality    | <u>Xform</u> | <u>Alpha</u> | Method |
| Boron (mg/L)    | MW-1 (bg)              | 0.002568     | 53         | 87          | No      | 21       | 23.81      | n/a          | n/a          | 0.01         | NP     |
| Boron (mg/L)    | MW-2 (bg)              | 0.004087     | 73         | 87          | No      | 21       | 14.29      | n/a          | n/a          | 0.01         | NP     |
| Boron (mg/L)    | MW-3 (bg)              | 0.006067     | 76         | 87          | No      | 21       | 19.05      | n/a          | n/a          | 0.01         | NP     |
| Boron (mg/L)    | MW-4 (bg)              | 0.000        | 11         | 81          | No      | 20       | 5          | n/a          | n/a          | 0.01         | NP     |
| Boron (mg/L)    | GS-GSA-MW-3            | 0.4213       | 29         | 48          | No      | 14       | 0          | n/a          | n/a          | 0.01         | NP     |
| Boron (mg/L)    | GS-GSA-MW-4            | -0.4681      | -51        | -48         | Yes     | 14       | 0          | n/a          | n/a          | 0.01         | NP     |
| Boron (mg/L)    | GS-GSA-MW-8            | 0.245        | 65         | 48          | Yes     | 14       | 0          | n/a          | n/a          | 0.01         | NP     |
| Calcium (mg/L)  | MW-1 (bg)              | 7.945        | 96         | 87          | Yes     | 21       | 0          | n/a          | n/a          | 0.01         | NP     |
| Calcium (mg/L)  | MW-2 (bg)              | 6.552        | 54         | 87          | No      | 21       | 0          | n/a          | n/a          | 0.01         | NP     |
| Calcium (mg/L)  | MW-3 (bg)              | 30.31        | 84         | 87          | No      | 21       | 0          | n/a          | n/a          | 0.01         | NP     |
| Calcium (mg/L)  | MW-4 (bg)              | 1.455        | 10         | 81          | No      | 20       | 0          | n/a          | n/a          | 0.01         | NP     |
| Calcium (mg/L)  | GS-GSA-MW-3            | 6.525        | 8          | 48          | No      | 14       | 0          | n/a          | n/a          | 0.01         | NP     |
| Calcium (mg/L)  | GS-GSA-MW-8            | 106.9        | 63         | 48          | Yes     | 14       | 0          | n/a          | n/a          | 0.01         | NP     |
| Chloride (mg/L) | MW-1 (bg)              | 0.00808      | 11         | 87          | No      | 21       | 0          | n/a          | n/a          | 0.01         | NP     |
| Chloride (mg/L) | MW-2 (bg)              | 0.1451       | 11         | 87          | No      | 21       | 0          | n/a          | n/a          | 0.01         | NP     |
| Chloride (mg/L) | MW-3 (bg)              | 0.05083      | 42         | 87          | No      | 21       | 9.524      | n/a          | n/a          | 0.01         | NP     |
| Chloride (mg/L) | MW-4 (bg)              | -0.04231     | -28        | -81         | No      | 20       | 5          | n/a          | n/a          | 0.01         | NP     |
| Chloride (mg/L) | GS-GSA-MW-3            | 5.498        | 10         | 48          | No      | 14       | 0          | n/a          | n/a          | 0.01         | NP     |
| Chloride (mg/L) | GS-GSA-MW-4            | -16.85       | -59        | -48         | Yes     | 14       | 0          | n/a          | n/a          | 0.01         | NP     |
| Chloride (mg/L) | GS-GSA-MW-8            | 53.28        | 73         | 48          | Yes     | 14       | 0          | n/a          | n/a          | 0.01         | NP     |
| pH (pH)         | MW-1 (bg)              | -0.02212     | -88        | -87         | Yes     | 21       | 0          | n/a          | n/a          | 0.01         | NP     |
| pH (pH)         | MW-2 (bg)              | 0.03299      | 64         | 87          | No      | 21       | 0          | n/a          | n/a          | 0.01         | NP     |
| pH (pH)         | MW-3 (bg)              | -0.1779      | -62        | -92         | No      | 22       | 0          | n/a          | n/a          | 0.01         | NP     |
| pH (pH)         | MW-4 (bg)              | 0.008085     | 33         | 87          | No      | 21       | 0          | n/a          | n/a          | 0.01         | NP     |

Sanitas™ v.9.5.15 Sanitas software licensed to Southern Company. UG Hollow symbols indicate censored values.



Constituent: Boron Analysis Run 6/5/2020 7:55 AM View: Trend Test
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

Sanitas™ v.9.5.15 Sanitas software licensed to Southern Company. UG



Constituent: Boron Analysis Run 6/5/2020 7:55 AM View: Trend Test

Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

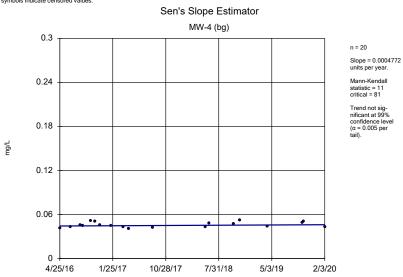
Sanitas™ v.9.5.15 Sanitas software licensed to Southern Company. UG Hollow symbols indicate censored values.



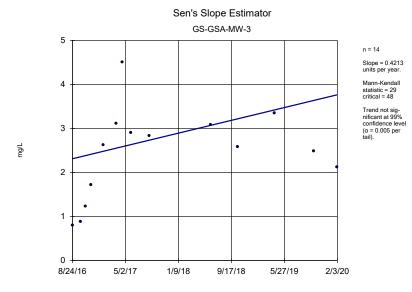
Constituent: Boron Analysis Run 6/5/2020 7:55 AM View: Trend Test
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

7/31/18

5/3/19


2/3/20

Sanitas™ v.9.5.15 Sanitas software licensed to Southern Company. UG Hollow symbols indicate censored values.

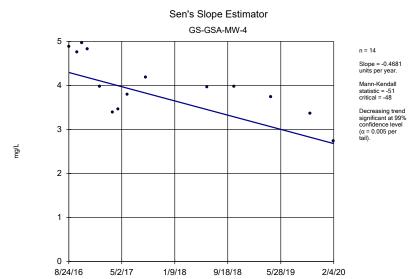

4/25/16

1/25/17

10/28/17

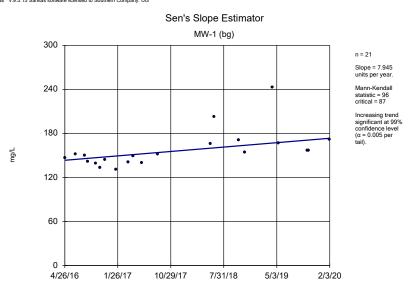


Constituent: Boron Analysis Run 6/5/2020 7:55 AM View: Trend Test
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

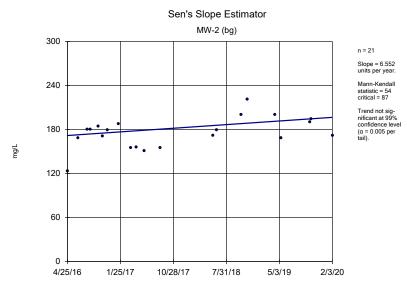


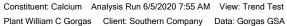

Constituent: Boron Analysis Run 6/5/2020 7:55 AM View: Trend Test
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

#### Sanitas™ v.9.5.15 Sanitas software licensed to Southern Company. UG

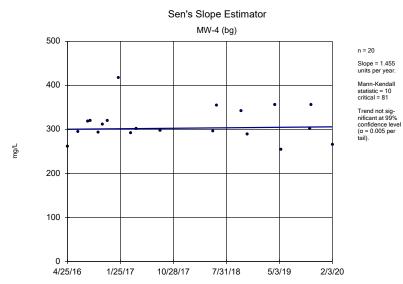



Constituent: Boron Analysis Run 6/5/2020 7:55 AM View: Trend Test
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

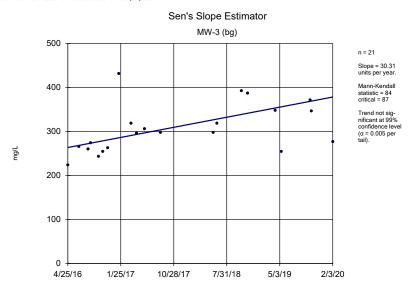




Constituent: Boron Analysis Run 6/5/2020 7:55 AM View: Trend Test
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

#### Sanitas™ v.9.5.15 Sanitas software licensed to Southern Company. UG

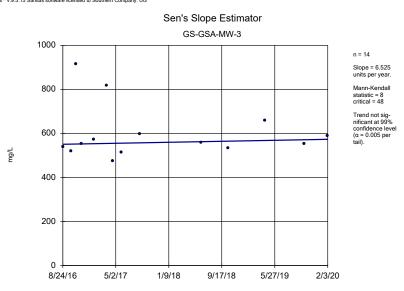



Constituent: Calcium Analysis Run 6/5/2020 7:55 AM View: Trend Test Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

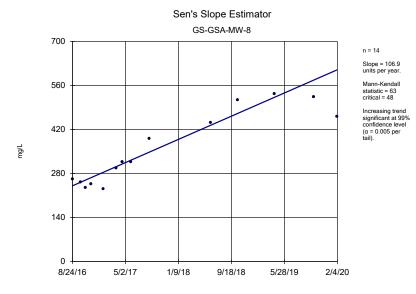


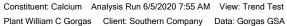



#### Sanitas™ v.9.5.15 Sanitas software licensed to Southern Company. UG

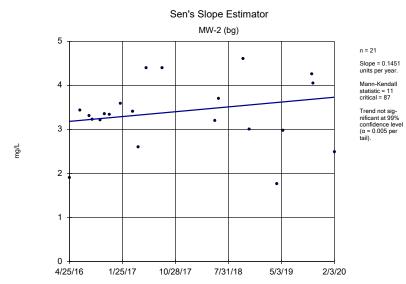



Constituent: Calcium Analysis Run 6/5/2020 7:55 AM View: Trend Test Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

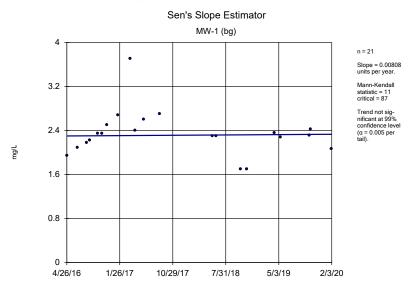




Constituent: Calcium Analysis Run 6/5/2020 7:55 AM View: Trend Test Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

#### Sanitas™ v.9.5.15 Sanitas software licensed to Southern Company. UG

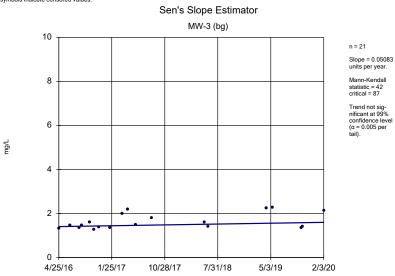



Constituent: Calcium Analysis Run 6/5/2020 7:55 AM View: Trend Test Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

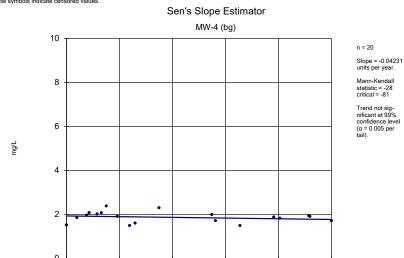





#### Sanitas™ v.9.5.15 Sanitas software licensed to Southern Company. UG




Constituent: Chloride Analysis Run 6/5/2020 7:55 AM View: Trend Test Plant William C Gorgas Client: Southern Company Data: Gorgas GSA




Constituent: Chloride Analysis Run 6/5/2020 7:55 AM View: Trend Test Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

#### Sanitas™ v.9.5.15 Sanitas software licensed to Southern Company. UG Hollow symbols indicate censored values.



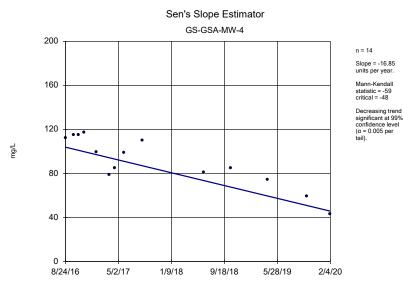
Constituent: Chloride Analysis Run 6/5/2020 7:55 AM View: Trend Test Plant William C Gorgas Client: Southern Company Data: Gorgas GSA



Constituent: Chloride Analysis Run 6/5/2020 7:55 AM View: Trend Test Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

7/31/18

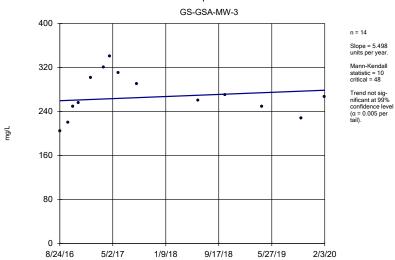
5/3/19


2/3/20

10/28/17

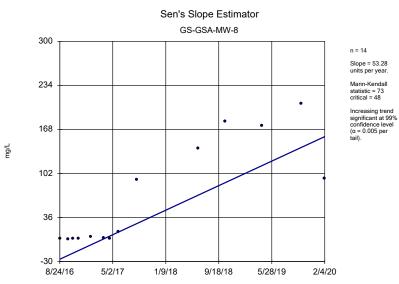
#### Sanitas™ v.9.5.15 Sanitas software licensed to Southern Company. UG

4/25/16

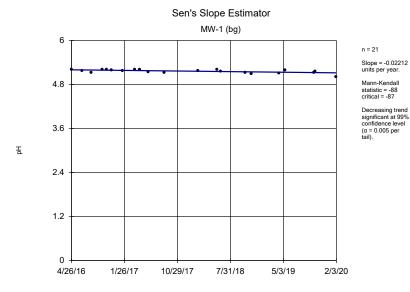

1/25/17



Constituent: Chloride Analysis Run 6/5/2020 7:55 AM View: Trend Test

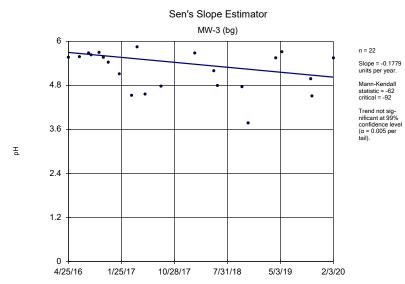

Plant William C Gorgas Client: Southern Company Data: Gorgas GSA






Constituent: Chloride Analysis Run 6/5/2020 7:55 AM View: Trend Test Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

#### Sanitas™ v.9.5.15 Sanitas software licensed to Southern Company. UG




Constituent: Chloride Analysis Run 6/5/2020 7:55 AM View: Trend Test Plant William C Gorgas Client: Southern Company Data: Gorgas GSA



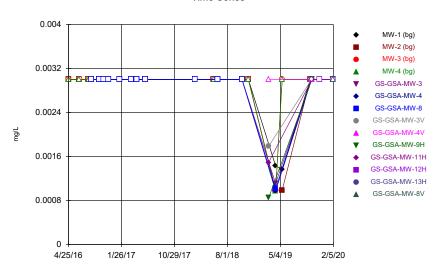
Constituent: pH Analysis Run 6/5/2020 7:55 AM View: Trend Test
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

#### Sanitas™ v.9.5.15 Sanitas software licensed to Southern Company. UG



Constituent: pH Analysis Run 6/5/2020 7:55 AM View: Trend Test
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA




Constituent: pH Analysis Run 6/5/2020 7:55 AM View: Trend Test
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

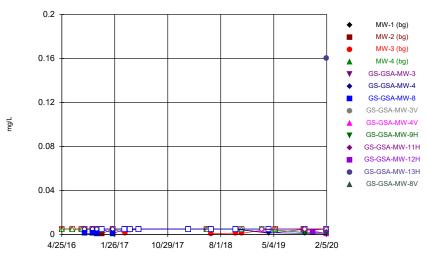
#### Sanitas™ v.9.5.15 Sanitas software licensed to Southern Company. UG




Constituent: pH Analysis Run 6/5/2020 7:55 AM View: Trend Test
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

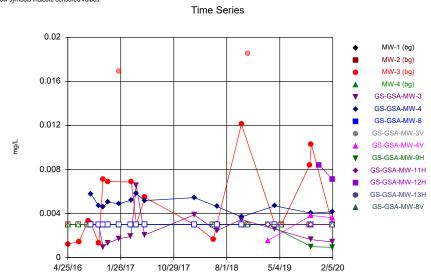
#### Time Series




Constituent: Antimony Analysis Run 7/22/2020 2:44 PM View: Time Series
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

#### Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG




Constituent: Barium Analysis Run 7/22/2020 2:44 PM View: Time Series Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

#### Time Series



Constituent: Arsenic Analysis Run 7/22/2020 2:44 PM View: Time Series Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

#### Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG Hollow symbols indicate censored values.



Constituent: Beryllium Analysis Run 7/22/2020 2:44 PM View: Time Series Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

# **Time Series**

Constituent: Antimony (mg/L) Analysis Run 7/22/2020 2:55 PM View: Time Series

Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

|            | MW-1 (bg)   | MW-2 (bg)    | MW-3 (bg)    | MW-4 (bg)   | GS-GSA-MW-3 | GS-GSA-MW-4  | GS-GSA-MW-8 | GS-GSA-MW-3V | GS-GSA-MW-4V |
|------------|-------------|--------------|--------------|-------------|-------------|--------------|-------------|--------------|--------------|
| 4/25/2016  |             | <0.003       | <0.003       | < 0.003     |             |              |             |              |              |
| 4/26/2016  | <0.003      |              |              |             |             |              |             |              |              |
| 6/20/2016  | <0.003      | <0.003       |              | < 0.003     |             |              |             |              |              |
| 6/22/2016  |             |              | <0.003       |             |             |              |             |              |              |
| 8/8/2016   | <0.003      | <0.003       |              |             |             |              |             |              |              |
| 8/9/2016   |             |              | <0.003       | < 0.003     |             |              |             |              |              |
| 8/24/2016  | <0.003      | <0.003       | <0.003       | < 0.003     | <0.003      | <0.003       | <0.003      |              |              |
| 10/3/2016  | <0.003      | <0.003       |              | <0.003      | <0.003      | <0.003       | <0.003      |              |              |
| 10/4/2016  |             |              | <0.003       |             |             |              |             |              |              |
| 10/26/2016 | <0.003      | <0.003       | <0.003       | <0.003      | <0.003      | <0.003       | <0.003      |              |              |
| 11/21/2016 | <0.003      | <0.003       | <0.003       | <0.003      | <0.003      | <0.003       | <0.003      |              |              |
| 1/17/2017  | <0.003      | <0.003       |              |             | <0.003      | <0.003       | <0.003      |              |              |
| 1/18/2017  |             |              | <0.003       | <0.003      |             |              |             |              |              |
| 3/20/2017  |             |              |              |             | <0.003      |              | <0.003      |              |              |
| 3/21/2017  |             |              |              |             |             | <0.003       |             |              |              |
| 3/22/2017  | <0.003      | <0.003       | <0.003       | <0.003      |             |              |             |              |              |
| 4/17/2017  |             |              |              |             | <0.003      | <0.003       |             |              |              |
| 4/18/2017  | <0.003      | <0.003       | <0.003       | <0.003      |             |              | <0.003      |              |              |
| 5/30/2017  | <0.003      |              |              |             | <0.003      | <0.003       | <0.003      |              |              |
| 5/31/2017  |             | <0.003       | <0.003       |             |             |              |             |              |              |
| 2/13/2018  | <0.003      | <0.003       | <0.003       | <0.003      | <0.003      | <0.003       | <0.003      |              |              |
| 5/22/2018  | <0.003      | <0.003       |              |             |             |              |             |              |              |
| 5/23/2018  |             |              |              | <0.003      |             |              |             |              |              |
| 5/24/2018  |             |              | <0.003       |             |             |              |             |              |              |
| 6/11/2018  |             |              |              |             | <0.003      | <0.003       |             |              |              |
| 6/12/2018  | <0.003      | <0.003       | <0.003       | <0.003      |             |              | <0.003      |              |              |
| 10/17/2018 | <0.003      | <0.003       | <0.003       | <0.003      | <0.003      | <0.003       | <0.003      |              |              |
| 11/19/2018 | <0.003      | <0.003       | <0.003       | <0.003      |             |              |             |              |              |
| 3/4/2019   |             |              |              |             |             |              |             |              |              |
| 3/5/2019   |             |              |              |             |             |              |             | 0.00179 (J)  | <0.003       |
| 4/10/2019  | 0.00143 (J) | 0.000993 (J) | 0.000978 (J) | 0.00097 (J) | 0.00111 (J) | 0.000976 (J) | 0.00102 (J) |              |              |
| 5/14/2019  | 0.00137 (J) | 0.000989 (J) | <0.003       | <0.003      |             |              |             |              |              |
| 10/8/2019  | <0.003      | <0.003       | <0.003       |             |             |              |             |              |              |
| 10/10/2019 |             |              |              | <0.003      |             |              |             |              |              |
| 10/14/2019 | .0.000      |              |              |             | <0.003      | <0.003       | <0.003      | <0.003       | <0.003       |
| 10/16/2019 | <0.003      | <0.003       | <0.003       | <0.003      |             |              |             |              |              |
| 11/26/2019 | 10.000      | -0.000       | -0.000       | -0.000      | -0.000      |              |             | 10.000       | -0.000       |
| 2/3/2020   | <0.003      | <0.003       | <0.003       | <0.003      | <0.003      | z0.002       | -0.002      | <0.003       | <0.003       |
| 2/4/2020   |             |              |              |             |             | <0.003       | <0.003      |              |              |
| 2/5/2020   |             |              |              |             |             |              |             |              |              |

# **Time Series**

Constituent: Antimony (mg/L) Analysis Run 7/22/2020 2:55 PM View: Time Series
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

|            | GS-GSA-MW-9H | GS-GSA-MW-11 | H GS-GSA-MW-12 | H GS-GSA-MW-13 | H GS-GSA-MW-8 | BV . |  |  |
|------------|--------------|--------------|----------------|----------------|---------------|------|--|--|
| 4/25/2016  |              |              |                |                |               |      |  |  |
| 4/26/2016  |              |              |                |                |               |      |  |  |
| 6/20/2016  |              |              |                |                |               |      |  |  |
| 6/22/2016  |              |              |                |                |               |      |  |  |
| 8/8/2016   |              |              |                |                |               |      |  |  |
| 8/9/2016   |              |              |                |                |               |      |  |  |
| 8/24/2016  |              |              |                |                |               |      |  |  |
| 10/3/2016  |              |              |                |                |               |      |  |  |
| 10/4/2016  |              |              |                |                |               |      |  |  |
| 10/26/2016 |              |              |                |                |               |      |  |  |
| 11/21/2016 |              |              |                |                |               |      |  |  |
| 1/17/2017  |              |              |                |                |               |      |  |  |
| 1/18/2017  |              |              |                |                |               |      |  |  |
| 3/20/2017  |              |              |                |                |               |      |  |  |
| 3/21/2017  |              |              |                |                |               |      |  |  |
| 3/22/2017  |              |              |                |                |               |      |  |  |
| 4/17/2017  |              |              |                |                |               |      |  |  |
| 4/18/2017  |              |              |                |                |               |      |  |  |
| 5/30/2017  |              |              |                |                |               |      |  |  |
| 5/31/2017  |              |              |                |                |               |      |  |  |
| 2/13/2018  |              |              |                |                |               |      |  |  |
| 5/22/2018  |              |              |                |                |               |      |  |  |
| 5/23/2018  |              |              |                |                |               |      |  |  |
| 5/24/2018  |              |              |                |                |               |      |  |  |
| 6/11/2018  |              |              |                |                |               |      |  |  |
| 6/12/2018  |              |              |                |                |               |      |  |  |
| 10/17/2018 |              |              |                |                |               |      |  |  |
| 11/19/2018 |              |              |                |                |               |      |  |  |
| 3/4/2019   |              | 0.00149 (J)  |                |                |               |      |  |  |
| 3/5/2019   | 0.000852 (J) |              |                |                |               |      |  |  |
| 4/10/2019  |              |              |                |                |               |      |  |  |
| 5/14/2019  |              |              |                |                |               |      |  |  |
| 10/8/2019  |              |              |                |                |               |      |  |  |
| 10/10/2019 |              |              |                |                |               |      |  |  |
| 10/14/2019 |              |              |                |                |               |      |  |  |
| 10/16/2019 | <0.003       | <0.003       |                |                |               |      |  |  |
| 11/26/2019 |              |              | <0.003         |                |               |      |  |  |
| 2/3/2020   |              |              |                |                |               |      |  |  |
| 2/4/2020   | <0.003       | <0.003       | <0.003         | <0.003         |               |      |  |  |
| 2/5/2020   |              |              |                |                | < 0.003       |      |  |  |

Constituent: Arsenic (mg/L) Analysis Run 7/22/2020 2:55 PM View: Time Series
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

|            | MW-1 (bg) | MW-2 (bg)   | MW-3 (bg)   | MW-4 (bg) | GS-GSA-MW-3 | GS-GSA-MW-4 | GS-GSA-MW-8 | GS-GSA-MW-3V | GS-GSA-MW-4V |
|------------|-----------|-------------|-------------|-----------|-------------|-------------|-------------|--------------|--------------|
| 4/25/2016  |           | <0.005      | <0.005      | <0.005    |             |             |             |              |              |
| 4/26/2016  | <0.005    |             |             |           |             |             |             |              |              |
| 6/20/2016  | <0.005    | <0.005      |             | <0.005    |             |             |             |              |              |
| 6/22/2016  |           |             | <0.005      |           |             |             |             |              |              |
| 8/8/2016   | <0.005    | <0.005      |             |           |             |             |             |              |              |
| 8/9/2016   |           |             | <0.005      | <0.005    |             |             |             |              |              |
| 8/24/2016  | <0.005    | <0.005      | <0.005      | <0.005    | <0.005      | <0.005      | 0.00119 (J) |              |              |
| 10/3/2016  | <0.005    | <0.005      |             | <0.005    | <0.005      | <0.005      | 0.00114 (J) |              |              |
| 10/4/2016  |           |             | <0.005      |           |             |             |             |              |              |
| 10/26/2016 | <0.005    | <0.005      | <0.005      | <0.005    | <0.005      | <0.005      | 0.0011 (J)  |              |              |
| 11/21/2016 | <0.005    | 0.00111 (J) | <0.005      | <0.005    | <0.005      | <0.005      | <0.005      |              |              |
| 1/17/2017  | <0.005    | <0.005      |             |           | <0.005      | <0.005      | 0.00103 (J) |              |              |
| 1/18/2017  |           |             | <0.005      | <0.005    |             |             |             |              |              |
| 3/20/2017  |           |             |             |           | <0.005      |             | <0.005      |              |              |
| 3/21/2017  |           |             |             |           |             | <0.005      |             |              |              |
| 3/22/2017  | <0.005    | <0.005      | 0.00122 (J) | <0.005    |             |             |             |              |              |
| 4/17/2017  |           |             |             |           | 0.00405 (J) | <0.005      |             |              |              |
| 4/18/2017  | <0.005    | <0.005      | <0.005      | <0.005    |             |             | <0.005      |              |              |
| 5/30/2017  | <0.005    |             |             |           | <0.005      | <0.005      | <0.005      |              |              |
| 5/31/2017  |           | <0.005      | <0.005      |           |             |             |             |              |              |
| 2/13/2018  | <0.005    | <0.005      | <0.005      | <0.005    | <0.005      | <0.005      | <0.005      |              |              |
| 5/22/2018  | <0.005    | <0.005      |             |           |             |             |             |              |              |
| 5/23/2018  |           |             |             | <0.005    |             |             |             |              |              |
| 5/24/2018  |           |             | <0.005      |           |             |             |             |              |              |
| 6/11/2018  |           |             |             |           | <0.005      | <0.005      |             |              |              |
| 6/12/2018  | <0.005    | <0.005      | 0.00103 (J) | <0.005    |             |             | <0.005      |              |              |
| 10/17/2018 | <0.005    | <0.005      | 0.00133 (J) | <0.005    | <0.005      | <0.005      | <0.005      |              |              |
| 11/19/2018 | <0.005    | <0.005      | 0.0012 (J)  | <0.005    |             |             |             |              |              |
| 3/4/2019   |           |             |             |           |             |             |             |              |              |
| 3/5/2019   |           |             |             |           |             |             |             | <0.005       | <0.005       |
| 4/10/2019  | <0.005    | <0.005      | <0.005      | <0.005    | 0.00121 (J) | 0.00176 (J) | <0.005      |              |              |
| 5/14/2019  | <0.005    | <0.005      | <0.005      | <0.005    |             |             |             |              |              |
| 10/8/2019  | <0.005    | <0.005      | 0.0048 (J)  |           |             |             |             |              |              |
| 10/10/2019 |           |             |             | <0.005    |             |             |             |              |              |
| 10/14/2019 |           |             |             |           | <0.005      | 0.0012 (J)  | <0.005      | <0.005       | <0.005       |
| 10/16/2019 | <0.005    | <0.005      | 0.00389 (J) | <0.005    |             |             |             |              |              |
| 11/26/2019 |           |             |             |           |             |             |             |              |              |
| 2/3/2020   | <0.005    | <0.005      | <0.005      | <0.005    | <0.005      |             |             | <0.005       | 0.00101 (J)  |
| 2/4/2020   |           |             |             |           |             | 0.00128 (J) | <0.005      |              |              |
| 2/5/2020   |           |             |             |           |             |             |             |              |              |
|            |           |             |             |           |             |             |             |              |              |

Constituent: Arsenic (mg/L) Analysis Run 7/22/2020 2:55 PM View: Time Series
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

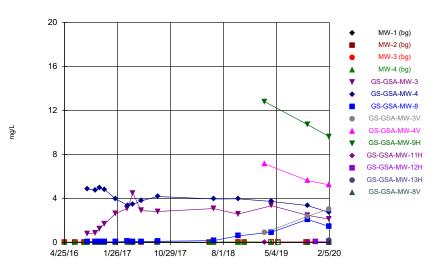
|            | GS-GSA-MW-9H | GS-GSA-MW-11H | GS-GSA-MW-12H | GS-GSA-MW-13H | GS-GSA-MW-8V |
|------------|--------------|---------------|---------------|---------------|--------------|
| 4/25/2016  |              |               |               |               |              |
| 4/26/2016  |              |               |               |               |              |
| 6/20/2016  |              |               |               |               |              |
| 6/22/2016  |              |               |               |               |              |
| 8/8/2016   |              |               |               |               |              |
| 8/9/2016   |              |               |               |               |              |
| 8/24/2016  |              |               |               |               |              |
| 10/3/2016  |              |               |               |               |              |
| 10/4/2016  |              |               |               |               |              |
| 10/26/2016 |              |               |               |               |              |
| 11/21/2016 |              |               |               |               |              |
| 1/17/2017  |              |               |               |               |              |
| 1/18/2017  |              |               |               |               |              |
| 3/20/2017  |              |               |               |               |              |
| 3/21/2017  |              |               |               |               |              |
| 3/22/2017  |              |               |               |               |              |
| 4/17/2017  |              |               |               |               |              |
| 4/18/2017  |              |               |               |               |              |
| 5/30/2017  |              |               |               |               |              |
| 5/31/2017  |              |               |               |               |              |
| 2/13/2018  |              |               |               |               |              |
| 5/22/2018  |              |               |               |               |              |
| 5/23/2018  |              |               |               |               |              |
| 5/24/2018  |              |               |               |               |              |
| 6/11/2018  |              |               |               |               |              |
| 6/12/2018  |              |               |               |               |              |
| 10/17/2018 |              |               |               |               |              |
| 11/19/2018 |              |               |               |               |              |
| 3/4/2019   |              | <0.005        |               |               |              |
| 3/5/2019   | <0.005       |               |               |               |              |
| 4/10/2019  |              |               |               |               |              |
| 5/14/2019  |              |               |               |               |              |
| 10/8/2019  |              |               |               |               |              |
| 10/10/2019 |              |               |               |               |              |
| 10/14/2019 | 0.0040./**   | .0.005        |               |               |              |
| 10/16/2019 | 0.0019 (J)   | <0.005        | 0.0010475     |               |              |
| 11/26/2019 |              |               | 0.00194 (J)   |               |              |
| 2/3/2020   | 0.00400 ( 1) | .0.005        | 0.0045777     | 0.10          |              |
| 2/4/2020   | 0.00123 (J)  | <0.005        | 0.00157 (J)   | 0.16          | 0.00000 (1)  |
| 2/5/2020   |              |               |               |               | 0.00232 (J)  |

Constituent: Barium (mg/L) Analysis Run 7/22/2020 2:55 PM View: Time Series
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

|            | MW-1 (bg)   | MW-2 (bg) | MW-3 (bg)   | MW-4 (bg)   | GS-GSA-MW-3 | GS-GSA-MW-4 | GS-GSA-MW-8 | GS-GSA-MW-3V | GS-GSA-MW-4V |
|------------|-------------|-----------|-------------|-------------|-------------|-------------|-------------|--------------|--------------|
| 4/25/2016  |             | 0.0134    | 0.00803 (J) | 0.0114      |             |             |             |              |              |
| 4/26/2016  | 0.00941 (J) |           |             |             |             |             |             |              |              |
| 6/20/2016  | 0.00951 (J) | 0.0165    |             | 0.0103      |             |             |             |              |              |
| 6/22/2016  |             |           | 0.0101      |             |             |             |             |              |              |
| 8/8/2016   | 0.00991 (J) | 0.0162    |             |             |             |             |             |              |              |
| 8/9/2016   |             |           | 0.00889 (J) | 0.0119      |             |             |             |              |              |
| 8/24/2016  | 0.00949 (J) | 0.0139    | 0.00962 (J) | 0.0118      | 0.0155      | 0.0135      | 0.0536      |              |              |
| 10/3/2016  | 0.0105      | 0.0164    |             | 0.0119      | 0.0156      | 0.0127      | 0.0681      |              |              |
| 10/4/2016  |             |           | 0.00984 (J) |             |             |             |             |              |              |
| 10/26/2016 | 0.00931 (J) | 0.0138    | 0.00878 (J) | 0.0104      | 0.0122      | 0.0118      | 0.0562      |              |              |
| 11/21/2016 | 0.00879 (J) | 0.0144    | 0.00833 (J) | 0.0106      | 0.0128      | 0.012       | 0.0604      |              |              |
| 1/17/2017  | 0.00929 (J) | 0.0135    |             |             | 0.0125      | 0.0119      | 0.0402      |              |              |
| 1/18/2017  |             |           | 0.00966 (J) | 0.0101      |             |             |             |              |              |
| 3/20/2017  |             |           |             |             | 0.0124      |             | 0.0305      |              |              |
| 3/21/2017  |             |           |             |             |             | 0.0116      |             |              |              |
| 3/22/2017  | 0.00938 (J) | 0.0132    | 0.00991 (J) | 0.0103      |             |             |             |              |              |
| 4/17/2017  |             |           |             |             | 0.0149      | 0.0112      |             |              |              |
| 4/18/2017  | 0.00964 (J) | 0.012     | 0.00976 (J) | 0.0107      |             |             | 0.0276      |              |              |
| 5/30/2017  | 0.00982 (J) |           |             |             | 0.0121      | 0.0117      | 0.0272      |              |              |
| 5/31/2017  |             | 0.0126    | 0.00866 (J) |             |             |             |             |              |              |
| 2/13/2018  | 0.00937 (J) | 0.0127    | 0.00821 (J) | 0.0111      | 0.0118      | 0.0121      | 0.0249      |              |              |
| 5/22/2018  | 0.0102      | 0.0131    |             |             |             |             |             |              |              |
| 5/23/2018  |             |           |             | 0.0107      |             |             |             |              |              |
| 5/24/2018  |             |           | 0.00977 (J) |             |             |             |             |              |              |
| 6/11/2018  |             |           |             |             | 0.0127      | 0.0139      |             |              |              |
| 6/12/2018  | 0.0104      | 0.0138    | 0.00997 (J) | 0.0108      |             |             | 0.0234      |              |              |
| 10/17/2018 | 0.00952 (J) | 0.0137    | 0.0126      | 0.0119      | 0.013       | 0.0125      | 0.0236      |              |              |
| 11/19/2018 | 0.00915 (J) | 0.0115    | 0.0109      | 0.0107      |             |             |             |              |              |
| 3/4/2019   |             |           |             |             |             |             |             |              |              |
| 3/5/2019   |             |           |             |             |             |             |             | 0.0956       | 0.0136       |
| 4/10/2019  | 0.0105      | 0.0111    | 0.0101      | 0.0107      | 0.0153      | 0.0136      | 0.02        |              |              |
| 5/14/2019  | 0.00913 (J) | 0.0109    | 0.00922 (J) | 0.00949 (J) |             |             |             |              |              |
| 10/8/2019  | 0.0109      | 0.0151    | 0.0154      |             |             |             |             |              |              |
| 10/10/2019 |             |           |             | 0.0116      |             |             |             |              |              |
| 10/14/2019 |             |           |             |             | 0.0122      | 0.0147      | 0.0215      | 0.0451       | 0.0123       |
| 10/16/2019 | 0.0106      | 0.0146    | 0.0128      | 0.0125      |             |             |             |              |              |
| 11/26/2019 |             |           |             |             |             |             |             |              |              |
| 2/3/2020   | 0.00995 (J) | 0.0122    | 0.0086 (J)  | 0.0103      | 0.0141      |             |             | 0.0215       | 0.0103       |
| 2/4/2020   |             |           |             |             |             | 0.0124      | 0.0209      |              |              |
| 2/5/2020   |             |           |             |             |             |             |             |              |              |
|            |             |           |             |             |             |             |             |              |              |

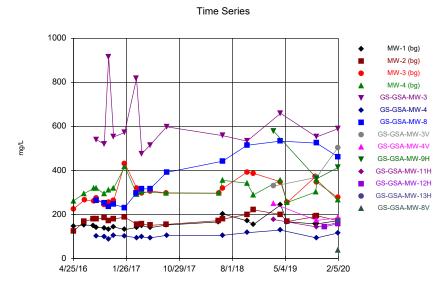
Constituent: Barium (mg/L) Analysis Run 7/22/2020 2:55 PM View: Time Series
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

|            | GS-GSA-MW-9H | GS-GSA-MW-11H | GS-GSA-MW-12H | GS-GSA-MW-13H | GS-GSA-MW-8V |  |  |
|------------|--------------|---------------|---------------|---------------|--------------|--|--|
| 4/25/2016  |              |               |               |               |              |  |  |
| 4/26/2016  |              |               |               |               |              |  |  |
| 6/20/2016  |              |               |               |               |              |  |  |
| 6/22/2016  |              |               |               |               |              |  |  |
| 8/8/2016   |              |               |               |               |              |  |  |
| 8/9/2016   |              |               |               |               |              |  |  |
| 8/24/2016  |              |               |               |               |              |  |  |
| 10/3/2016  |              |               |               |               |              |  |  |
| 10/4/2016  |              |               |               |               |              |  |  |
| 10/26/2016 |              |               |               |               |              |  |  |
| 11/21/2016 |              |               |               |               |              |  |  |
| 1/17/2017  |              |               |               |               |              |  |  |
| 1/18/2017  |              |               |               |               |              |  |  |
| 3/20/2017  |              |               |               |               |              |  |  |
| 3/21/2017  |              |               |               |               |              |  |  |
| 3/22/2017  |              |               |               |               |              |  |  |
| 4/17/2017  |              |               |               |               |              |  |  |
| 4/18/2017  |              |               |               |               |              |  |  |
| 5/30/2017  |              |               |               |               |              |  |  |
| 5/31/2017  |              |               |               |               |              |  |  |
| 2/13/2018  |              |               |               |               |              |  |  |
| 5/22/2018  |              |               |               |               |              |  |  |
| 5/23/2018  |              |               |               |               |              |  |  |
| 5/24/2018  |              |               |               |               |              |  |  |
| 6/11/2018  |              |               |               |               |              |  |  |
| 6/12/2018  |              |               |               |               |              |  |  |
| 10/17/2018 |              |               |               |               |              |  |  |
| 11/19/2018 |              |               |               |               |              |  |  |
| 3/4/2019   |              | 0.0239        |               |               |              |  |  |
| 3/5/2019   | 0.0312       |               |               |               |              |  |  |
| 4/10/2019  |              |               |               |               |              |  |  |
| 5/14/2019  |              |               |               |               |              |  |  |
| 10/8/2019  |              |               |               |               |              |  |  |
| 10/10/2019 |              |               |               |               |              |  |  |
| 10/14/2019 |              |               |               |               |              |  |  |
| 10/16/2019 | 0.0163       | 0.0192        |               |               |              |  |  |
| 11/26/2019 |              |               | 0.0184        |               |              |  |  |
| 2/3/2020   |              |               |               |               |              |  |  |
| 2/4/2020   | 0.0148       | 0.0148        | 0.0141        | 0.0296        |              |  |  |
| 2/5/2020   |              |               |               |               | 0.096        |  |  |
|            |              |               |               |               |              |  |  |


Constituent: Beryllium (mg/L) Analysis Run 7/22/2020 2:55 PM View: Time Series

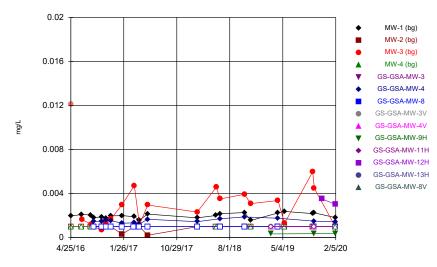
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

|       |        | MW-1 (bg) | MW-2 (bg) | MW-3 (bg)   | MW-4 (bg) | GS-GSA-MW-3  | GS-GSA-MW-4 | GS-GSA-MW-8 | GS-GSA-MW-3V | GS-GSA-MW-4V |
|-------|--------|-----------|-----------|-------------|-----------|--------------|-------------|-------------|--------------|--------------|
| 4/25/ | /2016  |           | <0.003    | 0.00122 (J) | <0.003    |              |             |             |              |              |
| 4/26/ | /2016  | <0.003    |           |             |           |              |             |             |              |              |
| 6/20/ | /2016  | <0.003    | <0.003    |             | <0.003    |              |             |             |              |              |
| 6/22/ | /2016  |           |           | 0.00144 (J) |           |              |             |             |              |              |
| 8/8/2 | 2016   | <0.003    | <0.003    |             |           |              |             |             |              |              |
| 8/9/2 | 2016   |           |           | 0.00331     | <0.003    |              |             |             |              |              |
| 8/24/ | /2016  | <0.003    | <0.003    | 0.00308     | <0.003    | <0.003       | 0.00576     | <0.003      |              |              |
| 10/3/ | /2016  | <0.003    | <0.003    |             | <0.003    | <0.003       | 0.00469     | <0.003      |              |              |
| 10/4/ | /2016  |           |           | 0.00129 (J) |           |              |             |             |              |              |
| 10/26 | 6/2016 | <0.003    | <0.003    | 0.0071      | <0.003    | 0.000922 (J) | 0.00459     | <0.003      |              |              |
| 11/2  | 1/2016 | <0.003    | <0.003    | 0.00689     | <0.003    | 0.00133 (J)  | 0.00502     | <0.003      |              |              |
| 1/17/ | /2017  | <0.003    | <0.003    |             |           | 0.0017 (J)   | 0.00488     | <0.003      |              |              |
| 1/18/ | /2017  |           |           | 0.0169 (o)  | <0.003    |              |             |             |              |              |
| 3/20/ | /2017  |           |           |             |           | 0.00191 (J)  |             | <0.003      |              |              |
| 3/21/ | /2017  |           |           |             |           |              | 0.00521     |             |              |              |
| 3/22/ | /2017  | <0.003    | <0.003    | 0.00686     | <0.003    |              |             |             |              |              |
| 4/17/ | /2017  |           |           |             |           | 0.00655      | 0.0058      |             |              |              |
| 4/18/ | /2017  | <0.003    | <0.003    | <0.003      | <0.003    |              |             | <0.003      |              |              |
| 5/30/ | /2017  | <0.003    |           |             |           | 0.00204 (J)  | 0.00517     | <0.003      |              |              |
| 5/31/ | /2017  |           | <0.003    | 0.00547     |           |              |             |             |              |              |
| 2/13/ | /2018  | <0.003    | <0.003    | <0.003      | <0.003    | 0.00387      | 0.00544     | <0.003      |              |              |
| 5/22/ | /2018  | <0.003    | <0.003    |             |           |              |             |             |              |              |
| 5/23/ | /2018  |           |           |             | <0.003    |              |             |             |              |              |
| 5/24/ | /2018  |           |           | 0.00164 (J) |           |              |             |             |              |              |
| 6/11/ | /2018  |           |           |             |           | 0.00244 (J)  | 0.00463     |             |              |              |
| 6/12/ | /2018  | <0.003    | <0.003    | 0.00306     | <0.003    |              |             | <0.003      |              |              |
| 10/17 | 7/2018 | <0.003    | <0.003    | 0.0121      | <0.003    | 0.00345      | 0.00369     | <0.003      |              |              |
| 11/19 | 9/2018 | <0.003    | <0.003    | 0.0185 (o)  | <0.003    |              |             |             |              |              |
| 3/4/2 | 2019   |           |           |             |           |              |             |             |              |              |
| 3/5/2 | 2019   |           |           |             |           |              |             |             | <0.003       | 0.00155 (J)  |
| 4/10/ | /2019  | <0.003    | <0.003    | <0.003      | <0.003    | 0.00257 (J)  | 0.00469     | <0.003      |              |              |
| 5/14/ | /2019  | <0.003    | <0.003    | <0.003      | <0.003    |              |             |             |              |              |
| 10/8/ | /2019  | <0.003    | <0.003    | 0.0084      |           |              |             |             |              |              |
| 10/10 | 0/2019 |           |           |             | <0.003    |              |             |             |              |              |
| 10/14 | 4/2019 |           |           |             |           | 0.00162 (J)  | 0.00403     | <0.003      | <0.003       | 0.00382      |
| 10/16 | 6/2019 | <0.003    | <0.003    | 0.0103      | <0.003    |              |             |             |              |              |
| 11/26 | 6/2019 |           |           |             |           |              |             |             |              |              |
| 2/3/2 | 2020   | <0.003    | <0.003    | <0.003      | <0.003    | 0.00141 (J)  |             |             | <0.003       | 0.00362      |
| 2/4/2 | 2020   |           |           |             |           |              | 0.00415     | <0.003      |              |              |
| 2/5/2 | 2020   |           |           |             |           |              |             |             |              |              |
|       |        |           |           |             |           |              |             |             |              |              |


Constituent: Beryllium (mg/L) Analysis Run 7/22/2020 2:55 PM View: Time Series Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

|            | GS-GSA-MW-9H | GS-GSA-MW-11H | GS-GSA-MW-12H | GS-GSA-MW-13H | GS-GSA-MW-8V |
|------------|--------------|---------------|---------------|---------------|--------------|
| 4/25/2016  |              |               |               |               |              |
| 4/26/2016  |              |               |               |               |              |
| 6/20/2016  |              |               |               |               |              |
| 6/22/2016  |              |               |               |               |              |
| 8/8/2016   |              |               |               |               |              |
| 8/9/2016   |              |               |               |               |              |
| 8/24/2016  |              |               |               |               |              |
| 10/3/2016  |              |               |               |               |              |
| 10/4/2016  |              |               |               |               |              |
| 10/26/2016 |              |               |               |               |              |
| 11/21/2016 |              |               |               |               |              |
| 1/17/2017  |              |               |               |               |              |
| 1/18/2017  |              |               |               |               |              |
| 3/20/2017  |              |               |               |               |              |
| 3/21/2017  |              |               |               |               |              |
| 3/22/2017  |              |               |               |               |              |
| 4/17/2017  |              |               |               |               |              |
| 4/18/2017  |              |               |               |               |              |
| 5/30/2017  |              |               |               |               |              |
| 5/31/2017  |              |               |               |               |              |
| 2/13/2018  |              |               |               |               |              |
| 5/22/2018  |              |               |               |               |              |
| 5/23/2018  |              |               |               |               |              |
| 5/24/2018  |              |               |               |               |              |
| 6/11/2018  |              |               |               |               |              |
| 6/12/2018  |              |               |               |               |              |
| 10/17/2018 |              |               |               |               |              |
| 11/19/2018 |              |               |               |               |              |
| 3/4/2019   |              | <0.003        |               |               |              |
| 3/5/2019   | <0.003       |               |               |               |              |
| 4/10/2019  |              |               |               |               |              |
| 5/14/2019  |              |               |               |               |              |
| 10/8/2019  |              |               |               |               |              |
| 10/10/2019 |              |               |               |               |              |
| 10/14/2019 |              |               |               |               |              |
| 10/16/2019 | 0.000985 (J) | <0.003        |               |               |              |
| 11/26/2019 |              |               | 0.0084        |               |              |
| 2/3/2020   |              |               |               |               |              |
| 2/4/2020   | 0.000929 (J) | <0.003        | 0.00709       | <0.003        |              |
| 2/5/2020   |              |               |               |               | <0.003       |




Constituent: Boron Analysis Run 7/22/2020 2:44 PM View: Time Series Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

### $Sanitas^{\text{\tiny{TM}}} \text{ v.9.6.24 Sanitas software licensed to Southern Company. UG}$



Constituent: Calcium Analysis Run 7/22/2020 2:44 PM View: Time Series Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

### Time Series



Constituent: Cadmium Analysis Run 7/22/2020 2:44 PM View: Time Series
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

## Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG Hollow symbols indicate censored values.

4/25/16

1/26/17

### Time Series 400 MW-1 (bg) MW-2 (bg) MW-3 (bg) 320 MW-4 (bg) GS-GSA-MW-3 GS-GSA-MW-4 GS-GSA-MW-8 240 GS-GSA-MW-3V mg/L GS-GSA-MW-4V GS-GSA-MW-9H 160 GS-GSA-MW-11H GS-GSA-MW-12H GS-GSA-MW-13H GS-GSA-MW-8V 80 0

Constituent: Chloride Analysis Run 7/22/2020 2:44 PM View: Time Series
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

8/1/18

5/4/19

2/5/20

10/29/17

Constituent: Boron (mg/L) Analysis Run 7/22/2020 2:55 PM View: Time Series
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

|            | MW-1 (bg)  | MW-2 (bg)  | MW-3 (bg)  | MW-4 (bg)  | GS-GSA-MW-3 | GS-GSA-MW-4 | GS-GSA-MW-8 | GS-GSA-MW-3V | GS-GSA-MW-4V |
|------------|------------|------------|------------|------------|-------------|-------------|-------------|--------------|--------------|
| 4/25/2016  |            | 0.0241 (J) | 0.028 (J)  | 0.0414 (J) |             |             |             |              |              |
| 4/26/2016  | 0.0231 (J) |            |            |            |             |             |             |              |              |
| 6/20/2016  | 0.0227 (J) | 0.0284 (J) |            | 0.0434 (J) |             |             |             |              |              |
| 6/22/2016  |            |            | 0.0433 (J) |            |             |             |             |              |              |
| 8/8/2016   | 0.0278 (J) | 0.034 (J)  |            |            |             |             |             |              |              |
| 8/9/2016   |            |            | 0.0429 (J) | 0.0453 (J) |             |             |             |              |              |
| 8/24/2016  | 0.0247 (J) | 0.0316 (J) | 0.0431 (J) | 0.0451 (J) | 0.799       | 4.88        | 0.0898 (J)  |              |              |
| 10/3/2016  | 0.0307 (J) | 0.0367 (J) |            | 0.0511 (J) | 0.889       | 4.75        | 0.0821 (J)  |              |              |
| 10/4/2016  |            |            | 0.04 (J)   |            |             |             |             |              |              |
| 10/26/2016 | 0.0241 (J) | 0.0331 (J) | 0.0375 (J) | 0.0507 (J) | 1.23        | 4.96        | 0.0889 (J)  |              |              |
| 11/21/2016 | 0.0202 (J) | 0.035 (J)  | 0.0406 (J) | 0.0458 (J) | 1.72        | 4.82        | 0.0788 (J)  |              |              |
| 1/17/2017  | 0.0201 (J) | 0.0259 (J) |            |            | 2.63        | 3.97        | 0.0607 (J)  |              |              |
| 1/18/2017  |            |            | 0.0548 (J) | 0.0445 (J) |             |             |             |              |              |
| 3/20/2017  |            |            |            |            | 3.11        |             | 0.114       |              |              |
| 3/21/2017  |            |            |            |            |             | 3.39        |             |              |              |
| 3/22/2017  | 0.0224 (J) | 0.0243 (J) | 0.0344 (J) | 0.0432 (J) |             |             |             |              |              |
| 4/17/2017  |            |            |            |            | 4.51        | 3.46        |             |              |              |
| 4/18/2017  | <0.1       | 0.0206 (J) | <0.1       | 0.0409 (J) |             |             | 0.108       |              |              |
| 5/30/2017  | <0.1       |            |            |            | 2.9         | 3.79        | 0.105       |              |              |
| 5/31/2017  |            | 0.0234 (J) | 0.0454 (J) |            |             |             |             |              |              |
| 8/23/2017  | 0.0253 (J) | 0.0267 (J) | 0.0425 (J) | 0.042 (J)  |             |             |             |              |              |
| 8/24/2017  |            |            |            |            | 2.83        | 4.19        | 0.12        |              |              |
| 5/22/2018  | 0.0224 (J) | 0.0251 (J) |            |            |             |             |             |              |              |
| 5/23/2018  |            |            |            | 0.0433 (J) |             |             |             |              |              |
| 5/24/2018  |            |            | 0.0339 (J) |            |             |             |             |              |              |
| 6/11/2018  |            |            |            |            | 3.09        | 3.96        |             |              |              |
| 6/12/2018  | 0.0214 (J) | 0.0275 (J) | 0.0371 (J) | 0.0478 (J) |             |             | 0.181       |              |              |
| 10/17/2018 | 0.0216 (J) | 0.0321 (J) | 0.0596 (J) | 0.0468 (J) | 2.59        | 3.98        | 0.616       |              |              |
| 11/19/2018 | 0.0237 (J) | 0.0324 (J) | 0.0514 (J) | 0.0526 (J) |             |             |             |              |              |
| 3/4/2019   |            |            |            |            |             |             |             |              |              |
| 3/5/2019   |            |            |            |            |             |             |             | 0.895        | 7.15         |
| 4/10/2019  | 0.0304 (J) | <0.1       | <0.1       | 0.0438 (J) | 3.35        | 3.74        | 0.944       |              |              |
| 5/14/2019  | <0.1       | <0.1       | <0.1       | <0.1       |             |             |             |              |              |
| 10/8/2019  | <0.1       | 0.0371 (J) | 0.0537 (J) |            |             |             |             |              |              |
| 10/10/2019 |            |            |            | 0.0487 (J) |             |             |             |              |              |
| 10/14/2019 |            |            |            |            | 2.48        | 3.37        | 2.11        | 2.38         | 5.64         |
| 10/16/2019 | 0.0385 (J) | 0.0419 (J) | 0.05 (J)   | 0.0505 (J) |             |             |             |              |              |
| 11/26/2019 |            |            |            |            |             |             |             |              |              |
| 2/3/2020   | <0.1       | <0.1       | <0.1       | 0.0433 (J) | 2.13        |             |             | 3.06         | 5.25         |
| 2/4/2020   |            |            |            |            |             | 2.74        | 1.47        |              |              |
| 2/5/2020   |            |            |            |            |             |             |             |              |              |
|            |            |            |            |            |             |             |             |              |              |

Constituent: Boron (mg/L) Analysis Run 7/22/2020 2:55 PM View: Time Series
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

|            | GS-GSA-MW-9H | GS-GSA-MW-11H | GS-GSA-MW-12H | GS-GSA-MW-13H | GS-GSA-MW-8V |  |
|------------|--------------|---------------|---------------|---------------|--------------|--|
| 4/25/2016  |              |               |               |               |              |  |
| 4/26/2016  |              |               |               |               |              |  |
| 6/20/2016  |              |               |               |               |              |  |
| 6/22/2016  |              |               |               |               |              |  |
| 8/8/2016   |              |               |               |               |              |  |
| 8/9/2016   |              |               |               |               |              |  |
| 8/24/2016  |              |               |               |               |              |  |
| 10/3/2016  |              |               |               |               |              |  |
| 10/4/2016  |              |               |               |               |              |  |
| 10/26/2016 |              |               |               |               |              |  |
| 11/21/2016 |              |               |               |               |              |  |
| 1/17/2017  |              |               |               |               |              |  |
| 1/18/2017  |              |               |               |               |              |  |
| 3/20/2017  |              |               |               |               |              |  |
| 3/21/2017  |              |               |               |               |              |  |
| 3/22/2017  |              |               |               |               |              |  |
| 4/17/2017  |              |               |               |               |              |  |
| 4/18/2017  |              |               |               |               |              |  |
| 5/30/2017  |              |               |               |               |              |  |
| 5/31/2017  |              |               |               |               |              |  |
| 8/23/2017  |              |               |               |               |              |  |
| 8/24/2017  |              |               |               |               |              |  |
| 5/22/2018  |              |               |               |               |              |  |
| 5/23/2018  |              |               |               |               |              |  |
| 5/24/2018  |              |               |               |               |              |  |
| 6/11/2018  |              |               |               |               |              |  |
| 6/12/2018  |              |               |               |               |              |  |
| 10/17/2018 |              |               |               |               |              |  |
| 11/19/2018 |              |               |               |               |              |  |
| 3/4/2019   |              | 0.0235 (J)    |               |               |              |  |
| 3/5/2019   | 12.8         |               |               |               |              |  |
| 4/10/2019  |              |               |               |               |              |  |
| 5/14/2019  |              |               |               |               |              |  |
| 10/8/2019  |              |               |               |               |              |  |
| 10/10/2019 |              |               |               |               |              |  |
| 10/14/2019 |              |               |               |               |              |  |
| 10/16/2019 | 10.7         | 0.0352 (J)    |               |               |              |  |
| 11/26/2019 |              |               | 0.0798 (J)    |               |              |  |
| 2/3/2020   |              |               |               |               |              |  |
| 2/4/2020   | 9.63         | <0.1          | 0.0748 (J)    | 0.202         |              |  |
| 2/5/2020   |              |               |               |               | 0.136        |  |
|            |              |               |               |               |              |  |

Constituent: Cadmium (mg/L) Analysis Run 7/22/2020 2:55 PM View: Time Series

Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

|            | MW-1 (bg) | MW-2 (bg)    | MW-3 (bg)    | MW-4 (bg) | GS-GSA-MW-3 | GS-GSA-MW-4 | GS-GSA-MW-8 | GS-GSA-MW-3V | GS-GSA-MW-4V |
|------------|-----------|--------------|--------------|-----------|-------------|-------------|-------------|--------------|--------------|
| 4/25/2016  |           | <0.001       | 0.0121 (o)   | <0.001    |             |             |             |              |              |
| 4/26/2016  | 0.00196   |              |              |           |             |             |             |              |              |
| 6/20/2016  | 0.0021    | <0.001       |              | <0.001    |             |             |             |              |              |
| 6/22/2016  |           |              | 0.00163      |           |             |             |             |              |              |
| 8/8/2016   | 0.00206   | <0.001       |              |           |             |             |             |              |              |
| 8/9/2016   |           |              | 0.00122      | <0.001    |             |             |             |              |              |
| 8/24/2016  | 0.00182   | <0.001       | <0.001       | <0.001    | <0.001      | 0.00148     | <0.001      |              |              |
| 10/3/2016  | 0.00188   | <0.001       |              | <0.001    | <0.001      | 0.00147     | <0.001      |              |              |
| 10/4/2016  |           |              | 0.000689 (J) |           |             |             |             |              |              |
| 10/26/2016 | 0.00175   | <0.001       | 0.00136      | <0.001    | <0.001      | 0.00157     | <0.001      |              |              |
| 11/21/2016 | 0.00197   | <0.001       | 0.00171      | <0.001    | <0.001      | 0.00154     | <0.001      |              |              |
| 1/17/2017  | 0.002     | 0.000311 (J) |              |           | <0.001      | 0.00131     | <0.001      |              |              |
| 1/18/2017  |           |              | 0.003        | <0.001    |             |             |             |              |              |
| 3/20/2017  |           |              |              |           | <0.001      |             | <0.001      |              |              |
| 3/21/2017  |           |              |              |           |             | 0.00134     |             |              |              |
| 3/22/2017  | 0.0019    | <0.001       | 0.00473      | <0.001    |             |             |             |              |              |
| 4/17/2017  |           |              |              |           | <0.001      | 0.00122     |             |              |              |
| 4/18/2017  | 0.00159   | <0.001       | 0.00117      | <0.001    |             |             | <0.001      |              |              |
| 5/30/2017  | 0.00214   |              |              |           | <0.001      | 0.00167     | <0.001      |              |              |
| 5/31/2017  |           | 0.000212 (J) | 0.00296      |           |             |             |             |              |              |
| 2/13/2018  | 0.0018    | <0.001       | 0.00232      | <0.001    | <0.001      | 0.00145     | <0.001      |              |              |
| 5/22/2018  | 0.00201   | <0.001       |              |           |             |             |             |              |              |
| 5/23/2018  |           |              |              | <0.001    |             |             |             |              |              |
| 5/24/2018  |           |              | 0.00459      |           |             |             |             |              |              |
| 6/11/2018  |           |              |              |           | <0.001      | 0.00171     |             |              |              |
| 6/12/2018  | 0.00217   | <0.001       | 0.00351      | <0.001    |             |             | <0.001      |              |              |
| 10/17/2018 | 0.00228   | <0.001       | 0.00393      | <0.001    | <0.001      | 0.00188     | <0.001      |              |              |
| 11/19/2018 | 0.00156   | <0.001       | 0.00309      | <0.001    |             |             |             |              |              |
| 3/4/2019   |           |              |              |           |             |             |             |              |              |
| 3/5/2019   |           |              |              |           |             |             |             | <0.001       | <0.001       |
| 4/10/2019  | 0.00224   | <0.001       | 0.00337      | <0.001    | <0.001      | 0.00176     | <0.001      |              |              |
| 5/14/2019  | 0.00238   | <0.001       | 0.0013       | <0.001    |             |             |             |              |              |
| 10/8/2019  | 0.00218   | <0.001       | 0.00598      |           |             |             |             |              |              |
| 10/10/2019 |           |              |              | <0.001    |             |             |             |              |              |
| 10/14/2019 |           |              |              |           | <0.001      | 0.0015      | <0.001      | <0.001       | <0.001       |
| 10/16/2019 | 0.00225   | <0.001       | 0.00448      | <0.001    |             |             |             |              |              |
| 11/26/2019 |           |              |              |           |             |             |             |              |              |
| 2/3/2020   | 0.00182   | <0.001       | 0.000988 (J) | <0.001    | <0.001      |             |             | <0.001       | <0.001       |
| 2/4/2020   |           |              |              |           |             | 0.00143     | <0.001      |              |              |
| 2/5/2020   |           |              |              |           |             |             |             |              |              |

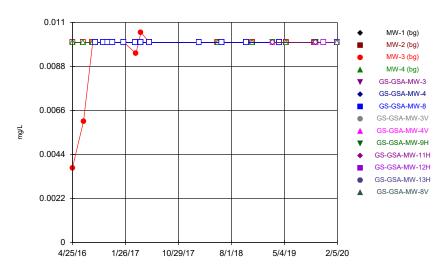
Constituent: Cadmium (mg/L) Analysis Run 7/22/2020 2:55 PM View: Time Series Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

| 4/25/2016 4/26/2016 6/20/2016 6/20/2016 8/8/2016 8/8/2016 8/8/2016 8/8/2016 8/8/2016 10/3/2016 10/3/2016 10/3/2016 11/21/2016 11/21/2016 11/21/2016 11/21/2017 3/20/2017 3/21/2017 3/21/2017 3/21/2017 4/18/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2018 6/11/2018 6/11/2018 6/11/2018 6/11/2018 11/19/2018 3/4/2019 0.000336 (J) 4/10/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | GS-GSA-MW-9H | GS-GSA-MW-11H | GS-GSA-MW-12H | GS-GSA-MW-13H | GS-GSA-MW-8V |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|---------------|---------------|---------------|--------------|--|
| 6/20/2016 6/20/2016 8/8/2016 8/8/2016 8/8/2016 8/24/2016 10/3/2016 10/4/2016 10/4/2016 10/4/2016 11/4/2016 11/4/2017 3/21/2017 3/21/2017 3/21/2017 3/21/2017 4/17/2017 4/17/2017 4/17/2017 4/18/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/31/2017 2/13/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/24/2018 6/11/2018 11/19/2018 3/4/2019 0.000336 (J) 4/10/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2020 0.000349 (J) 4/0.0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4/25/2016  |              |               |               |               |              |  |
| 6/22/2016 8/8/2016 8/8/2016 8/8/2016 8/8/2016 10/3/2016 10/4/2016 10/3/2016 10/4/2016 10/2016 11/21/2016 11/21/2016 11/21/2016 11/21/2017 1/8/2017 3/202017 3/21/2017 4/7/2017 4/18/2017 5/31/2017 5/31/2017 5/31/2017 5/31/2017 5/31/2018 5/22/2018 5/22/2018 6/11/2018 1/11/2018 1/11/2018 1/11/2018 1/11/2018 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1/11/2019 1 | 4/26/2016  |              |               |               |               |              |  |
| 8/8/2016 8/9/2016 8/9/2016 8/12/2016 10/3/2016 10/3/2016 10/3/2016 10/3/2016 11/12/2016 11/12/2017 1/18/2017 3/20/2017 3/20/2017 3/21/2017 4/18/2017 4/18/2017 5/30/2017 5/31/2017 5/31/2017 5/31/2017 5/31/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 6/11/2018 10/17/2018 11/19/2018 11/19/2019 3/5/2019 0.000336 (J) 4/10/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6/20/2016  |              |               |               |               |              |  |
| 8/9/2016 8/24/2016 10/3/2016 10/3/2016 10/26/2016 11/21/2016 11/21/2016 11/21/2017 3/21/2017 3/21/2017 3/21/2017 3/21/2017 4/18/2017 5/30/2017 5/31/2017 5/31/2017 5/31/2017 5/31/2017 5/31/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/2 | 6/22/2016  |              |               |               |               |              |  |
| 8/24/2016 10/3/2016 10/3/2016 10/26/2016 11/21/2016 11/21/2016 11/21/2017 11/8/2017 3/20/2017 3/20/2017 3/21/2017 4/17/2017 4/17/2017 4/18/2017 5/31/2017 5/31/2017 2/13/2018 5/23/2018 5/23/2018 6/11/2018 6/11/2018 6/11/2018 6/11/2018 6/11/2018 6/11/2018 6/11/2018 6/11/2018 6/11/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8/8/2016   |              |               |               |               |              |  |
| 10/3/2016 10/4/2016 10/26/2016 11/21/2016 11/21/2017 1/18/2017 3/21/2017 3/21/2017 3/21/2017 3/21/2017 4/18/2017 5/30/2017 5/30/2017 5/31/2017 2/13/2018 5/23/2018 5/23/2018 6/11/2018 6/11/2018 6/11/2018 6/11/2018 11/19/2018 3/4/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8/9/2016   |              |               |               |               |              |  |
| 10/4/2016 10/26/2016 11/21/2017 1/18/2017 3/20/2017 3/21/2017 3/21/2017 4/17/2017 4/18/2017 5/30/2017 5/31/2017 5/31/2017 5/31/2017 5/31/2018 5/24/2018 6/11/2018 6/11/2018 6/11/2018 11/19/2018 3/4/2019 0.000336 (J) 4/10/2019 10/14/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/ | 8/24/2016  |              |               |               |               |              |  |
| 10/26/2016 11/21/2016 11/17/2017 1/18/2017 3/20/2017 3/21/2017 3/21/2017 4/17/2017 4/18/2017 5/30/2017 5/31/2017 5/31/2017 5/31/2017 5/31/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/24/2018 6/11/2018 10/17/2018 11/19/2018 11/19/2018 11/19/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 | 10/3/2016  |              |               |               |               |              |  |
| 11/21/2016 11/17/2017 11/18/2017 3/20/2017 3/21/2017 4/17/2017 4/18/2017 4/18/2017 5/30/2017 5/30/2017 5/31/2017 2/13/2018 5/22/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2018 5/23/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/20 | 10/4/2016  |              |               |               |               |              |  |
| 1/17/2017 1/18/2017 3/20/2017 3/21/2017 3/21/2017 4/17/2017 4/18/2017 5/30/2017 5/31/2017 2/13/2018 5/22/2018 5/22/2018 6/11/2018 6/11/2018 6/11/2018 10/17/2018 11/19/2018 11/19/2018 11/19/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/00/3049(J) <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10/26/2016 |              |               |               |               |              |  |
| 1/18/2017 3/20/2017 3/21/2017 3/21/2017 4/17/2017 4/17/2017 4/18/2017 5/30/2017 5/31/2017 2/13/2018 5/22/2018 5/22/2018 5/22/2018 6/11/2018 6/11/2018 10/17/2018 11/19/2018 3/4/2019 0.000336 (J) 4/10/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11/21/2016 |              |               |               |               |              |  |
| 3/20/2017 3/21/2017 3/22/2017 4/17/2017 4/18/2017 5/30/2017 5/30/2017 5/31/2017 2/13/2018 5/22/2018 5/23/2018 5/24/2018 6/11/2018 6/11/2018 10/17/2018 10/17/2018 11/19/2018 3/4/2019 0.000336 (J) 4/10/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/1 | 1/17/2017  |              |               |               |               |              |  |
| 3/20/2017 3/21/2017 3/21/2017 4/11/2017 4/18/2017 5/30/2017 5/30/2017 5/31/2018 5/22/2018 5/22/2018 5/22/2018 6/11/2018 6/11/2018 6/11/2018 10/17/2018 11/19/2018 3/4/2019 3/5/2019 0.000336 (J) 4/10/2019 5/14/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/18/2017  |              |               |               |               |              |  |
| 3/21/2017 3/22/2017 4/17/2017 4/18/2017 5/30/2017 5/31/2017 5/31/2017 5/31/2018 5/22/2018 5/22/2018 5/22/2018 6/11/2018 6/11/2018 6/11/2018 10/17/2018 11/19/2018 3/4/2019 0.000336 (J) 4/10/2019 5/14/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18 |            |              |               |               |               |              |  |
| 3/22/2017 4/17/2017 4/18/2017 5/30/2017 5/31/2017 2/13/2018 5/22/2018 5/22/2018 5/22/2018 6/11/2018 6/12/2018 10/17/2018 11/19/2018 31/4/2019 3/5/2019 0.000336 (J) 4/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/16/2019 0.000362 (J) <0.001 11/26/2019 0.000349 (J) <0.0031 <0.0031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |              |               |               |               |              |  |
| 4/17/2017 4/18/2017 5/30/2017 5/31/2017 2/13/2018 5/22/2018 5/22/2018 5/22/2018 6/11/2018 6/11/2018 10/17/2018 10/17/2018 11/19/2018 3/4/2019 < <0.001 3/5/2019 0.000336 (J) 4/10/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 2/3/2020 2/4/2020 0.000349 (J) <0.001 0.00301 <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |              |               |               |               |              |  |
| 4/18/2017 5/30/2017 5/31/2017 2/13/2018 5/22/2018 5/23/2018 5/24/2018 6/11/2018 6/11/2018 10/17/2018 11/19/2018 11/19/2018 3/4/2019 3/5/2019 0.000336 (J) 4/10/2019 5/14/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |              |               |               |               |              |  |
| 5/30/2017 5/31/2017 2/13/2018 5/22/2018 5/23/2018 5/24/2018 6/11/2018 6/11/2018 10/17/2018 11/19/2018 3/4/2019 0.000336 (J) 4/10/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |              |               |               |               |              |  |
| 5/31/2017 2/13/2018 5/22/2018 5/23/2018 5/24/2018 6/11/2018 6/12/2018 10/17/2018 11/19/2018 3/4/2019 3/5/2019 0.000336 (J) 4/10/2019 5/14/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 2/3/2020 2/4/2020 0.000349 (J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |              |               |               |               |              |  |
| 2/13/2018 5/22/2018 5/23/2018 5/24/2018 6/11/2018 6/11/2018 10/17/2018 11/19/2018 3/4/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |              |               |               |               |              |  |
| 5/22/2018 5/23/2018 5/24/2018 6/11/2018 6/12/2018 10/17/2018 11/19/2018 3/4/2019 3/5/2019 0.000336 (J) 4/10/2019 5/14/2019 10/10/2019 10/10/2019 10/14/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |              |               |               |               |              |  |
| 5/23/2018 5/24/2018 6/11/2018 6/12/2018 10/17/2018 11/19/2018 3/4/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |              |               |               |               |              |  |
| 5/24/2018 6/11/2018 6/12/2018 10/17/2018 11/19/2018 3/4/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |              |               |               |               |              |  |
| 6/11/2018 6/12/2018 10/17/2018 11/19/2018 3/4/2019 <0.001 3/5/2019 0.000336 (J) 4/10/2019 5/14/2019 10/18/2019 10/10/2019 10/14/2019 10/16/2019 0.000362 (J) <0.001 11/26/2019 0.000349 (J) <0.001 0.00351 2/3/2020 2/4/2020 0.000349 (J) <0.001 0.00301 <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |              |               |               |               |              |  |
| 6/12/2018 10/17/2018 11/19/2018 3/4/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6/11/2018  |              |               |               |               |              |  |
| 11/19/2018 3/4/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |              |               |               |               |              |  |
| 11/19/2018 3/4/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |              |               |               |               |              |  |
| 3/4/2019 < 0.000336 (J)  4/10/2019  5/14/2019  10/18/2019  10/10/2019  10/14/2019  10/16/2019  10/16/2019  0.000362 (J) < 0.001  11/26/2019  2/3/2020  2/4/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |              |               |               |               |              |  |
| 3/5/2019 0.000336 (J) 4/10/2019 5/14/2019 10/8/2019 10/10/2019 10/14/2019 10/16/2019 0.000362 (J) <0.001 11/26/2019 0.000362 (J) <0.00351 2/3/2020 2/4/2020 0.000349 (J) <0.001 0.00301 <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |              | <0.001        |               |               |              |  |
| 4/10/2019 5/14/2019 10/8/2019 10/10/2019 10/14/2019 10/16/2019 0.000362 (J) <0.001 11/26/2019 2/3/2020 2/4/2020 0.000349 (J) <0.001 0.00301 <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | 0.000336 (J) |               |               |               |              |  |
| 5/14/2019 10/8/2019 10/10/2019 10/14/2019 10/16/2019 0.000362 (J) <0.001 11/26/2019 2/3/2020 2/4/2020 0.000349 (J) <0.001 0.00301 <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | .,           |               |               |               |              |  |
| 10/8/2019<br>10/10/2019<br>10/14/2019<br>10/16/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |              |               |               |               |              |  |
| 10/10/2019<br>10/14/2019<br>10/16/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |              |               |               |               |              |  |
| 10/14/2019<br>10/16/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |              |               |               |               |              |  |
| 10/16/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |              |               |               |               |              |  |
| 11/26/2019 0.00351<br>2/3/2020<br>2/4/2020 0.000349 (J) <0.001 0.00301 <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | 0.000362 (J) | <0.001        |               |               |              |  |
| 2/3/2020<br>2/4/2020 0.000349 (J) <0.001 0.00301 <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |              |               | 0.00351       |               |              |  |
| 2/4/2020 0.000349 (J) <0.001 0.00301 <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |              |               |               |               |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 0.000349 (J) | <0.001        | 0.00301       | <0.001        |              |  |
| 2/5/2020 <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2/5/2020   |              |               |               | 2.00.         | <0.001       |  |

Constituent: Calcium (mg/L) Analysis Run 7/22/2020 2:55 PM View: Time Series Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

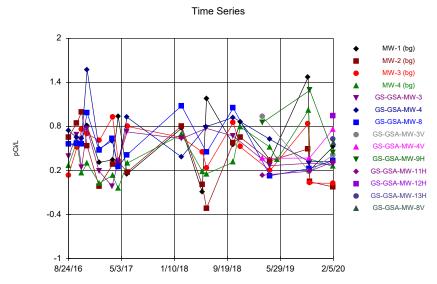
|            | MW-1 (bg) | MW-2 (bg) | MW-3 (bg) | MW-4 (bg) | GS-GSA-MW-3 | GS-GSA-MW-4 | GS-GSA-MW-8 | GS-GSA-MW-3V | GS-GSA-MW-4V |
|------------|-----------|-----------|-----------|-----------|-------------|-------------|-------------|--------------|--------------|
| 4/25/2016  |           | 123       | 224       | 261       |             |             |             |              |              |
| 4/26/2016  | 147       |           |           |           |             |             |             |              |              |
| 6/20/2016  | 152       | 168       |           | 295       |             |             |             |              |              |
| 6/22/2016  |           |           | 266       |           |             |             |             |              |              |
| 8/8/2016   | 150       | 180       |           |           |             |             |             |              |              |
| 8/9/2016   |           |           | 260       | 318       |             |             |             |              |              |
| 8/24/2016  | 142       | 180       | 274       | 319       | 539         | 102         | 263         |              |              |
| 10/3/2016  | 139       | 184       |           | 293       | 519.7       | 98.4        | 253         |              |              |
| 10/4/2016  |           |           | 243       |           |             |             |             |              |              |
| 10/26/2016 | 133       | 171       | 254       | 311       | 916         | 88.7        | 235         |              |              |
| 11/21/2016 | 144       | 179       | 263       | 320       | 552         | 104         | 246         |              |              |
| 1/17/2017  | 131       | 188       |           |           | 572         | 102         | 231         |              |              |
| 1/18/2017  |           |           | 431       | 417       |             |             |             |              |              |
| 3/20/2017  |           |           |           |           | 817         |             | 298         |              |              |
| 3/21/2017  |           |           |           |           |             | 94.7        |             |              |              |
| 3/22/2017  | 141       | 155       | 318       | 292       |             |             |             |              |              |
| 4/17/2017  |           |           |           |           | 476         | 97.9        |             |              |              |
| 4/18/2017  | 149       | 156       | 296       | 302       |             |             | 317         |              |              |
| 5/30/2017  | 140       |           |           |           | 515         | 93.9        | 316         |              |              |
| 5/31/2017  |           | 151       | 306       |           |             |             |             |              |              |
| 8/23/2017  | 152       | 155       | 298       | 297       |             |             |             |              |              |
| 8/24/2017  |           |           |           |           | 598         | 105         | 391         |              |              |
| 5/22/2018  | 166       | 172       |           |           |             |             |             |              |              |
| 5/23/2018  |           |           |           | 296       |             |             |             |              |              |
| 5/24/2018  |           |           | 297       |           |             |             |             |              |              |
| 6/11/2018  |           |           |           |           | 558         | 105         |             |              |              |
| 6/12/2018  | 203       | 179       | 318       | 355       |             |             | 442         |              |              |
| 10/17/2018 | 171       | 200       | 392       | 342       | 533         | 117         | 514         |              |              |
| 11/19/2018 | 154       | 221       | 387       | 289       |             |             |             |              |              |
| 3/4/2019   |           |           |           |           |             |             |             |              |              |
| 3/5/2019   |           |           |           |           |             |             |             | 329          | 249          |
| 4/10/2019  | 243       | 200       | 348       | 356       | 659         | 129         | 533         |              |              |
| 5/14/2019  | 167       | 168       | 254       | 254       |             |             |             |              |              |
| 10/8/2019  | 157       | 190       | 371       |           |             |             |             |              |              |
| 10/10/2019 |           |           |           | 302       |             |             |             |              |              |
| 10/14/2019 |           |           |           |           | 552         | 93.5        | 524         | 368          | 173          |
| 10/16/2019 | 157       | 194       | 346       | 356       |             |             |             |              |              |
| 11/26/2019 |           |           |           |           |             |             |             |              |              |
| 2/3/2020   | 172       | 172       | 276       | 265       | 589         |             |             | 504          | 184          |
| 2/4/2020   |           |           |           |           |             | 116         | 461         |              |              |
| 2/5/2020   |           |           |           |           |             |             |             |              |              |
|            |           |           |           |           |             |             |             |              |              |

Constituent: Calcium (mg/L) Analysis Run 7/22/2020 2:55 PM View: Time Series Plant William C Gorgas Client: Southern Company Data: Gorgas GSA


|            | GS-GSA-MW-9H | GS-GSA-MW-11H | GS-GSA-MW-12H | GS-GSA-MW-13H | H GS-GSA-MW-8V |  |
|------------|--------------|---------------|---------------|---------------|----------------|--|
| 4/25/2016  |              |               |               |               |                |  |
| 4/26/2016  |              |               |               |               |                |  |
| 6/20/2016  |              |               |               |               |                |  |
| 6/22/2016  |              |               |               |               |                |  |
| 8/8/2016   |              |               |               |               |                |  |
| 8/9/2016   |              |               |               |               |                |  |
| 8/24/2016  |              |               |               |               |                |  |
| 10/3/2016  |              |               |               |               |                |  |
| 10/4/2016  |              |               |               |               |                |  |
| 10/26/2016 |              |               |               |               |                |  |
| 11/21/2016 |              |               |               |               |                |  |
| 1/17/2017  |              |               |               |               |                |  |
| 1/18/2017  |              |               |               |               |                |  |
| 3/20/2017  |              |               |               |               |                |  |
| 3/21/2017  |              |               |               |               |                |  |
| 3/22/2017  |              |               |               |               |                |  |
| 4/17/2017  |              |               |               |               |                |  |
| 4/18/2017  |              |               |               |               |                |  |
| 5/30/2017  |              |               |               |               |                |  |
| 5/31/2017  |              |               |               |               |                |  |
| 8/23/2017  |              |               |               |               |                |  |
| 8/24/2017  |              |               |               |               |                |  |
| 5/22/2018  |              |               |               |               |                |  |
| 5/23/2018  |              |               |               |               |                |  |
| 5/24/2018  |              |               |               |               |                |  |
| 6/11/2018  |              |               |               |               |                |  |
| 6/12/2018  |              |               |               |               |                |  |
| 10/17/2018 |              |               |               |               |                |  |
| 11/19/2018 |              |               |               |               |                |  |
| 3/4/2019   |              | 177           |               |               |                |  |
| 3/5/2019   | 578          |               |               |               |                |  |
| 4/10/2019  |              |               |               |               |                |  |
| 5/14/2019  |              |               |               |               |                |  |
| 10/8/2019  |              |               |               |               |                |  |
| 10/10/2019 |              |               |               |               |                |  |
| 10/14/2019 |              |               |               |               |                |  |
| 10/16/2019 | 363          | 143           |               |               |                |  |
| 11/26/2019 |              |               | 144           |               |                |  |
| 2/3/2020   |              |               |               |               |                |  |
| 2/4/2020   | 413          | 163           | 158           | 171           |                |  |
| 2/5/2020   |              |               |               |               | 37.3           |  |
|            |              |               |               |               |                |  |

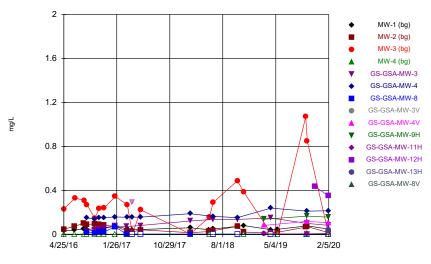
Constituent: Chloride (mg/L) Analysis Run 7/22/2020 2:55 PM View: Time Series
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

|            | MW-1 (bg)  | MW-2 (bg) | MW-3 (bg) | MW-4 (bg) | GS-GSA-MW-3   | GS-GSA-MW-4   | GS-GSA-MW-8  | GS-GSA-MW-3V  | GS-GSA-MW-4V   |
|------------|------------|-----------|-----------|-----------|---------------|---------------|--------------|---------------|----------------|
| 4/25/2016  | WVV 1 (Dg) | 1.9       | 1.32      | 1.53      | do do/tiiiv o | do do/tiiii + | ao ao a mini | ao ao/(m// o/ | do do/timii 4V |
| 4/26/2016  | 1.94       |           |           |           |               |               |              |               |                |
| 6/20/2016  | 2.09       | 3.43      |           | 1.85      |               |               |              |               |                |
| 6/22/2016  | 2.00       | 0.10      | 1.46      |           |               |               |              |               |                |
| 8/8/2016   | 2.18       | 3.31      |           |           |               |               |              |               |                |
| 8/9/2016   |            |           | 1.35      | 1.95      |               |               |              |               |                |
| 8/24/2016  | 2.22       | 3.23      | 1.47      | 2.07      | 204           | 112           | 4.03         |               |                |
| 10/3/2016  | 2.34       | 3.21      |           | 2.02      | 220           | 115           | 3.87         |               |                |
| 10/4/2016  |            |           | 1.59      |           |               |               |              |               |                |
| 10/26/2016 | 2.34       | 3.35      | 1.27      | 2.07      | 249           | 115           | 4.08         |               |                |
| 11/21/2016 | 2.5        | 3.34      | 1.38      | 2.39      | 256           | 117           | 4.39         |               |                |
| 1/17/2017  | 2.68       | 3.58      |           |           | 301           | 99.3          | 7.22         |               |                |
| 1/18/2017  |            |           | 1.34      | 1.9       |               |               |              |               |                |
| 3/20/2017  |            |           |           |           | 320           |               | 5.7          |               |                |
| 3/21/2017  |            |           |           |           |               | 79            |              |               |                |
| 3/22/2017  | 3.7        | 3.4       | 2         | 1.5 (J)   |               |               |              |               |                |
| 4/17/2017  |            |           |           | ,         | 340           | 85            |              |               |                |
| 4/18/2017  | 2.4        | 2.6       | 2.2       | 1.6 (J)   |               |               | 4.7          |               |                |
| 5/30/2017  | 2.6        |           |           | - (-)     | 310           | 99            | 15           |               |                |
| 5/31/2017  |            | 4.4       | 1.5 (J)   |           |               |               |              |               |                |
| 8/23/2017  | 2.7        | 4.4       | 1.8 (J)   | 2.3       |               |               |              |               |                |
| 8/24/2017  |            |           | , ,       |           | 290           | 110           | 93           |               |                |
| 5/22/2018  | 2.3        | 3.2       |           |           |               |               |              |               |                |
| 5/23/2018  |            |           |           | 2         |               |               |              |               |                |
| 5/24/2018  |            |           | 1.6 (J)   |           |               |               |              |               |                |
| 6/11/2018  |            |           |           |           | 260           | 81            |              |               |                |
| 6/12/2018  | 2.3        | 3.7       | 1.4 (J)   | 1.7 (J)   |               |               | 140          |               |                |
| 10/17/2018 | 1.7 (J)    | 4.6       | <2        | 1.5 (J)   | 270           | 85            | 180          |               |                |
| 11/19/2018 | 1.7 (J)    | 3         | <2        | <2        |               |               |              |               |                |
| 3/4/2019   |            |           |           |           |               |               |              |               |                |
| 3/5/2019   |            |           |           |           |               |               |              | 194           | 191            |
| 4/10/2019  | 2.36       | 1.76      | 2.25      | 1.88      | 249           | 74.3          | 174          |               |                |
| 5/14/2019  | 2.28       | 2.98      | 2.28      | 1.82      |               |               |              |               |                |
| 10/8/2019  | 2.31       | 4.26      | 1.36      |           |               |               |              |               |                |
| 10/10/2019 |            |           |           | 1.93      |               |               |              |               |                |
| 10/14/2019 |            |           |           |           | 228           | 59.1          | 207          | 298           | 122            |
| 10/16/2019 | 2.42       | 4.04      | 1.4       | 1.92      |               |               |              |               |                |
| 11/26/2019 |            |           |           |           |               |               |              |               |                |
| 2/3/2020   | 2.07       | 2.48      | 2.12      | 1.72      | 267           |               |              | 338           | 101            |
| 2/4/2020   |            |           |           |           |               | 43.2          | 94.1         |               |                |
| 2/5/2020   |            |           |           |           |               |               |              |               |                |
|            |            |           |           |           |               |               |              |               |                |


Constituent: Chloride (mg/L) Analysis Run 7/22/2020 2:55 PM View: Time Series
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

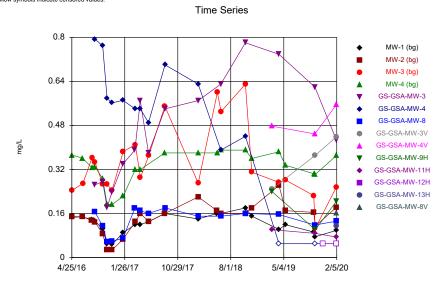
|            | GS-GSA-MW-9H | GS-GSA-MW-11H | GS-GSA-MW-12H | GS-GSA-MW-13H | H GS-GSA-MW-8V |
|------------|--------------|---------------|---------------|---------------|----------------|
| 4/25/2016  |              |               |               |               |                |
| 4/26/2016  |              |               |               |               |                |
| 6/20/2016  |              |               |               |               |                |
| 6/22/2016  |              |               |               |               |                |
| 8/8/2016   |              |               |               |               |                |
| 8/9/2016   |              |               |               |               |                |
| 8/24/2016  |              |               |               |               |                |
| 10/3/2016  |              |               |               |               |                |
| 10/4/2016  |              |               |               |               |                |
| 10/26/2016 |              |               |               |               |                |
| 11/21/2016 |              |               |               |               |                |
| 1/17/2017  |              |               |               |               |                |
| 1/18/2017  |              |               |               |               |                |
| 3/20/2017  |              |               |               |               |                |
| 3/21/2017  |              |               |               |               |                |
| 3/22/2017  |              |               |               |               |                |
| 4/17/2017  |              |               |               |               |                |
| 4/18/2017  |              |               |               |               |                |
| 5/30/2017  |              |               |               |               |                |
| 5/31/2017  |              |               |               |               |                |
| 8/23/2017  |              |               |               |               |                |
| 8/24/2017  |              |               |               |               |                |
| 5/22/2018  |              |               |               |               |                |
| 5/23/2018  |              |               |               |               |                |
| 5/24/2018  |              |               |               |               |                |
| 6/11/2018  |              |               |               |               |                |
| 6/12/2018  |              |               |               |               |                |
| 10/17/2018 |              |               |               |               |                |
| 11/19/2018 |              |               |               |               |                |
| 3/4/2019   |              | 3.81          |               |               |                |
| 3/5/2019   | 313          |               |               |               |                |
| 4/10/2019  |              |               |               |               |                |
| 5/14/2019  |              |               |               |               |                |
| 10/8/2019  |              |               |               |               |                |
| 10/10/2019 |              |               |               |               |                |
| 10/14/2019 |              |               |               |               |                |
| 10/16/2019 | 145          | 4.45          |               |               |                |
| 11/26/2019 |              |               | 2.43          |               |                |
| 2/3/2020   |              |               |               |               |                |
| 2/4/2020   | 139          | 4.27          | 2.34          | 12.9          |                |
| 2/5/2020   |              |               |               |               | 9.05           |




Constituent: Chromium Analysis Run 7/22/2020 2:44 PM View: Time Series Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

### $Sanitas^{\text{\tiny{TM}}} \text{ v.9.6.24 Sanitas software licensed to Southern Company. UG}$




Constituent: Combined Radium 226 + 228 Analysis Run 7/22/2020 2:44 PM View: Time Series
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

### Time Series



Constituent: Cobalt Analysis Run 7/22/2020 2:44 PM View: Time Series Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

## Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG Hollow symbols indicate censored values.



Constituent: Fluoride Analysis Run 7/22/2020 2:45 PM View: Time Series Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

Constituent: Chromium (mg/L) Analysis Run 7/22/2020 2:55 PM View: Time Series
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

|            | MW-1 (bg) | MW-2 (bg) | MW-3 (bg)   | MW-4 (bg) | GS-GSA-MW-3 | GS-GSA-MW-4 | GS-GSA-MW-8 | GS-GSA-MW-3V | GS-GSA-MW-4V |
|------------|-----------|-----------|-------------|-----------|-------------|-------------|-------------|--------------|--------------|
| 4/25/2016  |           | <0.01     | 0.00373 (J) | <0.01     |             |             |             |              |              |
| 4/26/2016  | <0.01     |           |             |           |             |             |             |              |              |
| 6/20/2016  | <0.01     | <0.01     |             | <0.01     |             |             |             |              |              |
| 6/22/2016  |           |           | 0.00606 (J) |           |             |             |             |              |              |
| 8/8/2016   | <0.01     | <0.01     |             |           |             |             |             |              |              |
| 8/9/2016   |           |           | <0.01       | <0.01     |             |             |             |              |              |
| 8/24/2016  | <0.01     | <0.01     | <0.01       | <0.01     | <0.01       | <0.01       | <0.01       |              |              |
| 10/3/2016  | <0.01     | <0.01     |             | <0.01     | <0.01       | <0.01       | <0.01       |              |              |
| 10/4/2016  |           |           | <0.01       |           |             |             |             |              |              |
| 10/26/2016 | <0.01     | <0.01     | <0.01       | <0.01     | <0.01       | <0.01       | <0.01       |              |              |
| 11/21/2016 | <0.01     | <0.01     | <0.01       | <0.01     | <0.01       | <0.01       | <0.01       |              |              |
| 1/17/2017  | <0.01     | <0.01     |             |           | <0.01       | <0.01       | <0.01       |              |              |
| 1/18/2017  |           |           | <0.01       | <0.01     |             |             |             |              |              |
| 3/20/2017  |           |           |             |           | <0.01       |             | <0.01       |              |              |
| 3/21/2017  |           |           |             |           |             | <0.01       |             |              |              |
| 3/22/2017  | <0.01     | <0.01     | 0.00945 (J) | <0.01     |             |             |             |              |              |
| 4/17/2017  |           |           |             |           | <0.01       | <0.01       |             |              |              |
| 4/18/2017  | <0.01     | <0.01     | 0.0105      | <0.01     |             |             | <0.01       |              |              |
| 5/30/2017  | <0.01     |           |             |           | <0.01       | <0.01       | <0.01       |              |              |
| 5/31/2017  |           | <0.01     | <0.01       |           |             |             |             |              |              |
| 2/13/2018  | <0.01     | <0.01     | <0.01       | <0.01     | <0.01       | <0.01       | <0.01       |              |              |
| 5/22/2018  | <0.01     | <0.01     |             |           |             |             |             |              |              |
| 5/23/2018  |           |           |             | <0.01     |             |             |             |              |              |
| 5/24/2018  |           |           | <0.01       |           |             |             |             |              |              |
| 6/11/2018  |           |           |             |           | <0.01       | <0.01       |             |              |              |
| 6/12/2018  | <0.01     | <0.01     | <0.01       | <0.01     |             |             | <0.01       |              |              |
| 10/17/2018 | <0.01     | <0.01     | <0.01       | <0.01     | <0.01       | <0.01       | <0.01       |              |              |
| 11/19/2018 | <0.01     | <0.01     | <0.01       | <0.01     |             |             |             |              |              |
| 3/4/2019   |           |           |             |           |             |             |             |              |              |
| 3/5/2019   |           |           |             |           |             |             |             | <0.01        | <0.01        |
| 4/10/2019  | <0.01     | <0.01     | <0.01       | <0.01     | <0.01       | <0.01       | <0.01       |              |              |
| 5/14/2019  | <0.01     | <0.01     | <0.01       | <0.01     |             |             |             |              |              |
| 10/8/2019  | <0.01     | <0.01     | <0.01       |           |             |             |             |              |              |
| 10/10/2019 |           |           |             | <0.01     |             |             |             |              |              |
| 10/14/2019 |           |           |             |           | <0.01       | <0.01       | <0.01       | <0.01        | <0.01        |
| 10/16/2019 | <0.01     | <0.01     | <0.01       | <0.01     |             |             |             |              |              |
| 11/26/2019 |           |           |             |           |             |             |             |              |              |
| 2/3/2020   | <0.01     | <0.01     | <0.01       | <0.01     | <0.01       |             |             | <0.01        | <0.01        |
| 2/4/2020   |           |           |             |           |             | <0.01       | <0.01       |              |              |
| 2/5/2020   |           |           |             |           |             |             |             |              |              |
|            |           |           |             |           |             |             |             |              |              |

Constituent: Chromium (mg/L) Analysis Run 7/22/2020 2:55 PM View: Time Series
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

|            | GS-GSA-MW-9H | GS-GSA-MW-11H | I GS-GSA-MW-12H | GS-GSA-MW-13H | GS-GSA-MW-8V |  |
|------------|--------------|---------------|-----------------|---------------|--------------|--|
| 4/25/2016  |              |               |                 |               |              |  |
| 4/26/2016  |              |               |                 |               |              |  |
| 6/20/2016  |              |               |                 |               |              |  |
| 6/22/2016  |              |               |                 |               |              |  |
| 8/8/2016   |              |               |                 |               |              |  |
| 8/9/2016   |              |               |                 |               |              |  |
| 8/24/2016  |              |               |                 |               |              |  |
| 10/3/2016  |              |               |                 |               |              |  |
| 10/4/2016  |              |               |                 |               |              |  |
| 10/26/2016 |              |               |                 |               |              |  |
| 11/21/2016 |              |               |                 |               |              |  |
| 1/17/2017  |              |               |                 |               |              |  |
| 1/18/2017  |              |               |                 |               |              |  |
| 3/20/2017  |              |               |                 |               |              |  |
| 3/21/2017  |              |               |                 |               |              |  |
| 3/22/2017  |              |               |                 |               |              |  |
| 4/17/2017  |              |               |                 |               |              |  |
| 4/18/2017  |              |               |                 |               |              |  |
| 5/30/2017  |              |               |                 |               |              |  |
| 5/31/2017  |              |               |                 |               |              |  |
| 2/13/2018  |              |               |                 |               |              |  |
| 5/22/2018  |              |               |                 |               |              |  |
| 5/23/2018  |              |               |                 |               |              |  |
| 5/24/2018  |              |               |                 |               |              |  |
| 6/11/2018  |              |               |                 |               |              |  |
| 6/12/2018  |              |               |                 |               |              |  |
| 10/17/2018 |              |               |                 |               |              |  |
| 11/19/2018 |              |               |                 |               |              |  |
| 3/4/2019   |              | <0.01         |                 |               |              |  |
| 3/5/2019   | <0.01        |               |                 |               |              |  |
| 4/10/2019  |              |               |                 |               |              |  |
| 5/14/2019  |              |               |                 |               |              |  |
| 10/8/2019  |              |               |                 |               |              |  |
| 10/10/2019 |              |               |                 |               |              |  |
| 10/14/2019 |              |               |                 |               |              |  |
| 10/16/2019 | <0.01        | <0.01         |                 |               |              |  |
| 11/26/2019 | 0.01         | 3.01          | <0.01           |               |              |  |
| 2/3/2020   |              |               | 0.01            |               |              |  |
| 2/4/2020   | <0.01        | <0.01         | <0.01           | <0.01         |              |  |
| 2/5/2020   | -U.U1        | -0.01         | -U.U1           | 30.01         | <0.01        |  |
| 21312020   |              |               |                 |               | -U.U I       |  |

Constituent: Cobalt (mg/L) Analysis Run 7/22/2020 2:55 PM View: Time Series
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

|            | MW-1 (bg)    | MW-2 (bg)    | MW-3 (bg)   | MW-4 (bg) | GS-GSA-MW-3 | GS-GSA-MW-4 | GS-GSA-MW-8 | GS-GSA-MW-3V | GS-GSA-MW-4V |
|------------|--------------|--------------|-------------|-----------|-------------|-------------|-------------|--------------|--------------|
| 4/25/2016  |              | 0.0487       | 0.232       | <0.005    |             |             |             |              |              |
| 4/26/2016  | 0.0343       |              |             |           |             |             |             |              |              |
| 6/20/2016  | 0.0413       | 0.0767       |             | <0.005    |             |             |             |              |              |
| 6/22/2016  |              |              | 0.332       |           |             |             |             |              |              |
| 8/8/2016   | 0.0513       | 0.103        |             |           |             |             |             |              |              |
| 8/9/2016   |              |              | 0.311       | <0.005    |             |             |             |              |              |
| 8/24/2016  | 0.0471       | 0.093        | 0.271       | <0.005    | 0.0303      | 0.151       | 0.0201      |              |              |
| 10/3/2016  | 0.0525       | 0.0964       |             | <0.005    | 0.041       | 0.143       | 0.0167      |              |              |
| 10/4/2016  |              |              | 0.148       |           |             |             |             |              |              |
| 10/26/2016 | 0.0527       | 0.0904       | 0.236       | <0.005    | 0.0505      | 0.154       | 0.0253      |              |              |
| 11/21/2016 | 0.0569       | 0.0857       | 0.241       | <0.005    | 0.0617      | 0.155       | 0.0233      |              |              |
| 1/17/2017  | 0.0768       | 0.0745       |             |           | 0.0793      | 0.16        | 0.0708      |              |              |
| 1/18/2017  |              |              | 0.347       | <0.005    |             |             |             |              |              |
| 3/20/2017  |              |              |             |           | 0.0726      |             | 0.00277 (J) |              |              |
| 3/21/2017  |              |              |             |           |             | 0.158       |             |              |              |
| 3/22/2017  | 0.0535       | 0.0328       | 0.271       | <0.005    |             |             |             |              |              |
| 4/17/2017  |              |              |             |           | 0.294 (o)   | 0.159       |             |              |              |
| 4/18/2017  | 0.0442       | 0.0242       | 0.00324 (J) | <0.005    |             |             | <0.005      |              |              |
| 5/30/2017  | 0.0465       |              |             |           | 0.0832      | 0.159       | <0.005      |              |              |
| 5/31/2017  |              | 0.0441       | 0.225       |           |             |             |             |              |              |
| 2/13/2018  | 0.062        | 0.0179       | 0.00661 (J) | <0.005    | 0.124       | 0.19        | 0.00492 (J) |              |              |
| 5/22/2018  | 0.0443       | 0.028        |             |           |             |             |             |              |              |
| 5/23/2018  |              |              |             | <0.005    |             |             |             |              |              |
| 5/24/2018  |              |              | 0.158       |           |             |             |             |              |              |
| 6/11/2018  |              |              |             |           | 0.138       | 0.166       |             |              |              |
| 6/12/2018  | 0.0512       | 0.0366       | 0.291       | <0.005    |             |             | <0.005      |              |              |
| 10/17/2018 | 0.0751       | 0.0745       | 0.49        | <0.005    | 0.138       | 0.154       | <0.005      |              |              |
| 11/19/2018 | 0.0825       | 0.0225       | 0.386       | <0.005    |             |             |             |              |              |
| 3/4/2019   |              |              |             |           |             |             |             |              |              |
| 3/5/2019   |              |              |             |           |             |             |             | 0.0059       | 0.0836       |
| 4/10/2019  | 0.0445       | 0.0152       | 0.0144      | <0.005    | 0.151       | 0.241       | <0.005      |              |              |
| 5/14/2019  | 0.0485       | 0.0222       | 0.00536     | <0.005    |             |             |             |              |              |
| 10/8/2019  | 0.0778       | 0.0674       | 1.07        |           |             |             |             |              |              |
| 10/10/2019 |              |              |             | <0.005    |             |             |             |              |              |
| 10/14/2019 |              |              |             |           | 0.102       | 0.213       | <0.005      | 0.00845      | 0.12         |
| 10/16/2019 | 0.08         | 0.073        | 0.848       | <0.005    |             | -           |             |              |              |
| 11/26/2019 | <del>-</del> | <del>-</del> | <del></del> |           |             |             |             |              |              |
| 2/3/2020   | 0.0495       | 0.0193       | 0.0114      | <0.005    | 0.0843      |             |             | 0.0135       | 0.108        |
| 2/4/2020   |              | 2.2 700      |             |           |             | 0.217       | <0.005      |              |              |
| 2/5/2020   |              |              |             |           |             | U.E.17      | 5.000       |              |              |
| LIJIZUZU   |              |              |             |           |             |             |             |              |              |

Constituent: Cobalt (mg/L) Analysis Run 7/22/2020 2:55 PM View: Time Series
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

|            | GS-GSA-MW-9H | GS-GSA-MW-11H | H GS-GSA-MW-12H | GS-GSA-MW-13H | GS-GSA-MW-8V |  |  |
|------------|--------------|---------------|-----------------|---------------|--------------|--|--|
| 4/25/2016  |              |               |                 |               |              |  |  |
| 4/26/2016  |              |               |                 |               |              |  |  |
| 6/20/2016  |              |               |                 |               |              |  |  |
| 6/22/2016  |              |               |                 |               |              |  |  |
| 8/8/2016   |              |               |                 |               |              |  |  |
| 8/9/2016   |              |               |                 |               |              |  |  |
| 8/24/2016  |              |               |                 |               |              |  |  |
| 10/3/2016  |              |               |                 |               |              |  |  |
| 10/4/2016  |              |               |                 |               |              |  |  |
| 10/26/2016 |              |               |                 |               |              |  |  |
| 11/21/2016 |              |               |                 |               |              |  |  |
| 1/17/2017  |              |               |                 |               |              |  |  |
| 1/18/2017  |              |               |                 |               |              |  |  |
| 3/20/2017  |              |               |                 |               |              |  |  |
| 3/21/2017  |              |               |                 |               |              |  |  |
| 3/22/2017  |              |               |                 |               |              |  |  |
| 4/17/2017  |              |               |                 |               |              |  |  |
| 4/18/2017  |              |               |                 |               |              |  |  |
| 5/30/2017  |              |               |                 |               |              |  |  |
| 5/31/2017  |              |               |                 |               |              |  |  |
| 2/13/2018  |              |               |                 |               |              |  |  |
| 5/22/2018  |              |               |                 |               |              |  |  |
| 5/23/2018  |              |               |                 |               |              |  |  |
| 5/24/2018  |              |               |                 |               |              |  |  |
| 6/11/2018  |              |               |                 |               |              |  |  |
| 6/12/2018  |              |               |                 |               |              |  |  |
| 10/17/2018 |              |               |                 |               |              |  |  |
| 11/19/2018 |              |               |                 |               |              |  |  |
| 3/4/2019   |              | 0.0066        |                 |               |              |  |  |
| 3/5/2019   | 0.14         |               |                 |               |              |  |  |
| 4/10/2019  |              |               |                 |               |              |  |  |
| 5/14/2019  |              |               |                 |               |              |  |  |
| 10/8/2019  |              |               |                 |               |              |  |  |
| 10/10/2019 |              |               |                 |               |              |  |  |
| 10/14/2019 |              |               |                 |               |              |  |  |
| 10/16/2019 | 0.168        | 0.00598       |                 |               |              |  |  |
| 11/26/2019 |              |               | 0.435           |               |              |  |  |
| 2/3/2020   |              |               |                 |               |              |  |  |
| 2/4/2020   | 0.159        | 0.00582       | 0.351           | 0.0442        |              |  |  |
| 2/5/2020   |              |               |                 |               | <0.005       |  |  |
|            |              |               |                 |               |              |  |  |

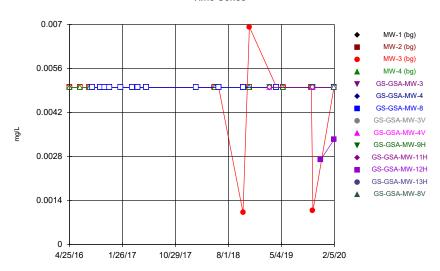
Constituent: Combined Radium 226 + 228 (pCi/L) Analysis Run 7/22/2020 2:55 PM View: Time Series

Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

|            | MW-1 (bg)  | MW-2 (bg)   | MW-3 (bg)  | MW-4 (bg)   | GS-GSA-MW-3 | GS-GSA-MW-4 | GS-GSA-MW-8 | GS-GSA-MW-3V | GS-GSA-MW-4V |
|------------|------------|-------------|------------|-------------|-------------|-------------|-------------|--------------|--------------|
| 8/24/2016  | 0.566 (U)  | 0.65        | 0.131 (U)  | 0.266 (U)   | 0.389 (U)   | 0.741       | 0.558 (U)   |              |              |
| 10/3/2016  | 0.537 (U)  | 0.845       |            | 0.59 (U)    | 0.683       | 0.648       | 0.565       |              |              |
| 10/4/2016  |            |             | 0.514 (U)  |             |             |             |             |              |              |
| 10/26/2016 | 0.636      | 0.994       | 0.755      | 0.164 (U)   | 0.242 (U)   | 0.632       | 0.555 (U)   |              |              |
| 11/21/2016 | 0.807      | 0.537 (U)   | 0.7        | 0.296 (U)   | 0.764       | 1.57        | 0.987       |              |              |
| 1/17/2017  | 0.308 (U)  | -0.0159 (U) |            |             | 0.191 (U)   | 0.493       | 0.476 (U)   |              |              |
| 1/18/2017  |            |             | 0.606      | 0.0267 (U)  |             |             |             |              |              |
| 3/20/2017  |            |             |            |             | -0.0158 (U) |             | 0.633 (U)   |              |              |
| 3/21/2017  |            |             |            |             |             | 0.604 (U)   |             |              |              |
| 3/22/2017  | 0.344 (U)  | 0.279 (U)   | 0.927      | 0.132 (U)   |             |             |             |              |              |
| 4/17/2017  |            |             |            |             | 0.307 (U)   | 0.252 (U)   |             |              |              |
| 4/18/2017  | 0.934      | 0.32 (U)    | 0.334 (U)  | -0.0439 (U) |             |             | 0.248 (U)   |              |              |
| 5/30/2017  | 0.149 (U)  |             |            |             | 0.724       | 0.925       | 0.412 (U)   |              |              |
| 5/31/2017  |            | 0.178 (U)   | 0.8        | 0.3 (U)     |             |             |             |              |              |
| 2/13/2018  | 0.774      | 0.804       | 0.649      | 0.69        | 0.633       | 0.382       | 1.08        |              |              |
| 5/22/2018  | -0.091 (U) | 0.0077 (U)  |            |             |             |             |             |              |              |
| 5/23/2018  |            |             |            | 0.186 (U)   |             |             |             |              |              |
| 5/24/2018  |            |             | 0.448 (U)  |             |             |             |             |              |              |
| 6/11/2018  |            |             |            |             | 0.773       | 0.796       |             |              |              |
| 6/12/2018  | 1.18       | -0.315 (U)  | 0.234 (U)  | 0.153 (U)   |             |             | 0.446 (U)   |              |              |
| 10/17/2018 | 0.553 (U)  | 0.574 (U)   | 0.852      | 0.313 (U)   | 0.668       | 0.922       | 1.05        |              |              |
| 11/19/2018 | 0.862 (D)  | 0.654 (D)   | 0.521 (D)  | 0.794       |             |             |             |              |              |
| 3/4/2019   |            |             |            |             |             |             |             |              |              |
| 3/5/2019   |            |             |            |             |             |             |             | 0.932        | 0.364 (U)    |
| 4/10/2019  | 0.342 (U)  | 0.329 (U)   | 0.198 (U)  | 0.515       | 0.265 (U)   | 0.622       | 0.128 (U)   |              |              |
| 5/14/2019  |            |             |            | 0.352 (U)   |             |             |             |              |              |
| 10/8/2019  | 1.47       | 0.493 (U)   | 0.833 (U)  |             |             |             |             |              |              |
| 10/10/2019 |            |             |            | 1.02 (U)    |             |             |             |              |              |
| 10/14/2019 |            |             |            |             | 0.297 (U)   | 0.317 (U)   | 0.225 (U)   | 0.184 (U)    | 0.369 (U)    |
| 10/16/2019 | 0.204 (U)  | 0.046 (U)   | 0.0279 (U) | 0.356 (U)   |             |             |             |              |              |
| 2/3/2020   | 0.521 (U)  | -0.0245 (U) | 0.0246 (U) | 0.254 (U)   | 0.28 (U)    |             |             | 0.408 (U)    | 0.758        |
| 2/4/2020   |            |             |            |             |             | 0.324 (U)   | 0.336 (U)   |              |              |
| 2/5/2020   |            |             |            |             |             |             |             |              |              |

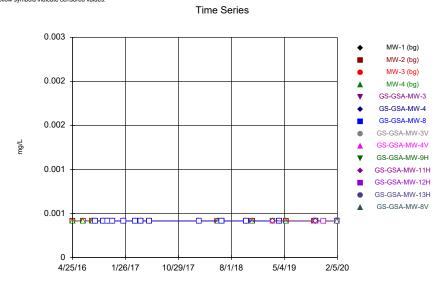
Constituent: Combined Radium 226 + 228 (pCi/L) Analysis Run 7/22/2020 2:55 PM View: Time Series

Plant William C Gorgas Client: Southern Company Data: Gorgas GSA


|            | GS-GSA-MW-9H | GS-GSA-MW-11H | GS-GSA-MW-12H | GS-GSA-MW-13H | GS-GSA-MW-8V |  |
|------------|--------------|---------------|---------------|---------------|--------------|--|
| 8/24/2016  |              |               |               |               |              |  |
| 10/3/2016  |              |               |               |               |              |  |
| 10/4/2016  |              |               |               |               |              |  |
| 10/26/2016 |              |               |               |               |              |  |
| 11/21/2016 |              |               |               |               |              |  |
| 1/17/2017  |              |               |               |               |              |  |
| 1/18/2017  |              |               |               |               |              |  |
| 3/20/2017  |              |               |               |               |              |  |
| 3/21/2017  |              |               |               |               |              |  |
| 3/22/2017  |              |               |               |               |              |  |
| 4/17/2017  |              |               |               |               |              |  |
| 4/18/2017  |              |               |               |               |              |  |
| 5/30/2017  |              |               |               |               |              |  |
| 5/31/2017  |              |               |               |               |              |  |
| 2/13/2018  |              |               |               |               |              |  |
| 5/22/2018  |              |               |               |               |              |  |
| 5/23/2018  |              |               |               |               |              |  |
| 5/24/2018  |              |               |               |               |              |  |
| 6/11/2018  |              |               |               |               |              |  |
| 6/12/2018  |              |               |               |               |              |  |
| 10/17/2018 |              |               |               |               |              |  |
| 11/19/2018 |              |               |               |               |              |  |
| 3/4/2019   |              | 0.135 (U)     |               |               |              |  |
| 3/5/2019   | 0.852        |               |               |               |              |  |
| 4/10/2019  |              |               |               |               |              |  |
| 5/14/2019  |              |               |               |               |              |  |
| 10/8/2019  |              |               |               |               |              |  |
| 10/10/2019 |              |               |               |               |              |  |
| 10/14/2019 |              |               |               |               |              |  |
| 10/16/2019 | 1.29         | 0.189 (U)     |               |               |              |  |
| 2/3/2020   |              |               |               |               |              |  |
| 2/4/2020   | 0.441 (U)    | 0.319 (U)     | 0.939         | 0.624         |              |  |
| 2/5/2020   |              |               |               |               | 0.576        |  |
|            |              |               |               |               |              |  |

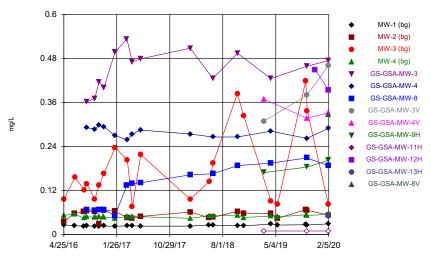
Constituent: Fluoride (mg/L) Analysis Run 7/22/2020 2:55 PM View: Time Series
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

|            | MW-1 (bg)  | MW-2 (bg) | MW-3 (bg) | MW-4 (bg) | GS-GSA-MW-3 | GS-GSA-MW-4 | GS-GSA-MW-8 | GS-GSA-MW-3V | GS-GSA-MW-4V |
|------------|------------|-----------|-----------|-----------|-------------|-------------|-------------|--------------|--------------|
| 4/25/2016  |            | 0.149 (J) | 0.243 (J) | 0.372     |             |             |             |              |              |
| 4/26/2016  | 0.146 (J)  |           |           |           |             |             |             |              |              |
| 6/20/2016  | 0.148 (J)  | 0.148 (J) |           | 0.361     |             |             |             |              |              |
| 6/22/2016  |            |           | 0.269 (J) |           |             |             |             |              |              |
| 8/8/2016   | 0.137 (J)  | 0.134 (J) |           |           |             |             |             |              |              |
| 8/9/2016   |            |           | 0.363     | 0.326     |             |             |             |              |              |
| 8/24/2016  | 0.133 (J)  | 0.129 (J) | 0.346     | 0.329     | 0.264 (J)   | 0.793       | 0.165 (J)   |              |              |
| 10/3/2016  | 0.103 (J)  | 0.086 (J) |           | 0.287 (J) | 0.276 (J)   | 0.769       | 0.114 (J)   |              |              |
| 10/4/2016  |            |           | 0.266 (J) |           |             |             |             |              |              |
| 10/26/2016 | 0.05 (J)   | 0.027 (J) | 0.266 (J) | 0.194 (J) | 0.182 (J)   | 0.578       | 0.056 (J)   |              |              |
| 11/21/2016 | 0.047 (J)  | 0.027 (J) | 0.244 (J) | 0.192 (J) | 0.238 (J)   | 0.562       | 0.059 (J)   |              |              |
| 1/17/2017  | 0.09 (J)   | 0.066 (J) |           |           | 0.34        | 0.571       | 0.07 (J)    |              |              |
| 1/18/2017  |            |           | 0.385     | 0.223 (J) |             |             |             |              |              |
| 3/20/2017  |            |           |           |           | 0.39        |             | 0.18        |              |              |
| 3/21/2017  |            |           |           |           |             | 0.54        |             |              |              |
| 3/22/2017  | 0.12       | 0.13      | 0.41      | 0.32      |             |             |             |              |              |
| 4/17/2017  |            |           |           |           | 0.57        | 0.54        |             |              |              |
| 4/18/2017  | 0.12       | 0.16      | 0.29      | 0.32      |             |             | 0.17        |              |              |
| 5/30/2017  | 0.13       |           |           |           | 0.38        | 0.49        | 0.16        |              |              |
| 5/31/2017  |            | 0.13      | 0.37      |           |             |             |             |              |              |
| 8/23/2017  | 0.16       | 0.16      | 0.55      | 0.38      |             |             |             |              |              |
| 8/24/2017  |            |           |           |           | 0.54        | 0.7         | 0.18        |              |              |
| 2/13/2018  | 0.14 (D)   | 0.22 (D)  | 0.27 (D)  | 0.38 (D)  | 0.57 (D)    | 0.63 (D)    | 0.15 (D)    |              |              |
| 5/22/2018  | 0.16       | 0.17      |           |           |             |             |             |              |              |
| 5/23/2018  |            |           |           | 0.38      |             |             |             |              |              |
| 5/24/2018  |            |           | 0.6       |           |             |             |             |              |              |
| 6/11/2018  |            |           |           |           | 0.63        | 0.39        |             |              |              |
| 6/12/2018  | 0.16       | 0.16      | 0.53      | 0.39      |             |             | 0.15        |              |              |
| 10/17/2018 | 0.18       | 0.16      | 0.63      | 0.39      | 0.78        | 0.44        | 0.16        |              |              |
| 11/19/2018 | 0.15       | 0.18      | 0.31      | 0.36      |             |             |             |              |              |
| 3/4/2019   |            |           |           |           |             |             |             |              |              |
| 3/5/2019   |            |           |           |           |             |             |             | 0.249        | 0.477        |
| 4/10/2019  | 0.102      | 0.262     | 0.273     | 0.384     | 0.738       | <0.1        | 0.156       |              |              |
| 5/14/2019  | 0.119      | 0.17      | 0.281     | 0.335     |             |             |             |              |              |
| 10/8/2019  | 0.0924 (J) | 0.164     | 0.225     |           |             |             |             |              |              |
| 10/10/2019 |            |           |           | 0.304     |             |             |             |              |              |
| 10/14/2019 |            |           |           |           | 0.619       | <0.1        | 0.118       | 0.37         | 0.449        |
| 10/16/2019 | 0.0756 (J) | 0.114     | 0.106     | 0.302     |             |             |             |              |              |
| 11/26/2019 |            |           |           |           |             |             |             |              |              |
| 2/3/2020   | 0.0982 (J) | 0.182     | 0.256     | 0.37      | 0.427       |             |             | 0.438        | 0.555        |
| 2/4/2020   |            |           |           |           |             | <0.1        | 0.132       |              |              |
| 2/5/2020   |            |           |           |           |             |             |             |              |              |


Constituent: Fluoride (mg/L) Analysis Run 7/22/2020 2:55 PM View: Time Series Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

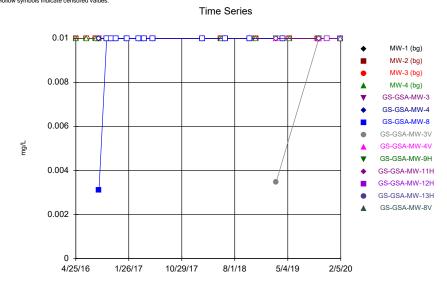
|            | GS-GSA-MW-9H | GS-GSA-MW-11H | GS-GSA-MW-12H | GS-GSA-MW-13H | GS-GSA-MW-8V |  |  |  |
|------------|--------------|---------------|---------------|---------------|--------------|--|--|--|
| 4/25/2016  |              |               |               |               |              |  |  |  |
| 4/26/2016  |              |               |               |               |              |  |  |  |
| 6/20/2016  |              |               |               |               |              |  |  |  |
| 6/22/2016  |              |               |               |               |              |  |  |  |
| 8/8/2016   |              |               |               |               |              |  |  |  |
| 8/9/2016   |              |               |               |               |              |  |  |  |
| 8/24/2016  |              |               |               |               |              |  |  |  |
| 10/3/2016  |              |               |               |               |              |  |  |  |
| 10/4/2016  |              |               |               |               |              |  |  |  |
| 10/26/2016 |              |               |               |               |              |  |  |  |
| 11/21/2016 |              |               |               |               |              |  |  |  |
| 1/17/2017  |              |               |               |               |              |  |  |  |
| 1/18/2017  |              |               |               |               |              |  |  |  |
| 3/20/2017  |              |               |               |               |              |  |  |  |
| 3/21/2017  |              |               |               |               |              |  |  |  |
| 3/22/2017  |              |               |               |               |              |  |  |  |
| 4/17/2017  |              |               |               |               |              |  |  |  |
| 4/18/2017  |              |               |               |               |              |  |  |  |
| 5/30/2017  |              |               |               |               |              |  |  |  |
| 5/31/2017  |              |               |               |               |              |  |  |  |
| 8/23/2017  |              |               |               |               |              |  |  |  |
| 8/24/2017  |              |               |               |               |              |  |  |  |
| 2/13/2018  |              |               |               |               |              |  |  |  |
| 5/22/2018  |              |               |               |               |              |  |  |  |
| 5/23/2018  |              |               |               |               |              |  |  |  |
| 5/24/2018  |              |               |               |               |              |  |  |  |
| 6/11/2018  |              |               |               |               |              |  |  |  |
| 6/12/2018  |              |               |               |               |              |  |  |  |
| 10/17/2018 |              |               |               |               |              |  |  |  |
| 11/19/2018 |              |               |               |               |              |  |  |  |
| 3/4/2019   |              | 0.101         |               |               |              |  |  |  |
| 3/5/2019   | 0.239        |               |               |               |              |  |  |  |
| 4/10/2019  |              |               |               |               |              |  |  |  |
| 5/14/2019  |              |               |               |               |              |  |  |  |
| 10/8/2019  |              |               |               |               |              |  |  |  |
| 10/10/2019 |              |               |               |               |              |  |  |  |
| 10/14/2019 |              |               |               |               |              |  |  |  |
| 10/16/2019 | 0.101        | 0.0875 (J)    |               |               |              |  |  |  |
| 11/26/2019 |              |               | <0.1          |               |              |  |  |  |
| 2/3/2020   |              |               |               |               |              |  |  |  |
| 2/4/2020   | 0.205        | 0.0743 (J)    | <0.1          | 0.115         |              |  |  |  |
| 2/5/2020   |              |               |               |               | 0.162        |  |  |  |




Constituent: Lead Analysis Run 7/22/2020 2:45 PM View: Time Series
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

## Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG Hollow symbols indicate censored values.




Constituent: Mercury Analysis Run 7/22/2020 2:45 PM View: Time Series Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

### Time Series



Constituent: Lithium Analysis Run 7/22/2020 2:45 PM View: Time Series Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

## Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG Hollow symbols indicate censored values.



Constituent: Molybdenum Analysis Run 7/22/2020 2:45 PM View: Time Series
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

Constituent: Lead (mg/L) Analysis Run 7/22/2020 2:55 PM View: Time Series
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

| 4/05/0016              | MW-1 (bg)      | MW-2 (bg)        | MW-3 (bg)   | MW-4 (bg) | GS-GSA-MW-3      | GS-GSA-MW-4      | GS-GSA-MW-8      | GS-GSA-MW-3V | GS-GSA-MW-4V |
|------------------------|----------------|------------------|-------------|-----------|------------------|------------------|------------------|--------------|--------------|
| 4/25/2016              | .0.005         | <0.005           | <0.005      | <0.005    |                  |                  |                  |              |              |
| 4/26/2016              | <0.005         | 10.005           |             | -0.005    |                  |                  |                  |              |              |
| 6/20/2016              | <0.005         | <0.005           | .0.005      | <0.005    |                  |                  |                  |              |              |
| 6/22/2016              | -0.005         | -0.005           | <0.005      |           |                  |                  |                  |              |              |
| 8/8/2016               | <0.005         | <0.005           | <0.005      | <0.00E    |                  |                  |                  |              |              |
| 8/9/2016               | <0.00E         | <0.00E           |             | <0.005    | <0.00E           | <0.00E           | <0.00E           |              |              |
| 8/24/2016              | <0.005         | <0.005<br><0.005 | <0.005      | <0.005    | <0.005<br><0.005 | <0.005<br><0.005 | <0.005<br><0.005 |              |              |
| 10/3/2016              | <0.005         | <0.005           | <0.005      | <0.005    | <0.005           | <0.005           | <0.005           |              |              |
| 10/4/2016              | <0.00E         | <0.00E           |             | <0.00E    | <0.00E           | <0.00E           | <0.00E           |              |              |
| 10/26/2016             | <0.005         | <0.005           | <0.005      | <0.005    | <0.005           | <0.005           | <0.005           |              |              |
| 11/21/2016             | <0.005         | <0.005<br><0.005 | <0.005      | <0.005    | <0.005<br><0.005 | <0.005<br><0.005 | <0.005<br><0.005 |              |              |
| 1/17/2017              | <0.005         | <0.005           | <0.00E      | <0.00E    | <0.005           | <0.005           | <0.005           |              |              |
| 1/18/2017              |                |                  | <0.005      | <0.005    | <0.005           |                  | <0.005           |              |              |
| 3/20/2017              |                |                  |             |           | <0.005           | <0.005           | <0.005           |              |              |
| 3/21/2017<br>3/22/2017 | <0.005         | <0.005           | <0.005      | <0.005    |                  | <0.005           |                  |              |              |
|                        | <0.005         | <0.005           | <0.005      | <0.005    | <0.005           | <0.005           |                  |              |              |
| 4/17/2017<br>4/18/2017 | <0.005         | <0.005           | <0.005      | <0.005    | <0.005           | <0.005           | <0.005           |              |              |
| 5/30/2017              | <0.005         | <0.005           | <0.005      | <0.005    | <0.005           | <0.005           | <0.005           |              |              |
| 5/31/2017              | <0.005         | <0.005           | <0.005      |           | <0.005           | <0.005           | <0.005           |              |              |
| 2/13/2018              | <0.005         | <0.005           | <0.005      | <0.005    | <0.005           | <0.005           | <0.005           |              |              |
| 5/22/2018              | <0.005         | <0.005           | <0.005      | <0.005    | <0.005           | <0.005           | <0.005           |              |              |
| 5/23/2018              | <b>~</b> 0.003 | <b>~0.003</b>    |             | <0.005    |                  |                  |                  |              |              |
| 5/24/2018              |                |                  | <0.005      | 10.003    |                  |                  |                  |              |              |
| 6/11/2018              |                |                  | 10.003      |           | <0.005           | <0.005           |                  |              |              |
| 6/12/2018              | <0.005         | <0.005           | <0.005      | <0.005    | 10.000           | 10.003           | <0.005           |              |              |
| 10/17/2018             | <0.005         | <0.005           | 0.00102 (J) | <0.005    | <0.005           | <0.005           | <0.005           |              |              |
| 11/19/2018             | <0.005         | <0.005           | 0.00692     | <0.005    | -0.000           | -0.000           | -0.000           |              |              |
| 3/4/2019               | 10.000         | -0.000           | 0.00002     | -0.000    |                  |                  |                  |              |              |
| 3/5/2019               |                |                  |             |           |                  |                  |                  | <0.005       | <0.005       |
| 4/10/2019              | <0.005         | <0.005           | <0.005      | <0.005    | <0.005           | <0.005           | <0.005           | 0.000        | 0.000        |
| 5/14/2019              | <0.005         | <0.005           | <0.005      | <0.005    | 0.000            | 0.000            | 0.000            |              |              |
| 10/8/2019              | <0.005         | <0.005           | <0.005      | 0.000     |                  |                  |                  |              |              |
| 10/10/2019             |                |                  |             | <0.005    |                  |                  |                  |              |              |
| 10/14/2019             |                |                  |             |           | <0.005           | <0.005           | <0.005           | <0.005       | <0.005       |
| 10/16/2019             | <0.005         | <0.005           | 0.00108 (J) | <0.005    |                  |                  |                  |              |              |
| 11/26/2019             |                |                  | V-7         |           |                  |                  |                  |              |              |
| 2/3/2020               | <0.005         | <0.005           | <0.005      | <0.005    | <0.005           |                  |                  | <0.005       | <0.005       |
| 2/4/2020               |                |                  |             |           |                  | <0.005           | <0.005           |              |              |
| 2/5/2020               |                |                  |             |           |                  |                  |                  |              |              |
|                        |                |                  |             |           |                  |                  |                  |              |              |

Constituent: Lead (mg/L) Analysis Run 7/22/2020 2:55 PM View: Time Series Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

| 4/28/2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | GS-GSA-MW-9H | GS-GSA-MW-11H | H GS-GSA-MW-12H | H GS-GSA-MW-13H | GS-GSA-MW-8V |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|---------------|-----------------|-----------------|--------------|--|--|
| 6022016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4/25/2016  |              |               |                 |                 |              |  |  |
| 8222018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4/26/2016  |              |               |                 |                 |              |  |  |
| 882016 892016 992017 1022018 1022018 1022010 1022010 1022010 1022010 1022010 1022010 1022010 1022010 1022010 1022010 1022010 1022010 1022010 1022010 1022017 1022017 1022017 1022017 1022017 1022017 1022017 1022017 1022017 1022017 1022017 1022017 1022017 1022017 1022017 1022017 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1022018 1 | 6/20/2016  |              |               |                 |                 |              |  |  |
| 89242016 1042618 1042618 11242016 11242016 11242017 32022017 32122017 32122017 32122017 32122017 32122017 32122017 32122018 5232018 5232018 5232018 5232018 5232018 5142018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 6112018 61 | 6/22/2016  |              |               |                 |                 |              |  |  |
| 8242016 10262016 10262016 10272016 10272016 11272016 11272016 11322017 11322017 3222017 4172017 4172017 4172017 4172017 4172017 5302017 5302017 5302018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 5222018 522201 | 8/8/2016   |              |               |                 |                 |              |  |  |
| 10/4/2016 10/4/2016 10/2016 11/21/2016 11/21/2017 3/21/2017 3/21/2017 3/21/2017 3/21/2017 4/18/2017 4/18/2017 5/31/2017 5/31/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2 | 8/9/2016   |              |               |                 |                 |              |  |  |
| 10/4/2016 10/26/2016 11/17/2017 11/18/2017 3/20/2017 3/20/2017 3/20/2017 3/20/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2018 5/20/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/ | 8/24/2016  |              |               |                 |                 |              |  |  |
| 11/2/2016 11/2/2016 11/2/2017 11/3/2017 3/20/2017 3/20/2017 4/17/2017 4/17/2017 4/18/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2018 5/2/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/2018 6/1/201 | 10/3/2016  |              |               |                 |                 |              |  |  |
| 11/21/2016 11/17/2017 13/20/2017 32/20/2017 32/20/2017 41/18/2017 41/18/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2018 5/22/2018 5/22/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 6/12/2018 | 10/4/2016  |              |               |                 |                 |              |  |  |
| 1/17/2017 1/18/2017 3/2017 3/2017 4/17/2017 4/17/2017 4/17/2017 4/18/2017 5/30/2017 5/31/2017 5/31/2018 5/21/2018 6/12/2018 6/11/2018 6/11/2018 6/11/2018 6/11/2018 6/11/2018 6/11/2018 6/11/2018 1/11/30/2018 1/11/30/2018 1/11/30/2018 1/11/30/2018 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/30/2019 1/11/3 | 10/26/2016 |              |               |                 |                 |              |  |  |
| 1/18/2017 3/20/2017 3/21/2017 3/21/2017 4/17/2017 4/18/2017 5/30/2017 5/30/2017 5/30/2017 5/30/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2018 5/20/2 | 11/21/2016 |              |               |                 |                 |              |  |  |
| 3/2/2017 3/21/2017 4/17/2017 4/18/2017 5/30/2017 5/30/2017 5/31/2017 5/31/2017 5/31/2018 5/22/2018 5/22/2018 6/12/2018 6/11/2018 6/11/2018 6/11/2018 10/17/2018 11/19/2018 3/4/2019 4/0.005 4/10/2019 5/4/40019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 1 | 1/17/2017  |              |               |                 |                 |              |  |  |
| 3/21/2017 3/22/2017 4/17/2017 4/17/2017 4/18/2017 5/30/2017 5/31/2017 2/13/2018 5/22/2018 5/22/2018 5/23/2018 6/11/2018 6/11/2018 10/17/2018 11/19/2018 11/19/2018 11/19/2019 3/5/2019 4/10/2019 5/14/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/ | 1/18/2017  |              |               |                 |                 |              |  |  |
| 3/22/2017 4/17/2017 4/18/2017 5/30/2017 5/31/2017 2/13/2018 5/22/2018 5/22/2018 6/11/2018 6/11/2018 6/11/2018 10/17/2018 11/19/2018 3/4/2019 4-0.005 3/5/2019 4-0.005 3/5/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 10/18/2019 1 | 3/20/2017  |              |               |                 |                 |              |  |  |
| 4/17/2017 4/18/2017 5/30/2017 5/31/2017 5/31/2017 5/32/2018 5/22/2018 5/22/2018 6/11/2018 6/11/2018 10/17/2018 11/19/2018 11/19/2018 11/19/2018 11/19/2018 11/19/2018 11/19/2018 11/19/2018 11/19/2018 11/19/2018 11/19/2019 40.005 4/10/2019 5/14/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16 | 3/21/2017  |              |               |                 |                 |              |  |  |
| 4/18/2017 5/30/2017 5/31/2017 5/31/2018 5/22/2018 5/23/2018 5/23/2018 5/23/2018 6/11/2018 6/11/2018 6/11/2018 11/19/2018 3/4/2019 3/5/2019 4/0.005 4/10/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/14/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/20 | 3/22/2017  |              |               |                 |                 |              |  |  |
| 5/30/2017 5/31/2017 2/13/2018 5/22/2018 5/22/2018 5/22/2018 6/11/2018 6/11/2018 6/11/2018 11/11/2018 11/11/2018 11/11/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 2/3/2020 2/4/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4/17/2017  |              |               |                 |                 |              |  |  |
| 5/31/2018 5/22/2018 5/22/2018 5/23/2018 6/12/2018 6/11/2018 10/17/2018 11/19/2018 3/4/2019 4/10/2019 5/14/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 | 4/18/2017  |              |               |                 |                 |              |  |  |
| 2/13/2018 5/22/2018 5/23/2018 5/24/2018 6/11/2018 6/11/2018 6/11/2018 11/17/2018 11/17/2018 3/4/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5/30/2017  |              |               |                 |                 |              |  |  |
| 5/22/2018 5/23/2018 5/24/2018 6/11/2018 6/11/2018 10/17/2018 11/19/2018 3/4/2019 3/5/2019 4/0.005 4/10/2019 10/8/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/ | 5/31/2017  |              |               |                 |                 |              |  |  |
| 5/23/2018 5/24/2018 6/11/2018 6/11/2018 10/17/2018 11/19/2018 3/4/2019 3/5/2019 4/10/2019 5/14/2019 10/6/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 10/16/2019 2/3/2020 2/4/2020 0.005 0.00334 (J) 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2/13/2018  |              |               |                 |                 |              |  |  |
| 5/24/2018 6/11/2018 6/11/2018 10/17/2018 11/19/2018 3/4/2019 3/5/2019 4/10/2019 5/14/2019 10/16/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/2019 10/10/201 | 5/22/2018  |              |               |                 |                 |              |  |  |
| 6/11/2018 6/12/2018 10/17/2018 11/19/2018 3/4/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5/23/2018  |              |               |                 |                 |              |  |  |
| 6/12/2018 10/17/2018 11/19/2018 3/4/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5/24/2018  |              |               |                 |                 |              |  |  |
| 10/17/2018 11/19/2018 3/4/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6/11/2018  |              |               |                 |                 |              |  |  |
| 11/19/2018 3/4/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6/12/2018  |              |               |                 |                 |              |  |  |
| 3/4/2019 <0.005 3/5/2019 <0.005 4/10/2019 5/14/2019 10/8/2019 10/10/2019 10/10/2019 10/14/2019 10/16/2019 <0.005 <0.005 11/26/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10/17/2018 |              |               |                 |                 |              |  |  |
| 3/5/2019 <0.005 4/10/2019 5/14/2019 10/8/2019 10/10/2019 10/14/2019 10/16/2019 10/16/2019 2/3/2020 2/4/2020 <0.005 <0.005 <0.0034 (J) <0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11/19/2018 |              |               |                 |                 |              |  |  |
| 4/10/2019 5/14/2019 10/8/2019 10/10/2019 10/14/2019 10/14/2019 10/16/2019 <0.005 <0.005 11/26/2019 2/3/2020 2/4/2020 <0.005 <0.005 <0.0034 (J) <0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |              | <0.005        |                 |                 |              |  |  |
| 5/14/2019 10/8/2019 10/10/2019 10/14/2019 10/14/2019 10/16/2019 <0.005 <0.005 11/26/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3/5/2019   | <0.005       |               |                 |                 |              |  |  |
| 10/8/2019<br>10/10/2019<br>10/14/2019<br>10/16/2019 <0.005 <0.005<br>11/26/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4/10/2019  |              |               |                 |                 |              |  |  |
| 10/10/2019<br>10/14/2019<br>10/16/2019 <0.005 <0.005<br>11/26/2019 0.00271 (J)<br>2/3/2020<br>2/4/2020 <0.005 <0.005 0.00334 (J) <0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5/14/2019  |              |               |                 |                 |              |  |  |
| 10/14/2019<br>10/16/2019 <0.005 <0.005<br>11/26/2019 0.00271 (J)<br>2/3/2020<br>2/4/2020 <0.005 <0.005 0.00334 (J) <0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10/8/2019  |              |               |                 |                 |              |  |  |
| 10/16/2019 <0.005 <0.005<br>11/26/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10/10/2019 |              |               |                 |                 |              |  |  |
| 11/26/2019 0.00271 (J) 2/3/2020 2/4/2020 <0.005 <0.005 0.00334 (J) <0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10/14/2019 |              |               |                 |                 |              |  |  |
| 2/3/2020<br>2/4/2020 <0.005 <0.005 0.00334 (J) <0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | <0.005       | <0.005        |                 |                 |              |  |  |
| 2/4/2020 <0.005 <0.005 0.00334 (J) <0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11/26/2019 |              |               | 0.00271 (J)     |                 |              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2/3/2020   |              |               |                 |                 |              |  |  |
| 2/5/2020 <0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2/4/2020   | <0.005       | <0.005        | 0.00334 (J)     | <0.005          |              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2/5/2020   |              |               |                 |                 | <0.005       |  |  |

Constituent: Lithium (mg/L) Analysis Run 7/22/2020 2:55 PM View: Time Series
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

| 4/25  | 5/2016           | MW-1 (bg)                | MW-2 (bg)<br>0.0353 (J) | MW-3 (bg)<br>0.0964 | MW-4 (bg)<br>0.0528 | GS-GSA-MW-3 | GS-GSA-MW-4 | GS-GSA-MW-8 | GS-GSA-MW-3V | GS-GSA-MW-4V |
|-------|------------------|--------------------------|-------------------------|---------------------|---------------------|-------------|-------------|-------------|--------------|--------------|
|       | 5/2016<br>5/2016 | 0.0264 (J)               | 0.0333 (3)              | 0.0904              | 0.0328              |             |             |             |              |              |
|       | 0/2016           | 0.0204 (J)<br>0.0246 (J) | 0.0583                  |                     | 0.0554              |             |             |             |              |              |
|       | 2/2016           | 0.0240 (3)               | 0.0363                  | 0.156               | 0.0554              |             |             |             |              |              |
|       | 2016             | 0.0229 (J)               | 0.0627                  | 0.150               |                     |             |             |             |              |              |
|       | 2016             | 0.0223 (0)               | 0.0027                  | 0.122               | 0.0452 (J)          |             |             |             |              |              |
|       | 1/2016           | 0.0236 (J)               | 0.0651                  | 0.122               | 0.0432 (J)          | 0.362       | 0.291       | 0.0683      |              |              |
|       | 3/2016           | 0.0230 (J)<br>0.0229 (J) | 0.0622                  | 0.130               | 0.0476 (J)          | 0.371       | 0.287       | 0.0661      |              |              |
|       | 1/2016           | 0.0223 (0)               | 0.0022                  | 0.0966              | 0.0470 (0)          | 0.071       | 0.207       | 0.0001      |              |              |
|       | 26/2016          | 0.0227 (J)               | 0.0293 (J)              | 0.134               | 0.049 (J)           | 0.416       | 0.298       | 0.0681      |              |              |
|       | 21/2016          | 0.0236 (J)               | 0.0667                  | 0.167               | 0.0477 (J)          | 0.401       | 0.294       | 0.0682      |              |              |
|       | 7/2017           | 0.0228 (J)               | 0.0636                  | 0.107               | 0.0 177 (0)         | 0.497       | 0.27        | 0.0516      |              |              |
|       | 3/2017           | (2)                      |                         | 0.237               | 0.045 (J)           |             |             |             |              |              |
|       | )/2017           |                          |                         |                     | (1)                 | 0.533       |             | 0.135       |              |              |
|       | /2017            |                          |                         |                     |                     |             | 0.258       |             |              |              |
|       | 2/2017           | 0.0238 (J)               | 0.0464 (J)              | 0.203               | 0.0493 (J)          |             |             |             |              |              |
| 4/17  | 7/2017           |                          |                         |                     |                     | 0.47        | 0.274       |             |              |              |
| 4/18  | 3/2017           | 0.0242 (J)               | 0.0446 (J)              | 0.0764              | 0.0494 (J)          |             |             | 0.139       |              |              |
| 5/30  | )/2017           | 0.0229 (J)               |                         |                     |                     | 0.479       | 0.285       | 0.141       |              |              |
| 5/31  | /2017            |                          | 0.0496 (J)              | 0.218               |                     |             |             |             |              |              |
| 2/13  | 3/2018           | 0.0233 (J)               | 0.0615                  | 0.0964              | 0.0446 (J)          | 0.508       | 0.274       | 0.163       |              |              |
| 5/22  | 2/2018           | 0.0263 (J)               | 0.0465 (J)              |                     |                     |             |             |             |              |              |
| 5/23  | 3/2018           |                          |                         |                     | 0.0513              |             |             |             |              |              |
| 5/24  | 1/2018           |                          |                         | 0.145               |                     |             |             |             |              |              |
| 6/11  | /2018            |                          |                         |                     |                     | 0.425       | 0.266       |             |              |              |
| 6/12  | 2/2018           | 0.0251 (J)               | 0.0472 (J)              | 0.194               | 0.0511              |             |             | 0.166       |              |              |
| 10/1  | 7/2018           | 0.025 (J)                | 0.0633                  | 0.384               | 0.0532              | 0.494       | 0.266       | 0.188       |              |              |
| 11/1  | 9/2018           | 0.0241                   | 0.0584                  | 0.323               | 0.0467              |             |             |             |              |              |
| 3/4/2 | 2019             |                          |                         |                     |                     |             |             |             |              |              |
| 3/5/2 | 2019             |                          |                         |                     |                     |             |             |             | 0.309        | 0.369        |
| 4/10  | )/2019           | 0.0285                   | 0.0574                  | 0.0905              | 0.0504              | 0.425       | 0.282       | 0.195       |              |              |
| 5/14  | 1/2019           | 0.026 (J)                | 0.0445                  | 0.0828              | 0.0485              |             |             |             |              |              |
| 10/8  | 3/2019           | 0.0268                   | 0.0677                  | 0.419               |                     |             |             |             |              |              |
| 10/1  | 0/2019           |                          |                         |                     | 0.054               |             |             |             |              |              |
| 10/1  | 4/2019           |                          |                         |                     |                     | 0.459       | 0.262       | 0.209       | 0.38         | 0.317        |
|       | 6/2019           | 0.0263                   | 0.0661                  | 0.337               | 0.052               |             |             |             |              |              |
|       | 26/2019          |                          |                         |                     |                     |             |             |             |              |              |
| 2/3/2 | 2020             | 0.0292                   | 0.0534                  | 0.0825              | 0.0556              | 0.474       |             |             | 0.46         | 0.332        |
|       | 2020             |                          |                         |                     |                     |             | 0.29        | 0.188       |              |              |
| 2/5/2 | 2020             |                          |                         |                     |                     |             |             |             |              |              |

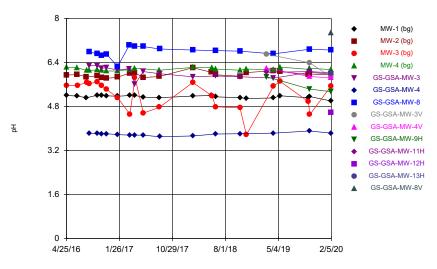
Constituent: Lithium (mg/L) Analysis Run 7/22/2020 2:55 PM View: Time Series
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

|            | GS-GSA-MW-9H | GS-GSA-MW-11H | GS-GSA-MW-12H | I GS-GSA-MW-13H | GS-GSA-MW-8V |  |  |
|------------|--------------|---------------|---------------|-----------------|--------------|--|--|
| 4/25/2016  |              |               |               |                 |              |  |  |
| 4/26/2016  |              |               |               |                 |              |  |  |
| 6/20/2016  |              |               |               |                 |              |  |  |
| 6/22/2016  |              |               |               |                 |              |  |  |
| 8/8/2016   |              |               |               |                 |              |  |  |
| 8/9/2016   |              |               |               |                 |              |  |  |
| 8/24/2016  |              |               |               |                 |              |  |  |
| 10/3/2016  |              |               |               |                 |              |  |  |
| 10/4/2016  |              |               |               |                 |              |  |  |
| 10/26/2016 |              |               |               |                 |              |  |  |
| 11/21/2016 |              |               |               |                 |              |  |  |
| 1/17/2017  |              |               |               |                 |              |  |  |
| 1/18/2017  |              |               |               |                 |              |  |  |
| 3/20/2017  |              |               |               |                 |              |  |  |
| 3/21/2017  |              |               |               |                 |              |  |  |
| 3/22/2017  |              |               |               |                 |              |  |  |
| 4/17/2017  |              |               |               |                 |              |  |  |
| 4/18/2017  |              |               |               |                 |              |  |  |
| 5/30/2017  |              |               |               |                 |              |  |  |
| 5/31/2017  |              |               |               |                 |              |  |  |
| 2/13/2018  |              |               |               |                 |              |  |  |
| 5/22/2018  |              |               |               |                 |              |  |  |
| 5/23/2018  |              |               |               |                 |              |  |  |
| 5/24/2018  |              |               |               |                 |              |  |  |
| 6/11/2018  |              |               |               |                 |              |  |  |
| 6/12/2018  |              |               |               |                 |              |  |  |
| 10/17/2018 |              |               |               |                 |              |  |  |
| 11/19/2018 |              |               |               |                 |              |  |  |
| 3/4/2019   |              | <0.02         |               |                 |              |  |  |
| 3/5/2019   | 0.169        |               |               |                 |              |  |  |
| 4/10/2019  |              |               |               |                 |              |  |  |
| 5/14/2019  |              |               |               |                 |              |  |  |
| 10/8/2019  |              |               |               |                 |              |  |  |
| 10/10/2019 |              |               |               |                 |              |  |  |
| 10/14/2019 |              |               |               |                 |              |  |  |
| 10/16/2019 | 0.184        | <0.02         |               |                 |              |  |  |
| 11/26/2019 |              |               | 0.449         |                 |              |  |  |
| 2/3/2020   |              |               |               |                 |              |  |  |
| 2/4/2020   | 0.203        | <0.02         | 0.394         | 0.0506          |              |  |  |
| 2/5/2020   |              |               |               |                 | 0.327        |  |  |

Constituent: Mercury (mg/L) Analysis Run 7/22/2020 2:55 PM View: Time Series
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

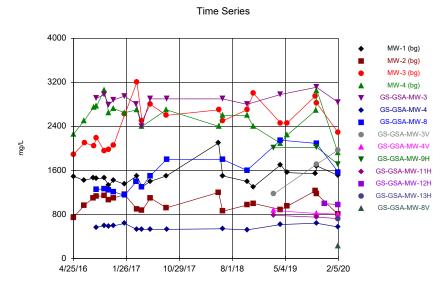
| 4/25/2016  | MW-1 (bg) | MW-2 (bg)<br><0.0005 | MW-3 (bg)<br><0.0005 | MW-4 (bg)<br><0.0005 | GS-GSA-MW-3 | GS-GSA-MW-4 | GS-GSA-MW-8 | GS-GSA-MW-3V | GS-GSA-MW-4V |
|------------|-----------|----------------------|----------------------|----------------------|-------------|-------------|-------------|--------------|--------------|
| 4/26/2016  | <0.0005   | <b>~0.0003</b>       | <b>~0.0003</b>       | <b>~0.0003</b>       |             |             |             |              |              |
| 6/20/2016  | <0.0005   | <0.0005              |                      | <0.0005              |             |             |             |              |              |
| 6/22/2016  | <0.0005   | <0.0005              | <0.0005              | <0.0005              |             |             |             |              |              |
| 8/8/2016   | <0.0005   | <0.0005              | <b>~0.0003</b>       |                      |             |             |             |              |              |
| 8/9/2016   | 10.0000   | 10.0000              | <0.0005              | <0.0005              |             |             |             |              |              |
| 8/24/2016  | <0.0005   | <0.0005              | <0.0005              | <0.0005              | <0.0005     | <0.0005     | <0.0005     |              |              |
| 10/3/2016  | <0.0005   | <0.0005              | 10.0000              | <0.0005              | <0.0005     | <0.0005     | <0.0005     |              |              |
| 10/4/2016  | -0.0000   | -0.0000              | <0.0005              | -0.0000              | -0.0000     | -0.0000     | -0.0000     |              |              |
| 10/26/2016 | <0.0005   | <0.0005              | <0.0005              | <0.0005              | <0.0005     | <0.0005     | <0.0005     |              |              |
| 11/21/2016 | <0.0005   | <0.0005              | <0.0005              | <0.0005              | <0.0005     | <0.0005     | <0.0005     |              |              |
| 1/17/2017  | <0.0005   | <0.0005              | 0.0000               | 0.000                | <0.0005     | <0.0005     | <0.0005     |              |              |
| 1/18/2017  |           |                      | <0.0005              | <0.0005              |             |             |             |              |              |
| 3/20/2017  |           |                      |                      |                      | <0.0005     |             | <0.0005     |              |              |
| 3/21/2017  |           |                      |                      |                      |             | <0.0005     |             |              |              |
| 3/22/2017  | <0.0005   | <0.0005              | <0.0005              | <0.0005              |             |             |             |              |              |
| 4/17/2017  |           |                      |                      |                      | <0.0005     | <0.0005     |             |              |              |
| 4/18/2017  | <0.0005   | <0.0005              | <0.0005              | <0.0005              |             |             | <0.0005     |              |              |
| 5/30/2017  | <0.0005   |                      |                      |                      | <0.0005     | <0.0005     | <0.0005     |              |              |
| 5/31/2017  |           | <0.0005              | <0.0005              |                      |             |             |             |              |              |
| 2/13/2018  | <0.0005   | <0.0005              | <0.0005              | <0.0005              | <0.0005     | <0.0005     | <0.0005     |              |              |
| 5/22/2018  | <0.0005   | <0.0005              |                      |                      |             |             |             |              |              |
| 5/23/2018  |           |                      |                      | <0.0005              |             |             |             |              |              |
| 5/24/2018  |           |                      | <0.0005              |                      |             |             |             |              |              |
| 6/11/2018  |           |                      |                      |                      | <0.0005     | <0.0005     |             |              |              |
| 6/12/2018  | <0.0005   | <0.0005              | <0.0005              | <0.0005              |             |             | <0.0005     |              |              |
| 10/17/2018 | <0.0005   | <0.0005              | <0.0005              | <0.0005              | <0.0005     | <0.0005     | <0.0005     |              |              |
| 11/19/2018 | <0.0005   | <0.0005              | <0.0005              | <0.0005              |             |             |             |              |              |
| 3/4/2019   |           |                      |                      |                      |             |             |             |              |              |
| 3/5/2019   |           |                      |                      |                      |             |             |             | <0.0005      | <0.0005      |
| 4/10/2019  | <0.0005   | <0.0005              | <0.0005              | <0.0005              | <0.0005     | <0.0005     | <0.0005     |              |              |
| 5/14/2019  | <0.0005   | <0.0005              | <0.0005              | <0.0005              |             |             |             |              |              |
| 10/8/2019  | <0.0005   | <0.0005              | <0.0005              |                      |             |             |             |              |              |
| 10/10/2019 |           |                      |                      | <0.0005              |             |             |             |              |              |
| 10/14/2019 |           |                      |                      |                      | <0.0005     | <0.0005     | <0.0005     | <0.0005      | <0.0005      |
| 10/16/2019 | <0.0005   | <0.0005              | <0.0005              | <0.0005              |             |             |             |              |              |
| 11/26/2019 |           |                      |                      |                      |             |             |             |              |              |
| 2/3/2020   | <0.0005   | <0.0005              | <0.0005              | <0.0005              | <0.0005     |             |             | <0.0005      | <0.0005      |
| 2/4/2020   |           |                      |                      |                      |             | <0.0005     | <0.0005     |              |              |
| 2/5/2020   |           |                      |                      |                      |             |             |             |              |              |

Constituent: Mercury (mg/L) Analysis Run 7/22/2020 2:55 PM View: Time Series
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA


|            | GS-GSA-MW-9H | GS-GSA-MW-11H | GS-GSA-MW-12H | GS-GSA-MW-13H | GS-GSA-MW-8V |  |  |
|------------|--------------|---------------|---------------|---------------|--------------|--|--|
| 4/25/2016  |              |               |               |               |              |  |  |
| 4/26/2016  |              |               |               |               |              |  |  |
| 6/20/2016  |              |               |               |               |              |  |  |
| 6/22/2016  |              |               |               |               |              |  |  |
| 8/8/2016   |              |               |               |               |              |  |  |
| 8/9/2016   |              |               |               |               |              |  |  |
| 8/24/2016  |              |               |               |               |              |  |  |
| 10/3/2016  |              |               |               |               |              |  |  |
| 10/4/2016  |              |               |               |               |              |  |  |
| 10/26/2016 |              |               |               |               |              |  |  |
| 11/21/2016 |              |               |               |               |              |  |  |
| 1/17/2017  |              |               |               |               |              |  |  |
| 1/18/2017  |              |               |               |               |              |  |  |
| 3/20/2017  |              |               |               |               |              |  |  |
| 3/21/2017  |              |               |               |               |              |  |  |
| 3/22/2017  |              |               |               |               |              |  |  |
| 4/17/2017  |              |               |               |               |              |  |  |
| 4/18/2017  |              |               |               |               |              |  |  |
| 5/30/2017  |              |               |               |               |              |  |  |
| 5/31/2017  |              |               |               |               |              |  |  |
| 2/13/2018  |              |               |               |               |              |  |  |
| 5/22/2018  |              |               |               |               |              |  |  |
| 5/23/2018  |              |               |               |               |              |  |  |
| 5/24/2018  |              |               |               |               |              |  |  |
| 6/11/2018  |              |               |               |               |              |  |  |
| 6/12/2018  |              |               |               |               |              |  |  |
| 10/17/2018 |              |               |               |               |              |  |  |
| 11/19/2018 |              |               |               |               |              |  |  |
| 3/4/2019   |              | <0.0005       |               |               |              |  |  |
| 3/5/2019   | <0.0005      |               |               |               |              |  |  |
| 4/10/2019  |              |               |               |               |              |  |  |
| 5/14/2019  |              |               |               |               |              |  |  |
| 10/8/2019  |              |               |               |               |              |  |  |
| 10/10/2019 |              |               |               |               |              |  |  |
| 10/14/2019 |              |               |               |               |              |  |  |
| 10/16/2019 | <0.0005      | <0.0005       |               |               |              |  |  |
| 11/26/2019 |              |               | <0.0005       |               |              |  |  |
| 2/3/2020   |              |               |               |               |              |  |  |
| 2/4/2020   | <0.0005      | <0.0005       | <0.0005       | <0.0005       |              |  |  |
| 2/5/2020   |              |               |               |               | <0.0005      |  |  |

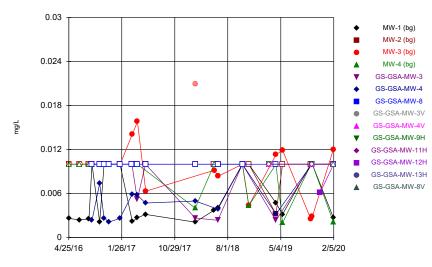
Constituent: Molybdenum (mg/L) Analysis Run 7/22/2020 2:55 PM View: Time Series
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

|            | MW-1 (bg) | MW-2 (bg) | MW-3 (bg) | MW-4 (bg) | GS-GSA-MW-3 | GS-GSA-MW-4 | GS-GSA-MW-8 | GS-GSA-MW-3V | GS-GSA-MW-4V |
|------------|-----------|-----------|-----------|-----------|-------------|-------------|-------------|--------------|--------------|
| 4/25/2016  |           | <0.01     | <0.01     | <0.01     |             |             |             |              |              |
| 4/26/2016  | <0.01     |           |           |           |             |             |             |              |              |
| 6/20/2016  | <0.01     | <0.01     |           | <0.01     |             |             |             |              |              |
| 6/22/2016  |           |           | <0.01     |           |             |             |             |              |              |
| 8/8/2016   | <0.01     | <0.01     |           |           |             |             |             |              |              |
| 8/9/2016   |           |           | <0.01     | <0.01     |             |             |             |              |              |
| 8/24/2016  | <0.01     | <0.01     | <0.01     | <0.01     | <0.01       | <0.01       | 0.0031 (J)  |              |              |
| 10/3/2016  | <0.01     | <0.01     |           | <0.01     | <0.01       | <0.01       | <0.01       |              |              |
| 10/4/2016  |           |           | <0.01     |           |             |             |             |              |              |
| 10/26/2016 | <0.01     | <0.01     | <0.01     | <0.01     | <0.01       | <0.01       | <0.01       |              |              |
| 11/21/2016 | <0.01     | <0.01     | <0.01     | <0.01     | <0.01       | <0.01       | <0.01       |              |              |
| 1/17/2017  | <0.01     | <0.01     |           |           | <0.01       | <0.01       | <0.01       |              |              |
| 1/18/2017  |           |           | <0.01     | <0.01     |             |             |             |              |              |
| 3/20/2017  |           |           |           |           | <0.01       |             | <0.01       |              |              |
| 3/21/2017  |           |           |           |           |             | <0.01       |             |              |              |
| 3/22/2017  | <0.01     | <0.01     | <0.01     | <0.01     |             |             |             |              |              |
| 4/17/2017  |           |           |           |           | <0.01       | <0.01       |             |              |              |
| 4/18/2017  | <0.01     | <0.01     | <0.01     | <0.01     |             |             | <0.01       |              |              |
| 5/30/2017  | <0.01     |           |           |           | <0.01       | <0.01       | <0.01       |              |              |
| 5/31/2017  |           | <0.01     | <0.01     |           |             |             |             |              |              |
| 2/13/2018  | <0.01     | <0.01     | <0.01     | <0.01     | <0.01       | <0.01       | <0.01       |              |              |
| 5/22/2018  | <0.01     | <0.01     |           |           |             |             |             |              |              |
| 5/23/2018  |           |           |           | <0.01     |             |             |             |              |              |
| 5/24/2018  |           |           | <0.01     |           |             |             |             |              |              |
| 6/11/2018  |           |           |           |           | <0.01       | <0.01       |             |              |              |
| 6/12/2018  | <0.01     | <0.01     | <0.01     | <0.01     |             |             | <0.01       |              |              |
| 10/17/2018 | <0.01     | <0.01     | <0.01     | <0.01     | <0.01       | <0.01       | <0.01       |              |              |
| 11/19/2018 | <0.01     | <0.01     | <0.01     | <0.01     |             |             |             |              |              |
| 3/4/2019   |           |           |           |           |             |             |             |              |              |
| 3/5/2019   |           |           |           |           |             |             |             | 0.00347 (J)  | <0.01        |
| 4/10/2019  | <0.01     | <0.01     | <0.01     | <0.01     | <0.01       | <0.01       | <0.01       |              |              |
| 5/14/2019  | <0.01     | <0.01     | <0.01     | <0.01     |             |             |             |              |              |
| 10/8/2019  | <0.01     | <0.01     | <0.01     |           |             |             |             |              |              |
| 10/10/2019 |           |           |           | <0.01     |             |             |             |              |              |
| 10/14/2019 |           |           |           |           | <0.01       | <0.01       | <0.01       | <0.01        | <0.01        |
| 10/16/2019 | <0.01     | <0.01     | <0.01     | <0.01     |             |             |             |              |              |
| 11/26/2019 |           |           |           |           |             |             |             |              |              |
| 2/3/2020   | <0.01     | <0.01     | <0.01     | <0.01     | <0.01       |             |             | <0.01        | <0.01        |
| 2/4/2020   |           |           |           |           |             | <0.01       | <0.01       |              |              |
| 2/5/2020   |           |           |           |           |             |             |             |              |              |
|            |           |           |           |           |             |             |             |              |              |


Constituent: Molybdenum (mg/L) Analysis Run 7/22/2020 2:55 PM View: Time Series
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

|            | GS-GSA-MW-9H | GS-GSA-MW-11H | GS-GSA-MW-12H | GS-GSA-MW-13H | GS-GSA-MW-8V |  |
|------------|--------------|---------------|---------------|---------------|--------------|--|
| 4/25/2016  |              |               |               |               |              |  |
| 4/26/2016  |              |               |               |               |              |  |
| 6/20/2016  |              |               |               |               |              |  |
| 6/22/2016  |              |               |               |               |              |  |
| 8/8/2016   |              |               |               |               |              |  |
| 8/9/2016   |              |               |               |               |              |  |
| 8/24/2016  |              |               |               |               |              |  |
| 10/3/2016  |              |               |               |               |              |  |
| 10/4/2016  |              |               |               |               |              |  |
| 10/26/2016 |              |               |               |               |              |  |
| 11/21/2016 |              |               |               |               |              |  |
| 1/17/2017  |              |               |               |               |              |  |
| 1/18/2017  |              |               |               |               |              |  |
| 3/20/2017  |              |               |               |               |              |  |
| 3/21/2017  |              |               |               |               |              |  |
| 3/22/2017  |              |               |               |               |              |  |
| 4/17/2017  |              |               |               |               |              |  |
| 4/18/2017  |              |               |               |               |              |  |
| 5/30/2017  |              |               |               |               |              |  |
| 5/31/2017  |              |               |               |               |              |  |
| 2/13/2018  |              |               |               |               |              |  |
| 5/22/2018  |              |               |               |               |              |  |
| 5/23/2018  |              |               |               |               |              |  |
| 5/24/2018  |              |               |               |               |              |  |
| 6/11/2018  |              |               |               |               |              |  |
| 6/12/2018  |              |               |               |               |              |  |
| 10/17/2018 |              |               |               |               |              |  |
| 11/19/2018 |              |               |               |               |              |  |
| 3/4/2019   |              | <0.01         |               |               |              |  |
| 3/5/2019   | <0.01        |               |               |               |              |  |
| 4/10/2019  |              |               |               |               |              |  |
| 5/14/2019  |              |               |               |               |              |  |
| 10/8/2019  |              |               |               |               |              |  |
| 10/10/2019 |              |               |               |               |              |  |
| 10/14/2019 |              |               |               |               |              |  |
| 10/16/2019 | <0.01        | <0.01         |               |               |              |  |
| 11/26/2019 |              |               | <0.01         |               |              |  |
| 2/3/2020   |              |               |               |               |              |  |
| 2/4/2020   | <0.01        | <0.01         | <0.01         | <0.01         |              |  |
| 2/5/2020   |              |               |               |               | <0.01        |  |
|            |              |               |               |               |              |  |

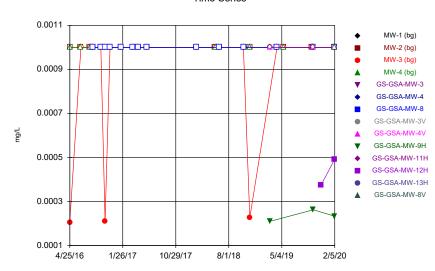



Constituent: pH Analysis Run 7/22/2020 2:45 PM View: Time Series
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

#### Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG



Constituent: Sulfate Analysis Run 7/22/2020 2:45 PM View: Time Series Plant William C Gorgas Client: Southern Company Data: Gorgas GSA


### Time Series



Constituent: Selenium Analysis Run 7/22/2020 2:45 PM View: Time Series
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

## Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG Hollow symbols indicate censored values.

### Time Series



Constituent: Thallium Analysis Run 7/22/2020 2:45 PM View: Time Series
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

Constituent: pH (pH) Analysis Run 7/22/2020 2:55 PM View: Time Series Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

|            | MW-1 (bg)  | MW-2 (bg) | MW-3 (bg) | MW-4 (bg) | GS-GSA-MW-3 | GS-GSA-MW-4 | GS-GSA-MW-8    | GS-GSA-MW-3V  | GS-GSA-MW-4V  |
|------------|------------|-----------|-----------|-----------|-------------|-------------|----------------|---------------|---------------|
| 4/25/2016  | WWV-1 (bg) | 5.94      | 5.56      | 6.22      | do-doA-WV-5 | 40-40A-WW-4 | GO-GOA-IVIVV-0 | GO-GOA-WVV-5V | GO-GOA-WWV-4V |
| 4/26/2016  | 5.2        | 0.0 .     | 0.00      | 0.22      |             |             |                |               |               |
| 6/20/2016  | 5.18       | 5.96      |           | 6.21      |             |             |                |               |               |
| 6/22/2016  | 0.10       | 0.00      | 5.57      | 0.2.      |             |             |                |               |               |
| 8/8/2016   | 5.12       | 5.88      | 0.07      |           |             |             |                |               |               |
| 8/9/2016   | 0.12       | 0.00      | 5.67      | 6.11      |             |             |                |               |               |
| 8/24/2016  |            |           | 5.63      | 6.11      | 6.28        | 3.83 (E)    | 6.78           |               |               |
| 10/3/2016  | 5.21 (D)   | 5.91 (D)  | 0.00      | 6.13 (D)  | 6.28        | 3.82 (E)    | 6.71           |               |               |
| 10/4/2016  | J.= : (=)  |           | 5.69 (D)  | (= /      |             | 0.02 (2)    |                |               |               |
| 10/26/2016 | 5.2        | 5.84      | 5.56      | 6.12      | 6.19        | 3.81 (E)    | 6.65           |               |               |
| 11/21/2016 | 5.19 (D)   | 5.82 (D)  | 5.42 (D)  | 6.09 (D)  | 6.2         | 3.81        | 6.7            |               |               |
| 1/17/2017  | 5.17 (D)   | 5.87 (D)  | 0.42 (D)  | 0.00 (D)  | 6.13        | 3.78        | 6.25           |               |               |
| 1/18/2017  | 3 (5)      | 0.07 (2)  | 5.11 (D)  | 6.09 (D)  | 5.15        | 0.70        | 0.20           |               |               |
| 3/20/2017  |            |           | S(2)      | 0.00 (2)  | 6.17        |             | 7.04           |               |               |
| 3/21/2017  |            |           |           |           | 0.17        | 3.76        | 7.04           |               |               |
| 3/22/2017  | 5.2 (D)    | 6.01 (D)  | 4.52 (D)  | 6.15 (D)  |             | 0.70        |                |               |               |
| 4/17/2017  | 0.2 (2)    | 0.0 (2)   | (5)       | 0.10 (2)  | 5.6         | 3.76        |                |               |               |
| 4/18/2017  | 5.2        | 6.02      | 5.84      | 6.19      | 0.0         | 0.70        | 6.99           |               |               |
| 5/30/2017  | 5.14 (D)   | 0.02      | 0.04      | 0.10      | 6.07        | 3.76        | 6.98           |               |               |
| 5/31/2017  | 3(5)       | 5.85 (D)  | 4.56 (D)  |           | 0.07        | 0.70        | 0.00           |               |               |
| 8/23/2017  | 5.12 (D)   | 5.89 (D)  | 4.77 (D)  | 6.12      |             |             |                |               |               |
| 8/24/2017  | 3.12 (3)   | 0.00 (2)  | , (5)     | 02        | 5.99        | 3.7         | 6.89           |               |               |
| 2/13/2018  | 5.18       | 6.21      | 5.67      | 6.22      | 5.88        | 3.73        | 6.85           |               |               |
| 5/22/2018  | 5.2        | 6.04      | 0.07      | 0.22      | 0.00        | 0.70        | 0.00           |               |               |
| 5/23/2018  | 0.2        | 0.0 .     |           | 6.21      |             |             |                |               |               |
| 5/24/2018  |            |           | 5.19      |           |             |             |                |               |               |
| 6/11/2018  |            |           |           |           | 5.91        | 3.8         |                |               |               |
| 6/12/2018  | 5.15       | 5.95      | 4.79      | 6.16      |             |             | 6.83           |               |               |
| 10/17/2018 | 5.12       | 5.9       | 4.75      | 6.12      | 5.88        | 3.81        | 6.81           |               |               |
| 11/19/2018 | 5.09 (D)   | 6.03 (D)  | 3.77 (D)  | 6.16 (D)  |             |             |                |               |               |
| 3/4/2019   | ,          | ,         |           | ,         |             |             |                |               |               |
| 3/5/2019   |            |           |           |           |             |             |                | 6.7           | 6.19          |
| 4/10/2019  | 5.11       | 6.1       | 5.54      | 6.14      | 5.83        | 3.83        | 6.71           |               |               |
| 5/14/2019  | 5.19       | 6.07      | 5.71      | 6.23      |             |             |                |               |               |
| 10/8/2019  | 5.12       | 5.96      | 4.98      |           |             |             |                |               |               |
| 10/10/2019 |            |           |           | 6.15      |             |             |                |               |               |
| 10/14/2019 |            |           |           |           | 6.04        | 3.91        | 6.88           | 6.39          | 5.89          |
| 10/16/2019 | 5.16       | 5.98      | 4.51      | 6.19      |             | -           |                |               |               |
| 2/3/2020   | 5          | 5.95      | 5.54      | 6.14      | 5.98        |             |                | 5.88          | 5.84          |
| 2/4/2020   | -          |           |           | -         |             | 3.83        | 6.85           |               |               |
| 2/5/2020   |            |           |           |           |             |             |                |               |               |
|            |            |           |           |           |             |             |                |               |               |

Constituent: pH (pH) Analysis Run 7/22/2020 2:55 PM View: Time Series Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

|            | GS-GSA-MW-9H | GS-GSA-MW-11H | GS-GSA-MW-12H | GS-GSA-MW-13H | GS-GSA-MW-8V |  |  |
|------------|--------------|---------------|---------------|---------------|--------------|--|--|
| 4/25/2016  |              |               |               |               |              |  |  |
| 4/26/2016  |              |               |               |               |              |  |  |
| 6/20/2016  |              |               |               |               |              |  |  |
| 6/22/2016  |              |               |               |               |              |  |  |
| 8/8/2016   |              |               |               |               |              |  |  |
| 8/9/2016   |              |               |               |               |              |  |  |
| 8/24/2016  |              |               |               |               |              |  |  |
| 10/3/2016  |              |               |               |               |              |  |  |
| 10/4/2016  |              |               |               |               |              |  |  |
| 10/26/2016 |              |               |               |               |              |  |  |
| 11/21/2016 |              |               |               |               |              |  |  |
| 1/17/2017  |              |               |               |               |              |  |  |
| 1/18/2017  |              |               |               |               |              |  |  |
| 3/20/2017  |              |               |               |               |              |  |  |
| 3/21/2017  |              |               |               |               |              |  |  |
| 3/22/2017  |              |               |               |               |              |  |  |
| 4/17/2017  |              |               |               |               |              |  |  |
| 4/18/2017  |              |               |               |               |              |  |  |
| 5/30/2017  |              |               |               |               |              |  |  |
| 5/31/2017  |              |               |               |               |              |  |  |
| 8/23/2017  |              |               |               |               |              |  |  |
| 8/24/2017  |              |               |               |               |              |  |  |
| 2/13/2018  |              |               |               |               |              |  |  |
| 5/22/2018  |              |               |               |               |              |  |  |
| 5/23/2018  |              |               |               |               |              |  |  |
| 5/24/2018  |              |               |               |               |              |  |  |
| 6/11/2018  |              |               |               |               |              |  |  |
| 6/12/2018  |              |               |               |               |              |  |  |
| 10/17/2018 |              |               |               |               |              |  |  |
| 11/19/2018 |              |               |               |               |              |  |  |
| 3/4/2019   |              | 6.04          |               |               |              |  |  |
| 3/5/2019   | 5.88         |               |               |               |              |  |  |
| 4/10/2019  |              |               |               |               |              |  |  |
| 5/14/2019  |              |               |               |               |              |  |  |
| 10/8/2019  |              |               |               |               |              |  |  |
| 10/10/2019 |              |               |               |               |              |  |  |
| 10/14/2019 |              |               |               |               |              |  |  |
| 10/16/2019 | 5.43         | 6.07          |               |               |              |  |  |
| 2/3/2020   |              |               |               |               |              |  |  |
| 2/4/2020   | 5.34         | 6.02          | 4.57          | 6             |              |  |  |
| 2/5/2020   |              |               |               |               | 7.48         |  |  |
|            |              |               |               |               |              |  |  |

Constituent: Selenium (mg/L) Analysis Run 7/22/2020 2:55 PM View: Time Series

Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

|            | MW-1 (bg)   | MW-2 (bg)   | MW-3 (bg)   | MW-4 (bg)    | GS-GSA-MW-3 | GS-GSA-MW-4 | GS-GSA-MW-8 | GS-GSA-MW-3V | GS-GSA-MW-4V |
|------------|-------------|-------------|-------------|--------------|-------------|-------------|-------------|--------------|--------------|
| 4/25/2016  |             | <0.01       | <0.01       | <0.01        |             |             |             |              |              |
| 4/26/2016  | 0.00261 (J) |             |             |              |             |             |             |              |              |
| 6/20/2016  | 0.00242 (J) | <0.01       |             | <0.01        |             |             |             |              |              |
| 6/22/2016  |             |             | <0.01       |              |             |             |             |              |              |
| 8/8/2016   | 0.00253 (J) | <0.01       |             |              |             |             |             |              |              |
| 8/9/2016   |             |             | <0.01       | <0.01        |             |             |             |              |              |
| 8/24/2016  | <0.01       | <0.01       | <0.01       | <0.01        | <0.01       | 0.00234 (J) | <0.01       |              |              |
| 10/3/2016  | 0.00211 (J) | <0.01       |             | <0.01        | <0.01       | 0.00739 (J) | <0.01       |              |              |
| 10/4/2016  |             |             | <0.01       |              |             |             |             |              |              |
| 10/26/2016 | <0.01       | <0.01       | <0.01       | <0.01        | <0.01       | 0.00266 (J) | <0.01       |              |              |
| 11/21/2016 | <0.01       | <0.01       | <0.01       | <0.01        | <0.01       | 0.00212 (J) | <0.01       |              |              |
| 1/17/2017  | <0.01       | <0.01       |             |              | <0.01       | 0.00263 (J) | <0.01       |              |              |
| 1/18/2017  |             |             | <0.01       | <0.01        |             |             |             |              |              |
| 3/20/2017  |             |             |             |              | <0.01       |             | <0.01       |              |              |
| 3/21/2017  |             |             |             |              |             | 0.00588 (J) |             |              |              |
| 3/22/2017  | 0.0022 (J)  | <0.01       | 0.0141      | <0.01        |             |             |             |              |              |
| 4/17/2017  |             |             |             |              | 0.00521 (J) | 0.00579 (J) |             |              |              |
| 4/18/2017  | 0.0027 (J)  | <0.01       | 0.0158      | <0.01        |             |             | <0.01       |              |              |
| 5/30/2017  | 0.00316 (J) |             |             |              | <0.01       | 0.00471 (J) | <0.01       |              |              |
| 5/31/2017  |             | <0.01       | 0.00632 (J) |              |             |             |             |              |              |
| 2/13/2018  | 0.00211 (J) | <0.01       | 0.0209 (o)  | 0.00403 (J)  | 0.00267 (J) | 0.00498 (J) | <0.01       |              |              |
| 5/22/2018  | 0.00372 (J) | <0.01       |             |              |             |             |             |              |              |
| 5/23/2018  |             |             |             | <0.01        |             |             |             |              |              |
| 5/24/2018  |             |             | 0.00918 (J) |              |             |             |             |              |              |
| 6/11/2018  |             |             |             |              | 0.00236 (J) | 0.00388 (J) |             |              |              |
| 6/12/2018  | 0.00409 (J) | <0.01       | 0.00836 (J) | <0.01        |             |             | <0.01       |              |              |
| 10/17/2018 | <0.01       | <0.01       | <0.01       | <0.01        | <0.01       | <0.01       | <0.01       |              |              |
| 11/19/2018 | <0.01       | <0.01       | 0.00439 (J) | 0.00436 (J)  |             |             |             |              |              |
| 3/4/2019   |             |             |             |              |             |             |             |              |              |
| 3/5/2019   |             |             |             |              |             |             |             | <0.01        | <0.01        |
| 4/10/2019  | 0.00471 (J) | 0.00322 (J) | 0.0113      | <0.01        | 0.00234 (J) | 0.00322 (J) | <0.01       |              |              |
| 5/14/2019  | 0.00316 (J) | <0.01       | 0.0119      | 0.00201 (J)  |             |             |             |              |              |
| 10/8/2019  | <0.01       | <0.01       | 0.00256 (J) |              |             |             |             |              |              |
| 10/10/2019 |             |             |             | <0.01        |             |             |             |              |              |
| 10/14/2019 | .0.04       |             | 0.00000 (1) | 0.04         | <0.01       | <0.01       | <0.01       | <0.01        | <0.01        |
| 10/16/2019 | <0.01       | <0.01       | 0.00286 (J) | <0.01        |             |             |             |              |              |
| 11/26/2019 | 0.00070 (1) | -0.01       | 0.010       | 0.00010 / 15 | -0.01       |             |             | -0.01        | -0.04        |
| 2/3/2020   | 0.00272 (J) | <0.01       | 0.012       | 0.00212 (J)  | <0.01       | -0.01       | -0.01       | <0.01        | <0.01        |
| 2/4/2020   |             |             |             |              |             | <0.01       | <0.01       |              |              |
| 2/5/2020   |             |             |             |              |             |             |             |              |              |

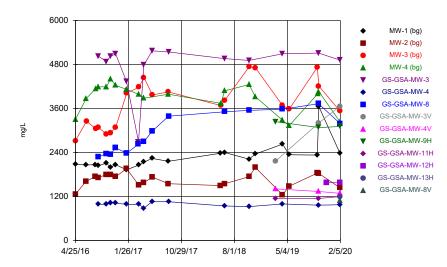
Constituent: Selenium (mg/L) Analysis Run 7/22/2020 2:55 PM View: Time Series Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

|            | GS-GSA-MW-9H | GS-GSA-MW-11F | H GS-GSA-MW-12H | H GS-GSA-MW-13H | GS-GSA-MW-8V |  |
|------------|--------------|---------------|-----------------|-----------------|--------------|--|
| 4/25/2016  |              |               |                 |                 |              |  |
| 4/26/2016  |              |               |                 |                 |              |  |
| 6/20/2016  |              |               |                 |                 |              |  |
| 6/22/2016  |              |               |                 |                 |              |  |
| 8/8/2016   |              |               |                 |                 |              |  |
| 8/9/2016   |              |               |                 |                 |              |  |
| 8/24/2016  |              |               |                 |                 |              |  |
| 10/3/2016  |              |               |                 |                 |              |  |
| 10/4/2016  |              |               |                 |                 |              |  |
| 10/26/2016 |              |               |                 |                 |              |  |
| 11/21/2016 |              |               |                 |                 |              |  |
| 1/17/2017  |              |               |                 |                 |              |  |
| 1/18/2017  |              |               |                 |                 |              |  |
| 3/20/2017  |              |               |                 |                 |              |  |
| 3/21/2017  |              |               |                 |                 |              |  |
| 3/22/2017  |              |               |                 |                 |              |  |
| 4/17/2017  |              |               |                 |                 |              |  |
| 4/18/2017  |              |               |                 |                 |              |  |
| 5/30/2017  |              |               |                 |                 |              |  |
| 5/31/2017  |              |               |                 |                 |              |  |
| 2/13/2018  |              |               |                 |                 |              |  |
| 5/22/2018  |              |               |                 |                 |              |  |
| 5/23/2018  |              |               |                 |                 |              |  |
| 5/24/2018  |              |               |                 |                 |              |  |
| 6/11/2018  |              |               |                 |                 |              |  |
| 6/12/2018  |              |               |                 |                 |              |  |
| 10/17/2018 |              |               |                 |                 |              |  |
| 11/19/2018 |              |               |                 |                 |              |  |
| 3/4/2019   |              | <0.01         |                 |                 |              |  |
| 3/5/2019   | <0.01        |               |                 |                 |              |  |
| 4/10/2019  |              |               |                 |                 |              |  |
| 5/14/2019  |              |               |                 |                 |              |  |
| 10/8/2019  |              |               |                 |                 |              |  |
| 10/10/2019 |              |               |                 |                 |              |  |
| 10/14/2019 |              |               |                 |                 |              |  |
| 10/16/2019 | <0.01        | <0.01         |                 |                 |              |  |
| 11/26/2019 |              |               | 0.00614 (J)     |                 |              |  |
| 2/3/2020   |              |               |                 |                 |              |  |
| 2/4/2020   | <0.01        | <0.01         | <0.01           | <0.01           |              |  |
| 2/5/2020   |              |               |                 |                 | <0.01        |  |
|            |              |               |                 |                 |              |  |

Constituent: Sulfate (mg/L) Analysis Run 7/22/2020 2:55 PM View: Time Series
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

|     |          | MW-1 (bg) | MW-2 (bg) | MW-3 (bg) | MW-4 (bg) | GS-GSA-MW-3 | GS-GSA-MW-4 | GS-GSA-MW-8 | GS-GSA-MW-3V | GS-GSA-MW-4V |
|-----|----------|-----------|-----------|-----------|-----------|-------------|-------------|-------------|--------------|--------------|
| 4/2 | 25/2016  |           | 745       | 1890      | 2260      |             |             |             |              |              |
| 4/2 | 26/2016  | 1490      |           |           |           |             |             |             |              |              |
| 6/2 | 20/2016  | 1420      | 964       |           | 2500      |             |             |             |              |              |
| 6/2 | 22/2016  |           |           | 2100      |           |             |             |             |              |              |
| 8/8 | 8/2016   | 1460      | 1100      |           |           |             |             |             |              |              |
| 8/9 | 9/2016   |           |           | 2050      | 2750      |             |             |             |              |              |
| 8/2 | 24/2016  | 1450      | 1130      | 2190      | 2770      | 2910        | 567         | 1250        |              |              |
| 10  | /3/2016  | 1460      | 1140      |           | 3060      | 2980        | 596         | 1270        |              |              |
| 10  | /4/2016  |           |           | 1950      |           |             |             |             |              |              |
| 10  | /26/2016 | 1330      | 1060      | 1980      | 2650      | 2790        | 585         | 1240        |              |              |
| 11. | /21/2016 | 1420      | 1100      | 2060      | 2720      | 2880        | 593         | 1210        |              |              |
| 1/1 | 17/2017  | 1350      | 1160      |           |           | 2950        | 637         | 1150        |              |              |
| 1/1 | 18/2017  |           |           | 2620      | 2650      |             |             |             |              |              |
| 3/2 | 20/2017  |           |           |           |           | 2800        |             | 1400        |              |              |
| 3/2 | 21/2017  |           |           |           |           |             | 530         |             |              |              |
| 3/2 | 22/2017  | 1500      | 900       | 3200      | 2700      |             |             |             |              |              |
| 4/1 | 17/2017  |           |           |           |           | 2400        | 530         |             |              |              |
| 4/1 | 18/2017  | 1300      | 870       | 2500      | 2400      |             |             | 1300        |              |              |
| 5/3 | 30/2017  | 1400      |           |           |           | 2900        | 530         | 1500        |              |              |
| 5/3 | 31/2017  |           | 1100      | 2800      |           |             |             |             |              |              |
| 8/2 | 23/2017  | 1500      | 920       | 2600      | 2700      |             |             |             |              |              |
| 8/2 | 24/2017  |           |           |           |           | 2900        | 530         | 1800        |              |              |
| 5/2 | 22/2018  | 2100      | 1200      |           |           |             |             |             |              |              |
| 5/2 | 23/2018  |           |           |           | 2400      |             |             |             |              |              |
| 5/2 | 24/2018  |           |           | 2700      |           |             |             |             |              |              |
| 6/1 | 11/2018  |           |           |           |           | 2900        | 540         |             |              |              |
| 6/1 | 12/2018  | 1500      | 860       | 2500      | 2600      |             |             | 1800        |              |              |
| 10  | /17/2018 | 1400      | 970       | 2700      | 2600      | 2800        | 520         | 1600        |              |              |
| 11. | /19/2018 | 1300      | 1000      | 3000      | 2400      |             |             |             |              |              |
| 3/4 | 4/2019   |           |           |           |           |             |             |             |              |              |
| 3/5 | 5/2019   |           |           |           |           |             |             |             | 1170         | 871          |
| 4/1 | 10/2019  | 1700      | 889       | 2460      | 2090      | 2980        | 616         | 2150        |              |              |
| 5/1 | 14/2019  | 1560      | 948       | 2460      | 2240      |             |             |             |              |              |
| 10  | /8/2019  | 1540      | 1230      | 2950      |           |             |             |             |              |              |
| 10  | /10/2019 |           |           |           | 2690      |             |             |             |              |              |
| 10  | /14/2019 |           |           |           |           | 3110        | 641         | 2090        | 1710         | 818          |
| 10. | /16/2019 | 1680      | 1170      | 2820      | 3050      |             |             |             |              |              |
| 11. | /26/2019 |           |           |           |           |             |             |             |              |              |
| 2/3 | 3/2020   | 1510      | 803       | 2290      | 1920      | 2840        |             |             | 1970         | 808          |
| 2/4 | 4/2020   |           |           |           |           |             | 571         | 1570        |              |              |
| 2/5 | 5/2020   |           |           |           |           |             |             |             |              |              |

Constituent: Sulfate (mg/L) Analysis Run 7/22/2020 2:55 PM View: Time Series
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA


|            | GS-GSA-MW-9H | GS-GSA-MW-11H | GS-GSA-MW-12H | GS-GSA-MW-13H | GS-GSA-MW-8V |
|------------|--------------|---------------|---------------|---------------|--------------|
| 4/25/2016  |              |               |               |               |              |
| 4/26/2016  |              |               |               |               |              |
| 6/20/2016  |              |               |               |               |              |
| 6/22/2016  |              |               |               |               |              |
| 8/8/2016   |              |               |               |               |              |
| 8/9/2016   |              |               |               |               |              |
| 8/24/2016  |              |               |               |               |              |
| 10/3/2016  |              |               |               |               |              |
| 10/4/2016  |              |               |               |               |              |
| 10/26/2016 |              |               |               |               |              |
| 11/21/2016 |              |               |               |               |              |
| 1/17/2017  |              |               |               |               |              |
| 1/18/2017  |              |               |               |               |              |
| 3/20/2017  |              |               |               |               |              |
| 3/21/2017  |              |               |               |               |              |
| 3/22/2017  |              |               |               |               |              |
| 4/17/2017  |              |               |               |               |              |
| 4/18/2017  |              |               |               |               |              |
| 5/30/2017  |              |               |               |               |              |
| 5/31/2017  |              |               |               |               |              |
| 8/23/2017  |              |               |               |               |              |
| 8/24/2017  |              |               |               |               |              |
| 5/22/2018  |              |               |               |               |              |
| 5/23/2018  |              |               |               |               |              |
| 5/24/2018  |              |               |               |               |              |
| 6/11/2018  |              |               |               |               |              |
| 6/12/2018  |              |               |               |               |              |
| 10/17/2018 |              |               |               |               |              |
| 11/19/2018 |              |               |               |               |              |
| 3/4/2019   |              | 785           |               |               |              |
| 3/5/2019   | 2010         |               |               |               |              |
| 4/10/2019  |              |               |               |               |              |
| 5/14/2019  |              |               |               |               |              |
| 10/8/2019  |              |               |               |               |              |
| 10/10/2019 |              |               |               |               |              |
| 10/14/2019 |              |               |               |               |              |
| 10/16/2019 | 2020         | 750           |               |               |              |
| 11/26/2019 |              |               | 997           |               |              |
| 2/3/2020   |              |               |               |               |              |
| 2/4/2020   | 1710         | 725           | 978           | 720           |              |
| 2/5/2020   |              |               |               |               | 223          |
|            |              |               |               |               |              |

Constituent: Thallium (mg/L) Analysis Run 7/22/2020 2:55 PM View: Time Series
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

| 4/05/0040  | MW-1 (bg) | MW-2 (bg) | MW-3 (bg)    | MW-4 (bg) | GS-GSA-MW-3 | GS-GSA-MW-4 | GS-GSA-MW-8 | GS-GSA-MW-3V | GS-GSA-MW-4V |
|------------|-----------|-----------|--------------|-----------|-------------|-------------|-------------|--------------|--------------|
| 4/25/2016  | .0.004    | <0.001    | 0.000205 (J) | <0.001    |             |             |             |              |              |
| 4/26/2016  | <0.001    | -0.001    |              | -0.001    |             |             |             |              |              |
| 6/20/2016  | <0.001    | <0.001    | .0.004       | <0.001    |             |             |             |              |              |
| 6/22/2016  | -0.001    | -0.001    | <0.001       |           |             |             |             |              |              |
| 8/8/2016   | <0.001    | <0.001    |              | .0.004    |             |             |             |              |              |
| 8/9/2016   | .0.004    | .0.004    | <0.001       | <0.001    | 0.004       | 0.004       | .0.004      |              |              |
| 8/24/2016  | <0.001    | <0.001    | <0.001       | <0.001    | <0.001      | <0.001      | <0.001      |              |              |
| 10/3/2016  | <0.001    | <0.001    |              | <0.001    | <0.001      | <0.001      | <0.001      |              |              |
| 10/4/2016  |           |           | <0.001       |           |             |             |             |              |              |
| 10/26/2016 | <0.001    | <0.001    | 0.000209 (J) | <0.001    | <0.001      | <0.001      | <0.001      |              |              |
| 11/21/2016 | <0.001    | <0.001    | <0.001       | <0.001    | <0.001      | <0.001      | <0.001      |              |              |
| 1/17/2017  | <0.001    | <0.001    |              |           | <0.001      | <0.001      | <0.001      |              |              |
| 1/18/2017  |           |           | <0.001       | <0.001    |             |             |             |              |              |
| 3/20/2017  |           |           |              |           | <0.001      |             | <0.001      |              |              |
| 3/21/2017  |           |           |              |           |             | <0.001      |             |              |              |
| 3/22/2017  | <0.001    | <0.001    | <0.001       | <0.001    |             |             |             |              |              |
| 4/17/2017  |           |           |              |           | <0.001      | <0.001      |             |              |              |
| 4/18/2017  | <0.001    | <0.001    | <0.001       | <0.001    |             |             | <0.001      |              |              |
| 5/30/2017  | <0.001    |           |              |           | <0.001      | <0.001      | <0.001      |              |              |
| 5/31/2017  |           | <0.001    | <0.001       |           |             |             |             |              |              |
| 2/13/2018  | <0.001    | <0.001    | <0.001       | <0.001    | <0.001      | <0.001      | <0.001      |              |              |
| 5/22/2018  | <0.001    | <0.001    |              |           |             |             |             |              |              |
| 5/23/2018  |           |           |              | <0.001    |             |             |             |              |              |
| 5/24/2018  |           |           | <0.001       |           |             |             |             |              |              |
| 6/11/2018  |           |           |              |           | <0.001      | <0.001      |             |              |              |
| 6/12/2018  | <0.001    | <0.001    | <0.001       | <0.001    |             |             | <0.001      |              |              |
| 10/17/2018 | <0.001    | <0.001    | <0.001       | <0.001    | <0.001      | <0.001      | <0.001      |              |              |
| 11/19/2018 | <0.001    | <0.001    | 0.000226 (J) | <0.001    |             |             |             |              |              |
| 3/4/2019   |           |           |              |           |             |             |             |              |              |
| 3/5/2019   |           |           |              |           |             |             |             | <0.001       | <0.001       |
| 4/10/2019  | <0.001    | <0.001    | <0.001       | <0.001    | <0.001      | <0.001      | <0.001      |              |              |
| 5/14/2019  | <0.001    | <0.001    | <0.001       | <0.001    |             |             |             |              |              |
| 10/8/2019  | <0.001    | <0.001    | <0.001       |           |             |             |             |              |              |
| 10/10/2019 |           |           |              | <0.001    |             |             |             |              |              |
| 10/14/2019 |           |           |              |           | <0.001      | <0.001      | <0.001      | <0.001       | <0.001       |
| 10/16/2019 | <0.001    | <0.001    | <0.001       | <0.001    |             |             |             |              |              |
| 11/26/2019 |           |           |              |           |             |             |             |              |              |
| 2/3/2020   | <0.001    | <0.001    | <0.001       | <0.001    | <0.001      |             |             | <0.001       | <0.001       |
| 2/4/2020   |           |           |              |           |             | <0.001      | <0.001      |              |              |
| 2/5/2020   |           |           |              |           |             |             |             |              |              |
|            |           |           |              |           |             |             |             |              |              |

Constituent: Thallium (mg/L) Analysis Run 7/22/2020 2:55 PM View: Time Series
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

|            | GS-GSA-MW-9H | GS-GSA-MW-11H | H GS-GSA-MW-12H | H GS-GSA-MW-13H | H GS-GSA-MW-8V | , |  |  |
|------------|--------------|---------------|-----------------|-----------------|----------------|---|--|--|
| 4/25/2016  |              |               |                 |                 |                |   |  |  |
| 4/26/2016  |              |               |                 |                 |                |   |  |  |
| 6/20/2016  |              |               |                 |                 |                |   |  |  |
| 6/22/2016  |              |               |                 |                 |                |   |  |  |
| 8/8/2016   |              |               |                 |                 |                |   |  |  |
| 8/9/2016   |              |               |                 |                 |                |   |  |  |
| 8/24/2016  |              |               |                 |                 |                |   |  |  |
| 10/3/2016  |              |               |                 |                 |                |   |  |  |
| 10/4/2016  |              |               |                 |                 |                |   |  |  |
| 10/26/2016 |              |               |                 |                 |                |   |  |  |
| 11/21/2016 |              |               |                 |                 |                |   |  |  |
| 1/17/2017  |              |               |                 |                 |                |   |  |  |
| 1/18/2017  |              |               |                 |                 |                |   |  |  |
| 3/20/2017  |              |               |                 |                 |                |   |  |  |
| 3/21/2017  |              |               |                 |                 |                |   |  |  |
| 3/22/2017  |              |               |                 |                 |                |   |  |  |
| 4/17/2017  |              |               |                 |                 |                |   |  |  |
| 4/18/2017  |              |               |                 |                 |                |   |  |  |
| 5/30/2017  |              |               |                 |                 |                |   |  |  |
| 5/31/2017  |              |               |                 |                 |                |   |  |  |
| 2/13/2018  |              |               |                 |                 |                |   |  |  |
| 5/22/2018  |              |               |                 |                 |                |   |  |  |
| 5/23/2018  |              |               |                 |                 |                |   |  |  |
| 5/24/2018  |              |               |                 |                 |                |   |  |  |
| 6/11/2018  |              |               |                 |                 |                |   |  |  |
| 6/12/2018  |              |               |                 |                 |                |   |  |  |
| 10/17/2018 |              |               |                 |                 |                |   |  |  |
| 11/19/2018 |              |               |                 |                 |                |   |  |  |
| 3/4/2019   |              | <0.001        |                 |                 |                |   |  |  |
| 3/5/2019   | 0.00021 (J)  |               |                 |                 |                |   |  |  |
| 4/10/2019  |              |               |                 |                 |                |   |  |  |
| 5/14/2019  |              |               |                 |                 |                |   |  |  |
| 10/8/2019  |              |               |                 |                 |                |   |  |  |
| 10/10/2019 |              |               |                 |                 |                |   |  |  |
| 10/14/2019 |              |               |                 |                 |                |   |  |  |
| 10/16/2019 | 0.000262 (J) | <0.001        |                 |                 |                |   |  |  |
| 11/26/2019 |              |               | 0.000375 (J)    |                 |                |   |  |  |
| 2/3/2020   |              |               |                 |                 |                |   |  |  |
| 2/4/2020   | 0.000233 (J) | <0.001        | 0.000491 (J)    | <0.001          |                |   |  |  |
| 2/5/2020   |              |               |                 |                 | <0.001         |   |  |  |

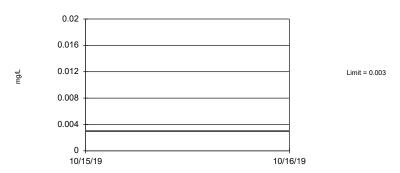


Constituent: Total dissolved solids Analysis Run 7/22/2020 2:45 PM View: Time Series

Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

Constituent: Total dissolved solids (mg/L) Analysis Run 7/22/2020 2:55 PM View: Time Series Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

|            | MW-1 (bg) | MW-2 (bg) | MW-3 (bg) | MW-4 (bg) | GS-GSA-MW-3 | GS-GSA-MW-4 | GS-GSA-MW-8 | GS-GSA-MW-3V | GS-GSA-MW-4V |
|------------|-----------|-----------|-----------|-----------|-------------|-------------|-------------|--------------|--------------|
| 4/25/2016  |           | 1260      | 2720      | 3300      |             |             |             |              |              |
| 4/26/2016  | 2080      |           |           |           |             |             |             |              |              |
| 6/20/2016  | 2060      | 1620      |           | 3870      |             |             |             |              |              |
| 6/22/2016  |           |           | 3250      |           |             |             |             |              |              |
| 8/8/2016   | 2070      | 1740      |           |           |             |             |             |              |              |
| 8/9/2016   |           |           | 3050      | 4140      |             |             |             |              |              |
| 8/24/2016  | 2040      | 1720      | 3080      | 4190      | 5020        | 992         | 2280        |              |              |
| 10/3/2016  | 2110      | 1800      |           | 4190      | 4880        | 988         | 2370        |              |              |
| 10/4/2016  |           |           | 2900      |           |             |             |             |              |              |
| 10/26/2016 | 2000      | 1800      | 2940      | 4400      | 5020        | 1030        | 2350        |              |              |
| 11/21/2016 | 2070      | 1740      | 3090      | 4230      | 5090        | 1020        | 2530        |              |              |
| 1/17/2017  | 1930      | 1960      |           |           | 4330        | 988         | 2380        |              |              |
| 1/18/2017  |           |           | 4020      | 4120      |             |             |             |              |              |
| 3/20/2017  |           |           |           |           | 2690        |             | 2630        |              |              |
| 3/21/2017  |           |           |           |           |             | 990         |             |              |              |
| 3/22/2017  | 2060      | 1510      | 4180      | 3980      |             |             |             |              |              |
| 4/17/2017  |           |           |           |           | 4780        | 884         |             |              |              |
| 4/18/2017  | 2140      | 1580      | 4440      | 3880      |             |             | 2700        |              |              |
| 5/30/2017  | 2240      |           |           |           | 5170        | 1060        | 2980        |              |              |
| 5/31/2017  |           | 1730      | 3970      |           |             |             |             |              |              |
| 8/23/2017  | 2160      | 1550      | 4050      | 3990      |             |             |             |              |              |
| 8/24/2017  |           |           |           |           | 5140        | 1060        | 3390        |              |              |
| 5/22/2018  | 2380      | 1500      |           |           |             |             |             |              |              |
| 5/23/2018  |           |           |           | 3740      |             |             |             |              |              |
| 5/24/2018  |           |           | 3680      |           |             |             |             |              |              |
| 6/11/2018  |           |           |           |           | 4960        | 944         |             |              |              |
| 6/12/2018  | 2400      | 1550      | 3820      | 4080      |             |             | 3510        |              |              |
| 10/17/2018 | 2220      | 1740      | 4730      | 4250      | 4910        | 928         | 3550        |              |              |
| 11/19/2018 | 2360      | 1990      | 4710      | 3920      |             |             |             |              |              |
| 3/4/2019   |           |           |           |           |             |             |             |              |              |
| 3/5/2019   |           |           |           |           |             |             |             | 2170         | 1410         |
| 4/10/2019  | 2630      | 1250      | 3680      | 3280      | 5090        | 1000        | 3580        |              |              |
| 5/14/2019  | 2340 (D)  | 1480      | 3580 (D)  | 3130 (D)  |             |             |             |              |              |
| 10/8/2019  | 2330      | 1840      | 4720      |           |             |             |             |              |              |
| 10/10/2019 |           |           |           | 4000      |             |             |             |              |              |
| 10/14/2019 |           |           |           |           | 5110        | 967         | 3730        | 3200         | 1340         |
| 10/16/2019 | 3650      | 1830      | 4210      | 4060      | -           |             | -           | -            |              |
| 11/26/2019 |           |           |           |           |             |             |             |              |              |
| 2/3/2020   | 2380      | 1440      | 3530      | 3240      | 4920        |             |             | 3660         | 1290         |
| 2/4/2020   |           | -         |           | -         | -           | 978         | 3190        |              | -            |
| 2/5/2020   |           |           |           |           |             | - : -       |             |              |              |
|            |           |           |           |           |             |             |             |              |              |


Constituent: Total dissolved solids (mg/L) Analysis Run 7/22/2020 2:55 PM View: Time Series Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

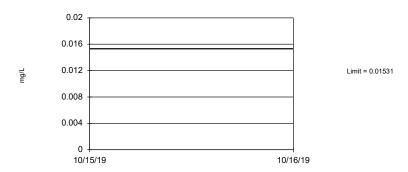
|            | GS-GSA-MW-9H | GS-GSA-MW-11H | GS-GSA-MW-12H | GS-GSA-MW-13H | GS-GSA-MW-8V |  |  |  |
|------------|--------------|---------------|---------------|---------------|--------------|--|--|--|
| 4/25/2016  |              |               |               |               |              |  |  |  |
| 4/26/2016  |              |               |               |               |              |  |  |  |
| 6/20/2016  |              |               |               |               |              |  |  |  |
| 6/22/2016  |              |               |               |               |              |  |  |  |
| 8/8/2016   |              |               |               |               |              |  |  |  |
| 8/9/2016   |              |               |               |               |              |  |  |  |
| 8/24/2016  |              |               |               |               |              |  |  |  |
| 10/3/2016  |              |               |               |               |              |  |  |  |
| 10/4/2016  |              |               |               |               |              |  |  |  |
| 10/26/2016 |              |               |               |               |              |  |  |  |
| 11/21/2016 |              |               |               |               |              |  |  |  |
| 1/17/2017  |              |               |               |               |              |  |  |  |
| 1/18/2017  |              |               |               |               |              |  |  |  |
| 3/20/2017  |              |               |               |               |              |  |  |  |
| 3/21/2017  |              |               |               |               |              |  |  |  |
| 3/22/2017  |              |               |               |               |              |  |  |  |
| 4/17/2017  |              |               |               |               |              |  |  |  |
| 4/18/2017  |              |               |               |               |              |  |  |  |
| 5/30/2017  |              |               |               |               |              |  |  |  |
| 5/31/2017  |              |               |               |               |              |  |  |  |
| 8/23/2017  |              |               |               |               |              |  |  |  |
| 8/24/2017  |              |               |               |               |              |  |  |  |
| 5/22/2018  |              |               |               |               |              |  |  |  |
| 5/23/2018  |              |               |               |               |              |  |  |  |
| 5/24/2018  |              |               |               |               |              |  |  |  |
| 6/11/2018  |              |               |               |               |              |  |  |  |
| 6/12/2018  |              |               |               |               |              |  |  |  |
| 10/17/2018 |              |               |               |               |              |  |  |  |
| 11/19/2018 |              |               |               |               |              |  |  |  |
| 3/4/2019   |              | 1150          |               |               |              |  |  |  |
| 3/5/2019   | 3240         |               |               |               |              |  |  |  |
| 4/10/2019  |              |               |               |               |              |  |  |  |
| 5/14/2019  |              |               |               |               |              |  |  |  |
| 10/8/2019  |              |               |               |               |              |  |  |  |
| 10/10/2019 |              |               |               |               |              |  |  |  |
| 10/14/2019 |              |               |               |               |              |  |  |  |
| 10/16/2019 | 3080         | 1150          |               |               |              |  |  |  |
| 11/26/2019 |              |               | 1580          |               |              |  |  |  |
| 2/3/2020   |              |               |               |               |              |  |  |  |
| 2/4/2020   | 3110         | 1200          | 1580          | 1200          |              |  |  |  |
| 2/5/2020   |              |               |               |               | 1100         |  |  |  |
|            |              |               |               |               |              |  |  |  |

## Upper Tolerance Limits - Appendix IV

Plant William C Gorgas Client: Southern Company Data: Gorgas GSA Printed 7/22/2020, 2:59 PM Upper Lim. Lower Lim. Bg N Bg Mean Std. Dev. %NDs ND Adj. Transform Constituent <u>Alpha</u> Method 0.003 92.41 0.01738 NP Inter(NDs) Antimony (mg/L) 79 n/a n/a n/a n/a n/a Arsenic (mg/L) 0.005 79 0.01738 NP Inter(NDs) Barium (mg/L) 0.01531 n/a 79 -4.516 0.1715 0 None In(x) 0.05 Inter 0.0121 Beryllium (mg/L) 77 n/a 81.82 n/a 0.01926 NP Inter(NDs) n/a n/a n/a Cadmium (mg/L) 0.00598 78 48.72 0.0183 NP Inter(normal... 0.0105 94.94 0.01738 NP Inter(NDs) Chromium (mg/L) n/a 79 n/a n/a n/a 1.07 24.05 0.01738 NP Inter(normal... Cobalt (mg/L) n/a 79 n/a n/a n/a n/a Combined Radium 226 + 228 (pCi/L) 1.151 65 0.4707 No 0.05 0.4625 Fluoride (mg/L) 0.5302 83 0.1358 0 None sqrt(x) 0.05 Inter 0.00692 0.01738 NP Inter(NDs) Lead (mg/L) n/a 79 n/a n/a 96.2 n/a n/a Lithium (mg/L) 0.419 79 0.01738 NP Inter(normal... 0.0005 100 0.01738 NP Inter(NDs) Mercury (mg/L) n/a 79 n/a n/a n/a n/a 0.01 100 0.01738 NP Inter(NDs) Molybdenum (mg/L) 79 n/a n/a n/a n/a n/a Selenium (mg/L) 0.0158 66.67 0.0183 NP Inter(NDs) n/a Thallium (mg/L) 0.001 79 n/a 96.2 0.01738 NP Inter(NDs)

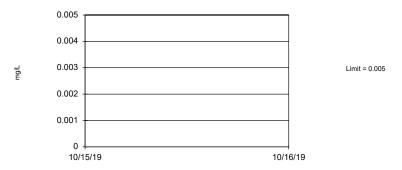
# Tolerance Limit Interwell Non-parametric




Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 79 background values. 92.41% NDs. 94.34% coverage at alpha=0.01; 96.29% coverage at alpha=0.05; 99.02% coverage at alpha=0.5. Report alpha = 0.01738.

Constituent: Antimony Analysis Run 7/22/2020 2:57 PM View: UTL's - Appendix IV

Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

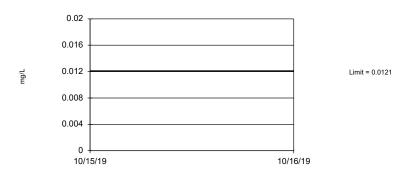

Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG

# Tolerance Limit Interwell Parametric



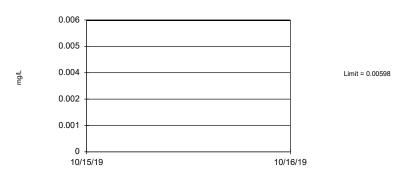
95% coverage. Background Data Summary (based on natural log transformation): Mean=-4.516, Std. Dev.=0.1715, n=79. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9604, critical = 0.957. Report alpha = 0.05.

# Tolerance Limit Interwell Non-parametric




Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 79 background values. 91.14% NDs. 94.34% coverage at alpha=0.01; 96.29% coverage at alpha=0.05; 99.02% coverage at alpha=0.5. Report alpha = 0.01738.

Constituent: Arsenic Analysis Run 7/22/2020 2:57 PM View: UTL's - Appendix IV
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA


Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG

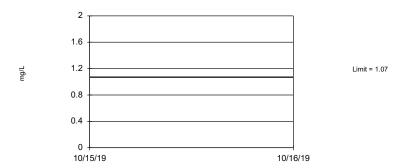
# Tolerance Limit Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 77 background values. 81.82% NDs. 94.34% coverage at alpha=0.01; 96.29% coverage at alpha=0.5. Report alpha = 0.01926.

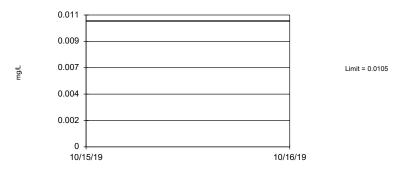
# Tolerance Limit Interwell Non-parametric




Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 78 background values. 48.72% NDs. 94.34% coverage at alpha=0.01; 96.29% coverage at alpha=0.05; 99.02% coverage at alpha=0.05. Report alpha = 0.0183.

Constituent: Cadmium Analysis Run 7/22/2020 2:57 PM View: UTL's - Appendix IV

Plant William C Gorgas Client: Southern Company Data: Gorgas GSA


Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG

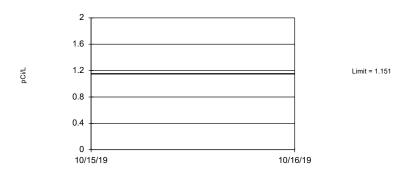
# Tolerance Limit Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 79 background values. 24.05% NDs. 94.34% coverage at alpha=0.01; 96.29% coverage at alpha=0.05. Report alpha = 0.01738.

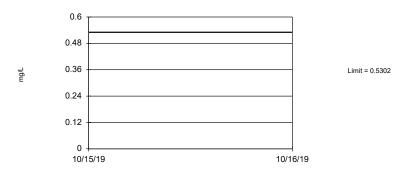
# Tolerance Limit Interwell Non-parametric




Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 79 background values. 94.94% NDs. 94.34% coverage at alpha=0.01; 96.29% coverage at alpha=0.05; 99.02% coverage at alpha=0.5. Report alpha = 0.01738.

Constituent: Chromium Analysis Run 7/22/2020 2:57 PM View: UTL's - Appendix IV

Plant William C Gorgas Client: Southern Company Data: Gorgas GSA


Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG

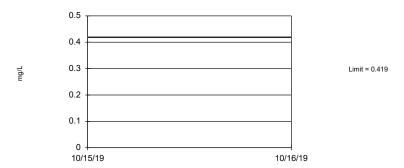
# Tolerance Limit Interwell Parametric



95% coverage. Background Data Summary: Mean=0.4707, Std. Dev.=0.3403, n=65. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.982, critical = 0.948. Report alpha = 0.05.

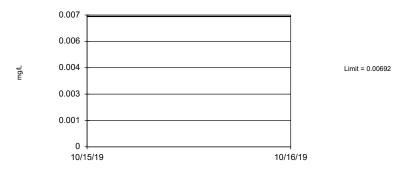
# Tolerance Limit Interwell Parametric




95% coverage. Background Data Summary (based on square root transformation): Mean=0.4625, Std. Dev.=0.1358, n=83. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9794, critical = 0.96. Report alpha = 0.05.

Constituent: Fluoride Analysis Run 7/22/2020 2:58 PM View: UTL's - Appendix IV

Plant William C Gorgas Client: Southern Company Data: Gorgas GSA


Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG

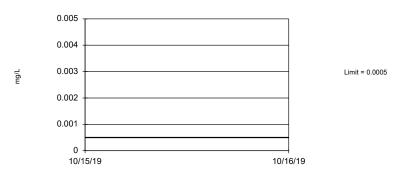
# Tolerance Limit Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 79 background values. 94.34% coverage at alpha=0.01; 96.29% coverage at alpha=0.5. Report alpha = 0.01738.

# Tolerance Limit Interwell Non-parametric




Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 79 background values. 96.2% NDs. 94.34% coverage at alpha=0.01; 96.29% coverage at alpha=0.05; 99.02% coverage at alpha=0.5. Report alpha = 0.01738.

Constituent: Lead Analysis Run 7/22/2020 2:58 PM View: UTL's - Appendix IV

Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG

# Tolerance Limit Interwell Non-parametric

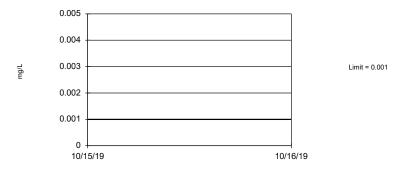


Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. All background values were censored; limit is most recent reporting limit. 94.34% coverage at alpha=0.01; 96.29% coverage at alpha=0.05; 99.02% coverage at alpha=0.5. Report alpha=0.01738.

Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG

# Tolerance Limit Interwell Non-parametric



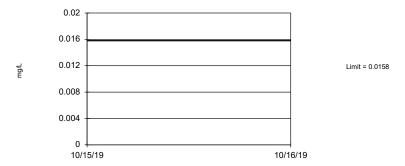

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. All background values were censored; limit is most recent reporting limit. 94.34% coverage at alpha=0.01; 96.29% coverage at alpha=0.5. Report alpha = 0.01738.

Constituent: Molybdenum Analysis Run 7/22/2020 2:58 PM View: UTL's - Appendix IV

Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG

# Tolerance Limit Interwell Non-parametric




Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 79 background values. 96.2% NDs. 94.34% coverage at alpha=0.01; 96.29% coverage at alpha=0.05; 99.02% coverage at alpha=0.5. Report alpha = 0.01738.

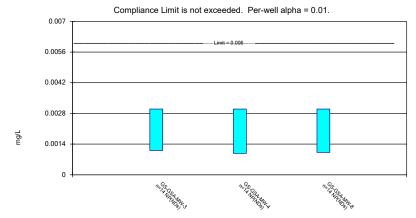
Constituent: Thallium Analysis Run 7/22/2020 2:58 PM View: UTL's - Appendix IV
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG

# Tolerance Limit Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 78 background values. 66.67% NDs. 94.34% coverage at alpha=0.01; 96.29% coverage at alpha=0.05; 99.02% coverage at alpha=0.5. Report alpha = 0.0183.

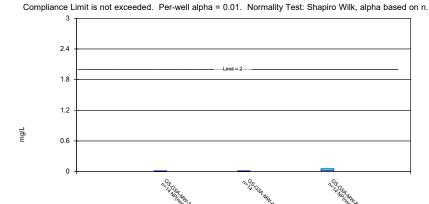

Constituent: Selenium Analysis Run 7/22/2020 2:58 PM View: UTL's - Appendix IV

Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

## Confidence Intervals - All Results (No Significant Results)

Plant William C Gorgas Client: Southern Company Data: Gorgas GSA Printed 7/22/2020, 3:02 PM Constituent <u>Well</u> Upper Lim. Lower Lim. Compliance Sig. N %NDs Transform <u>Alpha</u> Method GS-GSA-MW-3 0.00111 92.86 0.01 NP (NDs) Antimony (ma/L) 0.003 0.006 No 14 No GS-GSA-MW-4 0.000976 NP (NDs) Antimony (mg/L) 0.003 0.006 No 14 92.86 No 0.01 Antimony (mg/L) GS-GSA-MW-8 0.003 0.00102 0.006 No 14 92.86 No 0.01 NP (NDs) GS-GSA-MW-3 0.00405 14 85.71 NP (NDs) 0.005 0.01 No No 0.01 Arsenic (mg/L) Arsenic (mg/L) GS-GSA-MW-4 0.00176 No 14 78.57 No 0.01 Arsenic (mg/L) GS-GSA-MW-8 0.005 0.00114 0.01 No 14 71.43 No 0.01 NP (NDs) GS-GSA-MW-3 0.0153 0.0121 No 14 0 No 0.01 NP (normality) Barium (mg/L) 2 Barium (mg/L) GS-GSA-MW-4 0.01326 0.01182 No 14 No 0.01 Param. Barium (mg/L) GS-GSA-MW-8 0.0562 0.0215 No 14 0 No 0.01 NP (normality) GS-GSA-MW-3 0.001589 0.0121 14 14.29 Beryllium (mg/L) 0.003385 No sqrt(x) 0.01 Param. 0.004399 Beryllium (mg/L) GS-GSA-MW-4 No 14 0 Beryllium (mg/L) GS-GSA-MW-8 0.003 0.003 0.0121 No 14 100 No 0.01 NP (NDs) 0.001 NP (NDs) Cadmium (mg/L) GS-GSA-MW-3 0.001 0.005 No 14 100 No 0.01 Cadmium (mg/L) GS-GSA-MW-4 0.001394 0.005 No 14 No 0.01 Param. Cadmium (mg/L) GS-GSA-MW-8 0.001 0.001 0.005 No 14 100 Nο 0.01 NP (NDs) GS-GSA-MW-3 0.01 14 0.01 NP (NDs) Chromium (mg/L) 0.01 0.1 No 100 No GS-GSA-MW-4 0.01 0.1 No 14 100 0.01 NP (NDs) Chromium (mg/L) No Chromium (mg/L) GS-GSA-MW-8 0.01 No 14 100 No 0.01 NP (NDs) 0.05977 Cobalt (mg/L) GS-GSA-MW-3 0.1181 13 0.01 Param. 1.07 No 0 No Cobalt (mg/L) GS-GSA-MW-4 0.213 0.151 1.07 No 14 No 0.01 NP (normality) Cobalt (mg/L) GS-GSA-MW-8 0.0233 0.00492 1.07 No 14 50 No 0.01 NP (normality) 0.2617 14 0 Combined Radium 226 + 228 (pCi/L) GS-GSA-MW-3 0.6241 5 No No 0.01 Param. Combined Radium 226 + 228 (pCi/L) GS-GSA-MW-4 0.4186 5 No 14 0 0.01 0.8997 No Param. Combined Radium 226 + 228 (pCi/L) GS-GSA-MW-8 0.7638 0.3361 5 No 14 0 No 0.01 Fluoride (ma/L) GS-GSA-MW-3 0.5897 0.3362 No 15 0 No 0.01 Param. Fluoride (mg/L) GS-GSA-MW-4 0.6361 0.3757 No 15 20 0.01 Param. Fluoride (mg/L) GS-GSA-MW-8 0.1632 0.1141 No 15 0 x^2 0.01 Param. NP (NDs) Lead (mg/L) GS-GSA-MW-3 0.005 0.005 0.015 No 14 100 No 0.01 GS-GSA-MW-4 0.005 0.015 14 100 0.01 NP (NDs) Lead (mg/L) No No GS-GSA-MW-8 0.005 0.015 14 100 0.01 NP (NDs) Lead (mg/L) No No Lithium (mg/L) GS-GSA-MW-3 0.4878 0 4142 0.419 No 14 Ω Nο 0.01 Param Lithium (mg/L) GS-GSA-MW-4 0.2875 0.2692 0.419 No 14 0 No 0.01 Param. Lithium (mg/L) GS-GSA-MW-8 0.1719 0.09188 0.419 No 14 0 No 0.01 Param. Mercury (mg/L) GS-GSA-MW-3 0.0005 0.0005 0.002 No 14 100 No 0.01 NP (NDs) 0.0005 0.002 NP (NDs) GS-GSA-MW-4 0.0005 No 14 100 No 0.01 Mercury (mg/L) GS-GSA-MW-8 0.0005 0.0005 0.002 14 0.01 NP (NDs) Mercury (mg/L) No 100 No Molybdenum (mg/L) GS-GSA-MW-3 0.01 0.01 0.1 No 14 100 No 0.01 NP (NDs) GS-GSA-MW-4 0.01 14 0.01 NP (NDs) Molybdenum (mg/L) 0.01 0.1 No 100 No Molybdenum (mg/L) GS-GSA-MW-8 0.0031 No 14 92.86 No 0.01 NP (NDs) Selenium (mg/L) GS-GSA-MW-3 0.01 0.00267 0.05 Nο 14 71 43 Nο 0.01 NP (NDs) GS-GSA-MW-4 0.002926 0.05 0.01 Selenium (mg/L) 0.005203 No 14 21.43 sqrt(x) GS-GSA-MW-8 0.01 0.05 14 0.01 NP (NDs) Selenium (mg/L) No 100 Thallium (mg/L) GS-GSA-MW-3 0.001 0.001 0.002 No 14 100 No 0.01 NP (NDs) GS-GSA-MW-4 0.001 0.002 NP (NDs) Thallium (mg/L) 0.001 No 14 100 No 0.01 GS-GSA-MW-8 0.001 0.002 NP (NDs) Thallium (mg/L) 100 0.01

#### Non-Parametric Confidence Interval

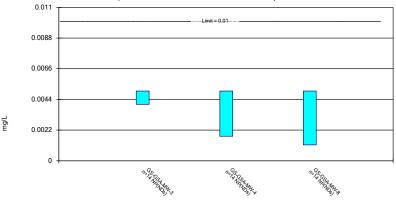



Constituent: Antimony Analysis Run 7/22/2020 3:00 PM View: Confidence Intervals - Appendix IV

Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG

## Parametric and Non-Parametric (NP) Confidence Interval

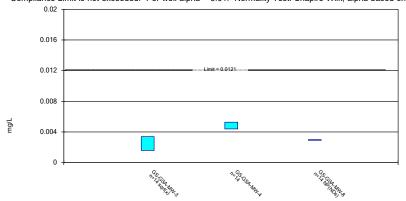



Constituent: Barium Analysis Run 7/22/2020 3:00 PM View: Confidence Intervals - Appendix IV

Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

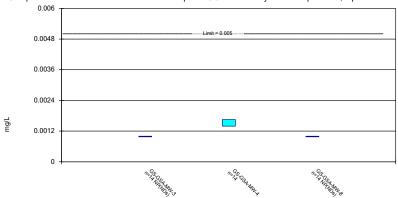
#### Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.




Constituent: Arsenic Analysis Run 7/22/2020 3:00 PM View: Confidence Intervals - Appendix IV
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG


#### Parametric and Non-Parametric (NP) Confidence Interval

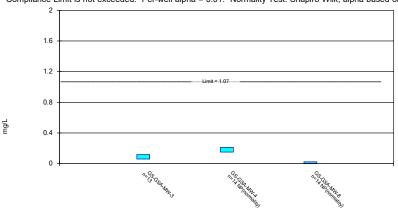
Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



#### Parametric and Non-Parametric (NP) Confidence Interval

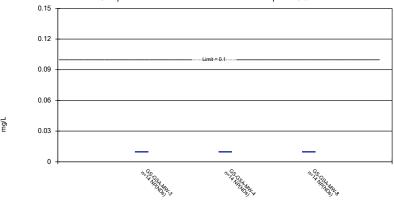
Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.




Constituent: Cadmium Analysis Run 7/22/2020 3:00 PM View: Confidence Intervals - Appendix IV

Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

#### Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG


#### Parametric and Non-Parametric (NP) Confidence Interval

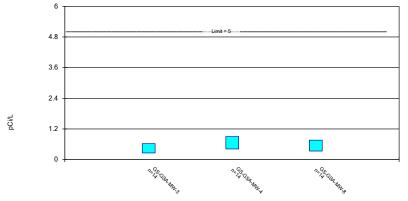
Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



#### Non-Parametric Confidence Interval

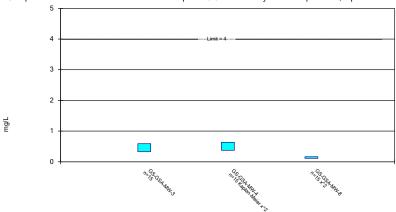
Compliance Limit is not exceeded. Per-well alpha = 0.01.




Constituent: Chromium Analysis Run 7/22/2020 3:00 PM View: Confidence Intervals - Appendix IV

Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG

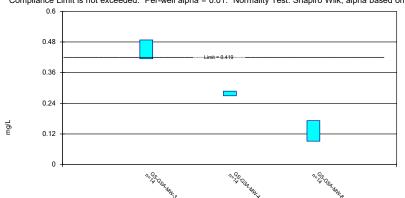

#### Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



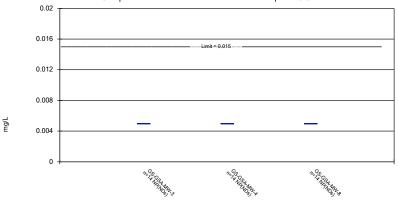
#### Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.




Constituent: Fluoride Analysis Run 7/22/2020 3:01 PM View: Confidence Intervals - Appendix IV
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG


#### Parametric Confidence Interval

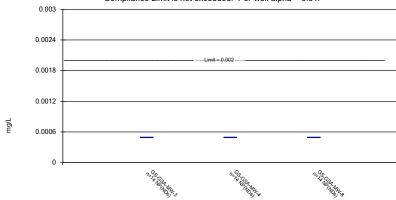
Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



#### Non-Parametric Confidence Interval

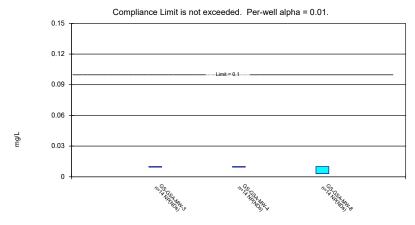
Compliance Limit is not exceeded. Per-well alpha = 0.01.




Constituent: Lead Analysis Run 7/22/2020 3:01 PM View: Confidence Intervals - Appendix IV

Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG

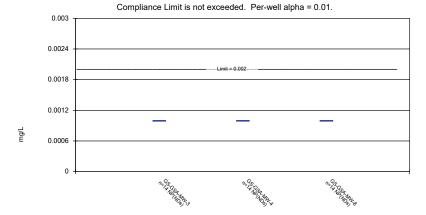

#### Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.



Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG

Non-Parametric Confidence Interval

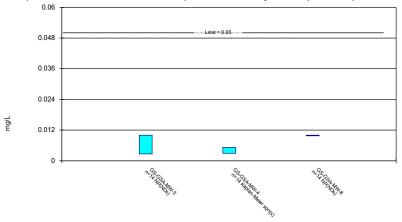



Constituent: Molybdenum Analysis Run 7/22/2020 3:01 PM View: Confidence Intervals - Appendix IV

Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

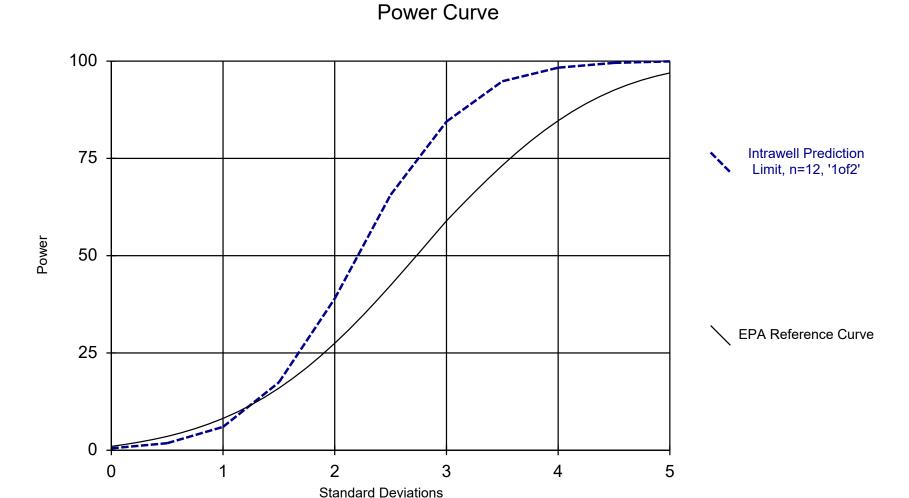
Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG

Non-Parametric Confidence Interval



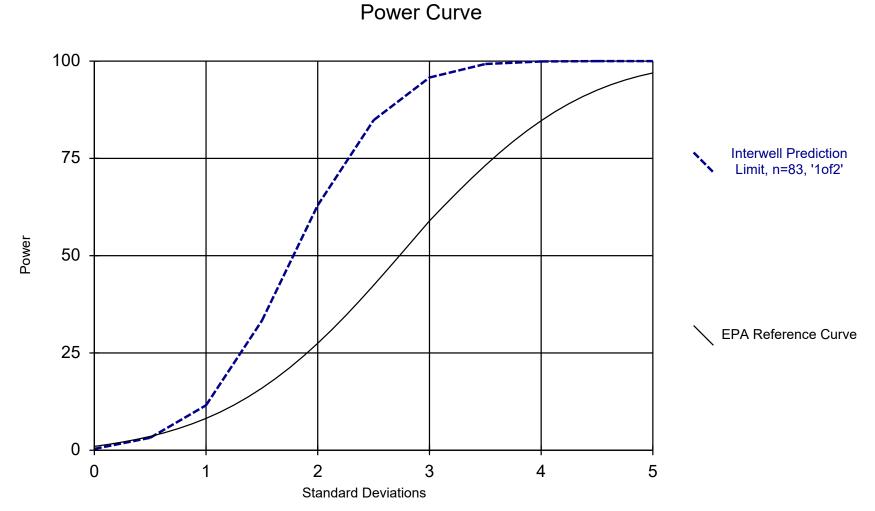

Constituent: Thallium Analysis Run 7/22/2020 3:01 PM View: Confidence Intervals - Appendix IV
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG


#### Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.




Constituent: Selenium Analysis Run 7/22/2020 3:01 PM View: Confidence Intervals - Appendix IV

Plant William C Gorgas Client: Southern Company Data: Gorgas GSA



Kappa = 2.112, based on 3 compliance wells and 7 constituents, evaluated semi-annually (this report reflects annual total).

Analysis Run 6/5/2020 7:41 AM View: Power Curves

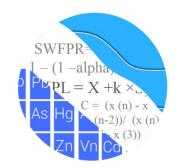


Kappa = 1.689, based on 3 compliance wells and 7 constituents, evaluated semi-annually (this report reflects annual total).

Analysis Run 6/5/2020 7:42 AM View: Power Curves

# 2nd Semi-Annual Monitoring Event

# GROUNDWATER STATS CONSULTING


October 20, 2020

Southern Company Services Attn: Mr. Greg Dyer 3535 Colonnade Parkway Birmingham, AL 35243

Re: Plant Gorgas Gypsum Pond

2<sup>nd</sup> Semi-Annual Analysis – July 2020

Dear Mr. Dyer,



Groundwater Stats Consulting, formerly the statistical consulting division of Sanitas Technologies, is pleased to provide the statistical analysis of groundwater data for the July 2020 2<sup>nd</sup> semi-annual sample event for Alabama Power Company's Plant Gorgas Gypsum Pond. The analysis complies with the federal rule for the Disposal of Coal Combustion Residuals from Electric Utilities (CCR Rule, 2015) as well as with the USEPA Unified Guidance (2009).

Sampling began at site for the CCR program in 2016. The monitoring well network, as provided by Southern Company Services, consists of the following:

- Upgradient wells: MW-1, MW-2, MW-3, and MW-4
- o **Downgradient wells:** GS-GSA-MW-3, GS-GSA-MW-4, and GS-GSA-MW-8
- o **Delineation wells:** GS-GSA-MW-3V, GS-GSA-MW-4V, GS-GSA-MW-9H, GS-GSA-MW-11H, GS-GSA-MW-8V, GS-GSA-MW-12H, GS-GSA-MW-13H, GS-GSA-MW-9V, GS-GSA-MW-12V, and GS-GSA-MW-14H
- o **Piezometers:** GS-GSA-PZ-17, GS-GSA-PZ-18, GS-GSA-PZ-19, GS-GSA-PZ-20, GS-GSA-PZ-21, and GS-GSA-PZ-22

Note that delineation wells and piezometers did not require statistics and, therefore, were plotted only on time series and box plots. Data were sent electronically to Groundwater Stats Consulting, and the statistical analysis was prepared according to the Statistical Analysis Plan approved by Dr. Kirk Cameron, PhD Statistician with MacStat Consulting, primary author of the USEPA Unified Guidance, and Senior Advisor to Groundwater Stats Consulting. The analysis was reviewed by Kristina Rayner, Founder and Groundwater Statistician for Groundwater Stats Consulting.

The CCR program consists of the following constituents:

**Appendix III** (Detection Monitoring) - boron, calcium, chloride, fluoride, pH, sulfate, and TDS

**Appendix IV** (Assessment Monitoring) - antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, combined radium 226 + 228, fluoride, lead, lithium, mercury, molybdenum, selenium, and thallium

Note that when there are no detections present in downgradient wells for a given constituent, statistical analyses are not required. A summary of well/constituent pairs with 100% nondetects follows this letter. A substitution of the most recent reporting limit is used for nondetect data.

Time series plots for Appendix III and IV parameters at all wells are provided for the purpose of screening data at these wells (Figure A). A substitution of the most recent reporting limit is used for nondetect data. Additionally, a separate section of box plots is included for all constituents at upgradient and downgradient wells (Figure B). The time series plots are used to initially screen for suspected outliers and trends, while the box plots provide visual representation of variation within individual wells and between all wells.

In earlier analyses, data at all wells were evaluated for the following: 1) outliers; 2) trends; 3) most appropriate statistical method for Appendix III parameters based on analysis of the spatial variability of groundwater quality data among wells upgradient of the facility; and 4) eligibility of downgradient wells when intrawell statistical methods are recommended. Power curves are provided in this report to demonstrate that the selected statistical methods for Appendix III parameters comply with the USEPA Unified Guidance. The EPA suggests that the selected statistical method should provide at least 55% power at 3 standard deviations or at least 80% power at 4 standard deviations. Power curves are based on the following statistical methods and site/data characteristics:

- Semi-Annual Sampling
- Intrawell Prediction Limits with 1-of-2 resample plan
- Interwell Prediction Limits with 1-of-2 resample plan
- # Background Samples (Intrawell): 8
- # Background Samples (Interwell): 87
- # Constituents: 7
- # Downgradient wells: 3

## **Summary of Statistical Methods – Appendix III Parameters**

Based on the earlier evaluation described above, the following statistical methods were selected:

- Intrawell prediction limits, combined with a 1-of-2 resample plan for pH, sulfate, and TDS
- Interwell prediction limits, combined with a 1-of-2 resample plan for boron, calcium, chloride, and fluoride

Parametric prediction limits are utilized when the screened historical data follow a normal or transformed-normal distribution. When data cannot be normalized or the majority of data are nondetects, a nonparametric test is utilized. While the annual false positive rate associated with parametric limits is fixed at 10% as recommended by the EPA Unified Guidance (2009), the false positive rate associated with nonparametric limits is not fixed and depends upon the available background sample size, number of future comparisons, and verification resample plan. The distribution of data is tested using the Shapiro-Wilk/Shapiro-Francia test for normality. After testing for normality and performing any adjustments as discussed below (US EPA, 2009), data are analyzed using either parametric or non-parametric prediction limits as appropriate.

- No statistical analyses are required on wells and analytes containing 100% nondetects (USEPA Unified Guidance, 2009, Chapter 6).
- When data contain <15% nondetects in background, simple substitution of onehalf the reporting limit is utilized in the statistical analysis. The reporting limit utilized for nondetects is the practical quantification limit (PQL) as reported by the laboratory.
- When data contain between 15-50% nondetects, the Kaplan-Meier nondetect adjustment is applied to the background data. This technique adjusts the mean and standard deviation of the historical concentrations to account for concentrations below the reporting limit.
- Nonparametric prediction limits are used on data containing greater than 50% nondetects.

Natural systems continuously evolve due to physical changes made to the environment. Examples include capping a landfill, paving areas near a well, or lining a drainage channel to prevent erosion. Periodic updating of background statistical limits is necessary to accommodate these types of changes. In the intrawell case, data for all wells and constituents may be re-evaluated when a minimum of 4 new data points are available to determine whether earlier concentrations are representative of present-day groundwater

quality. In the interwell case, prediction limits are updated with upgradient well data following each sampling event after careful screening for any new outliers. While not required for this report, in some cases, deselecting the earlier portion of data may be necessary prior to construction of limits so that resulting statistical limits are conservative (lower) from a regulatory perspective and capable of rapidly detecting changes in groundwater quality. Even though the data are excluded from the calculation, the values will continue to be reported and shown in tables and graphs.

## **Background Update Summary – Conducted in September 2019**

Intrawell prediction limits, which compare the most recent compliance sample from a given well to historical data from the same well, are updated by testing for the appropriateness of consolidating new sampling observations with the screened background data. This process is described below and requires a minimum of four new data points. Historical data were evaluated for updating with newer data through May 2019 through the use of time series graphs to identify potential outliers when necessary, as well as the Mann Whitney test for equality of medians. As discussed in the Statistical Analysis Plan (August 2020), intrawell prediction limits are used to evaluate pH, sulfate, and TDS at all wells due to natural spatial variation for these parameters.

Interwell prediction limits are used to compare the most recent sample from each downgradient well to statistical limits constructed from pooled upgradient well data for boron, calcium, chloride, and fluoride. As mentioned above, these limits are updated following each sampling event after careful screening for new outliers. Data from upgradient wells are also periodically re-screened for newly developing trends, which may require adjustment of the background period to eliminate the trend. No adjustments were required in upgradient wells for constituents evaluated using prediction limits.

Prior to performing prediction limits, proposed background data through May 2019 were reviewed to identify any newly suspected outliers at all wells for pH, sulfate, and TDS and at upgradient wells for boron, calcium, chloride, and fluoride. Both Tukey's test and visual screening are used to identify potential outliers. When identified as outliers, values were flagged with "o" and excluded to reduce variation, better represent background conditions, and provide limits that are conservative from a regulatory perspective. Potential outliers that are identified by Tukey's test but are not greatly different from the rest of the data are not flagged. Also, outliers that are not identified as significant by Tukey's test may be identified visually. As mentioned above, flagged data are displayed in a lighter font and as a disconnected symbol on the time series reports, as well as in a lighter font on the accompanying data pages. A summary of Tukey's test results for Appendix III parameters was included with the September 2019 screening.

For constituents requiring intrawell prediction limits, the Mann-Whitney (Wilcoxon Rank Sum) test was used to compare the medians of historical data through May 2017 to compliance data through May 2019. When no statistically significant difference between the two groups' data is found at a 99% confidence level, background data may be updated with newer compliance data. Statistically significant differences were found between the two groups for sulfate in well GS-GSA-MW-8; and TDS in wells GS-GSA-MW-8 and MW-1.

Typically, when the test concludes that the medians of the two groups are significantly different, particularly in the downgradient wells, the background data are not updated to include the newer data but will be reconsidered in the future. A summary of these results was included with the Mann Whitney test section in the September 2019 screening and a list of well/constituent pairs using a truncated portion of their records follows this report under the Date Ranges table.

The Sen's Slope/Mann Kendall trend test was used to evaluate the entire record of data from upgradient wells for parameters utilizing interwell prediction limits. When statistically significant increasing trends are identified in upgradient wells, the earlier portion of data is deselected prior to construction of interwell statistical limits if the trending data would result in statistical limits that are not conservative from a regulatory perspective. Statistically significant trends were noted in upgradient wells and the results were included with the September 2019 screening. These trends required no adjustments at that time, however, because the period of record is short and/or the magnitudes of the trends were low relative to the average concentrations in background.

#### **Evaluation of Appendix III Parameters – July 2020**

For Appendix III parameters that are analyzed using interwell prediction limits, background (upgradient) well data were re-assessed for potential outliers during this analysis. No new values were flagged. The background date ranges for intrawell Appendix III parameters remain the same as those screened in the 2019 update. Values in background which have been flagged as outliers may be seen in a lighter font and as a disconnected symbol on the graphs. A summary of flagged outliers follows this report (Figure C).

Interwell prediction limits combined with a 1-of-2 verification strategy were constructed for boron, calcium, chloride, and fluoride (Figure D). Interwell prediction limits pool upgradient well data to establish a background limit for an individual constituent. The most recent sample from each downgradient well is compared to the background limit to determine whether there are statistically significant increases (SSIs).

Intrawell limits constructed from carefully screened background data from within each well serve to provide statistical limits that are representative of the background data population, and that will rapidly identify a change in more recent compliance data from within a given well. The most recent sample from the same well is compared to its respective background. This statistical method removes the element of variation from across wells and eliminates the chance of mistaking natural spatial variation for a release from the facility. Intrawell prediction limits combined with a 1-of-2 verification strategy were constructed for pH, sulfate, and TDS (Figure E).

In the event of an initial exceedance of compliance well data, the 1-of-2 resample plan allows for collection of one additional sample to determine whether the initial exceedance is confirmed. When the resample confirms the initial exceedance, a statistically significant increase (SSI) is identified, and further research is required to identify the cause of the exceedance (i.e. impact from the site, natural variation, or an off-site source). If a resample falls within the statistical limit, the initial exceedance is considered to be a false positive result; therefore, no further action is necessary. A summary of the prediction limits results may be found in the Prediction Limit Summary tables following this letter. Exceedances for both interwell and intrawell prediction limits were identified for the following well/constituent pairs:

#### Interwell:

• Boron: GS-GSA-MW-3, GS-GSA-MW-4, and GS-GSA-MW-8

Calcium: GS-GSA-MW-3 and GS-GSA-MW-8

Chloride: GS-GSA-MW-3, GS-GSA-MW-4, and GS-GSA-MW-8

#### Intrawell:

• pH: MW-1 (upgradient)

When prediction limit exceedances are identified in downgradient wells, data are further evaluated using the Sen's Slope/Mann Kendall trend test to determine whether concentrations are statistically increasing, decreasing, or stable (Figure F). Upgradient wells are included in the trend analyses for all parameters found to exceed their prediction limit in downgradient wells to identify whether similar patterns exist upgradient of the site. The existence of similar trends in both upgradient and downgradient wells is an indication of natural variability in groundwater that is unrelated to practices at the site. A summary of the trend test results follows this letter. Statistically significant trends were identified for the following well/constituent pairs:

## Increasing

Boron: GS-GSA-MW-8
 Calcium: GS-GSA-MW-8
 Chloride: GS-GSA-MW-8

## Decreasing

Boron: GS-GSA-MW-4Chloride: GS-GSA-MW-4

## **Evaluation of Appendix IV Parameters – July 2020**

Data from all wells for Appendix IV parameters are reassessed for outliers during each analysis and no new outliers were flagged. A summary of previously flagged outliers follows this report (Figure C).

In accordance with Alabama Department of Environmental Management, the Groundwater Protections Standards (GWPS) utilized during the 2019 2<sup>nd</sup> semi-annual report were used in the confidence interval analysis for this 2020 2<sup>nd</sup> semi-annual report. The GWPS will be updated during the 2021 2<sup>nd</sup> semi-annual statistical analysis. The methodology used to create these GWPS is described below.

First, background limits were determined using tolerance limits constructed from pooled upgradient well data. The tolerance limits contain a known fraction (coverage) of the background population with a known level of confidence. When data followed a normal or transformed-normal distribution, parametric tolerance limits were used to calculate background limits for Appendix IV parameters using pooled upgradient well data through October 2019 with a target of 95% confidence and 95% coverage (Figure G).

Nonparametric tolerance limits, which use the highest value in background as the statistical limit, were constructed when data did not follow a normal or transformed-normal distribution or when there were greater than 50% nondetects. The confidence and coverage levels for nonparametric tolerance limits are dependent upon the number of background samples. These background limits were then compared to the Maximum Contaminant Levels (MCLs) for each parameter, and the higher of the two was used as the GWPS (Figure H) in the confidence interval comparisons described below. Exceptions are noted in Figure H for beryllium and cadmium. For these two parameters, the MCL's were used as the GWPS rather than the higher background UTLs to maintain the more conservative standard. Note that none of the parametric tolerance limits resulted in higher limits than the established MCLs or CCR-Rule Specified Limits. In future UTL calculations,

nonparametric tolerance limits will be used exclusively, as requested by ADEM, to eliminate variation among upgradient well data.

Confidence intervals were then constructed on downgradient wells using a maximum of the most recent 8 samples through July 2020 for each of the Appendix IV parameters. These intervals were constructed as either parametric or nonparametric confidence intervals depending on the data distribution and percentage of nondetects. As mentioned above, well/constituent pairs with 100% nondetects did not require statistics and were, therefore, deselected prior to construction confidence intervals. A list of deselected well/constituent pairs also follows this report. The decision logic, with respect to the use of a parametric or nonparametric confidence interval, is similar to that used to construct tolerance limits as discussed above. Each confidence interval was compared with the corresponding GWPS. Only when the entire confidence interval was above the GWPS is the well/constituent pair considered to exceed its respective standard. Both a tabular summary and graphical presentation of the confidence interval results follow this letter (Figure I). The only exceedance was identified for lithium in well GS-GSA-MW-3.

Thank you for the opportunity to assist you in the statistical analysis of groundwater quality for Gorgas Gypsum Pond. If you have any questions or comments, please feel free to contact us.

For Groundwater Stats Consulting,

Andrew Collins
Project Manager

Kristina Rayner Groundwater Statistician

sistina Rayner

Sanitas™ v.9.6.27 Groundwater Stats Consulting. U

## 100% Non-Detects

Analysis Run 10/19/2020 4:32 PM View: Appendix IV
Plant Gorgas Client: Southern Company Data: Gorgas GSA

Arsenic (mg/L) GS-GSA-MW-8

Beryllium (mg/L) GS-GSA-MW-8

Cadmium (mg/L) GS-GSA-MW-3, GS-GSA-MW-8

Chromium (mg/L) GS-GSA-MW-3, GS-GSA-MW-4, GS-GSA-MW-8

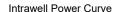
Lead (mg/L) GS-GSA-MW-3, GS-GSA-MW-4, GS-GSA-MW-8

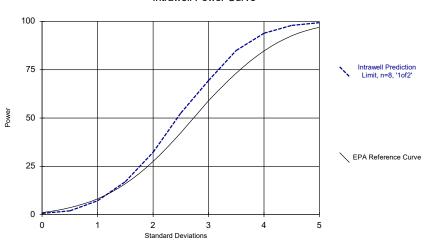
Mercury (mg/L) GS-GSA-MW-3, GS-GSA-MW-4, GS-GSA-MW-8

Molybdenum (mg/L) GS-GSA-MW-3, GS-GSA-MW-4, GS-GSA-MW-8

Selenium (mg/L) GS-GSA-MW-8

Thallium (mg/L) GS-GSA-MW-3, GS-GSA-MW-8 Sanitas™ v.9.6.27 Groundwater Stats Consulting.

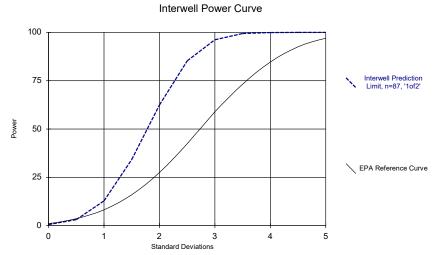

Page 1


## **Date Ranges**

Date: 10/13/2020 10:20 AM

Plant Gorgas Client: Southern Company Data: Gorgas GSA

Total dissolved solids (mg/L) GS-GSA-MW-8 background:1/17/2017-4/10/2019 Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG






Kappa = 2.458, based on 3 compliance wells and 7 constituents, evaluated semi-annually (this report reflects annual total).

Analysis Run 10/13/2020 2:12 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG



Kappa = 1.685, based on 3 compliance wells and 7 constituents, evaluated semi-annually (this report reflects annual total).

Analysis Run 10/13/2020 2:12 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

# Interwell Prediction Limits - Significant Results

Plant Gorgas Client: Southern Company Data: Gorgas GSA Printed 10/13/2020, 10:17 AM

| Constituent     | Well        | Upper Lim | Lower Lim | . Date   | Observ. | Sig. | Bg N | Bg Mean | Std. Dev. | %NDs  | ND Adj. | Transform | <u>Alpha</u> | Method                |
|-----------------|-------------|-----------|-----------|----------|---------|------|------|---------|-----------|-------|---------|-----------|--------------|-----------------------|
| Boron (mg/L)    | GS-GSA-MW-3 | 0.0596    | n/a       | 8/4/2020 | 1.82    | Yes  | 87   | n/a     | n/a       | 16.09 | n/a     | n/a       | 0.0002567    | NP (normality) 1 of 2 |
| Boron (mg/L)    | GS-GSA-MW-4 | 0.0596    | n/a       | 8/5/2020 | 2.51    | Yes  | 87   | n/a     | n/a       | 16.09 | n/a     | n/a       | 0.0002567    | NP (normality) 1 of 2 |
| Boron (mg/L)    | GS-GSA-MW-8 | 0.0596    | n/a       | 8/5/2020 | 2.16    | Yes  | 87   | n/a     | n/a       | 16.09 | n/a     | n/a       | 0.0002567    | NP (normality) 1 of 2 |
| Calcium (mg/L)  | GS-GSA-MW-3 | 431       | n/a       | 8/4/2020 | 545     | Yes  | 87   | n/a     | n/a       | 0     | n/a     | n/a       | 0.0002567    | NP (normality) 1 of 2 |
| Calcium (mg/L)  | GS-GSA-MW-8 | 431       | n/a       | 8/5/2020 | 497     | Yes  | 87   | n/a     | n/a       | 0     | n/a     | n/a       | 0.0002567    | NP (normality) 1 of 2 |
| Chloride (mg/L) | GS-GSA-MW-3 | 3.773     | n/a       | 8/4/2020 | 222     | Yes  | 87   | 1.484   | 0.2724    | 3.448 | None    | sqrt(x)   | 0.002505     | Param 1 of 2          |
| Chloride (mg/L) | GS-GSA-MW-4 | 3.773     | n/a       | 8/5/2020 | 41      | Yes  | 87   | 1.484   | 0.2724    | 3.448 | None    | sqrt(x)   | 0.002505     | Param 1 of 2          |
| Chloride (mg/L) | GS-GSA-MW-8 | 3.773     | n/a       | 8/5/2020 | 146     | Yes  | 87   | 1.484   | 0.2724    | 3.448 | None    | sqrt(x)   | 0.002505     | Param 1 of 2          |

## Interwell Prediction Limits - All Results

Plant Gorgas Client: Southern Company Data: Gorgas GSA Printed 10/13/2020, 10:17 AM Constituent Well Upper Lim. Lower Lim. Date Observ. Sig. Bg N Bg Mean Std. Dev. %NDs ND Adj. Transform Alpha Method GS-GSA-MW-3 8/4/2020 1.82 Yes 87 NP (normality) 1 of 2 Boron (mg/L) 0.0596 n/a n/a 16.09 n/a n/a 0.0002567 Boron (mg/L) GS-GSA-MW-4 0.0596 8/5/2020 2.51 Yes 87 16.09 0.0002567 NP (normality) 1 of 2 n/a n/a n/a n/a n/a Boron (mg/L) GS-GSA-MW-8 0.0596 n/a 8/5/2020 2.16 16.09 0.0002567 NP (normality) 1 of 2 GS-GSA-MW-3 8/4/2020 545 n/a 0.0002567 NP (normality) 1 of 2 Calcium (mg/L) 431 Yes 87 n/a 0 n/a n/a n/a Calcium (mg/L) GS-GSA-MW-4 431 n/a 8/5/2020 94.7 No 87 0 0.0002567 NP (normality) 1 of 2 GS-GSA-MW-8 431 8/5/2020 497 Yes 87 0 0.0002567 NP (normality) 1 of 2 Calcium (mg/L) n/a n/a n/a n/a n/a Chloride (mg/L) GS-GSA-MW-3 3.773 n/a 8/4/2020 222 1.484 0.2724 3.448 None sqrt(x) 0.002505 Param 1 of 2 Chloride (mg/L) GS-GSA-MW-4 3.773 8/5/2020 41 Yes 87 1.484 0.2724 0.002505 Param 1 of 2 3.448 None sqrt(x) n/a Chloride (mg/L) 8/5/2020 146 Param 1 of 2 GS-GSA-MW-8 3.773 n/a Yes 87 1.484 0.2724 3.448 sqrt(x) 0.002505 Fluoride (mg/L) GS-GSA-MW-3 0.473 8/4/2020 0.389 No 91 0.4581 0.1366 0.002505 Param 1 of 2 n/a 1.099 None sqrt(x) 0.4581 Fluoride (mg/L) GS-GSA-MW-4 0.473 n/a 8/5/2020 0.05ND No 91 0.1366 1.099 None 0.002505 Param 1 of 2 sqrt(x) Fluoride (mg/L) GS-GSA-MW-8 0.473 8/5/2020 0.4581 0.1366 1.099 sqrt(x) 0.002505 Param 1 of 2

# Intrawell Prediction Limits - Significant Results

Plant Gorgas Client: Southern Company Data: Gorgas GSA Printed 10/13/2020, 10:25 AM

 Constituent
 Well
 Upper Lim.
 Lower Lim.
 Date
 Observ.
 Sig.
 Bg N
 Bg Mean
 Std. Dev.
 %NDs
 ND Adj.
 Transform
 Alpha
 Method

 pH (pH)
 MW-1
 5.24
 5.09
 8/3/2020
 5.08
 Yes
 18
 5.165
 0.03869
 0
 None
 No
 0.001253
 Param 1 of 2

### Intrawell Prediction Limits - All Results

Plant Gorgas Client: Southern Company Data: Gorgas GSA Printed 10/13/2020, 10:25 AM Constituent Well Upper Lim. Lower Lim. Date Observ. Bg N Bg Mean Std. Dev. %NDs ND Adj. Transform Alpha Method GS-GSA-MW-3 0.2034 pH (pH) 6.454 8/4/2020 6.09 No 13 6.032 None No 0.001253 Param 1 of 2 0.04034 pH (pH) GS-GSA-MW-4 3.868 3.701 8/5/2020 3.86 Nο 13 3.785 0 None No 0.001253 Param 1 of 2 pH (pH) GS-GSA-MW-8 6.366 8/5/2020 6.76 6.784 0.2012 0.001253 Param 1 of 2 MW-1 5.24 8/3/2020 Yes 18 5.165 0.03869 0 Param 1 of 2 pH (pH) 5.09 5.08 None Nο 0.001253 pH (pH) MW-2 6.161 5.76 8/3/2020 5.95 No 18 5.961 0.1039 0.001253 Param 1 of 2 MW-3 6.175 8/3/2020 19 27.62 5.502 pH (pH) 4.135 5.06 No 0 None x^2 0.001253 Param 1 of 2 pH (pH) MW-4 6.246 6.063 8/5/2020 6.15 No 18 6.154 0.04755 0 None No 0.001253 Param 1 of 2 GS-GSA-MW-3 12 Param 1 of 2 Sulfate (mg/L) 3089 8/4/2020 2820 1.9e17 4.2e16 0 x^5 0.002505 n/a No None Sulfate (mg/L) GS-GSA-MW-4 648.7 n/a 8/5/2020 519 No 12 564.5 39.86 0 None 0.002505 Param 1 of 2 Param 1 of 2 Sulfate (mg/L) GS-GSA-MW-8 2123 n/a 8/5/2020 1880 No 12 307.9 0 None No 0.002505 Sulfate (mg/L) MW-1 2100 8/3/2020 1370 18 n/a Ω 0.005373 NP (normality) 1 of 2 n/a Nο n/a n/a n/a MW-2 1247 8/3/2020 907 1003 126.2 0.002505 Param 1 of 2 Sulfate (mg/L) n/a No No MW-3 2431 379.6 Param 1 of 2 Sulfate (mg/L) 3164 n/a 8/3/2020 2330 Nο 18 0 None Nο 0.002505 Sulfate (mg/L) MW-4 3023 n/a 8/5/2020 1930 No 17 2558 238.2 0 0.002505 Param 1 of 2 GS-GSA-MW-3 8/4/2020 5110 12 1.4e22 0 0.002505 Param 1 of 2 Total dissolved solids (mg/L) 5416 5.4e21 x^6 n/a No None Total dissolved solids (mg/L) GS-GSA-MW-4 1100 n/a 8/5/2020 938 No 12 990.3 51.88 0 None No 0.002505 Param 1 of 2 Total dissolved solids (mg/L) GS-GSA-MW-8 4264 8/5/2020 3610 8 3090 477.8 0 None 0.002505 Param 1 of 2 n/a No No Total dissolved solids (mg/L) MW-1 2526 n/a 8/3/2020 2200 No 18 2183 178 0 None No 0.002505 Param 1 of 2 Total dissolved solids (mg/L) MW-2 2032 n/a 8/3/2020 1650 No 18 1640 202.8 0 0.002505 Param 1 of 2 None No

3661

628 6

367.3

Ω

None

Nο

0.002505

0.002505

Param 1 of 2

Param 1 of 2

18

17 3923

Nο

Total dissolved solids (mg/L)

Total dissolved solids (mg/L)

MW-3

4874

4639

n/a

n/a

8/3/2020

8/5/2020

3760

# Trend Tests Summary Table - Prediction Limit Exceedances - Significant Results

|                 | •                                 |               |          |           |        |          |        | -         |              |              |        |
|-----------------|-----------------------------------|---------------|----------|-----------|--------|----------|--------|-----------|--------------|--------------|--------|
|                 | Plant Gorgas Client: Southern Com | pany Data: Go | rgas GSA | Printed 1 | 0/13/2 | 020, 10  | :30 AM |           |              |              |        |
| Constituent     | Well                              | Slope         | Calc.    | Critical  | Sig.   | <u>N</u> | %NDs   | Normality | <u>Xform</u> | <u>Alpha</u> | Method |
| Boron (mg/L)    | GS-GSA-MW-4                       | -0.494        | -65      | -53       | Yes    | 15       | 0      | n/a       | n/a          | 0.01         | NP     |
| Boron (mg/L)    | GS-GSA-MW-8                       | 0.3181        | 79       | 53        | Yes    | 15       | 0      | n/a       | n/a          | 0.01         | NP     |
| Calcium (mg/L)  | GS-GSA-MW-8                       | 92.54         | 71       | 53        | Yes    | 15       | 0      | n/a       | n/a          | 0.01         | NP     |
| Chloride (mg/L) | GS-GSA-MW-4                       | -17.43        | -73      | -53       | Yes    | 15       | 0      | n/a       | n/a          | 0.01         | NP     |
| Chloride (mg/L) | GS-GSA-MW-8                       | 41.11         | 81       | 53        | Yes    | 15       | 0      | n/a       | n/a          | 0.01         | NP     |

# Trend Tests Summary Table - Prediction Limit Exceedances - All Results

|                 | Plant Gorgas | Client: Southern Company | / Data: Gorç | gas GSA | Printed 10 | )/13/20 | 020, 10: | 30 AM |           |              |              |        |
|-----------------|--------------|--------------------------|--------------|---------|------------|---------|----------|-------|-----------|--------------|--------------|--------|
| Constituent     | Well         | <u>s</u>                 | Slope        | Calc.   | Critical   | Sig.    | <u>N</u> | %NDs  | Normality | <u>Xform</u> | <u>Alpha</u> | Method |
| Boron (mg/L)    | GS-GSA-MW-3  | 0                        | 0.3195       | 23      | 53         | No      | 15       | 0     | n/a       | n/a          | 0.01         | NP     |
| Boron (mg/L)    | GS-GSA-MW-4  | -4                       | 0.494        | -65     | -53        | Yes     | 15       | 0     | n/a       | n/a          | 0.01         | NP     |
| Boron (mg/L)    | GS-GSA-MW-8  | 0                        | ).3181       | 79      | 53         | Yes     | 15       | 0     | n/a       | n/a          | 0.01         | NP     |
| Boron (mg/L)    | MW-1 (bg)    | 0                        | 0.003899     | 69      | 92         | No      | 22       | 27.27 | n/a       | n/a          | 0.01         | NP     |
| Boron (mg/L)    | MW-2 (bg)    | 0                        | 0.003227     | 72      | 92         | No      | 22       | 13.64 | n/a       | n/a          | 0.01         | NP     |
| Boron (mg/L)    | MW-3 (bg)    | 0                        | 0.002599     | 59      | 92         | No      | 22       | 18.18 | n/a       | n/a          | 0.01         | NP     |
| Boron (mg/L)    | MW-4 (bg)    | 0                        | 0.0008345    | 41      | 87         | No      | 21       | 4.762 | n/a       | n/a          | 0.01         | NP     |
| Calcium (mg/L)  | GS-GSA-MW-3  | 3                        | 3.862        | 4       | 53         | No      | 15       | 0     | n/a       | n/a          | 0.01         | NP     |
| Calcium (mg/L)  | GS-GSA-MW-8  | 9                        | 2.54         | 71      | 53         | Yes     | 15       | 0     | n/a       | n/a          | 0.01         | NP     |
| Calcium (mg/L)  | MW-1 (bg)    | 6                        | 6.226        | 91      | 92         | No      | 22       | 0     | n/a       | n/a          | 0.01         | NP     |
| Calcium (mg/L)  | MW-2 (bg)    | 5                        | 5.509        | 51      | 92         | No      | 22       | 0     | n/a       | n/a          | 0.01         | NP     |
| Calcium (mg/L)  | MW-3 (bg)    | 2                        | 25.31        | 81      | 92         | No      | 22       | 0     | n/a       | n/a          | 0.01         | NP     |
| Calcium (mg/L)  | MW-4 (bg)    |                          | 1.57         | -4      | -87        | No      | 21       | 0     | n/a       | n/a          | 0.01         | NP     |
| Chloride (mg/L) | GS-GSA-MW-3  | 0                        | )            | 0       | 53         | No      | 15       | 0     | n/a       | n/a          | 0.01         | NP     |
| Chloride (mg/L) | GS-GSA-MW-4  | مي .                     | 17.43        | -73     | -53        | Yes     | 15       | 0     | n/a       | n/a          | 0.01         | NP     |
| Chloride (mg/L) | GS-GSA-MW-8  | 4                        | 11.11        | 81      | 53         | Yes     | 15       | 0     | n/a       | n/a          | 0.01         | NP     |
| Chloride (mg/L) | MW-1 (bg)    | -(                       | 0.005518     | -4      | -92        | No      | 22       | 0     | n/a       | n/a          | 0.01         | NP     |
| Chloride (mg/L) | MW-2 (bg)    | 0                        | ).1676       | 22      | 92         | No      | 22       | 0     | n/a       | n/a          | 0.01         | NP     |
| Chloride (mg/L) | MW-3 (bg)    | 0                        | 0.02724      | 25      | 92         | No      | 22       | 9.091 | n/a       | n/a          | 0.01         | NP     |
| Chloride (mg/L) | MW-4 (bg)    | -(                       | 0.04908      | -40     | -87        | No      | 21       | 4.762 | n/a       | n/a          | 0.01         | NP     |

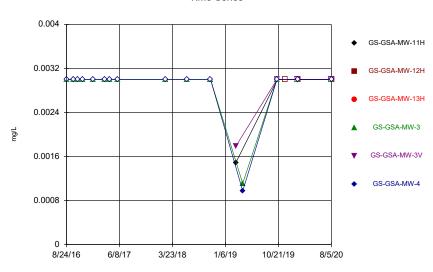
## Upper Tolerance Limits - Appendix IV

Plant William C Gorgas Client: Southern Company Data: Gorgas GSA Printed 7/22/2020, 2:59 PM Upper Lim. Lower Lim. Bg N Bg Mean Std. Dev. %NDs ND Adj. Transform Constituent <u>Alpha</u> Method 0.003 92.41 0.01738 NP Inter(NDs) Antimony (mg/L) 79 n/a n/a n/a n/a n/a Arsenic (mg/L) 0.005 79 0.01738 NP Inter(NDs) Barium (mg/L) 0.01531 n/a 79 -4.516 0.1715 0 None In(x) 0.05 Inter 0.0121 Beryllium (mg/L) 77 n/a 81.82 n/a 0.01926 NP Inter(NDs) n/a n/a n/a Cadmium (mg/L) 0.00598 78 48.72 0.0183 NP Inter(normal... 0.0105 94.94 0.01738 NP Inter(NDs) Chromium (mg/L) n/a 79 n/a n/a n/a 1.07 24.05 0.01738 NP Inter(normal... Cobalt (mg/L) n/a 79 n/a n/a n/a n/a Combined Radium 226 + 228 (pCi/L) 1.151 65 0.4707 No 0.05 0.4625 Fluoride (mg/L) 0.5302 83 0.1358 0 None sqrt(x) 0.05 Inter 0.00692 0.01738 NP Inter(NDs) Lead (mg/L) n/a 79 n/a n/a 96.2 n/a n/a Lithium (mg/L) 0.419 79 0.01738 NP Inter(normal... 0.0005 100 0.01738 NP Inter(NDs) Mercury (mg/L) n/a 79 n/a n/a n/a n/a 0.01 100 0.01738 NP Inter(NDs) Molybdenum (mg/L) 79 n/a n/a n/a n/a n/a Selenium (mg/L) 0.0158 66.67 0.0183 NP Inter(NDs) n/a Thallium (mg/L) 0.001 79 n/a 96.2 0.01738 NP Inter(NDs)

# Confidence Intervals Summary Table - Significant Results

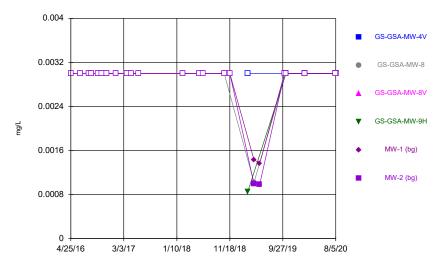
Plant Gorgas Client: Southern Company Data: Gorgas GSA Printed 10/19/2020, 4:37 PM

 Constituent
 Well
 Upper Lim.
 Lower Lim.
 Compliance Sig. N
 Mean
 Std. Dev.
 %NDs ND Adj.
 Transform Alpha
 Method


 Lithium (mg/L)
 GS-GSA-MW-3
 0.498
 0.435
 0.419
 Yes 8
 0.4665
 0.02975
 0
 None
 No
 0.0
 Param.

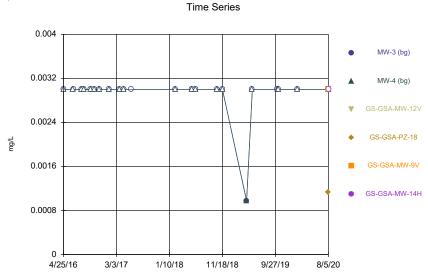
## Confidence Intervals Summary Table - All Results

Plant Gorgas Client: Southern Company Data: Gorgas GSA Printed 10/19/2020, 4:37 PM Constituent <u>Well</u> Upper Lim. Lower Lim. Compliance Sig. N <u>Mean</u> Std. Dev. %NDs ND Adj. Transform Alpha Method Antimony (mg/L) GS-GSA-MW-3 0.003 0.00111 0.006 No 8 0.002764 0.0006682 87.5 None 0.004 NP (NDs) No Antimony (mg/L) GS-GSA-MW-4 0.003 0.000976 0.006 No 8 0.002747 0.0007156 87.5 None No 0.004 NP (NDs) GS-GSA-MW-8 0.003 0.00102 0.002753 0.0007 87.5 0.004 NP (NDs) Antimony (ma/L) 0.006 No 8 None No Arsenic (mg/L) GS-GSA-MW-3 0.005 0.00121 0.01 No 8 0.004526 0.00134 87.5 None No 0.004 NP (NDs) Arsenic (mg/L) GS-GSA-MW-4 0.005 0.00115 0.01 No 8 0.003174 0.001961 50 0.004 NP (normality) None No Barium (mg/L) GS-GSA-MW-3 0.01441 0.01186 2 No 8 0.01314 0.001203 0 None No 0.01 Param. Barium (mg/L) GS-GSA-MW-4 0.0143 0.01197 2 0.01314 0.01 Param. No 8 0.001099 0 None No Barium (mg/L) GS-GSA-MW-8 0.0254 0.02038 2 No 8 0.02289 0.002369 No 0.01 Param. 0.002393 Beryllium (mg/L) GS-GSA-MW-3 0.003328 0.001457 0.004 No 8 0.0008821 0 None Nο 0.01 Param. Beryllium (mg/L) GS-GSA-MW-4 0.005126 0.003787 No 8 0.004456 0.0006316 0 Param. Cadmium (mg/L) GS-GSA-MW-4 0.001451 No 8 0.001621 0.0001602 0 Param. 0.001791 0.005 None Nο 0.01 Cobalt (mg/L) GS-GSA-MW-3 0.1427 0.08399 1.07 No 8 0.1133 0.02768 0.01 Cobalt (mg/L) GS-GSA-MW-4 0.2335 0.1969 0.03451 0 0.1603 1.07 No 8 0.01 Param. None No Cobalt (mg/L) GS-GSA-MW-8 0.005 0.00492 0.00499 0.00002828 87.5 0.004 NP (NDs) Combined Radium 226 + 228 (pCi/L) GS-GSA-MW-3 0.7368 0.2857 5 No 8 0.5113 0.2128 0 None No 0.01 Param. Combined Radium 226 + 228 (pCi/L) GS-GSA-MW-4 0.925 5 No 8 0.5846 0.2658 0 No 0.004 NP (normality) Combined Radium 226 + 228 (pCi/L) 0.01 Param. GS-GSA-MW-8 0.8922 -0.001707 5 No 8 0.4453 0.4217 0 None Fluoride (mg/L) GS-GSA-MW-3 0.7312 0.4421 No 8 0.5866 0.1364 0 0.01 Param. None No 0.004 NP (normality) Fluoride (mg/L) GS-GSA-MW-4 0.7 0.1 No 8 0.32 0.2545 50 None No Fluoride (mg/L) GS-GSA-MW-8 0.1683 0.123 No 8 0.1456 0.02135 0 None No 0.01 Param. Lithium (mg/L) GS-GSA-MW-3 0.498 0.435 0.419 Yes 8 0.4665 0.02975 None No 0.01 Param. Lithium (mg/L) GS-GSA-MW-4 0.2854 0.2748 0.01007 0.01 Param. 0.2641 0.419 No 8 0 None No Lithium (mg/L) GS-GSA-MW-8 0.2068 0.1572 0.419 No 8 0.182 0.02343 No 0.01 Param. Selenium (mg/L) GS-GSA-MW-3 0.01 0.00234 0.05 0.007171 0.003905 0.004 NP (NDs) No 8 62.5 None No Selenium (mg/L) GS-GSA-MW-4 0.01 0.00298 0.05 0.006221 0.003199 None 0.004 NP (normality) Thallium (mg/L) GS-GSA-MW-4 0.001 0.000205 0.002 No 8 0.0009006 0.0002811 87.5 Nο 0.004 NP (NDs) None


# FIGURE A.

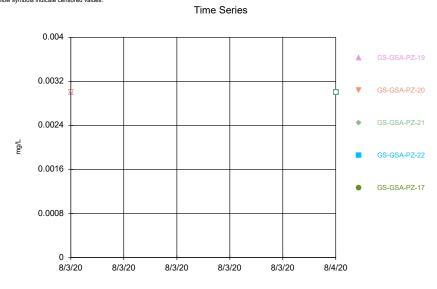





# Constituent: Antimony Analysis Run 10/19/2020 4:17 PM Plant Gorgas Client: Southern Company Data: Gorgas GSA

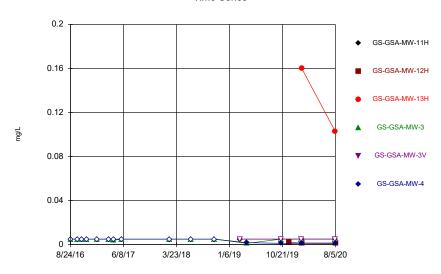
#### Time Series



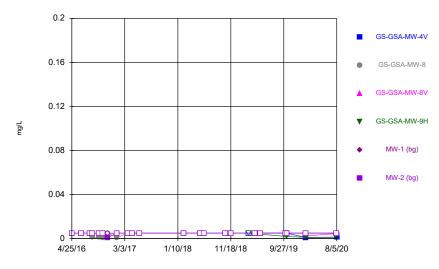

Constituent: Antimony Analysis Run 10/19/2020 4:17 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

## Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



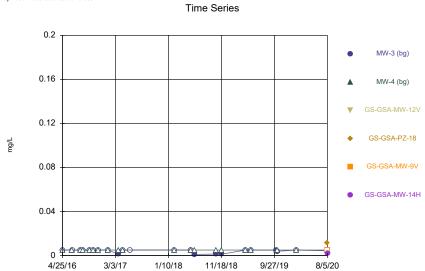

Constituent: Antimony Analysis Run 10/19/2020 4:17 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

## Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



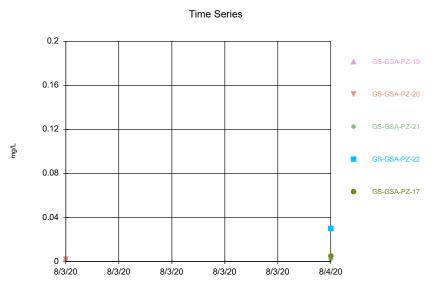

Constituent: Antimony Analysis Run 10/19/2020 4:17 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA



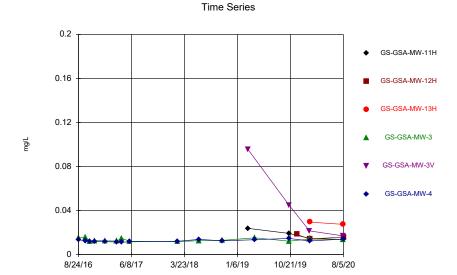



Constituent: Arsenic Analysis Run 10/19/2020 4:17 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

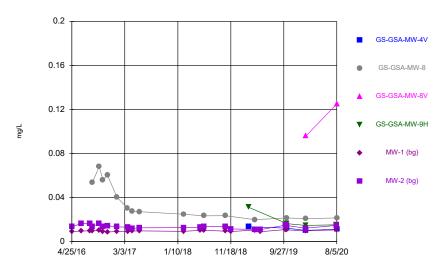



Constituent: Arsenic Analysis Run 10/19/2020 4:17 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

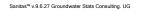
## Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

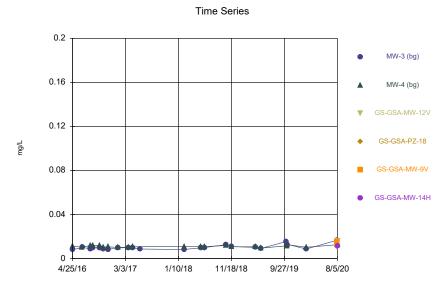



Constituent: Arsenic Analysis Run 10/19/2020 4:17 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


#### Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG

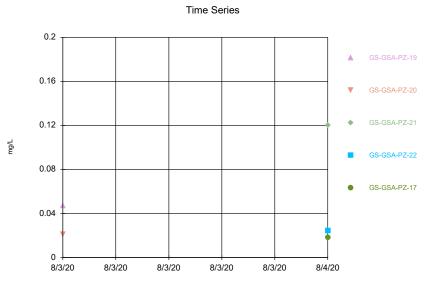



Constituent: Arsenic Analysis Run 10/19/2020 4:17 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA



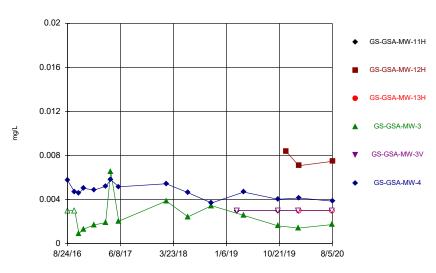

Constituent: Barium Analysis Run 10/19/2020 4:17 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA



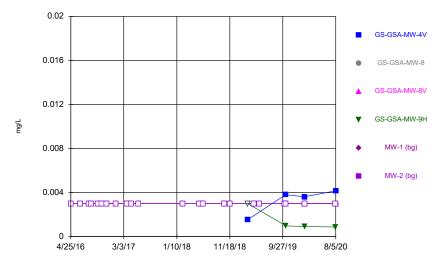

Constituent: Barium Analysis Run 10/19/2020 4:17 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA





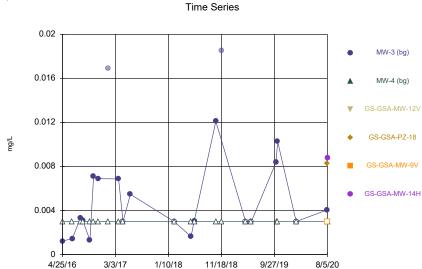

Constituent: Barium Analysis Run 10/19/2020 4:17 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

#### Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG



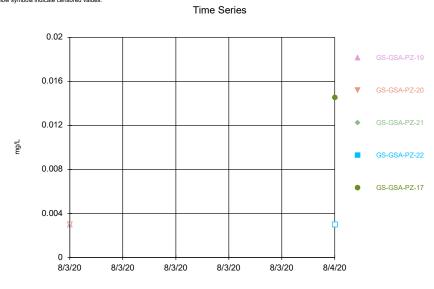

Constituent: Barium Analysis Run 10/19/2020 4:17 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA





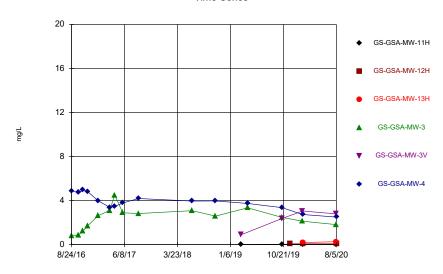

Constituent: Beryllium Analysis Run 10/19/2020 4:17 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA



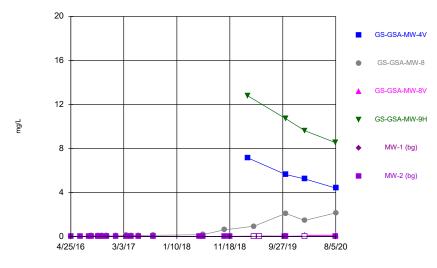

Constituent: Beryllium Analysis Run 10/19/2020 4:17 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

## Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



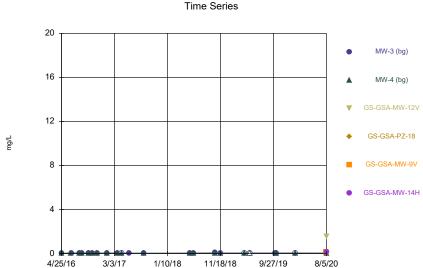

Constituent: Beryllium Analysis Run 10/19/2020 4:17 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

## Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



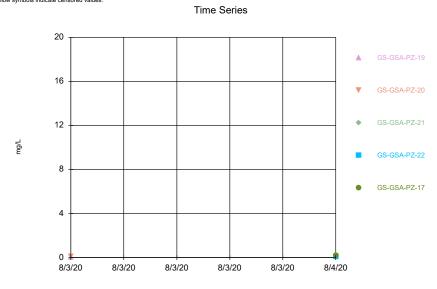

Constituent: Beryllium Analysis Run 10/19/2020 4:17 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA





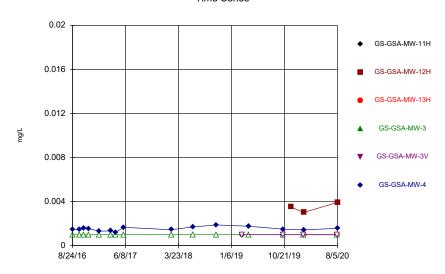

Constituent: Boron Analysis Run 10/19/2020 4:17 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA



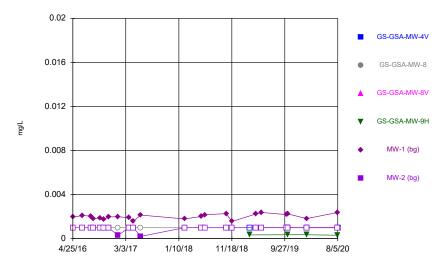

Constituent: Boron Analysis Run 10/19/2020 4:17 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

## Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



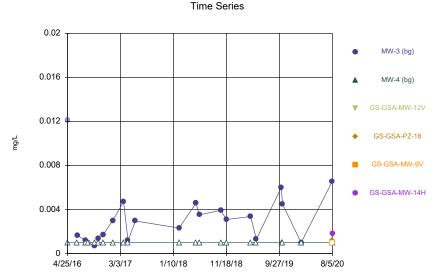

Constituent: Boron Analysis Run 10/19/2020 4:17 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

## Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



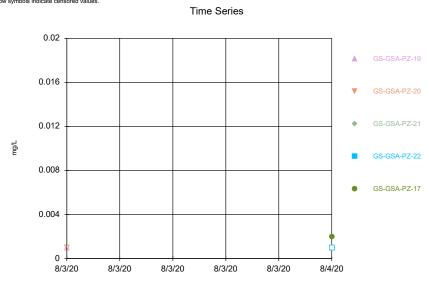

Constituent: Boron Analysis Run 10/19/2020 4:17 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA



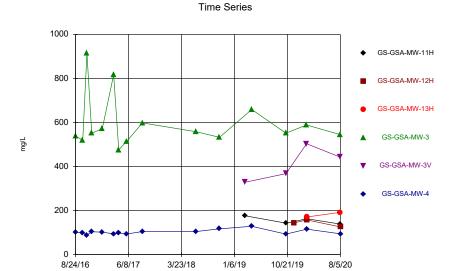


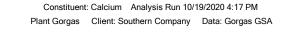

Constituent: Cadmium Analysis Run 10/19/2020 4:17 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

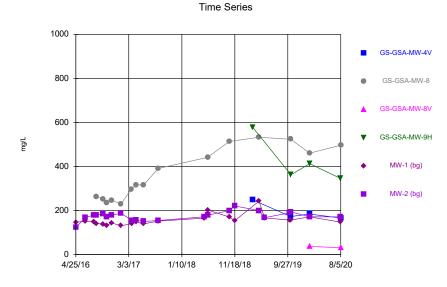


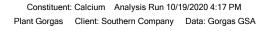

Constituent: Cadmium Analysis Run 10/19/2020 4:17 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

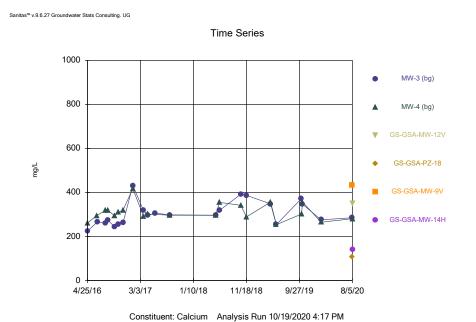
## Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



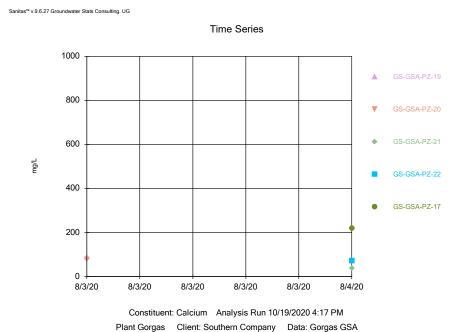


Constituent: Cadmium Analysis Run 10/19/2020 4:17 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


## Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



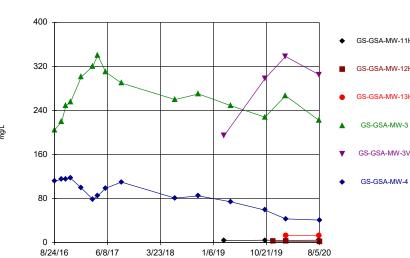


Constituent: Cadmium Analysis Run 10/19/2020 4:17 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA



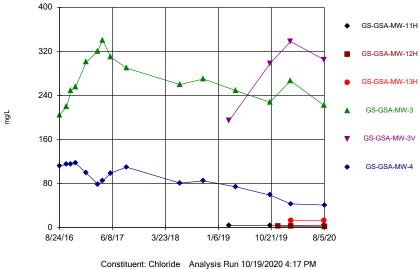


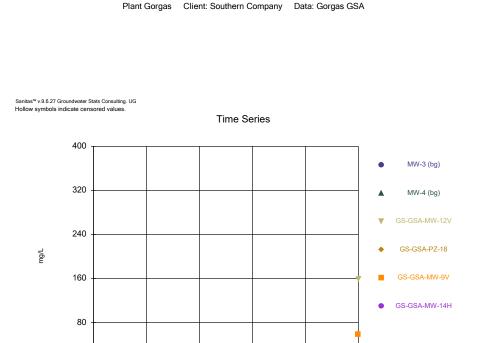





Plant Gorgas Client: Southern Company Data: Gorgas GSA





4/25/16

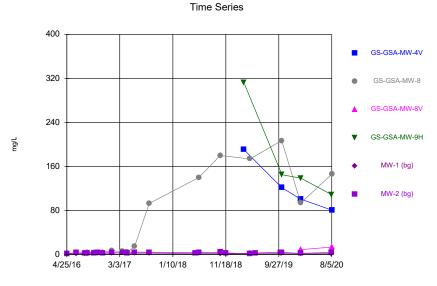
3/3/17



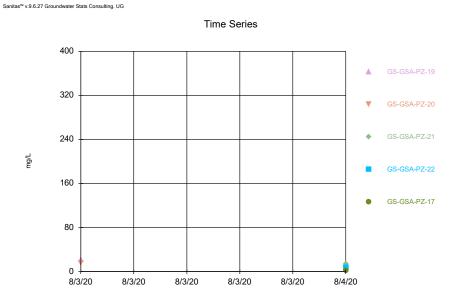
Time Series



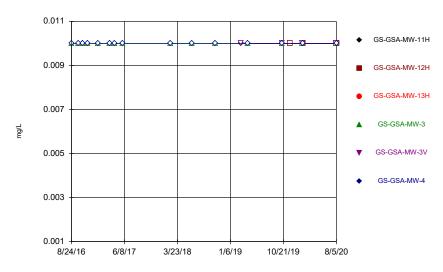



Constituent: Chloride Analysis Run 10/19/2020 4:17 PM Plant Gorgas Client: Southern Company Data: Gorgas GSA

11/18/18

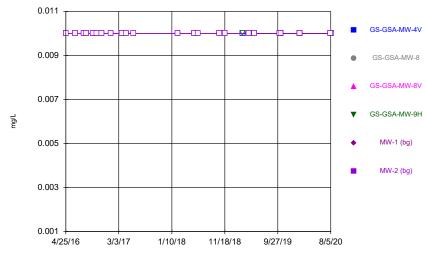

9/27/19

8/5/20


1/10/18

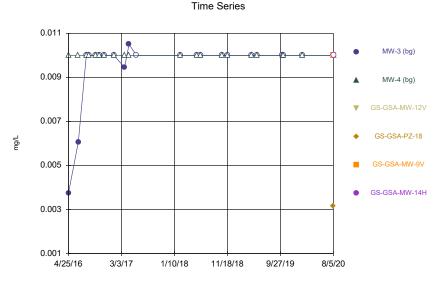


Constituent: Chloride Analysis Run 10/19/2020 4:17 PM Plant Gorgas Client: Southern Company Data: Gorgas GSA




Constituent: Chloride Analysis Run 10/19/2020 4:17 PM Plant Gorgas Client: Southern Company Data: Gorgas GSA

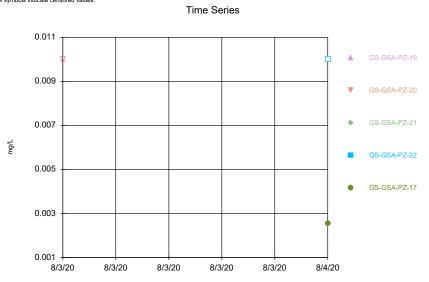



Constituent: Chromium Analysis Run 10/19/2020 4:17 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

## Time Series

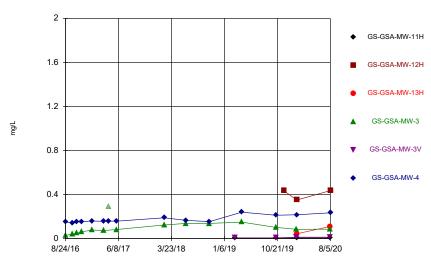


Constituent: Chromium Analysis Run 10/19/2020 4:17 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

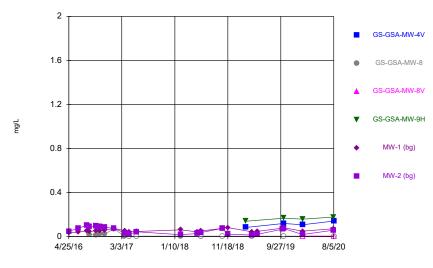

## Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Constituent: Chromium Analysis Run 10/19/2020 4:17 PM


Plant Gorgas Client: Southern Company Data: Gorgas GSA

## Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



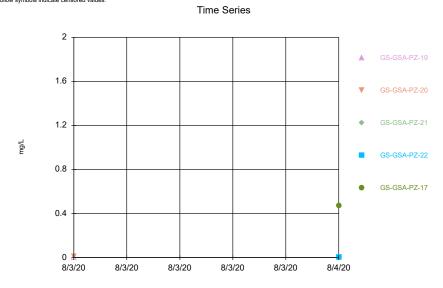

Constituent: Chromium Analysis Run 10/19/2020 4:17 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA





Constituent: Cobalt Analysis Run 10/19/2020 4:17 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA




Constituent: Cobalt Analysis Run 10/19/2020 4:17 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

## Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Constituent: Cobalt Analysis Run 10/19/2020 4:17 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

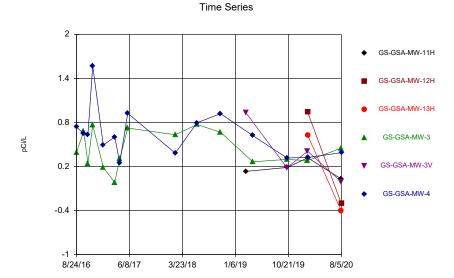
## Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

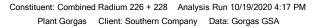


Constituent: Cobalt Analysis Run 10/19/2020 4:17 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

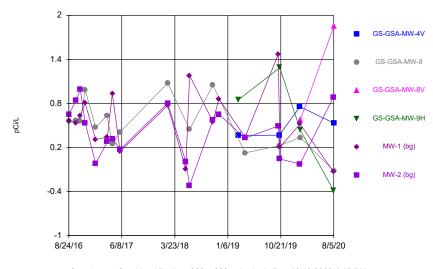
Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG

-0.4


8/24/16

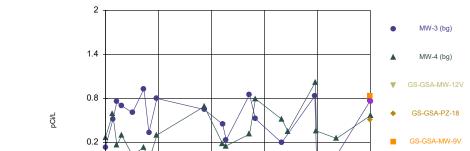

6/8/17

Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG


8/3/20

8/3/20






Time Series



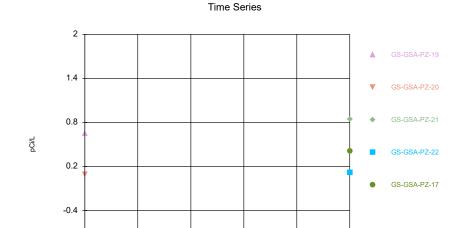
Time Series

Constituent: Combined Radium 226 + 228 Analysis Run 10/19/2020 4:17 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA



Constituent: Combined Radium 226 + 228 Analysis Run 10/19/2020 4:17 PM

Plant Gorgas Client: Southern Company Data: Gorgas GSA


1/6/19

10/21/19

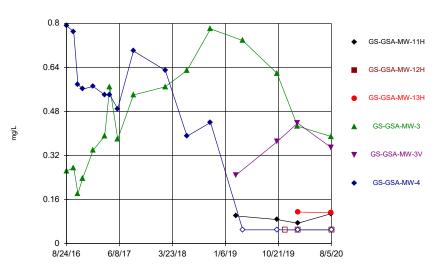
8/5/20

3/23/18

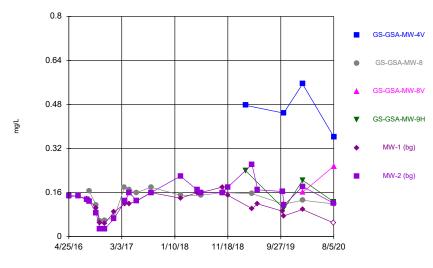
GS-GSA-MW-14H



Constituent: Combined Radium 226 + 228 Analysis Run 10/19/2020 4:17 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

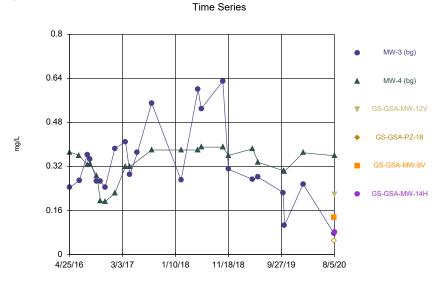

8/3/20

8/3/20


8/4/20

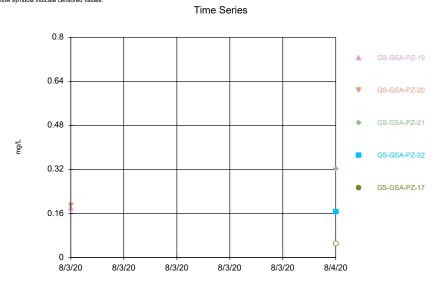
8/3/20





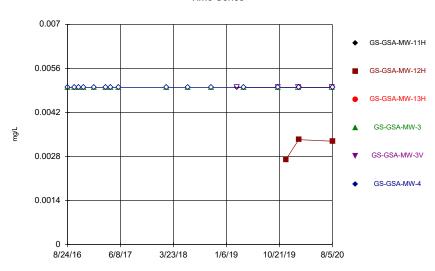

Constituent: Fluoride Analysis Run 10/19/2020 4:17 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA



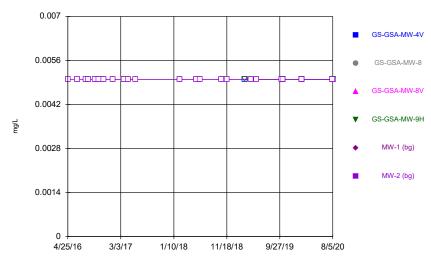

Constituent: Fluoride Analysis Run 10/19/2020 4:17 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

## Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



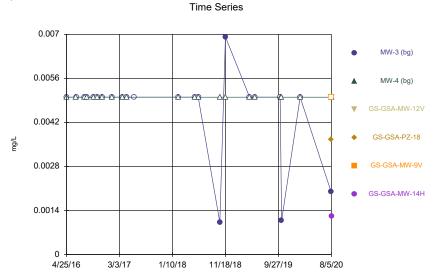

Constituent: Fluoride Analysis Run 10/19/2020 4:17 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

## Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



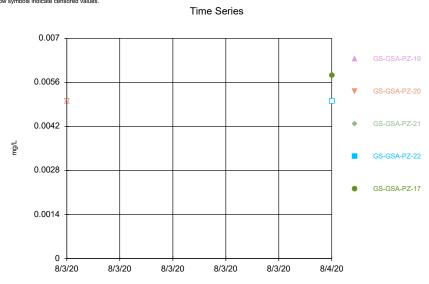

Constituent: Fluoride Analysis Run 10/19/2020 4:17 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA



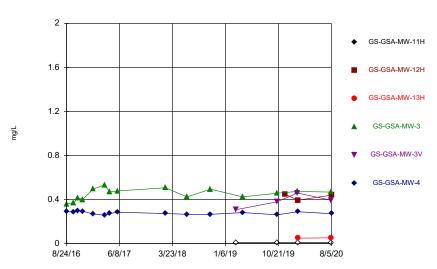



Constituent: Lead Analysis Run 10/19/2020 4:18 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA




Constituent: Lead Analysis Run 10/19/2020 4:18 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

## Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



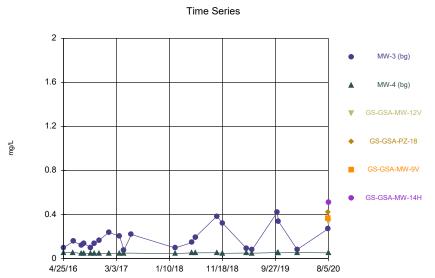

Constituent: Lead Analysis Run 10/19/2020 4:18 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

## Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



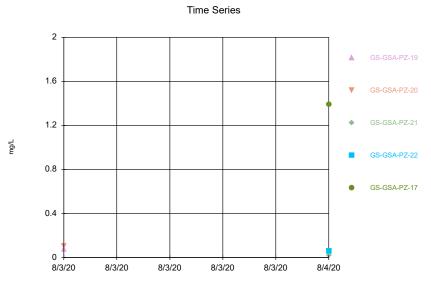

Constituent: Lead Analysis Run 10/19/2020 4:18 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA




Constituent: Lithium Analysis Run 10/19/2020 4:18 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

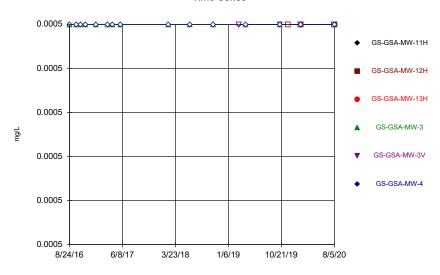
#### Time Series



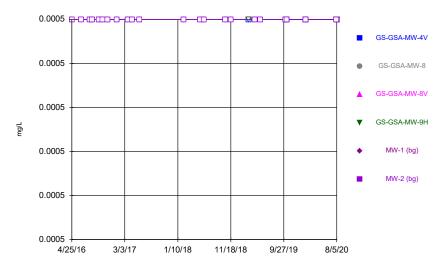

Constituent: Lithium Analysis Run 10/19/2020 4:18 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

#### Sanitas<sup>™</sup> v.9.6.27 Groundwater Stats Consulting. UG



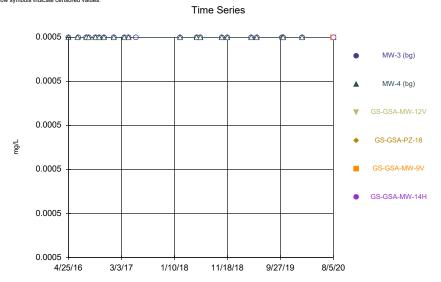

Constituent: Lithium Analysis Run 10/19/2020 4:18 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

#### Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG



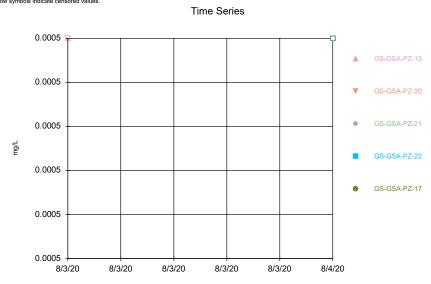

Constituent: Lithium Analysis Run 10/19/2020 4:18 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA



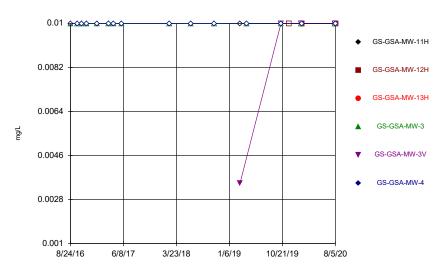



Constituent: Mercury Analysis Run 10/19/2020 4:18 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA



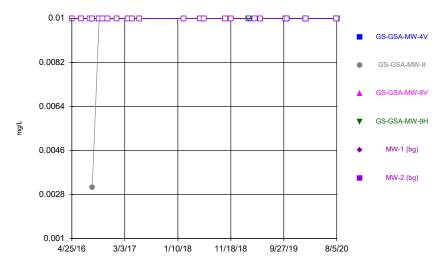

Constituent: Mercury Analysis Run 10/19/2020 4:18 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

## Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



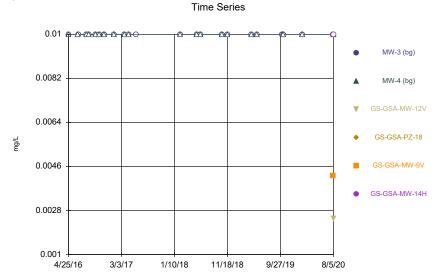

Constituent: Mercury Analysis Run 10/19/2020 4:18 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

## Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



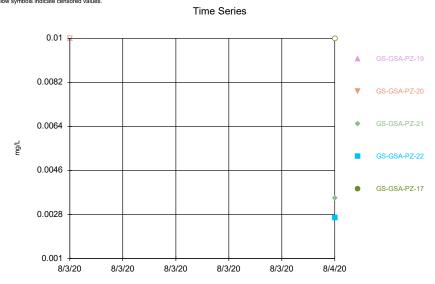

Constituent: Mercury Analysis Run 10/19/2020 4:18 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA



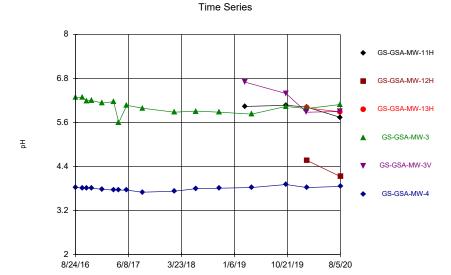

# Constituent: Molybdenum Analysis Run 10/19/2020 4:18 PM Plant Gorgas Client: Southern Company Data: Gorgas GSA

#### Time Series




Constituent: Molybdenum Analysis Run 10/19/2020 4:18 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

## Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



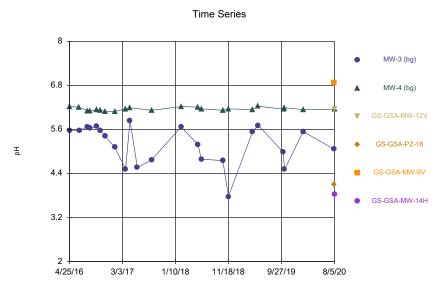

Constituent: Molybdenum Analysis Run 10/19/2020 4:18 PM Plant Gorgas Client: Southern Company Data: Gorgas GSA

## Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



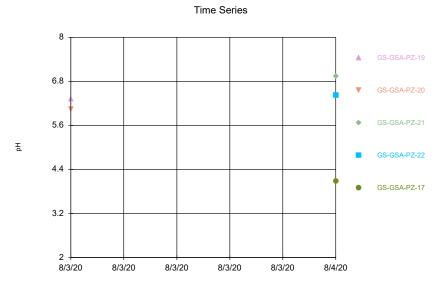
Constituent: Molybdenum Analysis Run 10/19/2020 4:18 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA




Constituent: pH Analysis Run 10/19/2020 4:18 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

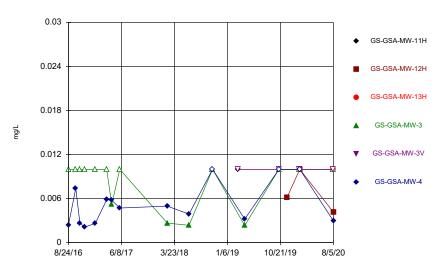
# GS-GSA-MW-8V GS-GSA-MW-8V GS-GSA-MW-9H 4.4 MW-1 (bg) MW-2 (bg)

Time Series

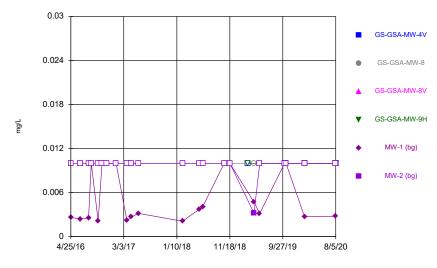

Constituent: pH Analysis Run 10/19/2020 4:18 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA





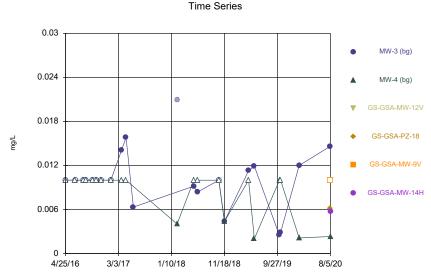


Constituent: pH Analysis Run 10/19/2020 4:18 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

#### Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG



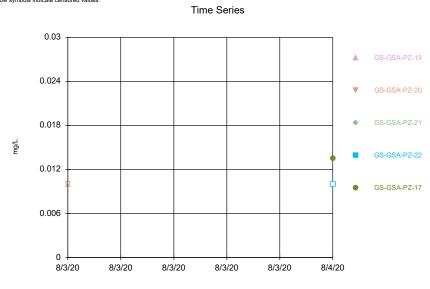

Constituent: pH Analysis Run 10/19/2020 4:18 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA






Constituent: Selenium Analysis Run 10/19/2020 4:18 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA




Constituent: Selenium Analysis Run 10/19/2020 4:18 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

## Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

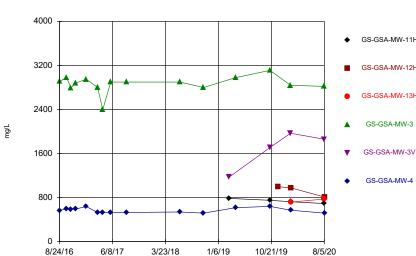


Constituent: Selenium Analysis Run 10/19/2020 4:18 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

## Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

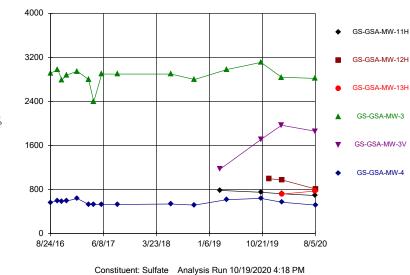


Constituent: Selenium Analysis Run 10/19/2020 4:18 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG

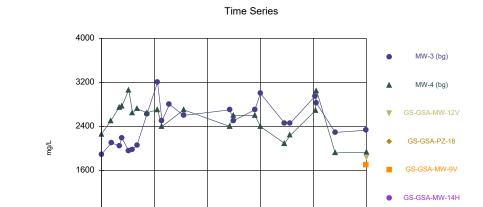
800

4/25/16


3/3/17

1/10/18




Plant Gorgas Client: Southern Company Data: Gorgas GSA

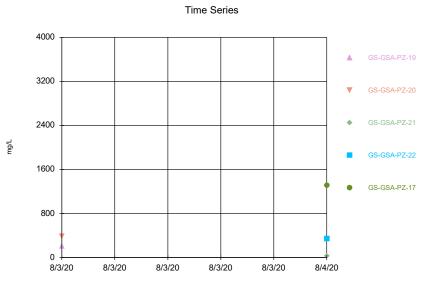
Time Series



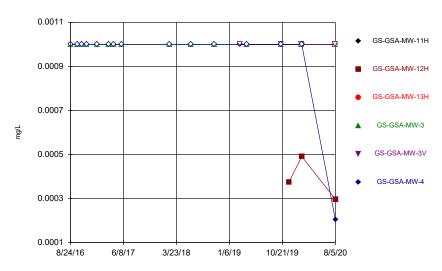
#### 4000 GS-GSA-MW-4V 3200 GS-GSA-MW-8 GS-GSA-MW-8V 2400 GS-GSA-MW-9H mg/L 1600 MW-1 (bg) MW-2 (bg) 800 4/25/16 3/3/17 1/10/18 11/18/18 9/27/19 8/5/20 Constituent: Sulfate Analysis Run 10/19/2020 4:18 PM Plant Gorgas Client: Southern Company Data: Gorgas GSA

Time Series



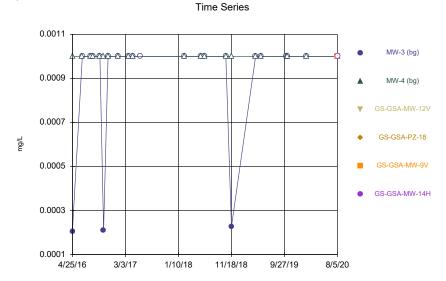

Constituent: Sulfate Analysis Run 10/19/2020 4:18 PM Plant Gorgas Client: Southern Company Data: Gorgas GSA

11/18/18


9/27/19

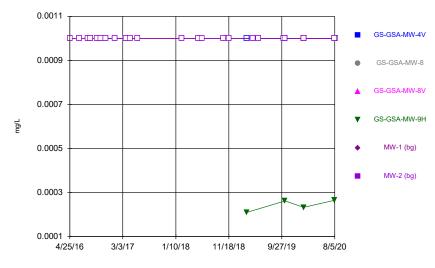
8/5/20





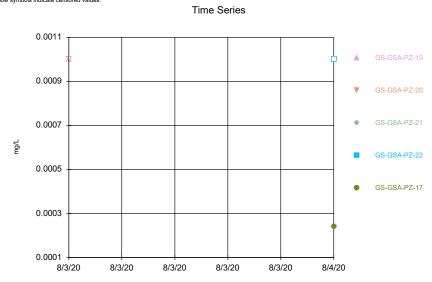

Constituent: Sulfate Analysis Run 10/19/2020 4:18 PM Plant Gorgas Client: Southern Company Data: Gorgas GSA



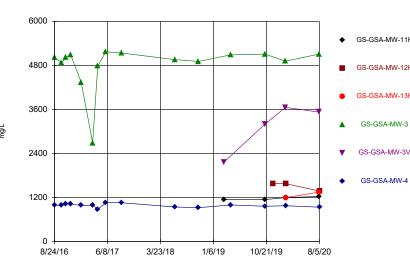

Constituent: Thallium Analysis Run 10/19/2020 4:18 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

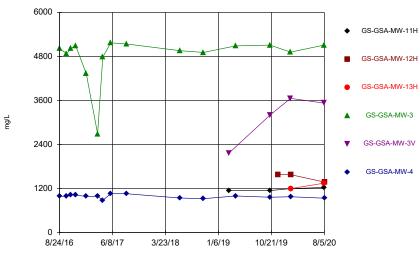
## Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

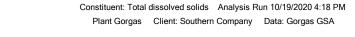



Constituent: Thallium Analysis Run 10/19/2020 4:18 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

#### Time Series

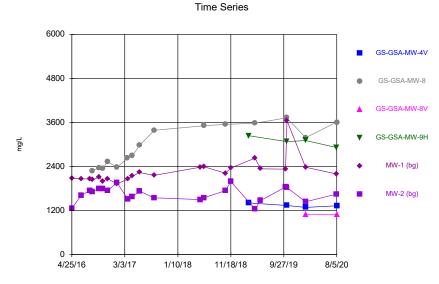




Constituent: Thallium Analysis Run 10/19/2020 4:18 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


## Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

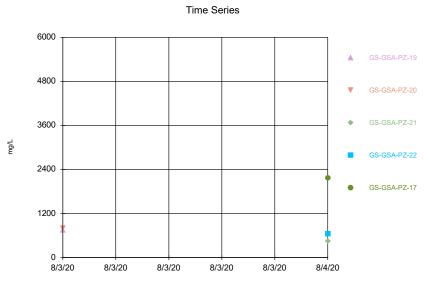


Constituent: Thallium Analysis Run 10/19/2020 4:18 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA









#### Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG Time Series 6000 MW-3 (bg) 4800 MW-4 (bg) GS-GSA-MW-12V 3600 GS-GSA-PZ-18 mg/L 2400 GS-GSA-MW-9V GS-GSA-MW-14H 1200 4/25/16 3/3/17 1/10/18 11/18/18 9/27/19 8/5/20

Constituent: Total dissolved solids Analysis Run 10/19/2020 4:18 PM Plant Gorgas Client: Southern Company Data: Gorgas GSA



Constituent: Total dissolved solids Analysis Run 10/19/2020 4:18 PM Plant Gorgas Client: Southern Company Data: Gorgas GSA





Constituent: Total dissolved solids Analysis Run 10/19/2020 4:18 PM Plant Gorgas Client: Southern Company Data: Gorgas GSA

Constituent: Antimony (mg/L) Analysis Run 10/19/2020 4:18 PM Plant Gorgas Client: Southern Company Data: Gorgas GSA

|            | GS-GSA-MW-11H | GS-GSA-MW-12H | GS-GSA-MW-13H | GS-GSA-MW-3 | GS-GSA-MW-3V | GS-GSA-MW-4  |
|------------|---------------|---------------|---------------|-------------|--------------|--------------|
| 8/24/2016  |               |               |               | <0.003      |              | <0.003       |
| 10/3/2016  |               |               |               | <0.003      |              | <0.003       |
| 10/26/2016 |               |               |               | <0.003      |              | <0.003       |
| 11/21/2016 |               |               |               | <0.003      |              | <0.003       |
| 1/17/2017  |               |               |               | <0.003      |              | <0.003       |
| 3/20/2017  |               |               |               | <0.003      |              |              |
| 3/21/2017  |               |               |               |             |              | <0.003       |
| 4/17/2017  |               |               |               | <0.003      |              | <0.003       |
| 5/30/2017  |               |               |               | <0.003      |              | <0.003       |
| 2/13/2018  |               |               |               | <0.003      |              | <0.003       |
| 6/11/2018  |               |               |               | <0.003      |              | <0.003       |
| 10/17/2018 |               |               |               | <0.003      |              | <0.003       |
| 3/4/2019   | 0.00149 (J)   |               |               |             |              |              |
| 3/5/2019   |               |               |               |             | 0.00179 (J)  |              |
| 4/10/2019  |               |               |               | 0.00111 (J) |              | 0.000976 (J) |
| 10/14/2019 |               |               |               | <0.003      | <0.003       | <0.003       |
| 10/16/2019 | <0.003        |               |               |             |              |              |
| 11/26/2019 |               | <0.003        |               |             |              |              |
| 2/3/2020   |               |               |               | <0.003      | <0.003       |              |
| 2/4/2020   | <0.003        | <0.003        | <0.003        |             |              | <0.003       |
| 8/4/2020   | <0.003        |               | <0.003        | <0.003      | <0.003       |              |
| 8/5/2020   |               | <0.003        |               |             |              | <0.003       |
|            |               |               |               |             |              |              |

Constituent: Antimony (mg/L) Analysis Run 10/19/2020 4:18 PM Plant Gorgas Client: Southern Company Data: Gorgas GSA

|            | GS-GSA-MW-4V | GS-GSA-MW-8 | GS-GSA-MW-8V | GS-GSA-MW-9H | MW-1 (bg)   | MW-2 (bg)    |
|------------|--------------|-------------|--------------|--------------|-------------|--------------|
| 4/25/2016  |              |             |              |              |             | <0.003       |
| 4/26/2016  |              |             |              |              | <0.003      |              |
| 6/20/2016  |              |             |              |              | <0.003      | <0.003       |
| 8/8/2016   |              |             |              |              | <0.003      | <0.003       |
| 8/24/2016  |              | <0.003      |              |              | <0.003      | <0.003       |
| 10/3/2016  |              | <0.003      |              |              | <0.003      | <0.003       |
| 10/26/2016 |              | <0.003      |              |              | <0.003      | <0.003       |
| 11/21/2016 |              | <0.003      |              |              | <0.003      | <0.003       |
| 1/17/2017  |              | <0.003      |              |              | <0.003      | <0.003       |
| 3/20/2017  |              | <0.003      |              |              |             |              |
| 3/22/2017  |              |             |              |              | <0.003      | <0.003       |
| 4/18/2017  |              | <0.003      |              |              | <0.003      | <0.003       |
| 5/30/2017  |              | <0.003      |              |              | <0.003      |              |
| 5/31/2017  |              |             |              |              |             | <0.003       |
| 2/13/2018  |              | <0.003      |              |              | <0.003      | <0.003       |
| 5/22/2018  |              |             |              |              | <0.003      | <0.003       |
| 6/12/2018  |              | <0.003      |              |              | <0.003      | <0.003       |
| 10/17/2018 |              | <0.003      |              |              | <0.003      | <0.003       |
| 11/19/2018 |              |             |              |              | <0.003      | <0.003       |
| 3/5/2019   | <0.003       |             |              | 0.000852 (J) |             |              |
| 4/10/2019  |              | 0.00102 (J) |              |              | 0.00143 (J) | 0.000993 (J) |
| 5/14/2019  |              |             |              |              | 0.00137 (J) | 0.000989 (J) |
| 10/8/2019  |              |             |              |              | <0.003      | <0.003       |
| 10/14/2019 | <0.003       | <0.003      |              |              |             |              |
| 10/16/2019 |              |             |              | <0.003       | <0.003      | <0.003       |
| 2/3/2020   | <0.003       |             |              |              | <0.003      | <0.003       |
| 2/4/2020   |              | <0.003      |              | <0.003       |             |              |
| 2/5/2020   |              |             | <0.003       |              |             |              |
| 8/3/2020   |              |             |              |              | <0.003      | <0.003       |
| 8/4/2020   |              |             |              | <0.003       |             |              |
| 8/5/2020   | <0.003       | <0.003      | <0.003       |              |             |              |

Constituent: Antimony (mg/L) Analysis Run 10/19/2020 4:18 PM Plant Gorgas Client: Southern Company Data: Gorgas GSA

|            | MW-3 (bg)    | MW-4 (bg)   | GS-GSA-MW-12V | GS-GSA-PZ-18 | GS-GSA-MW-9V | GS-GSA-MW-14H |
|------------|--------------|-------------|---------------|--------------|--------------|---------------|
| 4/25/2016  | <0.003       | <0.003      |               |              |              |               |
| 6/20/2016  |              | <0.003      |               |              |              |               |
| 6/22/2016  | <0.003       |             |               |              |              |               |
| 8/9/2016   | <0.003       | <0.003      |               |              |              |               |
| 8/24/2016  | <0.003       | <0.003      |               |              |              |               |
| 10/3/2016  |              | <0.003      |               |              |              |               |
| 10/4/2016  | <0.003       |             |               |              |              |               |
| 10/26/2016 | <0.003       | <0.003      |               |              |              |               |
| 11/21/2016 | <0.003       | <0.003      |               |              |              |               |
| 1/18/2017  | <0.003       | <0.003      |               |              |              |               |
| 3/22/2017  | <0.003       | <0.003      |               |              |              |               |
| 4/18/2017  | <0.003       | <0.003      |               |              |              |               |
| 5/31/2017  | <0.003       |             |               |              |              |               |
| 2/13/2018  | <0.003       | <0.003      |               |              |              |               |
| 5/23/2018  |              | <0.003      |               |              |              |               |
| 5/24/2018  | <0.003       |             |               |              |              |               |
| 6/12/2018  | <0.003       | <0.003      |               |              |              |               |
| 10/17/2018 | <0.003       | <0.003      |               |              |              |               |
| 11/19/2018 | <0.003       | <0.003      |               |              |              |               |
| 4/10/2019  | 0.000978 (J) | 0.00097 (J) |               |              |              |               |
| 5/14/2019  | <0.003       | <0.003      |               |              |              |               |
| 10/8/2019  | <0.003       |             |               |              |              |               |
| 10/10/2019 |              | <0.003      |               |              |              |               |
| 10/16/2019 | <0.003       | <0.003      |               |              |              |               |
| 2/3/2020   | <0.003       | <0.003      |               |              |              |               |
| 8/3/2020   | <0.003       |             |               | 0.00113 (J)  |              |               |
| 8/4/2020   |              |             |               |              | <0.003       |               |
| 8/5/2020   |              | <0.003      | <0.003        |              |              | <0.003        |
|            |              |             |               |              |              |               |

Constituent: Antimony (mg/L) Analysis Run 10/19/2020 4:18 PM Plant Gorgas Client: Southern Company Data: Gorgas GSA

GS-GSA-PZ-19 GS-GSA-PZ-20 GS-GSA-PZ-21 GS-GSA-PZ-22 GS-GSA-PZ-17 8/3/2020 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.00

Constituent: Arsenic (mg/L) Analysis Run 10/19/2020 4:18 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

|            | GS-GSA-MW-11H | GS-GSA-MW-12H | GS-GSA-MW-13H | GS-GSA-MW-3 | GS-GSA-MW-3V | GS-GSA-MW-4 |
|------------|---------------|---------------|---------------|-------------|--------------|-------------|
| 8/24/2016  |               |               |               | <0.005      |              | <0.005      |
| 10/3/2016  |               |               |               | <0.005      |              | <0.005      |
| 10/26/2016 |               |               |               | <0.005      |              | <0.005      |
| 11/21/2016 |               |               |               | <0.005      |              | <0.005      |
| 1/17/2017  |               |               |               | <0.005      |              | <0.005      |
| 3/20/2017  |               |               |               | <0.005      |              |             |
| 3/21/2017  |               |               |               |             |              | <0.005      |
| 4/17/2017  |               |               |               | 0.00405 (J) |              | <0.005      |
| 5/30/2017  |               |               |               | <0.005      |              | <0.005      |
| 2/13/2018  |               |               |               | <0.005      |              | <0.005      |
| 6/11/2018  |               |               |               | <0.005      |              | <0.005      |
| 10/17/2018 |               |               |               | <0.005      |              | <0.005      |
| 3/4/2019   | <0.005        |               |               |             |              |             |
| 3/5/2019   |               |               |               |             | <0.005       |             |
| 4/10/2019  |               |               |               | 0.00121 (J) |              | 0.00176 (J) |
| 10/14/2019 |               |               |               | <0.005      | <0.005       | 0.0012 (J)  |
| 10/16/2019 | <0.005        |               |               |             |              |             |
| 11/26/2019 |               | 0.00194 (J)   |               |             |              |             |
| 2/3/2020   |               |               |               | <0.005      | <0.005       |             |
| 2/4/2020   | <0.005        | 0.00157 (J)   | 0.16          |             |              | 0.00128 (J) |
| 8/4/2020   | <0.005        |               | 0.103         | <0.005      | <0.005       |             |
| 8/5/2020   |               | 0.00158 (J)   |               |             |              | 0.00115 (J) |
|            |               |               |               |             |              |             |

Constituent: Arsenic (mg/L) Analysis Run 10/19/2020 4:18 PM Plant Gorgas Client: Southern Company Data: Gorgas GSA

|            | GS-GSA-MW-4V | GS-GSA-MW-8 | GS-GSA-MW-8V | GS-GSA-MW-9H | MW-1 (bg) | MW-2 (bg)   |
|------------|--------------|-------------|--------------|--------------|-----------|-------------|
| 4/25/2016  |              |             |              |              |           | <0.005      |
| 4/26/2016  |              |             |              |              | <0.005    |             |
| 6/20/2016  |              |             |              |              | <0.005    | <0.005      |
| 8/8/2016   |              |             |              |              | <0.005    | <0.005      |
| 8/24/2016  |              | 0.00119 (J) |              |              | <0.005    | <0.005      |
| 10/3/2016  |              | 0.00114 (J) |              |              | <0.005    | <0.005      |
| 10/26/2016 |              | 0.0011 (J)  |              |              | <0.005    | <0.005      |
| 11/21/2016 |              | <0.005      |              |              | <0.005    | 0.00111 (J) |
| 1/17/2017  |              | 0.00103 (J) |              |              | <0.005    | <0.005      |
| 3/20/2017  |              | <0.005      |              |              |           |             |
| 3/22/2017  |              |             |              |              | <0.005    | <0.005      |
| 4/18/2017  |              | <0.005      |              |              | <0.005    | <0.005      |
| 5/30/2017  |              | <0.005      |              |              | <0.005    |             |
| 5/31/2017  |              |             |              |              |           | <0.005      |
| 2/13/2018  |              | <0.005      |              |              | <0.005    | <0.005      |
| 5/22/2018  |              |             |              |              | <0.005    | <0.005      |
| 6/12/2018  |              | <0.005      |              |              | <0.005    | <0.005      |
| 10/17/2018 |              | <0.005      |              |              | <0.005    | <0.005      |
| 11/19/2018 |              |             |              |              | <0.005    | <0.005      |
| 3/5/2019   | <0.005       |             |              | <0.005       |           |             |
| 4/10/2019  |              | <0.005      |              |              | <0.005    | <0.005      |
| 5/14/2019  |              |             |              |              | <0.005    | <0.005      |
| 10/8/2019  |              |             |              |              | <0.005    | <0.005      |
| 10/14/2019 | <0.005       | <0.005      |              |              |           |             |
| 10/16/2019 |              |             |              | 0.0019 (J)   | <0.005    | <0.005      |
| 2/3/2020   | 0.00101 (J)  |             |              |              | <0.005    | <0.005      |
| 2/4/2020   |              | <0.005      |              | 0.00123 (J)  |           |             |
| 2/5/2020   |              |             | 0.00232 (J)  |              |           |             |
| 8/3/2020   |              |             |              |              | <0.005    | <0.005      |
| 8/4/2020   |              |             |              | 0.00137 (J)  |           |             |
| 8/5/2020   | 0.00116 (J)  | <0.005      | 0.00476 (J)  |              |           |             |
|            |              |             |              |              |           |             |

Constituent: Arsenic (mg/L) Analysis Run 10/19/2020 4:18 PM Plant Gorgas Client: Southern Company Data: Gorgas GSA

|            | MW-3 (bg)   | MW-4 (bg) | GS-GSA-MW-12V | GS-GSA-PZ-18 | GS-GSA-MW-9V | GS-GSA-MW-14H |  |
|------------|-------------|-----------|---------------|--------------|--------------|---------------|--|
| 4/25/2016  | <0.005      | <0.005    |               |              |              |               |  |
| 6/20/2016  |             | <0.005    |               |              |              |               |  |
| 6/22/2016  | <0.005      |           |               |              |              |               |  |
| 8/9/2016   | <0.005      | <0.005    |               |              |              |               |  |
| 8/24/2016  | <0.005      | <0.005    |               |              |              |               |  |
| 10/3/2016  |             | <0.005    |               |              |              |               |  |
| 10/4/2016  | <0.005      |           |               |              |              |               |  |
| 10/26/2016 | <0.005      | <0.005    |               |              |              |               |  |
| 11/21/2016 | <0.005      | <0.005    |               |              |              |               |  |
| 1/18/2017  | <0.005      | <0.005    |               |              |              |               |  |
| 3/22/2017  | 0.00122 (J) | <0.005    |               |              |              |               |  |
| 4/18/2017  | <0.005      | <0.005    |               |              |              |               |  |
| 5/31/2017  | <0.005      |           |               |              |              |               |  |
| 2/13/2018  | <0.005      | <0.005    |               |              |              |               |  |
| 5/23/2018  |             | <0.005    |               |              |              |               |  |
| 5/24/2018  | <0.005      |           |               |              |              |               |  |
| 6/12/2018  | 0.00103 (J) | <0.005    |               |              |              |               |  |
| 10/17/2018 | 0.00133 (J) | <0.005    |               |              |              |               |  |
| 11/19/2018 | 0.0012 (J)  | <0.005    |               |              |              |               |  |
| 4/10/2019  | <0.005      | <0.005    |               |              |              |               |  |
| 5/14/2019  | <0.005      | <0.005    |               |              |              |               |  |
| 10/8/2019  | 0.0048 (J)  |           |               |              |              |               |  |
| 10/10/2019 |             | <0.005    |               |              |              |               |  |
| 10/16/2019 | 0.00389 (J) | <0.005    |               |              |              |               |  |
| 2/3/2020   | <0.005      | <0.005    |               |              |              |               |  |
| 8/3/2020   | 0.00426 (J) |           |               | 0.0114       |              |               |  |
| 8/4/2020   |             |           |               |              | <0.005       |               |  |
| 8/5/2020   |             | <0.005    | <0.005        |              |              | 0.00181 (J)   |  |
|            |             |           |               |              |              | . ,           |  |

Constituent: Arsenic (mg/L) Analysis Run 10/19/2020 4:18 PM Plant Gorgas Client: Southern Company Data: Gorgas GSA

GS-GSA-PZ-19 GS-GSA-PZ-20 GS-GSA-PZ-21 GS-GSA-PZ-22 GS-GSA-PZ-17
8/3/2020 0.00279 (J) 0.00214 (J) 0.00204 (J) 0.0297 0.00495 (J)

|            | GS-GSA-MW-11H | GS-GSA-MW-12H | GS-GSA-MW-13H | GS-GSA-MW-3 | GS-GSA-MW-3V | GS-GSA-MW-4 |
|------------|---------------|---------------|---------------|-------------|--------------|-------------|
| 8/24/2016  |               |               |               | 0.0155      |              | 0.0135      |
| 10/3/2016  |               |               |               | 0.0156      |              | 0.0127      |
| 10/26/2016 |               |               |               | 0.0122      |              | 0.0118      |
| 11/21/2016 |               |               |               | 0.0128      |              | 0.012       |
| 1/17/2017  |               |               |               | 0.0125      |              | 0.0119      |
| 3/20/2017  |               |               |               | 0.0124      |              |             |
| 3/21/2017  |               |               |               |             |              | 0.0116      |
| 4/17/2017  |               |               |               | 0.0149      |              | 0.0112      |
| 5/30/2017  |               |               |               | 0.0121      |              | 0.0117      |
| 2/13/2018  |               |               |               | 0.0118      |              | 0.0121      |
| 6/11/2018  |               |               |               | 0.0127      |              | 0.0139      |
| 10/17/2018 |               |               |               | 0.013       |              | 0.0125      |
| 3/4/2019   | 0.0239        |               |               |             |              |             |
| 3/5/2019   |               |               |               |             | 0.0956       |             |
| 4/10/2019  |               |               |               | 0.0153      |              | 0.0136      |
| 10/14/2019 |               |               |               | 0.0122      | 0.0451       | 0.0147      |
| 10/16/2019 | 0.0192        |               |               |             |              |             |
| 11/26/2019 |               | 0.0184        |               |             |              |             |
| 2/3/2020   |               |               |               | 0.0141      | 0.0215       |             |
| 2/4/2020   | 0.0148        | 0.0141        | 0.0296        |             |              | 0.0124      |
| 8/4/2020   | 0.0138        |               | 0.0275        | 0.0139      | 0.017        |             |
| 8/5/2020   |               | 0.016         |               |             |              | 0.0142      |
|            |               |               |               |             |              |             |

|            | GS-GSA-MW-4V | GS-GSA-MW-8 | GS-GSA-MW-8V | GS-GSA-MW-9H | MW-1 (bg)   | MW-2 (bg) |
|------------|--------------|-------------|--------------|--------------|-------------|-----------|
| 4/25/2016  |              |             |              |              |             | 0.0134    |
| 4/26/2016  |              |             |              |              | 0.00941 (J) |           |
| 6/20/2016  |              |             |              |              | 0.00951 (J) | 0.0165    |
| 8/8/2016   |              |             |              |              | 0.00991 (J) | 0.0162    |
| 8/24/2016  |              | 0.0536      |              |              | 0.00949 (J) | 0.0139    |
| 10/3/2016  |              | 0.0681      |              |              | 0.0105      | 0.0164    |
| 10/26/2016 |              | 0.0562      |              |              | 0.00931 (J) | 0.0138    |
| 11/21/2016 |              | 0.0604      |              |              | 0.00879 (J) | 0.0144    |
| 1/17/2017  |              | 0.0402      |              |              | 0.00929 (J) | 0.0135    |
| 3/20/2017  |              | 0.0305      |              |              |             |           |
| 3/22/2017  |              |             |              |              | 0.00938 (J) | 0.0132    |
| 4/18/2017  |              | 0.0276      |              |              | 0.00964 (J) | 0.012     |
| 5/30/2017  |              | 0.0272      |              |              | 0.00982 (J) |           |
| 5/31/2017  |              |             |              |              |             | 0.0126    |
| 2/13/2018  |              | 0.0249      |              |              | 0.00937 (J) | 0.0127    |
| 5/22/2018  |              |             |              |              | 0.0102      | 0.0131    |
| 6/12/2018  |              | 0.0234      |              |              | 0.0104      | 0.0138    |
| 10/17/2018 |              | 0.0236      |              |              | 0.00952 (J) | 0.0137    |
| 11/19/2018 |              |             |              |              | 0.00915 (J) | 0.0115    |
| 3/5/2019   | 0.0136       |             |              | 0.0312       |             |           |
| 4/10/2019  |              | 0.02        |              |              | 0.0105      | 0.0111    |
| 5/14/2019  |              |             |              |              | 0.00913 (J) | 0.0109    |
| 10/8/2019  |              |             |              |              | 0.0109      | 0.0151    |
| 10/14/2019 | 0.0123       | 0.0215      |              |              |             |           |
| 10/16/2019 |              |             |              | 0.0163       | 0.0106      | 0.0146    |
| 2/3/2020   | 0.0103       |             |              |              | 0.00995 (J) | 0.0122    |
| 2/4/2020   |              | 0.0209      |              | 0.0148       |             |           |
| 2/5/2020   |              |             | 0.096        |              |             |           |
| 8/3/2020   |              |             |              |              | 0.0107      | 0.0147    |
| 8/4/2020   |              |             |              | 0.0153       |             |           |
| 8/5/2020   | 0.0112       | 0.0216      | 0.125        |              |             |           |
|            |              |             |              |              |             |           |

|            | MW-3 (bg)   | MW-4 (bg)   | GS-GSA-MW-12V | GS-GSA-PZ-18 | GS-GSA-MW-9V | GS-GSA-MW-14H |  |
|------------|-------------|-------------|---------------|--------------|--------------|---------------|--|
| 4/25/2016  | 0.00803 (J) | 0.0114      |               |              |              |               |  |
| 6/20/2016  |             | 0.0103      |               |              |              |               |  |
| 6/22/2016  | 0.0101      |             |               |              |              |               |  |
| 8/9/2016   | 0.00889 (J) | 0.0119      |               |              |              |               |  |
| 8/24/2016  | 0.00962 (J) | 0.0118      |               |              |              |               |  |
| 10/3/2016  |             | 0.0119      |               |              |              |               |  |
| 10/4/2016  | 0.00984 (J) |             |               |              |              |               |  |
| 10/26/2016 | 0.00878 (J) | 0.0104      |               |              |              |               |  |
| 11/21/2016 | 0.00833 (J) | 0.0106      |               |              |              |               |  |
| 1/18/2017  | 0.00966 (J) | 0.0101      |               |              |              |               |  |
| 3/22/2017  | 0.00991 (J) | 0.0103      |               |              |              |               |  |
| 4/18/2017  | 0.00976 (J) | 0.0107      |               |              |              |               |  |
| 5/31/2017  | 0.00866 (J) |             |               |              |              |               |  |
| 2/13/2018  | 0.00821 (J) | 0.0111      |               |              |              |               |  |
| 5/23/2018  |             | 0.0107      |               |              |              |               |  |
| 5/24/2018  | 0.00977 (J) |             |               |              |              |               |  |
| 6/12/2018  | 0.00997 (J) | 0.0108      |               |              |              |               |  |
| 10/17/2018 | 0.0126      | 0.0119      |               |              |              |               |  |
| 11/19/2018 | 0.0109      | 0.0107      |               |              |              |               |  |
| 4/10/2019  | 0.0101      | 0.0107      |               |              |              |               |  |
| 5/14/2019  | 0.00922 (J) | 0.00949 (J) |               |              |              |               |  |
| 10/8/2019  | 0.0154      |             |               |              |              |               |  |
| 10/10/2019 |             | 0.0116      |               |              |              |               |  |
| 10/16/2019 | 0.0128      | 0.0125      |               |              |              |               |  |
| 2/3/2020   | 0.0086 (J)  | 0.0103      |               |              |              |               |  |
| 8/3/2020   | 0.0166      |             |               | 0.0111       |              |               |  |
| 8/4/2020   |             |             |               |              | 0.0155       |               |  |
| 8/5/2020   |             | 0.0125      | 0.0157        |              |              | 0.0113        |  |
|            |             |             |               |              |              |               |  |

Constituent: Barium (mg/L) Analysis Run 10/19/2020 4:18 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

GS-GSA-PZ-19 GS-GSA-PZ-20 GS-GSA-PZ-21 GS-GSA-PZ-22 GS-GSA-PZ-17
8/3/2020 0.047 0.0211
8/4/2020 0.0243 0.0181

|            | GS-GSA-MW-11H | GS-GSA-MW-12H | GS-GSA-MW-13H | GS-GSA-MW-3  | GS-GSA-MW-3V | GS-GSA-MW-4 |
|------------|---------------|---------------|---------------|--------------|--------------|-------------|
| 8/24/2016  |               |               |               | <0.003       |              | 0.00576     |
| 10/3/2016  |               |               |               | <0.003       |              | 0.00469     |
| 10/26/2016 |               |               |               | 0.000922 (J) |              | 0.00459     |
| 11/21/2016 |               |               |               | 0.00133 (J)  |              | 0.00502     |
| 1/17/2017  |               |               |               | 0.0017 (J)   |              | 0.00488     |
| 3/20/2017  |               |               |               | 0.00191 (J)  |              |             |
| 3/21/2017  |               |               |               |              |              | 0.00521     |
| 4/17/2017  |               |               |               | 0.00655      |              | 0.0058      |
| 5/30/2017  |               |               |               | 0.00204 (J)  |              | 0.00517     |
| 2/13/2018  |               |               |               | 0.00387      |              | 0.00544     |
| 6/11/2018  |               |               |               | 0.00244 (J)  |              | 0.00463     |
| 10/17/2018 |               |               |               | 0.00345      |              | 0.00369     |
| 3/4/2019   | <0.003        |               |               |              |              |             |
| 3/5/2019   |               |               |               |              | <0.003       |             |
| 4/10/2019  |               |               |               | 0.00257 (J)  |              | 0.00469     |
| 10/14/2019 |               |               |               | 0.00162 (J)  | <0.003       | 0.00403     |
| 10/16/2019 | <0.003        |               |               |              |              |             |
| 11/26/2019 |               | 0.0084        |               |              |              |             |
| 2/3/2020   |               |               |               | 0.00141 (J)  | <0.003       |             |
| 2/4/2020   | <0.003        | 0.00709       | <0.003        |              |              | 0.00415     |
| 8/4/2020   | <0.003        |               | <0.003        | 0.00174 (J)  | <0.003       |             |
| 8/5/2020   |               | 0.00747       |               |              |              | 0.00385     |
|            |               |               |               |              |              |             |

|            | GS-GSA-MW-4V | GS-GSA-MW-8 | GS-GSA-MW-8V | GS-GSA-MW-9H | MW-1 (bg) | MW-2 (bg) |
|------------|--------------|-------------|--------------|--------------|-----------|-----------|
| 4/25/2016  |              |             |              |              |           | <0.003    |
| 4/26/2016  |              |             |              |              | <0.003    |           |
| 6/20/2016  |              |             |              |              | <0.003    | <0.003    |
| 8/8/2016   |              |             |              |              | <0.003    | <0.003    |
| 8/24/2016  |              | <0.003      |              |              | <0.003    | <0.003    |
| 10/3/2016  |              | <0.003      |              |              | <0.003    | <0.003    |
| 10/26/2016 |              | <0.003      |              |              | <0.003    | <0.003    |
| 11/21/2016 |              | <0.003      |              |              | <0.003    | <0.003    |
| 1/17/2017  |              | <0.003      |              |              | <0.003    | <0.003    |
| 3/20/2017  |              | <0.003      |              |              |           |           |
| 3/22/2017  |              |             |              |              | <0.003    | <0.003    |
| 4/18/2017  |              | <0.003      |              |              | <0.003    | <0.003    |
| 5/30/2017  |              | <0.003      |              |              | <0.003    |           |
| 5/31/2017  |              |             |              |              |           | <0.003    |
| 2/13/2018  |              | <0.003      |              |              | <0.003    | <0.003    |
| 5/22/2018  |              |             |              |              | <0.003    | <0.003    |
| 6/12/2018  |              | <0.003      |              |              | <0.003    | <0.003    |
| 10/17/2018 |              | <0.003      |              |              | <0.003    | <0.003    |
| 11/19/2018 |              |             |              |              | <0.003    | <0.003    |
| 3/5/2019   | 0.00155 (J)  |             |              | <0.003       |           |           |
| 4/10/2019  |              | <0.003      |              |              | <0.003    | <0.003    |
| 5/14/2019  |              |             |              |              | <0.003    | <0.003    |
| 10/8/2019  |              |             |              |              | <0.003    | <0.003    |
| 10/14/2019 | 0.00382      | <0.003      |              |              |           |           |
| 10/16/2019 |              |             |              | 0.000985 (J) | <0.003    | <0.003    |
| 2/3/2020   | 0.00362      |             |              |              | <0.003    | <0.003    |
| 2/4/2020   |              | <0.003      |              | 0.000929 (J) |           |           |
| 2/5/2020   |              |             | <0.003       |              |           |           |
| 8/3/2020   |              |             |              |              | <0.003    | <0.003    |
| 8/4/2020   |              |             |              | 0.000882 (J) |           |           |
| 8/5/2020   | 0.00416      | <0.003      | <0.003       |              |           |           |
|            |              |             |              |              |           |           |

|            | MW-3 (bg)   | MW-4 (bg) | GS-GSA-MW-12V | GS-GSA-PZ-18 | GS-GSA-MW-9V | GS-GSA-MW-14H |
|------------|-------------|-----------|---------------|--------------|--------------|---------------|
| 4/25/2016  | 0.00122 (J) | <0.003    |               |              |              |               |
| 6/20/2016  |             | <0.003    |               |              |              |               |
| 6/22/2016  | 0.00144 (J) |           |               |              |              |               |
| 8/9/2016   | 0.00331     | <0.003    |               |              |              |               |
| 8/24/2016  | 0.00308     | <0.003    |               |              |              |               |
| 10/3/2016  |             | <0.003    |               |              |              |               |
| 10/4/2016  | 0.00129 (J) |           |               |              |              |               |
| 10/26/2016 | 0.0071      | <0.003    |               |              |              |               |
| 11/21/2016 | 0.00689     | <0.003    |               |              |              |               |
| 1/18/2017  | 0.0169 (o)  | <0.003    |               |              |              |               |
| 3/22/2017  | 0.00686     | <0.003    |               |              |              |               |
| 4/18/2017  | <0.003      | <0.003    |               |              |              |               |
| 5/31/2017  | 0.00547     |           |               |              |              |               |
| 2/13/2018  | <0.003      | <0.003    |               |              |              |               |
| 5/23/2018  |             | <0.003    |               |              |              |               |
| 5/24/2018  | 0.00164 (J) |           |               |              |              |               |
| 6/12/2018  | 0.00306     | <0.003    |               |              |              |               |
| 10/17/2018 | 0.0121      | <0.003    |               |              |              |               |
| 11/19/2018 | 0.0185 (o)  | <0.003    |               |              |              |               |
| 4/10/2019  | <0.003      | <0.003    |               |              |              |               |
| 5/14/2019  | <0.003      | <0.003    |               |              |              |               |
| 10/8/2019  | 0.0084      |           |               |              |              |               |
| 10/10/2019 |             | <0.003    |               |              |              |               |
| 10/16/2019 | 0.0103      | <0.003    |               |              |              |               |
| 2/3/2020   | <0.003      | <0.003    |               |              |              |               |
| 8/3/2020   | 0.00405     |           |               | 0.00829      |              |               |
| 8/4/2020   |             |           |               |              | <0.003       |               |
| 8/5/2020   |             | <0.003    | <0.003        |              |              | 0.00879       |
|            |             |           |               |              |              |               |

Constituent: Beryllium (mg/L) Analysis Run 10/19/2020 4:18 PM Plant Gorgas Client: Southern Company Data: Gorgas GSA

GS-GSA-PZ-19 GS-GSA-PZ-20 GS-GSA-PZ-21 GS-GSA-PZ-22 GS-GSA-PZ-17 8/3/2020 <0.003 <0.003 <0.003 <0.003 0.0145

|            | GS-GSA-MW-11H | GS-GSA-MW-12H | GS-GSA-MW-13H | GS-GSA-MW-3 | GS-GSA-MW-3V | GS-GSA-MW-4 |
|------------|---------------|---------------|---------------|-------------|--------------|-------------|
| 8/24/2016  |               |               |               | 0.799       |              | 4.88        |
| 10/3/2016  |               |               |               | 0.889       |              | 4.75        |
| 10/26/2016 |               |               |               | 1.23        |              | 4.96        |
| 11/21/2016 |               |               |               | 1.72        |              | 4.82        |
| 1/17/2017  |               |               |               | 2.63        |              | 3.97        |
| 3/20/2017  |               |               |               | 3.11        |              |             |
| 3/21/2017  |               |               |               |             |              | 3.39        |
| 4/17/2017  |               |               |               | 4.51        |              | 3.46        |
| 5/30/2017  |               |               |               | 2.9         |              | 3.79        |
| 8/24/2017  |               |               |               | 2.83        |              | 4.19        |
| 6/11/2018  |               |               |               | 3.09        |              | 3.96        |
| 10/17/2018 |               |               |               | 2.59        |              | 3.98        |
| 3/4/2019   | 0.0235 (J)    |               |               |             |              |             |
| 3/5/2019   |               |               |               |             | 0.895        |             |
| 4/10/2019  |               |               |               | 3.35        |              | 3.74        |
| 10/14/2019 |               |               |               | 2.48        | 2.38         | 3.37        |
| 10/16/2019 | 0.0352 (J)    |               |               |             |              |             |
| 11/26/2019 |               | 0.0798 (J)    |               |             |              |             |
| 2/3/2020   |               |               |               | 2.13        | 3.06         |             |
| 2/4/2020   | <0.1          | 0.0748 (J)    | 0.202         |             |              | 2.74        |
| 8/4/2020   | <0.1          |               | 0.263         | 1.82        | 2.8          |             |
| 8/5/2020   |               | 0.0748 (J)    |               |             |              | 2.51        |
|            |               |               |               |             |              |             |

|            | GS-GSA-MW-4V | GS-GSA-MW-8 | GS-GSA-MW-8V | GS-GSA-MW-9H | MW-1 (bg)  | MW-2 (bg)  |
|------------|--------------|-------------|--------------|--------------|------------|------------|
| 4/25/2016  |              |             |              |              |            | 0.0241 (J) |
| 4/26/2016  |              |             |              |              | 0.0231 (J) |            |
| 6/20/2016  |              |             |              |              | 0.0227 (J) | 0.0284 (J) |
| 8/8/2016   |              |             |              |              | 0.0278 (J) | 0.034 (J)  |
| 8/24/2016  |              | 0.0898 (J)  |              |              | 0.0247 (J) | 0.0316 (J) |
| 10/3/2016  |              | 0.0821 (J)  |              |              | 0.0307 (J) | 0.0367 (J) |
| 10/26/2016 |              | 0.0889 (J)  |              |              | 0.0241 (J) | 0.0331 (J) |
| 11/21/2016 |              | 0.0788 (J)  |              |              | 0.0202 (J) | 0.035 (J)  |
| 1/17/2017  |              | 0.0607 (J)  |              |              | 0.0201 (J) | 0.0259 (J) |
| 3/20/2017  |              | 0.114       |              |              |            |            |
| 3/22/2017  |              |             |              |              | 0.0224 (J) | 0.0243 (J) |
| 4/18/2017  |              | 0.108       |              |              | <0.1       | 0.0206 (J) |
| 5/30/2017  |              | 0.105       |              |              | <0.1       |            |
| 5/31/2017  |              |             |              |              |            | 0.0234 (J) |
| 8/23/2017  |              |             |              |              | 0.0253 (J) | 0.0267 (J) |
| 8/24/2017  |              | 0.12        |              |              |            |            |
| 5/22/2018  |              |             |              |              | 0.0224 (J) | 0.0251 (J) |
| 6/12/2018  |              | 0.181       |              |              | 0.0214 (J) | 0.0275 (J) |
| 10/17/2018 |              | 0.616       |              |              | 0.0216 (J) | 0.0321 (J) |
| 11/19/2018 |              |             |              |              | 0.0237 (J) | 0.0324 (J) |
| 3/5/2019   | 7.15         |             |              | 12.8         |            |            |
| 4/10/2019  |              | 0.944       |              |              | 0.0304 (J) | <0.1       |
| 5/14/2019  |              |             |              |              | <0.1       | <0.1       |
| 10/8/2019  |              |             |              |              | <0.1       | 0.0371 (J) |
| 10/14/2019 | 5.64         | 2.11        |              |              |            |            |
| 10/16/2019 |              |             |              | 10.7         | 0.0385 (J) | 0.0419 (J) |
| 2/3/2020   | 5.25         |             |              |              | <0.1       | <0.1       |
| 2/4/2020   |              | 1.47        |              | 9.63         |            |            |
| 2/5/2020   |              |             | 0.136        |              |            |            |
| 8/3/2020   |              |             |              |              | <0.1       | 0.0317 (J) |
| 8/4/2020   |              |             |              | 8.53         |            |            |
| 8/5/2020   | 4.41         | 2.16        | 0.131        |              |            |            |
|            |              |             |              |              |            |            |

|            | MW-3 (bg)  | MW-4 (bg)  | GS-GSA-MW-12V | GS-GSA-PZ-18 | GS-GSA-MW-9V | GS-GSA-MW-14H |  |
|------------|------------|------------|---------------|--------------|--------------|---------------|--|
| 4/25/2016  | 0.028 (J)  | 0.0414 (J) |               |              |              |               |  |
| 6/20/2016  |            | 0.0434 (J) |               |              |              |               |  |
| 6/22/2016  | 0.0433 (J) |            |               |              |              |               |  |
| 8/9/2016   | 0.0429 (J) | 0.0453 (J) |               |              |              |               |  |
| 8/24/2016  | 0.0431 (J) | 0.0451 (J) |               |              |              |               |  |
| 10/3/2016  |            | 0.0511 (J) |               |              |              |               |  |
| 10/4/2016  | 0.04 (J)   |            |               |              |              |               |  |
| 10/26/2016 | 0.0375 (J) | 0.0507 (J) |               |              |              |               |  |
| 11/21/2016 | 0.0406 (J) | 0.0458 (J) |               |              |              |               |  |
| 1/18/2017  | 0.0548 (J) | 0.0445 (J) |               |              |              |               |  |
| 3/22/2017  | 0.0344 (J) | 0.0432 (J) |               |              |              |               |  |
| 4/18/2017  | <0.1       | 0.0409 (J) |               |              |              |               |  |
| 5/31/2017  | 0.0454 (J) |            |               |              |              |               |  |
| 8/23/2017  | 0.0425 (J) | 0.042 (J)  |               |              |              |               |  |
| 5/23/2018  |            | 0.0433 (J) |               |              |              |               |  |
| 5/24/2018  | 0.0339 (J) |            |               |              |              |               |  |
| 6/12/2018  | 0.0371 (J) | 0.0478 (J) |               |              |              |               |  |
| 10/17/2018 | 0.0596 (J) | 0.0468 (J) |               |              |              |               |  |
| 11/19/2018 | 0.0514 (J) | 0.0526 (J) |               |              |              |               |  |
| 4/10/2019  | <0.1       | 0.0438 (J) |               |              |              |               |  |
| 5/14/2019  | <0.1       | <0.1       |               |              |              |               |  |
| 10/8/2019  | 0.0537 (J) |            |               |              |              |               |  |
| 10/10/2019 |            | 0.0487 (J) |               |              |              |               |  |
| 10/16/2019 | 0.05 (J)   | 0.0505 (J) |               |              |              |               |  |
| 2/3/2020   | <0.1       | 0.0433 (J) |               |              |              |               |  |
| 8/3/2020   | 0.0424 (J) |            |               | 0.0671 (J)   |              |               |  |
| 8/4/2020   |            |            |               |              | 0.149        |               |  |
| 8/5/2020   |            | 0.0459 (J) | 1.55          |              |              | 0.158         |  |
|            |            |            |               |              |              |               |  |

|          | GS-GSA-PZ-19 | GS-GSA-PZ-20 | GS-GSA-PZ-21 | GS-GSA-PZ-22 | GS-GSA-PZ-17 |
|----------|--------------|--------------|--------------|--------------|--------------|
| 8/3/2020 | 0.0553 (J)   | 0.0833 (J)   |              |              |              |
| 8/4/2020 |              |              | <0.1         | 0.108        | 0.168        |

|            | GS-GSA-MW-11H | GS-GSA-MW-12H | GS-GSA-MW-13H | GS-GSA-MW-3 | GS-GSA-MW-3V | GS-GSA-MW-4 |
|------------|---------------|---------------|---------------|-------------|--------------|-------------|
| 8/24/2016  |               |               |               | <0.001      |              | 0.00148     |
| 10/3/2016  |               |               |               | <0.001      |              | 0.00147     |
| 10/26/2016 |               |               |               | <0.001      |              | 0.00157     |
| 11/21/2016 |               |               |               | <0.001      |              | 0.00154     |
| 1/17/2017  |               |               |               | <0.001      |              | 0.00131     |
| 3/20/2017  |               |               |               | <0.001      |              |             |
| 3/21/2017  |               |               |               |             |              | 0.00134     |
| 4/17/2017  |               |               |               | <0.001      |              | 0.00122     |
| 5/30/2017  |               |               |               | <0.001      |              | 0.00167     |
| 2/13/2018  |               |               |               | <0.001      |              | 0.00145     |
| 6/11/2018  |               |               |               | <0.001      |              | 0.00171     |
| 10/17/2018 |               |               |               | <0.001      |              | 0.00188     |
| 3/4/2019   | <0.001        |               |               |             |              |             |
| 3/5/2019   |               |               |               |             | <0.001       |             |
| 4/10/2019  |               |               |               | <0.001      |              | 0.00176     |
| 10/14/2019 |               |               |               | <0.001      | <0.001       | 0.0015      |
| 10/16/2019 | <0.001        |               |               |             |              |             |
| 11/26/2019 |               | 0.00351       |               |             |              |             |
| 2/3/2020   |               |               |               | <0.001      | <0.001       |             |
| 2/4/2020   | <0.001        | 0.00301       | <0.001        |             |              | 0.00143     |
| 8/4/2020   | <0.001        |               | <0.001        | <0.001      | <0.001       |             |
| 8/5/2020   |               | 0.00393       |               |             |              | 0.00157     |
|            |               |               |               |             |              |             |

|            | GS-GSA-MW-4V | GS-GSA-MW-8 | GS-GSA-MW-8V | GS-GSA-MW-9H | MW-1 (bg) | MW-2 (bg)    |
|------------|--------------|-------------|--------------|--------------|-----------|--------------|
| 4/25/2016  |              |             |              |              |           | <0.001       |
| 4/26/2016  |              |             |              |              | 0.00196   |              |
| 6/20/2016  |              |             |              |              | 0.0021    | <0.001       |
| 8/8/2016   |              |             |              |              | 0.00206   | <0.001       |
| 8/24/2016  |              | <0.001      |              |              | 0.00182   | <0.001       |
| 10/3/2016  |              | <0.001      |              |              | 0.00188   | <0.001       |
| 10/26/2016 |              | <0.001      |              |              | 0.00175   | <0.001       |
| 11/21/2016 |              | <0.001      |              |              | 0.00197   | <0.001       |
| 1/17/2017  |              | <0.001      |              |              | 0.002     | 0.000311 (J) |
| 3/20/2017  |              | <0.001      |              |              |           |              |
| 3/22/2017  |              |             |              |              | 0.0019    | <0.001       |
| 4/18/2017  |              | <0.001      |              |              | 0.00159   | <0.001       |
| 5/30/2017  |              | <0.001      |              |              | 0.00214   |              |
| 5/31/2017  |              |             |              |              |           | 0.000212 (J) |
| 2/13/2018  |              | <0.001      |              |              | 0.0018    | <0.001       |
| 5/22/2018  |              |             |              |              | 0.00201   | <0.001       |
| 6/12/2018  |              | <0.001      |              |              | 0.00217   | <0.001       |
| 10/17/2018 |              | <0.001      |              |              | 0.00228   | <0.001       |
| 11/19/2018 |              |             |              |              | 0.00156   | <0.001       |
| 3/5/2019   | <0.001       |             |              | 0.000336 (J) |           |              |
| 4/10/2019  |              | <0.001      |              |              | 0.00224   | <0.001       |
| 5/14/2019  |              |             |              |              | 0.00238   | <0.001       |
| 10/8/2019  |              |             |              |              | 0.00218   | <0.001       |
| 10/14/2019 | <0.001       | <0.001      |              |              |           |              |
| 10/16/2019 |              |             |              | 0.000362 (J) | 0.00225   | <0.001       |
| 2/3/2020   | <0.001       |             |              |              | 0.00182   | <0.001       |
| 2/4/2020   |              | <0.001      |              | 0.000349 (J) |           |              |
| 2/5/2020   |              |             | <0.001       |              |           |              |
| 8/3/2020   |              |             |              |              | 0.00237   | <0.001       |
| 8/4/2020   |              |             |              | 0.000308 (J) |           |              |
| 8/5/2020   | <0.001       | <0.001      | <0.001       |              |           |              |

|            | MW-3 (bg)    | MW-4 (bg) | GS-GSA-MW-12V | GS-GSA-PZ-18 | GS-GSA-MW-9V | GS-GSA-MW-14H |
|------------|--------------|-----------|---------------|--------------|--------------|---------------|
| 4/25/2016  | 0.0121 (o)   | <0.001    |               |              |              |               |
| 6/20/2016  |              | <0.001    |               |              |              |               |
| 6/22/2016  | 0.00163      |           |               |              |              |               |
| 8/9/2016   | 0.00122      | <0.001    |               |              |              |               |
| 8/24/2016  | <0.001       | <0.001    |               |              |              |               |
| 10/3/2016  |              | <0.001    |               |              |              |               |
| 10/4/2016  | 0.000689 (J) |           |               |              |              |               |
| 10/26/2016 | 0.00136      | <0.001    |               |              |              |               |
| 11/21/2016 | 0.00171      | <0.001    |               |              |              |               |
| 1/18/2017  | 0.003        | <0.001    |               |              |              |               |
| 3/22/2017  | 0.00473      | <0.001    |               |              |              |               |
| 4/18/2017  | 0.00117      | <0.001    |               |              |              |               |
| 5/31/2017  | 0.00296      |           |               |              |              |               |
| 2/13/2018  | 0.00232      | <0.001    |               |              |              |               |
| 5/23/2018  |              | <0.001    |               |              |              |               |
| 5/24/2018  | 0.00459      |           |               |              |              |               |
| 6/12/2018  | 0.00351      | <0.001    |               |              |              |               |
| 10/17/2018 | 0.00393      | <0.001    |               |              |              |               |
| 11/19/2018 | 0.00309      | <0.001    |               |              |              |               |
| 4/10/2019  | 0.00337      | <0.001    |               |              |              |               |
| 5/14/2019  | 0.0013       | <0.001    |               |              |              |               |
| 10/8/2019  | 0.00598      |           |               |              |              |               |
| 10/10/2019 |              | <0.001    |               |              |              |               |
| 10/16/2019 | 0.00448      | <0.001    |               |              |              |               |
| 2/3/2020   | 0.000988 (J) | <0.001    |               |              |              |               |
| 8/3/2020   | 0.00652      |           |               | 0.0012       |              |               |
| 8/4/2020   |              |           |               |              | <0.001       |               |
| 8/5/2020   |              | <0.001    | <0.001        |              |              | 0.0018        |

Constituent: Cadmium (mg/L) Analysis Run 10/19/2020 4:18 PM Plant Gorgas Client: Southern Company Data: Gorgas GSA

GS-GSA-PZ-19 GS-GSA-PZ-20 GS-GSA-PZ-21 GS-GSA-PZ-22 GS-GSA-PZ-17 8/3/2020 <0.001 <0.001 <0.001 <0.001 0.00197

|            | GS-GSA-MW-11H | GS-GSA-MW-12H | GS-GSA-MW-13H | GS-GSA-MW-3 | GS-GSA-MW-3V | GS-GSA-MW-4 |
|------------|---------------|---------------|---------------|-------------|--------------|-------------|
| 8/24/2016  |               |               |               | 539         |              | 102         |
| 10/3/2016  |               |               |               | 519.7       |              | 98.4        |
| 10/26/2016 |               |               |               | 916         |              | 88.7        |
| 11/21/2016 |               |               |               | 552         |              | 104         |
| 1/17/2017  |               |               |               | 572         |              | 102         |
| 3/20/2017  |               |               |               | 817         |              |             |
| 3/21/2017  |               |               |               |             |              | 94.7        |
| 4/17/2017  |               |               |               | 476         |              | 97.9        |
| 5/30/2017  |               |               |               | 515         |              | 93.9        |
| 8/24/2017  |               |               |               | 598         |              | 105         |
| 6/11/2018  |               |               |               | 558         |              | 105         |
| 10/17/2018 |               |               |               | 533         |              | 117         |
| 3/4/2019   | 177           |               |               |             |              |             |
| 3/5/2019   |               |               |               |             | 329          |             |
| 4/10/2019  |               |               |               | 659         |              | 129         |
| 10/14/2019 |               |               |               | 552         | 368          | 93.5        |
| 10/16/2019 | 143           |               |               |             |              |             |
| 11/26/2019 |               | 144           |               |             |              |             |
| 2/3/2020   |               |               |               | 589         | 504          |             |
| 2/4/2020   | 163           | 158           | 171           |             |              | 116         |
| 8/4/2020   | 139           |               | 192           | 545         | 443          |             |
| 8/5/2020   |               | 126           |               |             |              | 94.7        |
|            |               |               |               |             |              |             |

|            | GS-GSA-MW-4V | GS-GSA-MW-8 | GS-GSA-MW-8V | GS-GSA-MW-9H | MW-1 (bg) | MW-2 (bg) |
|------------|--------------|-------------|--------------|--------------|-----------|-----------|
| 4/25/2016  |              |             |              |              |           | 123       |
| 4/26/2016  |              |             |              |              | 147       |           |
| 6/20/2016  |              |             |              |              | 152       | 168       |
| 8/8/2016   |              |             |              |              | 150       | 180       |
| 8/24/2016  |              | 263         |              |              | 142       | 180       |
| 10/3/2016  |              | 253         |              |              | 139       | 184       |
| 10/26/2016 |              | 235         |              |              | 133       | 171       |
| 11/21/2016 |              | 246         |              |              | 144       | 179       |
| 1/17/2017  |              | 231         |              |              | 131       | 188       |
| 3/20/2017  |              | 298         |              |              |           |           |
| 3/22/2017  |              |             |              |              | 141       | 155       |
| 4/18/2017  |              | 317         |              |              | 149       | 156       |
| 5/30/2017  |              | 316         |              |              | 140       |           |
| 5/31/2017  |              |             |              |              |           | 151       |
| 8/23/2017  |              |             |              |              | 152       | 155       |
| 8/24/2017  |              | 391         |              |              |           |           |
| 5/22/2018  |              |             |              |              | 166       | 172       |
| 6/12/2018  |              | 442         |              |              | 203       | 179       |
| 10/17/2018 |              | 514         |              |              | 171       | 200       |
| 11/19/2018 |              |             |              |              | 154       | 221       |
| 3/5/2019   | 249          |             |              | 578          |           |           |
| 4/10/2019  |              | 533         |              |              | 243       | 200       |
| 5/14/2019  |              |             |              |              | 167       | 168       |
| 10/8/2019  |              |             |              |              | 157       | 190       |
| 10/14/2019 | 173          | 524         |              |              |           |           |
| 10/16/2019 |              |             |              | 363          | 157       | 194       |
| 2/3/2020   | 184          |             |              |              | 172       | 172       |
| 2/4/2020   |              | 461         |              | 413          |           |           |
| 2/5/2020   |              |             | 37.3         |              |           |           |
| 8/3/2020   |              |             |              |              | 148       | 172       |
| 8/4/2020   |              |             |              | 346          |           |           |
| 8/5/2020   | 167          | 497         | 31.9         |              |           |           |

|            | MW-3 (bg) | MW-4 (bg) | GS-GSA-MW-12V | GS-GSA-PZ-18 | GS-GSA-MW-9V | GS-GSA-MW-14H |
|------------|-----------|-----------|---------------|--------------|--------------|---------------|
| 4/25/2016  | 224       | 261       |               |              |              |               |
| 6/20/2016  |           | 295       |               |              |              |               |
| 6/22/2016  | 266       |           |               |              |              |               |
| 8/9/2016   | 260       | 318       |               |              |              |               |
| 8/24/2016  | 274       | 319       |               |              |              |               |
| 10/3/2016  |           | 293       |               |              |              |               |
| 10/4/2016  | 243       |           |               |              |              |               |
| 10/26/2016 | 254       | 311       |               |              |              |               |
| 11/21/2016 | 263       | 320       |               |              |              |               |
| 1/18/2017  | 431       | 417       |               |              |              |               |
| 3/22/2017  | 318       | 292       |               |              |              |               |
| 4/18/2017  | 296       | 302       |               |              |              |               |
| 5/31/2017  | 306       |           |               |              |              |               |
| 8/23/2017  | 298       | 297       |               |              |              |               |
| 5/23/2018  |           | 296       |               |              |              |               |
| 5/24/2018  | 297       |           |               |              |              |               |
| 6/12/2018  | 318       | 355       |               |              |              |               |
| 10/17/2018 | 392       | 342       |               |              |              |               |
| 11/19/2018 | 387       | 289       |               |              |              |               |
| 4/10/2019  | 348       | 356       |               |              |              |               |
| 5/14/2019  | 254       | 254       |               |              |              |               |
| 10/8/2019  | 371       |           |               |              |              |               |
| 10/10/2019 |           | 302       |               |              |              |               |
| 10/16/2019 | 346       | 356       |               |              |              |               |
| 2/3/2020   | 276       | 265       |               |              |              |               |
| 8/3/2020   | 285       |           |               | 106          |              |               |
| 8/4/2020   |           |           |               |              | 434          |               |
| 8/5/2020   |           | 281       | 350           |              |              | 141           |
|            |           | _+.       |               |              |              |               |

|          | GS-GSA-PZ-19 | GS-GSA-PZ-20 | GS-GSA-PZ-21 | GS-GSA-PZ-22 | GS-GSA-PZ-17 |
|----------|--------------|--------------|--------------|--------------|--------------|
| 8/3/2020 | 88           | 76.9         |              |              |              |
| 8/4/2020 |              |              | 36.4         | 70.4         | 218          |

|            | GS-GSA-MW-11H | GS-GSA-MW-12H | GS-GSA-MW-13H | GS-GSA-MW-3 | GS-GSA-MW-3V | GS-GSA-MW-4 |
|------------|---------------|---------------|---------------|-------------|--------------|-------------|
| 8/24/2016  |               |               |               | 204         |              | 112         |
| 10/3/2016  |               |               |               | 220         |              | 115         |
| 10/26/2016 |               |               |               | 249         |              | 115         |
| 11/21/2016 |               |               |               | 256         |              | 117         |
| 1/17/2017  |               |               |               | 301         |              | 99.3        |
| 3/20/2017  |               |               |               | 320         |              |             |
| 3/21/2017  |               |               |               |             |              | 79          |
| 4/17/2017  |               |               |               | 340         |              | 85          |
| 5/30/2017  |               |               |               | 310         |              | 99          |
| 8/24/2017  |               |               |               | 290         |              | 110         |
| 6/11/2018  |               |               |               | 260         |              | 81          |
| 10/17/2018 |               |               |               | 270         |              | 85          |
| 3/4/2019   | 3.81          |               |               |             |              |             |
| 3/5/2019   |               |               |               |             | 194          |             |
| 4/10/2019  |               |               |               | 249         |              | 74.3        |
| 10/14/2019 |               |               |               | 228         | 298          | 59.1        |
| 10/16/2019 | 4.45          |               |               |             |              |             |
| 11/26/2019 |               | 2.43          |               |             |              |             |
| 2/3/2020   |               |               |               | 267         | 338          |             |
| 2/4/2020   | 4.27          | 2.34          | 12.9          |             |              | 43.2        |
| 8/4/2020   | 4.51          |               | 12.7          | 222         | 305          |             |
| 8/5/2020   |               | 2             |               |             |              | 41          |
|            |               |               |               |             |              |             |

|            | GS-GSA-MW-4V | GS-GSA-MW-8 | GS-GSA-MW-8V | GS-GSA-MW-9H | MW-1 (bg) | MW-2 (bg) |
|------------|--------------|-------------|--------------|--------------|-----------|-----------|
| 4/25/2016  |              |             |              |              |           | 1.9       |
| 4/26/2016  |              |             |              |              | 1.94      |           |
| 6/20/2016  |              |             |              |              | 2.09      | 3.43      |
| 8/8/2016   |              |             |              |              | 2.18      | 3.31      |
| 8/24/2016  |              | 4.03        |              |              | 2.22      | 3.23      |
| 10/3/2016  |              | 3.87        |              |              | 2.34      | 3.21      |
| 10/26/2016 |              | 4.08        |              |              | 2.34      | 3.35      |
| 11/21/2016 |              | 4.39        |              |              | 2.5       | 3.34      |
| 1/17/2017  |              | 7.22        |              |              | 2.68      | 3.58      |
| 3/20/2017  |              | 5.7         |              |              |           |           |
| 3/22/2017  |              |             |              |              | 3.7       | 3.4       |
| 4/18/2017  |              | 4.7         |              |              | 2.4       | 2.6       |
| 5/30/2017  |              | 15          |              |              | 2.6       |           |
| 5/31/2017  |              |             |              |              |           | 4.4       |
| 8/23/2017  |              |             |              |              | 2.7       | 4.4       |
| 8/24/2017  |              | 93          |              |              |           |           |
| 5/22/2018  |              |             |              |              | 2.3       | 3.2       |
| 6/12/2018  |              | 140         |              |              | 2.3       | 3.7       |
| 10/17/2018 |              | 180         |              |              | 1.7 (J)   | 4.6       |
| 11/19/2018 |              |             |              |              | 1.7 (J)   | 3         |
| 3/5/2019   | 191          |             |              | 313          |           |           |
| 4/10/2019  |              | 174         |              |              | 2.36      | 1.76      |
| 5/14/2019  |              |             |              |              | 2.28      | 2.98      |
| 10/8/2019  |              |             |              |              | 2.31      | 4.26      |
| 10/14/2019 | 122          | 207         |              |              |           |           |
| 10/16/2019 |              |             |              | 145          | 2.42      | 4.04      |
| 2/3/2020   | 101          |             |              |              | 2.07      | 2.48      |
| 2/4/2020   |              | 94.1        |              | 139          |           |           |
| 2/5/2020   |              |             | 9.05         |              |           |           |
| 8/3/2020   |              |             |              |              | 2.05      | 4.03      |
| 8/4/2020   |              |             |              | 109          |           |           |
| 8/5/2020   | 80.9         | 146         | 13.9         |              |           |           |

|            | MW-3 (bg) | MW-4 (bg) | GS-GSA-MW-12V | GS-GSA-PZ-18 | GS-GSA-MW-9V | GS-GSA-MW-14H |
|------------|-----------|-----------|---------------|--------------|--------------|---------------|
| 4/25/2016  | 1.32      | 1.53      |               |              |              |               |
| 6/20/2016  |           | 1.85      |               |              |              |               |
| 6/22/2016  | 1.46      |           |               |              |              |               |
| 8/9/2016   | 1.35      | 1.95      |               |              |              |               |
| 8/24/2016  | 1.47      | 2.07      |               |              |              |               |
| 10/3/2016  |           | 2.02      |               |              |              |               |
| 10/4/2016  | 1.59      |           |               |              |              |               |
| 10/26/2016 | 1.27      | 2.07      |               |              |              |               |
| 11/21/2016 | 1.38      | 2.39      |               |              |              |               |
| 1/18/2017  | 1.34      | 1.9       |               |              |              |               |
| 3/22/2017  | 2         | 1.5 (J)   |               |              |              |               |
| 4/18/2017  | 2.2       | 1.6 (J)   |               |              |              |               |
| 5/31/2017  | 1.5 (J)   | . ,       |               |              |              |               |
| 8/23/2017  | 1.8 (J)   | 2.3       |               |              |              |               |
| 5/23/2018  |           | 2         |               |              |              |               |
| 5/24/2018  | 1.6 (J)   |           |               |              |              |               |
| 6/12/2018  | 1.4 (J)   | 1.7 (J)   |               |              |              |               |
| 10/17/2018 | <2        | 1.5 (J)   |               |              |              |               |
| 11/19/2018 | <2        | <2        |               |              |              |               |
| 4/10/2019  | 2.25      | 1.88      |               |              |              |               |
| 5/14/2019  | 2.28      | 1.82      |               |              |              |               |
| 10/8/2019  | 1.36      | -         |               |              |              |               |
| 10/10/2019 |           | 1.93      |               |              |              |               |
| 10/16/2019 | 1.4       | 1.92      |               |              |              |               |
| 2/3/2020   | 2.12      | 1.72      |               |              |              |               |
| 8/3/2020   | 1.17      | 1.72      |               | 4.55         |              |               |
| 8/4/2020   | 1.17      |           |               | 4.55         | 58.6         |               |
| 8/5/2020   |           | 1.57      | 159           |              | 30.0         | 3.28          |
| 0/3/2020   |           | 1.0/      | ເລສ           |              |              | 3.20          |

|          | GS-GSA-PZ-19 | GS-GSA-PZ-20 | GS-GSA-PZ-21 | GS-GSA-PZ-22 | GS-GSA-PZ-17 |
|----------|--------------|--------------|--------------|--------------|--------------|
| 8/3/2020 | 21.7         | 15           |              |              |              |
| 8/4/2020 |              |              | 13.6         | 7.77         | 1.7          |

|            | GS-GSA-MW-11H | GS-GSA-MW-12H | GS-GSA-MW-13H | GS-GSA-MW-3 | GS-GSA-MW-3V | GS-GSA-MW-4 |
|------------|---------------|---------------|---------------|-------------|--------------|-------------|
| 8/24/2016  |               |               |               | <0.01       |              | <0.01       |
| 10/3/2016  |               |               |               | <0.01       |              | <0.01       |
| 10/26/2016 |               |               |               | <0.01       |              | <0.01       |
| 11/21/2016 |               |               |               | <0.01       |              | <0.01       |
| 1/17/2017  |               |               |               | <0.01       |              | <0.01       |
| 3/20/2017  |               |               |               | <0.01       |              |             |
| 3/21/2017  |               |               |               |             |              | <0.01       |
| 4/17/2017  |               |               |               | <0.01       |              | <0.01       |
| 5/30/2017  |               |               |               | <0.01       |              | <0.01       |
| 2/13/2018  |               |               |               | <0.01       |              | <0.01       |
| 6/11/2018  |               |               |               | <0.01       |              | <0.01       |
| 10/17/2018 |               |               |               | <0.01       |              | <0.01       |
| 3/4/2019   | <0.01         |               |               |             |              |             |
| 3/5/2019   |               |               |               |             | <0.01        |             |
| 4/10/2019  |               |               |               | <0.01       |              | <0.01       |
| 10/14/2019 |               |               |               | <0.01       | <0.01        | <0.01       |
| 10/16/2019 | <0.01         |               |               |             |              |             |
| 11/26/2019 |               | <0.01         |               |             |              |             |
| 2/3/2020   |               |               |               | <0.01       | <0.01        |             |
| 2/4/2020   | <0.01         | <0.01         | <0.01         |             |              | <0.01       |
| 8/4/2020   | <0.01         |               | <0.01         | <0.01       | <0.01        |             |
| 8/5/2020   |               | <0.01         |               |             |              | <0.01       |
|            |               |               |               |             |              |             |

|            | GS-GSA-MW-4V | GS-GSA-MW-8 | GS-GSA-MW-8V | GS-GSA-MW-9H | MW-1 (bg) | MW-2 (bg) |
|------------|--------------|-------------|--------------|--------------|-----------|-----------|
| 4/25/2016  |              |             |              |              |           | <0.01     |
| 4/26/2016  |              |             |              |              | <0.01     |           |
| 6/20/2016  |              |             |              |              | <0.01     | <0.01     |
| 8/8/2016   |              |             |              |              | <0.01     | <0.01     |
| 8/24/2016  |              | <0.01       |              |              | <0.01     | <0.01     |
| 10/3/2016  |              | <0.01       |              |              | <0.01     | <0.01     |
| 10/26/2016 |              | <0.01       |              |              | <0.01     | <0.01     |
| 11/21/2016 |              | <0.01       |              |              | <0.01     | <0.01     |
| 1/17/2017  |              | <0.01       |              |              | <0.01     | <0.01     |
| 3/20/2017  |              | <0.01       |              |              |           |           |
| 3/22/2017  |              |             |              |              | <0.01     | <0.01     |
| 4/18/2017  |              | <0.01       |              |              | <0.01     | <0.01     |
| 5/30/2017  |              | <0.01       |              |              | <0.01     |           |
| 5/31/2017  |              |             |              |              |           | <0.01     |
| 2/13/2018  |              | <0.01       |              |              | <0.01     | <0.01     |
| 5/22/2018  |              |             |              |              | <0.01     | <0.01     |
| 6/12/2018  |              | <0.01       |              |              | <0.01     | <0.01     |
| 10/17/2018 |              | <0.01       |              |              | <0.01     | <0.01     |
| 11/19/2018 |              |             |              |              | <0.01     | <0.01     |
| 3/5/2019   | <0.01        |             |              | <0.01        |           |           |
| 4/10/2019  |              | <0.01       |              |              | <0.01     | <0.01     |
| 5/14/2019  |              |             |              |              | <0.01     | <0.01     |
| 10/8/2019  |              |             |              |              | <0.01     | <0.01     |
| 10/14/2019 | <0.01        | <0.01       |              |              |           |           |
| 10/16/2019 |              |             |              | <0.01        | <0.01     | <0.01     |
| 2/3/2020   | <0.01        |             |              |              | <0.01     | <0.01     |
| 2/4/2020   |              | <0.01       |              | <0.01        |           |           |
| 2/5/2020   |              |             | <0.01        |              |           |           |
| 8/3/2020   |              |             |              |              | <0.01     | <0.01     |
| 8/4/2020   |              |             |              | <0.01        |           |           |
| 8/5/2020   | <0.01        | <0.01       | <0.01        |              |           |           |

|            | MW-3 (bg)   | MW-4 (bg) | GS-GSA-MW-12V | GS-GSA-PZ-18 | GS-GSA-MW-9V | GS-GSA-MW-14H |
|------------|-------------|-----------|---------------|--------------|--------------|---------------|
| 4/25/2016  | 0.00373 (J) | <0.01     |               |              |              |               |
| 6/20/2016  |             | <0.01     |               |              |              |               |
| 6/22/2016  | 0.00606 (J) |           |               |              |              |               |
| 8/9/2016   | <0.01       | <0.01     |               |              |              |               |
| 8/24/2016  | <0.01       | <0.01     |               |              |              |               |
| 10/3/2016  |             | <0.01     |               |              |              |               |
| 10/4/2016  | <0.01       |           |               |              |              |               |
| 10/26/2016 | <0.01       | <0.01     |               |              |              |               |
| 11/21/2016 | <0.01       | <0.01     |               |              |              |               |
| 1/18/2017  | <0.01       | <0.01     |               |              |              |               |
| 3/22/2017  | 0.00945 (J) | <0.01     |               |              |              |               |
| 4/18/2017  | 0.0105      | <0.01     |               |              |              |               |
| 5/31/2017  | <0.01       |           |               |              |              |               |
| 2/13/2018  | <0.01       | <0.01     |               |              |              |               |
| 5/23/2018  |             | <0.01     |               |              |              |               |
| 5/24/2018  | <0.01       |           |               |              |              |               |
| 6/12/2018  | <0.01       | <0.01     |               |              |              |               |
| 10/17/2018 | <0.01       | <0.01     |               |              |              |               |
| 11/19/2018 | <0.01       | <0.01     |               |              |              |               |
| 4/10/2019  | <0.01       | <0.01     |               |              |              |               |
| 5/14/2019  | <0.01       | <0.01     |               |              |              |               |
| 10/8/2019  | <0.01       |           |               |              |              |               |
| 10/10/2019 |             | <0.01     |               |              |              |               |
| 10/16/2019 | <0.01       | <0.01     |               |              |              |               |
| 2/3/2020   | <0.01       | <0.01     |               |              |              |               |
| 8/3/2020   | <0.01       |           |               | 0.00315 (J)  |              |               |
| 8/4/2020   |             |           |               |              | <0.01        |               |
| 8/5/2020   |             | <0.01     | <0.01         |              |              | <0.01         |
|            |             |           |               |              |              |               |

|          | GS-GSA-PZ-19 | GS-GSA-PZ-20 | GS-GSA-PZ-21 | GS-GSA-PZ-22 | GS-GSA-PZ-17 |
|----------|--------------|--------------|--------------|--------------|--------------|
| 8/3/2020 | <0.01        | <0.01        |              |              |              |
| 8/4/2020 |              |              | <0.01        | <0.01        | 0.00254 (J)  |

|            | GS-GSA-MW-11H | GS-GSA-MW-12H | GS-GSA-MW-13H | GS-GSA-MW-3 | GS-GSA-MW-3V | GS-GSA-MW-4 |
|------------|---------------|---------------|---------------|-------------|--------------|-------------|
| 8/24/2016  |               |               |               | 0.0303      |              | 0.151       |
| 10/3/2016  |               |               |               | 0.041       |              | 0.143       |
| 10/26/2016 |               |               |               | 0.0505      |              | 0.154       |
| 11/21/2016 |               |               |               | 0.0617      |              | 0.155       |
| 1/17/2017  |               |               |               | 0.0793      |              | 0.16        |
| 3/20/2017  |               |               |               | 0.0726      |              |             |
| 3/21/2017  |               |               |               |             |              | 0.158       |
| 4/17/2017  |               |               |               | 0.294 (o)   |              | 0.159       |
| 5/30/2017  |               |               |               | 0.0832      |              | 0.159       |
| 2/13/2018  |               |               |               | 0.124       |              | 0.19        |
| 6/11/2018  |               |               |               | 0.138       |              | 0.166       |
| 10/17/2018 |               |               |               | 0.138       |              | 0.154       |
| 3/4/2019   | 0.0066        |               |               |             |              |             |
| 3/5/2019   |               |               |               |             | 0.0059       |             |
| 4/10/2019  |               |               |               | 0.151       |              | 0.241       |
| 10/14/2019 |               |               |               | 0.102       | 0.00845      | 0.213       |
| 10/16/2019 | 0.00598       |               |               |             |              |             |
| 11/26/2019 |               | 0.435         |               |             |              |             |
| 2/3/2020   |               |               |               | 0.0843      | 0.0135       |             |
| 2/4/2020   | 0.00582       | 0.351         | 0.0442        |             |              | 0.217       |
| 8/4/2020   | 0.0061        |               | 0.111         | 0.0862      | 0.0133       |             |
| 8/5/2020   |               | 0.436         |               |             |              | 0.235       |
|            |               |               |               |             |              |             |

|            | GS-GSA-MW-4V | GS-GSA-MW-8 | GS-GSA-MW-8V | GS-GSA-MW-9H | MW-1 (bg) | MW-2 (bg) |
|------------|--------------|-------------|--------------|--------------|-----------|-----------|
| 4/25/2016  |              |             |              |              |           | 0.0487    |
| 4/26/2016  |              |             |              |              | 0.0343    |           |
| 6/20/2016  |              |             |              |              | 0.0413    | 0.0767    |
| 8/8/2016   |              |             |              |              | 0.0513    | 0.103     |
| 8/24/2016  |              | 0.0201      |              |              | 0.0471    | 0.093     |
| 10/3/2016  |              | 0.0167      |              |              | 0.0525    | 0.0964    |
| 10/26/2016 |              | 0.0253      |              |              | 0.0527    | 0.0904    |
| 11/21/2016 |              | 0.0233      |              |              | 0.0569    | 0.0857    |
| 1/17/2017  |              | 0.0708      |              |              | 0.0768    | 0.0745    |
| 3/20/2017  |              | 0.00277 (J) |              |              |           |           |
| 3/22/2017  |              |             |              |              | 0.0535    | 0.0328    |
| 4/18/2017  |              | <0.005      |              |              | 0.0442    | 0.0242    |
| 5/30/2017  |              | <0.005      |              |              | 0.0465    |           |
| 5/31/2017  |              |             |              |              |           | 0.0441    |
| 2/13/2018  |              | 0.00492 (J) |              |              | 0.062     | 0.0179    |
| 5/22/2018  |              |             |              |              | 0.0443    | 0.028     |
| 6/12/2018  |              | <0.005      |              |              | 0.0512    | 0.0366    |
| 10/17/2018 |              | <0.005      |              |              | 0.0751    | 0.0745    |
| 11/19/2018 |              |             |              |              | 0.0825    | 0.0225    |
| 3/5/2019   | 0.0836       |             |              | 0.14         |           |           |
| 4/10/2019  |              | <0.005      |              |              | 0.0445    | 0.0152    |
| 5/14/2019  |              |             |              |              | 0.0485    | 0.0222    |
| 10/8/2019  |              |             |              |              | 0.0778    | 0.0674    |
| 10/14/2019 | 0.12         | <0.005      |              |              |           |           |
| 10/16/2019 |              |             |              | 0.168        | 0.08      | 0.073     |
| 2/3/2020   | 0.108        |             |              |              | 0.0495    | 0.0193    |
| 2/4/2020   |              | <0.005      |              | 0.159        |           |           |
| 2/5/2020   |              |             | <0.005       |              |           |           |
| 8/3/2020   |              |             |              |              | 0.0722    | 0.0589    |
| 8/4/2020   |              |             |              | 0.178        |           |           |
| 8/5/2020   | 0.141        | <0.005      | <0.005       |              |           |           |
|            |              |             |              |              |           |           |

|            | MW-3 (bg)   | MW-4 (bg) | GS-GSA-MW-12V | GS-GSA-PZ-18 | GS-GSA-MW-9V | GS-GSA-MW-14H |
|------------|-------------|-----------|---------------|--------------|--------------|---------------|
| 4/25/2016  | 0.232       | <0.005    |               |              |              |               |
| 6/20/2016  |             | <0.005    |               |              |              |               |
| 6/22/2016  | 0.332       |           |               |              |              |               |
| 8/9/2016   | 0.311       | <0.005    |               |              |              |               |
| 8/24/2016  | 0.271       | <0.005    |               |              |              |               |
| 10/3/2016  |             | <0.005    |               |              |              |               |
| 10/4/2016  | 0.148       |           |               |              |              |               |
| 10/26/2016 | 0.236       | <0.005    |               |              |              |               |
| 11/21/2016 | 0.241       | <0.005    |               |              |              |               |
| 1/18/2017  | 0.347       | <0.005    |               |              |              |               |
| 3/22/2017  | 0.271       | <0.005    |               |              |              |               |
| 4/18/2017  | 0.00324 (J) | <0.005    |               |              |              |               |
| 5/31/2017  | 0.225       |           |               |              |              |               |
| 2/13/2018  | 0.00661 (J) | <0.005    |               |              |              |               |
| 5/23/2018  |             | <0.005    |               |              |              |               |
| 5/24/2018  | 0.158       |           |               |              |              |               |
| 6/12/2018  | 0.291       | <0.005    |               |              |              |               |
| 10/17/2018 | 0.49        | <0.005    |               |              |              |               |
| 11/19/2018 | 0.386       | <0.005    |               |              |              |               |
| 4/10/2019  | 0.0144      | <0.005    |               |              |              |               |
| 5/14/2019  | 0.00536     | <0.005    |               |              |              |               |
| 10/8/2019  | 1.07        |           |               |              |              |               |
| 10/10/2019 |             | <0.005    |               |              |              |               |
| 10/16/2019 | 0.848       | <0.005    |               |              |              |               |
| 2/3/2020   | 0.0114      | <0.005    |               |              |              |               |
| 8/3/2020   | 0.64        |           |               | 0.156        |              |               |
| 8/4/2020   |             |           |               |              | 0.00412 (J)  |               |
| 8/5/2020   |             | <0.005    | <0.005        |              |              | 0.237         |
|            |             |           |               |              |              |               |

Constituent: Cobalt (mg/L) Analysis Run 10/19/2020 4:18 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

GS-GSA-PZ-19 GS-GSA-PZ-20 GS-GSA-PZ-21 GS-GSA-PZ-22 GS-GSA-PZ-17

8/3/2020 <0.005 0.00734

8/4/2020 <0.005 0.0021 (J) 0.471

Constituent: Combined Radium 226 + 228 (pCi/L) Analysis Run 10/19/2020 4:18 PM

Plant Gorgas Client: Southern Company Data: Gorgas GSA

|            | GS-GSA-MW-11H | GS-GSA-MW-12H | GS-GSA-MW-13H | GS-GSA-MW-3 | GS-GSA-MW-3V | GS-GSA-MW-4 |
|------------|---------------|---------------|---------------|-------------|--------------|-------------|
| 8/24/2016  |               |               |               | 0.389 (U)   |              | 0.741       |
| 10/3/2016  |               |               |               | 0.683       |              | 0.648       |
| 10/26/2016 |               |               |               | 0.242 (U)   |              | 0.632       |
| 11/21/2016 |               |               |               | 0.764       |              | 1.57        |
| 1/17/2017  |               |               |               | 0.191 (U)   |              | 0.493       |
| 3/20/2017  |               |               |               | -0.0158 (U) |              |             |
| 3/21/2017  |               |               |               |             |              | 0.604 (U)   |
| 4/17/2017  |               |               |               | 0.307 (U)   |              | 0.252 (U)   |
| 5/30/2017  |               |               |               | 0.724       |              | 0.925       |
| 2/13/2018  |               |               |               | 0.633       |              | 0.382       |
| 6/11/2018  |               |               |               | 0.773       |              | 0.796       |
| 10/17/2018 |               |               |               | 0.668       |              | 0.922       |
| 3/4/2019   | 0.135 (U)     |               |               |             |              |             |
| 3/5/2019   |               |               |               |             | 0.932        |             |
| 4/10/2019  |               |               |               | 0.265 (U)   |              | 0.622       |
| 10/14/2019 |               |               |               | 0.297 (U)   | 0.184 (U)    | 0.317 (U)   |
| 10/16/2019 | 0.189 (U)     |               |               |             |              |             |
| 2/3/2020   |               |               |               | 0.28 (U)    | 0.408 (U)    |             |
| 2/4/2020   | 0.319 (U)     | 0.939         | 0.624         |             |              | 0.324 (U)   |
| 8/4/2020   | 0.0315 (U)    |               | -0.402 (U)    | 0.45 (U)    | -0.00668 (U) |             |
| 8/5/2020   |               | -0.306 (U)    |               |             |              | 0.389 (U)   |
|            |               |               |               |             |              |             |

Constituent: Combined Radium 226 + 228 (pCi/L) Analysis Run 10/19/2020 4:18 PM

Plant Gorgas Client: Southern Company Data: Gorgas GSA

|            | GS-GSA-MW-4V | GS-GSA-MW-8 | GS-GSA-MW-8V | GS-GSA-MW-9H | MW-1 (bg)  | MW-2 (bg)   |
|------------|--------------|-------------|--------------|--------------|------------|-------------|
| 8/24/2016  |              | 0.558 (U)   |              |              | 0.566 (U)  | 0.65        |
| 10/3/2016  |              | 0.565       |              |              | 0.537 (U)  | 0.845       |
| 10/26/2016 |              | 0.555 (U)   |              |              | 0.636      | 0.994       |
| 11/21/2016 |              | 0.987       |              |              | 0.807      | 0.537 (U)   |
| 1/17/2017  |              | 0.476 (U)   |              |              | 0.308 (U)  | -0.0159 (U) |
| 3/20/2017  |              | 0.633 (U)   |              |              |            |             |
| 3/22/2017  |              |             |              |              | 0.344 (U)  | 0.279 (U)   |
| 4/18/2017  |              | 0.248 (U)   |              |              | 0.934      | 0.32 (U)    |
| 5/30/2017  |              | 0.412 (U)   |              |              | 0.149 (U)  |             |
| 5/31/2017  |              |             |              |              |            | 0.178 (U)   |
| 2/13/2018  |              | 1.08        |              |              | 0.774      | 0.804       |
| 5/22/2018  |              |             |              |              | -0.091 (U) | 0.0077 (U)  |
| 6/12/2018  |              | 0.446 (U)   |              |              | 1.18       | -0.315 (U)  |
| 10/17/2018 |              | 1.05        |              |              | 0.553 (U)  | 0.574 (U)   |
| 11/19/2018 |              |             |              |              | 0.862 (D)  | 0.654 (D)   |
| 3/5/2019   | 0.364 (U)    |             |              | 0.852        |            |             |
| 4/10/2019  |              | 0.128 (U)   |              |              | 0.342 (U)  | 0.329 (U)   |
| 10/8/2019  |              |             |              |              | 1.47       | 0.493 (U)   |
| 10/14/2019 | 0.369 (U)    | 0.225 (U)   |              |              |            |             |
| 10/16/2019 |              |             |              | 1.29         | 0.204 (U)  | 0.046 (U)   |
| 2/3/2020   | 0.758        |             |              |              | 0.521 (U)  | -0.0245 (U) |
| 2/4/2020   |              | 0.336 (U)   |              | 0.441 (U)    |            |             |
| 2/5/2020   |              |             | 0.576        |              |            |             |
| 8/3/2020   |              |             |              |              | -0.127 (U) | 0.888 (U)   |
| 8/4/2020   |              |             |              | -0.385 (U)   |            |             |
| 8/5/2020   | 0.533 (U)    | -0.115 (U)  | 1.85         |              |            |             |
|            |              |             |              |              |            |             |

Constituent: Combined Radium 226 + 228 (pCi/L) Analysis Run 10/19/2020 4:18 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

|            | MW-3 (bg)  | MW-4 (bg)   | GS-GSA-MW-12V | GS-GSA-PZ-18 | GS-GSA-MW-9V | GS-GSA-MW-14H |  |
|------------|------------|-------------|---------------|--------------|--------------|---------------|--|
| 8/24/2016  | 0.131 (U)  | 0.266 (U)   |               |              |              |               |  |
| 10/3/2016  |            | 0.59 (U)    |               |              |              |               |  |
| 10/4/2016  | 0.514 (U)  |             |               |              |              |               |  |
| 10/26/2016 | 0.755      | 0.164 (U)   |               |              |              |               |  |
| 11/21/2016 | 0.7        | 0.296 (U)   |               |              |              |               |  |
| 1/18/2017  | 0.606      | 0.0267 (U)  |               |              |              |               |  |
| 3/22/2017  | 0.927      | 0.132 (U)   |               |              |              |               |  |
| 4/18/2017  | 0.334 (U)  | -0.0439 (U) |               |              |              |               |  |
| 5/31/2017  | 0.8        | 0.3 (U)     |               |              |              |               |  |
| 2/13/2018  | 0.649      | 0.69        |               |              |              |               |  |
| 5/23/2018  |            | 0.186 (U)   |               |              |              |               |  |
| 5/24/2018  | 0.448 (U)  |             |               |              |              |               |  |
| 6/12/2018  | 0.234 (U)  | 0.153 (U)   |               |              |              |               |  |
| 10/17/2018 | 0.852      | 0.313 (U)   |               |              |              |               |  |
| 11/19/2018 | 0.521 (D)  | 0.794       |               |              |              |               |  |
| 4/10/2019  | 0.198 (U)  | 0.515       |               |              |              |               |  |
| 5/14/2019  |            | 0.352 (U)   |               |              |              |               |  |
| 10/8/2019  | 0.833 (U)  |             |               |              |              |               |  |
| 10/10/2019 |            | 1.02 (U)    |               |              |              |               |  |
| 10/16/2019 | 0.0279 (U) | 0.356 (U)   |               |              |              |               |  |
| 2/3/2020   | 0.0246 (U) | 0.254 (U)   |               |              |              |               |  |
| 8/3/2020   | 0.765 (U)  |             |               | 0.511 (U)    |              |               |  |
| 8/4/2020   |            |             |               |              | 0.837 (U)    |               |  |
| 8/5/2020   |            | 0.565 (U)   | -0.284 (U)    |              |              | 0.758 (U)     |  |
|            |            |             |               |              |              |               |  |

Constituent: Combined Radium 226 + 228 (pCi/L) Analysis Run 10/19/2020 4:18 PM

Plant Gorgas Client: Southern Company Data: Gorgas GSA

|        |     | GS-GSA-PZ-19 | GS-GSA-PZ-20 | GS-GSA-PZ-21 | GS-GSA-PZ-22 | GS-GSA-PZ-17 |
|--------|-----|--------------|--------------|--------------|--------------|--------------|
| 8/3/2  | 020 | 0.652 (U)    | 0.0893 (U)   |              |              |              |
| 8/4/20 | 020 |              |              | 0.839        | 0.114 (U)    | 0.407 (U)    |

|            | GS-GSA-MW-11H | GS-GSA-MW-12H | GS-GSA-MW-13H | GS-GSA-MW-3 | GS-GSA-MW-3V | GS-GSA-MW-4 |
|------------|---------------|---------------|---------------|-------------|--------------|-------------|
| 8/24/2016  |               |               |               | 0.264 (J)   |              | 0.793       |
| 10/3/2016  |               |               |               | 0.276 (J)   |              | 0.769       |
| 10/26/2016 |               |               |               | 0.182 (J)   |              | 0.578       |
| 11/21/2016 |               |               |               | 0.238 (J)   |              | 0.562       |
| 1/17/2017  |               |               |               | 0.34        |              | 0.571       |
| 3/20/2017  |               |               |               | 0.39        |              |             |
| 3/21/2017  |               |               |               |             |              | 0.54        |
| 4/17/2017  |               |               |               | 0.57        |              | 0.54        |
| 5/30/2017  |               |               |               | 0.38        |              | 0.49        |
| 8/24/2017  |               |               |               | 0.54        |              | 0.7         |
| 2/13/2018  |               |               |               | 0.57 (D)    |              | 0.63 (D)    |
| 6/11/2018  |               |               |               | 0.63        |              | 0.39        |
| 10/17/2018 |               |               |               | 0.78        |              | 0.44        |
| 3/4/2019   | 0.101         |               |               |             |              |             |
| 3/5/2019   |               |               |               |             | 0.249        |             |
| 4/10/2019  |               |               |               | 0.738       |              | <0.1        |
| 10/14/2019 |               |               |               | 0.619       | 0.37         | <0.1        |
| 10/16/2019 | 0.0875 (J)    |               |               |             |              |             |
| 11/26/2019 |               | <0.1          |               |             |              |             |
| 2/3/2020   |               |               |               | 0.427       | 0.438        |             |
| 2/4/2020   | 0.0743 (J)    | <0.1          | 0.115         |             |              | <0.1        |
| 8/4/2020   | 0.109         |               | 0.113         | 0.389       | 0.349        |             |
| 8/5/2020   |               | <0.1          |               |             |              | <0.1        |

|            |              |             |              | · ·          | . ,        | ŭ         |
|------------|--------------|-------------|--------------|--------------|------------|-----------|
|            | GS-GSA-MW-4V | GS-GSA-MW-8 | GS-GSA-MW-8V | GS-GSA-MW-9H | MW-1 (bg)  | MW-2 (bg) |
| 4/25/2016  |              |             |              |              |            | 0.149 (J) |
| 4/26/2016  |              |             |              |              | 0.146 (J)  |           |
| 6/20/2016  |              |             |              |              | 0.148 (J)  | 0.148 (J) |
| 8/8/2016   |              |             |              |              | 0.137 (J)  | 0.134 (J) |
| 8/24/2016  |              | 0.165 (J)   |              |              | 0.133 (J)  | 0.129 (J) |
| 10/3/2016  |              | 0.114 (J)   |              |              | 0.103 (J)  | 0.086 (J) |
| 10/26/2016 |              | 0.056 (J)   |              |              | 0.05 (J)   | 0.027 (J) |
| 11/21/2016 |              | 0.059 (J)   |              |              | 0.047 (J)  | 0.027 (J) |
| 1/17/2017  |              | 0.07 (J)    |              |              | 0.09 (J)   | 0.066 (J) |
| 3/20/2017  |              | 0.18        |              |              |            |           |
| 3/22/2017  |              |             |              |              | 0.12       | 0.13      |
| 4/18/2017  |              | 0.17        |              |              | 0.12       | 0.16      |
| 5/30/2017  |              | 0.16        |              |              | 0.13       |           |
| 5/31/2017  |              |             |              |              |            | 0.13      |
| 8/23/2017  |              |             |              |              | 0.16       | 0.16      |
| 8/24/2017  |              | 0.18        |              |              |            |           |
| 2/13/2018  |              | 0.15 (D)    |              |              | 0.14 (D)   | 0.22 (D)  |
| 5/22/2018  |              |             |              |              | 0.16       | 0.17      |
| 6/12/2018  |              | 0.15        |              |              | 0.16       | 0.16      |
| 10/17/2018 |              | 0.16        |              |              | 0.18       | 0.16      |
| 11/19/2018 |              |             |              |              | 0.15       | 0.18      |
| 3/5/2019   | 0.477        |             |              | 0.239        |            |           |
| 4/10/2019  |              | 0.156       |              |              | 0.102      | 0.262     |
| 5/14/2019  |              |             |              |              | 0.119      | 0.17      |
| 10/8/2019  |              |             |              |              | 0.0924 (J) | 0.164     |
| 10/14/2019 | 0.449        | 0.118       |              |              |            |           |
| 10/16/2019 |              |             |              | 0.101        | 0.0756 (J) | 0.114     |
| 2/3/2020   | 0.555        |             |              |              | 0.0982 (J) | 0.182     |
| 2/4/2020   |              | 0.132       |              | 0.205        |            |           |
| 2/5/2020   |              |             | 0.162        |              |            |           |
| 8/3/2020   |              |             |              |              | <0.1       | 0.122     |
| 8/4/2020   |              |             |              | 0.127        |            |           |
| 8/5/2020   | 0.363        | 0.119       | 0.256        |              |            |           |
|            |              |             |              |              |            |           |

|            | MW-3 (bg)  | MW-4 (bg) | GS-GSA-MW-12V | GS-GSA-PZ-18 | GS-GSA-MW-9V | GS-GSA-MW-14H |
|------------|------------|-----------|---------------|--------------|--------------|---------------|
| 4/25/2016  | 0.243 (J)  | 0.372     |               |              |              |               |
| 6/20/2016  |            | 0.361     |               |              |              |               |
| 6/22/2016  | 0.269 (J)  |           |               |              |              |               |
| 8/9/2016   | 0.363      | 0.326     |               |              |              |               |
| 8/24/2016  | 0.346      | 0.329     |               |              |              |               |
| 10/3/2016  |            | 0.287 (J) |               |              |              |               |
| 10/4/2016  | 0.266 (J)  |           |               |              |              |               |
| 10/26/2016 | 0.266 (J)  | 0.194 (J) |               |              |              |               |
| 11/21/2016 | 0.244 (J)  | 0.192 (J) |               |              |              |               |
| 1/18/2017  | 0.385      | 0.223 (J) |               |              |              |               |
| 3/22/2017  | 0.41       | 0.32      |               |              |              |               |
| 4/18/2017  | 0.29       | 0.32      |               |              |              |               |
| 5/31/2017  | 0.37       |           |               |              |              |               |
| 8/23/2017  | 0.55       | 0.38      |               |              |              |               |
| 2/13/2018  | 0.27 (D)   | 0.38 (D)  |               |              |              |               |
| 5/23/2018  |            | 0.38      |               |              |              |               |
| 5/24/2018  | 0.6        |           |               |              |              |               |
| 6/12/2018  | 0.53       | 0.39      |               |              |              |               |
| 10/17/2018 | 0.63       | 0.39      |               |              |              |               |
| 11/19/2018 | 0.31       | 0.36      |               |              |              |               |
| 4/10/2019  | 0.273      | 0.384     |               |              |              |               |
| 5/14/2019  | 0.281      | 0.335     |               |              |              |               |
| 10/8/2019  | 0.225      |           |               |              |              |               |
| 10/10/2019 |            | 0.304     |               |              |              |               |
| 10/16/2019 | 0.106      | 0.302     |               |              |              |               |
| 2/3/2020   | 0.256      | 0.37      |               |              |              |               |
| 8/3/2020   | 0.0766 (J) |           |               | <0.1         |              |               |
| 8/4/2020   | (-)        |           |               |              | 0.135        |               |
| 8/5/2020   |            | 0.359     | 0.217         |              | 21.50        | 0.082 (J)     |
| 5.5/2020   |            | 0.000     | J 17          |              |              | 0.002 (0)     |

Constituent: Fluoride (mg/L) Analysis Run 10/19/2020 4:18 PM Plant Gorgas Client: Southern Company Data: Gorgas GSA

GS-GSA-PZ-19 GS-GSA-PZ-20 GS-GSA-PZ-21 GS-GSA-PZ-22 GS-GSA-PZ-17 8/3/2020 0.18 0.188 8/4/2020 0.167 <0.1

|            | GS-GSA-MW-11H | GS-GSA-MW-12H | GS-GSA-MW-13H | GS-GSA-MW-3 | GS-GSA-MW-3V | GS-GSA-MW-4 |
|------------|---------------|---------------|---------------|-------------|--------------|-------------|
| 8/24/2016  |               |               |               | <0.005      |              | <0.005      |
| 10/3/2016  |               |               |               | <0.005      |              | <0.005      |
| 10/26/2016 |               |               |               | <0.005      |              | <0.005      |
| 11/21/2016 |               |               |               | <0.005      |              | <0.005      |
| 1/17/2017  |               |               |               | <0.005      |              | <0.005      |
| 3/20/2017  |               |               |               | <0.005      |              |             |
| 3/21/2017  |               |               |               |             |              | <0.005      |
| 4/17/2017  |               |               |               | <0.005      |              | <0.005      |
| 5/30/2017  |               |               |               | <0.005      |              | <0.005      |
| 2/13/2018  |               |               |               | <0.005      |              | <0.005      |
| 6/11/2018  |               |               |               | <0.005      |              | <0.005      |
| 10/17/2018 |               |               |               | <0.005      |              | <0.005      |
| 3/4/2019   | <0.005        |               |               |             |              |             |
| 3/5/2019   |               |               |               |             | <0.005       |             |
| 4/10/2019  |               |               |               | <0.005      |              | <0.005      |
| 10/14/2019 |               |               |               | <0.005      | <0.005       | <0.005      |
| 10/16/2019 | <0.005        |               |               |             |              |             |
| 11/26/2019 |               | 0.00271 (J)   |               |             |              |             |
| 2/3/2020   |               |               |               | <0.005      | <0.005       |             |
| 2/4/2020   | <0.005        | 0.00334 (J)   | <0.005        |             |              | <0.005      |
| 8/4/2020   | <0.005        |               | <0.005        | <0.005      | <0.005       |             |
| 8/5/2020   |               | 0.00329 (J)   |               |             |              | <0.005      |
|            |               |               |               |             |              |             |

|            | GS-GSA-MW-4V | GS-GSA-MW-8 | GS-GSA-MW-8V | GS-GSA-MW-9H | MW-1 (bg) | MW-2 (bg) |
|------------|--------------|-------------|--------------|--------------|-----------|-----------|
| 4/25/2016  |              |             |              |              |           | <0.005    |
| 4/26/2016  |              |             |              |              | <0.005    |           |
| 6/20/2016  |              |             |              |              | <0.005    | <0.005    |
| 8/8/2016   |              |             |              |              | <0.005    | <0.005    |
| 8/24/2016  |              | <0.005      |              |              | <0.005    | <0.005    |
| 10/3/2016  |              | <0.005      |              |              | <0.005    | <0.005    |
| 10/26/2016 |              | <0.005      |              |              | <0.005    | <0.005    |
| 11/21/2016 |              | <0.005      |              |              | <0.005    | <0.005    |
| 1/17/2017  |              | <0.005      |              |              | <0.005    | <0.005    |
| 3/20/2017  |              | <0.005      |              |              |           |           |
| 3/22/2017  |              |             |              |              | <0.005    | <0.005    |
| 4/18/2017  |              | <0.005      |              |              | <0.005    | <0.005    |
| 5/30/2017  |              | <0.005      |              |              | <0.005    |           |
| 5/31/2017  |              |             |              |              |           | <0.005    |
| 2/13/2018  |              | <0.005      |              |              | <0.005    | <0.005    |
| 5/22/2018  |              |             |              |              | <0.005    | <0.005    |
| 6/12/2018  |              | <0.005      |              |              | <0.005    | <0.005    |
| 10/17/2018 |              | <0.005      |              |              | <0.005    | <0.005    |
| 11/19/2018 |              |             |              |              | <0.005    | <0.005    |
| 3/5/2019   | <0.005       |             |              | <0.005       |           |           |
| 4/10/2019  |              | <0.005      |              |              | <0.005    | <0.005    |
| 5/14/2019  |              |             |              |              | <0.005    | <0.005    |
| 10/8/2019  |              |             |              |              | <0.005    | <0.005    |
| 10/14/2019 | <0.005       | <0.005      |              |              |           |           |
| 10/16/2019 |              |             |              | <0.005       | <0.005    | <0.005    |
| 2/3/2020   | <0.005       |             |              |              | <0.005    | <0.005    |
| 2/4/2020   |              | <0.005      |              | <0.005       |           |           |
| 2/5/2020   |              |             | <0.005       |              |           |           |
| 8/3/2020   |              |             |              |              | <0.005    | <0.005    |
| 8/4/2020   |              |             |              | <0.005       |           |           |
| 8/5/2020   | <0.005       | <0.005      | <0.005       |              |           |           |
|            |              |             |              |              |           |           |

|            | MW-3 (bg)   | MW-4 (bg) | GS-GSA-MW-12V | GS-GSA-PZ-18 | GS-GSA-MW-9V | GS-GSA-MW-14H |
|------------|-------------|-----------|---------------|--------------|--------------|---------------|
| 4/25/2016  | <0.005      | <0.005    |               |              |              |               |
| 6/20/2016  |             | <0.005    |               |              |              |               |
| 6/22/2016  | <0.005      |           |               |              |              |               |
| 8/9/2016   | <0.005      | <0.005    |               |              |              |               |
| 8/24/2016  | <0.005      | <0.005    |               |              |              |               |
| 10/3/2016  |             | <0.005    |               |              |              |               |
| 10/4/2016  | <0.005      |           |               |              |              |               |
| 10/26/2016 | <0.005      | <0.005    |               |              |              |               |
| 11/21/2016 | <0.005      | <0.005    |               |              |              |               |
| 1/18/2017  | <0.005      | <0.005    |               |              |              |               |
| 3/22/2017  | <0.005      | <0.005    |               |              |              |               |
| 4/18/2017  | <0.005      | <0.005    |               |              |              |               |
| 5/31/2017  | <0.005      |           |               |              |              |               |
| 2/13/2018  | <0.005      | <0.005    |               |              |              |               |
| 5/23/2018  |             | <0.005    |               |              |              |               |
| 5/24/2018  | <0.005      |           |               |              |              |               |
| 6/12/2018  | <0.005      | <0.005    |               |              |              |               |
| 10/17/2018 | 0.00102 (J) | <0.005    |               |              |              |               |
| 11/19/2018 | 0.00692     | <0.005    |               |              |              |               |
| 4/10/2019  | <0.005      | <0.005    |               |              |              |               |
| 5/14/2019  | <0.005      | <0.005    |               |              |              |               |
| 10/8/2019  | <0.005      |           |               |              |              |               |
| 10/10/2019 |             | <0.005    |               |              |              |               |
| 10/16/2019 | 0.00108 (J) | <0.005    |               |              |              |               |
| 2/3/2020   | <0.005      | <0.005    |               |              |              |               |
| 8/3/2020   | 0.002 (J)   |           |               | 0.00366 (J)  |              |               |
| 8/4/2020   |             |           |               |              | <0.005       |               |
| 8/5/2020   |             | <0.005    | <0.005        |              |              | 0.00122 (J)   |
|            |             |           |               |              |              |               |

Constituent: Lead (mg/L) Analysis Run 10/19/2020 4:19 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

GS-GSA-PZ-19 GS-GSA-PZ-20 GS-GSA-PZ-21 GS-GSA-PZ-22 GS-GSA-PZ-17 8/3/2020 <0.005 <0.005 <0.005 <0.005 0.00582

|            | GS-GSA-MW-11H | GS-GSA-MW-12H | GS-GSA-MW-13H | GS-GSA-MW-3 | GS-GSA-MW-3V | GS-GSA-MW-4 |
|------------|---------------|---------------|---------------|-------------|--------------|-------------|
| 8/24/2016  |               |               |               | 0.362       |              | 0.291       |
| 10/3/2016  |               |               |               | 0.371       |              | 0.287       |
| 10/26/2016 |               |               |               | 0.416       |              | 0.298       |
| 11/21/2016 |               |               |               | 0.401       |              | 0.294       |
| 1/17/2017  |               |               |               | 0.497       |              | 0.27        |
| 3/20/2017  |               |               |               | 0.533       |              |             |
| 3/21/2017  |               |               |               |             |              | 0.258       |
| 4/17/2017  |               |               |               | 0.47        |              | 0.274       |
| 5/30/2017  |               |               |               | 0.479       |              | 0.285       |
| 2/13/2018  |               |               |               | 0.508       |              | 0.274       |
| 6/11/2018  |               |               |               | 0.425       |              | 0.266       |
| 10/17/2018 |               |               |               | 0.494       |              | 0.266       |
| 3/4/2019   | <0.02         |               |               |             |              |             |
| 3/5/2019   |               |               |               |             | 0.309        |             |
| 4/10/2019  |               |               |               | 0.425       |              | 0.282       |
| 10/14/2019 |               |               |               | 0.459       | 0.38         | 0.262       |
| 10/16/2019 | <0.02         |               |               |             |              |             |
| 11/26/2019 |               | 0.449         |               |             |              |             |
| 2/3/2020   |               |               |               | 0.474       | 0.46         |             |
| 2/4/2020   | <0.02         | 0.394         | 0.0506        |             |              | 0.29        |
| 8/4/2020   | <0.02         |               | 0.0534        | 0.468       | 0.395        |             |
| 8/5/2020   |               | 0.441         |               |             |              | 0.273       |
|            |               |               |               |             |              |             |

|            |              |             |              | •            |            | •          |
|------------|--------------|-------------|--------------|--------------|------------|------------|
|            | GS-GSA-MW-4V | GS-GSA-MW-8 | GS-GSA-MW-8V | GS-GSA-MW-9H | MW-1 (bg)  | MW-2 (bg)  |
| 4/25/2016  |              |             |              |              |            | 0.0353 (J) |
| 4/26/2016  |              |             |              |              | 0.0264 (J) |            |
| 6/20/2016  |              |             |              |              | 0.0246 (J) | 0.0583     |
| 8/8/2016   |              |             |              |              | 0.0229 (J) | 0.0627     |
| 8/24/2016  |              | 0.0683      |              |              | 0.0236 (J) | 0.0651     |
| 10/3/2016  |              | 0.0661      |              |              | 0.0229 (J) | 0.0622     |
| 10/26/2016 |              | 0.0681      |              |              | 0.0227 (J) | 0.0293 (J) |
| 11/21/2016 |              | 0.0682      |              |              | 0.0236 (J) | 0.0667     |
| 1/17/2017  |              | 0.0516      |              |              | 0.0228 (J) | 0.0636     |
| 3/20/2017  |              | 0.135       |              |              |            |            |
| 3/22/2017  |              |             |              |              | 0.0238 (J) | 0.0464 (J) |
| 4/18/2017  |              | 0.139       |              |              | 0.0242 (J) | 0.0446 (J) |
| 5/30/2017  |              | 0.141       |              |              | 0.0229 (J) |            |
| 5/31/2017  |              |             |              |              |            | 0.0496 (J) |
| 2/13/2018  |              | 0.163       |              |              | 0.0233 (J) | 0.0615     |
| 5/22/2018  |              |             |              |              | 0.0263 (J) | 0.0465 (J) |
| 6/12/2018  |              | 0.166       |              |              | 0.0251 (J) | 0.0472 (J) |
| 10/17/2018 |              | 0.188       |              |              | 0.025 (J)  | 0.0633     |
| 11/19/2018 |              |             |              |              | 0.0241     | 0.0584     |
| 3/5/2019   | 0.369        |             |              | 0.169        |            |            |
| 4/10/2019  |              | 0.195       |              |              | 0.0285     | 0.0574     |
| 5/14/2019  |              |             |              |              | 0.026 (J)  | 0.0445     |
| 10/8/2019  |              |             |              |              | 0.0268     | 0.0677     |
| 10/14/2019 | 0.317        | 0.209       |              |              |            |            |
| 10/16/2019 |              |             |              | 0.184        | 0.0263     | 0.0661     |
| 2/3/2020   | 0.332        |             |              |              | 0.0292     | 0.0534     |
| 2/4/2020   |              | 0.188       |              | 0.203        |            |            |
| 2/5/2020   |              |             | 0.327        |              |            |            |
| 8/3/2020   |              |             |              |              | 0.0259     | 0.0611     |
| 8/4/2020   |              |             |              | 0.166        |            |            |
| 8/5/2020   | 0.322        | 0.206       | 0.275        |              |            |            |
|            |              |             |              |              |            |            |

|            | MW-3 (bg) | MW-4 (bg)  | GS-GSA-MW-12V | GS-GSA-PZ-18 | GS-GSA-MW-9V | GS-GSA-MW-14H |  |
|------------|-----------|------------|---------------|--------------|--------------|---------------|--|
| 4/25/2016  | 0.0964    | 0.0528     |               |              |              |               |  |
| 6/20/2016  |           | 0.0554     |               |              |              |               |  |
| 6/22/2016  | 0.156     |            |               |              |              |               |  |
| 8/9/2016   | 0.122     | 0.0452 (J) |               |              |              |               |  |
| 8/24/2016  | 0.138     | 0.0488 (J) |               |              |              |               |  |
| 10/3/2016  |           | 0.0476 (J) |               |              |              |               |  |
| 10/4/2016  | 0.0966    |            |               |              |              |               |  |
| 10/26/2016 | 0.134     | 0.049 (J)  |               |              |              |               |  |
| 11/21/2016 | 0.167     | 0.0477 (J) |               |              |              |               |  |
| 1/18/2017  | 0.237     | 0.045 (J)  |               |              |              |               |  |
| 3/22/2017  | 0.203     | 0.0493 (J) |               |              |              |               |  |
| 4/18/2017  | 0.0764    | 0.0494 (J) |               |              |              |               |  |
| 5/31/2017  | 0.218     |            |               |              |              |               |  |
| 2/13/2018  | 0.0964    | 0.0446 (J) |               |              |              |               |  |
| 5/23/2018  |           | 0.0513     |               |              |              |               |  |
| 5/24/2018  | 0.145     |            |               |              |              |               |  |
| 6/12/2018  | 0.194     | 0.0511     |               |              |              |               |  |
| 10/17/2018 | 0.384     | 0.0532     |               |              |              |               |  |
| 11/19/2018 | 0.323     | 0.0467     |               |              |              |               |  |
| 4/10/2019  | 0.0905    | 0.0504     |               |              |              |               |  |
| 5/14/2019  | 0.0828    | 0.0485     |               |              |              |               |  |
| 10/8/2019  | 0.419     |            |               |              |              |               |  |
| 10/10/2019 |           | 0.054      |               |              |              |               |  |
| 10/16/2019 | 0.337     | 0.052      |               |              |              |               |  |
| 2/3/2020   | 0.0825    | 0.0556     |               |              |              |               |  |
| 8/3/2020   | 0.27      |            |               | 0.422        |              |               |  |
| 8/4/2020   |           |            |               |              | 0.364        |               |  |
| 8/5/2020   |           | 0.0519     | 0.334         |              |              | 0.512         |  |
|            |           |            |               |              |              |               |  |

Constituent: Lithium (mg/L) Analysis Run 10/19/2020 4:19 PM Plant Gorgas Client: Southern Company Data: Gorgas GSA

GS-GSA-PZ-19 GS-GSA-PZ-20 GS-GSA-PZ-21 GS-GSA-PZ-22 GS-GSA-PZ-17
8/3/2020 0.0753 0.102
8/4/2020 0.0558 1.39

|            | GS-GSA-MW-11H | GS-GSA-MW-12H | GS-GSA-MW-13H | GS-GSA-MW-3 | GS-GSA-MW-3V | GS-GSA-MW-4 |
|------------|---------------|---------------|---------------|-------------|--------------|-------------|
| 8/24/2016  |               |               |               | <0.0005     |              | <0.0005     |
| 10/3/2016  |               |               |               | <0.0005     |              | <0.0005     |
| 10/26/2016 |               |               |               | <0.0005     |              | <0.0005     |
| 11/21/2016 |               |               |               | <0.0005     |              | <0.0005     |
| 1/17/2017  |               |               |               | <0.0005     |              | <0.0005     |
| 3/20/2017  |               |               |               | <0.0005     |              |             |
| 3/21/2017  |               |               |               |             |              | <0.0005     |
| 4/17/2017  |               |               |               | <0.0005     |              | <0.0005     |
| 5/30/2017  |               |               |               | <0.0005     |              | <0.0005     |
| 2/13/2018  |               |               |               | <0.0005     |              | <0.0005     |
| 6/11/2018  |               |               |               | <0.0005     |              | <0.0005     |
| 10/17/2018 |               |               |               | <0.0005     |              | <0.0005     |
| 3/4/2019   | <0.0005       |               |               |             |              |             |
| 3/5/2019   |               |               |               |             | <0.0005      |             |
| 4/10/2019  |               |               |               | <0.0005     |              | <0.0005     |
| 10/14/2019 |               |               |               | <0.0005     | <0.0005      | <0.0005     |
| 10/16/2019 | <0.0005       |               |               |             |              |             |
| 11/26/2019 |               | <0.0005       |               |             |              |             |
| 2/3/2020   |               |               |               | <0.0005     | <0.0005      |             |
| 2/4/2020   | <0.0005       | <0.0005       | <0.0005       |             |              | <0.0005     |
| 8/4/2020   | <0.0005       |               | <0.0005       | <0.0005     | <0.0005      |             |
| 8/5/2020   |               | <0.0005       |               |             |              | <0.0005     |
|            |               |               |               |             |              |             |

|            | GS-GSA-MW-4V | GS-GSA-MW-8 | GS-GSA-MW-8V | GS-GSA-MW-9H | MW-1 (bg) | MW-2 (bg) |
|------------|--------------|-------------|--------------|--------------|-----------|-----------|
| 4/25/2016  |              |             |              |              |           | <0.0005   |
| 4/26/2016  |              |             |              |              | <0.0005   |           |
| 6/20/2016  |              |             |              |              | <0.0005   | <0.0005   |
| 8/8/2016   |              |             |              |              | <0.0005   | <0.0005   |
| 8/24/2016  |              | <0.0005     |              |              | <0.0005   | <0.0005   |
| 10/3/2016  |              | <0.0005     |              |              | <0.0005   | <0.0005   |
| 10/26/2016 |              | <0.0005     |              |              | <0.0005   | <0.0005   |
| 11/21/2016 |              | <0.0005     |              |              | <0.0005   | <0.0005   |
| 1/17/2017  |              | <0.0005     |              |              | <0.0005   | <0.0005   |
| 3/20/2017  |              | <0.0005     |              |              |           |           |
| 3/22/2017  |              |             |              |              | <0.0005   | <0.0005   |
| 4/18/2017  |              | <0.0005     |              |              | <0.0005   | <0.0005   |
| 5/30/2017  |              | <0.0005     |              |              | <0.0005   |           |
| 5/31/2017  |              |             |              |              |           | <0.0005   |
| 2/13/2018  |              | <0.0005     |              |              | <0.0005   | <0.0005   |
| 5/22/2018  |              |             |              |              | <0.0005   | <0.0005   |
| 6/12/2018  |              | <0.0005     |              |              | <0.0005   | <0.0005   |
| 10/17/2018 |              | <0.0005     |              |              | <0.0005   | <0.0005   |
| 11/19/2018 |              |             |              |              | <0.0005   | <0.0005   |
| 3/5/2019   | <0.0005      |             |              | <0.0005      |           |           |
| 4/10/2019  |              | <0.0005     |              |              | <0.0005   | <0.0005   |
| 5/14/2019  |              |             |              |              | <0.0005   | <0.0005   |
| 10/8/2019  |              |             |              |              | <0.0005   | <0.0005   |
| 10/14/2019 | <0.0005      | <0.0005     |              |              |           |           |
| 10/16/2019 |              |             |              | <0.0005      | <0.0005   | <0.0005   |
| 2/3/2020   | <0.0005      |             |              |              | <0.0005   | <0.0005   |
| 2/4/2020   |              | <0.0005     |              | <0.0005      |           |           |
| 2/5/2020   |              |             | <0.0005      |              |           |           |
| 8/3/2020   |              |             |              |              | <0.0005   | <0.0005   |
| 8/4/2020   |              |             |              | <0.0005      |           |           |
| 8/5/2020   | <0.0005      | <0.0005     | <0.0005      |              |           |           |
|            |              |             |              |              |           |           |

|            | MW-3 (bg) | MW-4 (bg) | GS-GSA-MW-12V | GS-GSA-PZ-18 | GS-GSA-MW-9V | GS-GSA-MW-14H |
|------------|-----------|-----------|---------------|--------------|--------------|---------------|
| 4/25/2016  | <0.0005   | <0.0005   |               |              |              |               |
| 6/20/2016  |           | <0.0005   |               |              |              |               |
| 6/22/2016  | <0.0005   |           |               |              |              |               |
| 8/9/2016   | <0.0005   | <0.0005   |               |              |              |               |
| 8/24/2016  | <0.0005   | <0.0005   |               |              |              |               |
| 10/3/2016  |           | <0.0005   |               |              |              |               |
| 10/4/2016  | <0.0005   |           |               |              |              |               |
| 10/26/2016 | <0.0005   | <0.0005   |               |              |              |               |
| 11/21/2016 | <0.0005   | <0.0005   |               |              |              |               |
| 1/18/2017  | <0.0005   | <0.0005   |               |              |              |               |
| 3/22/2017  | <0.0005   | <0.0005   |               |              |              |               |
| 4/18/2017  | <0.0005   | <0.0005   |               |              |              |               |
| 5/31/2017  | <0.0005   |           |               |              |              |               |
| 2/13/2018  | <0.0005   | <0.0005   |               |              |              |               |
| 5/23/2018  |           | <0.0005   |               |              |              |               |
| 5/24/2018  | <0.0005   |           |               |              |              |               |
| 6/12/2018  | <0.0005   | <0.0005   |               |              |              |               |
| 10/17/2018 | <0.0005   | <0.0005   |               |              |              |               |
| 11/19/2018 | <0.0005   | <0.0005   |               |              |              |               |
| 4/10/2019  | <0.0005   | <0.0005   |               |              |              |               |
| 5/14/2019  | <0.0005   | <0.0005   |               |              |              |               |
| 10/8/2019  | <0.0005   |           |               |              |              |               |
| 10/10/2019 |           | <0.0005   |               |              |              |               |
| 10/16/2019 | <0.0005   | <0.0005   |               |              |              |               |
| 2/3/2020   | <0.0005   | <0.0005   |               |              |              |               |
| 8/3/2020   | <0.0005   |           |               | <0.0005      |              |               |
| 8/4/2020   |           |           |               |              | <0.0005      |               |
| 8/5/2020   |           | <0.0005   | <0.0005       |              |              | <0.0005       |
|            |           |           |               |              |              |               |

Constituent: Mercury (mg/L) Analysis Run 10/19/2020 4:19 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

GS-GSA-PZ-19 GS-GSA-PZ-20 GS-GSA-PZ-21 GS-GSA-PZ-22 GS-GSA-PZ-17 <0.0005 <0.0005

8/4/2020 <0.0005 <0.0005 <0.0005

8/3/2020

Constituent: Molybdenum (mg/L) Analysis Run 10/19/2020 4:19 PM

Plant Gorgas Client: Southern Company Data: Gorgas GSA

|            | GS-GSA-MW-11H | GS-GSA-MW-12H | GS-GSA-MW-13H | GS-GSA-MW-3 | GS-GSA-MW-3V | GS-GSA-MW-4 |
|------------|---------------|---------------|---------------|-------------|--------------|-------------|
| 8/24/2016  |               |               |               | <0.01       |              | <0.01       |
| 10/3/2016  |               |               |               | <0.01       |              | <0.01       |
| 10/26/2016 |               |               |               | <0.01       |              | <0.01       |
| 11/21/2016 |               |               |               | <0.01       |              | <0.01       |
| 1/17/2017  |               |               |               | <0.01       |              | <0.01       |
| 3/20/2017  |               |               |               | <0.01       |              |             |
| 3/21/2017  |               |               |               |             |              | <0.01       |
| 4/17/2017  |               |               |               | <0.01       |              | <0.01       |
| 5/30/2017  |               |               |               | <0.01       |              | <0.01       |
| 2/13/2018  |               |               |               | <0.01       |              | <0.01       |
| 6/11/2018  |               |               |               | <0.01       |              | <0.01       |
| 10/17/2018 |               |               |               | <0.01       |              | <0.01       |
| 3/4/2019   | <0.01         |               |               |             |              |             |
| 3/5/2019   |               |               |               |             | 0.00347 (J)  |             |
| 4/10/2019  |               |               |               | <0.01       |              | <0.01       |
| 10/14/2019 |               |               |               | <0.01       | <0.01        | <0.01       |
| 10/16/2019 | <0.01         |               |               |             |              |             |
| 11/26/2019 |               | <0.01         |               |             |              |             |
| 2/3/2020   |               |               |               | <0.01       | <0.01        |             |
| 2/4/2020   | <0.01         | <0.01         | <0.01         |             |              | <0.01       |
| 8/4/2020   | <0.01         |               | <0.01         | <0.01       | <0.01        |             |
| 8/5/2020   |               | <0.01         |               |             |              | <0.01       |
|            |               |               |               |             |              |             |

|            | GS-GSA-MW-4V | GS-GSA-MW-8 | GS-GSA-MW-8V | GS-GSA-MW-9H | MW-1 (bg) | MW-2 (bg) |
|------------|--------------|-------------|--------------|--------------|-----------|-----------|
| 4/25/2016  |              |             |              |              |           | <0.01     |
| 4/26/2016  |              |             |              |              | <0.01     |           |
| 6/20/2016  |              |             |              |              | <0.01     | <0.01     |
| 8/8/2016   |              |             |              |              | <0.01     | <0.01     |
| 8/24/2016  |              | 0.0031 (J)  |              |              | <0.01     | <0.01     |
| 10/3/2016  |              | <0.01       |              |              | <0.01     | <0.01     |
| 10/26/2016 |              | <0.01       |              |              | <0.01     | <0.01     |
| 11/21/2016 |              | <0.01       |              |              | <0.01     | <0.01     |
| 1/17/2017  |              | <0.01       |              |              | <0.01     | <0.01     |
| 3/20/2017  |              | <0.01       |              |              |           |           |
| 3/22/2017  |              |             |              |              | <0.01     | <0.01     |
| 4/18/2017  |              | <0.01       |              |              | <0.01     | <0.01     |
| 5/30/2017  |              | <0.01       |              |              | <0.01     |           |
| 5/31/2017  |              |             |              |              |           | <0.01     |
| 2/13/2018  |              | <0.01       |              |              | <0.01     | <0.01     |
| 5/22/2018  |              |             |              |              | <0.01     | <0.01     |
| 6/12/2018  |              | <0.01       |              |              | <0.01     | <0.01     |
| 10/17/2018 |              | <0.01       |              |              | <0.01     | <0.01     |
| 11/19/2018 |              |             |              |              | <0.01     | <0.01     |
| 3/5/2019   | <0.01        |             |              | <0.01        |           |           |
| 4/10/2019  |              | <0.01       |              |              | <0.01     | <0.01     |
| 5/14/2019  |              |             |              |              | <0.01     | <0.01     |
| 10/8/2019  |              |             |              |              | <0.01     | <0.01     |
| 10/14/2019 | <0.01        | <0.01       |              |              |           |           |
| 10/16/2019 |              |             |              | <0.01        | <0.01     | <0.01     |
| 2/3/2020   | <0.01        |             |              |              | <0.01     | <0.01     |
| 2/4/2020   |              | <0.01       |              | <0.01        |           |           |
| 2/5/2020   |              |             | <0.01        |              |           |           |
| 8/3/2020   |              |             |              |              | <0.01     | <0.01     |
| 8/4/2020   |              |             |              | <0.01        |           |           |
| 8/5/2020   | <0.01        | <0.01       | <0.01        |              |           |           |
|            | <0.01        | <0.01       | <0.01        | <0.01        |           |           |

|            | MW-3 (bg) | MW-4 (bg) | GS-GSA-MW-12V | GS-GSA-PZ-18 | GS-GSA-MW-9V | GS-GSA-MW-14H |
|------------|-----------|-----------|---------------|--------------|--------------|---------------|
| 4/25/2016  | <0.01     | <0.01     |               |              |              |               |
| 6/20/2016  |           | <0.01     |               |              |              |               |
| 6/22/2016  | <0.01     |           |               |              |              |               |
| 8/9/2016   | <0.01     | <0.01     |               |              |              |               |
| 8/24/2016  | <0.01     | <0.01     |               |              |              |               |
| 10/3/2016  |           | <0.01     |               |              |              |               |
| 10/4/2016  | <0.01     |           |               |              |              |               |
| 10/26/2016 | <0.01     | <0.01     |               |              |              |               |
| 11/21/2016 | <0.01     | <0.01     |               |              |              |               |
| 1/18/2017  | <0.01     | <0.01     |               |              |              |               |
| 3/22/2017  | <0.01     | <0.01     |               |              |              |               |
| 4/18/2017  | <0.01     | <0.01     |               |              |              |               |
| 5/31/2017  | <0.01     |           |               |              |              |               |
| 2/13/2018  | <0.01     | <0.01     |               |              |              |               |
| 5/23/2018  |           | <0.01     |               |              |              |               |
| 5/24/2018  | <0.01     |           |               |              |              |               |
| 6/12/2018  | <0.01     | <0.01     |               |              |              |               |
| 10/17/2018 | <0.01     | <0.01     |               |              |              |               |
| 11/19/2018 | <0.01     | <0.01     |               |              |              |               |
| 4/10/2019  | <0.01     | <0.01     |               |              |              |               |
| 5/14/2019  | <0.01     | <0.01     |               |              |              |               |
| 10/8/2019  | <0.01     |           |               |              |              |               |
| 10/10/2019 |           | <0.01     |               |              |              |               |
| 10/16/2019 | <0.01     | <0.01     |               |              |              |               |
| 2/3/2020   | <0.01     | <0.01     |               |              |              |               |
| 8/3/2020   | <0.01     |           |               | <0.01        |              |               |
| 8/4/2020   |           |           |               |              | 0.00423 (J)  |               |
| 8/5/2020   |           | <0.01     | 0.00247 (J)   |              |              | <0.01         |
|            |           |           |               |              |              |               |

Constituent: Molybdenum (mg/L) Analysis Run 10/19/2020 4:19 PM Plant Gorgas Client: Southern Company Data: Gorgas GSA

GS-GSA-PZ-19 GS-GSA-PZ-20 GS-GSA-PZ-21 GS-GSA-PZ-22 GS-GSA-PZ-17 8/3/2020 <0.01 <0.01

8/4/2020 0.00347 (J) 0.00267 (J) <0.01

|            | GS-GSA-MW-11H | GS-GSA-MW-12H | GS-GSA-MW-13H | GS-GSA-MW-3 | GS-GSA-MW-3V | GS-GSA-MW-4 |
|------------|---------------|---------------|---------------|-------------|--------------|-------------|
| 8/24/2016  |               |               |               | 6.28        |              | 3.83 (E)    |
| 10/3/2016  |               |               |               | 6.28        |              | 3.82 (E)    |
| 10/26/2016 |               |               |               | 6.19        |              | 3.81 (E)    |
| 11/21/2016 |               |               |               | 6.2         |              | 3.81        |
| 1/17/2017  |               |               |               | 6.13        |              | 3.78        |
| 3/20/2017  |               |               |               | 6.17        |              |             |
| 3/21/2017  |               |               |               |             |              | 3.76        |
| 4/17/2017  |               |               |               | 5.6         |              | 3.76        |
| 5/30/2017  |               |               |               | 6.07        |              | 3.76        |
| 8/24/2017  |               |               |               | 5.99        |              | 3.7         |
| 2/13/2018  |               |               |               | 5.88        |              | 3.73        |
| 6/11/2018  |               |               |               | 5.91        |              | 3.8         |
| 10/17/2018 |               |               |               | 5.88        |              | 3.81        |
| 3/4/2019   | 6.04          |               |               |             |              |             |
| 3/5/2019   |               |               |               |             | 6.7          |             |
| 4/10/2019  |               |               |               | 5.83        |              | 3.83        |
| 10/14/2019 |               |               |               | 6.04        | 6.39         | 3.91        |
| 10/16/2019 | 6.07          |               |               |             |              |             |
| 2/3/2020   |               |               |               | 5.98        | 5.88         |             |
| 2/4/2020   | 6.02          | 4.57          | 6             |             |              | 3.83        |
| 8/4/2020   | 5.74          |               | 5.89          | 6.09        | 5.9          |             |
| 8/5/2020   |               | 4.13          |               |             |              | 3.86        |
|            |               |               |               |             |              |             |

|            |              |             | i idiit (    | aorgao Olioni. Oot | anom company 2 | ata. dorgao dort |
|------------|--------------|-------------|--------------|--------------------|----------------|------------------|
|            | GS-GSA-MW-4V | GS-GSA-MW-8 | GS-GSA-MW-8V | GS-GSA-MW-9H       | MW-1 (bg)      | MW-2 (bg)        |
| 4/25/2016  |              |             |              |                    |                | 5.94             |
| 4/26/2016  |              |             |              |                    | 5.2            |                  |
| 6/20/2016  |              |             |              |                    | 5.18           | 5.96             |
| 8/8/2016   |              |             |              |                    | 5.12           | 5.88             |
| 8/24/2016  |              | 6.78        |              |                    |                |                  |
| 10/3/2016  |              | 6.71        |              |                    | 5.21 (D)       | 5.91 (D)         |
| 10/26/2016 |              | 6.65        |              |                    | 5.2            | 5.84             |
| 11/21/2016 |              | 6.7         |              |                    | 5.19 (D)       | 5.82 (D)         |
| 1/17/2017  |              | 6.25        |              |                    | 5.17 (D)       | 5.87 (D)         |
| 3/20/2017  |              | 7.04        |              |                    |                |                  |
| 3/22/2017  |              |             |              |                    | 5.2 (D)        | 6.01 (D)         |
| 4/18/2017  |              | 6.99        |              |                    | 5.2            | 6.02             |
| 5/30/2017  |              | 6.98        |              |                    | 5.14 (D)       |                  |
| 5/31/2017  |              |             |              |                    |                | 5.85 (D)         |
| 8/23/2017  |              |             |              |                    | 5.12 (D)       | 5.89 (D)         |
| 8/24/2017  |              | 6.89        |              |                    |                |                  |
| 2/13/2018  |              | 6.85        |              |                    | 5.18           | 6.21             |
| 5/22/2018  |              |             |              |                    | 5.2            | 6.04             |
| 6/12/2018  |              | 6.83        |              |                    | 5.15           | 5.95             |
| 10/17/2018 |              | 6.81        |              |                    | 5.12           | 5.9              |
| 11/19/2018 |              |             |              |                    | 5.09 (D)       | 6.03 (D)         |
| 3/5/2019   | 6.19         |             |              | 5.88               |                |                  |
| 4/10/2019  |              | 6.71        |              |                    | 5.11           | 6.1              |
| 5/14/2019  |              |             |              |                    | 5.19           | 6.07             |
| 10/8/2019  |              |             |              |                    | 5.12           | 5.96             |
| 10/14/2019 | 5.89         | 6.88        |              |                    |                |                  |
| 10/16/2019 |              |             |              | 5.43               | 5.16           | 5.98             |
| 2/3/2020   | 5.84         |             |              |                    | 5              | 5.95             |
| 2/4/2020   |              | 6.85        |              | 5.34               |                |                  |
| 2/5/2020   |              |             | 7.48         |                    |                |                  |
| 8/3/2020   |              |             |              |                    | 5.08           | 5.95             |
| 8/4/2020   |              |             |              | 5.33               |                |                  |
| 8/5/2020   | 5.81         | 6.76        | 7.58         |                    |                |                  |

|     |          | MW-3 (bg) | MW-4 (bg) | GS-GSA-MW-12V | GS-GSA-PZ-18 | GS-GSA-MW-9V | GS-GSA-MW-14H |
|-----|----------|-----------|-----------|---------------|--------------|--------------|---------------|
| 4/2 | 25/2016  | 5.56      | 6.22      |               |              |              |               |
| 6/2 | 20/2016  |           | 6.21      |               |              |              |               |
| 6/2 | 22/2016  | 5.57      |           |               |              |              |               |
| 8/9 | 9/2016   | 5.67      | 6.11      |               |              |              |               |
| 8/2 | 24/2016  | 5.63      | 6.11      |               |              |              |               |
| 10  | /3/2016  |           | 6.13 (D)  |               |              |              |               |
| 10  | /4/2016  | 5.69 (D)  |           |               |              |              |               |
| 10  | /26/2016 | 5.56      | 6.12      |               |              |              |               |
| 11  | /21/2016 | 5.42 (D)  | 6.09 (D)  |               |              |              |               |
| 1/1 | 18/2017  | 5.11 (D)  | 6.09 (D)  |               |              |              |               |
| 3/2 | 22/2017  | 4.52 (D)  | 6.15 (D)  |               |              |              |               |
| 4/1 | 18/2017  | 5.84      | 6.19      |               |              |              |               |
|     | 31/2017  | 4.56 (D)  |           |               |              |              |               |
|     | 23/2017  | 4.77 (D)  | 6.12      |               |              |              |               |
|     | 13/2018  | 5.67      | 6.22      |               |              |              |               |
|     | 23/2018  |           | 6.21      |               |              |              |               |
|     | 24/2018  | 5.19      |           |               |              |              |               |
|     | 12/2018  | 4.79      | 6.16      |               |              |              |               |
|     | /17/2018 | 4.75      | 6.12      |               |              |              |               |
|     | /19/2018 | 3.77 (D)  | 6.16 (D)  |               |              |              |               |
|     | 10/2019  | 5.54      | 6.14      |               |              |              |               |
|     | 14/2019  | 5.71      | 6.23      |               |              |              |               |
|     | /8/2019  | 4.98      | 0.23      |               |              |              |               |
|     | /10/2019 | 4.50      | 6.15      |               |              |              |               |
|     | /16/2019 | 4.51      | 6.19      |               |              |              |               |
|     |          | 4.51      |           |               |              |              |               |
|     | 3/2020   | 5.54      | 6.14      |               | 4.00         |              |               |
|     | 3/2020   | 5.06      |           |               | 4.09         | 0.00         |               |
|     | 1/2020   |           |           |               |              | 6.88         |               |
| 8/5 | 5/2020   |           | 6.15      | 6.15          |              |              | 3.83          |

|          | GS-GSA-PZ-19 | GS-GSA-PZ-20 | GS-GSA-PZ-21 | GS-GSA-PZ-22 | GS-GSA-PZ-17 |
|----------|--------------|--------------|--------------|--------------|--------------|
| 8/3/2020 | 6.32         | 6.03         |              |              |              |
| 8/4/2020 |              |              | 6.04         | 6.42         | 4.08         |

|            | GS-GSA-MW-11H | GS-GSA-MW-12H | GS-GSA-MW-13H | GS-GSA-MW-3 | GS-GSA-MW-3V | GS-GSA-MW-4 |
|------------|---------------|---------------|---------------|-------------|--------------|-------------|
| 8/24/2016  |               |               |               | <0.01       |              | 0.00234 (J) |
| 10/3/2016  |               |               |               | <0.01       |              | 0.00739 (J) |
| 10/26/2016 |               |               |               | <0.01       |              | 0.00266 (J) |
| 11/21/2016 |               |               |               | <0.01       |              | 0.00212 (J) |
| 1/17/2017  |               |               |               | <0.01       |              | 0.00263 (J) |
| 3/20/2017  |               |               |               | <0.01       |              |             |
| 3/21/2017  |               |               |               |             |              | 0.00588 (J) |
| 4/17/2017  |               |               |               | 0.00521 (J) |              | 0.00579 (J) |
| 5/30/2017  |               |               |               | <0.01       |              | 0.00471 (J) |
| 2/13/2018  |               |               |               | 0.00267 (J) |              | 0.00498 (J) |
| 6/11/2018  |               |               |               | 0.00236 (J) |              | 0.00388 (J) |
| 10/17/2018 |               |               |               | <0.01       |              | <0.01       |
| 3/4/2019   | <0.01         |               |               |             |              |             |
| 3/5/2019   |               |               |               |             | <0.01        |             |
| 4/10/2019  |               |               |               | 0.00234 (J) |              | 0.00322 (J) |
| 10/14/2019 |               |               |               | <0.01       | <0.01        | <0.01       |
| 10/16/2019 | <0.01         |               |               |             |              |             |
| 11/26/2019 |               | 0.00614 (J)   |               |             |              |             |
| 2/3/2020   |               |               |               | <0.01       | <0.01        |             |
| 2/4/2020   | <0.01         | <0.01         | <0.01         |             |              | <0.01       |
| 8/4/2020   | <0.01         |               | <0.01         | <0.01       | <0.01        |             |
| 8/5/2020   |               | 0.00417 (J)   |               |             |              | 0.00298 (J) |
|            |               |               |               |             |              |             |

|            | GS-GSA-MW-4V | GS-GSA-MW-8 | GS-GSA-MW-8V | GS-GSA-MW-9H | MW-1 (bg)   | MW-2 (bg)   |
|------------|--------------|-------------|--------------|--------------|-------------|-------------|
| 4/25/2016  |              |             |              |              |             | <0.01       |
| 4/26/2016  |              |             |              |              | 0.00261 (J) |             |
| 6/20/2016  |              |             |              |              | 0.00242 (J) | <0.01       |
| 8/8/2016   |              |             |              |              | 0.00253 (J) | <0.01       |
| 8/24/2016  |              | <0.01       |              |              | <0.01       | <0.01       |
| 10/3/2016  |              | <0.01       |              |              | 0.00211 (J) | <0.01       |
| 10/26/2016 |              | <0.01       |              |              | <0.01       | <0.01       |
| 11/21/2016 |              | <0.01       |              |              | <0.01       | <0.01       |
| 1/17/2017  |              | <0.01       |              |              | <0.01       | <0.01       |
| 3/20/2017  |              | <0.01       |              |              |             |             |
| 3/22/2017  |              |             |              |              | 0.0022 (J)  | <0.01       |
| 4/18/2017  |              | <0.01       |              |              | 0.0027 (J)  | <0.01       |
| 5/30/2017  |              | <0.01       |              |              | 0.00316 (J) |             |
| 5/31/2017  |              |             |              |              |             | <0.01       |
| 2/13/2018  |              | <0.01       |              |              | 0.00211 (J) | <0.01       |
| 5/22/2018  |              |             |              |              | 0.00372 (J) | <0.01       |
| 6/12/2018  |              | <0.01       |              |              | 0.00409 (J) | <0.01       |
| 10/17/2018 |              | <0.01       |              |              | <0.01       | <0.01       |
| 11/19/2018 |              |             |              |              | <0.01       | <0.01       |
| 3/5/2019   | <0.01        |             |              | <0.01        |             |             |
| 4/10/2019  |              | <0.01       |              |              | 0.00471 (J) | 0.00322 (J) |
| 5/14/2019  |              |             |              |              | 0.00316 (J) | <0.01       |
| 10/8/2019  |              |             |              |              | <0.01       | <0.01       |
| 10/14/2019 | <0.01        | <0.01       |              |              |             |             |
| 10/16/2019 |              |             |              | <0.01        | <0.01       | <0.01       |
| 2/3/2020   | <0.01        |             |              |              | 0.00272 (J) | <0.01       |
| 2/4/2020   |              | <0.01       |              | <0.01        |             |             |
| 2/5/2020   |              |             | <0.01        |              |             |             |
| 8/3/2020   |              |             |              |              | 0.00278 (J) | <0.01       |
| 8/4/2020   |              |             |              | <0.01        |             |             |
| 8/5/2020   | <0.01        | <0.01       | <0.01        |              |             |             |
|            |              |             |              |              |             |             |

|            | MW-3 (bg)   | MW-4 (bg)   | GS-GSA-MW-12V | GS-GSA-PZ-18 | GS-GSA-MW-9V | GS-GSA-MW-14H |
|------------|-------------|-------------|---------------|--------------|--------------|---------------|
| 4/25/2016  | <0.01       | <0.01       |               |              |              |               |
| 6/20/2016  |             | <0.01       |               |              |              |               |
| 6/22/2016  | <0.01       |             |               |              |              |               |
| 8/9/2016   | <0.01       | <0.01       |               |              |              |               |
| 8/24/2016  | <0.01       | <0.01       |               |              |              |               |
| 10/3/2016  |             | <0.01       |               |              |              |               |
| 10/4/2016  | <0.01       |             |               |              |              |               |
| 10/26/2016 | <0.01       | <0.01       |               |              |              |               |
| 11/21/2016 | <0.01       | <0.01       |               |              |              |               |
| 1/18/2017  | <0.01       | <0.01       |               |              |              |               |
| 3/22/2017  | 0.0141      | <0.01       |               |              |              |               |
| 4/18/2017  | 0.0158      | <0.01       |               |              |              |               |
| 5/31/2017  | 0.00632 (J) |             |               |              |              |               |
| 2/13/2018  | 0.0209 (o)  | 0.00403 (J) |               |              |              |               |
| 5/23/2018  |             | <0.01       |               |              |              |               |
| 5/24/2018  | 0.00918 (J) |             |               |              |              |               |
| 6/12/2018  | 0.00836 (J) | <0.01       |               |              |              |               |
| 10/17/2018 | <0.01       | <0.01       |               |              |              |               |
| 11/19/2018 | 0.00439 (J) | 0.00436 (J) |               |              |              |               |
| 4/10/2019  | 0.0113      | <0.01       |               |              |              |               |
| 5/14/2019  | 0.0119      | 0.00201 (J) |               |              |              |               |
| 10/8/2019  | 0.00256 (J) |             |               |              |              |               |
| 10/10/2019 |             | <0.01       |               |              |              |               |
| 10/16/2019 | 0.00286 (J) | <0.01       |               |              |              |               |
| 2/3/2020   | 0.012       | 0.00212 (J) |               |              |              |               |
| 8/3/2020   | 0.0146      |             |               | 0.00616 (J)  |              |               |
| 8/4/2020   |             |             |               |              | <0.01        |               |
| 8/5/2020   |             | 0.00232 (J) | <0.01         |              |              | 0.00571 (J)   |
|            |             |             |               |              |              |               |

Constituent: Selenium (mg/L) Analysis Run 10/19/2020 4:19 PM Plant Gorgas Client: Southern Company Data: Gorgas GSA

GS-GSA-PZ-19 GS-GSA-PZ-20 GS-GSA-PZ-21 GS-GSA-PZ-22 GS-GSA-PZ-17 8/3/2020 <0.01 <0.01 <0.01 0.0135

|            | GS-GSA-MW-11H | GS-GSA-MW-12H | GS-GSA-MW-13H | GS-GSA-MW-3 | GS-GSA-MW-3V | GS-GSA-MW-4 |
|------------|---------------|---------------|---------------|-------------|--------------|-------------|
| 8/24/2016  |               |               |               | 2910        |              | 567         |
| 10/3/2016  |               |               |               | 2980        |              | 596         |
| 10/26/2016 |               |               |               | 2790        |              | 585         |
| 11/21/2016 |               |               |               | 2880        |              | 593         |
| 1/17/2017  |               |               |               | 2950        |              | 637         |
| 3/20/2017  |               |               |               | 2800        |              |             |
| 3/21/2017  |               |               |               |             |              | 530         |
| 4/17/2017  |               |               |               | 2400        |              | 530         |
| 5/30/2017  |               |               |               | 2900        |              | 530         |
| 8/24/2017  |               |               |               | 2900        |              | 530         |
| 6/11/2018  |               |               |               | 2900        |              | 540         |
| 10/17/2018 |               |               |               | 2800        |              | 520         |
| 3/4/2019   | 785           |               |               |             |              |             |
| 3/5/2019   |               |               |               |             | 1170         |             |
| 4/10/2019  |               |               |               | 2980        |              | 616         |
| 10/14/2019 |               |               |               | 3110        | 1710         | 641         |
| 10/16/2019 | 750           |               |               |             |              |             |
| 11/26/2019 |               | 997           |               |             |              |             |
| 2/3/2020   |               |               |               | 2840        | 1970         |             |
| 2/4/2020   | 725           | 978           | 720           |             |              | 571         |
| 8/4/2020   | 694           |               | 773           | 2820        | 1860         |             |
| 8/5/2020   |               | 811           |               |             |              | 519         |
|            |               |               |               |             |              |             |

|            | GS-GSA-MW-4V | GS-GSA-MW-8 | GS-GSA-MW-8V | GS-GSA-MW-9H | MW-1 (bg) | MW-2 (bg) |
|------------|--------------|-------------|--------------|--------------|-----------|-----------|
| 4/25/2016  |              |             |              |              |           | 745       |
| 4/26/2016  |              |             |              |              | 1490      |           |
| 6/20/2016  |              |             |              |              | 1420      | 964       |
| 8/8/2016   |              |             |              |              | 1460      | 1100      |
| 8/24/2016  |              | 1250        |              |              | 1450      | 1130      |
| 10/3/2016  |              | 1270        |              |              | 1460      | 1140      |
| 10/26/2016 |              | 1240        |              |              | 1330      | 1060      |
| 11/21/2016 |              | 1210        |              |              | 1420      | 1100      |
| 1/17/2017  |              | 1150        |              |              | 1350      | 1160      |
| 3/20/2017  |              | 1400        |              |              |           |           |
| 3/22/2017  |              |             |              |              | 1500      | 900       |
| 4/18/2017  |              | 1300        |              |              | 1300      | 870       |
| 5/30/2017  |              | 1500        |              |              | 1400      |           |
| 5/31/2017  |              |             |              |              |           | 1100      |
| 8/23/2017  |              |             |              |              | 1500      | 920       |
| 8/24/2017  |              | 1800        |              |              |           |           |
| 5/22/2018  |              |             |              |              | 2100      | 1200      |
| 6/12/2018  |              | 1800        |              |              | 1500      | 860       |
| 10/17/2018 |              | 1600        |              |              | 1400      | 970       |
| 11/19/2018 |              |             |              |              | 1300      | 1000      |
| 3/5/2019   | 871          |             |              | 2010         |           |           |
| 4/10/2019  |              | 2150        |              |              | 1700      | 889       |
| 5/14/2019  |              |             |              |              | 1560      | 948       |
| 10/8/2019  |              |             |              |              | 1540      | 1230      |
| 10/14/2019 | 818          | 2090        |              |              |           |           |
| 10/16/2019 |              |             |              | 2020         | 1680      | 1170      |
| 2/3/2020   | 808          |             |              |              | 1510      | 803       |
| 2/4/2020   |              | 1570        |              | 1710         |           |           |
| 2/5/2020   |              |             | 223          |              |           |           |
| 8/3/2020   |              |             |              |              | 1370      | 907       |
| 8/4/2020   |              |             |              | 1790         |           |           |
| 8/5/2020   | 761          | 1880        | 243          |              |           |           |
|            |              |             |              |              |           |           |

|            | MW-3 (bg) | MW-4 (bg) | GS-GSA-MW-12V | GS-GSA-PZ-18 | GS-GSA-MW-9V | GS-GSA-MW-14H |
|------------|-----------|-----------|---------------|--------------|--------------|---------------|
| 4/25/2016  | 1890      | 2260      |               |              |              |               |
| 6/20/2016  |           | 2500      |               |              |              |               |
| 6/22/2016  | 2100      |           |               |              |              |               |
| 8/9/2016   | 2050      | 2750      |               |              |              |               |
| 8/24/2016  | 2190      | 2770      |               |              |              |               |
| 10/3/2016  |           | 3060      |               |              |              |               |
| 10/4/2016  | 1950      |           |               |              |              |               |
| 10/26/2016 | 1980      | 2650      |               |              |              |               |
| 11/21/2016 | 2060      | 2720      |               |              |              |               |
| 1/18/2017  | 2620      | 2650      |               |              |              |               |
| 3/22/2017  | 3200      | 2700      |               |              |              |               |
| 4/18/2017  | 2500      | 2400      |               |              |              |               |
| 5/31/2017  | 2800      |           |               |              |              |               |
| 8/23/2017  | 2600      | 2700      |               |              |              |               |
| 5/23/2018  |           | 2400      |               |              |              |               |
| 5/24/2018  | 2700      |           |               |              |              |               |
| 6/12/2018  | 2500      | 2600      |               |              |              |               |
| 10/17/2018 | 2700      | 2600      |               |              |              |               |
| 11/19/2018 | 3000      | 2400      |               |              |              |               |
| 4/10/2019  | 2460      | 2090      |               |              |              |               |
| 5/14/2019  | 2460      | 2240      |               |              |              |               |
| 10/8/2019  | 2950      |           |               |              |              |               |
| 10/10/2019 |           | 2690      |               |              |              |               |
| 10/16/2019 | 2820      | 3050      |               |              |              |               |
| 2/3/2020   | 2290      | 1920      |               |              |              |               |
| 8/3/2020   | 2330      |           |               | 729          |              |               |
| 8/4/2020   |           |           |               |              | 1700         |               |
| 8/5/2020   |           | 1930      | 1830          |              |              | 796           |
|            |           |           |               |              |              |               |

|          | GS-GSA-PZ-19 | GS-GSA-PZ-20 | GS-GSA-PZ-21 | GS-GSA-PZ-22 | GS-GSA-PZ-17 |
|----------|--------------|--------------|--------------|--------------|--------------|
| 8/3/2020 | 210          | 379          |              |              |              |
| 8/4/2020 |              |              | 23.8         | 340          | 1310         |

|            | GS-GSA-MW-11H | GS-GSA-MW-12H | GS-GSA-MW-13H | GS-GSA-MW-3 | GS-GSA-MW-3V | GS-GSA-MW-4  |
|------------|---------------|---------------|---------------|-------------|--------------|--------------|
| 8/24/2016  |               |               |               | <0.001      |              | <0.001       |
| 10/3/2016  |               |               |               | <0.001      |              | <0.001       |
| 10/26/2016 |               |               |               | <0.001      |              | <0.001       |
| 11/21/2016 |               |               |               | <0.001      |              | <0.001       |
| 1/17/2017  |               |               |               | <0.001      |              | <0.001       |
| 3/20/2017  |               |               |               | <0.001      |              |              |
| 3/21/2017  |               |               |               |             |              | <0.001       |
| 4/17/2017  |               |               |               | <0.001      |              | <0.001       |
| 5/30/2017  |               |               |               | <0.001      |              | <0.001       |
| 2/13/2018  |               |               |               | <0.001      |              | <0.001       |
| 6/11/2018  |               |               |               | <0.001      |              | <0.001       |
| 10/17/2018 |               |               |               | <0.001      |              | <0.001       |
| 3/4/2019   | <0.001        |               |               |             |              |              |
| 3/5/2019   |               |               |               |             | <0.001       |              |
| 4/10/2019  |               |               |               | <0.001      |              | <0.001       |
| 10/14/2019 |               |               |               | <0.001      | <0.001       | <0.001       |
| 10/16/2019 | <0.001        |               |               |             |              |              |
| 11/26/2019 |               | 0.000375 (J)  |               |             |              |              |
| 2/3/2020   |               |               |               | <0.001      | <0.001       |              |
| 2/4/2020   | <0.001        | 0.000491 (J)  | <0.001        |             |              | <0.001       |
| 8/4/2020   | <0.001        |               | <0.001        | <0.001      | <0.001       |              |
| 8/5/2020   |               | 0.000297 (J)  |               |             |              | 0.000205 (J) |
|            |               |               |               |             |              |              |

|            | GS-GSA-MW-4V | GS-GSA-MW-8 | GS-GSA-MW-8V | GS-GSA-MW-9H | MW-1 (bg) | MW-2 (bg) |
|------------|--------------|-------------|--------------|--------------|-----------|-----------|
| 4/25/2016  |              |             |              |              |           | <0.001    |
| 4/26/2016  |              |             |              |              | <0.001    |           |
| 6/20/2016  |              |             |              |              | <0.001    | <0.001    |
| 8/8/2016   |              |             |              |              | <0.001    | <0.001    |
| 8/24/2016  |              | <0.001      |              |              | <0.001    | <0.001    |
| 10/3/2016  |              | <0.001      |              |              | <0.001    | <0.001    |
| 10/26/2016 |              | <0.001      |              |              | <0.001    | <0.001    |
| 11/21/2016 |              | <0.001      |              |              | <0.001    | <0.001    |
| 1/17/2017  |              | <0.001      |              |              | <0.001    | <0.001    |
| 3/20/2017  |              | <0.001      |              |              |           |           |
| 3/22/2017  |              |             |              |              | <0.001    | <0.001    |
| 4/18/2017  |              | <0.001      |              |              | <0.001    | <0.001    |
| 5/30/2017  |              | <0.001      |              |              | <0.001    |           |
| 5/31/2017  |              |             |              |              |           | <0.001    |
| 2/13/2018  |              | <0.001      |              |              | <0.001    | <0.001    |
| 5/22/2018  |              |             |              |              | <0.001    | <0.001    |
| 6/12/2018  |              | <0.001      |              |              | <0.001    | <0.001    |
| 10/17/2018 |              | <0.001      |              |              | <0.001    | <0.001    |
| 11/19/2018 |              |             |              |              | <0.001    | <0.001    |
| 3/5/2019   | <0.001       |             |              | 0.00021 (J)  |           |           |
| 4/10/2019  |              | <0.001      |              |              | <0.001    | <0.001    |
| 5/14/2019  |              |             |              |              | <0.001    | <0.001    |
| 10/8/2019  |              |             |              |              | <0.001    | <0.001    |
| 10/14/2019 | <0.001       | <0.001      |              |              |           |           |
| 10/16/2019 |              |             |              | 0.000262 (J) | <0.001    | <0.001    |
| 2/3/2020   | <0.001       |             |              |              | <0.001    | <0.001    |
| 2/4/2020   |              | <0.001      |              | 0.000233 (J) |           |           |
| 2/5/2020   |              |             | <0.001       |              |           |           |
| 8/3/2020   |              |             |              |              | <0.001    | <0.001    |
| 8/4/2020   |              |             |              | 0.000265 (J) |           |           |
| 8/5/2020   | <0.001       | <0.001      | <0.001       |              |           |           |
|            |              |             |              |              |           |           |

|            | MW-3 (bg)    | MW-4 (bg) | GS-GSA-MW-12V | GS-GSA-PZ-18 | GS-GSA-MW-9V | GS-GSA-MW-14H |  |
|------------|--------------|-----------|---------------|--------------|--------------|---------------|--|
| 4/25/2016  | 0.000205 (J) | <0.001    |               |              |              |               |  |
| 6/20/2016  |              | <0.001    |               |              |              |               |  |
| 6/22/2016  | <0.001       |           |               |              |              |               |  |
| 8/9/2016   | <0.001       | <0.001    |               |              |              |               |  |
| 8/24/2016  | <0.001       | <0.001    |               |              |              |               |  |
| 10/3/2016  |              | <0.001    |               |              |              |               |  |
| 10/4/2016  | <0.001       |           |               |              |              |               |  |
| 10/26/2016 | 0.000209 (J) | <0.001    |               |              |              |               |  |
| 11/21/2016 | <0.001       | <0.001    |               |              |              |               |  |
| 1/18/2017  | <0.001       | <0.001    |               |              |              |               |  |
| 3/22/2017  | <0.001       | <0.001    |               |              |              |               |  |
| 4/18/2017  | <0.001       | <0.001    |               |              |              |               |  |
| 5/31/2017  | <0.001       |           |               |              |              |               |  |
| 2/13/2018  | <0.001       | <0.001    |               |              |              |               |  |
| 5/23/2018  |              | <0.001    |               |              |              |               |  |
| 5/24/2018  | <0.001       |           |               |              |              |               |  |
| 6/12/2018  | <0.001       | <0.001    |               |              |              |               |  |
| 10/17/2018 | <0.001       | <0.001    |               |              |              |               |  |
| 11/19/2018 | 0.000226 (J) | <0.001    |               |              |              |               |  |
| 4/10/2019  | <0.001       | <0.001    |               |              |              |               |  |
| 5/14/2019  | <0.001       | <0.001    |               |              |              |               |  |
| 10/8/2019  | <0.001       |           |               |              |              |               |  |
| 10/10/2019 |              | <0.001    |               |              |              |               |  |
| 10/16/2019 | <0.001       | <0.001    |               |              |              |               |  |
| 2/3/2020   | <0.001       | <0.001    |               |              |              |               |  |
| 8/3/2020   | <0.001       |           |               | <0.001       |              |               |  |
| 8/4/2020   |              |           |               |              | <0.001       |               |  |
| 8/5/2020   |              | <0.001    | <0.001        |              |              | <0.001        |  |
|            |              |           |               |              |              |               |  |

Constituent: Thallium (mg/L) Analysis Run 10/19/2020 4:19 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

GS-GSA-PZ-19 GS-GSA-PZ-20 GS-GSA-PZ-21 GS-GSA-PZ-22 GS-GSA-PZ-17 8/3/2020 <0.001 <0.001 <0.001 <0.001 0.000242 (J)

Constituent: Total dissolved solids (mg/L) Analysis Run 10/19/2020 4:19 PM

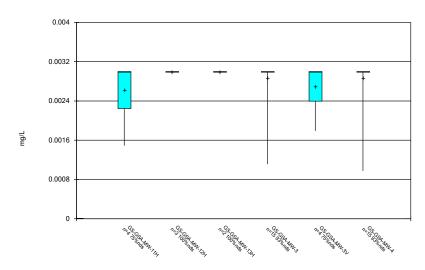
Plant Gorgas Client: Southern Company Data: Gorgas GSA

|            | GS-GSA-MW-11H | GS-GSA-MW-12H | GS-GSA-MW-13H | GS-GSA-MW-3 | GS-GSA-MW-3V | GS-GSA-MW-4 |
|------------|---------------|---------------|---------------|-------------|--------------|-------------|
| 8/24/2016  |               |               |               | 5020        |              | 992         |
| 10/3/2016  |               |               |               | 4880        |              | 988         |
| 10/26/2016 |               |               |               | 5020        |              | 1030        |
| 11/21/2016 |               |               |               | 5090        |              | 1020        |
| 1/17/2017  |               |               |               | 4330        |              | 988         |
| 3/20/2017  |               |               |               | 2690        |              |             |
| 3/21/2017  |               |               |               |             |              | 990         |
| 4/17/2017  |               |               |               | 4780        |              | 884         |
| 5/30/2017  |               |               |               | 5170        |              | 1060        |
| 8/24/2017  |               |               |               | 5140        |              | 1060        |
| 6/11/2018  |               |               |               | 4960        |              | 944         |
| 10/17/2018 |               |               |               | 4910        |              | 928         |
| 3/4/2019   | 1150          |               |               |             |              |             |
| 3/5/2019   |               |               |               |             | 2170         |             |
| 4/10/2019  |               |               |               | 5090        |              | 1000        |
| 10/14/2019 |               |               |               | 5110        | 3200         | 967         |
| 10/16/2019 | 1150          |               |               |             |              |             |
| 11/26/2019 |               | 1580          |               |             |              |             |
| 2/3/2020   |               |               |               | 4920        | 3660         |             |
| 2/4/2020   | 1200          | 1580          | 1200          |             |              | 978         |
| 8/4/2020   | 1230          |               | 1350          | 5110        | 3530         |             |
| 8/5/2020   |               | 1380          |               |             |              | 938         |
|            |               |               |               |             |              |             |

Constituent: Total dissolved solids (mg/L) Analysis Run 10/19/2020 4:19 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

|            | GS-GSA-MW-4V | GS-GSA-MW-8 | GS-GSA-MW-8V | GS-GSA-MW-9H | MW-1 (bg) | MW-2 (bg) |
|------------|--------------|-------------|--------------|--------------|-----------|-----------|
| 4/25/2016  |              |             |              |              |           | 1260      |
| 4/26/2016  |              |             |              |              | 2080      |           |
| 6/20/2016  |              |             |              |              | 2060      | 1620      |
| 8/8/2016   |              |             |              |              | 2070      | 1740      |
| 8/24/2016  |              | 2280        |              |              | 2040      | 1720      |
| 10/3/2016  |              | 2370        |              |              | 2110      | 1800      |
| 10/26/2016 |              | 2350        |              |              | 2000      | 1800      |
| 11/21/2016 |              | 2530        |              |              | 2070      | 1740      |
| 1/17/2017  |              | 2380        |              |              | 1930      | 1960      |
| 3/20/2017  |              | 2630        |              |              |           |           |
| 3/22/2017  |              |             |              |              | 2060      | 1510      |
| 4/18/2017  |              | 2700        |              |              | 2140      | 1580      |
| 5/30/2017  |              | 2980        |              |              | 2240      |           |
| 5/31/2017  |              |             |              |              |           | 1730      |
| 8/23/2017  |              |             |              |              | 2160      | 1550      |
| 8/24/2017  |              | 3390        |              |              |           |           |
| 5/22/2018  |              |             |              |              | 2380      | 1500      |
| 6/12/2018  |              | 3510        |              |              | 2400      | 1550      |
| 10/17/2018 |              | 3550        |              |              | 2220      | 1740      |
| 11/19/2018 |              |             |              |              | 2360      | 1990      |
| 3/5/2019   | 1410         |             |              | 3240         |           |           |
| 4/10/2019  |              | 3580        |              |              | 2630      | 1250      |
| 5/14/2019  |              |             |              |              | 2340 (D)  | 1480      |
| 10/8/2019  |              |             |              |              | 2330      | 1840      |
| 10/14/2019 | 1340         | 3730        |              |              |           |           |
| 10/16/2019 |              |             |              | 3080         | 3650      | 1830      |
| 2/3/2020   | 1290         |             |              |              | 2380      | 1440      |
| 2/4/2020   |              | 3190        |              | 3110         |           |           |
| 2/5/2020   |              |             | 1100         |              |           |           |
| 8/3/2020   |              |             |              |              | 2200      | 1650      |
| 8/4/2020   |              |             |              | 2920         |           |           |
| 8/5/2020   | 1330         | 3610        | 1100         |              |           |           |
|            |              |             |              |              |           |           |

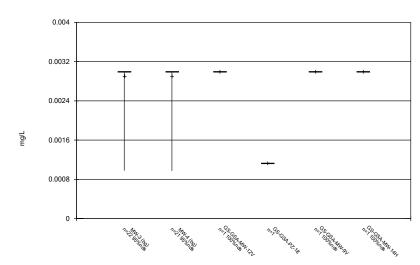
Constituent: Total dissolved solids (mg/L) Analysis Run 10/19/2020 4:19 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


|            | MW-3 (bg) | MW-4 (bg) | GS-GSA-MW-12V | GS-GSA-PZ-18 | GS-GSA-MW-9V | GS-GSA-MW-14H |
|------------|-----------|-----------|---------------|--------------|--------------|---------------|
| 4/25/2016  | 2720      | 3300      |               |              |              |               |
| 6/20/2016  |           | 3870      |               |              |              |               |
| 6/22/2016  | 3250      |           |               |              |              |               |
| 8/9/2016   | 3050      | 4140      |               |              |              |               |
| 8/24/2016  | 3080      | 4190      |               |              |              |               |
| 10/3/2016  |           | 4190      |               |              |              |               |
| 10/4/2016  | 2900      |           |               |              |              |               |
| 10/26/2016 | 2940      | 4400      |               |              |              |               |
| 11/21/2016 | 3090      | 4230      |               |              |              |               |
| 1/18/2017  | 4020      | 4120      |               |              |              |               |
| 3/22/2017  | 4180      | 3980      |               |              |              |               |
| 4/18/2017  | 4440      | 3880      |               |              |              |               |
| 5/31/2017  | 3970      |           |               |              |              |               |
| 8/23/2017  | 4050      | 3990      |               |              |              |               |
| 5/23/2018  |           | 3740      |               |              |              |               |
| 5/24/2018  | 3680      |           |               |              |              |               |
| 6/12/2018  | 3820      | 4080      |               |              |              |               |
| 10/17/2018 | 4730      | 4250      |               |              |              |               |
| 11/19/2018 | 4710      | 3920      |               |              |              |               |
| 4/10/2019  | 3680      | 3280      |               |              |              |               |
| 5/14/2019  | 3580 (D)  | 3130 (D)  |               |              |              |               |
| 10/8/2019  | 4720      | (-/       |               |              |              |               |
| 10/10/2019 | •         | 4000      |               |              |              |               |
| 10/16/2019 | 4210      | 4060      |               |              |              |               |
| 2/3/2020   | 3530      | 3240      |               |              |              |               |
| 8/3/2020   | 3760      | 3270      |               | 1210         |              |               |
| 8/4/2020   | 3700      |           |               | 1210         | 3080         |               |
|            |           | 2200      | 2220          |              | 3000         | 1290          |
| 8/5/2020   |           | 3200      | 3330          |              |              | 1280          |

Constituent: Total dissolved solids (mg/L) Analysis Run 10/19/2020 4:19 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

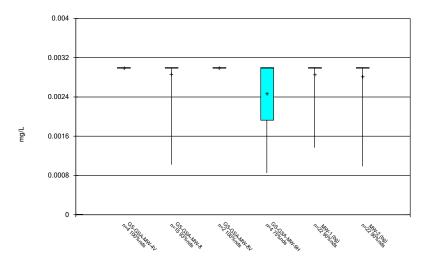
|          | GS-GSA-PZ-19 | GS-GSA-PZ-20 | GS-GSA-PZ-21 | GS-GSA-PZ-22 | GS-GSA-PZ-17 |
|----------|--------------|--------------|--------------|--------------|--------------|
| 8/3/2020 | 740          | 798          |              |              |              |
| 8/4/2020 |              |              | 447          | 638          | 2160         |

# FIGURE B.


#### Box & Whiskers Plot



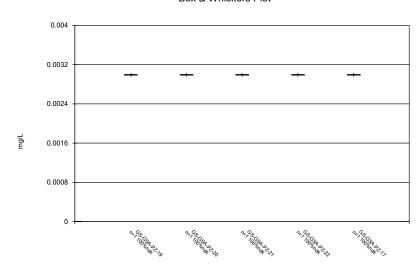
Constituent: Antimony Analysis Run 10/19/2020 4:19 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


#### Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG

#### Box & Whiskers Plot

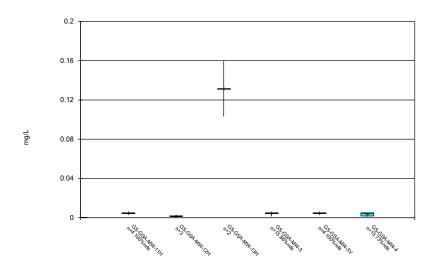


Constituent: Antimony Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Box & Whiskers Plot

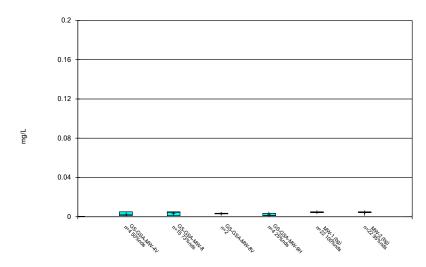


Constituent: Antimony Analysis Run 10/19/2020 4:19 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG

Box & Whiskers Plot

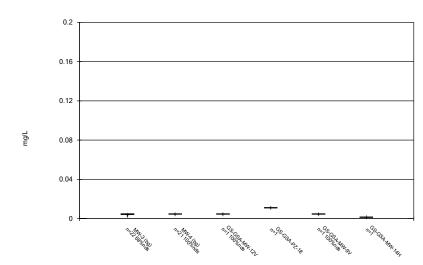



Constituent: Antimony Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

Box & Whiskers Plot



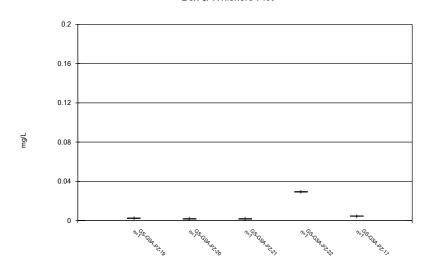
Constituent: Arsenic Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Box & Whiskers Plot



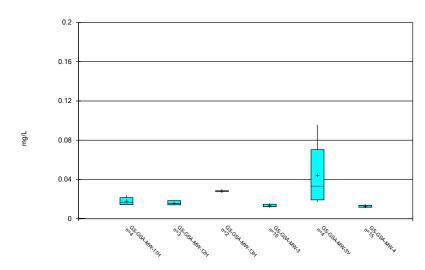
Constituent: Arsenic Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG


Box & Whiskers Plot



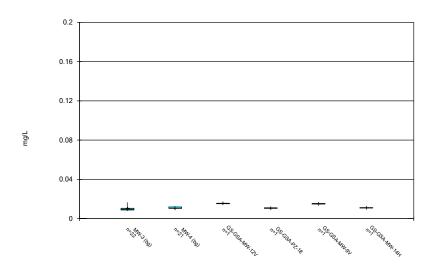
Constituent: Arsenic Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG

Box & Whiskers Plot

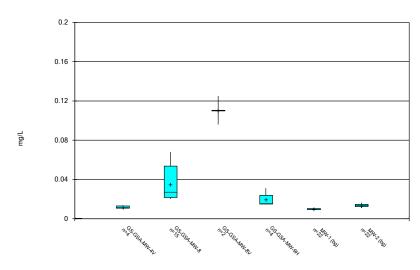


Constituent: Arsenic Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Box & Whiskers Plot



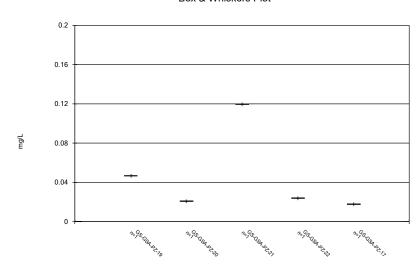
Constituent: Barium Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG

Box & Whiskers Plot

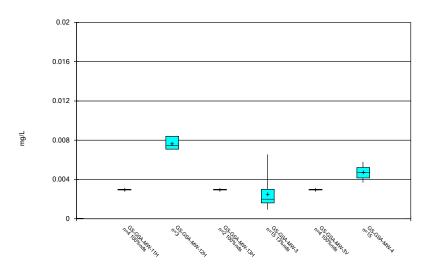


Constituent: Barium Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Box & Whiskers Plot



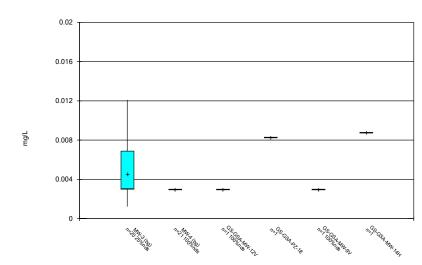
Constituent: Barium Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG

Box & Whiskers Plot

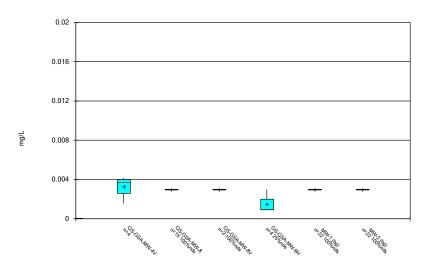


Constituent: Barium Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Box & Whiskers Plot



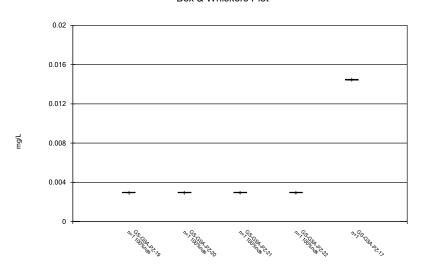
Constituent: Beryllium Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Sanitas<sup>™</sup> v.9.6.27 Groundwater Stats Consulting. UG

Box & Whiskers Plot

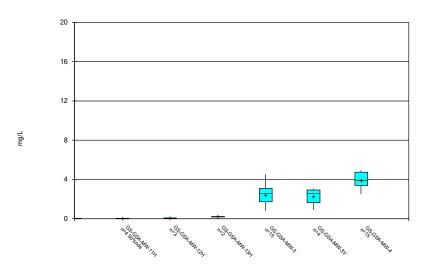


Constituent: Beryllium Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Box & Whiskers Plot

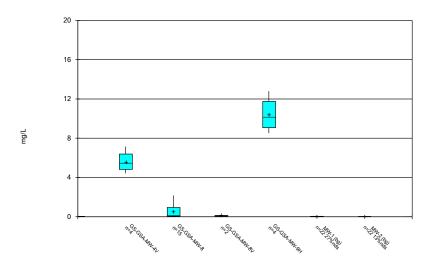


Constituent: Beryllium Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG

Box & Whiskers Plot

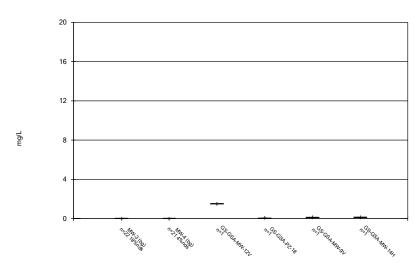



Constituent: Beryllium Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

Box & Whiskers Plot



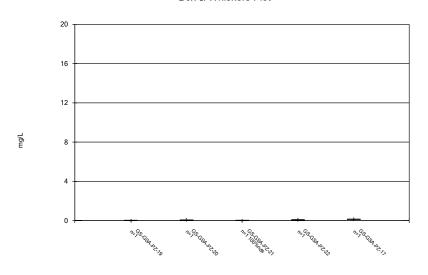
Constituent: Boron Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Box & Whiskers Plot



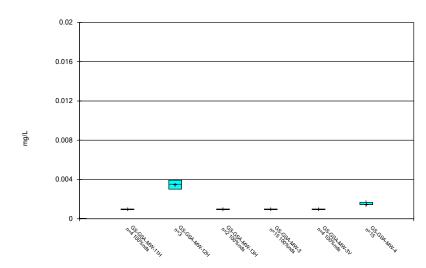
Constituent: Boron Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG


Box & Whiskers Plot



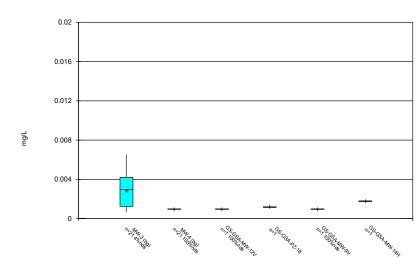
Constituent: Boron Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG

Box & Whiskers Plot

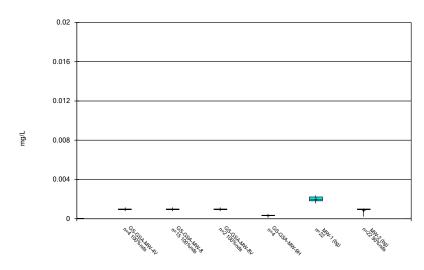


Constituent: Boron Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


#### Box & Whiskers Plot



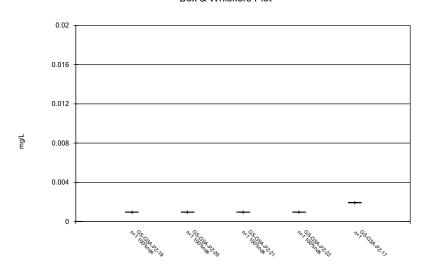
Constituent: Cadmium Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


#### Sanitas<sup>™</sup> v.9.6.27 Groundwater Stats Consulting. UG

Box & Whiskers Plot

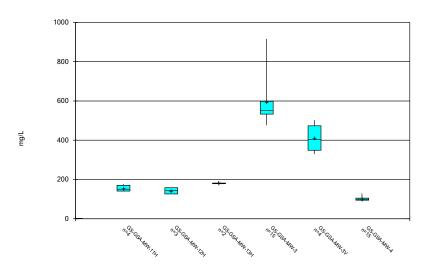


Constituent: Cadmium Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Box & Whiskers Plot



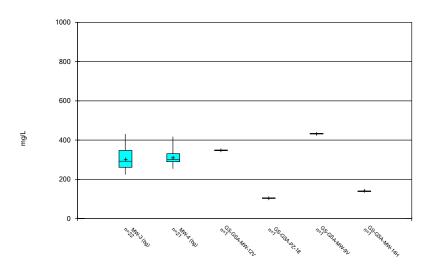
Constituent: Cadmium Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG

Box & Whiskers Plot

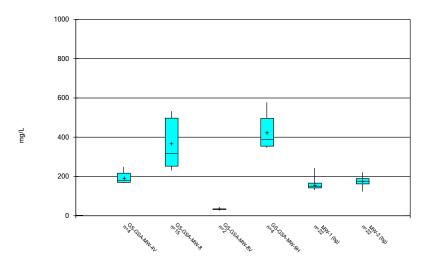


Constituent: Cadmium Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Box & Whiskers Plot



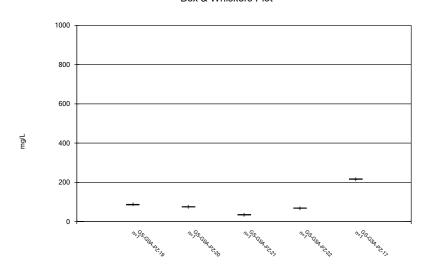
Constituent: Calcium Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG

Box & Whiskers Plot

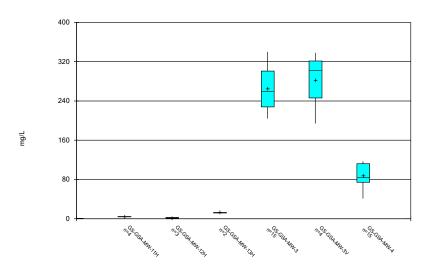


Constituent: Calcium Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Box & Whiskers Plot



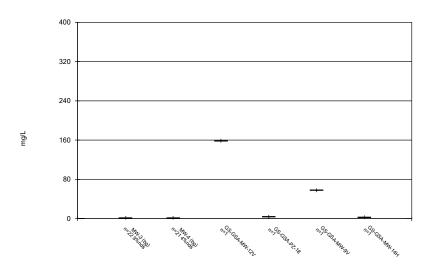
Constituent: Calcium Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG

Box & Whiskers Plot

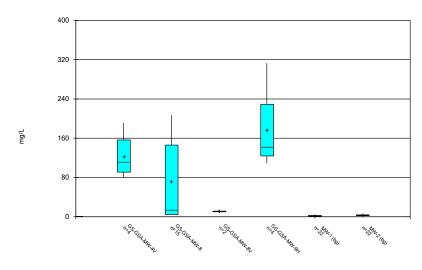


Constituent: Calcium Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Box & Whiskers Plot



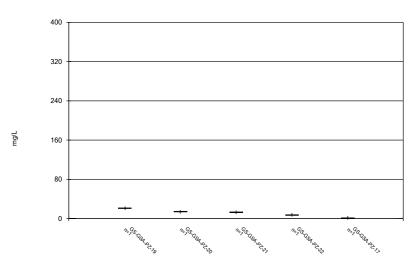
Constituent: Chloride Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG

Box & Whiskers Plot

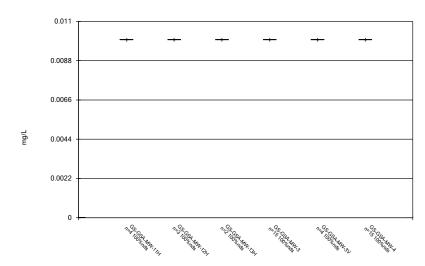


Constituent: Chloride Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Box & Whiskers Plot



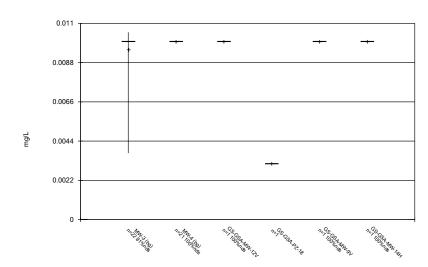
Constituent: Chloride Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG

Box & Whiskers Plot

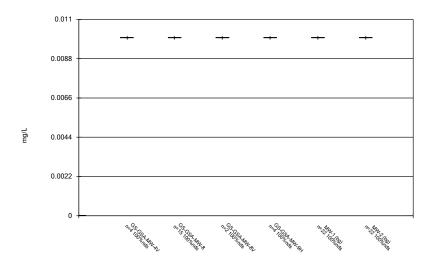


Constituent: Chloride Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


#### Box & Whiskers Plot



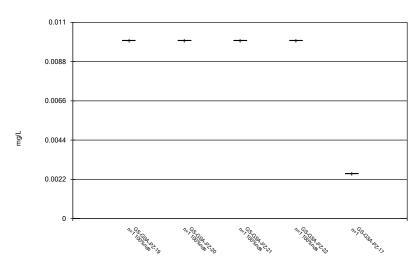
Constituent: Chromium Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


#### Sanitas<sup>™</sup> v.9.6.27 Groundwater Stats Consulting. UG

Box & Whiskers Plot

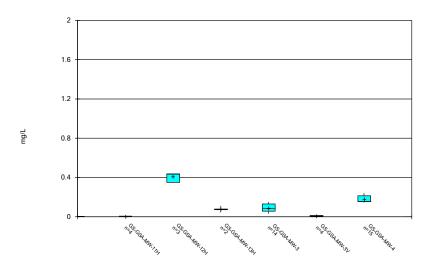


Constituent: Chromium Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Box & Whiskers Plot

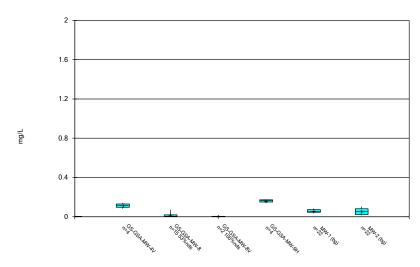


Constituent: Chromium Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG

Box & Whiskers Plot

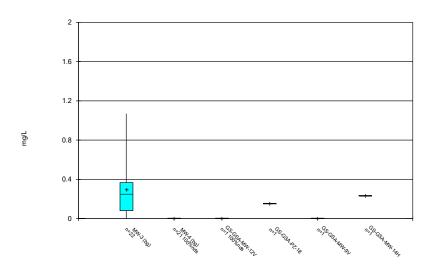



Constituent: Chromium Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

Box & Whiskers Plot



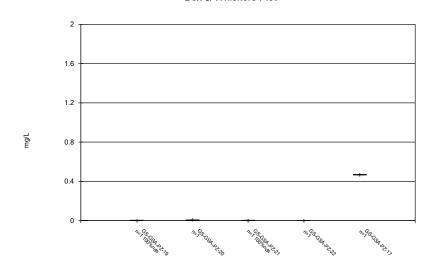
Constituent: Cobalt Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Box & Whiskers Plot



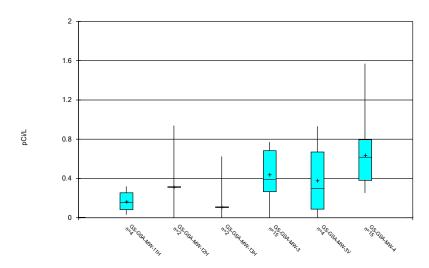
Constituent: Cobalt Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG


Box & Whiskers Plot



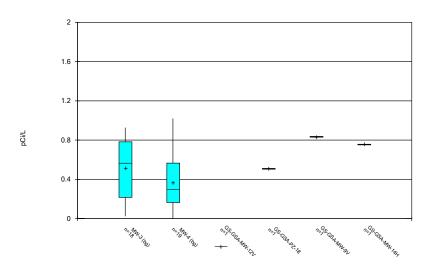
Constituent: Cobalt Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG

Box & Whiskers Plot

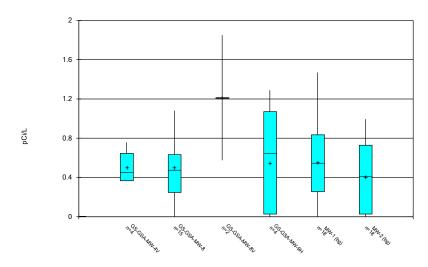


Constituent: Cobalt Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Box & Whiskers Plot



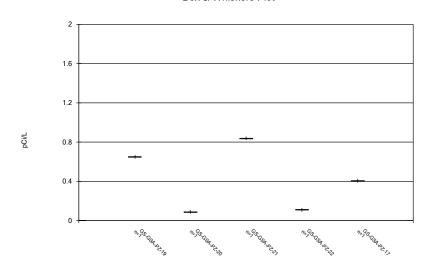
Constituent: Combined Radium 226 + 228 Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG

Box & Whiskers Plot

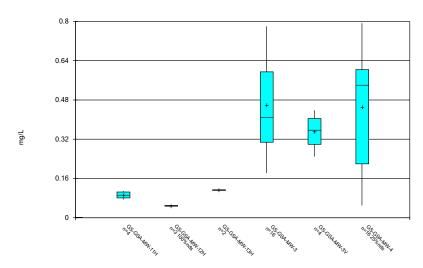


Constituent: Combined Radium 226 + 228 Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Box & Whiskers Plot

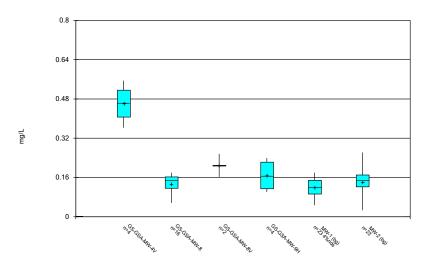


Constituent: Combined Radium 226 + 228 Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG

Box & Whiskers Plot

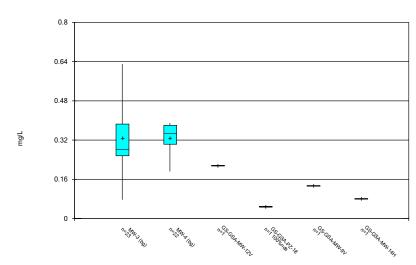



Constituent: Combined Radium 226 + 228 Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

Box & Whiskers Plot



Constituent: Fluoride Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Box & Whiskers Plot



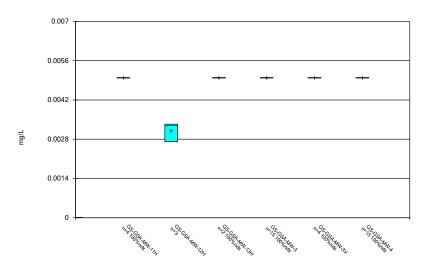
Constituent: Fluoride Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG

Box & Whiskers Plot



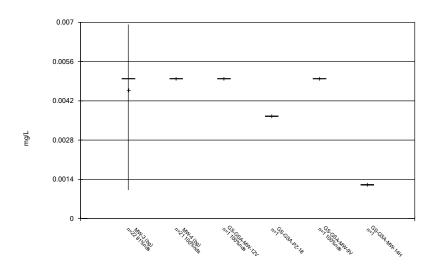
Constituent: Fluoride Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG

Box & Whiskers Plot

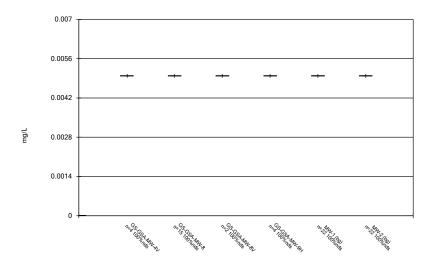


Constituent: Fluoride Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Box & Whiskers Plot



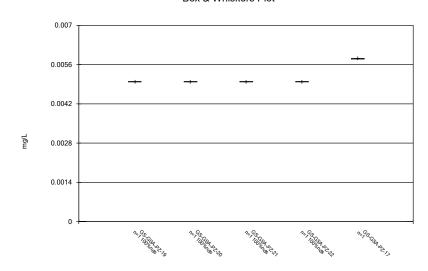
Constituent: Lead Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG

Box & Whiskers Plot

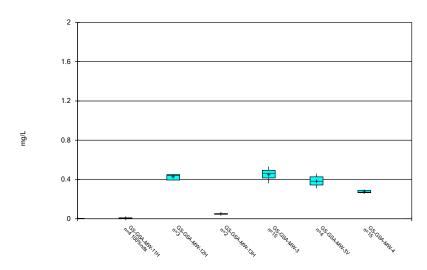


Constituent: Lead Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Box & Whiskers Plot

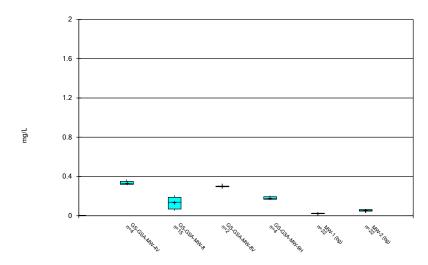


Constituent: Lead Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG

Box & Whiskers Plot

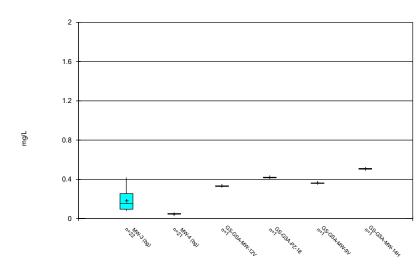



Constituent: Lead Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

Box & Whiskers Plot



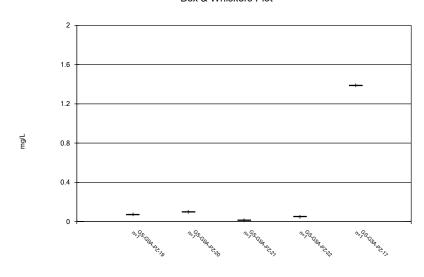
Constituent: Lithium Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Box & Whiskers Plot

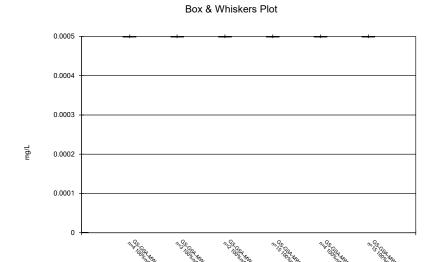


Constituent: Lithium Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

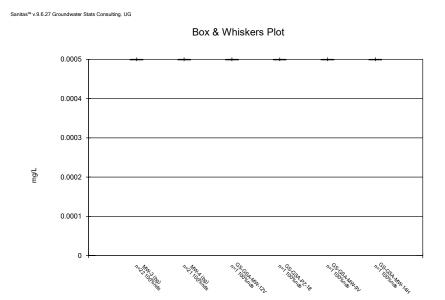
Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG


Box & Whiskers Plot

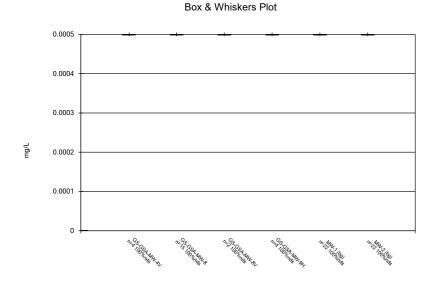



Constituent: Lithium Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

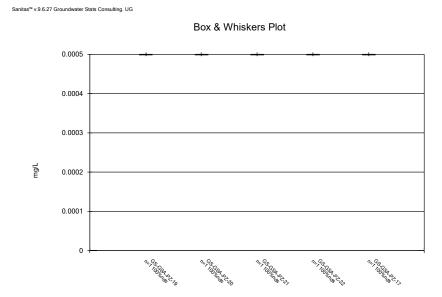
Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG


Box & Whiskers Plot




Constituent: Lithium Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA




Constituent: Mercury Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA



Constituent: Mercury Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA



Constituent: Mercury Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA



Constituent: Mercury Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

0.01

0.008

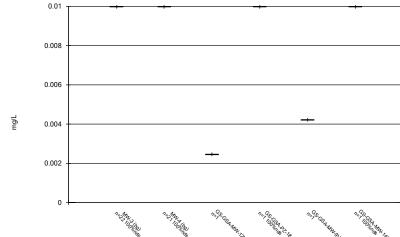
0.006





Box & Whiskers Plot

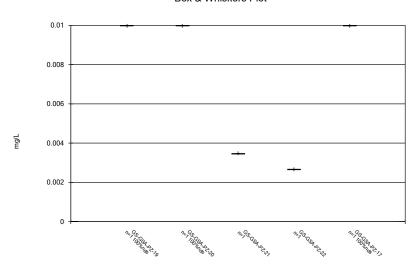
Constituent: Molybdenum Analysis Run 10/19/2020 4:20 PM Plant Gorgas Client: Southern Company Data: Gorgas GSA


# 0.008 0.006 0.004 0.002

Box & Whiskers Plot

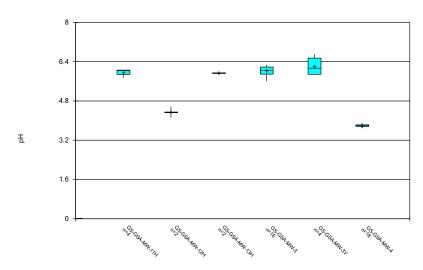
Constituent: Molybdenum Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG



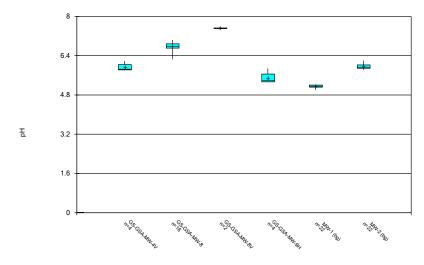



Constituent: Molybdenum Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG

Box & Whiskers Plot

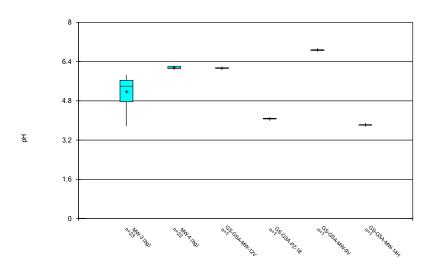



Constituent: Molybdenum Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

Box & Whiskers Plot



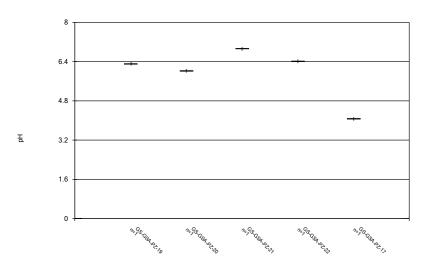
Constituent: pH Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Box & Whiskers Plot



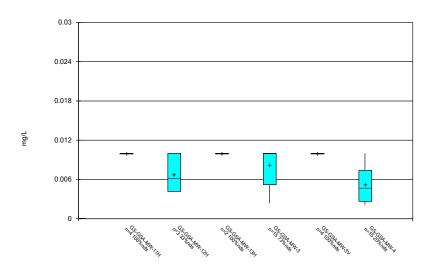
Constituent: pH Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG


Box & Whiskers Plot



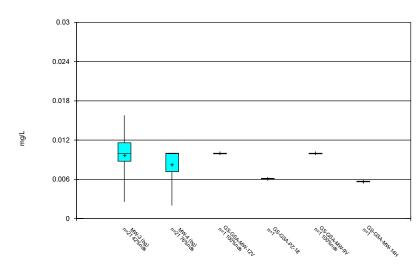
Constituent: pH Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG

Box & Whiskers Plot

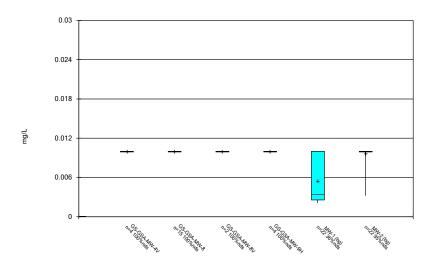


Constituent: pH Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Box & Whiskers Plot



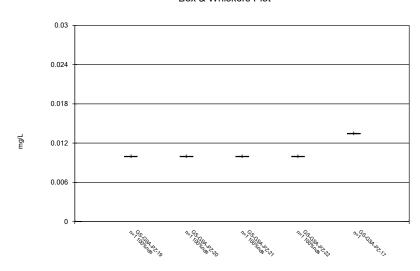
Constituent: Selenium Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Sanitas<sup>™</sup> v.9.6.27 Groundwater Stats Consulting. UG

Box & Whiskers Plot

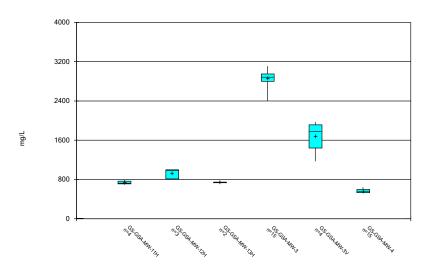


Constituent: Selenium Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Box & Whiskers Plot



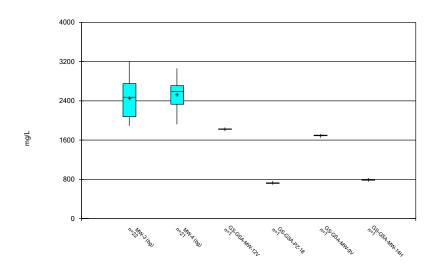
Constituent: Selenium Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG

Box & Whiskers Plot

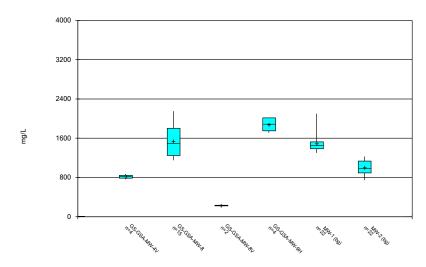


Constituent: Selenium Analysis Run 10/19/2020 4:20 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Box & Whiskers Plot



Constituent: Sulfate Analysis Run 10/19/2020 4:21 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Sanitas<sup>™</sup> v.9.6.27 Groundwater Stats Consulting. UG

Box & Whiskers Plot

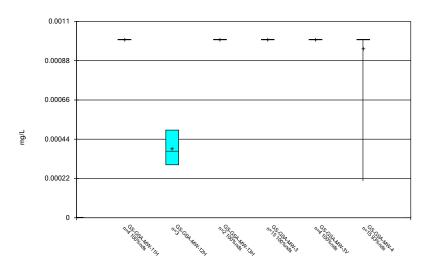


Constituent: Sulfate Analysis Run 10/19/2020 4:21 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

Box & Whiskers Plot



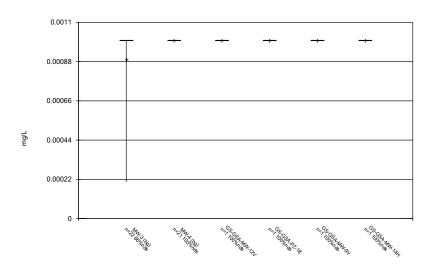
Constituent: Sulfate Analysis Run 10/19/2020 4:21 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG

Box & Whiskers Plot

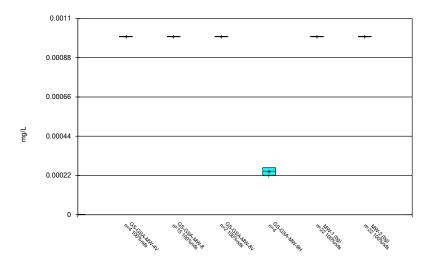


Constituent: Sulfate Analysis Run 10/19/2020 4:21 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


#### Box & Whiskers Plot



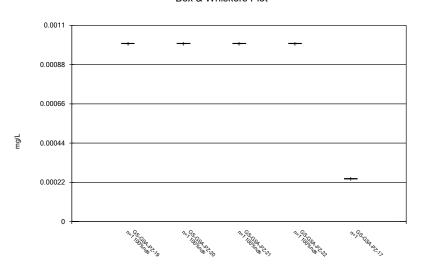
Constituent: Thallium Analysis Run 10/19/2020 4:21 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


#### Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG

#### Box & Whiskers Plot

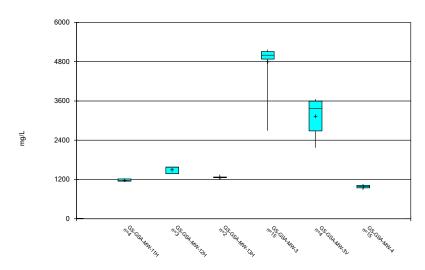


Constituent: Thallium Analysis Run 10/19/2020 4:21 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Box & Whiskers Plot



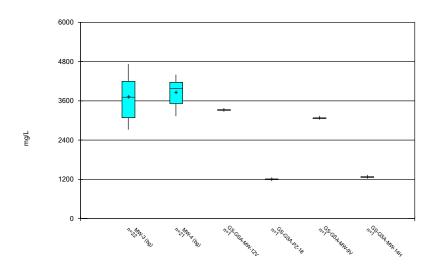
Constituent: Thallium Analysis Run 10/19/2020 4:21 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG

Box & Whiskers Plot

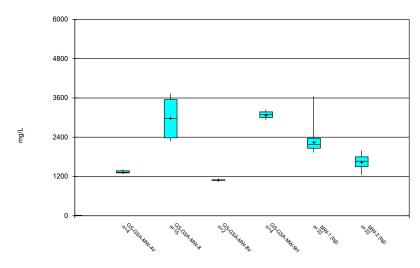


Constituent: Thallium Analysis Run 10/19/2020 4:21 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Box & Whiskers Plot



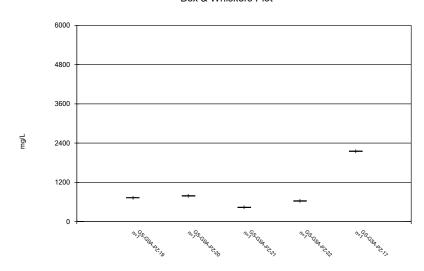
Constituent: Total dissolved solids Analysis Run 10/19/2020 4:21 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG

Box & Whiskers Plot



Constituent: Total dissolved solids Analysis Run 10/19/2020 4:21 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Box & Whiskers Plot



Constituent: Total dissolved solids Analysis Run 10/19/2020 4:21 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG

Box & Whiskers Plot



Constituent: Total dissolved solids Analysis Run 10/19/2020 4:21 PM
Plant Gorgas Client: Southern Company Data: Gorgas GSA

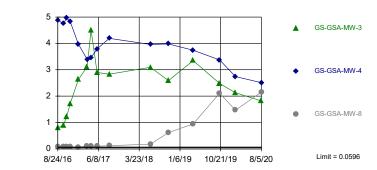
# FIGURE C.

# Outlier Summary Plant Gorgas Client: Southern Company Data: Gorgas GSA Printed 10/19/2020, 4:28 PM MW-3 Beryllium (mg/L) MW-3 Cadmium (mg/L) GS-GSA-MW-3 Selenium (mg/L) MW-3 Selenium (mg/L) 4/25/2016 0.0121 (o) 1/18/2017 0.0169 (o) 4/17/2017 0.294 (o) 2/13/2018 0.0209 (o) 11/19/2018 0.0185 (o)

# FIGURE D.

# Interwell Prediction Limits - Significant Results

Plant Gorgas Client: Southern Company Data: Gorgas GSA Printed 10/13/2020, 10:17 AM


| Constituent     | Well        | Upper Lim | Lower Lim | . Date   | Observ. | Sig. | Bg N | Bg Mean | Std. Dev. | %NDs  | ND Adj. | Transform | <u>Alpha</u> | Method                |
|-----------------|-------------|-----------|-----------|----------|---------|------|------|---------|-----------|-------|---------|-----------|--------------|-----------------------|
| Boron (mg/L)    | GS-GSA-MW-3 | 0.0596    | n/a       | 8/4/2020 | 1.82    | Yes  | 87   | n/a     | n/a       | 16.09 | n/a     | n/a       | 0.0002567    | NP (normality) 1 of 2 |
| Boron (mg/L)    | GS-GSA-MW-4 | 0.0596    | n/a       | 8/5/2020 | 2.51    | Yes  | 87   | n/a     | n/a       | 16.09 | n/a     | n/a       | 0.0002567    | NP (normality) 1 of 2 |
| Boron (mg/L)    | GS-GSA-MW-8 | 0.0596    | n/a       | 8/5/2020 | 2.16    | Yes  | 87   | n/a     | n/a       | 16.09 | n/a     | n/a       | 0.0002567    | NP (normality) 1 of 2 |
| Calcium (mg/L)  | GS-GSA-MW-3 | 431       | n/a       | 8/4/2020 | 545     | Yes  | 87   | n/a     | n/a       | 0     | n/a     | n/a       | 0.0002567    | NP (normality) 1 of 2 |
| Calcium (mg/L)  | GS-GSA-MW-8 | 431       | n/a       | 8/5/2020 | 497     | Yes  | 87   | n/a     | n/a       | 0     | n/a     | n/a       | 0.0002567    | NP (normality) 1 of 2 |
| Chloride (mg/L) | GS-GSA-MW-3 | 3.773     | n/a       | 8/4/2020 | 222     | Yes  | 87   | 1.484   | 0.2724    | 3.448 | None    | sqrt(x)   | 0.002505     | Param 1 of 2          |
| Chloride (mg/L) | GS-GSA-MW-4 | 3.773     | n/a       | 8/5/2020 | 41      | Yes  | 87   | 1.484   | 0.2724    | 3.448 | None    | sqrt(x)   | 0.002505     | Param 1 of 2          |
| Chloride (mg/L) | GS-GSA-MW-8 | 3.773     | n/a       | 8/5/2020 | 146     | Yes  | 87   | 1.484   | 0.2724    | 3.448 | None    | sqrt(x)   | 0.002505     | Param 1 of 2          |

### Interwell Prediction Limits - All Results

Plant Gorgas Client: Southern Company Data: Gorgas GSA Printed 10/13/2020, 10:17 AM Constituent Well Upper Lim. Lower Lim. Date Observ. Sig. Bg N Bg Mean Std. Dev. %NDs ND Adj. Transform Alpha Method GS-GSA-MW-3 8/4/2020 1.82 Yes 87 NP (normality) 1 of 2 Boron (mg/L) 0.0596 n/a n/a 16.09 n/a n/a 0.0002567 Boron (mg/L) GS-GSA-MW-4 0.0596 8/5/2020 2.51 Yes 87 16.09 0.0002567 NP (normality) 1 of 2 n/a n/a n/a n/a n/a Boron (mg/L) GS-GSA-MW-8 0.0596 n/a 8/5/2020 2.16 16.09 0.0002567 NP (normality) 1 of 2 GS-GSA-MW-3 8/4/2020 545 n/a 0.0002567 NP (normality) 1 of 2 Calcium (mg/L) 431 Yes 87 n/a 0 n/a n/a n/a Calcium (mg/L) GS-GSA-MW-4 431 n/a 8/5/2020 94.7 No 87 0 n/a 0.0002567 NP (normality) 1 of 2 GS-GSA-MW-8 431 8/5/2020 497 Yes 87 0 0.0002567 NP (normality) 1 of 2 Calcium (mg/L) n/a n/a n/a n/a n/a Chloride (mg/L) GS-GSA-MW-3 3.773 n/a 8/4/2020 222 1.484 0.2724 3.448 None sqrt(x) 0.002505 Param 1 of 2 Chloride (mg/L) GS-GSA-MW-4 3.773 8/5/2020 41 Yes 87 1.484 0.2724 0.002505 Param 1 of 2 3.448 None sqrt(x) n/a Chloride (mg/L) 8/5/2020 146 Param 1 of 2 GS-GSA-MW-8 3.773 n/a Yes 87 1.484 0.2724 3.448 sqrt(x) 0.002505 Fluoride (mg/L) GS-GSA-MW-3 0.473 8/4/2020 0.389 No 91 0.4581 0.1366 0.002505 Param 1 of 2 n/a 1.099 None sqrt(x) 0.4581 Fluoride (mg/L) GS-GSA-MW-4 0.473 n/a 8/5/2020 0.05ND No 91 0.1366 1.099 None 0.002505 Param 1 of 2 sqrt(x) Fluoride (mg/L) GS-GSA-MW-8 0.473 8/5/2020 0.4581 0.1366 1.099 sqrt(x) 0.002505 Param 1 of 2

Exceeds Limit: GS-GSA-MW-3, GS-GSA-MW-4, GS-GSA-MW-8

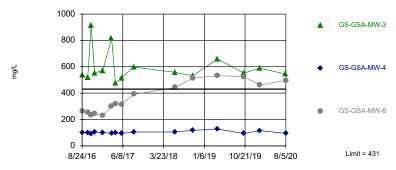
Prediction Limit
Interwell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 87 background values. 16.09% NDs. Annual perconstituent alpha = 0.001539. Individual comparison alpha = 0.0002567 (1 of 2). Comparing 3 points to limit.

Constituent: Boron Analysis Run 10/13/2020 10:16 AM View: Appendix III - Interwell Plant Gorgas Client: Southern Company Data: Gorgas GSA

Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG

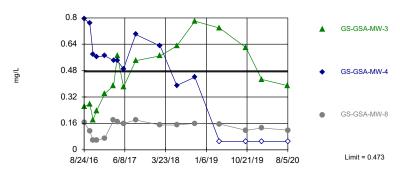

**Prediction Limit** Exceeds Limit: GS-GSA-MW-3, GS-GSA-MW-4, GS-GSA-MW-8 Interwell Parametric 400 GS-GSA-MW-3 320 240 GS-GSA-MW-4 160 GS-GSA-MW-8 80 Limit = 3.773 8/24/16 6/8/17 3/23/18 1/6/19 10/21/19 8/5/20

Background Data Summary (based on square root transformation): Mean=1.484, Std. Dev.=0.2724, n=87, 3.448% NDs. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9657, critical = 0.961. Kappa = 1.685 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.002505. Comparing 3 points to limit.

Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG



# Prediction Limit Interwell Non-parametric




Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 87 background values. Annual per-constituent alpha = 0.001539. Individual comparison alpha = 0.002567 (1 of 2). Comparing 3 points to limit.

Constituent: Calcium Analysis Run 10/13/2020 10:16 AM View: Appendix III - Interwell Plant Gorgas Client: Southern Company Data: Gorgas GSA

 ${\it Sanitas^{w}}\ v.9.6.27\ Groundwater\ Stats\ Consulting.\ UG\ Hollow\ symbols\ indicate\ censored\ values.$  Within Limit

Prediction Limit
Interwell Parametric



Background Data Summary (based on square root transformation): Mean=0.4581, Std. Dev.=0.1366, n=91, 1.099% NDs. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9804, critical = 0.962. Kappa = 1.681 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.002505. Comparing 3 points to limit.

Constituent: Boron (mg/L) Analysis Run 10/13/2020 10:17 AM View: Appendix III - Interwell Plant Gorgas Client: Southern Company Data: Gorgas GSA

|            | MW-2 (bg)  | MW-4 (bg)  | MW-3 (bg)  | MW-1 (bg)  | GS-GSA-MW-8 | GS-GSA-MW-3 | GS-GSA-MW-4 |
|------------|------------|------------|------------|------------|-------------|-------------|-------------|
| 4/25/2016  | 0.0241 (J) | 0.0414 (J) | 0.028 (J)  |            |             |             |             |
| 4/26/2016  |            |            |            | 0.0231 (J) |             |             |             |
| 6/20/2016  | 0.0284 (J) | 0.0434 (J) |            | 0.0227 (J) |             |             |             |
| 6/22/2016  |            |            | 0.0433 (J) |            |             |             |             |
| 8/8/2016   | 0.034 (J)  |            |            | 0.0278 (J) |             |             |             |
| 8/9/2016   |            | 0.0453 (J) | 0.0429 (J) |            |             |             |             |
| 8/24/2016  | 0.0316 (J) | 0.0451 (J) | 0.0431 (J) | 0.0247 (J) | 0.0898 (J)  | 0.799       | 4.88        |
| 10/3/2016  | 0.0367 (J) | 0.0511 (J) |            | 0.0307 (J) | 0.0821 (J)  | 0.889       | 4.75        |
| 10/4/2016  |            |            | 0.04 (J)   |            |             |             |             |
| 10/26/2016 | 0.0331 (J) | 0.0507 (J) | 0.0375 (J) | 0.0241 (J) | 0.0889 (J)  | 1.23        | 4.96        |
| 11/21/2016 | 0.035 (J)  | 0.0458 (J) | 0.0406 (J) | 0.0202 (J) | 0.0788 (J)  | 1.72        | 4.82        |
| 1/17/2017  | 0.0259 (J) |            |            | 0.0201 (J) | 0.0607 (J)  | 2.63        | 3.97        |
| 1/18/2017  |            | 0.0445 (J) | 0.0548 (J) |            |             |             |             |
| 3/20/2017  |            |            |            |            | 0.114       | 3.11        |             |
| 3/21/2017  |            |            |            |            |             |             | 3.39        |
| 3/22/2017  | 0.0243 (J) | 0.0432 (J) | 0.0344 (J) | 0.0224 (J) |             |             |             |
| 4/17/2017  |            |            |            |            |             | 4.51        | 3.46        |
| 4/18/2017  | 0.0206 (J) | 0.0409 (J) | <0.1       | <0.1       | 0.108       |             |             |
| 5/30/2017  |            |            |            | <0.1       | 0.105       | 2.9         | 3.79        |
| 5/31/2017  | 0.0234 (J) |            | 0.0454 (J) |            |             |             |             |
| 8/23/2017  | 0.0267 (J) | 0.042 (J)  | 0.0425 (J) | 0.0253 (J) |             |             |             |
| 8/24/2017  |            |            |            |            | 0.12        | 2.83        | 4.19        |
| 5/22/2018  | 0.0251 (J) |            |            | 0.0224 (J) |             |             |             |
| 5/23/2018  |            | 0.0433 (J) |            |            |             |             |             |
| 5/24/2018  |            |            | 0.0339 (J) |            |             |             |             |
| 6/11/2018  |            |            |            |            |             | 3.09        | 3.96        |
| 6/12/2018  | 0.0275 (J) | 0.0478 (J) | 0.0371 (J) | 0.0214 (J) | 0.181       |             |             |
| 10/17/2018 | 0.0321 (J) | 0.0468 (J) | 0.0596 (J) | 0.0216 (J) | 0.616       | 2.59        | 3.98        |
| 11/19/2018 | 0.0324 (J) | 0.0526 (J) | 0.0514 (J) | 0.0237 (J) |             |             |             |
| 4/10/2019  | <0.1       | 0.0438 (J) | <0.1       | 0.0304 (J) | 0.944       | 3.35        | 3.74        |
| 5/14/2019  | <0.1       | <0.1       | <0.1       | <0.1       |             |             |             |
| 10/8/2019  | 0.0371 (J) |            | 0.0537 (J) | <0.1       |             |             |             |
| 10/10/2019 |            | 0.0487 (J) |            |            |             |             |             |
| 10/14/2019 |            |            |            |            | 2.11        | 2.48        | 3.37        |
| 10/16/2019 | 0.0419 (J) | 0.0505 (J) | 0.05 (J)   | 0.0385 (J) |             |             |             |
| 2/3/2020   | <0.1       | 0.0433 (J) | <0.1       | <0.1       |             | 2.13        |             |
| 2/4/2020   |            |            |            |            | 1.47        |             | 2.74        |
| 8/3/2020   | 0.0317 (J) |            | 0.0424 (J) | <0.1       |             |             |             |
| 8/4/2020   |            |            |            |            |             | 1.82        |             |
| 8/5/2020   |            | 0.0459 (J) |            |            | 2.16        |             | 2.51        |
|            |            |            |            |            |             |             |             |

Constituent: Calcium (mg/L) Analysis Run 10/13/2020 10:17 AM View: Appendix III - Interwell

Plant Gorgas Client: Southern Company Data: Gorgas GSA

|            | MW-2 (bg) | MW-4 (bg) | MW-3 (bg) | MW-1 (bg) | GS-GSA-MW-8 | GS-GSA-MW-3 | GS-GSA-MW-4 |
|------------|-----------|-----------|-----------|-----------|-------------|-------------|-------------|
| 4/25/2016  | 123       | 261       | 224       |           |             |             |             |
| 4/26/2016  |           |           |           | 147       |             |             |             |
| 6/20/2016  | 168       | 295       |           | 152       |             |             |             |
| 6/22/2016  |           |           | 266       |           |             |             |             |
| 8/8/2016   | 180       |           |           | 150       |             |             |             |
| 8/9/2016   |           | 318       | 260       |           |             |             |             |
| 8/24/2016  | 180       | 319       | 274       | 142       | 263         | 539         | 102         |
| 10/3/2016  | 184       | 293       |           | 139       | 253         | 519.7       | 98.4        |
| 10/4/2016  |           |           | 243       |           |             |             |             |
| 10/26/2016 | 171       | 311       | 254       | 133       | 235         | 916         | 88.7        |
| 11/21/2016 | 179       | 320       | 263       | 144       | 246         | 552         | 104         |
| 1/17/2017  | 188       |           |           | 131       | 231         | 572         | 102         |
| 1/18/2017  |           | 417       | 431       |           |             |             |             |
| 3/20/2017  |           |           |           |           | 298         | 817         |             |
| 3/21/2017  |           |           |           |           |             |             | 94.7        |
| 3/22/2017  | 155       | 292       | 318       | 141       |             |             |             |
| 4/17/2017  |           |           |           |           |             | 476         | 97.9        |
| 4/18/2017  | 156       | 302       | 296       | 149       | 317         |             |             |
| 5/30/2017  |           |           |           | 140       | 316         | 515         | 93.9        |
| 5/31/2017  | 151       |           | 306       |           |             |             |             |
| 8/23/2017  | 155       | 297       | 298       | 152       |             |             |             |
| 8/24/2017  |           |           |           |           | 391         | 598         | 105         |
| 5/22/2018  | 172       |           |           | 166       |             |             |             |
| 5/23/2018  |           | 296       |           |           |             |             |             |
| 5/24/2018  |           |           | 297       |           |             |             |             |
| 6/11/2018  |           |           |           |           |             | 558         | 105         |
| 6/12/2018  | 179       | 355       | 318       | 203       | 442         |             |             |
| 10/17/2018 | 200       | 342       | 392       | 171       | 514         | 533         | 117         |
| 11/19/2018 | 221       | 289       | 387       | 154       |             |             |             |
| 4/10/2019  | 200       | 356       | 348       | 243       | 533         | 659         | 129         |
| 5/14/2019  | 168       | 254       | 254       | 167       |             |             |             |
| 10/8/2019  | 190       |           | 371       | 157       |             |             |             |
| 10/10/2019 |           | 302       |           |           |             |             |             |
| 10/14/2019 |           |           |           |           | 524         | 552         | 93.5        |
| 10/16/2019 | 194       | 356       | 346       | 157       |             |             |             |
| 2/3/2020   | 172       | 265       | 276       | 172       |             | 589         |             |
| 2/4/2020   |           |           |           |           | 461         |             | 116         |
| 8/3/2020   | 172       |           | 285       | 148       |             |             |             |
| 8/4/2020   |           |           |           |           |             | 545         |             |
| 8/5/2020   |           | 281       |           |           | 497         |             | 94.7        |
|            |           |           |           |           |             |             |             |

Constituent: Chloride (mg/L) Analysis Run 10/13/2020 10:17 AM View: Appendix III - Interwell

Plant Gorgas Client: Southern Company Data: Gorgas GSA

|            | MW-2 (bg) | MW-4 (bg) | MW-3 (bg) | MW-1 (bg) | GS-GSA-MW-8 | GS-GSA-MW-3 | GS-GSA-MW-4 |
|------------|-----------|-----------|-----------|-----------|-------------|-------------|-------------|
| 4/25/2016  | 1.9       | 1.53      | 1.32      |           |             |             |             |
| 4/26/2016  |           |           |           | 1.94      |             |             |             |
| 6/20/2016  | 3.43      | 1.85      |           | 2.09      |             |             |             |
| 6/22/2016  |           |           | 1.46      |           |             |             |             |
| 8/8/2016   | 3.31      |           |           | 2.18      |             |             |             |
| 8/9/2016   |           | 1.95      | 1.35      |           |             |             |             |
| 8/24/2016  | 3.23      | 2.07      | 1.47      | 2.22      | 4.03        | 204         | 112         |
| 10/3/2016  | 3.21      | 2.02      |           | 2.34      | 3.87        | 220         | 115         |
| 10/4/2016  |           |           | 1.59      |           |             |             |             |
| 10/26/2016 | 3.35      | 2.07      | 1.27      | 2.34      | 4.08        | 249         | 115         |
| 11/21/2016 | 3.34      | 2.39      | 1.38      | 2.5       | 4.39        | 256         | 117         |
| 1/17/2017  | 3.58      |           |           | 2.68      | 7.22        | 301         | 99.3        |
| 1/18/2017  |           | 1.9       | 1.34      |           |             |             |             |
| 3/20/2017  |           |           |           |           | 5.7         | 320         |             |
| 3/21/2017  |           |           |           |           |             |             | 79          |
| 3/22/2017  | 3.4       | 1.5 (J)   | 2         | 3.7       |             |             |             |
| 4/17/2017  |           |           |           |           |             | 340         | 85          |
| 4/18/2017  | 2.6       | 1.6 (J)   | 2.2       | 2.4       | 4.7         |             |             |
| 5/30/2017  |           |           |           | 2.6       | 15          | 310         | 99          |
| 5/31/2017  | 4.4       |           | 1.5 (J)   |           |             |             |             |
| 8/23/2017  | 4.4       | 2.3       | 1.8 (J)   | 2.7       |             |             |             |
| 8/24/2017  |           |           |           |           | 93          | 290         | 110         |
| 5/22/2018  | 3.2       |           |           | 2.3       |             |             |             |
| 5/23/2018  |           | 2         |           |           |             |             |             |
| 5/24/2018  |           |           | 1.6 (J)   |           |             |             |             |
| 6/11/2018  |           |           |           |           |             | 260         | 81          |
| 6/12/2018  | 3.7       | 1.7 (J)   | 1.4 (J)   | 2.3       | 140         |             |             |
| 10/17/2018 | 4.6       | 1.5 (J)   | <2        | 1.7 (J)   | 180         | 270         | 85          |
| 11/19/2018 | 3         | <2        | <2        | 1.7 (J)   |             |             |             |
| 4/10/2019  | 1.76      | 1.88      | 2.25      | 2.36      | 174         | 249         | 74.3        |
| 5/14/2019  | 2.98      | 1.82      | 2.28      | 2.28      |             |             |             |
| 10/8/2019  | 4.26      |           | 1.36      | 2.31      |             |             |             |
| 10/10/2019 |           | 1.93      |           |           |             |             |             |
| 10/14/2019 |           |           |           |           | 207         | 228         | 59.1        |
| 10/16/2019 | 4.04      | 1.92      | 1.4       | 2.42      |             |             |             |
| 2/3/2020   | 2.48      | 1.72      | 2.12      | 2.07      |             | 267         |             |
| 2/4/2020   |           |           |           |           | 94.1        |             | 43.2        |
| 8/3/2020   | 4.03      |           | 1.17      | 2.05      |             |             |             |
| 8/4/2020   |           |           |           |           |             | 222         |             |
| 8/5/2020   |           | 1.57      |           |           | 146         |             | 41          |
|            |           |           |           |           |             |             |             |

Constituent: Fluoride (mg/L) Analysis Run 10/13/2020 10:17 AM View: Appendix III - Interwell Plant Gorgas Client: Southern Company Data: Gorgas GSA

|            |           |            |           | _          |             | _           |             |
|------------|-----------|------------|-----------|------------|-------------|-------------|-------------|
|            | MW-2 (bg) | MW-3 (bg)  | MW-4 (bg) | MW-1 (bg)  | GS-GSA-MW-8 | GS-GSA-MW-3 | GS-GSA-MW-4 |
| 4/25/2016  | 0.149 (J) | 0.243 (J)  | 0.372     |            |             |             |             |
| 4/26/2016  |           |            |           | 0.146 (J)  |             |             |             |
| 6/20/2016  | 0.148 (J) |            | 0.361     | 0.148 (J)  |             |             |             |
| 6/22/2016  |           | 0.269 (J)  |           |            |             |             |             |
| 8/8/2016   | 0.134 (J) |            |           | 0.137 (J)  |             |             |             |
| 8/9/2016   |           | 0.363      | 0.326     |            |             |             |             |
| 8/24/2016  | 0.129 (J) | 0.346      | 0.329     | 0.133 (J)  | 0.165 (J)   | 0.264 (J)   | 0.793       |
| 10/3/2016  | 0.086 (J) |            | 0.287 (J) | 0.103 (J)  | 0.114 (J)   | 0.276 (J)   | 0.769       |
| 10/4/2016  |           | 0.266 (J)  |           |            |             |             |             |
| 10/26/2016 | 0.027 (J) | 0.266 (J)  | 0.194 (J) | 0.05 (J)   | 0.056 (J)   | 0.182 (J)   | 0.578       |
| 11/21/2016 | 0.027 (J) | 0.244 (J)  | 0.192 (J) | 0.047 (J)  | 0.059 (J)   | 0.238 (J)   | 0.562       |
| 1/17/2017  | 0.066 (J) |            |           | 0.09 (J)   | 0.07 (J)    | 0.34        | 0.571       |
| 1/18/2017  |           | 0.385      | 0.223 (J) |            |             |             |             |
| 3/20/2017  |           |            |           |            | 0.18        | 0.39        |             |
| 3/21/2017  |           |            |           |            |             |             | 0.54        |
| 3/22/2017  | 0.13      | 0.41       | 0.32      | 0.12       |             |             |             |
| 4/17/2017  |           |            |           |            |             | 0.57        | 0.54        |
| 4/18/2017  | 0.16      | 0.29       | 0.32      | 0.12       | 0.17        |             |             |
| 5/30/2017  |           |            |           | 0.13       | 0.16        | 0.38        | 0.49        |
| 5/31/2017  | 0.13      | 0.37       |           |            |             |             |             |
| 8/23/2017  | 0.16      | 0.55       | 0.38      | 0.16       |             |             |             |
| 8/24/2017  |           |            |           |            | 0.18        | 0.54        | 0.7         |
| 2/13/2018  | 0.22 (D)  | 0.27 (D)   | 0.38 (D)  | 0.14 (D)   | 0.15 (D)    | 0.57 (D)    | 0.63 (D)    |
| 5/22/2018  | 0.17      |            |           | 0.16       |             |             |             |
| 5/23/2018  |           |            | 0.38      |            |             |             |             |
| 5/24/2018  |           | 0.6        |           |            |             |             |             |
| 6/11/2018  |           |            |           |            |             | 0.63        | 0.39        |
| 6/12/2018  | 0.16      | 0.53       | 0.39      | 0.16       | 0.15        |             |             |
| 10/17/2018 | 0.16      | 0.63       | 0.39      | 0.18       | 0.16        | 0.78        | 0.44        |
| 11/19/2018 | 0.18      | 0.31       | 0.36      | 0.15       |             |             |             |
| 4/10/2019  | 0.262     | 0.273      | 0.384     | 0.102      | 0.156       | 0.738       | <0.1        |
| 5/14/2019  | 0.17      | 0.281      | 0.335     | 0.119      |             |             |             |
| 10/8/2019  | 0.164     | 0.225      |           | 0.0924 (J) |             |             |             |
| 10/10/2019 |           |            | 0.304     |            |             |             |             |
| 10/14/2019 |           |            |           |            | 0.118       | 0.619       | <0.1        |
| 10/16/2019 | 0.114     | 0.106      | 0.302     | 0.0756 (J) |             |             |             |
| 2/3/2020   | 0.182     | 0.256      | 0.37      | 0.0982 (J) |             | 0.427       |             |
| 2/4/2020   |           |            |           |            | 0.132       |             | <0.1        |
| 8/3/2020   | 0.122     | 0.0766 (J) |           | <0.1       |             |             |             |
| 8/4/2020   |           |            |           |            |             | 0.389       |             |
| 8/5/2020   |           |            | 0.359     |            | 0.119       |             | <0.1        |
|            |           |            |           |            |             |             |             |

# FIGURE E.

### Intrawell Prediction Limits - Significant Results

Plant Gorgas Client: Southern Company Data: Gorgas GSA Printed 10/13/2020, 10:25 AM

 Constituent
 Well
 Upper Lim.
 Lower Lim.
 Date
 Observ.
 Sig.
 Bg N
 Bg Mean
 Std. Dev.
 %NDs
 ND Adj.
 Transform
 Alpha
 Method

 pH (pH)
 MW-1
 5.24
 5.09
 8/3/2020
 5.08
 Yes
 18
 5.165
 0.03869
 0
 None
 No
 0.001253
 Param 1 of 2

#### Intrawell Prediction Limits - All Results

Plant Gorgas Client: Southern Company Data: Gorgas GSA Printed 10/13/2020, 10:25 AM Constituent Well Upper Lim. Lower Lim. Date Observ. Bg N Bg Mean Std. Dev. %NDs ND Adj. Transform Alpha Method GS-GSA-MW-3 0.2034 pH (pH) 6.454 8/4/2020 6.09 No 13 6.032 None No 0.001253 Param 1 of 2 0.04034 pH (pH) GS-GSA-MW-4 3.868 3.701 8/5/2020 3.86 Nο 13 3.785 0 None No 0.001253 Param 1 of 2 pH (pH) GS-GSA-MW-8 6.366 8/5/2020 6.76 6.784 0.2012 0.001253 Param 1 of 2 MW-1 5.24 8/3/2020 Yes 18 5.165 0.03869 0 Param 1 of 2 pH (pH) 5.09 5.08 None Nο 0.001253 pH (pH) MW-2 6.161 5.76 8/3/2020 5.95 No 18 5.961 0.1039 0.001253 Param 1 of 2 MW-3 6.175 8/3/2020 19 27.62 5.502 pH (pH) 4.135 5.06 No 0 None x^2 0.001253 Param 1 of 2 pH (pH) MW-4 6.246 6.063 8/5/2020 6.15 No 18 6.154 0.04755 0 None No 0.001253 Param 1 of 2 GS-GSA-MW-3 12 Param 1 of 2 Sulfate (mg/L) 3089 8/4/2020 2820 1.9e17 4.2e16 0 x^5 0.002505 n/a No None Sulfate (mg/L) GS-GSA-MW-4 648.7 n/a 8/5/2020 519 No 12 564.5 39.86 0 None 0.002505 Param 1 of 2 Param 1 of 2 Sulfate (mg/L) GS-GSA-MW-8 2123 n/a 8/5/2020 1880 No 12 307.9 0 None No 0.002505 Sulfate (mg/L) MW-1 2100 8/3/2020 1370 18 n/a Ω 0.005373 NP (normality) 1 of 2 n/a Nο n/a n/a n/a MW-2 1247 8/3/2020 907 1003 126.2 0.002505 Param 1 of 2 Sulfate (mg/L) n/a No No MW-3 2431 379.6 Param 1 of 2 Sulfate (mg/L) 3164 n/a 8/3/2020 2330 Nο 18 0 None Nο 0.002505 Sulfate (mg/L) MW-4 3023 n/a 8/5/2020 1930 No 17 2558 238.2 0 0.002505 Param 1 of 2 GS-GSA-MW-3 8/4/2020 5110 12 1.4e22 0 0.002505 Param 1 of 2 Total dissolved solids (mg/L) 5416 5.4e21 x^6 n/a No None Total dissolved solids (mg/L) GS-GSA-MW-4 1100 n/a 8/5/2020 938 No 12 990.3 51.88 0 None No 0.002505 Param 1 of 2 Total dissolved solids (mg/L) GS-GSA-MW-8 4264 8/5/2020 3610 8 3090 477.8 0 None 0.002505 Param 1 of 2 n/a No No Total dissolved solids (mg/L) MW-1 2526 n/a 8/3/2020 2200 No 18 2183 178 0 None No 0.002505 Param 1 of 2 Total dissolved solids (mg/L) MW-2 2032 n/a 8/3/2020 1650 No 18 1640 202.8 0 0.002505 Param 1 of 2 None No

3661

628 6

367.3

Ω

None

Nο

0.002505

0.002505

Param 1 of 2

Param 1 of 2

18

17 3923

Nο

Total dissolved solids (mg/L)

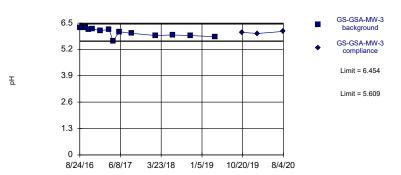
Total dissolved solids (mg/L)

MW-3

4874

4639

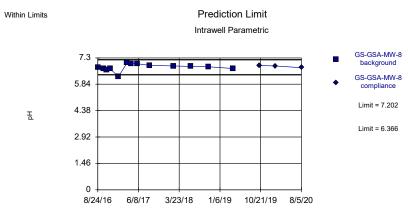
n/a


n/a

8/3/2020

8/5/2020

3760


Within Limits Prediction Limit
Intrawell Parametric



Background Data Summary: Mean=6.032, Std. Dev.=0.2034, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9319, critical = 0.814. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005102.

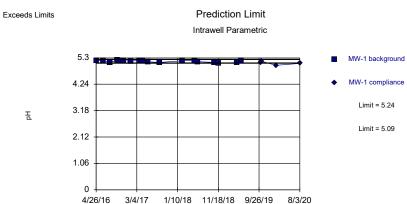
Constituent: pH Analysis Run 10/13/2020 10:21 AM View: Appendix III - Intrawell Plant Gorgas Client: Southern Company Data: Gorgas GSA

Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG



Background Data Summary: Mean=6.784, Std. Dev.=0.2012, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8769, critical = 0.814. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

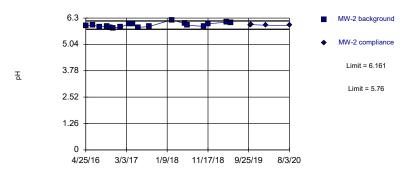
Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG






Background Data Summary: Mean=3.785, Std. Dev.=0.04034, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9065, critical = 0.814. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Constituent: pH Analysis Run 10/13/2020 10:21 AM View: Appendix III - Intrawell Plant Gorgas Client: Southern Company Data: Gorgas GSA


Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG



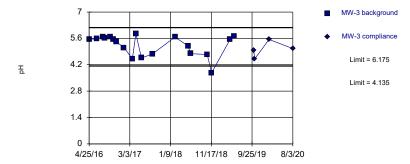
Background Data Summary: Mean=5.165, Std. Dev.=0.03869, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8696, critical = 0.858. Kappa = 1.931 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Within Limits

Prediction Limit
Intrawell Parametric



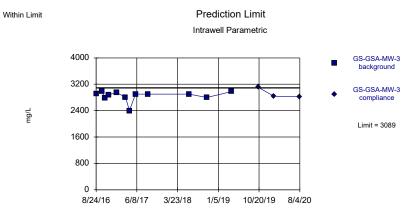

Background Data Summary: Mean=5.961, Std. Dev.=0.1039, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9465, critical = 0.858. Kappa = 1.931 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005132).


Constituent: pH Analysis Run 10/13/2020 10:21 AM View: Appendix III - Intrawell Plant Gorgas Client: Southern Company Data: Gorgas GSA

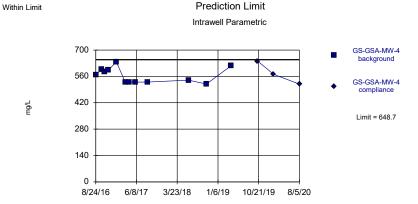
Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG

Background Data Summary: Mean=6.154, Std. Dev.=0.04755, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9068, critical = 0.858. Kappa = 1.931 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG



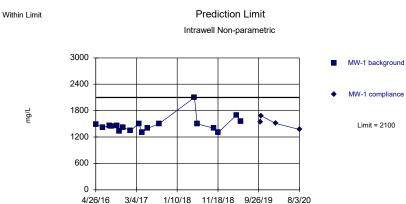




Background Data Summary (based on square transformation): Mean=27.62, Std. Dev.=5.502, n=19. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8755, critical = 0.863. Kappa = 1.912 (c=7, w=3, 1 of 2, event alpha = 0.06132). Report alpha = 0.002505.

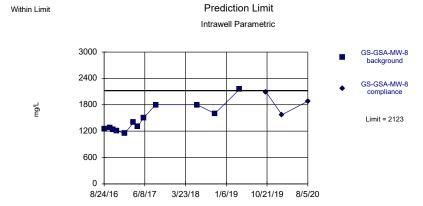
Constituent: pH Analysis Run 10/13/2020 10:21 AM View: Appendix III - Intrawell Plant Gorgas Client: Southern Company Data: Gorgas GSA

Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG




Background Data Summary (based on x $^5$  transformation): Mean=1.9e17, Std. Dev.=4.2e16, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8091, critical = 0.805. Kappa = 2.112 (c=7, w=3, 1 of 2, event alpha = 0.00132). Report alpha = 0.002505.

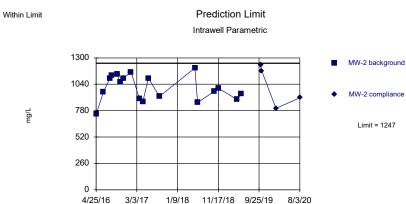



Background Data Summary: Mean=564.5, Std. Dev.=39.86, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8799, critical = 0.805. Kappa = 2.112 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505

Constituent: Sulfate Analysis Run 10/13/2020 10:21 AM View: Appendix III - Intrawell Plant Gorgas Client: Southern Company Data: Gorgas GSA

#### Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG



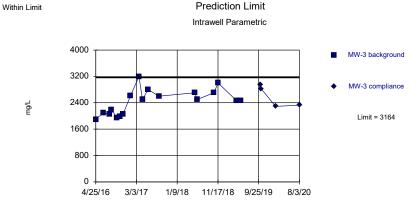

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 18 background values. Well-constituent pair annual alpha = 0.01072. Individual comparison alpha = 0.005373 (1 of 2).



Background Data Summary: Mean=1473, Std. Dev.=307.9, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8741, critical = 0.805. Kappa = 2.112 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Constituent: Sulfate Analysis Run 10/13/2020 10:21 AM View: Appendix III - Intrawell Plant Gorgas Client: Southern Company Data: Gorgas GSA

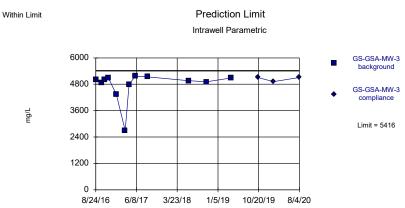
#### Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG




Background Data Summary: Mean=1003, Std. Dev.=126.2, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.957, critical = 0.858. Kappa = 1.931 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

4/25/16

3/3/17


Within Limit



Background Data Summary: Mean=2431, Std. Dev.=379.6, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9476, critical = 0.858. Kappa = 1.931 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505

Constituent: Sulfate Analysis Run 10/13/2020 10:21 AM View: Appendix III - Intrawell Plant Gorgas Client: Southern Company Data: Gorgas GSA

#### Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG



Background Data Summary (based on  $x^6$  transformation): Mean=1.4e22, Std. Dev.=5.4e21, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8255, critical = 0.805. Kappa = 2.112 (c=7, w=3, 1 of 2, event alpha = 0.00132). Report alpha = 0.002505.

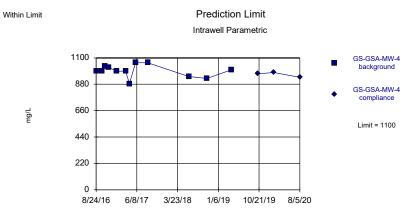
### Annual Parametric

### Annual Parametric

#### MW-4 background

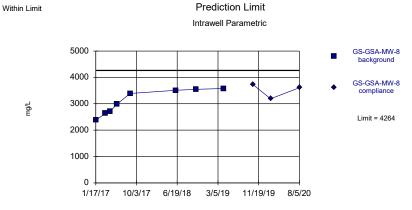
### MW-4 compliance

Limit = 3023


**Prediction Limit** 

Background Data Summary: Mean=2558, Std. Dev.=238.2, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.963, critical = 0.851. Kappa = 1.951 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

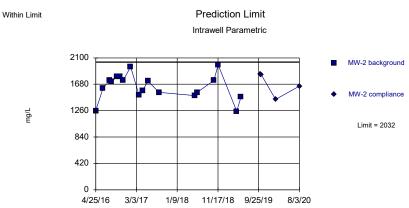
1/10/18 11/18/18 9/27/19


Constituent: Sulfate Analysis Run 10/13/2020 10:21 AM View: Appendix III - Intrawell Plant Gorgas Client: Southern Company Data: Gorgas GSA

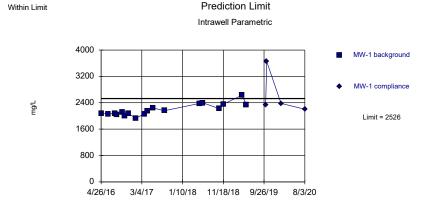
#### Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG



Background Data Summary: Mean=990.3, Std. Dev.=51.88, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9383, critical = 0.805. Kappa = 2.112 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.



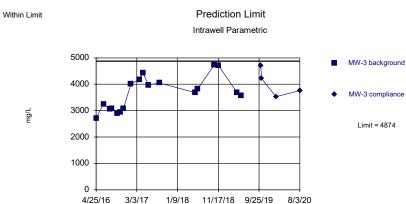




Background Data Summary: Mean=3090, Std. Dev.=477.8, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8736, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Constituent: Total dissolved solids Analysis Run 10/13/2020 10:22 AM View: Appendix III - Intrawell Plant Gorgas Client: Southern Company Data: Gorgas GSA

#### Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG




Background Data Summary: Mean=1640, Std. Dev.=202.8, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.952, critical = 0.858. Kappa = 1.931 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.



Background Data Summary: Mean=2183, Std. Dev.=178, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9142, critical = 0.858. Kappa = 1.931 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Constituent: Total dissolved solids Analysis Run 10/13/2020 10:22 AM View: Appendix III - Intrawell Plant Gorgas Client: Southern Company Data: Gorgas GSA

#### Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG



Background Data Summary: Mean=3661, Std. Dev.=628.6, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9455, critical = 0.858. Kappa = 1.931 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Within Limit Prediction Limit
Intrawell Parametric

### 5000 4000 4000 MW-4 compliance Limit = 4639 Limit = 4639

Background Data Summary: Mean=3923, Std. Dev.=367.3, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8694, critical = 0.851. Kappa = 1.951 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.



|            | GS-GSA-MW-3 | GS-GSA-MW-3 |
|------------|-------------|-------------|
| 8/24/2016  | 6.28        |             |
| 10/3/2016  | 6.28        |             |
| 10/26/2016 | 6.19        |             |
| 11/21/2016 | 6.2         |             |
| 1/17/2017  | 6.13        |             |
| 3/20/2017  | 6.17        |             |
| 4/17/2017  | 5.6         |             |
| 5/30/2017  | 6.07        |             |
| 8/24/2017  | 5.99        |             |
| 2/13/2018  | 5.88        |             |
| 6/11/2018  | 5.91        |             |
| 10/17/2018 | 5.88        |             |
| 4/10/2019  | 5.83        |             |
| 10/14/2019 |             | 6.04        |
| 2/3/2020   |             | 5.98        |
| 8/4/2020   |             | 6.09        |

|            | GS-GSA-MW-4 | GS-GSA-MW-4 |
|------------|-------------|-------------|
| 8/24/2016  | 3.83 (E)    |             |
| 10/3/2016  | 3.82 (E)    |             |
| 10/26/2016 | 3.81 (E)    |             |
| 11/21/2016 | 3.81        |             |
| 1/17/2017  | 3.78        |             |
| 3/21/2017  | 3.76        |             |
| 4/17/2017  | 3.76        |             |
| 5/30/2017  | 3.76        |             |
| 8/24/2017  | 3.7         |             |
| 2/13/2018  | 3.73        |             |
| 6/11/2018  | 3.8         |             |
| 10/17/2018 | 3.81        |             |
| 4/10/2019  | 3.83        |             |
| 10/14/2019 |             | 3.91        |
| 2/4/2020   |             | 3.83        |
| 8/5/2020   |             | 3.86        |

|            | GS-GSA-MW-8 | GS-GSA-MW-8 |
|------------|-------------|-------------|
| 8/24/2016  | 6.78        |             |
| 10/3/2016  | 6.71        |             |
| 10/26/2016 | 6.65        |             |
| 11/21/2016 | 6.7         |             |
| 1/17/2017  | 6.25        |             |
| 3/20/2017  | 7.04        |             |
| 4/18/2017  | 6.99        |             |
| 5/30/2017  | 6.98        |             |
| 8/24/2017  | 6.89        |             |
| 2/13/2018  | 6.85        |             |
| 6/12/2018  | 6.83        |             |
| 10/17/2018 | 6.81        |             |
| 4/10/2019  | 6.71        |             |
| 10/14/2019 |             | 6.88        |
| 2/4/2020   |             | 6.85        |
| 8/5/2020   |             | 6.76        |

|            | MW-1     | MW-1 |
|------------|----------|------|
| 4/26/2016  | 5.2      |      |
| 6/20/2016  | 5.18     |      |
| 8/8/2016   | 5.12     |      |
| 10/3/2016  | 5.21 (D) |      |
| 10/26/2016 | 5.2      |      |
| 11/21/2016 | 5.19 (D) |      |
| 1/17/2017  | 5.17 (D) |      |
| 3/22/2017  | 5.2 (D)  |      |
| 4/18/2017  | 5.2      |      |
| 5/30/2017  | 5.14 (D) |      |
| 8/23/2017  | 5.12 (D) |      |
| 2/13/2018  | 5.18     |      |
| 5/22/2018  | 5.2      |      |
| 6/12/2018  | 5.15     |      |
| 10/17/2018 | 5.12     |      |
| 11/19/2018 | 5.09 (D) |      |
| 4/10/2019  | 5.11     |      |
| 5/14/2019  | 5.19     |      |
| 10/8/2019  |          | 5.12 |
| 10/16/2019 |          | 5.16 |
| 2/3/2020   |          | 5    |
| 8/3/2020   |          | 5.08 |

|            | MW-2     | MW-2 |
|------------|----------|------|
| 4/25/2016  | 5.94     |      |
| 6/20/2016  | 5.96     |      |
| 8/8/2016   | 5.88     |      |
| 10/3/2016  | 5.91 (D) |      |
| 10/26/2016 | 5.84     |      |
| 11/21/2016 | 5.82 (D) |      |
| 1/17/2017  | 5.87 (D) |      |
| 3/22/2017  | 6.01 (D) |      |
| 4/18/2017  | 6.02     |      |
| 5/31/2017  | 5.85 (D) |      |
| 8/23/2017  | 5.89 (D) |      |
| 2/13/2018  | 6.21     |      |
| 5/22/2018  | 6.04     |      |
| 6/12/2018  | 5.95     |      |
| 10/17/2018 | 5.9      |      |
| 11/19/2018 | 6.03 (D) |      |
| 4/10/2019  | 6.1      |      |
| 5/14/2019  | 6.07     |      |
| 10/8/2019  |          | 5.96 |
| 10/16/2019 |          | 5.98 |
| 2/3/2020   |          | 5.95 |
| 8/3/2020   |          | 5.95 |

|            | MW-3     | MW-3 |
|------------|----------|------|
| 4/25/2016  | 5.56     |      |
| 6/22/2016  | 5.57     |      |
| 8/9/2016   | 5.67     |      |
| 8/24/2016  | 5.63     |      |
| 10/4/2016  | 5.69 (D) |      |
| 10/26/2016 | 5.56     |      |
| 11/21/2016 | 5.42 (D) |      |
| 1/18/2017  | 5.11 (D) |      |
| 3/22/2017  | 4.52 (D) |      |
| 4/18/2017  | 5.84     |      |
| 5/31/2017  | 4.56 (D) |      |
| 8/23/2017  | 4.77 (D) |      |
| 2/13/2018  | 5.67     |      |
| 5/24/2018  | 5.19     |      |
| 6/12/2018  | 4.79     |      |
| 10/17/2018 | 4.75     |      |
| 11/19/2018 | 3.77 (D) |      |
| 4/10/2019  | 5.54     |      |
| 5/14/2019  | 5.71     |      |
| 10/8/2019  |          | 4.98 |
| 10/16/2019 |          | 4.51 |
| 2/3/2020   |          | 5.54 |
| 8/3/2020   |          | 5.06 |

|            | MW-4     | MW-4 |
|------------|----------|------|
| 4/25/2016  | 6.22     |      |
| 6/20/2016  | 6.21     |      |
| 8/9/2016   | 6.11     |      |
| 8/24/2016  | 6.11     |      |
| 10/3/2016  | 6.13 (D) |      |
| 10/26/2016 | 6.12     |      |
| 11/21/2016 | 6.09 (D) |      |
| 1/18/2017  | 6.09 (D) |      |
| 3/22/2017  | 6.15 (D) |      |
| 4/18/2017  | 6.19     |      |
| 8/23/2017  | 6.12     |      |
| 2/13/2018  | 6.22     |      |
| 5/23/2018  | 6.21     |      |
| 6/12/2018  | 6.16     |      |
| 10/17/2018 | 6.12     |      |
| 11/19/2018 | 6.16 (D) |      |
| 4/10/2019  | 6.14     |      |
| 5/14/2019  | 6.23     |      |
| 10/10/2019 |          | 6.15 |
| 10/16/2019 |          | 6.19 |
| 2/3/2020   |          | 6.14 |
| 8/5/2020   |          | 6.15 |
|            |          |      |

Constituent: Sulfate (mg/L) Analysis Run 10/13/2020 10:25 AM View: Appendix III - Intrawell

Plant Gorgas Client: Southern Company Data: Gorgas GSA

|            | GS-GSA-MW-3 | GS-GSA-MW-3 |
|------------|-------------|-------------|
| 8/24/2016  | 2910        |             |
| 10/3/2016  | 2980        |             |
| 10/26/2016 | 2790        |             |
| 11/21/2016 | 2880        |             |
| 1/17/2017  | 2950        |             |
| 3/20/2017  | 2800        |             |
| 4/17/2017  | 2400        |             |
| 5/30/2017  | 2900        |             |
| 8/24/2017  | 2900        |             |
| 6/11/2018  | 2900        |             |
| 10/17/2018 | 2800        |             |
| 4/10/2019  | 2980        |             |
| 10/14/2019 |             | 3110        |
| 2/3/2020   |             | 2840        |
| 8/4/2020   |             | 2820        |
|            |             |             |

Constituent: Sulfate (mg/L) Analysis Run 10/13/2020 10:25 AM View: Appendix III - Intrawell

Plant Gorgas Client: Southern Company Data: Gorgas GSA

|            | GS-GSA-MW-4 | GS-GSA-MW-4 |
|------------|-------------|-------------|
| 8/24/2016  | 567         |             |
| 10/3/2016  | 596         |             |
| 10/26/2016 | 585         |             |
| 11/21/2016 | 593         |             |
| 1/17/2017  | 637         |             |
| 3/21/2017  | 530         |             |
| 4/17/2017  | 530         |             |
| 5/30/2017  | 530         |             |
| 8/24/2017  | 530         |             |
| 6/11/2018  | 540         |             |
| 10/17/2018 | 520         |             |
| 4/10/2019  | 616         |             |
| 10/14/2019 |             | 641         |
| 2/4/2020   |             | 571         |
| 8/5/2020   |             | 519         |
|            |             |             |

Constituent: Sulfate (mg/L) Analysis Run 10/13/2020 10:25 AM View: Appendix III - Intrawell

Plant Gorgas Client: Southern Company Data: Gorgas GSA

|            | GS-GSA-MW-8 | GS-GSA-MW-8 |
|------------|-------------|-------------|
| 8/24/2016  | 1250        |             |
| 10/3/2016  | 1270        |             |
| 10/26/2016 | 1240        |             |
| 11/21/2016 | 1210        |             |
| 1/17/2017  | 1150        |             |
| 3/20/2017  | 1400        |             |
| 4/18/2017  | 1300        |             |
| 5/30/2017  | 1500        |             |
| 8/24/2017  | 1800        |             |
| 6/12/2018  | 1800        |             |
| 10/17/2018 | 1600        |             |
| 4/10/2019  | 2150        |             |
| 10/14/2019 |             | 2090        |
| 2/4/2020   |             | 1570        |
| 8/5/2020   |             | 1880        |
|            |             |             |

Constituent: Sulfate (mg/L) Analysis Run 10/13/2020 10:25 AM View: Appendix III - Intrawell Plant Gorgas Client: Southern Company Data: Gorgas GSA

|            | MW-1 | MW-1 |
|------------|------|------|
| 4/26/2016  | 1490 |      |
| 6/20/2016  | 1420 |      |
| 8/8/2016   | 1460 |      |
| 8/24/2016  | 1450 |      |
| 10/3/2016  | 1460 |      |
| 10/26/2016 | 1330 |      |
| 11/21/2016 | 1420 |      |
| 1/17/2017  | 1350 |      |
| 3/22/2017  | 1500 |      |
| 4/18/2017  | 1300 |      |
| 5/30/2017  | 1400 |      |
| 8/23/2017  | 1500 |      |
| 5/22/2018  | 2100 |      |
| 6/12/2018  | 1500 |      |
| 10/17/2018 | 1400 |      |
| 11/19/2018 | 1300 |      |
| 4/10/2019  | 1700 |      |
| 5/14/2019  | 1560 |      |
| 10/8/2019  |      | 1540 |
| 10/16/2019 |      | 1680 |
| 2/3/2020   |      | 1510 |
|            |      |      |

1370

8/3/2020

|            | MW-2 | MW-2 |
|------------|------|------|
| 4/25/2016  | 745  |      |
| 6/20/2016  | 964  |      |
| 8/8/2016   | 1100 |      |
| 8/24/2016  | 1130 |      |
| 10/3/2016  | 1140 |      |
| 10/26/2016 | 1060 |      |
| 11/21/2016 | 1100 |      |
| 1/17/2017  | 1160 |      |
| 3/22/2017  | 900  |      |
| 4/18/2017  | 870  |      |
| 5/31/2017  | 1100 |      |
| 8/23/2017  | 920  |      |
| 5/22/2018  | 1200 |      |
| 6/12/2018  | 860  |      |
| 10/17/2018 | 970  |      |
| 11/19/2018 | 1000 |      |
| 4/10/2019  | 889  |      |
| 5/14/2019  | 948  |      |
| 10/8/2019  |      | 1230 |
| 10/16/2019 |      | 1170 |
| 2/3/2020   |      | 803  |
| 8/3/2020   |      | 907  |
|            |      |      |

|     |           | MW-3 | MW-3 |
|-----|-----------|------|------|
| 4/2 | 25/2016   | 1890 |      |
| 6/2 | 22/2016   | 2100 |      |
| 8/9 | 9/2016    | 2050 |      |
| 8/2 | 24/2016   | 2190 |      |
| 10  | 0/4/2016  | 1950 |      |
| 10  | 0/26/2016 | 1980 |      |
| 11  | 1/21/2016 | 2060 |      |
| 1/1 | 18/2017   | 2620 |      |
| 3/2 | 22/2017   | 3200 |      |
| 4/1 | 18/2017   | 2500 |      |
| 5/3 | 31/2017   | 2800 |      |
| 8/2 | 23/2017   | 2600 |      |
| 5/2 | 24/2018   | 2700 |      |
| 6/1 | 12/2018   | 2500 |      |
| 10  | 0/17/2018 | 2700 |      |
| 11  | 1/19/2018 | 3000 |      |
| 4/1 | 10/2019   | 2460 |      |
| 5/1 | 14/2019   | 2460 |      |
| 10  | 0/8/2019  |      | 2950 |
| 10  | 0/16/2019 |      | 2820 |
| 2/3 | 3/2020    |      | 2290 |
| 8/3 | 3/2020    |      | 2330 |

|            | MW-4 | MW-4 |
|------------|------|------|
| 4/25/2016  | 2260 |      |
| 6/20/2016  | 2500 |      |
| 8/9/2016   | 2750 |      |
| 8/24/2016  | 2770 |      |
| 10/3/2016  | 3060 |      |
| 10/26/2016 | 2650 |      |
| 11/21/2016 | 2720 |      |
| 1/18/2017  | 2650 |      |
| 3/22/2017  | 2700 |      |
| 4/18/2017  | 2400 |      |
| 8/23/2017  | 2700 |      |
| 5/23/2018  | 2400 |      |
| 6/12/2018  | 2600 |      |
| 10/17/2018 | 2600 |      |
| 11/19/2018 | 2400 |      |
| 4/10/2019  | 2090 |      |
| 5/14/2019  | 2240 |      |
| 10/10/2019 |      | 2690 |
| 10/16/2019 |      | 3050 |
| 2/3/2020   |      | 1920 |
| 8/5/2020   |      | 1930 |
|            |      |      |

|            | GS-GSA-MW-3 | GS-GSA-MW-3 |
|------------|-------------|-------------|
| 8/24/2016  | 5020        |             |
| 10/3/2016  | 4880        |             |
| 10/26/2016 | 5020        |             |
| 11/21/2016 | 5090        |             |
| 1/17/2017  | 4330        |             |
| 3/20/2017  | 2690        |             |
| 4/17/2017  | 4780        |             |
| 5/30/2017  | 5170        |             |
| 8/24/2017  | 5140        |             |
| 6/11/2018  | 4960        |             |
| 10/17/2018 | 4910        |             |
| 4/10/2019  | 5090        |             |
| 10/14/2019 |             | 5110        |
| 2/3/2020   |             | 4920        |
| 8/4/2020   |             | 5110        |

|            | GS-GSA-MW-4 | GS-GSA-MW-4 |
|------------|-------------|-------------|
| 8/24/2016  | 992         |             |
| 10/3/2016  | 988         |             |
| 10/26/2016 | 1030        |             |
| 11/21/2016 | 1020        |             |
| 1/17/2017  | 988         |             |
| 3/21/2017  | 990         |             |
| 4/17/2017  | 884         |             |
| 5/30/2017  | 1060        |             |
| 8/24/2017  | 1060        |             |
| 6/11/2018  | 944         |             |
| 10/17/2018 | 928         |             |
| 4/10/2019  | 1000        |             |
| 10/14/2019 |             | 967         |
| 2/4/2020   |             | 978         |
| 8/5/2020   |             | 938         |
|            |             |             |

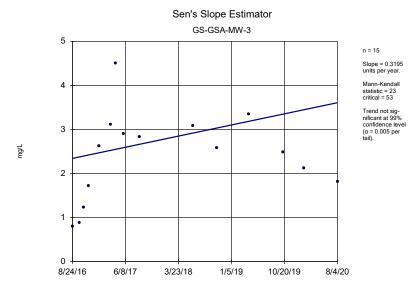
|            | GS-GSA-MW-8 | GS-GSA-MW-8 |
|------------|-------------|-------------|
| 8/24/2016  | 2280        |             |
| 10/3/2016  | 2370        |             |
| 10/26/2016 | 2350        |             |
| 11/21/2016 | 2530        |             |
| 1/17/2017  | 2380        |             |
| 3/20/2017  | 2630        |             |
| 4/18/2017  | 2700        |             |
| 5/30/2017  | 2980        |             |
| 8/24/2017  | 3390        |             |
| 6/12/2018  | 3510        |             |
| 10/17/2018 | 3550        |             |
| 4/10/2019  | 3580        |             |
| 10/14/2019 |             | 3730        |
| 2/4/2020   |             | 3190        |
| 8/5/2020   |             | 3610        |

|            | MW-1     | MW-1 |
|------------|----------|------|
| 4/26/2016  | 2080     |      |
| 6/20/2016  | 2060     |      |
| 8/8/2016   | 2070     |      |
| 8/24/2016  | 2040     |      |
| 10/3/2016  | 2110     |      |
| 10/26/2016 | 2000     |      |
| 11/21/2016 | 2070     |      |
| 1/17/2017  | 1930     |      |
| 3/22/2017  | 2060     |      |
| 4/18/2017  | 2140     |      |
| 5/30/2017  | 2240     |      |
| 8/23/2017  | 2160     |      |
| 5/22/2018  | 2380     |      |
| 6/12/2018  | 2400     |      |
| 10/17/2018 | 2220     |      |
| 11/19/2018 | 2360     |      |
| 4/10/2019  | 2630     |      |
| 5/14/2019  | 2340 (D) |      |
| 10/8/2019  |          | 2330 |
| 10/16/2019 |          | 3650 |
| 2/3/2020   |          | 2380 |
| 8/3/2020   |          | 2200 |
|            |          |      |

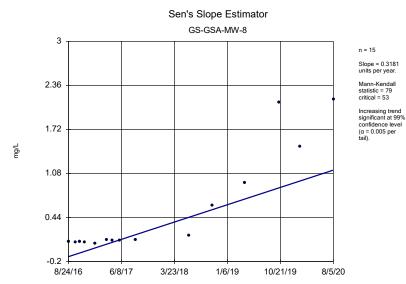
|            | MW-2 | MW-2 |
|------------|------|------|
| 4/25/2016  | 1260 |      |
| 6/20/2016  | 1620 |      |
| 8/8/2016   | 1740 |      |
| 8/24/2016  | 1720 |      |
| 10/3/2016  | 1800 |      |
| 10/26/2016 | 1800 |      |
| 11/21/2016 | 1740 |      |
| 1/17/2017  | 1960 |      |
| 3/22/2017  | 1510 |      |
| 4/18/2017  | 1580 |      |
| 5/31/2017  | 1730 |      |
| 8/23/2017  | 1550 |      |
| 5/22/2018  | 1500 |      |
| 6/12/2018  | 1550 |      |
| 10/17/2018 | 1740 |      |
| 11/19/2018 | 1990 |      |
| 4/10/2019  | 1250 |      |
| 5/14/2019  | 1480 |      |
| 10/8/2019  |      | 1840 |
| 10/16/2019 |      | 1830 |
| 2/3/2020   |      | 1440 |
| 8/3/2020   |      | 1650 |

|            | MW-3     | MW-3 |
|------------|----------|------|
| 4/25/2016  | 2720     |      |
| 6/22/2016  | 3250     |      |
| 8/9/2016   | 3050     |      |
| 8/24/2016  | 3080     |      |
| 10/4/2016  | 2900     |      |
| 10/26/2016 | 2940     |      |
| 11/21/2016 | 3090     |      |
| 1/18/2017  | 4020     |      |
| 3/22/2017  | 4180     |      |
| 4/18/2017  | 4440     |      |
| 5/31/2017  | 3970     |      |
| 8/23/2017  | 4050     |      |
| 5/24/2018  | 3680     |      |
| 6/12/2018  | 3820     |      |
| 10/17/2018 | 4730     |      |
| 11/19/2018 | 4710     |      |
| 4/10/2019  | 3680     |      |
| 5/14/2019  | 3580 (D) |      |
| 10/8/2019  |          | 4720 |
| 10/16/2019 |          | 4210 |
| 2/3/2020   |          | 3530 |
| 8/3/2020   |          | 3760 |
|            |          |      |

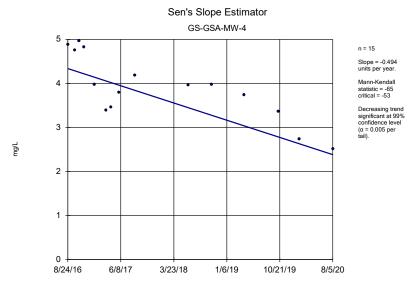
|            | MW-4     | MW-4 |
|------------|----------|------|
| 4/25/2016  | 3300     |      |
| 6/20/2016  | 3870     |      |
| 8/9/2016   | 4140     |      |
| 8/24/2016  | 4190     |      |
| 10/3/2016  | 4190     |      |
| 10/26/2016 | 4400     |      |
| 11/21/2016 | 4230     |      |
| 1/18/2017  | 4120     |      |
| 3/22/2017  | 3980     |      |
| 4/18/2017  | 3880     |      |
| 8/23/2017  | 3990     |      |
| 5/23/2018  | 3740     |      |
| 6/12/2018  | 4080     |      |
| 10/17/2018 | 4250     |      |
| 11/19/2018 | 3920     |      |
| 4/10/2019  | 3280     |      |
| 5/14/2019  | 3130 (D) |      |
| 10/10/2019 |          | 4000 |
| 10/16/2019 |          | 4060 |
| 2/3/2020   |          | 3240 |
| 8/5/2020   |          | 3200 |
|            |          |      |


# FIGURE F.

## Trend Tests Summary Table - Prediction Limit Exceedances - Significant Results

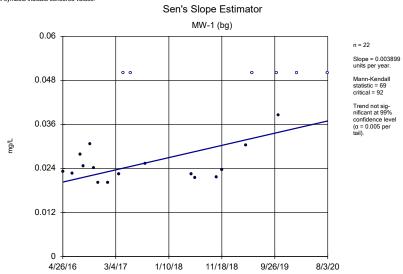

|                 | •                                 |               |          |           |        |          |        | -         |              |              |        |
|-----------------|-----------------------------------|---------------|----------|-----------|--------|----------|--------|-----------|--------------|--------------|--------|
|                 | Plant Gorgas Client: Southern Com | pany Data: Go | rgas GSA | Printed 1 | 0/13/2 | 020, 10  | :30 AM |           |              |              |        |
| Constituent     | Well                              | Slope         | Calc.    | Critical  | Sig.   | <u>N</u> | %NDs   | Normality | <u>Xform</u> | <u>Alpha</u> | Method |
| Boron (mg/L)    | GS-GSA-MW-4                       | -0.494        | -65      | -53       | Yes    | 15       | 0      | n/a       | n/a          | 0.01         | NP     |
| Boron (mg/L)    | GS-GSA-MW-8                       | 0.3181        | 79       | 53        | Yes    | 15       | 0      | n/a       | n/a          | 0.01         | NP     |
| Calcium (mg/L)  | GS-GSA-MW-8                       | 92.54         | 71       | 53        | Yes    | 15       | 0      | n/a       | n/a          | 0.01         | NP     |
| Chloride (mg/L) | GS-GSA-MW-4                       | -17.43        | -73      | -53       | Yes    | 15       | 0      | n/a       | n/a          | 0.01         | NP     |
| Chloride (mg/L) | GS-GSA-MW-8                       | 41.11         | 81       | 53        | Yes    | 15       | 0      | n/a       | n/a          | 0.01         | NP     |

## Trend Tests Summary Table - Prediction Limit Exceedances - All Results

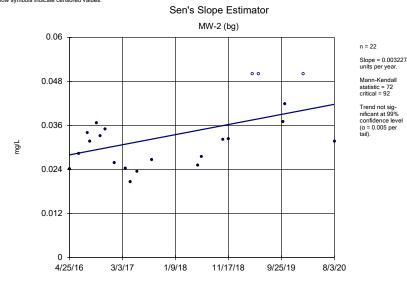

|                 | Plant Gorgas | Client: Southern Company | / Data: Gorç | gas GSA | Printed 10 | )/13/20 | 020, 10: | 30 AM |           |              |              |        |
|-----------------|--------------|--------------------------|--------------|---------|------------|---------|----------|-------|-----------|--------------|--------------|--------|
| Constituent     | Well         | <u>s</u>                 | Slope        | Calc.   | Critical   | Sig.    | <u>N</u> | %NDs  | Normality | <u>Xform</u> | <u>Alpha</u> | Method |
| Boron (mg/L)    | GS-GSA-MW-3  | 0                        | 0.3195       | 23      | 53         | No      | 15       | 0     | n/a       | n/a          | 0.01         | NP     |
| Boron (mg/L)    | GS-GSA-MW-4  | -4                       | 0.494        | -65     | -53        | Yes     | 15       | 0     | n/a       | n/a          | 0.01         | NP     |
| Boron (mg/L)    | GS-GSA-MW-8  | 0                        | ).3181       | 79      | 53         | Yes     | 15       | 0     | n/a       | n/a          | 0.01         | NP     |
| Boron (mg/L)    | MW-1 (bg)    | 0                        | 0.003899     | 69      | 92         | No      | 22       | 27.27 | n/a       | n/a          | 0.01         | NP     |
| Boron (mg/L)    | MW-2 (bg)    | 0                        | 0.003227     | 72      | 92         | No      | 22       | 13.64 | n/a       | n/a          | 0.01         | NP     |
| Boron (mg/L)    | MW-3 (bg)    | 0                        | 0.002599     | 59      | 92         | No      | 22       | 18.18 | n/a       | n/a          | 0.01         | NP     |
| Boron (mg/L)    | MW-4 (bg)    | 0                        | 0.0008345    | 41      | 87         | No      | 21       | 4.762 | n/a       | n/a          | 0.01         | NP     |
| Calcium (mg/L)  | GS-GSA-MW-3  | 3                        | 3.862        | 4       | 53         | No      | 15       | 0     | n/a       | n/a          | 0.01         | NP     |
| Calcium (mg/L)  | GS-GSA-MW-8  | 9                        | 2.54         | 71      | 53         | Yes     | 15       | 0     | n/a       | n/a          | 0.01         | NP     |
| Calcium (mg/L)  | MW-1 (bg)    | 6                        | 6.226        | 91      | 92         | No      | 22       | 0     | n/a       | n/a          | 0.01         | NP     |
| Calcium (mg/L)  | MW-2 (bg)    | 5                        | 5.509        | 51      | 92         | No      | 22       | 0     | n/a       | n/a          | 0.01         | NP     |
| Calcium (mg/L)  | MW-3 (bg)    | 2                        | 25.31        | 81      | 92         | No      | 22       | 0     | n/a       | n/a          | 0.01         | NP     |
| Calcium (mg/L)  | MW-4 (bg)    |                          | 1.57         | -4      | -87        | No      | 21       | 0     | n/a       | n/a          | 0.01         | NP     |
| Chloride (mg/L) | GS-GSA-MW-3  | 0                        | )            | 0       | 53         | No      | 15       | 0     | n/a       | n/a          | 0.01         | NP     |
| Chloride (mg/L) | GS-GSA-MW-4  | مي .                     | 17.43        | -73     | -53        | Yes     | 15       | 0     | n/a       | n/a          | 0.01         | NP     |
| Chloride (mg/L) | GS-GSA-MW-8  | 4                        | 11.11        | 81      | 53         | Yes     | 15       | 0     | n/a       | n/a          | 0.01         | NP     |
| Chloride (mg/L) | MW-1 (bg)    | -(                       | 0.005518     | -4      | -92        | No      | 22       | 0     | n/a       | n/a          | 0.01         | NP     |
| Chloride (mg/L) | MW-2 (bg)    | 0                        | ).1676       | 22      | 92         | No      | 22       | 0     | n/a       | n/a          | 0.01         | NP     |
| Chloride (mg/L) | MW-3 (bg)    | 0                        | 0.02724      | 25      | 92         | No      | 22       | 9.091 | n/a       | n/a          | 0.01         | NP     |
| Chloride (mg/L) | MW-4 (bg)    | -(                       | 0.04908      | -40     | -87        | No      | 21       | 4.762 | n/a       | n/a          | 0.01         | NP     |



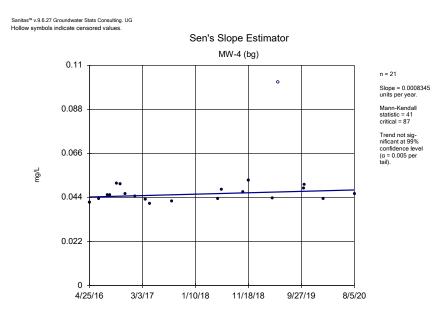
Constituent: Boron Analysis Run 10/13/2020 10:27 AM View: Appendix III
Plant Gorgas Client: Southern Company Data: Gorgas GSA



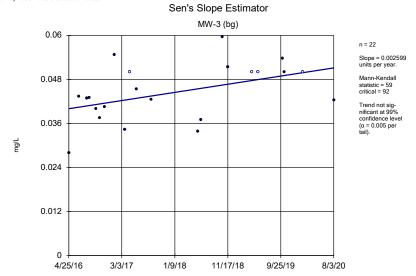

Constituent: Boron Analysis Run 10/13/2020 10:27 AM View: Appendix III
Plant Gorgas Client: Southern Company Data: Gorgas GSA



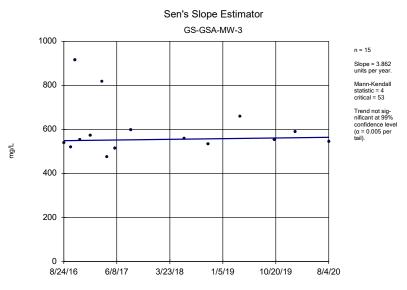

Constituent: Boron Analysis Run 10/13/2020 10:27 AM View: Appendix III
Plant Gorgas Client: Southern Company Data: Gorgas GSA


#### Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

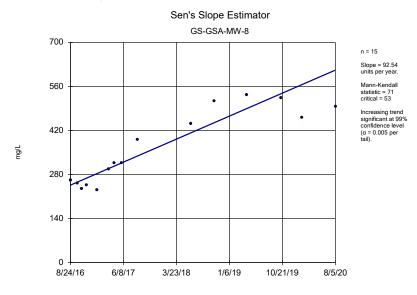


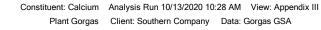

Constituent: Boron Analysis Run 10/13/2020 10:27 AM View: Appendix III
Plant Gorgas Client: Southern Company Data: Gorgas GSA

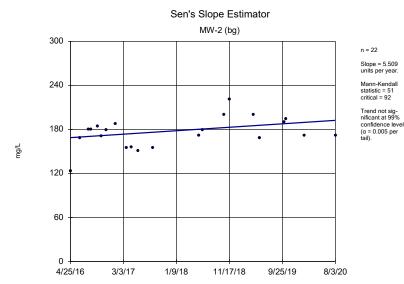



Constituent: Boron Analysis Run 10/13/2020 10:28 AM View: Appendix III
Plant Gorgas Client: Southern Company Data: Gorgas GSA

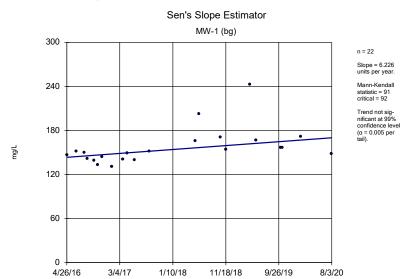



Constituent: Boron Analysis Run 10/13/2020 10:28 AM View: Appendix III
Plant Gorgas Client: Southern Company Data: Gorgas GSA



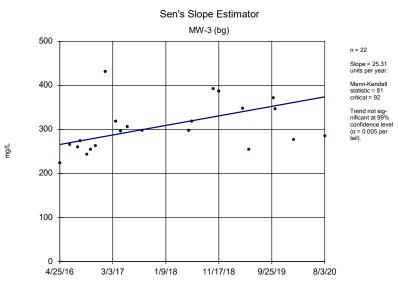


Constituent: Boron Analysis Run 10/13/2020 10:28 AM View: Appendix III
Plant Gorgas Client: Southern Company Data: Gorgas GSA



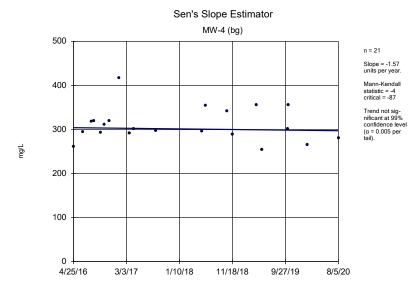

Constituent: Calcium Analysis Run 10/13/2020 10:28 AM View: Appendix III
Plant Gorgas Client: Southern Company Data: Gorgas GSA





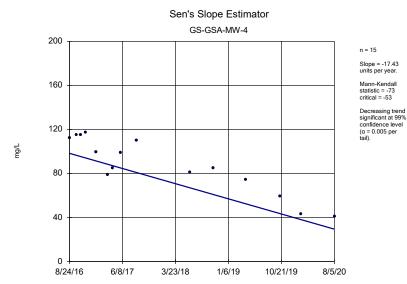



Constituent: Calcium Analysis Run 10/13/2020 10:28 AM View: Appendix III
Plant Gorgas Client: Southern Company Data: Gorgas GSA

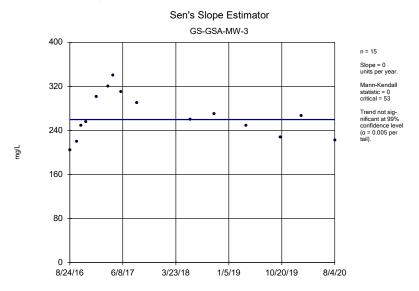



Constituent: Calcium Analysis Run 10/13/2020 10:28 AM View: Appendix III
Plant Gorgas Client: Southern Company Data: Gorgas GSA

#### Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG

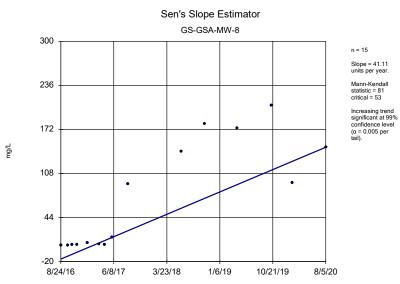



Constituent: Calcium Analysis Run 10/13/2020 10:28 AM View: Appendix III
Plant Gorgas Client: Southern Company Data: Gorgas GSA

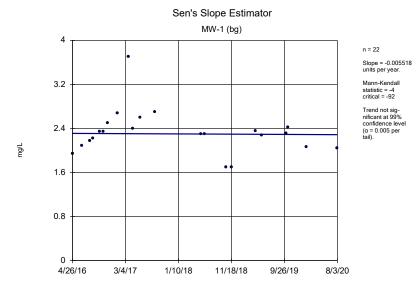



Constituent: Calcium Analysis Run 10/13/2020 10:28 AM View: Appendix III
Plant Gorgas Client: Southern Company Data: Gorgas GSA

#### Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG



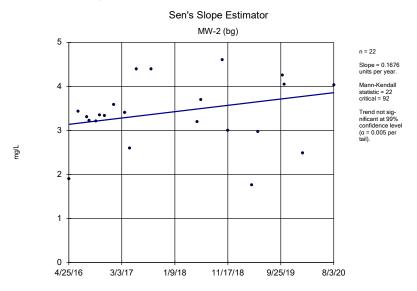

Constituent: Chloride Analysis Run 10/13/2020 10:28 AM View: Appendix III
Plant Gorgas Client: Southern Company Data: Gorgas GSA



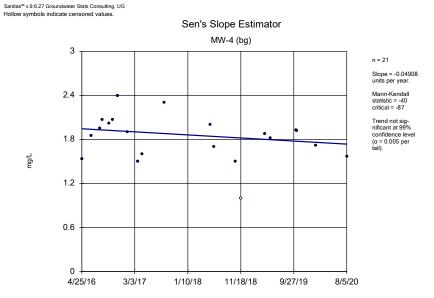

Constituent: Chloride Analysis Run 10/13/2020 10:28 AM View: Appendix III
Plant Gorgas Client: Southern Company Data: Gorgas GSA

#### Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG




Constituent: Chloride Analysis Run 10/13/2020 10:28 AM View: Appendix III
Plant Gorgas Client: Southern Company Data: Gorgas GSA




Constituent: Chloride Analysis Run 10/13/2020 10:28 AM View: Appendix III
Plant Gorgas Client: Southern Company Data: Gorgas GSA

#### Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG Hollow symbols indicate censored values Sen's Slope Estimator MW-3 (bg) n = 22 Slope = 0.02724 units per year. 2.4 Mann-Kendall statistic = 25 critical = 92 Trend not sig-nificant at 99% confidence level 1.8 (α = 0.005 per tail). mg/L 1.2 0.6 4/25/16 3/3/17 1/9/18 11/17/18 9/25/19 8/3/20

Constituent: Chloride Analysis Run 10/13/2020 10:28 AM View: Appendix III
Plant Gorgas Client: Southern Company Data: Gorgas GSA

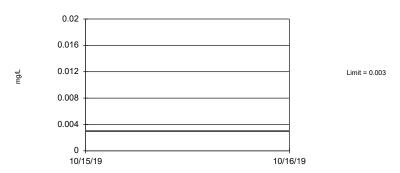


Constituent: Chloride Analysis Run 10/13/2020 10:28 AM View: Appendix III
Plant Gorgas Client: Southern Company Data: Gorgas GSA



Constituent: Chloride

Analysis Run 10/13/2020 10:28 AM View: Appendix III


Plant Gorgas Client: Southern Company Data: Gorgas GSA

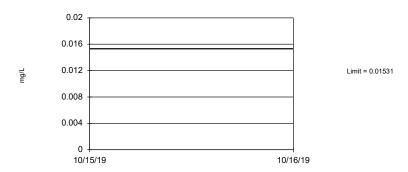
# FIGURE G.

## Upper Tolerance Limits - Appendix IV

Plant William C Gorgas Client: Southern Company Data: Gorgas GSA Printed 7/22/2020, 2:59 PM Upper Lim. Lower Lim. Bg N Bg Mean Std. Dev. %NDs ND Adj. Transform Constituent <u>Alpha</u> Method 0.003 92.41 0.01738 NP Inter(NDs) Antimony (mg/L) 79 n/a n/a n/a n/a n/a Arsenic (mg/L) 0.005 79 0.01738 NP Inter(NDs) Barium (mg/L) 0.01531 n/a 79 -4.516 0.1715 0 None In(x) 0.05 Inter 0.0121 Beryllium (mg/L) 77 n/a 81.82 n/a 0.01926 NP Inter(NDs) n/a n/a n/a Cadmium (mg/L) 0.00598 78 48.72 0.0183 NP Inter(normal... 0.0105 94.94 0.01738 NP Inter(NDs) Chromium (mg/L) n/a 79 n/a n/a n/a 1.07 24.05 0.01738 NP Inter(normal... Cobalt (mg/L) n/a 79 n/a n/a n/a n/a Combined Radium 226 + 228 (pCi/L) 1.151 65 0.4707 No 0.05 0.4625 Fluoride (mg/L) 0.5302 83 0.1358 0 None sqrt(x) 0.05 Inter 0.00692 0.01738 NP Inter(NDs) Lead (mg/L) n/a 79 n/a n/a 96.2 n/a n/a Lithium (mg/L) 0.419 79 0.01738 NP Inter(normal... 0.0005 100 0.01738 NP Inter(NDs) Mercury (mg/L) n/a 79 n/a n/a n/a n/a 0.01 100 0.01738 NP Inter(NDs) Molybdenum (mg/L) 79 n/a n/a n/a n/a n/a Selenium (mg/L) 0.0158 66.67 0.0183 NP Inter(NDs) n/a Thallium (mg/L) 0.001 79 n/a 96.2 0.01738 NP Inter(NDs)

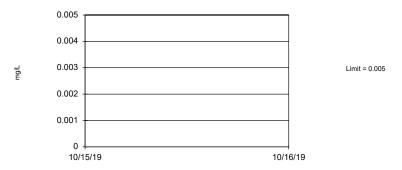
## Tolerance Limit Interwell Non-parametric




Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 79 background values. 92.41% NDs. 94.34% coverage at alpha=0.01; 96.29% coverage at alpha=0.05; 99.02% coverage at alpha=0.5. Report alpha = 0.01738.

Constituent: Antimony Analysis Run 7/22/2020 2:57 PM View: UTL's - Appendix IV

Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

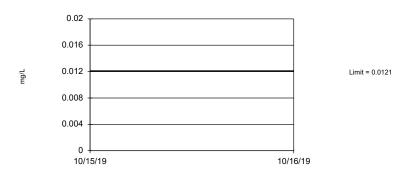

Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG

## Tolerance Limit Interwell Parametric



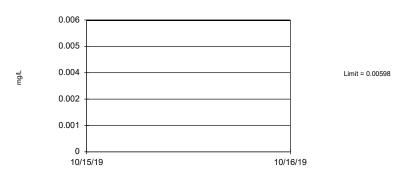
95% coverage. Background Data Summary (based on natural log transformation): Mean=-4.516, Std. Dev.=0.1715, n=79. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9604, critical = 0.957. Report alpha = 0.05.

## Tolerance Limit Interwell Non-parametric




Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 79 background values. 91.14% NDs. 94.34% coverage at alpha=0.01; 96.29% coverage at alpha=0.5. Report alpha = 0.01738.

Constituent: Arsenic Analysis Run 7/22/2020 2:57 PM View: UTL's - Appendix IV
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA


Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG

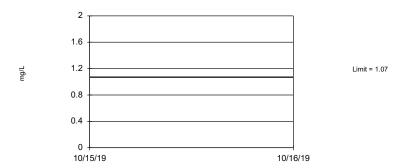
## Tolerance Limit Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 77 background values. 81.82% NDs. 94.34% coverage at alpha=0.01; 96.29% coverage at alpha=0.5. Report alpha = 0.01926.

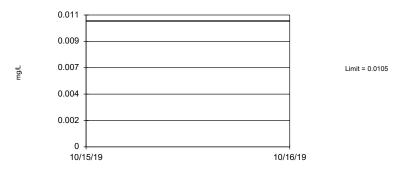
## Tolerance Limit Interwell Non-parametric




Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 78 background values. 48.72% NDs. 94.34% coverage at alpha=0.01; 96.29% coverage at alpha=0.05; 99.02% coverage at alpha=0.05. Report alpha = 0.0183.

Constituent: Cadmium Analysis Run 7/22/2020 2:57 PM View: UTL's - Appendix IV

Plant William C Gorgas Client: Southern Company Data: Gorgas GSA


Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG

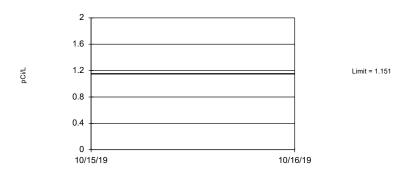
## Tolerance Limit Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 79 background values. 24.05% NDs. 94.34% coverage at alpha=0.01; 96.29% coverage at alpha=0.05. Report alpha = 0.01738.

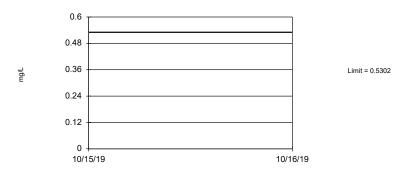
## Tolerance Limit Interwell Non-parametric




Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 79 background values. 94.94% NDs. 94.34% coverage at alpha=0.01; 96.29% coverage at alpha=0.05; 99.02% coverage at alpha=0.5. Report alpha = 0.01738.

Constituent: Chromium Analysis Run 7/22/2020 2:57 PM View: UTL's - Appendix IV

Plant William C Gorgas Client: Southern Company Data: Gorgas GSA


Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG

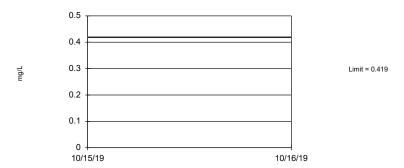
## Tolerance Limit Interwell Parametric



95% coverage. Background Data Summary: Mean=0.4707, Std. Dev.=0.3403, n=65. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.982, critical = 0.948. Report alpha = 0.05.

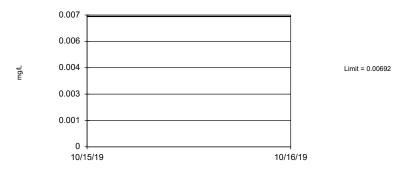
## Tolerance Limit Interwell Parametric




95% coverage. Background Data Summary (based on square root transformation): Mean=0.4625, Std. Dev.=0.1358, n=83. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9794, critical = 0.96. Report alpha = 0.05.

Constituent: Fluoride Analysis Run 7/22/2020 2:58 PM View: UTL's - Appendix IV

Plant William C Gorgas Client: Southern Company Data: Gorgas GSA


Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG

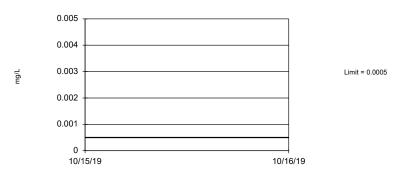
## Tolerance Limit Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 79 background values. 94.34% coverage at alpha=0.01; 96.29% coverage at alpha=0.5. Report alpha = 0.01738.

## Tolerance Limit Interwell Non-parametric




Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 79 background values. 96.2% NDs. 94.34% coverage at alpha=0.01; 96.29% coverage at alpha=0.05; 99.02% coverage at alpha=0.5. Report alpha = 0.01738.

Constituent: Lead Analysis Run 7/22/2020 2:58 PM View: UTL's - Appendix IV

Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG

## Tolerance Limit Interwell Non-parametric

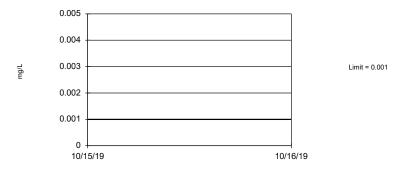


Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. All background values were censored; limit is most recent reporting limit. 94.34% coverage at alpha=0.01; 96.29% coverage at alpha=0.05; 99.02% coverage at alpha=0.5. Report alpha=0.01738.

Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG

## Tolerance Limit Interwell Non-parametric



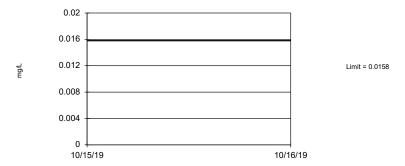

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. All background values were censored; limit is most recent reporting limit. 94.34% coverage at alpha=0.01; 96.29% coverage at alpha=0.5. Report alpha = 0.01738.

Constituent: Molybdenum Analysis Run 7/22/2020 2:58 PM View: UTL's - Appendix IV

Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG

## Tolerance Limit Interwell Non-parametric




Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 79 background values. 96.2% NDs. 94.34% coverage at alpha=0.01; 96.29% coverage at alpha=0.05; 99.02% coverage at alpha=0.5. Report alpha = 0.01738.

Constituent: Thallium Analysis Run 7/22/2020 2:58 PM View: UTL's - Appendix IV
Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

Sanitas™ v.9.6.24 Sanitas software licensed to Southern Company. UG

## Tolerance Limit Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 78 background values. 66.67% NDs. 94.34% coverage at alpha=0.01; 96.29% coverage at alpha=0.05; 99.02% coverage at alpha=0.5. Report alpha = 0.0183.

Constituent: Selenium Analysis Run 7/22/2020 2:58 PM View: UTL's - Appendix IV

Plant William C Gorgas Client: Southern Company Data: Gorgas GSA

# FIGURE H.

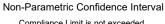
| GORGAS (                | SYPSUM | POND GWPS  |       |
|-------------------------|--------|------------|-------|
| Analyte                 | Units  | Background | GWPS  |
| Antimony                | mg/L   | 0.003      | 0.006 |
| Arsenic                 | mg/L   | 0.005      | 0.01  |
| Barium                  | mg/L   | 0.01531    | 2     |
| Beryllium               | mg/L   | 0.0121     | 0.004 |
| Cadmium                 | mg/L   | 0.00598    | 0.005 |
| Chromium                | mg/L   | 0.0105     | 0.1   |
| Cobalt                  | mg/L   | 1.07       | 1.07  |
| Combined Radium-226/228 | pCi/L  | 1.151      | 5     |
| Fluoride                | mg/L   | 0.5302     | 4     |
| Lead                    | mg/L   | 0.00692    | 0.015 |
| Lithium                 | mg/L   | 0.419      | 0.419 |
| Mercury                 | mg/L   | 0.0005     | 0.002 |
| Molybdenum              | mg/L   | 0.01       | 0.1   |
| Selenium                | mg/L   | 0.0158     | 0.05  |
| Thallium                | mg/L   | 0.001      | 0.002 |

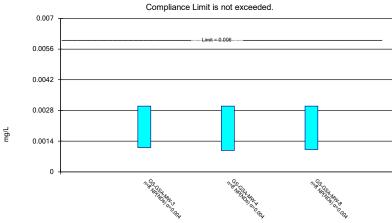
#### Notes:

- 1. mg/L Milligrams per liter
- 2. pCi/L Picocuries per liter
- 3. The background limits were used as the groundwater protection standard (GWPS) when appropriate under 40 CFR §257.95(h), ADEM Rule 335-13-15-.06(h), and the ADEM Variance.
- 4. GWPS established during second semi-annual sampling event in 2019.

# FIGURE I.

## Confidence Intervals Summary Table - Significant Results


Plant Gorgas Client: Southern Company Data: Gorgas GSA Printed 10/19/2020, 4:37 PM

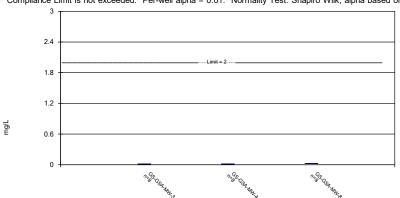

 Constituent
 Well
 Upper Lim.
 Lower Lim.
 Compliance Sig. N
 Mean
 Std. Dev.
 %NDs ND Adj.
 Transform Alpha
 Method

 Lithium (mg/L)
 GS-GSA-MW-3
 0.498
 0.435
 0.419
 Yes 8
 0.4665
 0.02975
 0
 None
 No
 0.0
 Param.

### Confidence Intervals Summary Table - All Results

Plant Gorgas Client: Southern Company Data: Gorgas GSA Printed 10/19/2020, 4:37 PM Constituent <u>Well</u> Upper Lim. Lower Lim. Compliance Sig. N <u>Mean</u> Std. Dev. %NDs ND Adj. Transform Alpha Method Antimony (mg/L) GS-GSA-MW-3 0.003 0.00111 0.006 No 8 0.002764 0.0006682 87.5 None 0.004 NP (NDs) No Antimony (mg/L) GS-GSA-MW-4 0.003 0.000976 0.006 No 8 0.002747 0.0007156 87.5 None No 0.004 NP (NDs) GS-GSA-MW-8 0.003 0.00102 0.002753 0.0007 87.5 0.004 NP (NDs) Antimony (ma/L) 0.006 No 8 None No Arsenic (mg/L) GS-GSA-MW-3 0.005 0.00121 0.01 No 8 0.004526 0.00134 87.5 None No 0.004 NP (NDs) Arsenic (mg/L) GS-GSA-MW-4 0.005 0.00115 0.01 No 8 0.003174 0.001961 50 0.004 NP (normality) None No Barium (mg/L) GS-GSA-MW-3 0.01441 0.01186 2 No 8 0.01314 0.001203 0 None No 0.01 Param. Barium (mg/L) GS-GSA-MW-4 0.0143 0.01197 2 0.01314 0.01 Param. No 8 0.001099 0 None No Barium (mg/L) GS-GSA-MW-8 0.0254 0.02038 2 No 8 0.02289 0.002369 No 0.01 Param. 0.002393 Beryllium (mg/L) GS-GSA-MW-3 0.003328 0.001457 0.004 No 8 0.0008821 0 None Nο 0.01 Param. Beryllium (mg/L) GS-GSA-MW-4 0.005126 0.003787 No 8 0.004456 0.0006316 0 Param. Cadmium (mg/L) GS-GSA-MW-4 0.001451 No 8 0.001621 0.0001602 0 Param. 0.001791 0.005 None Nο 0.01 Cobalt (mg/L) GS-GSA-MW-3 0.1427 0.08399 1.07 No 8 0.1133 0.02768 0.01 Cobalt (mg/L) GS-GSA-MW-4 0.2335 0.1969 0.03451 0 0.1603 1.07 No 8 0.01 Param. None No Cobalt (mg/L) GS-GSA-MW-8 0.005 0.00492 0.00499 0.00002828 87.5 0.004 NP (NDs) Combined Radium 226 + 228 (pCi/L) GS-GSA-MW-3 0.7368 0.2857 5 No 8 0.5113 0.2128 0 None No 0.01 Param. Combined Radium 226 + 228 (pCi/L) GS-GSA-MW-4 0.925 5 No 8 0.5846 0.2658 0 No 0.004 NP (normality) Combined Radium 226 + 228 (pCi/L) 0.01 Param. GS-GSA-MW-8 0.8922 -0.001707 5 No 8 0.4453 0.4217 0 None Fluoride (mg/L) GS-GSA-MW-3 0.7312 0.4421 No 8 0.5866 0.1364 0 0.01 Param. None No 0.004 NP (normality) Fluoride (mg/L) GS-GSA-MW-4 0.7 0.1 No 8 0.32 0.2545 50 None No Fluoride (mg/L) GS-GSA-MW-8 0.1683 0.123 No 8 0.1456 0.02135 0 None No 0.01 Param. Lithium (mg/L) GS-GSA-MW-3 0.498 0.435 0.419 Yes 8 0.4665 0.02975 None No 0.01 Param. Lithium (mg/L) GS-GSA-MW-4 0.2854 0.2748 0.01007 0.01 Param. 0.2641 0.419 No 8 0 None No Lithium (mg/L) GS-GSA-MW-8 0.2068 0.1572 0.419 No 8 0.182 0.02343 No 0.01 Param. Selenium (mg/L) GS-GSA-MW-3 0.01 0.00234 0.05 0.007171 0.003905 0.004 NP (NDs) No 8 62.5 None No Selenium (mg/L) GS-GSA-MW-4 0.01 0.00298 0.05 0.006221 0.003199 None 0.004 NP (normality) Thallium (mg/L) GS-GSA-MW-4 0.001 0.000205 0.002 No 8 0.0009006 0.0002811 87.5 Nο 0.004 NP (NDs) None

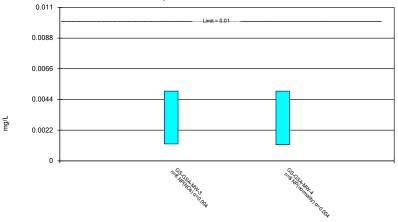





Constituent: Antimony Analysis Run 10/19/2020 4:33 PM View: Appendix IV Plant Gorgas Client: Southern Company Data: Gorgas GSA

Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG

#### Parametric Confidence Interval

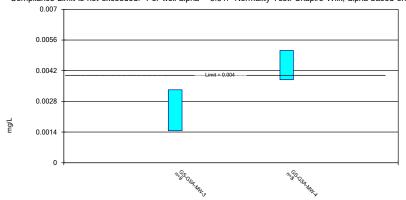





Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG

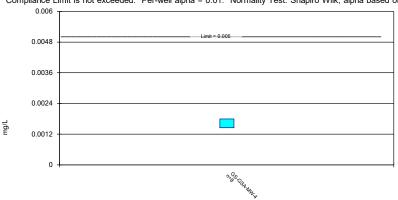
#### Non-Parametric Confidence Interval

Compliance Limit is not exceeded.




Constituent: Arsenic Analysis Run 10/19/2020 4:33 PM View: Appendix IV Plant Gorgas Client: Southern Company Data: Gorgas GSA

Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG

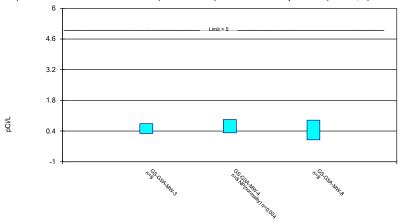

#### Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



#### Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



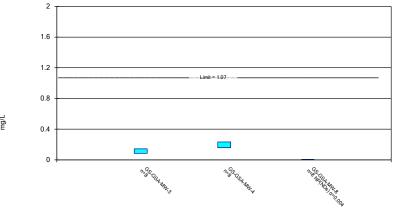

Constituent: Cadmium Analysis Run 10/19/2020 4:33 PM View: Appendix IV
Plant Gorgas Client: Southern Company Data: Gorgas GSA

Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG

#### Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.



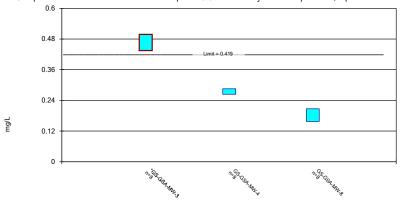

Constituent: Combined Radium 226 + 228 Analysis Run 10/19/2020 4:33 PM View: Appendix IV

Plant Gorgas Client: Southern Company Data: Gorgas GSA

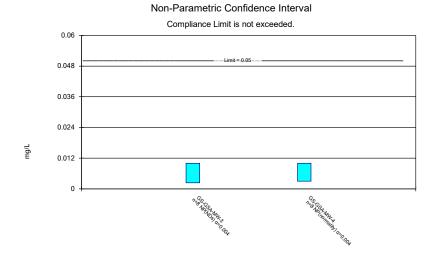
Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG

#### Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

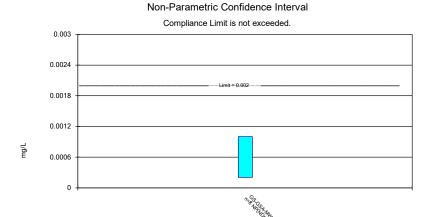



Constituent: Cobalt Analysis Run 10/19/2020 4:33 PM View: Appendix IV
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG

#### Parametric Confidence Interval

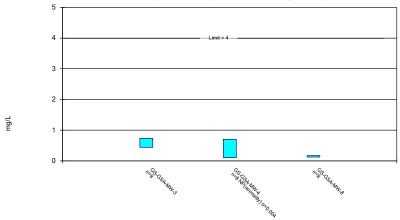
Compliance limit is exceeded.\* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.




Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG



Constituent: Selenium Analysis Run 10/19/2020 4:33 PM View: Appendix IV
Plant Gorgas Client: Southern Company Data: Gorgas GSA


Sanitas™ v.9.6.27 Groundwater Stats Consulting. UG



Constituent: Thallium Analysis Run 10/19/2020 4:33 PM View: Appendix IV
Plant Gorgas Client: Southern Company Data: Gorgas GSA

#### Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Fluoride Analysis Run 10/19/2020 4:35 PM View: Appendix IV
Plant Gorgas Client: Southern Company Data: Gorgas GSA

# Appendix D

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6247 or 6171 FAX (205) 664-6108

## Analytical Report





Sample Group: WMWGORG\_1208TCLP

Project/Site: Gorgas Gypsum

Parrish, AL 35580

For: Southern Company Services

3535 Colonnade Parkway Birmingham, AL 35243

Attention: Dustin Brooks & Greg Dyer

Released By: Laura Midkiff

Ibmidkif@southernco.com

(205) 664-6197

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6247 or 6171 FAX (205) 664-6108





#### **TCLP Extraction**

#### Gorgas Gypsum

#### WMWGORG\_1208TCLP

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions are NIST/ISO/IEC/Guide 34 traceable and were used within their recommended shelf life.

| Sample ID | Batch ID | Project ID       |
|-----------|----------|------------------|
| AZ10368   | 645421   | WMWGORG_1208TCLP |

- 4. All of the above samples were prepared by EPA 1311 and WI 19200.
- 5. All samples were prepared within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

#### **General Quality Control Procedures:**

- Particle size reduction was not required.
- Percentage of dry solids was determined.
- pH meter was calibrated and verified. All acceptance criteria were met.
- pH of LCS buffer was performed. All acceptance criteria were met.
- Fluid used for extraction was within acceptable pH range.
- All samples were extracted with Fluid #1 per EPA 1311.
- Sample extraction time requirements were met.
- Room temperature requirements during extraction were met.
- Appropriate number of MS/MSD prepared per extraction fluids.
- Appropriate fluid blanks were prepared.
- Samples acidified to a pH of less than 2 after spiking for MS and MSD.
- Spiking was complete within 15 min of filtration.

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6247 or 6171 FAX (205) 664-6108





#### Metals ICPMS

#### Gorgas Gypsum

#### WMWGORG\_1208TCLP

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions are NIST/ISO/IEC/Guide 34 traceable and were used within their recommended shelf life.

| Sample ID | <u>Batch ID</u> | Project ID       |
|-----------|-----------------|------------------|
| AZ10368   | 646017          | WMWGORG_1208TCLP |

- 4. All of the above samples were analyzed by EPA 200.8 and prepared by EPA 1638.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

#### **General Quality Control Procedures:**

- All tune and calibration met criteria for all requested analytes.
- Prior to sample analysis, an initial calibration verification (ICV) was analyzed and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the limit of quantitation for all requested analytes.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analytes.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analytes.
- A preparation method blank and laboratory control sample were digested and analyzed with the samples in each digestion batch.
- All laboratory control sample criteria were met.
- The method blank associated with each digestion batch passed all acceptance criteria for all requested analytes.
- The TCLP method blank associated with the TCLP prep passed, except for the Barium.
- The interference check samples associated with EPA 200.8 were analyzed and passed for all requested analytes.
- All sample internal standard criteria were met.

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6247 or 6171 FAX (205) 664-6108



Matrix Specific Quality Control Procedures

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were digested and analyzed with each ICPMS batch. All acceptance criteria for accuracy were met.
- A matrix spike and matrix spike duplicate were digested and analyzed with each ICPMS batch. All acceptance criteria for precision were met.
- 7. All samples were analyzed at a x5.075 dilution to compensate for potential matrix effects.
- 8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6247 or 6171 FAX (205) 664-6108





#### Mercury

#### Gorgas Gypsum

#### WMWGORG\_1208TCLP

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions are NIST/ISO/IEC/Guide 34 traceable and were used within their recommended shelf life.

| Sample ID | Batch ID | Project ID       |
|-----------|----------|------------------|
| AZ10368   | 645580   | WMWGORG_1208TCLP |

- 4. All of the above samples were analyzed and prepared by EPA 245.1.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

#### **General Quality Control Procedures:**

- Prior to sample analysis, an initial calibration verification (ICV) was analyzed and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the method detection limit for the requested analyte.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analyte.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analyte.
- A preparation method blank and laboratory control sample were digested and analyzed with the samples in each digestion batch.
- All laboratory control sample criteria were met.
- The method blank associated with each digestion batch was below the limit of quantitation for the requested analyte.
- All calibration met criteria for the requested analyte.
- All response signals were satisfactory.

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6247 or 6171 FAX (205) 664-6108



Matrix Specific Quality Control Procedures

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were digested and analyzed with each batch. All acceptance criteria for accuracy were met.
- A matrix spike and matrix spike duplicate were digested and analyzed with each batch. All acceptance criteria for precision were met.
- 7. All samples were analyzed without a dilution.
- 8. The raw data results are shown with dilution factors included.

#### Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6247 or 6171 FAX (205) 664-6108





To: Dustin Brooks Greg Dyer

Customer Account: WMWGORG Sample Date: 23-Apr-19

**Customer ID:** 

**Delivery Date:** 24-Apr-19

Description: Gorgas Gypsum - G-1

Laboratory ID Number: AZ10368

| Name                           | Analyst | Test Date | Reference | Vio Spec DF | MDL      | RL       | Q | Results      | Units |
|--------------------------------|---------|-----------|-----------|-------------|----------|----------|---|--------------|-------|
| Pesticides                     |         | ,         |           |             |          |          |   |              |       |
| Date Extracted                 | RDA     | 5/1/2019  | EPA 1311  | 1           | DATE     |          |   | 05/01/2019   | DATE  |
| Metals, Cyanide, Total Phenols |         |           |           |             |          |          |   |              |       |
| * Arsenic, Total               | DLJ     | 5/3/2019  | EPA 200.8 | 5.075       | 0.001    | 0.005    | J | 0.00458      | mg/L  |
| * Barium, Total                | DLJ     | 5/8/2019  | EPA 200.8 | 5.075       | 0.002    | 0.01     |   | 0.0528       | mg/L  |
| * Cadmium, Total               | DLJ     | 5/8/2019  | EPA 200.8 | 5.075       | 0.0003   | 0.001    | U | Not Detected | mg/L  |
| * Chromium, Total              | DLJ     | 5/3/2019  | EPA 200.8 | 5.075       | 0.002    | 0.01     | U | Not Detected | mg/L  |
| * Mercury, Total by CVAA       | ABB     | 5/6/2019  | EPA 245.1 | 1.01        | 0.000303 | 0.000505 | J | 0.000347     | mg/L  |
| * Lead, Total                  | DLJ     | 5/3/2019  | EPA 200.8 | 5.075       | 0.001    | 0.005    | U | Not Detected | mg/L  |
| * Selenium, Total              | DLJ     | 5/3/2019  | EPA 200.8 | 5.075       | 0.002    | 0.01     |   | 0.0135       | mg/L  |
| General Characteristics        |         |           |           |             |          |          |   |              |       |
| TCLP Extraction Fluid#         | RDA     | 5/2/2019  | EPA 1311  | 1           |          |          |   | 1            |       |
| pH of Extraction Fluid         | RDA     | 5/2/2019  | EPA 1311  | 1           |          | 4.00     |   | 4.97         |       |
| Solids Content of Sample       | RDA     | 5/2/2019  | EPA 1311  | 1           | 0.01     |          |   | 100          | %     |

Issued By: State of Florida, Department of Health Expiration: June 30, 2019

Comments: Barium results are qualified due to analyte was found at concentrations greater than the RL and greater than 1/10 the sample amounts in the TCLP method blank. LBM 5/24/19

> Reported: 6/6/2019 Version: 2.0

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

<sup>\*</sup> Test results for these accredited parameters conform to the most current applicable TNI/NELAC requirements, with exceptions noted on this report. Laboratory certification ID: E571114

#### Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6247 or 6171 FAX (205) 664-6108





To: Dustin Brooks Greg Dyer

Customer Account: WMWGORG Sample Date: 23-Apr-19

**Customer ID:** 

**Delivery Date:** 24-Apr-19

Description: Gorgas Gypsum - G-1

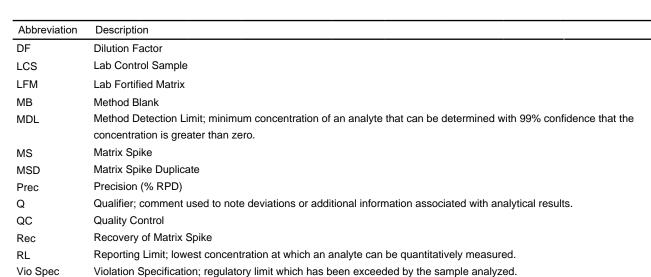
Laboratory ID Number: AZ10368

|         | 1017 12 11011112011 71210000 |                 |         |       |         |         |         |                  |      |           |       |       |
|---------|------------------------------|-----------------|---------|-------|---------|---------|---------|------------------|------|-----------|-------|-------|
|         | -                            |                 | MB      |       |         |         |         | LCS              |      | Rec       |       | Prec  |
| Sample  | Analysis                     | Units MB        | Limit   | Spike | MS      | MSD     | LCS     | Limit            | Rec  | Limit     | Prec  | Limit |
| AZ10368 | Arsenic, Total               | mg/L 0.000133   | 0.0022  | 0.10  | 0.103   | 0.0995  | 0.0972  | 0.085 to 0.115   | 98.4 | 70 to 130 | 3.40  | 20    |
| AZ10368 | Barium, Total                | mg/L 0.0226     | 0.0044  | 0.10  | 0.125   | 0.144   | 0.0934  | 0.085 to 0.115   | 72.2 | 70 to 130 | 14.1  | 20    |
| AZ10368 | Cadmium, Total               | mg/L 0.00000263 | 0.00066 | 0.10  | 0.0900  | 0.0927  | 0.0939  | 0.085 to 0.115   | 90.0 | 70 to 130 | 2.96  | 20    |
| AZ10368 | Chromium, Total              | mg/L 0.000536   | 0.0044  | 0.10  | 0.0963  | 0.0953  | 0.0964  | 0.085 to 0.115   | 96.3 | 70 to 130 | 1.04  | 20    |
| \Z10368 | Mercury, Total by CVAA       | mg/L 0.000293   | 0.0005  | 0.004 | 0.00342 | 0.00354 | 0.00413 | 0.0034 to 0.0046 | 76.8 | 70 to 130 | 3.33  | 20    |
| AZ10368 | Lead, Total                  | mg/L 0.000468   | 0.0022  | 0.10  | 0.101   | 0.100   | 0.103   | 0.085 to 0.115   | 101  | 70 to 130 | 0.213 | 20    |
| AZ10368 | Selenium, Total              | mg/L 0.000121   | 0.0044  | 0.10  | 0.110   | 0.108   | 0.0984  | 0.085 to 0.115   | 96.4 | 70 to 130 | 1.98  | 20    |
| AZ10368 | pH of Extraction Fluid       |                 |         |       |         |         | 6.95    | 6.95 to 7.05     | 99.3 | 98 to 102 |       |       |
|         |                              |                 |         |       |         |         |         |                  |      |           |       |       |

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: Barium results are qualified due to analyte was found at concentrations greater than the RL and greater than 1/10 the sample amounts in the TCLP method blank. LBM 5/24/19


> Reported: 6/6/2019 Version: 2.0

<sup>\*</sup> Test results for these accredited parameters conform to the most current applicable TNI/NELAC requirements, with exceptions noted on this report. Laboratory certification ID: E571114 Issued By: State of Florida, Department of Health Expiration: June 30, 2019

## Definitions

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6247 or 6171 FAX (205) 664-6108





| Qualifier | Description                                                                                                         |
|-----------|---------------------------------------------------------------------------------------------------------------------|
| В         | Analyte found in reagent blank. Indicates possible reagent or background contamination.                             |
| BA        | Analyte found in reagent blank is = RL AND is > 1/10 the amount of the sample.                                      |
| С         | Analyte was verified by re-analysis.                                                                                |
| D         | All samples were stored at less than or equal to 6 °C and for no longer than 48 hours from time of sampling, unless |
|           | otherwise noted.                                                                                                    |
| E         | Estimated reported value exceeded calibration range.                                                                |
| F         | Water Field Group (WFG) qualifier; see comments for more information                                                |
| FA        | Field results were reviewed by the Water Field Group.                                                               |
| Н         | The holding time for this test is immediately following sample collection. The samples were analyzed as soon as     |
|           | possible after receipt by the laboratory.                                                                           |
| J         | Reported value is an estimate because concentration is less than reporting limit.                                   |
| K         | No MB or LCS were submitted with the sample for dissolved analysis.                                                 |
| L         | Check standard is outside of specification limit.                                                                   |
| LA        | Analyte recovery in the check standard was above specification limit. Results may be biased high.                   |
| LL        | Analyte recovery in the check standard was below specification limit. Results may be biased low.                    |
| M         | LOQ verification analyzed with batch was outside of specification limit.                                            |
| N         | Organic constituents tentatively identified. Confirmation is needed.                                                |
| Р         | Precision is out of specification limit.                                                                            |
| R         | Matrix spike recovery or matrix spike duplicate recovery is outside of specification limit.                         |
| RA        | Matrix spike is invalid due to sample concentration.                                                                |
| S         | Surrogate recovery is outside of specification limit.                                                               |
| Т         | Sample temperature is outside of specification limit.                                                               |
| U         | Compound was analyzed, but not detected.                                                                            |

# Chain of Custody Sample Analysis Request General Test Laboratory, G.S.C. 8





| Dept. No. 40045  Site Representative  Collector(s)  Date Sampled  V-23-19  Time 1400  AM PM  Location of Sampling (Name of Facility, etc)  Congas Gypsun Storage WMWGOLG 1208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | requested Comple        | tion Date Roules To: Gree Pyer E                                   | xt        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------|-----------|
| Site Representative  Chey George  Collector(s)  Note:  Date Sampled  Y-23-19  Time  1400  AM PM  Lacation of Sampling (Name of Facility, etc)  Analyses Requested  TCLP  PCRAS  (but no Ag)  NMWGORG-1208  Special Handling and/or Storage  Relinquished By  Relinquished By  Date/Time  Date/Time  Paceived By  | (Explain)               |                                                                    |           |
| Collector(s)  Collector(s)  Conges  Co |                         | Dept. No. 4 004 D                                                  |           |
| Date Sampled  V-23-19  Location of Sampling (Name of Facility, etc)  Corsos Gypsun Storage WMWGOLG 1208  Analyses Requested  TCLP RCRAS (but no Aq) WMWGOLG 1208  Special Handling and/or Storage Refuseled to belos Gertry 0 4-23-19/1455 for tousent Date/Time  Date/Time  Date/Time  Date/Time  Date/Time  W-23-11/1420  Sample No.  Date/Time                                                 | Site Representative     |                                                                    |           |
| Analyses Requested  TCLP & CRAS (but no Ag) WMWGOR G-ROSTCLE  SPLP & CRAS (but no Ag) WMWGOR G-ROSTCLE  Special Handling and/or Storage  Relinquished By  Date/Time  4-23-17   1420 Received By  WMWGOR G-ROSTCLE  WMWGOR G-ROSTCLE  BY  PReceived By  Pate/Time  4-23-17   1420 Received By  Sample No.  Field Information (Sample Description, Date, Etc.)  * Lab ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Collector(s)            | Date Sampled 0 Time                                                | AM PM     |
| Special Handling and/or Storage  Special Handling and/or Storage  Relayesked to belos Getry 2 4-23-19/1455 for tousoft 2 24-25-19/1455 for tou | Location of Sampling (N | Jame of Facility, etc)  Gossos Gussun Storac MMWGOR                | G-1208    |
| Special Handling and/or Storage Relayeshed to helps Gentry 24-23-19/1455 for Joseph Date/Time Date/Time Heceived By Part Date/Time Heceived By Part Date/Time Heceived By Date/Time U24/19/19/19/19/19/19/19/19/19/19/19/19/19/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analyses Requested      |                                                                    |           |
| Special Handling and/or Storage Relayeshed to bells Gestry 2 4-23-19/1455 for tousent 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                                                                    | _         |
| Sample No. Field Information (Sample Description, Date, Etc.) * Lab ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |                                                                    |           |
| Sample No. Field Information (Sample Description, Date, Etc.) * Lab ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Special Handling and/o  | Relugueshed to belles Gentry 24-23-19/1455 for Louisont Dala       | At 349    |
| TCLP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Relinquished By         | Par 123-17/1420 Received by Rally U                                |           |
| G-1 Gypsur souple collected off of give a old Gypsum storage area @1400 A 210369  G-1 Gypsur sample collected off of give a old Gypsum storage area @1400 A 210369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sample No.              |                                                                    | * Lab ID  |
| G-1 Gypsom sample collected off of give @ old Gypsom storage, area @1400 A 2 10369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | G-1                     | Gypsun sample allected off of pile D Old Gysum strang area 2 1400  | A 210 368 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G-1                     | Gypsum sample colleted off of pile @ old Gypsum storage area @1400 | AZ10369   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                    |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                |                                                                    |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                    |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                    |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                    |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                    |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                    |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                    |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                    |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                    |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                    |           |

<sup>\*</sup> For General Lab Use Only

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6247 or 6171 FAX (205) 664-6108

## Analytical Report





Sample Group: WMWGORG\_1208SPLP

Project/Site: Gorgas Gypsum

Parrish, AL 35580

For: Southern Company Services

3535 Colonnade Parkway Birmingham, AL 35243

Attention: Dustin Brooks & Greg Dyer

Released By: Laura Midkiff

Ibmidkif@southernco.com

(205) 807-2676

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6247 or 6171 FAX (205) 664-6108





#### **SPLP Extraction**

#### Gorgas Gypsum

#### WMWGORG\_1208SPLP

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions are NIST/ISO/IEC/Guide 34 traceable and were used within their recommended shelf life.

| Sample ID | Batch ID | Project ID       |
|-----------|----------|------------------|
| AZ10369   | 645425   | WMWGORG_1208SPLP |

- 4. All of the above samples were prepared by EPA 1312 and WI 19200.
- 5. All samples were prepared within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

#### **General Quality Control Procedures:**

- Particle size reduction was not required.
- Percentage of dry solids was determined.
- pH meter was calibrated and verified. All acceptance criteria were met.
- pH of LCS buffer was performed. All acceptance criteria were met.
- Fluid used for extraction was within acceptable pH range.
- All samples were extracted with Fluid #1 per EPA 1312.
- Sample extraction time requirements were met.
- Room temperature requirements during extraction were met.
- Appropriate number of MS/MSD prepared per extraction fluids.
- Appropriate fluid blanks were prepared.
- Samples acidified to a pH of less than 2 after spiking for MS and MSD.
- Spiking was complete within 15 min of filtration.

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6247 or 6171 FAX (205) 664-6108





#### Metals ICPMS

#### Gorgas Gypsum

#### WMWGORG\_1208SPLP

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions are NIST/ISO/IEC/Guide 34 traceable and were used within their recommended shelf life.

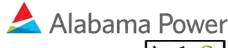
| Sample ID | Batch ID | Project ID       |
|-----------|----------|------------------|
| AZ10369   | 646199   | WMWGORG_1208SPLP |

- 4. All of the above samples were analyzed by EPA 200.8 and prepared by EPA 1638.
- 5. All samples were analyzed and prepared within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

#### **General Quality Control Procedures:**

- All tune and calibration met criteria for all requested analytes.
- Prior to sample analysis, an initial calibration verification (ICV) was analyzed and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the limit of quantitation for all requested analytes.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analytes.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analytes.
- A preparation method blank and laboratory control sample were digested and analyzed with the samples in each digestion batch.
- All laboratory control sample criteria were met.
- The method blank associated with each digestion batch passed all acceptance criteria for all requested analytes.
- The SPLP method blank associated with the SPLP prep passed, except for the Barium.
- The interference check samples associated with EPA 200.8 were analyzed and passed for all requested analytes.
- All sample internal standard criteria were met.

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6247 or 6171 FAX (205) 664-6108




Matrix Specific Quality Control Procedures

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were digested and analyzed with each ICPMS batch. All acceptance criteria for accuracy were met.
- A matrix spike and matrix spike duplicate were digested and analyzed with each ICPMS batch. All acceptance criteria for precision were met.
- 7. All samples were analyzed at a x5.075 dilution to compensate for potential matrix effects.
- 8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6247 or 6171 FAX (205) 664-6108





#### Mercury

#### Gorgas Gypsum

#### WMWGORG\_1208SPLP

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions are NIST/ISO/IEC/Guide 34 traceable and were used within their recommended shelf life.

| Sample ID | Batch ID | Project ID       |
|-----------|----------|------------------|
| AZ10369   | 645581   | WMWGORG_1208SPLP |

- 4. All of the above samples were analyzed and prepared by EPA 245.1.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

#### **General Quality Control Procedures:**

- Prior to sample analysis, an initial calibration verification (ICV) was analyzed and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the method detection limit for the requested analyte.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analyte.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analyte.
- A preparation method blank and laboratory control sample were digested and analyzed with the samples in each digestion batch.
- All laboratory control sample criteria were met.
- The method blank associated with each digestion batch was below the limit of quantitation for the requested analyte.
- All calibration met criteria for the requested analyte.
- All response signals were satisfactory.

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6247 or 6171 FAX (205) 664-6108



Matrix Specific Quality Control Procedures

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were digested and analyzed with each batch. All acceptance criteria for accuracy were met.
- A matrix spike and matrix spike duplicate were digested and analyzed with each batch. All acceptance criteria for precision were met.
- 7. All samples were analyzed without a dilution.
- 8. The raw data results are shown with dilution factors included.

#### Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6247 or 6171 FAX (205) 664-6108





To: Dustin Brooks Greg Dyer

Customer Account: WMWGORG Sample Date: 23-Apr-19

**Customer ID:** 

**Delivery Date:** 24-Apr-19

Description: Gorgas Gypsum - G-1

Laboratory ID Number: AZ10369

| Name                           | Analyst | Test Date | Reference | Vio Spec DF | MDL      | RL       | Q | Results      | Units |
|--------------------------------|---------|-----------|-----------|-------------|----------|----------|---|--------------|-------|
| Pesticides                     |         |           |           |             |          |          |   |              |       |
| Date Extracted                 | RDA     | 5/2/2019  | EPA 1312  | 1           | DATE     |          |   | 5/2/2019     | DATE  |
| Metals, Cyanide, Total Phenols |         |           |           |             |          |          |   |              |       |
| Arsenic, Total                 | DLJ     | 5/3/2019  | EPA 200.8 | 5.075       | 0.001    | 0.005    | J | 0.00136      | mg/L  |
| Barium, Total                  | DLJ     | 5/8/2019  | EPA 200.8 | 5.075       | 0.002    | 0.01     |   | 0.0163       | mg/L  |
| * Cadmium, Total               | DLJ     | 5/8/2019  | EPA 200.8 | 5.075       | 0.0003   | 0.001    | U | Not Detected | mg/L  |
| Chromium, Total                | DLJ     | 5/3/2019  | EPA 200.8 | 5.075       | 0.002    | 0.01     | U | Not Detected | mg/L  |
| Mercury, Total by CVAA         | ABB     | 5/6/2019  | EPA 245.1 | 1.01        | 0.000303 | 0.000505 | U | Not Detected | mg/L  |
| Lead, Total                    | DLJ     | 5/3/2019  | EPA 200.8 | 5.075       | 0.001    | 0.005    | U | Not Detected | mg/L  |
| * Selenium, Total              | DLJ     | 5/3/2019  | EPA 200.8 | 5.075       | 0.002    | 0.01     | U | Not Detected | mg/L  |
| General Characteristics        |         |           |           |             |          |          |   |              |       |
| SPLP Extraction Fluid#         | RDA     | 5/2/2019  | EPA 1312  | 1           |          |          |   | 1            |       |
| pH of Extraction Fluid         | RDA     | 5/2/2019  | EPA 1312  | 1           |          | 4.00     |   | 4.25         |       |
| Solids Content of Sample       | RDA     | 5/2/2019  | EPA 1312  | 1           | 0.01     |          |   | 100          | %     |

Issued By: State of Florida, Department of Health Expiration: June 30, 2019

Comments: Barium results are qualified due to analyte was found at concentrations greater than the RL and greater than 1/10 the sample amounts in the SPLP method blank. LBM 5/24/19

> Reported: 6/6/2019 Version: 2.0

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

<sup>\*</sup> Test results for these accredited parameters conform to the most current applicable TNI/NELAC requirements, with exceptions noted on this report. Laboratory certification ID: E571114

#### Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6247 or 6171 FAX (205) 664-6108





To: Dustin Brooks Greg Dyer

Customer Account: WMWGORG Sample Date: 23-Apr-19

**Customer ID:** 

**Delivery Date:** 24-Apr-19

Description: Gorgas Gypsum - G-1

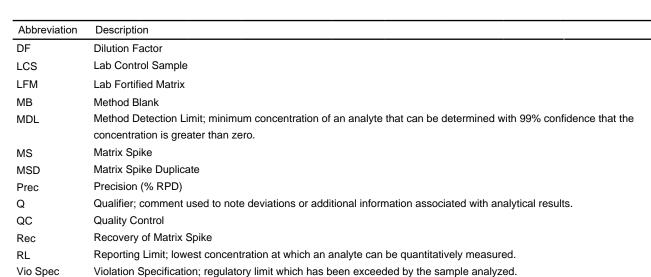
Laboratory ID Number: AZ10369

|                                | <u>′</u>        |         |       |         |         |         |                  |      |           |       |       |
|--------------------------------|-----------------|---------|-------|---------|---------|---------|------------------|------|-----------|-------|-------|
|                                |                 | MB      |       |         |         |         | LCS              |      | Rec       |       | Prec  |
| Sample Analysis                | Units MB        | Limit   | Spike | MS      | MSD     | LCS     | Limit            | Rec  | Limit     | Prec  | Limit |
| Z10369 Arsenic, Total          | mg/L 0.000570   | 0.0022  | 0.10  | 0.0985  | 0.0970  | 0.0969  | 0.085 to 0.115   | 97.1 | 70 to 130 | 1.54  | 20    |
| AZ10369 Barium, Total          | mg/L 0.00573    | 0.0044  | 0.10  | 0.111   | 0.106   | 0.0921  | 0.085 to 0.115   | 94.2 | 70 to 130 | 3.92  | 20    |
| AZ10369 Cadmium, Total         | mg/L 0.00000145 | 0.00066 | 0.10  | 0.0914  | 0.0884  | 0.0900  | 0.085 to 0.115   | 91.4 | 70 to 130 | 3.32  | 20    |
| Z10369 Chromium, Total         | mg/L 0.000147   | 0.0044  | 0.10  | 0.0948  | 0.0954  | 0.0966  | 0.085 to 0.115   | 94.8 | 70 to 130 | 0.560 | 20    |
| AZ10369 Mercury, Total by CVAA | mg/L 0.000199   | 0.0005  | 0.004 | 0.00303 | 0.00309 | 0.00403 | 0.0034 to 0.0046 | 75.7 | 70 to 130 | 2.07  | 20    |
| AZ10369 Lead, Total            | mg/L 0.0000142  | 0.0022  | 0.10  | 0.100   | 0.100   | 0.105   | 0.085 to 0.115   | 100  | 70 to 130 | 0.138 | 20    |
| AZ10369 Selenium, Total        | mg/L 0.000189   | 0.0044  | 0.10  | 0.0943  | 0.0939  | 0.0999  | 0.085 to 0.115   | 94.3 | 70 to 130 | 0.472 | 20    |
| AZ10369 pH of Extraction Fluid |                 |         |       |         |         | 7.01    | 6.95 to 7.05     | 100  | 98 to 102 |       |       |
|                                |                 |         |       |         |         |         |                  |      |           |       |       |

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: Barium results are qualified due to analyte was found at concentrations greater than the RL and greater than 1/10 the sample amounts in the SPLP method blank. LBM 5/24/19


> Reported: 6/6/2019 Version: 2.0

<sup>\*</sup> Test results for these accredited parameters conform to the most current applicable TNI/NELAC requirements, with exceptions noted on this report. Laboratory certification ID: E571114 Issued By: State of Florida, Department of Health Expiration: June 30, 2019

## Definitions

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6247 or 6171 FAX (205) 664-6108





| Qualifier | Description                                                                                                         |
|-----------|---------------------------------------------------------------------------------------------------------------------|
| В         | Analyte found in reagent blank. Indicates possible reagent or background contamination.                             |
| BA        | Analyte found in reagent blank is = RL AND is > 1/10 the amount of the sample.                                      |
| С         | Analyte was verified by re-analysis.                                                                                |
| D         | All samples were stored at less than or equal to 6 °C and for no longer than 48 hours from time of sampling, unless |
|           | otherwise noted.                                                                                                    |
| E         | Estimated reported value exceeded calibration range.                                                                |
| F         | Water Field Group (WFG) qualifier; see comments for more information                                                |
| FA        | Field results were reviewed by the Water Field Group.                                                               |
| Н         | The holding time for this test is immediately following sample collection. The samples were analyzed as soon as     |
|           | possible after receipt by the laboratory.                                                                           |
| J         | Reported value is an estimate because concentration is less than reporting limit.                                   |
| K         | No MB or LCS were submitted with the sample for dissolved analysis.                                                 |
| L         | Check standard is outside of specification limit.                                                                   |
| LA        | Analyte recovery in the check standard was above specification limit. Results may be biased high.                   |
| LL        | Analyte recovery in the check standard was below specification limit. Results may be biased low.                    |
| M         | LOQ verification analyzed with batch was outside of specification limit.                                            |
| N         | Organic constituents tentatively identified. Confirmation is needed.                                                |
| Р         | Precision is out of specification limit.                                                                            |
| R         | Matrix spike recovery or matrix spike duplicate recovery is outside of specification limit.                         |
| RA        | Matrix spike is invalid due to sample concentration.                                                                |
| S         | Surrogate recovery is outside of specification limit.                                                               |
| Т         | Sample temperature is outside of specification limit.                                                               |
| U         | Compound was analyzed, but not detected.                                                                            |

## Chain of Custody Sample Analysis Request General Test Laboratory, G.S.C. 8





| Dept. No. 40045  Site Representative  Collector(s)  Date Sampled  V-23-19  Time 1400  AM PM  Location of Sampling (Name of Facility, etc)  Congas Gypsun Storage WMWGOLG 1208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | requested Comple        | tion Date Roules To: Gree Pyer E                                   | xt        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------|-----------|
| Site Representative  Chey George  Collector(s)  Note:  Date Sampled  Y-23-19  Time  1400  AM PM  Lacation of Sampling (Name of Facility, etc)  Analyses Requested  TCLP  PCRAS  (but no Ag)  NMWGORG-1208  Special Handling and/or Storage  Relinquished By  Relinquished By  Date/Time  Date/Time  Paceived By  | (Explain)               |                                                                    |           |
| Collector(s)  Collector(s)  Conges  Co |                         | Dept. No. 4 004 D                                                  |           |
| Date Sampled  V-23-19  Location of Sampling (Name of Facility, etc)  Corsos Gypsun Storage WMWGOLG 1208  Analyses Requested  TCLP RCRAS (but no Aq) WMWGOLG 1208  Special Handling and/or Storage Refuseled to belos Gertry 0 4-23-19/1455 for tousent Date/Time  Date/Time  Date/Time  Date/Time  Date/Time  W-23-11/1420  Sample No.  Date/Time                                                 | Site Representative     |                                                                    |           |
| Analyses Requested  TCLP & CRAS (but no Ag) WMWGOR G-ROSTCLE  SPLP & CRAS (but no Ag) WMWGOR G-ROSTCLE  Special Handling and/or Storage  Relinquished By  Date/Time  4-23-17   1420 Received By  WMWGOR G-ROSTCLE  WMWGOR G-ROSTCLE  BY  PReceived By  Pate/Time  4-23-17   1420 Received By  Sample No.  Field Information (Sample Description, Date, Etc.)  * Lab ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Collector(s)            | Date Sampled 0 Time                                                | AM PM     |
| Special Handling and/or Storage  Special Handling and/or Storage  Relayesked to belos Getry 2 4-23-19/1455 for tousoft 2 24/2  Relinquished By  Date/Time  4-23-11/1420  Sample No.  Field Information (Sample Description, Date, Etc.)  *Lab ID  Lab ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Location of Sampling (N | Jame of Facility, etc)  Gossos Gussun Storac MMWGOR                | G-1208    |
| Special Handling and/or Storage Relayeshed to helps Gentry 24-23-19/1455 for Joseph Date/Time Date/Time Heceived By Part Date/Time Heceived By Part Date/Time Heceived By Date/Time U24/19/19/19/19/19/19/19/19/19/19/19/19/19/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analyses Requested      |                                                                    |           |
| Special Handling and/or Storage Relayeshed to bells Gestry 2 4-23-19/1455 for tousent 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                                                                    | _         |
| Sample No. Field Information (Sample Description, Date, Etc.) * Lab ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |                                                                    |           |
| Sample No. Field Information (Sample Description, Date, Etc.) * Lab ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Special Handling and/o  | Relugueshed to belles Gentry 24-23-19/1455 for Louisont Dala       | At 348    |
| TCLP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Relinquished By         | Par 123-17/1420 Received by Rally U                                |           |
| G-1 Gypsur souple collected off of give a old Gypsum storage area @1400 A 210369  G-1 Gypsur sample collected off of give a old Gypsum storage area @1400 A 210369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sample No.              |                                                                    | * Lab ID  |
| G-1 Gypsom sample collected off of give @ old Gypsom storage, area @1400 A 2 10369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | G-1                     | Gypsun sample allected off of pile D Old Gysum strang area 2 1400  | A 210 368 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G-1                     | Gypsum sample colleted off of pile @ old Gypsum storage area @1400 | AZ10369   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                    |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                |                                                                    |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                    |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                    |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                    |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                    |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                    | -         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                    |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                    |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                    |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                    |           |

<sup>\*</sup> For General Lab Use Only

# Appendix E

## **MNA Sampling Field Data**

| Well ID     | рН   | ORP<br>(mV) | Conductivity<br>(μS/cm) | DO<br>(mg/L) | Temperature<br>(°C) | Turbidity<br>(NTU) | Depth to Water<br>(feet) |
|-------------|------|-------------|-------------------------|--------------|---------------------|--------------------|--------------------------|
| MW-1        | 5.13 | 96          | 2541.6                  | 0.86         | 18.97               | 0.22               | 91.4                     |
| MW-2        | 6.16 | 36.3        | 1694                    | 0.26         | 18.52               | 0.47               | 81.8                     |
| MW-3        | 5.63 | 127.2       | 3809.1                  | 6.14         | 17.14               | 1.81               | 104.45                   |
| MW-4        | 6.42 | 92.3        | 3170.5                  | 4.9          | 20.42               | 0.64               | 115.18                   |
| GS-GSA-MW-3 | 5.87 | 0.7         | 4538.7                  | 0.14         | 18.81               | 6.53               | 102.82                   |
| GS-GSA-MW-4 | 3.82 | 185.6       | 1274.5                  | 0.17         | 19.27               | 5.11               | 87.4                     |

## Analytical Report



Sample Group: WMWGORG\_1262

Project/Site: Gorgas Gypsum

Parrish, AL 35580

For: Southern Company Services

3535 Colonnade Parkway Birmingham, AL 35243

Attention: Brooks, Dyer, Redwine, Mitchell, & Vlassopoulos

Released By: Laura Midkiff

lbmidkif@southernco.com

(205) 664-6197



Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040 (205) 664-6001

March 18, 2020

Dear Dustin Brooks,

Enclosed are the analytical results for sample(s) received by the laboratory on February 14, 2020. All results reported herein conform to the laboratory's most current Quality Assurance Manual. Results marked with an asterisk conform to the most current applicable TNI/NELAC requirements. Exceptions will be noted in the body of the report.

Laboratory certification ID: E571114

Issued By: State of Florida, Department of Health

Expiration: June 30, 2020

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Quality Control: Laura Midkiff On ton Laura Midkiff

Digitally signed by Laura Midkiff
DN: cn=Laura Midkiff, o=Alabama Powe
Company, ou=Environmental Affairs,
email=lbmidkif@southernco.com, c=US
Date: 2020 03 18 13:51:34 -05:00'

Supervision: T. Durant

Maske

Digitally signed by T. Durant Maske DN: cn=T. Durant Maske, o=Alabama Power Company, ou=Environmental Affairs, email=tdmaske@southernco.com, c=US





This Certificate states the physical and/or chemical characteristics of the sample as submitted.

This document shall not be reproduced, except in full, without written consent from

Alabama Power's General Test Laboratory.



Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



**Total Metals ICP** 

Gorgas Gypsum

WMWGORG 1262

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions are NIST/ISO/IEC/Guide 34 traceable and were used within their recommended shelf life.

| Sample ID | Batch ID | Project ID   |
|-----------|----------|--------------|
| BA03151   | 666624   | WMWGORG_1262 |
| BA03152   | 666624   | WMWGORG_1262 |
| BA03153   | 666624   | WMWGORG_1262 |
| BA03154   | 666624   | WMWGORG_1262 |
| BA03155   | 666624   | WMWGORG_1262 |

- 4. All of the above samples were analyzed by EPA 200.7 and prepared by EPA 1638.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

#### **General Quality Control Procedures:**

- Prior to sample analysis, an initial calibration verification (ICV) was analyzed and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the limit of quantitation for all requested analytes.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analytes.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analytes.
- A preparation method blank and laboratory control sample were digested and analyzed with the samples in each digestion batch.
- All laboratory control sample criteria were met.
- The method blank associated with each digestion batch passed all acceptance criteria for all requested analytes.
- The spectral interference check associated with EPA 200.7 was analyzed and all acceptance criteria were met.
- All sample internal standard criteria were met.
- The high standard readbacks associated with EPA 200.7 were within acceptance criteria.
- It is noted that the QC summary page typically provides the QC results from the original batch analytical sequence. If dilutions were subsequently performed to bring sample concentrations within the calibration range, any additional QC data from the dilution analyses may need to be obtained from the laboratory. Any qualifications applied to original analyses or dilution re-analyses are based upon QC data available at the time of review.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were digested and analyzed with each ICP batch. All acceptance criteria for accuracy were met.
- A matrix spike and matrix spike duplicate were digested and analyzed with each ICP batch. All acceptance criteria for precision were met.
- 7. The following samples were diluted due to the analyzed sample concentration being greater than the high standard of the calibration curve:

| Sample ID | <u>Analyte</u>                    | <u>Dilution factor</u> |
|-----------|-----------------------------------|------------------------|
| BA03151   | Calcium, Iron, Magnesium, Sodium  | 101.5                  |
| BA03152   | Calcium, Iron, Magnesium, Silicon | 10.15                  |
| BA03153   | Calcium, Iron, Magnesium, Silicon | 10.15                  |

8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



**Dissolved Metals ICP** 

Gorgas Gypsum

WMWGORG 1262

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions are NIST/ISO/IEC/Guide 34 traceable and were used within their recommended shelf life.

| Sample ID | Batch ID | <u>Project ID</u> |
|-----------|----------|-------------------|
| BA03151   | 666435   | WMWGORG_1262      |
| BA03152   | 666435   | WMWGORG_1262      |
| BA03153   | 666435   | WMWGORG_1262      |

- 4. All of the above samples were analyzed and prepared by EPA 200.7 for dissolved analysis.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

#### **General Quality Control Procedures:**

- Prior to sample analysis, an initial calibration verification (ICV) was analyzed and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the limit of quantitation for all requested analytes.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analytes.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analytes.
- Due to no filtered method blank (MB) or laboratory control sample (LCS) submitted with the sample set, an unfiltered MB and LCS were analyzed with the samples in each batch
- All laboratory control sample criteria were met.
- The method blank associated with each batch passed all acceptance criteria for all requested analytes.
- The spectral interference check associated with EPA 200.7 was analyzed and all acceptance criteria were met.
- All sample internal standard criteria were met.
- The high standard readbacks associated with EPA 200.7 were within acceptance criteria.
- It is noted that the QC summary page typically provides the QC results from the original batch analytical
  sequence. If dilutions were subsequently performed to bring sample concentrations within the calibration range,
  any additional QC data from the dilution analyses may need to be obtained from the laboratory. Any
  qualifications applied to original analyses or dilution re-analyses are based upon QC data available at the time of
  review.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were analyzed with each ICP batch. All acceptance criteria for accuracy were met except for the following:
  - o BA03153 MS/MSD spike level for iron was less than 30% of the sample nominal concentration.
- A matrix spike and matrix spike duplicate were analyzed with each ICP batch. All acceptance criteria for precision were met.
- 7. The following samples were diluted due to the analyzed sample concentration being greater than the high standard of the calibration curve:

| Sample ID | <u>Analyte</u> | <u>Dilution factor</u> |
|-----------|----------------|------------------------|
| BA03151   | Iron           | 101.5                  |
| BA03152   | Iron           | 10.15                  |
| BA03153   | Iron           | 10.15                  |

8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



**Total Metals ICPMS** 

Gorgas Gypsum

WMWGORG 1262

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions are NIST/ISO/IEC/Guide 34 traceable and were used within their recommended shelf life.

| Sample ID | Batch ID | Project ID   |
|-----------|----------|--------------|
| BA03151   | 666791   | WMWGORG_1262 |
| BA03152   | 666791   | WMWGORG_1262 |
| BA03153   | 666791   | WMWGORG_1262 |
| BA03154   | 666791   | WMWGORG_1262 |
| BA03155   | 666791   | WMWGORG_1262 |

- 4. All of the above samples were analyzed by EPA 200.8 and prepared by EPA 1638.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

#### **General Quality Control Procedures:**

- All tune and calibration met criteria for all requested analytes.
- Prior to sample analysis, an initial calibration verification (ICV) was analyzed and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the limit of quantitation for all requested analytes.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analytes.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analytes.
- A preparation method blank and laboratory control sample were digested and analyzed with the samples in each digestion batch.
- All laboratory control sample criteria were met.
- The method blank associated with each digestion batch passed all acceptance criteria for all requested analytes.
- The interference check samples associated with EPA 200.8 were analyzed and passed for all requested analytes.
- All sample internal standard criteria were met.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were digested and analyzed with each ICPMS batch. All acceptance criteria for accuracy were met.
- A matrix spike and matrix spike duplicate were digested and analyzed with each ICPMS batch. All acceptance criteria for precision were met.
- 7. The following samples were diluted due to the analyzed sample concentration being greater than the high standard of the calibration curve:

| Sample ID | <u>Analyte</u>       | <u>Dilution factor</u> |
|-----------|----------------------|------------------------|
| BA03151   | Manganese            | 92.365                 |
| BA03152   | Manganese & Aluminum | 10.15                  |
| BA03153   | Manganese & Aluminum | 10.15                  |

8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



#### **Dissolved Metals ICPMS**

#### Gorgas Gypsum

#### WMWGORG 1262

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions are NIST/ISO/IEC/Guide 34 traceable and were used within their recommended shelf life.

| Sample ID | Batch ID | Project ID   |
|-----------|----------|--------------|
| BA03151   | 666680   | WMWGORG_1262 |
| BA03152   | 666680   | WMWGORG_1262 |
| BA03153   | 666680   | WMWGORG_1262 |

- 4. All of the above samples were analyzed and prepared by EPA 200.8 for dissolved analysis.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

#### **General Quality Control Procedures:**

- All tune and calibration met criteria for all requested analytes.
- Prior to sample analysis, an initial calibration verification (ICV) was analyzed and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the limit of quantitation for all requested analytes.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analytes.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analytes.
- Due to no filtered method blank (MB) or laboratory control sample (LCS) submitted with the sample set, an unfiltered MB and LCS were analyzed with the samples in each batch.
- All laboratory control sample criteria were met.
- The method blank associated with each preparation batch passed all acceptance criteria for all requested analytes.
- The interference check samples associated with EPA 200.8 were analyzed and passed for all requested analytes.
- All sample internal standard criteria were met.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were analyzed with each ICPMS batch. All acceptance criteria for accuracy were met, except for the following:
  - o BA03153 MS/MSD spike levels for Mn and Al were <30% of the sample nominal concentrations.
- A matrix spike and matrix spike duplicate were analyzed with each ICPMS batch. All acceptance criteria for precision were met.
- 7. The following samples were diluted due to the analyzed sample concentration being greater than the high standard of the calibration curve:

| Sample ID | <u>Analyte</u>       | <b>Dilution factor</b> |
|-----------|----------------------|------------------------|
| BA03151   | Manganese            | 92.365                 |
| BA03152   | Manganese & Aluminum | 10.15                  |
| BA03153   | Manganese & Aluminum | 10.15                  |

8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



#### **Anions**

#### Gorgas Gypsum

#### WMWGORG\_1262

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions are NIST/ISO/IEC/Guide 34 traceable and were used within their recommended shelf life.

| Sample ID | Batch ID                 | Project ID   |
|-----------|--------------------------|--------------|
| BA03151   | 666415, 666417, & 666718 | WMWGORG_1262 |
| BA03152   | 666415, 666417, & 666718 | WMWGORG_1262 |
| BA03153   | 666415, 666417, & 666718 | WMWGORG_1262 |
| BA03154   | 666415, 666417, & 666718 | WMWGORG_1262 |
| BA03155   | 666415, 666417, & 666718 | WMWGORG_1262 |

- 4. All of the above samples were analyzed and prepared by SM4500 CI E, SM4500 F G, and SM4500 SO4 E.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

#### **General Quality Control Procedures:**

- All calibration met criteria for the requested analyte.
- Prior to sample analysis, an initial calibration verification (ICV), and all criteria were met.
- Prior to sample analysis, an initial calibration blank (ICB) was analyzed and was below the method detection limit for the requested analyte.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analyte.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analyte.
- It is noted that the QC summary page typically provides the QC results from the original batch analytical sequence. If dilutions were subsequently performed to bring sample concentrations within the calibration range, any additional QC data from the dilution analyses may need to be obtained from the laboratory. Any qualifications applied to original analyses or dilution re-analyses are based upon QC data available at the time of review.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike was analyzed with each batch. Acceptance criteria for accuracy were met.
- A sample duplicate was analyzed with each batch. Acceptance criteria for precision were met.
- 7. The following samples were diluted due to the analyzed sample concentration being greater than the high standard of the calibration curve:

| Sample ID | <u>Analyte</u>     | Dilution factor |
|-----------|--------------------|-----------------|
| BA03151   | Chloride & Sulfate | 16 & 160        |
| BA03152   | Chloride & Sulfate | 4 & 100         |
| BA03153   | Chloride & Sulfate | 4 & 100         |

8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



#### Alkalinity

#### Gorgas Gypsum

#### WMWGORG 1262

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions are NIST/ISO/IEC/Guide 34 traceable and were used within their recommended shelf life.

| Sample ID | Batch ID        | <u>Project ID</u> |
|-----------|-----------------|-------------------|
| BA03151   | 667554 & 667555 | WMWGORG_1262      |
| BA03152   | 667554 & 667555 | WMWGORG_1262      |
| BA03153   | 667554 & 667555 | WMWGORG_1262      |

- 4. All of the above samples were analyzed by Standard Method 2320B, except for the following:
  - a. BA03152 & BA03153 had a starting pH below the 4.2 titration limit. Therefore, Alkalinity could not be performed.
- 5. All samples were analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

#### **General Quality Control Procedures:**

- An initial pH check was analyzed with each batch. The acceptance criteria were met.
- A final pH check was analyzed with each batch. The acceptance criteria were met.
- An alkalinity laboratory control sample was analyzed with each batch. Range criteria of within 10% of true value was met.
- An alkalinity sample duplicate was not analyzed due to the sample chosen as the QC point had a starting pH below 4.2.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



#### Total Organic Carbon by High Temperature Combustion

#### Gorgas Gypsum

#### WMWGORG 1262

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions are NIST/ISO/IEC/Guide 34 traceable and were used within their recommended shelf life.

| Sample ID | Batch ID | Project ID   |
|-----------|----------|--------------|
| BA03151   | 667004   | WMWGORG_1262 |
| BA03152   | 667004   | WMWGORG_1262 |
| BA03153   | 667004   | WMWGORG_1262 |
| BA03154   | 667004   | WMWGORG_1262 |
| BA03155   | 667004   | WMWGORG_1262 |

- 4. All of the above samples were analyzed by Standard Method 5310B.
- 5. All samples were analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

#### **General Quality Control Procedures:**

- All calibration criteria was met.
- Prior to sample analysis, an initial calibration verification (ICV) was analyzed and met all criteria.
- Prior to sample analysis, an initial calibration blank (ICB) was analyzed and were <1/2RL.</li>
- All continued calibration verification (CCV) were within the acceptance range.
- All continued calibration blanks (CCB) were <1/2RL.</li>
- Matrix Specific QC:
  - A sample duplicate was run and criteria for precision was met.
  - o A matrix spike was run and criteria for accuracy was met.
- 7. All samples were analyzed without a dilution factor.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



#### Nitrate/Nitrite, Nitrite, and ortho-Phosphate

#### Gorgas Gypsum

#### WMWGORG 1262

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions are NIST/ISO/IEC/Guide 34 traceable and were used within their recommended shelf life.

| Sample ID | Batch ID                 | Project ID   |
|-----------|--------------------------|--------------|
| BA03151   | 666402, 666400, & 666404 | WMWGORG_1262 |
| BA03152   | 666402, 666400, & 666404 | WMWGORG_1262 |
| BA03153   | 666402, 666400, & 666404 | WMWGORG_1262 |
| BA03154   | 666402, 666400, & 666404 | WMWGORG_1262 |
| BA03155   | 666402, 666400, & 666404 | WMWGORG_1262 |

- 4. All of the above samples were analyzed by NO<sub>x</sub> and NO<sub>2</sub> by EPA 353.2 and PO<sub>4</sub> by SM 4500P-F.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

#### **General Quality Control Procedures:**

- Water baseline report was run and met criteria.
- All calibration met criteria for the requested analytes.
- Prior to sample analysis, an initial calibration verification (ICV) was analyzed and met all criteria.
- All continued calibration verification (CCV) were within the acceptance criteria.

#### EPA 353.2 Specific QC:

- For NO<sub>x</sub>: Prior to sample analysis, Cadmium coil reduction efficiency check met criteria.
- Prior to sample analysis, an initial calibration blank (ICB) was analyzed and were below limit of detection.
- All continued calibration blanks (CCB) were below the limit of detection.
- Matrix Specific QC:
  - A sample duplicate was run and criteria for precision was met.
  - o A matrix spike was run and criteria for accuracy was met.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040



#### SM 4500P-F Specific QC:

- Prior to sample analysis, an initial calibration blank (ICB) was analyzed and were below half the limit of quantitation.
- All continued calibration blanks (CCB) were below half the limit of quantitation.
- Matrix Specific QC:
  - o A matrix spike was run and criteria for accuracy was met.
  - o A matrix spike duplicate was run and criteria for precision was met.
- 7. All samples were analyzed without a dilution factor.
- 8. The raw data results are shown with dilution factors included.

## Certificate Of Analysis



Description: Gorgas Gypsum - GS-GSA-MW-3Location Code:WMWGORGCollected:2/13/20 13:20

Customer ID:

Laboratory ID Number: BA03151 Submittal Date: 2/14/20 09:17

| Name                                 | Prepared      | Analyzed     | Vio Spec DF | Results  | Units            | MDL      | RL       | Q |
|--------------------------------------|---------------|--------------|-------------|----------|------------------|----------|----------|---|
| Analytical Method: EPA 200.7         | Anal          | yst: RDA     |             | Pre      | paration Method: | EPA 1638 |          |   |
| * Boron, Total                       | 2/18/20 15:15 | 2/19/20 12:4 | 6 1.015     | 2.63     | mg/L             | 0.03     | 0.1      |   |
| * Calcium, Total                     | 2/18/20 15:15 | 2/19/20 14:0 | 6 101.5     | 5 516    | mg/L             | 10.15    | 50.75    |   |
| Silicon, Total                       | 2/18/20 15:15 | 2/19/20 12:4 | 6 1.015     | 10.5     | mg/L             | 0.03     | 0.3      |   |
| * Iron, Total                        | 2/18/20 15:15 | 2/19/20 14:0 | 6 101.5     | 202      | mg/L             | 2.03     | 5.075    |   |
| * Lithium, Total                     | 2/18/20 15:15 | 2/19/20 12:4 | 6 1.015     | 0.376    | mg/L             | 0.01     | 0.02     |   |
| * Magnesium, Total                   | 2/18/20 15:15 | 2/19/20 14:0 | 6 101.5     | 314      | mg/L             | 10.15    | 50.75    |   |
| Silica, Total (calc.)                | 2/18/20 15:15 | 2/19/20 12:4 | 6 1         | 22.5     | mg/L             |          |          |   |
| * Sodium, Total                      | 2/18/20 15:15 | 2/19/20 14:0 | 6 101.5     | 185      | mg/L             | 10.15    | 50.75    |   |
| Analytical Method: EPA 200.7         | Anal          | yst: RDA     |             |          |                  |          |          |   |
| * Iron, Dissolved                    | 2/17/20 08:30 | 2/17/20 12:2 | 4 101.5     | 210      | mg/L             | 2.03     | 5.075    |   |
| Analytical Method: EPA 200.8         | Anal          | yst: DLJ     |             | Pre      | paration Method: | EPA 1638 |          |   |
| * Antimony, Total                    | 2/14/20 10:47 | 2/14/20 17:0 | 6 1.015     | Not Dete | cted mg/L        | 0.0008   | 0.003    | U |
| * Arsenic, Total                     | 2/14/20 10:47 | 2/14/20 17:0 | 6 1.015     | 0.00106  | mg/L             | 0.001    | 0.005    | J |
| * Aluminum, Total                    | 2/14/20 10:47 | 2/14/20 17:0 | 6 1.015     | 0.177    | mg/L             | 0.02     | 0.06     |   |
| * Barium, Total                      | 2/14/20 10:47 | 2/14/20 17:0 | 6 1.015     | 0.0136   | mg/L             | 0.002    | 0.01     |   |
| * Beryllium, Total                   | 2/14/20 10:47 | 2/14/20 17:0 | 6 1.015     | 0.00154  | mg/L             | 0.0006   | 0.003    | J |
| * Cadmium, Total                     | 2/14/20 10:47 | 2/14/20 17:0 | 6 1.015     | Not Dete | cted mg/L        | 0.0003   | 0.001    | U |
| * Chromium, Total                    | 2/14/20 10:47 | 2/14/20 17:0 | 6 1.015     | Not Dete | cted mg/L        | 0.002    | 0.01     | U |
| * Cobalt, Total                      | 2/14/20 10:47 | 2/14/20 17:0 | 6 1.015     | 0.0720   | mg/L             | 0.002    | 0.005    |   |
| * Lead, Total                        | 2/14/20 10:47 | 2/14/20 17:0 | 6 1.015     | Not Dete | cted mg/L        | 0.001    | 0.005    | U |
| * Molybdenum, Total                  | 2/14/20 10:47 | 2/14/20 17:0 | 6 1.015     | Not Dete | cted mg/L        | 0.002    | 0.01     | U |
| * Manganese, Total                   | 2/14/20 10:47 | 2/14/20 17:2 | 8 92.36     | 65 40.1  | mg/L             | 0.092365 | 0.461825 |   |
| <ul> <li>Potassium, Total</li> </ul> | 2/14/20 10:47 | 2/14/20 17:0 | 6 1.015     | 9.77     | mg/L             | 0.3      | 2.5      |   |
| * Selenium, Total                    | 2/14/20 10:47 | 2/14/20 17:0 | 6 1.015     | Not Dete | cted mg/L        | 0.002    | 0.01     | U |
| ∗ Thallium, Total                    | 2/14/20 10:47 | 2/14/20 17:0 | 6 1.015     | Not Dete | cted mg/L        | 0.0002   | 0.001    | U |
| Analytical Method: EPA 200.8         | Anal          | yst: DLJ     |             |          |                  |          |          |   |
| * Antimony, Dissolved                | 2/14/20 11:21 | 2/14/20 12:3 | 0 1.015     | Not Dete | cted mg/L        | 0.0008   | 0.003    | U |
| * Aluminum, Dissolved                | 2/14/20 11:21 | 2/14/20 12:3 | 0 1.015     | 0.0461   | mg/L             | 0.02     | 0.06     | J |
| * Arsenic, Dissolved                 | 2/14/20 11:21 | 2/14/20 12:3 | 0 1.015     | 0.00106  | mg/L             | 0.001    | 0.005    | J |
| * Beryllium, Dissolved               | 2/14/20 11:21 |              |             |          | mg/L             | 0.0006   | 0.003    | J |

MDL's and RL's are adjusted for sample dilution, as applicable

## Certificate Of Analysis



Description: Gorgas Gypsum - GS-GSA-MW-3Location Code:WMWGORGCollected:2/13/20 13:20

Customer ID:

Laboratory ID Number: BA03151 Submittal Date: 2/14/20 09:17

|                                   | Prepared      | Analyzed     | Vio Spec | DF     | Results      | Units     | MDL      | RL       | Q |
|-----------------------------------|---------------|--------------|----------|--------|--------------|-----------|----------|----------|---|
| * Cadmium, Dissolved              | 2/14/20 11:21 | 2/14/20 12:3 | 30       | 1.015  | Not Detected | mg/L      | 0.0003   | 0.001    | U |
| * Chromium, Dissolved             | 2/14/20 11:21 | 2/14/20 12:3 | 30       | 1.015  | Not Detected | mg/L      | 0.002    | 0.01     | U |
| * Cobalt, Dissolved               | 2/14/20 11:21 | 2/14/20 12:3 | 30       | 1.015  | 0.0711       | mg/L      | 0.002    | 0.005    |   |
| * Lead, Dissolved                 | 2/14/20 11:21 | 2/14/20 12:3 | 30       | 1.015  | Not Detected | mg/L      | 0.001    | 0.005    | U |
| Molybdenum, Dissolved             | 2/14/20 11:21 | 2/14/20 12:3 | 30       | 1.015  | Not Detected | mg/L      | 0.002    | 0.01     | U |
| * Manganese, Dissolved            | 2/14/20 11:21 | 2/14/20 13:3 | 39       | 92.365 | 40.6         | mg/L      | 0.092365 | 0.461825 |   |
| * Selenium, Dissolved             | 2/14/20 11:21 | 2/14/20 12:3 | 30       | 1.015  | Not Detected | mg/L      | 0.002    | 0.01     | U |
| * Thallium, Dissolved             | 2/14/20 11:21 | 2/14/20 12:3 | 30       | 1.015  | Not Detected | mg/L      | 0.0002   | 0.001    | U |
| Analytical Method: EPA 353.2      | Analy         | yst: CES     |          |        |              |           |          |          |   |
| Nitrogen, Nitrate/Nitrite         | 2/14/20 12:34 | 2/14/20 12:3 | 34       | 1      | 0.389        | mg/L as N | 0.20     | 0.3      |   |
| Nitrogen, Nitrate (calc.)         | 2/14/20 13:04 | 2/14/20 13:0 | )4       | 1      | 0.389        | mg/L as N |          |          |   |
| Nitrogen, Nitrite                 | 2/14/20 13:04 | 2/14/20 13:0 | 04       | 1      | Not Detected | mg/L as N | 0.20     | 0.3      | U |
| Analytical Method: SM 2320 B      | Analy         | yst: JAG     |          |        |              |           |          |          |   |
| Alkalinity, Total as CaCO3        | 2/24/20 13:30 | 2/24/20 13:4 | 10       | 1      | 152          | mg/L      |          | 0.1      |   |
| Analytical Method: SM 4500CO2 D   | Analy         | yst: JAG     |          |        |              |           |          |          |   |
| Bicarbonate Alkalinity, (calc.)   | 2/24/20 13:30 | 2/24/20 13:4 | 10       | 1      | 152          | mg/L      |          |          |   |
| Carbonate Alkalinity, (calc.)     | 2/24/20 13:30 | 2/24/20 13:4 | 10       | 1      | 0.01         | mg/L      |          |          |   |
| Analytical Method: SM 4500PF-OP   | Analy         | yst: CES     |          |        |              |           |          |          |   |
| Ortho Phosphate                   | 2/14/20 13:38 | 2/14/20 13:3 | 38       | 1      | 0.013        | mg/L as P | 0.010    | 0.03     | J |
| Analytical Method: SM 5310 B      | Analy         | yst: HRG     |          |        |              |           |          |          |   |
| * Total Organic Carbon            | 2/20/20 14:03 | 2/20/20 14:0 | 03       | 1      | 1.08         | mg/L      | 1.00     | 2        | J |
| Analytical Method: SM4500Cl E     | Analy         | yst: JCC     |          |        |              |           |          |          |   |
| * Chloride                        | 2/14/20 12:11 | 2/14/20 12:1 | 11       | 16     | 245          | mg/L      | 8.00     | 16       |   |
| Analytical Method: SM4500F G 2017 | Analy         | yst: JCC     |          |        |              |           |          |          |   |
| * Fluoride                        | 2/14/20 15:51 | 2/14/20 15:5 | 51       | 1      | 0.477        | mg/L      | 0.05     | 0.1      |   |
| Analytical Method: SM4500SO4 E    |               | yst: JCC     |          |        |              |           |          |          |   |
| * Sulfate                         | 2/17/20 16:38 |              | 38       | 160    | 2810         | mg/L      | 80.00    | 160      |   |

MDL's and RL's are adjusted for sample dilution, as applicable

## **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 2/13/20 13:20

**Customer ID:** 

**Delivery Date:** 2/14/20 09:17

Description: Gorgas Gypsum - GS-GSA-MW-3

Laboratory ID Number: BA03151

|         | ideory is realised.   |       |             | MB        |       |        |        |          | Standard       |      | Rec       |       | Prec          |
|---------|-----------------------|-------|-------------|-----------|-------|--------|--------|----------|----------------|------|-----------|-------|---------------|
| Sample  | Analysis              | Units | MB          | Limit     | Spike | MS     | MSD    | Standard | Limit          | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA03155 | Sodium, Total         | mg/L  | 0.00864     | 0.044     | 5.00  | 5.14   | 5.07   | 5.13     | 4.25 to 5.75   | 103  | 70 to 130 | 1.37  | 20            |
| BA03155 | Calcium, Total        | mg/L  | 0.00945     | 0.1518    | 5.00  | 5.18   | 5.08   | 5.13     | 4.25 to 5.75   | 104  | 70 to 130 | 1.95  | 20            |
| BA03155 | Potassium, Total      | mg/L  | -0.0179     | 0.3674    | 10.0  | 9.93   | 9.95   | 9.93     | 8.5 to 11.5    | 99.3 | 70 to 130 | 0.201 | 20            |
| BA03155 | Beryllium, Total      | mg/L  | 0.0000157   | 0.00088   | 0.10  | 0.0934 | 0.0922 | 0.0939   | 0.085 to 0.115 | 93.4 | 70 to 130 | 1.29  | 20            |
| BA03155 | Manganese, Total      | mg/L  | 0.0000559   | 0.0001474 | 0.10  | 0.0985 | 0.0991 | 0.0994   | 0.085 to 0.115 | 98.5 | 70 to 130 | 0.607 | 20            |
| BA03155 | Selenium, Total       | mg/L  | 0.0000707   | 0.00066   | 0.10  | 0.0972 | 0.0970 | 0.0980   | 0.085 to 0.115 | 97.2 | 70 to 130 | 0.206 | 20            |
| BA03155 | Silicon, Total        | mg/L  | -0.00207    | 0.044     | 1.00  | 1.04   | 1.02   | 1.02     | 0.850 to 1.15  | 104  | 70 to 130 | 1.94  | 20            |
| BA03153 | Aluminum, Dissolved   | mg/L  | 0.0000657   | 0.0088    | 0.10  | 10.7   | 10.5   | 0.0990   | 0.085 to 0.115 | 600  | 70 to 130 | 1.89  | 20            |
| BA03153 | Arsenic, Dissolved    | mg/L  | -0.00000084 | 0.0001474 | 0.10  | 0.102  | 0.0958 | 0.103    | 0.085 to 0.115 | 101  | 70 to 130 | 6.27  | 20            |
| BA03153 | Cadmium, Dissolved    | mg/L  | -0.00000014 | 0.0001474 | 0.10  | 0.0938 | 0.0911 | 0.0972   | 0.085 to 0.115 | 92.1 | 70 to 130 | 2.92  | 20            |
| BA03153 | Cobalt, Dissolved     | mg/L  | -0.00000176 | 0.0001474 | 0.10  | 0.330  | 0.322  | 0.0978   | 0.085 to 0.115 | 97.0 | 70 to 130 | 2.45  | 20            |
| BA03153 | Molybdenum, Dissolved | mg/L  | 0.00000579  | 0.0001474 | 0.10  | 0.0822 | 0.0820 | 0.0970   | 0.085 to 0.115 | 82.2 | 70 to 130 | 0.244 | 20            |
| BA03155 | Cadmium, Total        | mg/L  | -0.00000398 | 0.0001474 | 0.10  | 0.0955 | 0.0958 | 0.0972   | 0.085 to 0.115 | 95.5 | 70 to 130 | 0.314 | 20            |
| BA03155 | Lithium, Total        | mg/L  | 0.0000591   | 0.0154    | 0.20  | 0.196  | 0.195  | 0.195    | 0.17 to 0.23   | 98.0 | 70 to 130 | 0.512 | 20            |
| BA03155 | Thallium, Total       | mg/L  | 0.00000251  | 0.0001474 | 0.10  | 0.0961 | 0.0979 | 0.0967   | 0.085 to 0.115 | 96.1 | 70 to 130 | 1.86  | 20            |
| BA03153 | Beryllium, Dissolved  | mg/L  | 0.0000179   | 0.00088   | 0.10  | 0.0955 | 0.0913 | 0.0922   | 0.085 to 0.115 | 91.2 | 70 to 130 | 4.50  | 20            |
| BA03153 | Manganese, Dissolved  | mg/L  | 0.0000199   | 0.0001474 | 0.10  | 10.7   | 10.6   | 0.0994   | 0.085 to 0.115 | 600  | 70 to 130 | 0.939 | 20            |
| BA03155 | Arsenic, Total        | mg/L  | -0.00000048 | 0.0001474 | 0.10  | 0.101  | 0.101  | 0.103    | 0.085 to 0.115 | 101  | 70 to 130 | 0.00  | 20            |
| BA03155 | Total Organic Carbon  | mg/L  | 0.510       | 1.00      | 10.0  | 8.72   | 8.65   | 9.38     | 9 to 11        | 87.2 | 80 to 120 | 0.806 | 20            |
| BA03153 | Iron, Dissolved       | mg/L  | 0.000151    | 0.0176    | 0.2   | 12.3   | 12.6   | 0.204    | 0.17 to 0.23   | -100 | 70 to 130 | 2.41  | 20            |
| BA03153 | Lead, Dissolved       | mg/L  | 0.00000362  | 0.0001474 | 0.10  | 0.0975 | 0.0919 | 0.100    | 0.085 to 0.115 | 97.5 | 70 to 130 | 5.91  | 20            |
| BA03153 | Antimony, Dissolved   | mg/L  | 0.000203    | 0.00066   | 0.10  | 0.0882 | 0.0890 | 0.0904   | 0.085 to 0.115 | 88.2 | 70 to 130 | 0.903 | 20            |
| BA03155 | Aluminum, Total       | mg/L  | 0.000664    | 0.0088    | 0.10  | 0.0983 | 0.100  | 0.0977   | 0.085 to 0.115 | 98.3 | 70 to 130 | 1.71  | 20            |
| BA03155 | Barium, Total         | mg/L  | 0.00000312  | 0.0002    | 0.10  | 0.0985 | 0.0966 | 0.0994   | 0.085 to 0.115 | 98.5 | 70 to 130 | 1.95  | 20            |

## **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 2/13/20 13:20

**Customer ID:** 

**Delivery Date:** 2/14/20 09:17

Description: Gorgas Gypsum - GS-GSA-MW-3

Laboratory ID Number: BA03151

| _                           |           |             | MB        |       |        |        |          | Standard       |      | Rec       |       | Prec          |
|-----------------------------|-----------|-------------|-----------|-------|--------|--------|----------|----------------|------|-----------|-------|---------------|
| Sample Analysis             | Units     | MB          | Limit     | Spike | MS     | MSD    | Standard | Limit          | Rec  | Limit     | Prec  | <u>Li</u> mit |
|                             |           |             |           |       |        |        |          |                |      |           |       |               |
| BA03155 Iron, Total         | mg/L      | 0.000675    | 0.0176    | 0.2   | 0.208  | 0.205  | 0.207    | 0.17 to 0.23   | 104  | 70 to 130 | 1.45  | 20            |
| BA03155 Magnesium, Total    | mg/L      | -0.00133    | 0.0462    | 5.00  | 5.17   | 5.07   | 5.13     | 4.25 to 5.75   | 103  | 70 to 130 | 1.95  | 20            |
| BA03155 Molybdenum, Total   | mg/L      | 0.0000146   | 0.0001474 | 0.10  | 0.0977 | 0.0971 | 0.0969   | 0.085 to 0.115 | 97.7 | 70 to 130 | 0.616 | 20            |
| BA03155 Boron, Total        | mg/L      | -0.000835   | 0.0650254 | 1.00  | 1.04   | 1.02   | 1.02     | 0.85 to 1.15   | 104  | 70 to 130 | 1.94  | 20            |
| BA03155 Chromium, Total     | mg/L      | 0.0000925   | 0.00044   | 0.10  | 0.0994 | 0.0982 | 0.0999   | 0.085 to 0.115 | 99.4 | 70 to 130 | 1.21  | 20            |
| BA03155 Antimony, Total     | mg/L      | 0.000277    | 0.00066   | 0.10  | 0.0916 | 0.0929 | 0.0929   | 0.085 to 0.115 | 91.6 | 70 to 130 | 1.41  | 20            |
| BA03153 Chromium, Dissolved | mg/L      | -0.0000212  | 0.00044   | 0.10  | 0.0818 | 0.0775 | 0.0992   | 0.085 to 0.115 | 81.8 | 70 to 130 | 5.40  | 20            |
| BA03153 Selenium, Dissolved | mg/L      | 0.0000522   | 0.00066   | 0.10  | 0.0861 | 0.0835 | 0.0976   | 0.085 to 0.115 | 82.8 | 70 to 130 | 3.07  | 20            |
| BA03153 Thallium, Dissolved | mg/L      | -0.00000072 | 0.0001474 | 0.10  | 0.0932 | 0.0882 | 0.0934   | 0.085 to 0.115 | 93.2 | 70 to 130 | 5.51  | 20            |
| BA03155 Ortho Phosphate     | mg/L as P | 0.001       | 0.015     | 0.250 | 0.239  | 0.242  | 0.244    | 0.225 to 0.275 | 95.6 | 80 to 120 | 1.25  | 10            |
| BA03155 Cobalt, Total       | mg/L      | 0.00000003  | 0.0001474 | 0.10  | 0.0953 | 0.0963 | 0.0972   | 0.085 to 0.115 | 95.3 | 70 to 130 | 1.04  | 20            |
| BA03155 Lead, Total         | mg/L      | 0.00000137  | 0.0001474 | 0.10  | 0.101  | 0.102  | 0.0998   | 0.085 to 0.115 | 101  | 70 to 130 | 0.985 | 20            |

## **Batch QC Summary**



Customer Account: WMWGORG Sample Date: 2/13/20 13:20

**Customer ID:** 

**Delivery Date:** 2/14/20 09:17

Description: Gorgas Gypsum - GS-GSA-MW-3

Laboratory ID Number: BA03151

|                                    |           |        | MB    |       |       | Sample    |          | Standard       |      | Rec       |      | Prec          |
|------------------------------------|-----------|--------|-------|-------|-------|-----------|----------|----------------|------|-----------|------|---------------|
| Sample Analysis                    | Units     | MB     | Limit | Spike | MS    | Duplicate | Standard | Limit          | Rec  | Limit     | Prec | <u>Li</u> mit |
| BA03155 Sulfate                    | mg/L      | -0.419 | 0.50  | 20.0  | 18.3  | -0.837    | 18.5     | 18 to 22       | 91.5 | 80 to 120 | 0.00 | 20            |
| BA03155 Chloride                   | mg/L      | -0.034 | 0.50  | 10.0  | 10.1  | 0.0918    | 10.2     | 9 to 11        | 101  | 80 to 120 | 0.00 | 20            |
| BA03155 Nitrogen, Nitrite          | mg/L as N | 0.002  | 0.20  | 0.50  | 0.547 | 0.001     | 0.779    | 0.675 to 0.825 | 109  | 90 to 110 | 0.00 | 15            |
| BA03153 Alkalinity, Total as CaCO3 | mg/L      |        |       |       |       | NA        | 49.8     | 45.0 to 55.0   |      |           | NA   | 10            |
| BA03155 Fluoride                   | mg/L      | 0.0245 | 0.05  | 2.50  | 2.51  | 0.0155    | 2.54     | 2.25 to 2.75   | 100  | 80 to 120 | 0.00 | 20            |
| BA03155 Nitrogen, Nitrate/Nitrite  | mg/L as N | 0.00   | 0.20  | 2.00  | 2.00  | 0.035     | 1.98     | 1.8 to 2.2     | 100  | 90 to 110 | 0.00 | 15            |

## Certificate Of Analysis



Description: Gorgas Gypsum - GS-GSA-MW-4Location Code:WMWGORGCollected:2/13/20 11:30

Customer ID:

Laboratory ID Number: BA03152 Submittal Date: 2/14/20 09:17

| Name                                  | Prepared      | Analyzed     | Vio Spec | DF   | Results      | Units          | MDL     | RL      | Q |
|---------------------------------------|---------------|--------------|----------|------|--------------|----------------|---------|---------|---|
| Analytical Method: EPA 200.7          | Anal          | yst: RDA     |          |      | Preparati    | on Method: EP  | A 1638  |         |   |
| * Boron, Total                        | 2/18/20 15:15 | 2/19/20 12:4 | i9 1     | .015 | 2.72         | mg/L           | 0.03    | 0.1     |   |
| * Calcium, Total                      | 2/18/20 15:15 | 2/19/20 14:0 | 9 1      | 0.15 | 99.0         | mg/L           | 1.015   | 5.075   |   |
| Silicon, Total                        | 2/18/20 15:15 | 2/19/20 14:0 | )9 1     | 0.15 | 21.8         | mg/L           | 0.3045  | 3.045   |   |
| * Iron, Total                         | 2/18/20 15:15 | 2/19/20 14:0 | 9 1      | 0.15 | 12.6         | mg/L           | 0.203   | 0.5075  |   |
| * Lithium, Total                      | 2/18/20 15:15 | 2/19/20 12:4 | l9 1     | .015 | 0.300        | mg/L           | 0.01    | 0.02    |   |
| * Magnesium, Total                    | 2/18/20 15:15 | 2/19/20 14:0 | 9 1      | 0.15 | 85.9         | mg/L           | 1.015   | 5.075   |   |
| Silica, Total (calc.)                 | 2/18/20 15:15 | 2/19/20 14:0 | 9 1      |      | 46.7         | mg/L           |         |         |   |
| * Sodium, Total                       | 2/18/20 15:15 | 2/19/20 12:4 | l9 1     | .015 | 16.2         | mg/L           | 0.1     | 0.5     |   |
| Analytical Method: EPA 200.7          | Anal          | yst: RDA     |          |      |              |                |         |         |   |
| * Iron, Dissolved                     | 2/17/20 08:30 | 2/17/20 12:2 | 27 1     | 0.15 | 12.3         | mg/L           | 0.203   | 0.5075  |   |
| Analytical Method: EPA 200.8          | Anal          | yst: DLJ     |          |      | Preparati    | on Method: EPA | A 1638  |         |   |
| * Antimony, Total                     | 2/14/20 10:47 | 2/14/20 17:0 | 9 1      | .015 | Not Detected | mg/L           | 0.0008  | 0.003   | U |
| * Arsenic, Total                      | 2/14/20 10:47 | 2/14/20 17:0 | 9 1      | .015 | 0.00130      | mg/L           | 0.001   | 0.005   | J |
| * Aluminum, Total                     | 2/14/20 10:47 | 2/14/20 17:3 | 30 1     | 0.15 | 10.8         | mg/L           | 0.203   | 0.609   |   |
| * Barium, Total                       | 2/14/20 10:47 | 2/14/20 17:0 | 9 1      | .015 | 0.0122       | mg/L           | 0.002   | 0.01    |   |
| * Beryllium, Total                    | 2/14/20 10:47 | 2/14/20 17:0 | 9 1      | .015 | 0.00443      | mg/L           | 0.0006  | 0.003   |   |
| * Cadmium, Total                      | 2/14/20 10:47 | 2/14/20 17:0 | )9 1     | .015 | 0.00160      | mg/L           | 0.0003  | 0.001   |   |
| * Chromium, Total                     | 2/14/20 10:47 | 2/14/20 17:0 | )9 1     | .015 | Not Detected | mg/L           | 0.002   | 0.01    | U |
| * Cobalt, Total                       | 2/14/20 10:47 | 2/14/20 17:0 | 9 1      | .015 | 0.231        | mg/L           | 0.002   | 0.005   |   |
| * Lead, Total                         | 2/14/20 10:47 | 2/14/20 17:0 | 9 1      | .015 | Not Detected | mg/L           | 0.001   | 0.005   | U |
| <ul> <li>Molybdenum, Total</li> </ul> | 2/14/20 10:47 | 2/14/20 17:0 | 9 1      | .015 | Not Detected | mg/L           | 0.002   | 0.01    | U |
| * Manganese, Total                    | 2/14/20 10:47 | 2/14/20 17:3 | 30 1     | 0.15 | 10.8         | mg/L           | 0.01015 | 0.05075 |   |
| * Potassium, Total                    | 2/14/20 10:47 | 2/14/20 17:0 | 9 1      | .015 | 4.31         | mg/L           | 0.3     | 2.5     |   |
| * Selenium, Total                     | 2/14/20 10:47 | 2/14/20 17:0 | 9 1      | .015 | 0.00339      | mg/L           | 0.002   | 0.01    | J |
| * Thallium, Total                     | 2/14/20 10:47 | 2/14/20 17:0 | )9 1     | .015 | Not Detected | mg/L           | 0.0002  | 0.001   | U |
| Analytical Method: EPA 200.8          | Anal          | yst: DLJ     |          |      |              |                |         |         |   |
| * Antimony, Dissolved                 | 2/14/20 11:21 | 2/14/20 12:3 | 3 1      | .015 | Not Detected | mg/L           | 0.0008  | 0.003   | U |
| * Aluminum, Dissolved                 | 2/14/20 11:21 | 2/14/20 13:4 | 1 1      | 0.15 | 10.5         | mg/L           | 0.203   | 0.609   |   |
| * Arsenic, Dissolved                  | 2/14/20 11:21 | 2/14/20 12:3 | 33 1     | .015 | 0.00133      | mg/L           | 0.001   | 0.005   | J |
| * Beryllium, Dissolved                | 2/14/20 11:21 |              |          | .015 | 0.00432      | mg/L           | 0.0006  | 0.003   |   |

MDL's and RL's are adjusted for sample dilution, as applicable

## Certificate Of Analysis



Description: Gorgas Gypsum - GS-GSA-MW-4Location Code:WMWGORGCollected:2/13/20 11:30

Customer ID:

**Submittal Date:** 2/14/20 09:17

Laboratory ID Number: BA03152

| Name                              | Prepared      | Analyzed     | Vio Spec | DF    | Results      | Units     | MDL     | RL      | Q |
|-----------------------------------|---------------|--------------|----------|-------|--------------|-----------|---------|---------|---|
| * Cadmium, Dissolved              | 2/14/20 11:21 | 2/14/20 12:3 | 33 1     | 1.015 | 0.00170      | mg/L      | 0.0003  | 0.001   |   |
| * Chromium, Dissolved             | 2/14/20 11:21 | 2/14/20 12:3 | 33 1     | 1.015 | Not Detected | mg/L      | 0.002   | 0.01    | U |
| * Cobalt, Dissolved               | 2/14/20 11:21 | 2/14/20 12:3 | 33 1     | 1.015 | 0.238        | mg/L      | 0.002   | 0.005   |   |
| * Lead, Dissolved                 | 2/14/20 11:21 | 2/14/20 12:3 | 33 1     | 1.015 | Not Detected | mg/L      | 0.001   | 0.005   | U |
| * Molybdenum, Dissolved           | 2/14/20 11:21 | 2/14/20 12:3 | 33 1     | 1.015 | Not Detected | mg/L      | 0.002   | 0.01    | U |
| * Manganese, Dissolved            | 2/14/20 11:21 | 2/14/20 13:4 | l1 1     | 10.15 | 10.5         | mg/L      | 0.01015 | 0.05075 |   |
| * Selenium, Dissolved             | 2/14/20 11:21 | 2/14/20 12:3 | 33 1     | 1.015 | 0.00339      | mg/L      | 0.002   | 0.01    | J |
| * Thallium, Dissolved             | 2/14/20 11:21 | 2/14/20 12:3 | 33 1     | 1.015 | Not Detected | mg/L      | 0.0002  | 0.001   | U |
| Analytical Method: EPA 353.2      | Anal          | yst: CES     |          |       |              |           |         |         |   |
| * Nitrogen, Nitrate/Nitrite       | 2/14/20 12:35 | 2/14/20 12:3 | 35 1     | l     | Not Detected | mg/L as N | 0.20    | 0.3     | U |
| Nitrogen, Nitrate (calc.)         | 2/14/20 13:05 | 2/14/20 13:0 | )5 1     |       | Not Detected | mg/L as N |         |         | U |
| Nitrogen, Nitrite                 | 2/14/20 13:05 | 2/14/20 13:0 | )5 1     | l     | Not Detected | mg/L as N | 0.20    | 0.3     | U |
| Analytical Method: SM 2320 B      | Anal          | yst: JAG     |          |       |              |           |         |         |   |
| Alkalinity, Total as CaCO3        | 2/24/20 13:30 | 2/24/20 13:4 | 10 1     | l     | NA           | mg/L      |         | 0.1     |   |
| Analytical Method: SM 4500CO2 D   | Anal          | yst: JAG     |          |       |              |           |         |         |   |
| Bicarbonate Alkalinity, (calc.)   | 2/24/20 13:30 | 2/24/20 13:4 | 10 1     | l     | NA           | mg/L      |         |         |   |
| Carbonate Alkalinity, (calc.)     | 2/24/20 13:30 | 2/24/20 13:4 | 10 1     | l     | NA           | mg/L      |         |         |   |
| Analytical Method: SM 4500PF-OP   | Anal          | yst: CES     |          |       |              |           |         |         |   |
| Ortho Phosphate                   | 2/14/20 13:39 | 2/14/20 13:3 | 39 1     |       | Not Detected | mg/L as P | 0.010   | 0.03    | U |
| Analytical Method: SM 5310 B      | Anal          | yst: HRG     |          |       |              |           |         |         |   |
| * Total Organic Carbon            | 2/20/20 14:14 | 2/20/20 14:1 | 4 1      |       | 1.42         | mg/L      | 1.00    | 2       | J |
| Analytical Method: SM4500Cl E     | Anal          | yst: JCC     |          |       |              |           |         |         |   |
| * Chloride                        | 2/14/20 12:03 | 2/14/20 12:0 | )3 4     | 1     | 47.4         | mg/L      | 2.00    | 4       |   |
| Analytical Method: SM4500F G 2017 | Anal          | yst: JCC     |          |       |              |           |         |         |   |
| * Fluoride                        | 2/14/20 15:52 | 2/14/20 15:5 | 52 1     |       | Not Detected | mg/L      | 0.05    | 0.1     | U |
| Analytical Method: SM4500SO4 E    | Anal          | yst: JCC     |          |       |              |           |         |         |   |
| * Sulfate                         | 2/17/20 16:39 | 2/17/20 16:3 | 89 1     | 100   | 625          | mg/L      | 50.00   | 100     |   |

MDL's and RL's are adjusted for sample dilution, as applicable

## **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 2/13/20 11:30

**Customer ID:** 

**Delivery Date:** 2/14/20 09:17

Description: Gorgas Gypsum - GS-GSA-MW-4

Laboratory ID Number: BA03152

|                              |           |             | MB        |       |        |        |          | Standard       |      | Rec       |       | Prec          |
|------------------------------|-----------|-------------|-----------|-------|--------|--------|----------|----------------|------|-----------|-------|---------------|
| Sample Analysis              | Units     | MB          | Limit     | Spike | MS     | MSD    | Standard | Limit          | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA03155 Sodium, Total        | mg/L      | 0.00864     | 0.044     | 5.00  | 5.14   | 5.07   | 5.13     | 4.25 to 5.75   | 103  | 70 to 130 | 1.37  | 20            |
| BA03155 Calcium, Total       | mg/L      | 0.00945     | 0.1518    | 5.00  | 5.18   | 5.08   | 5.13     | 4.25 to 5.75   | 104  | 70 to 130 | 1.95  | 20            |
| BA03155 Potassium, Total     | mg/L      | -0.0179     | 0.3674    | 10.0  | 9.93   | 9.95   | 9.93     | 8.5 to 11.5    | 99.3 | 70 to 130 | 0.201 | 20            |
| BA03155 Beryllium, Total     | mg/L      | 0.0000157   | 0.00088   | 0.10  | 0.0934 | 0.0922 | 0.0939   | 0.085 to 0.115 | 93.4 | 70 to 130 | 1.29  | 20            |
| BA03155 Manganese, Total     | mg/L      | 0.0000559   | 0.0001474 | 0.10  | 0.0985 | 0.0991 | 0.0994   | 0.085 to 0.115 | 98.5 | 70 to 130 | 0.607 | 20            |
| BA03155 Selenium, Total      | mg/L      | 0.0000707   | 0.00066   | 0.10  | 0.0972 | 0.0970 | 0.0980   | 0.085 to 0.115 | 97.2 | 70 to 130 | 0.206 | 20            |
| BA03155 Silicon, Total       | mg/L      | -0.00207    | 0.044     | 1.00  | 1.04   | 1.02   | 1.02     | 0.850 to 1.15  | 104  | 70 to 130 | 1.94  | 20            |
| BA03155 Boron, Total         | mg/L      | -0.000835   | 0.0650254 | 1.00  | 1.04   | 1.02   | 1.02     | 0.85 to 1.15   | 104  | 70 to 130 | 1.94  | 20            |
| BA03155 Chromium, Total      | mg/L      | 0.0000925   | 0.00044   | 0.10  | 0.0994 | 0.0982 | 0.0999   | 0.085 to 0.115 | 99.4 | 70 to 130 | 1.21  | 20            |
| BA03155 Antimony, Total      | mg/L      | 0.000277    | 0.00066   | 0.10  | 0.0916 | 0.0929 | 0.0929   | 0.085 to 0.115 | 91.6 | 70 to 130 | 1.41  | 20            |
| BA03153 Chromium, Dissolved  | mg/L      | -0.0000212  | 0.00044   | 0.10  | 0.0818 | 0.0775 | 0.0992   | 0.085 to 0.115 | 81.8 | 70 to 130 | 5.40  | 20            |
| BA03153 Selenium, Dissolved  | mg/L      | 0.0000522   | 0.00066   | 0.10  | 0.0861 | 0.0835 | 0.0976   | 0.085 to 0.115 | 82.8 | 70 to 130 | 3.07  | 20            |
| BA03153 Thallium, Dissolved  | mg/L      | -0.00000072 | 0.0001474 | 0.10  | 0.0932 | 0.0882 | 0.0934   | 0.085 to 0.115 | 93.2 | 70 to 130 | 5.51  | 20            |
| BA03155 Ortho Phosphate      | mg/L as P | 0.001       | 0.015     | 0.250 | 0.239  | 0.242  | 0.244    | 0.225 to 0.275 | 95.6 | 80 to 120 | 1.25  | 10            |
| BA03155 Cobalt, Total        | mg/L      | 0.00000003  | 0.0001474 | 0.10  | 0.0953 | 0.0963 | 0.0972   | 0.085 to 0.115 | 95.3 | 70 to 130 | 1.04  | 20            |
| BA03155 Lead, Total          | mg/L      | 0.00000137  | 0.0001474 | 0.10  | 0.101  | 0.102  | 0.0998   | 0.085 to 0.115 | 101  | 70 to 130 | 0.985 | 20            |
| BA03153 Beryllium, Dissolved | mg/L      | 0.0000179   | 0.00088   | 0.10  | 0.0955 | 0.0913 | 0.0922   | 0.085 to 0.115 | 91.2 | 70 to 130 | 4.50  | 20            |
| BA03153 Manganese, Dissolved | mg/L      | 0.0000199   | 0.0001474 | 0.10  | 10.7   | 10.6   | 0.0994   | 0.085 to 0.115 | 600  | 70 to 130 | 0.939 | 20            |
| BA03155 Arsenic, Total       | mg/L      | -0.00000048 | 0.0001474 | 0.10  | 0.101  | 0.101  | 0.103    | 0.085 to 0.115 | 101  | 70 to 130 | 0.00  | 20            |
| BA03155 Total Organic Carbon | mg/L      | 0.510       | 1.00      | 10.0  | 8.72   | 8.65   | 9.38     | 9 to 11        | 87.2 | 80 to 120 | 0.806 | 20            |
| BA03153 Iron, Dissolved      | mg/L      | 0.000151    | 0.0176    | 0.2   | 12.3   | 12.6   | 0.204    | 0.17 to 0.23   | -100 | 70 to 130 | 2.41  | 20            |
| BA03153 Lead, Dissolved      | mg/L      | 0.00000362  | 0.0001474 | 0.10  | 0.0975 | 0.0919 | 0.100    | 0.085 to 0.115 | 97.5 | 70 to 130 | 5.91  | 20            |
| BA03153 Antimony, Dissolved  | mg/L      | 0.000203    | 0.00066   | 0.10  | 0.0882 | 0.0890 | 0.0904   | 0.085 to 0.115 | 88.2 | 70 to 130 | 0.903 | 20            |
| BA03155 Aluminum, Total      | mg/L      | 0.000664    | 0.0088    | 0.10  | 0.0983 | 0.100  | 0.0977   | 0.085 to 0.115 | 98.3 | 70 to 130 | 1.71  | 20            |

## **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 2/13/20 11:30

**Customer ID:** 

**Delivery Date:** 2/14/20 09:17

Description: Gorgas Gypsum - GS-GSA-MW-4

Laboratory ID Number: BA03152

|                               |       |             | MB        |       |        |        |          | Standard       |      | Rec       |       | Prec          |
|-------------------------------|-------|-------------|-----------|-------|--------|--------|----------|----------------|------|-----------|-------|---------------|
| Sample Analysis               | Units | MB          | Limit     | Spike | MS     | MSD    | Standard | Limit          | Rec  | Limit     | Prec  | <u>Li</u> mit |
|                               |       |             |           |       |        |        |          |                |      |           |       |               |
| BA03155 Barium, Total         | mg/L  | 0.00000312  | 0.0002    | 0.10  | 0.0985 | 0.0966 | 0.0994   | 0.085 to 0.115 | 98.5 | 70 to 130 | 1.95  | 20            |
| BA03155 Iron, Total           | mg/L  | 0.000675    | 0.0176    | 0.2   | 0.208  | 0.205  | 0.207    | 0.17 to 0.23   | 104  | 70 to 130 | 1.45  | 20            |
| BA03155 Magnesium, Total      | mg/L  | -0.00133    | 0.0462    | 5.00  | 5.17   | 5.07   | 5.13     | 4.25 to 5.75   | 103  | 70 to 130 | 1.95  | 20            |
| BA03155 Molybdenum, Total     | mg/L  | 0.0000146   | 0.0001474 | 0.10  | 0.0977 | 0.0971 | 0.0969   | 0.085 to 0.115 | 97.7 | 70 to 130 | 0.616 | 20            |
| BA03153 Aluminum, Dissolved   | mg/L  | 0.0000657   | 0.0088    | 0.10  | 10.7   | 10.5   | 0.0990   | 0.085 to 0.115 | 600  | 70 to 130 | 1.89  | 20            |
| BA03153 Arsenic, Dissolved    | mg/L  | -0.00000084 | 0.0001474 | 0.10  | 0.102  | 0.0958 | 0.103    | 0.085 to 0.115 | 101  | 70 to 130 | 6.27  | 20            |
| BA03153 Cadmium, Dissolved    | mg/L  | -0.0000014  | 0.0001474 | 0.10  | 0.0938 | 0.0911 | 0.0972   | 0.085 to 0.115 | 92.1 | 70 to 130 | 2.92  | 20            |
| BA03153 Cobalt, Dissolved     | mg/L  | -0.00000176 | 0.0001474 | 0.10  | 0.330  | 0.322  | 0.0978   | 0.085 to 0.115 | 97.0 | 70 to 130 | 2.45  | 20            |
| BA03153 Molybdenum, Dissolved | mg/L  | 0.00000579  | 0.0001474 | 0.10  | 0.0822 | 0.0820 | 0.0970   | 0.085 to 0.115 | 82.2 | 70 to 130 | 0.244 | 20            |
| BA03155 Cadmium, Total        | mg/L  | -0.00000398 | 0.0001474 | 0.10  | 0.0955 | 0.0958 | 0.0972   | 0.085 to 0.115 | 95.5 | 70 to 130 | 0.314 | 20            |
| BA03155 Lithium, Total        | mg/L  | 0.0000591   | 0.0154    | 0.20  | 0.196  | 0.195  | 0.195    | 0.17 to 0.23   | 98.0 | 70 to 130 | 0.512 | 20            |
| BA03155 Thallium, Total       | mg/L  | 0.00000251  | 0.0001474 | 0.10  | 0.0961 | 0.0979 | 0.0967   | 0.085 to 0.115 | 96.1 | 70 to 130 | 1.86  | 20            |

## **Batch QC Summary**



Customer Account: WMWGORG

**Sample Date:** 2/13/20 11:30

**Customer ID:** 

**Delivery Date:** 2/14/20 09:17

Description: Gorgas Gypsum - GS-GSA-MW-4

Laboratory ID Number: BA03152

|         |                            |           |        | MB    |       |       | Sample    |          | Standard       |      | Rec       |      | Prec  |
|---------|----------------------------|-----------|--------|-------|-------|-------|-----------|----------|----------------|------|-----------|------|-------|
| Sample  | Analysis                   | Units     | MB     | Limit | Spike | MS    | Duplicate | Standard | Limit          | Rec  | Limit     | Prec | Limit |
| BA03155 | Sulfate                    | mg/L      | -0.419 | 0.50  | 20.0  | 18.3  | -0.837    | 18.5     | 18 to 22       | 91.5 | 80 to 120 | 0.00 | 20    |
| BA03155 | Chloride                   | mg/L      | -0.034 | 0.50  | 10.0  | 10.1  | 0.0918    | 10.2     | 9 to 11        | 101  | 80 to 120 | 0.00 | 20    |
| BA03155 | Nitrogen, Nitrite          | mg/L as N | 0.002  | 0.20  | 0.50  | 0.547 | 0.001     | 0.779    | 0.675 to 0.825 | 109  | 90 to 110 | 0.00 | 15    |
| BA03153 | Alkalinity, Total as CaCO3 | mg/L      |        |       |       |       | NA        | 49.8     | 45.0 to 55.0   |      |           | NA   | 10    |
| BA03155 | Fluoride                   | mg/L      | 0.0245 | 0.05  | 2.50  | 2.51  | 0.0155    | 2.54     | 2.25 to 2.75   | 100  | 80 to 120 | 0.00 | 20    |
| BA03155 | Nitrogen, Nitrate/Nitrite  | mg/L as N | 0.00   | 0.20  | 2.00  | 2.00  | 0.035     | 1.98     | 1.8 to 2.2     | 100  | 90 to 110 | 0.00 | 15    |

## Certificate Of Analysis



Description: Gorgas Gypsum - GS-GSA-MW-4 DUPLocation Code:WMWGORGCollected:2/13/20 11:30

Customer ID:

Laboratory ID Number: BA03153 Submittal Date: 2/14/20 09:17

| Anal          | yst: RDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |               | Preparati     | ion Method: E | PA 1638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|---------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| 2/18/20 15:15 | 2/19/20 12:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 52            | 1.015         | 2.71          | mg/L          | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                  |
| 2/18/20 15:15 | 2/19/20 14:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12            | 10.15         | 99.3          | mg/L          | 1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                  |
| 2/18/20 15:15 | 2/19/20 14:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12            | 10.15         | 21.7          | mg/L          | 0.3045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                  |
| 2/18/20 15:15 | 2/19/20 14:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12            | 10.15         | 12.6          | mg/L          | 0.203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.5075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |
| 2/18/20 15:15 | 2/19/20 12:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 52            | 1.015         | 0.297         | mg/L          | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                  |
| 2/18/20 15:15 | 2/19/20 14:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12            | 10.15         | 86.6          | mg/L          | 1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                  |
| 2/18/20 15:15 | 2/19/20 14:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12            | 1             | 46.4          | mg/L          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                  |
| 2/18/20 15:15 | 2/19/20 12:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 52            | 1.015         | 16.2          | mg/L          | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                  |
| Anal          | yst: RDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |               |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                  |
| 2/17/20 08:30 | 2/17/20 12:3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30            | 10.15         | 12.5          | mg/L          | 0.203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.5075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RA                                                               |
| Anal          | yst: DLJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |               | Preparati     | ion Method: E | PA 1638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                  |
| 2/14/20 10:47 | 2/14/20 17:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12            | 1.015         | Not Detected  | mg/L          | 0.0008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U                                                                |
| 2/14/20 10:47 | 2/14/20 17:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12            | 1.015         | 0.00137       | mg/L          | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | J                                                                |
| 2/14/20 10:47 | 2/14/20 17:3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33            | 10.15         | 10.6          | mg/L          | 0.203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                  |
| 2/14/20 10:47 | 2/14/20 17:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12            | 1.015         | 0.0126        | mg/L          | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                  |
| 2/14/20 10:47 | 2/14/20 17:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12            | 1.015         | 0.00434       | mg/L          | 0.0006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                  |
| 2/14/20 10:47 | 2/14/20 17:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12            | 1.015         | 0.00182       | mg/L          | 0.0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                  |
| 2/14/20 10:47 | 2/14/20 17:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12            | 1.015         | Not Detected  | mg/L          | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | U                                                                |
| 2/14/20 10:47 | 2/14/20 17:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12            | 1.015         | 0.232         | mg/L          | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                  |
| 2/14/20 10:47 | 2/14/20 17:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12            | 1.015         | Not Detected  | mg/L          | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U                                                                |
| 2/14/20 10:47 | 2/14/20 17:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12            | 1.015         | Not Detected  | mg/L          | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | U                                                                |
| 2/14/20 10:47 | 2/14/20 17:3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33            | 10.15         | 10.6          | mg/L          | 0.01015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.05075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                  |
| 2/14/20 10:47 | 2/14/20 17:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12            | 1.015         | 4.28          | mg/L          | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                  |
| 2/14/20 10:47 | 2/14/20 17:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12            | 1.015         | 0.00308       | mg/L          | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | J                                                                |
| 2/14/20 10:47 | 2/14/20 17:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12            | 1.015         | Not Detected  | mg/L          | 0.0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U                                                                |
| Anal          | yst: DLJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |               |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                  |
| -             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35            | 1.015         | Not Detected  | mg/L          | 0.0008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U                                                                |
| 2/14/20 11:21 | 2/14/20 13:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 44            | 10.15         | 10.1          | mg/L          | 0.203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RA                                                               |
| 2/14/20 11:21 | 2/14/20 12:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35            | 1.015         | 0.00123       | mg/L          | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | J                                                                |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | 1.015         | 0.00433       | mg/L          | 0.0006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                  |
|               | 2/18/20 15:15 2/18/20 15:15 2/18/20 15:15 2/18/20 15:15 2/18/20 15:15 2/18/20 15:15 2/18/20 15:15 2/18/20 15:15 2/18/20 15:15 2/18/20 15:15 2/18/20 10:47 2/14/20 10:47 2/14/20 10:47 2/14/20 10:47 2/14/20 10:47 2/14/20 10:47 2/14/20 10:47 2/14/20 10:47 2/14/20 10:47 2/14/20 10:47 2/14/20 10:47 2/14/20 10:47 2/14/20 10:47 2/14/20 10:47 2/14/20 10:47 2/14/20 10:47 2/14/20 10:47 2/14/20 10:47 2/14/20 10:47 2/14/20 10:47 2/14/20 10:47 2/14/20 10:47 2/14/20 10:47 2/14/20 10:47 2/14/20 11:21 2/14/20 11:21 | 2/18/20 15:15 | 2/18/20 15:15 | 2/18/20 15:15 | 2/18/20 15:15 | 2/18/20 15:15       2/19/20 12:52       1.015       2.71       mg/L         2/18/20 15:15       2/19/20 14:12       10.15       99.3       mg/L         2/18/20 15:15       2/19/20 14:12       10.15       21.7       mg/L         2/18/20 15:15       2/19/20 14:12       10.15       12.6       mg/L         2/18/20 15:15       2/19/20 12:52       1.015       0.297       mg/L         2/18/20 15:15       2/19/20 14:12       1       46.4       mg/L         2/18/20 15:15       2/19/20 12:52       1.015       16.2       mg/L         2/18/20 15:15       2/19/20 12:30       10.15       16.2       mg/L         Analyst: RDA       2/17/20 08:30       2/17/20 12:30       10.15       12.5       mg/L         Analyst: DLJ       Preparation Method: E         2/14/20 10:47       2/14/20 17:12       1.015       Not Detected       mg/L         2/14/20 10:47       2/14/20 17:12       1.015       0.00137       mg/L         2/14/20 10:47       2/14/20 17:12       1.015       0.0126       mg/L         2/14/20 10:47       2/14/20 17:12       1.015       0.00137       mg/L         2/14/20 10:47       2/14/20 17:12       1.015       Not D | 2/18/20 15:15       2/19/20 12:52       1.015       2.71       mg/L       0.03         2/18/20 15:15       2/19/20 14:12       10.15       99.3       mg/L       1.015         2/18/20 15:15       2/19/20 14:12       10.15       21.7       mg/L       0.3045         2/18/20 15:15       2/19/20 14:12       10.15       12.6       mg/L       0.203         2/18/20 15:15       2/19/20 12:52       1.015       0.297       mg/L       0.01         2/18/20 15:15       2/19/20 14:12       10.15       86.6       mg/L       1.015         2/18/20 15:15       2/19/20 12:52       1.015       16.2       mg/L       0.1         Analyst: BDA         2/17/20 8:30       2/17/20 12:30       10.15       12.5       mg/L       0.203         Analyst: DLJ       Preparation Method: EPA 1638         2/14/20 10:47       2/14/20 17:12       1.015       Not Detected       mg/L       0.0003         2/14/20 10:47       2/14/20 17:12       1.015       Not Detected       mg/L       0.0008         2/14/20 10:47       2/14/20 17:12       1.015       0.00137       mg/L       0.001         2/14/20 10:47< | 2/18/20 15:15   2/19/20 12:52   1.015   2.71   mg/L   0.03   0.1 |

MDL's and RL's are adjusted for sample dilution, as applicable

## Certificate Of Analysis



Description: Gorgas Gypsum - GS-GSA-MW-4 DUPLocation Code:WMWGORGCollected:2/13/20 11:30

Customer ID:

Submittal Date: 2/14/20 09:17

Laboratory ID Number: BA03153

| Name                              | Prepared      | Analyzed     | Vio Spec DF | Results      | Units     | MDL     | RL      | Q  |
|-----------------------------------|---------------|--------------|-------------|--------------|-----------|---------|---------|----|
| Cadmium, Dissolved                | 2/14/20 11:21 | 2/14/20 12:3 | 5 1.015     | 0.00173      | mg/L      | 0.0003  | 0.001   |    |
| Chromium, Dissolved               | 2/14/20 11:21 | 2/14/20 12:3 | 5 1.015     | Not Detected | mg/L      | 0.002   | 0.01    | U  |
| Cobalt, Dissolved                 | 2/14/20 11:21 | 2/14/20 12:3 | 5 1.015     | 0.233        | mg/L      | 0.002   | 0.005   |    |
| Lead, Dissolved                   | 2/14/20 11:21 | 2/14/20 12:3 | 5 1.015     | Not Detected | mg/L      | 0.001   | 0.005   | U  |
| Molybdenum, Dissolved             | 2/14/20 11:21 | 2/14/20 12:3 | 5 1.015     | Not Detected | mg/L      | 0.002   | 0.01    | U  |
| Manganese, Dissolved              | 2/14/20 11:21 | 2/14/20 13:4 | 4 10.15     | 10.1         | mg/L      | 0.01015 | 0.05075 | RA |
| Selenium, Dissolved               | 2/14/20 11:21 | 2/14/20 12:3 | 5 1.015     | 0.00334      | mg/L      | 0.002   | 0.01    | J  |
| Thallium, Dissolved               | 2/14/20 11:21 | 2/14/20 12:3 | 5 1.015     | Not Detected | mg/L      | 0.0002  | 0.001   | U  |
| Analytical Method: EPA 353.2      | Anal          | yst: CES     |             |              |           |         |         |    |
| Nitrogen, Nitrate/Nitrite         | 2/14/20 12:37 | 2/14/20 12:3 | 7 1         | Not Detected | mg/L as N | 0.20    | 0.3     | U  |
| Nitrogen, Nitrate (calc.)         | 2/14/20 13:06 | 2/14/20 13:0 | 6 1         | Not Detected | mg/L as N |         |         | U  |
| Nitrogen, Nitrite                 | 2/14/20 13:06 | 2/14/20 13:0 | 6 1         | Not Detected | mg/L as N | 0.20    | 0.3     | U  |
| Analytical Method: SM 2320 B      | Anal          | yst: JAG     |             |              |           |         |         |    |
| Alkalinity, Total as CaCO3        | 2/24/20 13:30 | 2/24/20 13:4 | 0 1         | NA           | mg/L      |         | 0.1     |    |
| Analytical Method: SM 4500CO2 D   | Anal          | yst: JAG     |             |              |           |         |         |    |
| Bicarbonate Alkalinity, (calc.)   | 2/24/20 13:30 | 2/24/20 13:4 | 0 1         | NA           | mg/L      |         |         |    |
| Carbonate Alkalinity, (calc.)     | 2/24/20 13:30 | 2/24/20 13:4 | 0 1         | NA           | mg/L      |         |         |    |
| Analytical Method: SM 4500PF-OP   | Anal          | yst: CES     |             |              |           |         |         |    |
| Ortho Phosphate                   | 2/14/20 13:40 | 2/14/20 13:4 | 0 1         | Not Detected | mg/L as P | 0.010   | 0.03    | U  |
| Analytical Method: SM 5310 B      | Anal          | yst: HRG     |             |              |           |         |         |    |
| Total Organic Carbon              | 2/20/20 14:26 | 2/20/20 14:2 | 6 1         | 1.30         | mg/L      | 1.00    | 2       | J  |
| Analytical Method: SM4500Cl E     | Anal          | yst: JCC     |             |              |           |         |         |    |
| Chloride                          | 2/14/20 12:05 | 2/14/20 12:0 | 5 4         | 46.3         | mg/L      | 2.00    | 4       |    |
| Analytical Method: SM4500F G 2017 | Anal          | yst: JCC     |             |              |           |         |         |    |
| Fluoride                          | 2/14/20 15:54 | 2/14/20 15:5 | 4 1         | Not Detected | mg/L      | 0.05    | 0.1     | U  |
| Analytical Method: SM4500SO4 E    | Anal          | yst: JCC     |             |              |           |         |         |    |
| · Sulfate                         | 2/17/20 16:40 | •            | 0 100       | 623          | mg/L      | 50.00   | 100     |    |

MDL's and RL's are adjusted for sample dilution, as applicable

## **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 2/13/20 11:30

Customer ID:

**Delivery Date:** 2/14/20 09:17

Description: Gorgas Gypsum - GS-GSA-MW-4 DUP

Laboratory ID Number: BA03153

|         | atory is realison Brooks | -         |             | MB        |       |        |        |          | Standard       |      | Rec       |       | Prec          |
|---------|--------------------------|-----------|-------------|-----------|-------|--------|--------|----------|----------------|------|-----------|-------|---------------|
| Sample  | Analysis                 | Units     | MB          | Limit     | Spike | MS     | MSD    | Standard | Limit          | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA03155 | Sodium, Total            | mg/L      | 0.00864     | 0.044     | 5.00  | 5.14   | 5.07   | 5.13     | 4.25 to 5.75   | 103  | 70 to 130 | 1.37  | 20            |
| BA03155 | Calcium, Total           | mg/L      | 0.00945     | 0.1518    | 5.00  | 5.18   | 5.08   | 5.13     | 4.25 to 5.75   | 104  | 70 to 130 | 1.95  | 20            |
| BA03155 | Potassium, Total         | mg/L      | -0.0179     | 0.3674    | 10.0  | 9.93   | 9.95   | 9.93     | 8.5 to 11.5    | 99.3 | 70 to 130 | 0.201 | 20            |
| BA03153 | Beryllium, Dissolved     | mg/L      | 0.0000179   | 0.00088   | 0.10  | 0.0955 | 0.0913 | 0.0922   | 0.085 to 0.115 | 91.2 | 70 to 130 | 4.50  | 20            |
| BA03153 | Manganese, Dissolved     | mg/L      | 0.0000199   | 0.0001474 | 0.10  | 10.7   | 10.6   | 0.0994   | 0.085 to 0.115 | 600  | 70 to 130 | 0.939 | 20            |
| BA03155 | Arsenic, Total           | mg/L      | -0.00000048 | 0.0001474 | 0.10  | 0.101  | 0.101  | 0.103    | 0.085 to 0.115 | 101  | 70 to 130 | 0.00  | 20            |
| BA03155 | Total Organic Carbon     | mg/L      | 0.510       | 1.00      | 10.0  | 8.72   | 8.65   | 9.38     | 9 to 11        | 87.2 | 80 to 120 | 0.806 | 20            |
| BA03155 | Boron, Total             | mg/L      | -0.000835   | 0.0650254 | 1.00  | 1.04   | 1.02   | 1.02     | 0.85 to 1.15   | 104  | 70 to 130 | 1.94  | 20            |
| BA03155 | Chromium, Total          | mg/L      | 0.0000925   | 0.00044   | 0.10  | 0.0994 | 0.0982 | 0.0999   | 0.085 to 0.115 | 99.4 | 70 to 130 | 1.21  | 20            |
| BA03155 | Antimony, Total          | mg/L      | 0.000277    | 0.00066   | 0.10  | 0.0916 | 0.0929 | 0.0929   | 0.085 to 0.115 | 91.6 | 70 to 130 | 1.41  | 20            |
| BA03153 | Aluminum, Dissolved      | mg/L      | 0.0000657   | 0.0088    | 0.10  | 10.7   | 10.5   | 0.0990   | 0.085 to 0.115 | 600  | 70 to 130 | 1.89  | 20            |
| BA03153 | Arsenic, Dissolved       | mg/L      | -0.00000084 | 0.0001474 | 0.10  | 0.102  | 0.0958 | 0.103    | 0.085 to 0.115 | 101  | 70 to 130 | 6.27  | 20            |
| BA03153 | Cadmium, Dissolved       | mg/L      | -0.0000014  | 0.0001474 | 0.10  | 0.0938 | 0.0911 | 0.0972   | 0.085 to 0.115 | 92.1 | 70 to 130 | 2.92  | 20            |
| BA03153 | Cobalt, Dissolved        | mg/L      | -0.00000176 | 0.0001474 | 0.10  | 0.330  | 0.322  | 0.0978   | 0.085 to 0.115 | 97.0 | 70 to 130 | 2.45  | 20            |
| BA03153 | Molybdenum, Dissolved    | mg/L      | 0.00000579  | 0.0001474 | 0.10  | 0.0822 | 0.0820 | 0.0970   | 0.085 to 0.115 | 82.2 | 70 to 130 | 0.244 | 20            |
| BA03155 | Cadmium, Total           | mg/L      | -0.00000398 | 0.0001474 | 0.10  | 0.0955 | 0.0958 | 0.0972   | 0.085 to 0.115 | 95.5 | 70 to 130 | 0.314 | 20            |
| BA03155 | Lithium, Total           | mg/L      | 0.0000591   | 0.0154    | 0.20  | 0.196  | 0.195  | 0.195    | 0.17 to 0.23   | 98.0 | 70 to 130 | 0.512 | 20            |
| BA03155 | Thallium, Total          | mg/L      | 0.00000251  | 0.0001474 | 0.10  | 0.0961 | 0.0979 | 0.0967   | 0.085 to 0.115 | 96.1 | 70 to 130 | 1.86  | 20            |
| BA03153 | Chromium, Dissolved      | mg/L      | -0.0000212  | 0.00044   | 0.10  | 0.0818 | 0.0775 | 0.0992   | 0.085 to 0.115 | 81.8 | 70 to 130 | 5.40  | 20            |
| BA03153 | Selenium, Dissolved      | mg/L      | 0.0000522   | 0.00066   | 0.10  | 0.0861 | 0.0835 | 0.0976   | 0.085 to 0.115 | 82.8 | 70 to 130 | 3.07  | 20            |
| BA03153 | Thallium, Dissolved      | mg/L      | -0.00000072 | 0.0001474 | 0.10  | 0.0932 | 0.0882 | 0.0934   | 0.085 to 0.115 | 93.2 | 70 to 130 | 5.51  | 20            |
| BA03155 | Ortho Phosphate          | mg/L as P | 0.001       | 0.015     | 0.250 | 0.239  | 0.242  | 0.244    | 0.225 to 0.275 | 95.6 | 80 to 120 | 1.25  | 10            |
| BA03155 | Cobalt, Total            | mg/L      | 0.00000003  | 0.0001474 | 0.10  | 0.0953 | 0.0963 | 0.0972   | 0.085 to 0.115 | 95.3 | 70 to 130 | 1.04  | 20            |
| BA03155 | Lead, Total              | mg/L      | 0.00000137  | 0.0001474 | 0.10  | 0.101  | 0.102  | 0.0998   | 0.085 to 0.115 | 101  | 70 to 130 | 0.985 | 20            |

## **Batch QC Summary**



**Customer Account:** WMWGORG **Sample Date:** 2/13/20 11:30

**Customer ID:** 

**Delivery Date:** 2/14/20 09:17

Description: Gorgas Gypsum - GS-GSA-MW-4 DUP

Laboratory ID Number: BA03153

|                             |       |            | MB        |       |        |        |          | Standard       |      | Rec       |       | Prec          |
|-----------------------------|-------|------------|-----------|-------|--------|--------|----------|----------------|------|-----------|-------|---------------|
| Sample Analysis             | Units | MB         | Limit     | Spike | MS     | MSD    | Standard | Limit          | Rec  | Limit     | Prec  | <u>Li</u> mit |
|                             |       |            |           |       |        |        |          |                |      |           |       |               |
| BA03155 Beryllium, Total    | mg/L  | 0.0000157  | 0.00088   | 0.10  | 0.0934 | 0.0922 | 0.0939   | 0.085 to 0.115 | 93.4 | 70 to 130 | 1.29  | 20            |
| BA03155 Manganese, Total    | mg/L  | 0.0000559  | 0.0001474 | 0.10  | 0.0985 | 0.0991 | 0.0994   | 0.085 to 0.115 | 98.5 | 70 to 130 | 0.607 | 20            |
| BA03155 Selenium, Total     | mg/L  | 0.0000707  | 0.00066   | 0.10  | 0.0972 | 0.0970 | 0.0980   | 0.085 to 0.115 | 97.2 | 70 to 130 | 0.206 | 20            |
| BA03155 Silicon, Total      | mg/L  | -0.00207   | 0.044     | 1.00  | 1.04   | 1.02   | 1.02     | 0.850 to 1.15  | 104  | 70 to 130 | 1.94  | 20            |
| BA03153 Iron, Dissolved     | mg/L  | 0.000151   | 0.0176    | 0.2   | 12.3   | 12.6   | 0.204    | 0.17 to 0.23   | -100 | 70 to 130 | 2.41  | 20            |
| BA03153 Lead, Dissolved     | mg/L  | 0.00000362 | 0.0001474 | 0.10  | 0.0975 | 0.0919 | 0.100    | 0.085 to 0.115 | 97.5 | 70 to 130 | 5.91  | 20            |
| BA03153 Antimony, Dissolved | mg/L  | 0.000203   | 0.00066   | 0.10  | 0.0882 | 0.0890 | 0.0904   | 0.085 to 0.115 | 88.2 | 70 to 130 | 0.903 | 20            |
| BA03155 Aluminum, Total     | mg/L  | 0.000664   | 0.0088    | 0.10  | 0.0983 | 0.100  | 0.0977   | 0.085 to 0.115 | 98.3 | 70 to 130 | 1.71  | 20            |
| BA03155 Barium, Total       | mg/L  | 0.00000312 | 0.0002    | 0.10  | 0.0985 | 0.0966 | 0.0994   | 0.085 to 0.115 | 98.5 | 70 to 130 | 1.95  | 20            |
| BA03155 Iron, Total         | mg/L  | 0.000675   | 0.0176    | 0.2   | 0.208  | 0.205  | 0.207    | 0.17 to 0.23   | 104  | 70 to 130 | 1.45  | 20            |
| BA03155 Magnesium, Total    | mg/L  | -0.00133   | 0.0462    | 5.00  | 5.17   | 5.07   | 5.13     | 4.25 to 5.75   | 103  | 70 to 130 | 1.95  | 20            |
| BA03155 Molybdenum, Total   | mg/L  | 0.0000146  | 0.0001474 | 0.10  | 0.0977 | 0.0971 | 0.0969   | 0.085 to 0.115 | 97.7 | 70 to 130 | 0.616 | 20            |

## **Batch QC Summary**



Customer Account: WMWGORG

Sample Date:

2/13/20 11:30

**Customer ID:** 

**Delivery Date:** 2/14/20 09:17

Description: Gorgas Gypsum - GS-GSA-MW-4 DUP

Laboratory ID Number: BA03153

|         |                            |           |        | MB    |       |       | Sample    |          | Standard       |      | Rec       |      | Prec          |
|---------|----------------------------|-----------|--------|-------|-------|-------|-----------|----------|----------------|------|-----------|------|---------------|
| Sample  | Analysis                   | Units     | MB     | Limit | Spike | MS    | Duplicate | Standard | l Limit        | Rec  | Limit     | Prec | <u>Li</u> mit |
| BA03155 | Sulfate                    | mg/L      | -0.419 | 0.50  | 20.0  | 18.3  | -0.837    | 18.5     | 18 to 22       | 91.5 | 80 to 120 | 0.00 | 20            |
| BA03155 | Chloride                   | mg/L      | -0.034 | 0.50  | 10.0  | 10.1  | 0.0918    | 10.2     | 9 to 11        | 101  | 80 to 120 | 0.00 | 20            |
| BA03155 | Nitrogen, Nitrite          | mg/L as N | 0.002  | 0.20  | 0.50  | 0.547 | 0.001     | 0.779    | 0.675 to 0.825 | 109  | 90 to 110 | 0.00 | 15            |
| BA03153 | Alkalinity, Total as CaCO3 | mg/L      |        |       |       |       | NA        | 49.8     | 45.0 to 55.0   |      |           | NA   | 10            |
| BA03155 | Fluoride                   | mg/L      | 0.0245 | 0.05  | 2.50  | 2.51  | 0.0155    | 2.54     | 2.25 to 2.75   | 100  | 80 to 120 | 0.00 | 20            |
| BA03155 | Nitrogen, Nitrate/Nitrite  | mg/L as N | 0.00   | 0.20  | 2.00  | 2.00  | 0.035     | 1.98     | 1.8 to 2.2     | 100  | 90 to 110 | 0.00 | 15            |

## **Certificate Of Analysis**



Description: Gorgas Gypsum Field BlankLocation Code:WMWGORGFBCollected:2/13/20 11:40

**Customer ID:** 

Laboratory ID Number: BA03154 Submittal Date: 2/14/20 09:17

| Name                            | Prepared      | Analyzed     | Vio Spec DF | Results      | Units          | MDL    | RL    | Q |
|---------------------------------|---------------|--------------|-------------|--------------|----------------|--------|-------|---|
| Analytical Method: EPA 200.7    | Anal          | yst: RDA     |             | Preparati    | ion Method: EP | A 1638 |       |   |
| * Boron, Total                  | 2/18/20 15:15 | 2/19/20 12:5 | 5 1.015     | Not Detected | mg/L           | 0.03   | 0.1   | U |
| * Calcium, Total                | 2/18/20 15:15 | 2/19/20 12:5 | 5 1.015     | Not Detected | mg/L           | 0.1    | 0.5   | U |
| Silicon, Total                  | 2/18/20 15:15 | 2/19/20 12:5 | 5 1.015     | Not Detected | mg/L           | 0.03   | 0.3   | U |
| * Iron, Total                   | 2/18/20 15:15 | 2/19/20 12:5 | 5 1.015     | Not Detected | mg/L           | 0.02   | 0.05  | U |
| * Lithium, Total                | 2/18/20 15:15 | 2/19/20 12:5 | 5 1.015     | Not Detected | mg/L           | 0.01   | 0.02  | U |
| * Magnesium, Total              | 2/18/20 15:15 | 2/19/20 12:5 | 5 1.015     | Not Detected | mg/L           | 0.1    | 0.5   | U |
| Silica, Total (calc.)           | 2/18/20 15:15 | 2/19/20 12:5 | 5 1         | Not Detected | mg/L           |        |       | U |
| * Sodium, Total                 | 2/18/20 15:15 | 2/19/20 12:5 | 5 1.015     | Not Detected | mg/L           | 0.1    | 0.5   | U |
| Analytical Method: EPA 200.8    | Anal          | yst: DLJ     |             | Preparati    | ion Method: EP | A 1638 |       |   |
| * Antimony, Total               | 2/14/20 10:47 | 2/14/20 17:1 | 4 1.015     | Not Detected | mg/L           | 0.0008 | 0.003 | U |
| * Aluminum, Total               | 2/14/20 10:47 | 2/14/20 17:1 | 4 1.015     | Not Detected | mg/L           | 0.02   | 0.06  | U |
| * Arsenic, Total                | 2/14/20 10:47 | 2/14/20 17:1 | 4 1.015     | Not Detected | mg/L           | 0.001  | 0.005 | U |
| * Barium, Total                 | 2/14/20 10:47 | 2/14/20 17:1 | 4 1.015     | Not Detected | mg/L           | 0.002  | 0.01  | U |
| * Beryllium, Total              | 2/14/20 10:47 | 2/14/20 17:1 | 4 1.015     | Not Detected | mg/L           | 0.0006 | 0.003 | U |
| * Cadmium, Total                | 2/14/20 10:47 | 2/14/20 17:1 | 4 1.015     | Not Detected | mg/L           | 0.0003 | 0.001 | U |
| * Chromium, Total               | 2/14/20 10:47 | 2/14/20 17:1 | 4 1.015     | Not Detected | mg/L           | 0.002  | 0.01  | U |
| * Cobalt, Total                 | 2/14/20 10:47 | 2/14/20 17:1 | 4 1.015     | Not Detected | mg/L           | 0.002  | 0.005 | U |
| * Lead, Total                   | 2/14/20 10:47 | 2/14/20 17:1 | 4 1.015     | Not Detected | mg/L           | 0.001  | 0.005 | U |
| * Molybdenum, Total             | 2/14/20 10:47 | 2/14/20 17:1 | 4 1.015     | Not Detected | mg/L           | 0.002  | 0.01  | U |
| * Manganese, Total              | 2/14/20 10:47 | 2/14/20 17:1 | 4 1.015     | Not Detected | mg/L           | 0.001  | 0.005 | U |
| * Potassium, Total              | 2/14/20 10:47 | 2/14/20 17:1 | 4 1.015     | Not Detected | mg/L           | 0.3    | 2.5   | U |
| * Selenium, Total               | 2/14/20 10:47 | 2/14/20 17:1 | 4 1.015     | Not Detected | mg/L           | 0.002  | 0.01  | U |
| ∗ Thallium, Total               | 2/14/20 10:47 | 2/14/20 17:1 | 4 1.015     | Not Detected | mg/L           | 0.0002 | 0.001 | U |
| Analytical Method: EPA 353.2    | Anal          | yst: CES     |             |              |                |        |       |   |
| * Nitrogen, Nitrate/Nitrite     | 2/14/20 12:38 | 2/14/20 12:3 | 8 1         | Not Detected | mg/L as N      | 0.20   | 0.3   | U |
| Nitrogen, Nitrate (calc.)       | 2/14/20 13:07 |              |             | Not Detected |                |        |       | U |
| Nitrogen, Nitrite               | 2/14/20 13:07 |              |             | Not Detected | mg/L as N      | 0.20   | 0.3   | U |
| Analytical Method: SM 4500PF-OP | Anal          | yst: CES     |             |              |                |        |       |   |
| Ortho Phosphate                 | 2/14/20 13:41 |              | 1 1         | Not Detected | mg/Las P       | 0.010  | 0.03  | U |

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

## Certificate Of Analysis

Vio Spec DF

1

Analyzed

Analyst: HRG

Analyst: JCC

Analyst: JCC

Analyst: JCC

2/14/20 12:06 2/14/20 12:06

2/14/20 15:55 2/14/20 15:55

2/17/20 16:42 2/17/20 16:42

2/20/20 14:37 2/20/20 14:37

Prepared



0.1

1

U

Description: Gorgas Gypsum Field Blank

Location Code:

WMWGORGFB

Collected:

Not Detected mg/L

Not Detected mg/L

Customer ID:

2/13/20 11:40

2/14/20 09:17

Laboratory ID Number: BA03154

Analytical Method: SM 5310 B

Analytical Method: SM4500CI E

Analytical Method: SM4500F G 2017

Analytical Method: SM4500SO4 E

\* Total Organic Carbon

Name

\* Chloride

\* Fluoride

\* Sulfate

Submittal Date:

 Results
 Units
 MDL
 RL
 Q

 Not Detected
 mg/L
 1.00
 2
 U

 Not Detected
 mg/L
 0.50
 1
 U

0.05

0.50

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

Reported: 3/18/2020 Version: 3.1 COA\_CCR

# **Batch QC Summary**



**Customer Account:** WMWGORGFB **Sample Date:** 2/13/20 11:40

**Customer ID:** 

**Delivery Date:** 2/14/20 09:17

**Description**: Gorgas Gypsum Field Blank

Laboratory ID Number: BA03154

|         |                      |           |             | MB        |       |        |        |          | Standard       |      | Rec       |       | Prec          |
|---------|----------------------|-----------|-------------|-----------|-------|--------|--------|----------|----------------|------|-----------|-------|---------------|
| Sample  | Analysis             | Units     | MB          | Limit     | Spike | MS     | MSD    | Standard | Limit          | Rec  | Limit     | Prec  | <u>Li</u> mit |
| BA03155 | Sodium, Total        | mg/L      | 0.00864     | 0.044     | 5.00  | 5.14   | 5.07   | 5.13     | 4.25 to 5.75   | 103  | 70 to 130 | 1.37  | 20            |
| BA03155 | Calcium, Total       | mg/L      | 0.00945     | 0.1518    | 5.00  | 5.18   | 5.08   | 5.13     | 4.25 to 5.75   | 104  | 70 to 130 | 1.95  | 20            |
| BA03155 | Potassium, Total     | mg/L      | -0.0179     | 0.3674    | 10.0  | 9.93   | 9.95   | 9.93     | 8.5 to 11.5    | 99.3 | 70 to 130 | 0.201 | 20            |
| BA03155 | Arsenic, Total       | mg/L      | -0.00000048 | 0.0001474 | 0.10  | 0.101  | 0.101  | 0.103    | 0.085 to 0.115 | 101  | 70 to 130 | 0.00  | 20            |
| BA03155 | Total Organic Carbon | mg/L      | 0.510       | 1.00      | 10.0  | 8.72   | 8.65   | 9.38     | 9 to 11        | 87.2 | 80 to 120 | 0.806 | 20            |
| BA03155 | Ortho Phosphate      | mg/L as P | 0.001       | 0.015     | 0.250 | 0.239  | 0.242  | 0.244    | 0.225 to 0.275 | 95.6 | 80 to 120 | 1.25  | 10            |
| BA03155 | Cobalt, Total        | mg/L      | 0.00000003  | 0.0001474 | 0.10  | 0.0953 | 0.0963 | 0.0972   | 0.085 to 0.115 | 95.3 | 70 to 130 | 1.04  | 20            |
| BA03155 | Lead, Total          | mg/L      | 0.00000137  | 0.0001474 | 0.10  | 0.101  | 0.102  | 0.0998   | 0.085 to 0.115 | 101  | 70 to 130 | 0.985 | 20            |
| BA03155 | Aluminum, Total      | mg/L      | 0.000664    | 0.0088    | 0.10  | 0.0983 | 0.100  | 0.0977   | 0.085 to 0.115 | 98.3 | 70 to 130 | 1.71  | 20            |
| BA03155 | Barium, Total        | mg/L      | 0.00000312  | 0.0002    | 0.10  | 0.0985 | 0.0966 | 0.0994   | 0.085 to 0.115 | 98.5 | 70 to 130 | 1.95  | 20            |
| BA03155 | Iron, Total          | mg/L      | 0.000675    | 0.0176    | 0.2   | 0.208  | 0.205  | 0.207    | 0.17 to 0.23   | 104  | 70 to 130 | 1.45  | 20            |
| BA03155 | Magnesium, Total     | mg/L      | -0.00133    | 0.0462    | 5.00  | 5.17   | 5.07   | 5.13     | 4.25 to 5.75   | 103  | 70 to 130 | 1.95  | 20            |
| BA03155 | Molybdenum, Total    | mg/L      | 0.0000146   | 0.0001474 | 0.10  | 0.0977 | 0.0971 | 0.0969   | 0.085 to 0.115 | 97.7 | 70 to 130 | 0.616 | 20            |
| BA03155 | Cadmium, Total       | mg/L      | -0.00000398 | 0.0001474 | 0.10  | 0.0955 | 0.0958 | 0.0972   | 0.085 to 0.115 | 95.5 | 70 to 130 | 0.314 | 20            |
| BA03155 | Lithium, Total       | mg/L      | 0.0000591   | 0.0154    | 0.20  | 0.196  | 0.195  | 0.195    | 0.17 to 0.23   | 98.0 | 70 to 130 | 0.512 | 20            |
| BA03155 | Thallium, Total      | mg/L      | 0.00000251  | 0.0001474 | 0.10  | 0.0961 | 0.0979 | 0.0967   | 0.085 to 0.115 | 96.1 | 70 to 130 | 1.86  | 20            |
| BA03155 | Beryllium, Total     | mg/L      | 0.0000157   | 0.00088   | 0.10  | 0.0934 | 0.0922 | 0.0939   | 0.085 to 0.115 | 93.4 | 70 to 130 | 1.29  | 20            |
| BA03155 | Manganese, Total     | mg/L      | 0.0000559   | 0.0001474 | 0.10  | 0.0985 | 0.0991 | 0.0994   | 0.085 to 0.115 | 98.5 | 70 to 130 | 0.607 | 20            |
| BA03155 | Selenium, Total      | mg/L      | 0.0000707   | 0.00066   | 0.10  | 0.0972 | 0.0970 | 0.0980   | 0.085 to 0.115 | 97.2 | 70 to 130 | 0.206 | 20            |
| BA03155 | Silicon, Total       | mg/L      | -0.00207    | 0.044     | 1.00  | 1.04   | 1.02   | 1.02     | 0.850 to 1.15  | 104  | 70 to 130 | 1.94  | 20            |
| BA03155 | Boron, Total         | mg/L      | -0.000835   | 0.0650254 | 1.00  | 1.04   | 1.02   | 1.02     | 0.85 to 1.15   | 104  | 70 to 130 | 1.94  | 20            |
| BA03155 | Chromium, Total      | mg/L      | 0.0000925   | 0.00044   | 0.10  | 0.0994 | 0.0982 | 0.0999   | 0.085 to 0.115 | 99.4 | 70 to 130 | 1.21  | 20            |
| BA03155 | Antimony, Total      | mg/L      | 0.000277    | 0.00066   | 0.10  | 0.0916 | 0.0929 | 0.0929   | 0.085 to 0.115 | 91.6 | 70 to 130 | 1.41  | 20            |

# **Batch QC Summary**



Customer Account: WMWGORGFB

Sample Date:

2/13/20 11:40

Customer ID:

**Delivery Date:** 2/14/20 09:17

Description: Gorgas Gypsum Field Blank

Laboratory ID Number: BA03154

|         |                           |           |        | MB    |       |       | Sample    |          | Standard       |      | Rec       |      | Prec          |
|---------|---------------------------|-----------|--------|-------|-------|-------|-----------|----------|----------------|------|-----------|------|---------------|
| Sample  | Analysis                  | Units     | MB     | Limit | Spike | MS    | Duplicate | Standard | Limit          | Rec  | Limit     | Prec | <u>Li</u> mit |
| BA03155 | Sulfate                   | mg/L      | -0.419 | 0.50  | 20.0  | 18.3  | -0.837    | 18.5     | 18 to 22       | 91.5 | 80 to 120 | 0.00 | 20            |
| BA03155 | Chloride                  | mg/L      | -0.034 | 0.50  | 10.0  | 10.1  | 0.0918    | 10.2     | 9 to 11        | 101  | 80 to 120 | 0.00 | 20            |
| BA03155 | Nitrogen, Nitrite         | mg/L as N | 0.002  | 0.20  | 0.50  | 0.547 | 0.001     | 0.779    | 0.675 to 0.825 | 109  | 90 to 110 | 0.00 | 15            |
| BA03155 | Fluoride                  | mg/L      | 0.0245 | 0.05  | 2.50  | 2.51  | 0.0155    | 2.54     | 2.25 to 2.75   | 100  | 80 to 120 | 0.00 | 20            |
| BA03155 | Nitrogen, Nitrate/Nitrite | mg/L as N | 0.00   | 0.20  | 2.00  | 2.00  | 0.035     | 1.98     | 1.8 to 2.2     | 100  | 90 to 110 | 0.00 | 15            |

# **Certificate Of Analysis**



Description: Gorgas Gypsum Equipment BlankLocation Code:WMWGORGEBCollected:2/13/20 12:35

**Customer ID:** 

**Submittal Date:** 2/14/20 09:17

| Laboratory ID Number: BA03155         |               |              |             |    | Submitt      | al Date:     | 2/14/20 09: | 17    |   |
|---------------------------------------|---------------|--------------|-------------|----|--------------|--------------|-------------|-------|---|
| Name                                  | Prepared      | Analyzed     | Vio Spec DF | =  | Results      | Units        | MDL         | RL    | Q |
| Analytical Method: EPA 200.7          | Anal          | yst: RDA     |             |    | Preparati    | on Method: E | PA 1638     |       |   |
| * Boron, Total                        | 2/18/20 15:15 | 2/19/20 12:5 | 58 1.0°     | 15 | Not Detected | mg/L         | 0.03        | 0.1   | U |
| * Calcium, Total                      | 2/18/20 15:15 | 2/19/20 12:5 | 58 1.0°     | 15 | Not Detected | mg/L         | 0.1         | 0.5   | U |
| Silicon, Total                        | 2/18/20 15:15 | 2/19/20 12:5 | 58 1.0°     | 15 | Not Detected | mg/L         | 0.03        | 0.3   | U |
| * Iron, Total                         | 2/18/20 15:15 | 2/19/20 12:5 | 58 1.0°     | 15 | Not Detected | mg/L         | 0.02        | 0.05  | U |
| * Lithium, Total                      | 2/18/20 15:15 | 2/19/20 12:5 | 58 1.0°     | 15 | Not Detected | mg/L         | 0.01        | 0.02  | U |
| * Magnesium, Total                    | 2/18/20 15:15 | 2/19/20 12:5 | 58 1.0°     | 15 | Not Detected | mg/L         | 0.1         | 0.5   | U |
| Silica, Total (calc.)                 | 2/18/20 15:15 | 2/19/20 12:5 | 58 1        |    | Not Detected | mg/L         |             |       | U |
| * Sodium, Total                       | 2/18/20 15:15 | 2/19/20 12:5 | 58 1.0°     | 15 | Not Detected | mg/L         | 0.1         | 0.5   | U |
| Analytical Method: EPA 200.8          | Anal          | yst: DLJ     |             |    | Preparati    | on Method: E | PA 1638     |       |   |
| * Antimony, Total                     | 2/14/20 10:47 | 2/14/20 17:1 | 7 1.0       | 15 | Not Detected | mg/L         | 0.0008      | 0.003 | U |
| * Aluminum, Total                     | 2/14/20 10:47 | 2/14/20 17:1 | 7 1.0       | 15 | Not Detected | mg/L         | 0.02        | 0.06  | U |
| * Arsenic, Total                      | 2/14/20 10:47 | 2/14/20 17:1 | 7 1.0       | 15 | Not Detected | mg/L         | 0.001       | 0.005 | U |
| * Barium, Total                       | 2/14/20 10:47 | 2/14/20 17:1 | 7 1.0       | 15 | Not Detected | mg/L         | 0.002       | 0.01  | U |
| * Beryllium, Total                    | 2/14/20 10:47 | 2/14/20 17:1 | 7 1.0       | 15 | Not Detected | mg/L         | 0.0006      | 0.003 | U |
| * Cadmium, Total                      | 2/14/20 10:47 | 2/14/20 17:1 | 7 1.0       | 15 | Not Detected | mg/L         | 0.0003      | 0.001 | U |
| * Chromium, Total                     | 2/14/20 10:47 | 2/14/20 17:1 | 7 1.0       | 15 | Not Detected | mg/L         | 0.002       | 0.01  | U |
| * Cobalt, Total                       | 2/14/20 10:47 | 2/14/20 17:1 | 7 1.0       | 15 | Not Detected | mg/L         | 0.002       | 0.005 | U |
| * Lead, Total                         | 2/14/20 10:47 | 2/14/20 17:1 | 7 1.0       | 15 | Not Detected | mg/L         | 0.001       | 0.005 | U |
| <ul> <li>Molybdenum, Total</li> </ul> | 2/14/20 10:47 | 2/14/20 17:1 | 7 1.0       | 15 | Not Detected | mg/L         | 0.002       | 0.01  | U |
| * Manganese, Total                    | 2/14/20 10:47 | 2/14/20 17:1 | 7 1.0       | 15 | Not Detected | mg/L         | 0.001       | 0.005 | U |
| * Potassium, Total                    | 2/14/20 10:47 | 2/14/20 17:1 | 7 1.0       | 15 | Not Detected | mg/L         | 0.3         | 2.5   | U |
| * Selenium, Total                     | 2/14/20 10:47 | 2/14/20 17:1 | 7 1.0       | 15 | Not Detected | mg/L         | 0.002       | 0.01  | U |
| * Thallium, Total                     | 2/14/20 10:47 | 2/14/20 17:1 | 7 1.0       | 15 | Not Detected | mg/L         | 0.0002      | 0.001 | U |
| Analytical Method: EPA 353.2          | Anal          | yst: CES     |             |    |              |              |             |       |   |
| * Nitrogen, Nitrate/Nitrite           | 2/14/20 12:41 | 2/14/20 12:4 | 1 1         |    | Not Detected | mg/L as N    | 0.20        | 0.3   | U |
| Nitrogen, Nitrate (calc.)             | 2/14/20 13:09 | 2/14/20 13:0 | 9 1         |    | Not Detected | mg/L as N    |             |       | U |
| Nitrogen, Nitrite                     | 2/14/20 13:09 | 2/14/20 13:0 | 9 1         |    | Not Detected | mg/L as N    | 0.20        | 0.3   | U |
| Analytical Method: SM 4500PF-OP       | Anal          | yst: CES     |             |    |              |              |             |       |   |
| Ortho Phosphate                       | 2/14/20 13:43 |              | l3 1        |    | Not Detected | mg/L as P    | 0.010       | 0.03  | U |

MDL's and RL's are adjusted for sample dilution, as applicable

Laboratory ID Number: BA03155

# **Certificate Of Analysis**



**Description:** Gorgas Gypsum Equipment Blank

**Location Code:** 

**WMWGORGEB** 

Collected:

**Customer ID:** 

2/13/20 12:35

**Submittal Date:** 

2/14/20 09:17

| Name                              | Prepared      | Analyzed       | Vio Spec | DF | Results      | Units | MDL  | RL  | Q |
|-----------------------------------|---------------|----------------|----------|----|--------------|-------|------|-----|---|
| Analytical Method: SM 5310 B      | Ana           | lyst: HRG      |          |    |              |       |      |     | _ |
| * Total Organic Carbon            | 2/20/20 14:49 | 2/20/20 14:4   | 19       | 1  | Not Detected | mg/L  | 1.00 | 2   | U |
| Analytical Method: SM4500Cl E     | Ana           | lyst: JCC      |          |    |              |       |      |     |   |
| * Chloride                        | 2/14/20 12:07 | 2/14/20 12:0   | )7       | 1  | Not Detected | mg/L  | 0.50 | 1   | U |
| Analytical Method: SM4500F G 2017 | Ana           | lyst: JCC      |          |    |              |       |      |     |   |
| * Fluoride                        | 2/14/20 15:56 | 2/14/20 15:5   | 56       | 1  | Not Detected | mg/L  | 0.05 | 0.1 | U |
| Analytical Method: SM4500SO4 E    | Ana           | lyst: JCC      |          |    |              |       |      |     |   |
| * Sulfate                         | 2/17/20 16:43 | 3 2/17/20 16:4 | 13       | 1  | Not Detected | mg/L  | 0.50 | 1   | U |
|                                   |               |                |          |    |              |       |      |     |   |

MDL's and RL's are adjusted for sample dilution, as applicable

# **Batch QC Summary**



**Customer Account:** WMWGORGEB **Sample Date:** 2/13/20 12:35

**Customer ID:** 

**Delivery Date:** 2/14/20 09:17

Description: Gorgas Gypsum Equipment Blank

Laboratory ID Number: BA03155

|         |                      |           |             | MB        |       |        |        |          | Standard       |      | Rec           |    | Prec          |
|---------|----------------------|-----------|-------------|-----------|-------|--------|--------|----------|----------------|------|---------------|----|---------------|
| Sample  | Analysis             | Units     | MB          | Limit     | Spike | MS     | MSD    | Standard | Limit          | Rec  | Limit Pr      | ес | <u>Li</u> mit |
| BA03155 | Sodium, Total        | mg/L      | 0.00864     | 0.044     | 5.00  | 5.14   | 5.07   | 5.13     | 4.25 to 5.75   | 103  | 70 to 130 1.3 | 7  | 20            |
| BA03155 | Beryllium, Total     | mg/L      | 0.0000157   | 0.00088   | 0.10  | 0.0934 | 0.0922 | 0.0939   | 0.085 to 0.115 | 93.4 | 70 to 130 1.2 | 9  | 20            |
| BA03155 | Manganese, Total     | mg/L      | 0.0000559   | 0.0001474 | 0.10  | 0.0985 | 0.0991 | 0.0994   | 0.085 to 0.115 | 98.5 | 70 to 130 0.6 | 07 | 20            |
| BA03155 | Selenium, Total      | mg/L      | 0.0000707   | 0.00066   | 0.10  | 0.0972 | 0.0970 | 0.0980   | 0.085 to 0.115 | 97.2 | 70 to 130 0.2 | 06 | 20            |
| BA03155 | Silicon, Total       | mg/L      | -0.00207    | 0.044     | 1.00  | 1.04   | 1.02   | 1.02     | 0.850 to 1.15  | 104  | 70 to 130 1.9 | 4  | 20            |
| BA03155 | Calcium, Total       | mg/L      | 0.00945     | 0.1518    | 5.00  | 5.18   | 5.08   | 5.13     | 4.25 to 5.75   | 104  | 70 to 130 1.9 | 5  | 20            |
| BA03155 | Potassium, Total     | mg/L      | -0.0179     | 0.3674    | 10.0  | 9.93   | 9.95   | 9.93     | 8.5 to 11.5    | 99.3 | 70 to 130 0.2 | 01 | 20            |
| BA03155 | Cadmium, Total       | mg/L      | -0.00000398 | 0.0001474 | 0.10  | 0.0955 | 0.0958 | 0.0972   | 0.085 to 0.115 | 95.5 | 70 to 130 0.3 | 14 | 20            |
| BA03155 | Lithium, Total       | mg/L      | 0.0000591   | 0.0154    | 0.20  | 0.196  | 0.195  | 0.195    | 0.17 to 0.23   | 98.0 | 70 to 130 0.5 | 12 | 20            |
| BA03155 | Thallium, Total      | mg/L      | 0.00000251  | 0.0001474 | 0.10  | 0.0961 | 0.0979 | 0.0967   | 0.085 to 0.115 | 96.1 | 70 to 130 1.8 | 6  | 20            |
| BA03155 | Boron, Total         | mg/L      | -0.000835   | 0.0650254 | 1.00  | 1.04   | 1.02   | 1.02     | 0.85 to 1.15   | 104  | 70 to 130 1.9 | 4  | 20            |
| BA03155 | Chromium, Total      | mg/L      | 0.0000925   | 0.00044   | 0.10  | 0.0994 | 0.0982 | 0.0999   | 0.085 to 0.115 | 99.4 | 70 to 130 1.2 | 1  | 20            |
| BA03155 | Antimony, Total      | mg/L      | 0.000277    | 0.00066   | 0.10  | 0.0916 | 0.0929 | 0.0929   | 0.085 to 0.115 | 91.6 | 70 to 130 1.4 | 1  | 20            |
| BA03155 | Arsenic, Total       | mg/L      | -0.00000048 | 0.0001474 | 0.10  | 0.101  | 0.101  | 0.103    | 0.085 to 0.115 | 101  | 70 to 130 0.0 | 0  | 20            |
| BA03155 | Total Organic Carbon | mg/L      | 0.510       | 1.00      | 10.0  | 8.72   | 8.65   | 9.38     | 9 to 11        | 87.2 | 80 to 120 0.8 | 06 | 20            |
| BA03155 | Ortho Phosphate      | mg/L as P | 0.001       | 0.015     | 0.250 | 0.239  | 0.242  | 0.244    | 0.225 to 0.275 | 95.6 | 80 to 120 1.2 | 5  | 10            |
| BA03155 | Cobalt, Total        | mg/L      | 0.00000003  | 0.0001474 | 0.10  | 0.0953 | 0.0963 | 0.0972   | 0.085 to 0.115 | 95.3 | 70 to 130 1.0 | 4  | 20            |
| BA03155 | Lead, Total          | mg/L      | 0.00000137  | 0.0001474 | 0.10  | 0.101  | 0.102  | 0.0998   | 0.085 to 0.115 | 101  | 70 to 130 0.9 | 85 | 20            |
| BA03155 | Aluminum, Total      | mg/L      | 0.000664    | 0.0088    | 0.10  | 0.0983 | 0.100  | 0.0977   | 0.085 to 0.115 | 98.3 | 70 to 130 1.7 | 1  | 20            |
| BA03155 | Barium, Total        | mg/L      | 0.00000312  | 0.0002    | 0.10  | 0.0985 | 0.0966 | 0.0994   | 0.085 to 0.115 | 98.5 | 70 to 130 1.9 | 5  | 20            |
| BA03155 | Iron, Total          | mg/L      | 0.000675    | 0.0176    | 0.2   | 0.208  | 0.205  | 0.207    | 0.17 to 0.23   | 104  | 70 to 130 1.4 | 5  | 20            |
| BA03155 | Magnesium, Total     | mg/L      | -0.00133    | 0.0462    | 5.00  | 5.17   | 5.07   | 5.13     | 4.25 to 5.75   | 103  | 70 to 130 1.9 | 5  | 20            |
| BA03155 | Molybdenum, Total    | mg/L      | 0.0000146   | 0.0001474 | 0.10  | 0.0977 | 0.0971 | 0.0969   | 0.085 to 0.115 | 97.7 | 70 to 130 0.6 | 16 | 20            |

# **Batch QC Summary**



Customer Account: WMWGORGEB Sample Date:

2/13/20 12:35

**Customer ID:** 

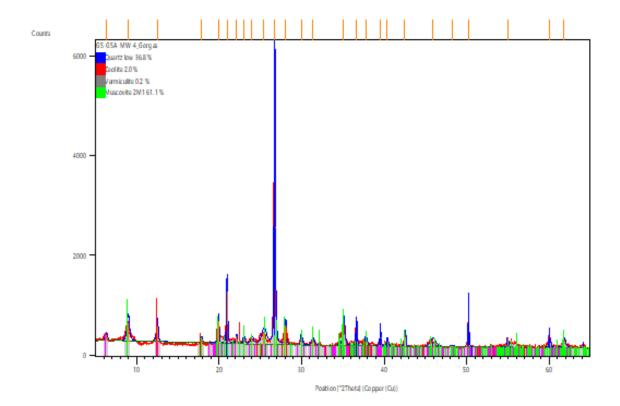
**Delivery Date:** 2/14/20 09:17

Description: Gorgas Gypsum Equipment Blank

Laboratory ID Number: BA03155

|         |                           |           |        | MB    |       |       | Sample    |          | Standard       |      | Rec       |      | Prec          |
|---------|---------------------------|-----------|--------|-------|-------|-------|-----------|----------|----------------|------|-----------|------|---------------|
| Sample  | Analysis                  | Units     | MB     | Limit | Spike | MS    | Duplicate | Standard | Limit          | Rec  | Limit     | Prec | <u>Li</u> mit |
| BA03155 | Sulfate                   | mg/L      | -0.419 | 0.50  | 20.0  | 18.3  | -0.837    | 18.5     | 18 to 22       | 91.5 | 80 to 120 | 0.00 | 20            |
| BA03155 | Chloride                  | mg/L      | -0.034 | 0.50  | 10.0  | 10.1  | 0.0918    | 10.2     | 9 to 11        | 101  | 80 to 120 | 0.00 | 20            |
| BA03155 | Nitrogen, Nitrite         | mg/L as N | 0.002  | 0.20  | 0.50  | 0.547 | 0.001     | 0.779    | 0.675 to 0.825 | 109  | 90 to 110 | 0.00 | 15            |
| BA03155 | Fluoride                  | mg/L      | 0.0245 | 0.05  | 2.50  | 2.51  | 0.0155    | 2.54     | 2.25 to 2.75   | 100  | 80 to 120 | 0.00 | 20            |
| BA03155 | Nitrogen, Nitrate/Nitrite | mg/L as N | 0.00   | 0.20  | 2.00  | 2.00  | 0.035     | 1.98     | 1.8 to 2.2     | 100  | 90 to 110 | 0.00 | 15            |

Comments:

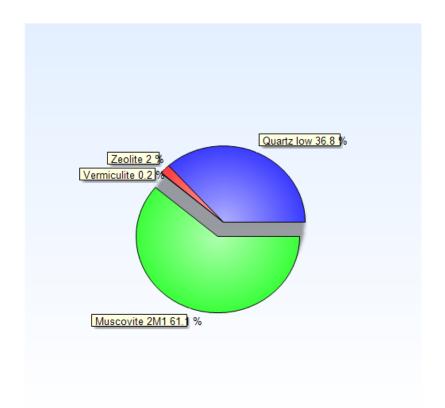

Reported: 3/18/2020 Version: 3.1 COA\_CCR



| Abbreviation | Description                                                                                                                                         |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| DF           | Dilution Factor                                                                                                                                     |
| LCS          | Lab Control Sample                                                                                                                                  |
| LFM          | Lab Fortified Matrix                                                                                                                                |
| MB           | Method Blank                                                                                                                                        |
| MDL          | Method Detection Limit; minimum concentration of an analyte that can be determined with 99% confidence that the concentration is greater than zero. |
| MS           | Matrix Spike                                                                                                                                        |
| MSD          | Matrix Spike Duplicate                                                                                                                              |
| Prec         | Precision (% RPD)                                                                                                                                   |
| Q            | Qualifier; comment used to note deviations or additional information associated with analytical results.                                            |
| QC           | Quality Control                                                                                                                                     |
| Rec          | Recovery of Matrix Spike                                                                                                                            |
| RL           | Reporting Limit; lowest concentration at which an analyte can be quantitatively measured.                                                           |
| Vio Spec     | Violation Specification; regulatory limit which has been exceeded by the sample analyzed.                                                           |
| Qualifier    | Description                                                                                                                                         |
| J            | Reported value is an estimate because concentration is less than reporting limit.                                                                   |
| RA           | Matrix spike is invalid due to sample concentration.                                                                                                |
| U            | Compound was analyzed, but not detected.                                                                                                            |

| è abo    | Chain of<br>Groundy<br>APC Genera     | water    |              | L           | ield Con<br>ab Comp                             |              |    |                    | Outsi      |             | A)                  |            |                    | PEG     | -126      |
|----------|---------------------------------------|----------|--------------|-------------|-------------------------------------------------|--------------|----|--------------------|------------|-------------|---------------------|------------|--------------------|---------|-----------|
| Reque    | ested Complete                        |          |              | 715         |                                                 | _            | Т  | Dan                | ılts T     |             |                     |            | lassopoulos        | Aditab  | <u></u>   |
| Requi    | Site Represent                        |          |              |             | C                                               |              | ┨  |                    |            | y Greg Dy   |                     | me,v       | <u>iassopoulos</u> | ,MITCHE | <u> </u>  |
|          | Colle                                 | ector 19 | u            | wfor/&      | ellon                                           |              | ┨  | -                  |            | · —         |                     |            | 1.106              | Pa      |           |
|          | 1                                     |          |              |             |                                                 |              | 닏  |                    | Cation     | 6-0590      | 7                   | _          | /                  | 1       | 42        |
| Bottles  |                                       | 500 mL   |              | Anions/Alk. |                                                 |              | ⊢  | тос                |            | 250 mL      | 117                 |            |                    | N/A     |           |
|          | 2 Diss. Metals                        | 500 mL   |              | NO3/Ortho   |                                                 |              | ٠. | N/A                |            | N/A         |                     |            | -                  | N/A     |           |
|          | Comments                              |          | opy          | of resu     | J15 F                                           |              |    | Redw<br>with Ar    |            |             | n.t                 | chi        | ell, Dim           | ita b   | lass open |
|          | Sample #                              | Dat      | te           | Time        | Bottle<br>Count                                 |              |    | Descri             | ption      | iz          | STATE OF THE PARTY. | ab<br>Iter | Lab I              | d       |           |
|          | 45-6-SA-MW-3                          | 2-       | 13-20        | 1320        | 5                                               | 650          | ۳  | no n               | wte        | <u>س</u>    |                     | •          | BA03               | -       |           |
| 6        | 5-65A-MW4                             |          |              | 1130        | 5                                               |              |    |                    |            |             |                     |            |                    | 52      |           |
| 6        | 5-65A-MW-4                            | Dup      |              | 1130        | 5                                               | 1            | P  | LAH                |            |             |                     |            |                    | 53      |           |
|          | Field Black                           |          |              | 1140        | 4                                               | DI           |    | water              | -          |             |                     |            |                    | 54      |           |
| <u> </u> | Equi AmenTB/                          | MK V     | 140H         | 1235        | 4                                               | $\downarrow$ | 'n | DA                 |            |             |                     |            | +                  | 55      |           |
|          |                                       |          |              |             |                                                 |              |    |                    |            |             |                     |            |                    |         |           |
|          |                                       |          |              | · ·         |                                                 |              |    | -                  |            |             |                     |            |                    |         |           |
| -        |                                       |          |              | ļ           | ļ                                               | <u> </u>     | _  |                    |            |             | _                   |            |                    |         | M         |
| -        |                                       |          |              |             |                                                 | ļ            |    |                    |            |             |                     |            |                    |         |           |
|          |                                       |          |              |             |                                                 |              |    |                    | _          |             | _                   |            |                    |         |           |
| -        |                                       |          |              |             |                                                 |              |    |                    |            |             |                     |            |                    |         |           |
| -        |                                       |          |              |             |                                                 | -            |    |                    |            |             | _                   |            |                    |         |           |
| H        |                                       |          |              |             |                                                 |              | _  |                    |            |             | _                   | _          |                    |         |           |
| F        | <del></del>                           |          |              |             |                                                 | -            |    |                    |            |             | H                   |            |                    |         |           |
|          |                                       |          |              |             |                                                 |              |    |                    | _          |             |                     |            |                    |         |           |
| <b> </b> |                                       |          |              |             |                                                 | -            |    |                    |            |             | -                   |            |                    |         |           |
| -        | <u> </u>                              |          |              |             |                                                 |              |    |                    |            |             |                     |            |                    |         |           |
|          | · · · · · · · · · · · · · · · · · · · |          |              |             |                                                 |              | _  |                    |            |             |                     |            |                    | -       | 1         |
| F        |                                       |          |              |             |                                                 |              |    |                    |            | -112        | $\vdash$            |            |                    |         |           |
|          |                                       |          |              |             |                                                 |              |    |                    |            |             |                     | _          |                    |         |           |
|          | Relinqu                               | ished By | <u></u><br>Y |             |                                                 |              |    | Receive            | ed By      | 7           |                     |            | Date               | /Tim    | e         |
|          | ich Ild                               | /        |              |             | <b> </b>                                        | Mark         |    | B                  |            | ,           |                     |            | 7/12               | 1. 4    | 250n      |
| 7        | 0. 0                                  |          |              |             | <del>                                    </del> | May          |    | - Jorky            | 1          | 11          |                     |            | 6/10/              | 650     | []        |
|          | leri Baire                            | 7        |              |             |                                                 | W            | 1  | 1900               | <u>u</u> M | 1/          |                     |            | 2431               | 20201   | B54       |
|          |                                       |          |              |             |                                                 |              |    |                    |            | Y1          |                     |            | ALLIN              | المحا   |           |
| c.       | narTroll ID                           |          |              |             | 7                                               | A 11         |    |                    | ا ا        |             |                     | 1.         |                    |         | 2         |
| l .      | urbidity ID                           |          | _            |             | 4 40                                            | AII.         |    |                    |            | iological l |                     | ies        | nave pH            | < 2 L   |           |
|          | mple Event                            | 17/26    |              |             | +                                               | πL           |    | Cooler ]           | remp       | 0,700       |                     | 7 1        |                    |         |           |
| J        | mbie Evetif                           | 1262     |              |             | _                                               | 111          | 16 | Janioiiii<br>⊶2 Ua | in ID      | 5408        | 11                  | 21         | 768                | 1       | 5         |
|          |                                       |          |              |             |                                                 |              |    | Pri ou:            | ידו אי     | 7901        | -4                  | >5         | +2-2-              |         | - 3       |

## **Graphics**




## Peak List

| Pos.[°2Th.] | d-spacing [Å] | Rel. Int. [%] | Matched by     |
|-------------|---------------|---------------|----------------|
| 6.3296      | 13.96420      | 2.35          | 96-900-0010    |
| 8.9867      | 9.84045       | 7.75          | 98-009-0144;98 |
|             |               |               |                |
| 12.5041     | 7.07917       | 6.74          | 98-017-0517;96 |
| 17.8767     | 4.96189       | 1.94          | 98-017-0517;98 |
| 19.9220     | 4.45686       | 9.72          | 98-009-0144;96 |
| 20.9421     | 4.24202       | 21.96         | 98-002-7826;98 |
| 22.1157     | 4.01949       | 3.06          | 98-009-0144;96 |
| 22.9982     | 3.86720       | 2.86          | 98-009-0144;96 |
| 23.9919     | 3.70923       | 1.93          | 98-009-0144;98 |
| 25.4355     | 3.50190       | 4.66          | 98-009-0144;96 |
| 26.7267     | 3.33558       | 100.00        | 98-002-7826;98 |
| 28.0339     | 3.18294       | 8.19          | 98-017-0517;96 |
| 29.9545     | 2.98309       | 3.77          | 98-009-0144;98 |
| 31.3473     | 2.85366       | 2.13          | 98-009-0144;96 |
| 35.0751     | 2.55844       | 9.25          | 98-009-0144;96 |
| 36.6315     | 2.45323       | 10.97         | 98-002-7826;98 |
| 37.7670     | 2.38205       | 3.13          | 98-017-0517;98 |
| 39.5283     | 2.27987       | 7.08          | 98-002-7826;98 |
| 40.3670     | 2.23442       | 3.38          | 98-002-7826;98 |
| 42.5165     | 2.12630       | 6.23          | 98-002-7826;98 |
| 45.8888     | 1.97759       | 2.80          | 98-002-7826;98 |

| 48.2217 | 1.88723 | 0.46  | 98-009-0144;96 |
|---------|---------|-------|----------------|
| 50.1985 | 1.81744 | 11.34 | 98-002-7826;98 |
| 54.9487 | 1.67104 | 3.94  | 98-002-7826;98 |
| 60.0158 | 1.54151 | 6.83  | 98-002-7826;98 |
| 61.7991 | 1.50124 | 3.36  | 98-009-0144;96 |

## **Quantitative Results**



Phase Quartz low: Weight fraction/ %: 36.8
Phase Zeolite: Weight fraction/ %: 2.0
Phase Vermiculite: Weight fraction/ %: 0.17
Phase Muscovite 2M1: Weight fraction/ %: 61

### **Pattern List**

| Ref.Code    | Score | Compound Name    | Chem. Formula      |
|-------------|-------|------------------|--------------------|
| 98-002-7826 | 72    | Quartz low       | O2 Si1             |
| 98-017-0517 | 27    | Zeolite          | 02 Si1             |
| 96-900-0010 | 28    | Vermiculite      | Mg12.00 Si16.00 O4 |
| 98-018-0082 | 43    | Muscovite/Illite | H1.834 Al2.724 F0  |

### **Anchor Scan Parameters**

Sample Identification:

Comment:

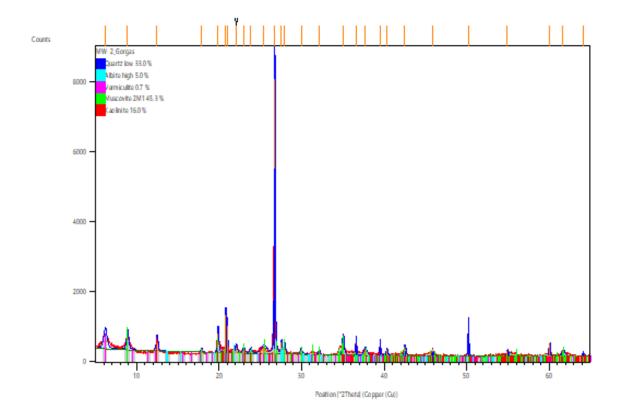
Dataset Name: GS-GSA-MW-4\_Gorgas

File name:

 $C: \label{local-condition} C: \label{local-con$ 

A-MW-4\_Gorgas.rd GS-GSA-MW-4 Gorgas Exported by X'Pert SW

Generated by hugo in project AnchorQEA\_2

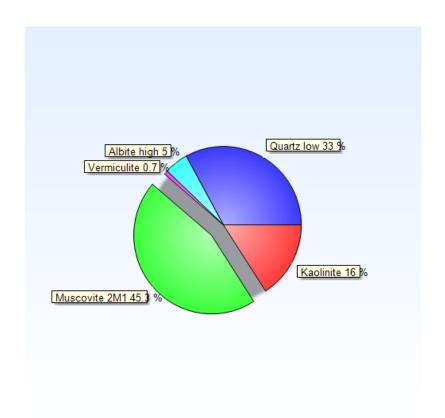

Measurement Date / Time: 3/19/2020 9:33:00 AM
Raw Data Origin: PHILIPS-binary (scan) (.RD)

Scan Axis: Gonio Start Position [°2Th.]: 5.0125 End Position [o2Th.]: 64.9875 Step Size [°2Th.]: 0.0250 Scan Step Time [s]: 2.5000 Scan Type: Continuous Offset [°2Th.]: Divergence Slit Type: 0.0000 Fixed Divergence Slit Size [°]: 0.5000 Specimen Length [mm]: 10.00

Receiving Slit Size [mm]: 0.1000 Measurement Temperature [°C]: 0.00 Anode Material: Cu K-Alpha1 [Å]: 1.54060 K-Alpha2 [Å]: 1.54443 K-Beta [Å]: 1.39225 0.50000 K-A2 / K-A1 Ratio: Generator Settings: 30 mA, 40 kV Diffractometer Type: XPert MPD

Diffractometer Number: 1
Goniometer Radius [mm]: 200.00
Dist. Focus-Diverg. Slit [mm]: 91.00
Incident Beam Monochromator: No
Spinning: No

## **Graphics**




## Peak List

| Pos [°2Th ] | d-spacing [Å] | Rel. Int. [%] | Matched by     |
|-------------|---------------|---------------|----------------|
| 6.2087      | 14.23591      | 5.17          | 98-016-6064    |
|             |               |               |                |
| 8.9124      | 9.92241       | 5.01          | 98-009-0144;98 |
| 12.4855     | 7.08965       | 4.00          | 98-016-6064;96 |
| 17.8576     | 4.96715       | 1.06          | 98-016-6064;98 |
| 19.8860     | 4.46485       | 7.07          | 98-009-0144;98 |
| 20.8099     | 4.26865       | 13.81         | 98-002-9210;98 |
| 20.9724     | 4.23596       | 10.06         | 98-002-9210;98 |
| 22.0728     | 4.02719       | 2.31          |                |
| 22.9619     | 3.87324       | 1.48          | 98-010-0505;98 |
| 23.8425     | 3.73214       | 1.42          | 98-010-0505;98 |
| 25.4332     | 3.50220       | 2.16          | 98-016-6064;98 |
| 26.7364     | 3.33439       | 100.00        | 98-002-9210;98 |
| 27.5733     | 3.23506       | 4.38          | 98-010-0505;98 |
| 27.9589     | 3.19131       | 3.11          | 98-010-0505;98 |
| 29.9251     | 2.98596       | 1.92          | 98-010-0505;98 |
| 32.1102     | 2.78758       | 1.30          | 98-009-0144;98 |
| 35.0080     | 2.56319       | 5.92          | 98-016-6064;98 |
| 36.5938     | 2.45568       | 4.75          | 98-002-9210;98 |
| 37.7031     | 2.38593       | 2.16          | 98-016-6064;98 |
| 39.4957     | 2.28168       | 3.75          | 98-002-9210;98 |
| 40.3269     | 2.23655       | 2.08          | 98-002-9210;98 |

| 42.5067 | 2.12676 | 3.33 | 98-002-9210;98 |
|---------|---------|------|----------------|
| 45.8715 | 1.97829 | 2.91 | 98-002-9210;98 |
| 50.1881 | 1.81780 | 9.16 | 98-002-9210;98 |
| 54.9213 | 1.67181 | 1.93 | 98-002-9210;98 |
| 59.9964 | 1.54068 | 4.46 | 98-002-9210;98 |
| 61.6809 | 1.50383 | 1.90 | 98-010-0505;98 |
| 64.0796 | 1.45321 | 0.86 | 98-002-9210;98 |

## **Quantitative Results**



Phase Quartz low: Weight fraction/ %: 33.0
Phase Albite high: Weight fraction/ %: 5
Phase Vermiculite: Weight fraction/ %: 0.75
Phase Muscovite 2M1: Weight fraction/ %: 45
Phase Kaolinite: Weight fraction/ %: 16

## **Pattern List**

| Ref.Code    | Score | Compound Name    | Chem. Formula      |
|-------------|-------|------------------|--------------------|
| 98-002-9210 | 67    | Quartz low       | O2 Si1             |
| 98-010-0505 | 16    | Albite high      | Al1 Na1 O8 Si3     |
| 98-016-6064 | 26    | Vermiculite      | H10.8 Al2.94 Ca0.0 |
| 98-018-0082 | 46    | Muscovite/Illite | H1.834 Al2.724 F0  |
| 96-900-9235 | 21    | Kaolinite        | Al2.00 Si2.00 09.0 |

### **Anchor Scan Parameters**

Dataset Name: MW-2\_Gorgas

File name:

C:\Users\Rick\Documents\RCIA\_Win10\AnchorQEA\2020\_March\MW-2

\_Gorgas.rd MW-2 Gorgas

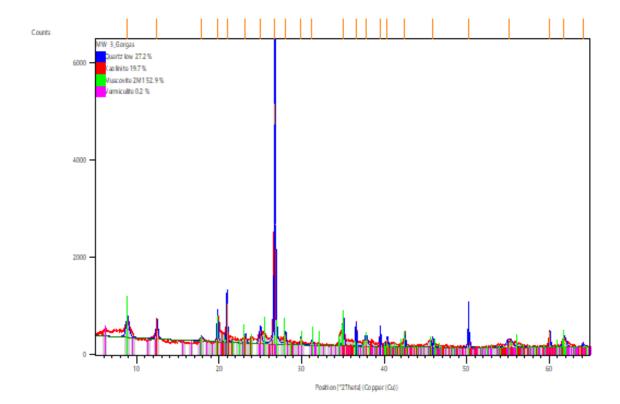
Sample Identification:

Exported by X'Pert SW Comment:

Generated by hugo in project AnchorQEA\_2

3/17/2020 3:29:00 PM

Measurement Date / Time: PHILIPS-binary (scan) (.RD) Raw Data Origin:

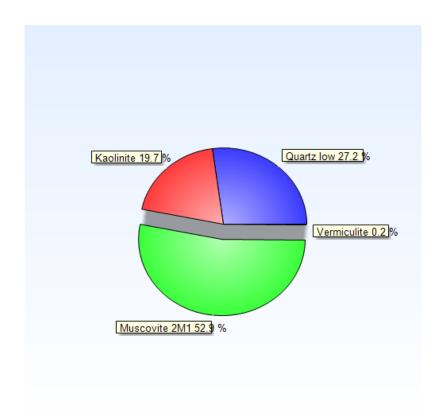

Scan Axis: Gonio Start Position [°2Th.]: 5.0125 End Position [o2Th.]: 64.9875 Step Size [°2Th.]: 0.0250 Scan Step Time [s]: 2.5000 Scan Type: Continuous Offset [°2Th.]: Divergence Slit Type: 0.0000 Fixed Divergence Slit Size [°]: 0.5000 Specimen Length [mm]: 10.00

Receiving Slit Size [mm]: 0.1000 Measurement Temperature [°C]: 0.00 Anode Material: Cu K-Alpha1 [Å]: 1.54060 K-Alpha2 [Å]: 1.54443 K-Beta [Å]: 1.39225 0.50000 K-A2 / K-A1 Ratio:

Generator Settings: 30 mA, 40 kV Diffractometer Type: XPert MPD

Diffractometer Number: Goniometer Radius [mm]: 200.00 Dist. Focus-Diverg. Slit [mm]: 91.00 Incident Beam Monochromator: No Spinning: No

## **Graphics**




## Peak List

| -0          |               |               |                |
|-------------|---------------|---------------|----------------|
| Pos.[~2Th.] | d-spacing [Å] | Rel. Int. [%] | Matched by     |
| 8.9032      | 9.93258       | 6.23          | 98-009-0144;98 |
| 12.4723     | 7.09712       | 5.94          | 96-900-9235;98 |
| 17.8535     | 4.96827       | 1.57          | 98-009-0144;98 |
| 19.8164     | 4.48036       | 9.95          | 98-009-0144;98 |
| 20.9404     | 4.24234       | 16.32         | 98-002-9210;98 |
| 23.2053     | 3.83316       | 3.18          | 96-900-9235    |
| 24.9942     | 3.56272       | 5.29          | 98-009-0144;98 |
| 26.7591     | 3.33161       | 100.00        | 98-002-9210;98 |
| 28.0064     | 3.18601       | 4.01          | 98-018-0082;96 |
| 29.9215     | 2.98631       | 3.02          | 98-009-0144;98 |
| 31.2470     | 2.86259       | 1.62          | 98-009-0144;98 |
| 35.0295     | 2.56167       | 9.94          | 98-009-0144;98 |
| 36.5876     | 2.45607       | 9.42          | 98-002-9210;98 |
| 37.7760     | 2.38150       | 3.51          | 98-009-0144;98 |
| 39.5123     | 2.28076       | 8.40          | 98-002-9210;98 |
| 40.3520     | 2.23522       | 3.42          | 98-002-9210;98 |
| 42.4917     | 2.12748       | 6.74          | 98-002-9210;98 |
| 45.8617     | 1.97869       | 3.65          | 98-002-9210;98 |
| 50.2087     | 1.81710       | 9.16          | 98-002-9210;98 |
| 55.1596     | 1.66515       | 2.53          | 98-002-9210;98 |
| 60.0303     | 1.54117       | 6.69          | 98-002-9210;98 |
|             |               |               |                |

| 61.7968 | 1.50129 | 3.49 | 98-009-0144;98 |
|---------|---------|------|----------------|
| 64.1123 | 1.45254 | 0.95 | 98-002-9210;98 |

## **Quantitative Results**



Phase Quartz low:Weight fraction/ %:27.2(4)Phase Kaolinite:Weight fraction/ %:20(1)Phase Muscovite 2M1:Weight fraction/ %:53(1)Phase Vermiculite:Weight fraction/ %:0.24(4)

## **Pattern List**

| Ref.Code    | Score | Compound Name    | Chem. Formula      |
|-------------|-------|------------------|--------------------|
| 98-002-9210 | 65    | Quartz low       | 02 Si1             |
| 98-018-0082 | 36    | Muscovite/Illite | H1.834 Al2.724 F0  |
| 96-900-9235 | 28    | Kaolinite        | Al2.00 Si2.00 09.0 |
| 98-016-6064 | 9     | Vermiculite      | H10.8 Al2.94 Ca0.0 |

### **Anchor Scan Parameters**

Dataset Name: MW-3\_Gorgas

File name:

\_Gorgas.rd MW-3 Gorgas

Sample Identification: MW-3 Gorgas

Comment: Exported by X'Pert SW

Generated by hugo in project Maynard.

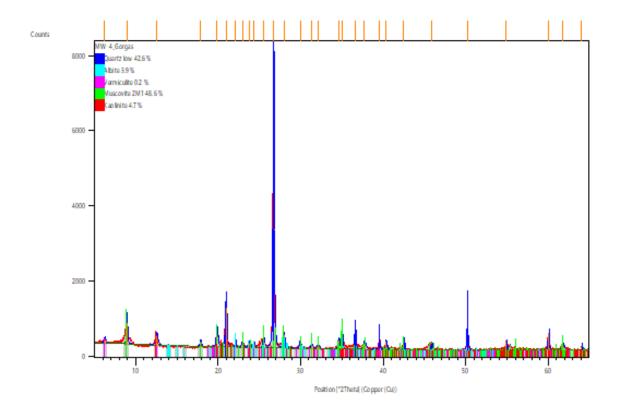
Measurement Date / Time: 3/16/2020 10:16:00 AM Raw Data Origin: PHILIPS-binary (scan) (.RD)

 Scan Axis:
 Gonio

 Start Position [°2Th.]:
 5.0125

 End Position [°2Th.]:
 64.9875

 Step Size [°2Th.]:
 0.0250

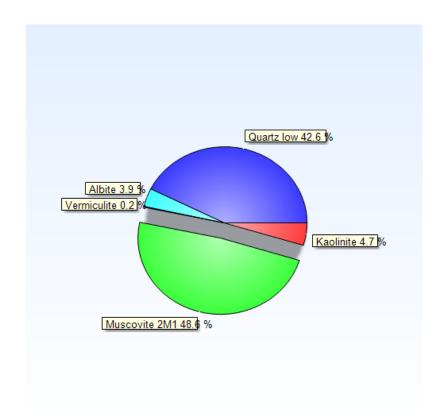

 Scan Step Time [s]:
 2 5000

Step Size [°2Th.]: Scan Step Time [s]: 2.5000 Scan Type: Continuous Offset [°2Th.]: Divergence Slit Type: 0.0000 Fixed Divergence Slit Size [°]: 0.5000 Specimen Length [mm]: 10.00 Receiving Slit Size [mm]: 0.1000 Measurement Temperature [°C]: 0.00 Anode Material: Cu K-Alpha1 [Å]: 1.54060 K-Alpha2 [Å]: 1.54443

K-Beta [Å]: 1.39225
K-A2 / K-A1 Ratio: 0.50000
Generator Settings: 30 mA, 40 kV
Diffractometer Type: XPert MPD

Diffractometer Number: 1
Goniometer Radius [mm]: 200.00
Dist. Focus-Diverg. Slit [mm]: 91.00
Incident Beam Monochromator: No
Spinning: No

## **Graphics**




## Peak List

| 0 -         |               |               |                |
|-------------|---------------|---------------|----------------|
| Pos.[°2Th.] | d-spacing [Å] | Rel. Int. [%] | Matched by     |
| 6.2677      | 14.10196      | 1.81          | 98-015-9384    |
| 8.9622      | 9.86732       | 9.06          | 98-018-0082;98 |
| 12.5702     | 7.04209       | 3.57          | 98-015-9384;96 |
| 17.8777     | 4.96163       | 2.10          | 98-018-0082;98 |
| 19.8796     | 4.46626       | 6.00          | 98-015-9384;98 |
| 20.9678     | 4.23686       | 16.39         | 98-002-9210;98 |
| 22.0894     | 4.02421       | 3.10          | 96-900-1633;98 |
| 22.9551     | 3.87437       | 1.61          | 96-900-1633;98 |
| 23.7768     | 3.74231       | 1.75          | 96-900-1633;98 |
| 24.3525     | 3.65512       | 1.81          | 96-900-1633;98 |
| 25.5251     | 3.48981       | 3.55          | 96-900-1633;98 |
| 26.7264     | 3.33561       | 100.00        | 98-002-9210;96 |
| 27.9935     | 3.18745       | 5.47          | 96-900-1633;98 |
| 29.9527     | 2.98327       | 2.83          | 98-018-0082;98 |
| 31.3181     | 2.85625       | 1.83          | 96-900-1633;98 |
| 32.1201     | 2.78674       | 1.32          | 96-900-1633;98 |
| 34.6084     | 2.59186       | 3.81          | 98-015-9384;98 |
| 35.0071     | 2.56325       | 7.64          | 96-900-1633;98 |
| 36.6121     | 2.45449       | 8.21          | 98-002-9210;96 |
| 37.7210     | 2.38485       | 2.44          | 96-900-1633;98 |
| 39.5181     | 2.28044       | 5.08          | 98-002-9210;96 |

| 40.3703 | 2.23425 | 3.69 | 98-002-9210;96 |
|---------|---------|------|----------------|
| 42.5045 | 2.12687 | 5.27 | 98-002-9210;96 |
| 45.8779 | 1.97803 | 3.23 | 98-002-9210;96 |
| 50.1916 | 1.81768 | 9.05 | 98-002-9210;96 |
| 54.9243 | 1.67173 | 3.88 | 98-002-9210;96 |
| 60.0006 | 1.54186 | 7.18 | 98-002-9210;98 |
| 61.7628 | 1.50203 | 2.46 | 96-900-1633;98 |
| 64.0676 | 1.45345 | 1.25 | 98-002-9210;98 |

## **Quantitative Results**



Phase Quartz low: Weight fraction/ %: 42.6
Phase Albite: Weight fraction/ %: 3.9
Phase Vermiculite: Weight fraction/ %: 0.18
Phase Muscovite 2M1: Weight fraction/ %: 49
Phase Kaolinite: Weight fraction/ %: 4.7

## **Pattern List**

| Ref.Code    | Score | Compound Name    | Chem. Formula      |
|-------------|-------|------------------|--------------------|
| 98-002-9210 | 66    | Quartz low       | O2 Si1             |
| 96-900-1633 | 22    | Albite           | Na2.00 Al2.00 Si6  |
| 98-015-9384 | 29    | Vermiculite      | H3 Al1 Mg3 O12 Si3 |
| 98-018-0082 | 46    | Muscovite/Illite | H1.834 Al2.724 F0  |
| 96-900-9235 | 15    | Kaolinite        | Al2.00 Si2.00 09.0 |

### **Anchor Scan Parameters**

Dataset Name: MW-4\_Gorgas

File name:

\_Gorgas.rd

Sample Identification: MW-4 Gorgas

Exported by X'Pert SW Comment:

Generated by hugo in project AnchorQEA\_2

3/16/2020 1:37:00 PM

Measurement Date / Time: PHILIPS-binary (scan) (.RD) Raw Data Origin:

Scan Axis: Gonio Start Position [°2Th.]: 5.0125 End Position [o2Th.]: 64.9875 Step Size [°2Th.]: 0.0250 Scan Step Time [s]: 2.5000 Scan Type: Continuous Offset [°2Th.]: Divergence Slit Type: 0.0000 Fixed Divergence Slit Size [°]: 0.5000

Specimen Length [mm]: 10.00 Receiving Slit Size [mm]: 0.1000 Measurement Temperature [°C]: 0.00 Anode Material: Cu K-Alpha1 [Å]: 1.54060 K-Alpha2 [Å]: 1.54443 K-Beta [Å]: 1.39225 0.50000 K-A2 / K-A1 Ratio: Generator Settings: 30 mA, 40 kV

Diffractometer Type: XPert MPD Diffractometer Number: Goniometer Radius [mm]: 200.00 Dist. Focus-Diverg. Slit [mm]: 91.00 Incident Beam Monochromator: No Spinning: No

| Site ID | SAMPLE ID       | Units | Al    | Al Error | As  | As Error | Bal    | Bal Error | Ca     | Ca Error | Ce    | Ce Error | CI    | Cl Error | Co    | Co Error | Fe     | Fe Error | K     | K Error | La    | La Error | Mg    | Mg Error | Mn    |
|---------|-----------------|-------|-------|----------|-----|----------|--------|-----------|--------|----------|-------|----------|-------|----------|-------|----------|--------|----------|-------|---------|-------|----------|-------|----------|-------|
| Gorgas  | GS-AP-MW-12     | ppm   | 5223  | 1537     | 10  | 4        | 658379 | 1443      | 214200 | 1300     | < LOD | 34       | 313   | 125      | < LOD | 61       | 3887   | 219      | 1992  | 128     | < LOD | 35       | 12895 | 7124     | < LOD |
| Gorgas  | GS-AP-MW-18     | ppm   | 26116 | 1729     | 27  | 5        | 667313 | 1550      | 65201  | 759      | 67    | 30       | 361   | 103      | < LOD | 135      | 41967  | 438      | 19366 | 326     | < LOD | 44       | 10101 | 5099     | < LOD |
| Gorgas  | GS-AP-MW-6D     | ppm   | 5959  | 709      | 4   | 3        | 751161 | 1003      | 1942   | 75       | 43    | 21       | 2414  | 98       | < LOD | 62       | 5582   | 232      | 3863  | 102     | < LOD | 32       | < LOD | 3237     | < LOD |
| Gorgas  | GS-AP-MW-6D DUP | ppm   | 22028 | 1326     | 23  | 4        | 686439 | 1307      | 1748   | 136      | < LOD | 33       | < LOD | 130      | < LOD | 116      | 37766  | 351      | 17226 | 291     | < LOD | 33       | < LOD | 6009     | < LOD |
| Gorgas  | GS-AP-MW-7      | ppm   | 4571  | 615      | 11  | 3        | 745782 | 1004      | 8632   | 145      | < LOD | 30       | < LOD | 99       | < LOD | 54       | 2645   | 212      | 2381  | 79      | < LOD | 45       | < LOD | 3180     | < LOD |
| Gorgas  | GS-AP-MW-8      | ppm   | 3032  | 1261     | 133 | 14       | 478263 | 3742      | 1187   | 165      | < LOD | 107      | 507   | 78       | < LOD | 421      | 480856 | 3690     | < LOD | 393     | < LOD | 94       | < LOD | 12481    | < LOD |
| Gorgas  | GS-GSA-MW-3     | ppm   | 34409 | 1577     | 30  | 5        | 734608 | 1196      | 3943   | 202      | < LOD | 36       | < LOD | 134      | < LOD | 130      | 47819  | 417      | 25023 | 388     | < LOD | 36       | < LOD | 4931     | < LOD |
| Gorgas  | GS-GSA-MW-4     | ppm   | 28215 | 1363     | 31  | 5        | 745155 | 1104      | 1808   | 152      | < LOD | 35       | < LOD | 121      | < LOD | 118      | 40853  | 362      | 23068 | 347     | < LOD | 35       | < LOD | 5397     | < LOD |
| Gorgas  | MW-1            | ppm   | 12520 | 868      | 15  | 3        | 747370 | 1031      | 954    | 92       | 45    | 24       | 222   | 68       | < LOD | 100      | 26024  | 298      | 9787  | 194     | < LOD | 35       | < LOD | 3433     | 3643  |
| Gorgas  | MW-12           | ppm   | 17301 | 1079     | 69  | 5        | 719563 | 1143      | 1461   | 115      | < LOD | 37       | 429   | 78       | < LOD | 113      | 38254  | 347      | 11331 | 231     | < LOD | 35       | < LOD | 7068     | < LOD |
| Gorgas  | MW-13           | ppm   | 20751 | 1146     | 19  | 4        | 737746 | 1080      | 1152   | 110      | 62    | 25       | < LOD | 148      | < LOD | 104      | 30554  | 317      | 15234 | 249     | 56    | 24       | < LOD | 7040     | < LOD |
| Gorgas  | MW-14           | ppm   | 20633 | 1084     | 19  | 4        | 755561 | 1011      | 1261   | 108      | < LOD | 31       | 214   | 73       | < LOD | 97       | 27298  | 292      | 13929 | 240     | < LOD | 31       | < LOD | 5145     | < LOD |
| Gorgas  | MW-2            | ppm   | 12807 | 880      | 7   | 3        | 737770 | 1115      | 1341   | 80       | 78    | 23       | 324   | 74       | < LOD | 76       | 9873   | 263      | 8720  | 161     | 48    | 22       | < LOD | 3772     | < LOD |
| Gorgas  | MW-3            | ppm   | 19643 | 1015     | 15  | 4        | 761934 | 988       | 1067   | 90       | < LOD | 32       | < LOD | 98       | < LOD | 80       | 16104  | 255      | 13226 | 208     | < LOD | 30       | < LOD | 5280     | < LOD |
| Gorgas  | MW-3 DUP        | ppm   | 19841 | 1007     | 9   | 4        | 757881 | 1002      | 997    | 91       | < LOD | 31       | < LOD | 98       | < LOD | 81       | 16150  | 255      | 13365 | 210     | < LOD | 31       | < LOD | 3559     | < LOD |
| Gorgas  | MW-4            | ppm   | 27215 | 1364     | 16  | 4        | 723095 | 1218      | 1418   | 150      | 82    | 28       | < LOD | 114      | < LOD | 132      | 50502  | 425      | 22569 | 354     | 92    | 28       | 5435  | 3482     | < LOD |
| Gorgas  | MW-6            | ppm   | 22071 | 1308     | 27  | 4        | 686916 | 1323      | 1692   | 137      | < LOD | 33       | < LOD | 192      | < LOD | 118      | 38009  | 353      | 17233 | 297     | < LOD | 33       | < LOD | 4928     | < LOD |

| Site ID | SAMPLE ID       | Units | Mn Error | Мо    | Mo Error | Nb    | Nb Error | Nd    | Nd Error | Р    | P Error | Pr    | Pr Error | S    | S Error | Se    | Se Error | Si     | Si Error | Ti    | Ti Error | Zn    | Zn Error | Zr    | Zr Error |
|---------|-----------------|-------|----------|-------|----------|-------|----------|-------|----------|------|---------|-------|----------|------|---------|-------|----------|--------|----------|-------|----------|-------|----------|-------|----------|
| Gorgas  | GS-AP-MW-12     | ppm   | 921      | 10    | 2        | 3     | 2        | < LOD | 59       | 1862 | 429     | < LOD | 44       | 584  | 167     | < LOD | 3        | 95472  | 1835     | < LOD | 1407     | < LOD | 11       | < LOD | 7        |
| Gorgas  | GS-AP-MW-18     | ppm   | 1615     | 25    | 3        | 9     | 2        | < LOD | 93       | 3434 | 403     | < LOD | 62       | 4005 | 200     | < LOD | 3        | 150128 | 1964     | 5121  | 1649     | 94    | 11       | 104   | 7        |
| Gorgas  | GS-AP-MW-6D     | ppm   | 1000     | < LOD | 2        | 3     | 1        | < LOD | 52       | 3452 | 342     | < LOD | 55       | 1609 | 117     | < LOD | 2        | 221937 | 1915     | 1795  | 529      | < LOD | 8        | 102   | 2        |
| Gorgas  | GS-AP-MW-6D DUP | ppm   | 966      | 15    | 2        | 16    | 2        | < LOD | 55       | 4457 | 407     | < LOD | 42       | 2575 | 158     | < LOD | 2        | 221008 | 2118     | 5794  | 1310     | 137   | 11       | 277   | 4        |
| Gorgas  | GS-AP-MW-7      | ppm   | 935      | 2     | 1        | < LOD | 2        | < LOD | 50       | 3080 | 312     | < LOD | 38       | 996  | 95      | < LOD | 2        | 230804 | 1810     | 898   | 420      | < LOD | 7        | 65    | 2        |
| Gorgas  | GS-AP-MW-8      | ppm   | 1321     | < LOD | 5        | < LOD | 4        | < LOD | 183      | 8420 | 335     | < LOD | 132      | 295  | 99      | < LOD | 7        | 26696  | 829      | < LOD | 2804     | < LOD | 27       | 6     | 3        |
| Gorgas  | GS-GSA-MW-3     | ppm   | 1445     | 6     | 2        | 16    | 2        | < LOD | 61       | 3621 | 350     | < LOD | 46       | 3752 | 175     | < LOD | 2        | 139238 | 1810     | 6057  | 1623     | 275   | 15       | 153   | 3        |
| Gorgas  | GS-GSA-MW-4     | ppm   | 1005     | 12    | 2        | 16    | 2        | < LOD | 58       | 3271 | 328     | < LOD | 44       | 2205 | 140     | < LOD | 3        | 148230 | 1759     | 5841  | 1462     | 126   | 11       | 186   | 4        |
| Gorgas  | MW-1            | ppm   | 654      | 25    | 2        | 6     | 1        | < LOD | 59       | 3124 | 310     | < LOD | 45       | 611  | 95      | < LOD | 2        | 191704 | 1768     | 3135  | 913      | 85    | 9        | 138   | 3        |
| Gorgas  | MW-12           | ppm   | 1148     | 60    | 2        | 11    | 2        | < LOD | 59       | 3277 | 337     | < LOD | 45       | 2035 | 128     | < LOD | 2        | 201106 | 1899     | 3629  | 1094     | 126   | 10       | 208   | 4        |
| Gorgas  | MW-13           | ppm   | 1012     | 13    | 2        | 11    | 1        | < LOD | 60       | 3137 | 326     | < LOD | 58       | 5616 | 177     | < LOD | 2        | 180414 | 1796     | 4212  | 1103     | 107   | 10       | 166   | 3        |
| Gorgas  | MW-14           | ppm   | 937      | 17    | 2        | 11    | 1        | < LOD | 52       | 2991 | 310     | < LOD | 39       | 7554 | 195     | < LOD | 2        | 165795 | 1704     | 3755  | 1105     | 131   | 10       | 136   | 3        |
| Gorgas  | MW-2            | ppm   | 1079     | 10    | 2        | 21    | 2        | < LOD | 72       | 6786 | 3506    | < LOD | 45       | 880  | 248     | < LOD | 2        | 216116 | 2100     | 3800  | 761      | 16    | 7        | 1063  | 9        |
| Gorgas  | MW-3            | ppm   | 946      | 11    | 2        | 8     | 1        | < LOD | 50       | 3360 | 307     | < LOD | 38       | 4168 | 150     | < LOD | 2        | 176073 | 1711     | 3683  | 913      | 51    | 8        | 144   | 3        |
| Gorgas  | MW-3 DUP        | ppm   | 942      | 11    | 2        | 8     | 1        | < LOD | 51       | 3184 | 308     | < LOD | 39       | 4321 | 152     | < LOD | 2        | 179816 | 1729     | 3759  | 918      | 45    | 8        | 145   | 3        |
| Gorgas  | MW-4            | ppm   | 1378     | 11    | 2        | 15    | 2        | 144   | 47       | 3228 | 330     | 106   | 35       | 445  | 107     | < LOD | 2        | 158726 | 1831     | 5738  | 1480     | 136   | 11       | 208   | 4        |
| Gorgas  | MW-6            | ppm   | 952      | 17    | 2        | 15    | 2        | < LOD | 56       | 3960 | 399     | < LOD | 42       | 2426 | 155     | < LOD | 2        | 221116 | 2126     | 5532  | 1343     | 137   | 12       | 275   | 4        |





Anthony Dalton-Atha Anchor QEA, LLC 6720 SW Macadam Avenue Suite 125 Portland, OR 97219

Laboratory Results for: APC SSE

Dear Anthony,

Enclosed are the results of the sample(s) submitted to our laboratory May 29, 2020 For your reference, these analyses have been assigned our service request number **K2004421**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3376. You may also contact me via email at Mark.Harris@alsglobal.com.

Respectfully submitted,

noe D. Oar

ALS Group USA, Corp. dba ALS Environmental

Mark Harris

**Project Manager** 

dba ALS Environmental



# **Narrative Documents**

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com



Client: Anchor QEA, LLC Service Request: K2004421

Project: APC SSE Date Received: 05/29/2020

Sample Matrix: Water

#### **CASE NARRATIVE**

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

#### Sample Receipt:

One water sample was received for analysis at ALS Environmental on 05/29/2020. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The sample was stored at minimum in accordance with the analytical method requirements.

#### Metals:

Method 6010C, 06/19/2020: Samples in this delivery group required dilution to non-target matrix components. Attempts to analyze the undiluted samples resulted in failed instrument QC check samples. The detection limits were elevated accordingly. No further corrective action was appropriate.

Approved by

Moe D. Daw

Approved by

Date 06/22/2020



# Sample Receipt Information

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com



Cooler Receipt and Preservation Form

| Client An                                        | VCHOR I                                        | OFA                                |                                                    | HEF KECE                   | -                                       |               |                |           |                                 | 004             | 471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                                         |
|--------------------------------------------------|------------------------------------------------|------------------------------------|----------------------------------------------------|----------------------------|-----------------------------------------|---------------|----------------|-----------|---------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------|
| Received: 5                                      | /29/202                                        | 20 Oper                            | ned: 5/29                                          | /2020                      | В                                       | iv:           | <u> </u>       | JO 1101   | Unloade                         | d: 5/2          | 29/2020 By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · CG     | *************************************** |
| <ol> <li>Samples w</li> <li>Samples w</li> </ol> | vere received<br>vere received<br>ody seals on | l via? <i>US</i><br>l in: (circle) | SPS Fed<br>Cooler<br>NA                            | Ex U                       | PS                                      | DHI<br>Envelo | L<br>pe        | PDX<br>Ot | Couri<br>her                    | हेर H           | and Delivered  Fron +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NA.      |                                         |
| If present,                                      | were custod                                    | y seals intac                      | t?                                                 | Ø 1                        | N                                       |               |                |           | ere they s                      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ý        | N                                       |
| Temp Blank                                       | Sample 1                                       | Sample 2                           | Sample 3                                           | Sample 4                   | 1                                       | R GUN         | Co             | oler/(    | COC 1D (1                       | VA )            | Tracking Numb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | er NA    | Filed                                   |
|                                                  | 10.7                                           | 12.0                               | 10.6                                               | 9.6                        | IK                                      | 202           |                |           |                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                         |
|                                                  |                                                |                                    |                                                    |                            |                                         |               |                |           |                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                         |
| 4. Packing m                                     | naterial: <i>In</i>                            | serts Bagg                         | ies Bubble                                         | e Wrap y                   | Gel Pa                                  | icks (1       | Vet Ic         | e) Di     | y Ice S                         | Sleeves         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                         |
| 5. Were cust                                     | tody papers p                                  | oroperly fille                     | d out (ink, si                                     | gned, etc.)<br>perature, u | ?<br>nbroke                             | en)? In       | dicate         | in the    | : table bei                     | low.            | N/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _        | ) N                                     |
|                                                  | •                                              | complete (i.                       | ole, tissue san<br>e analysis, pr<br>e with custod | reservation                | ı, etc.)'                               | ?             | Froz<br>or dis |           | <b>Partially</b><br>ucies in th |                 | Thawed No. 10 Page 2. No. 10 N | $\sim$   | ) N                                     |
| 9. Were appr                                     | ropriate bottl                                 | les/container                      | rs and volume<br>e SMO GEN S                       | es received                | l for th                                | ne tests i    | ndica          | ted?      |                                 |                 | N/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A OF     | _                                       |
| 11. Were VO                                      |                                                | ived without                       | e SMO GEN S<br>t headspace?                        |                            |                                         |               |                | e pri     | inaicule                        | in ine id       | iole delow N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Y Y      | N<br>N                                  |
|                                                  | mple ID on Bo                                  |                                    |                                                    | Sampi                      | e ID on                                 | COC           |                |           |                                 |                 | identified by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                         |
|                                                  |                                                |                                    |                                                    |                            | *************************************** |               |                |           |                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                         |
| 5                                                | Sample ID                                      |                                    | Bottle Count<br>Bottle Type                        | Out of Temp                |                                         | Broke         | pН             | Re        | agent                           | Volume<br>added | Reagent Lot<br>Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Initials | Time                                    |
| A(( "F                                           | "2" Samp                                       | oles 1.                            | -125ml, ede                                        | the state of               |                                         |               | X              | HN        | 03                              | 0.5ml           | RE154C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 06       | 1100 Glyko                              |
|                                                  |                                                |                                    |                                                    |                            |                                         |               |                |           |                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                         |
|                                                  |                                                |                                    |                                                    |                            |                                         |               |                |           |                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                         |
| Notes, Discr                                     | repancies, &                                   | Resolutio                          | ns: Temp                                           | rokay                      | ^                                       | rete          | /5 (           | Ma        | yses                            |                 | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | <u> </u>                                |
|                                                  |                                                |                                    | •                                                  |                            |                                         |               |                |           |                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                         |

| Ĺ       |                  |                      |                   |             |                |            | 8.5       | Sang san                                | (na sessi)  | 55,55      | 4.77                                   |            |            | Paran                                   | neter                                   | \$                                      | Andrews A |                                         |    |    | ******  | ⊥             | CHOR                                    |            |
|---------|------------------|----------------------|-------------------|-------------|----------------|------------|-----------|-----------------------------------------|-------------|------------|----------------------------------------|------------|------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------|-----------------------------------------|----|----|---------|---------------|-----------------------------------------|------------|
|         | Date:            |                      | 5/29/2020         |             |                |            |           |                                         |             |            |                                        |            |            |                                         |                                         |                                         |           |                                         |    |    | Z AN OE | ٨٣            |                                         |            |
|         | Project Name:    | APC SSE              |                   |             |                |            |           |                                         |             |            |                                        |            |            |                                         |                                         |                                         |           |                                         |    | 1  |         | Jessica Goin  |                                         |            |
|         | Project Manager: | Anthony Dalton-A     | tha               |             |                | 1          |           |                                         |             |            |                                        |            |            |                                         |                                         |                                         |           |                                         |    | ı  |         | 6720 SW Mac   | adam Ave                                |            |
|         | email:           | adalton-atha@        | anchorgea.        | com         |                | 2          |           |                                         |             |            |                                        |            |            |                                         |                                         |                                         |           |                                         |    |    |         | Suite 125     |                                         |            |
|         | Phone Number:    | 541-760-0851         |                   |             |                | Containers |           |                                         |             |            |                                        |            |            |                                         |                                         |                                         |           |                                         | ļ  |    |         | Portland OR 9 | 7219                                    |            |
| Sh      | ipment Method:   | Courier              |                   |             |                | ē          |           |                                         |             | ᇣ          |                                        |            |            |                                         |                                         |                                         |           |                                         | 1  |    |         |               |                                         |            |
|         |                  |                      | Collect           | ion         | I              | ğ          | į         | Ę                                       | j.          | rbde       |                                        |            |            |                                         |                                         |                                         |           |                                         |    | ł  |         |               |                                         |            |
| Line    | Field S          | ample ID             | Date              | Time        | Matrix         | ĝ          | Arsenic   | Lithium                                 | Cobalt      | Molybdenum | <u>0</u>                               |            |            |                                         |                                         |                                         |           |                                         |    |    | l       | Comments/     | Preservation                            |            |
| 16      | GS-AP-MW-8_F4_   | _016                 |                   |             | Water          | 1          | x         | х                                       |             | x          | Х                                      |            |            |                                         |                                         |                                         |           |                                         |    |    |         | nitric acid   |                                         |            |
| 17      | MR-AP-MW-3D_F    | 4_017                |                   |             | Water          | 1          | х         | х                                       | х           |            | х                                      |            |            |                                         |                                         |                                         |           |                                         |    |    |         | nitric acid   |                                         |            |
| 18      | MR-AP-MW-4_F4    | _018                 |                   |             | Water          | 1          | х         | х                                       | х           |            | х                                      |            |            | *************************************** |                                         |                                         |           |                                         |    |    |         | nitric acid   |                                         |            |
| 19      | MR-AP-MW-5_F4    | _019                 |                   |             | Water          | 1          | х         | х                                       | х           |            | X                                      |            |            |                                         |                                         |                                         |           |                                         |    |    |         | nitric acid   |                                         |            |
| 20      | MW-1_F4_020      |                      |                   |             | Water          | 1          | х         | х                                       |             | х          | х                                      |            |            |                                         |                                         |                                         |           |                                         |    |    |         | nitric acid   |                                         |            |
| 21      | MW-12_F4_021     |                      |                   |             | Water          | 1          | х         | х                                       |             | х          | x                                      |            |            |                                         |                                         |                                         |           |                                         |    |    |         | nitric acid   |                                         |            |
| 22      | Blank_F4_022     |                      |                   |             | Water          | 1          | Х         | х                                       | х           | х          | X                                      |            |            |                                         |                                         |                                         |           |                                         |    |    |         | nitric acid   |                                         |            |
| 23      | OLD-MW-2D-F4_    | 012_DUP              | 2_DUP Water       |             |                |            | Х         | х                                       |             | х          | х                                      |            |            |                                         |                                         |                                         |           |                                         |    |    |         | nitric acid   |                                         |            |
|         |                  |                      |                   |             |                |            |           |                                         |             |            |                                        |            |            |                                         |                                         |                                         |           |                                         |    |    |         |               |                                         |            |
|         |                  |                      |                   |             |                |            |           |                                         |             |            |                                        |            |            |                                         |                                         |                                         |           |                                         |    |    |         |               |                                         |            |
|         |                  |                      |                   |             |                |            |           |                                         |             |            |                                        |            |            |                                         |                                         |                                         |           |                                         |    |    |         |               |                                         |            |
|         |                  |                      |                   |             |                |            |           |                                         |             |            |                                        |            |            |                                         |                                         |                                         |           |                                         |    |    |         |               |                                         |            |
|         |                  |                      |                   |             |                |            |           |                                         |             |            |                                        |            |            |                                         |                                         |                                         |           |                                         |    |    |         |               |                                         |            |
|         |                  |                      |                   |             |                |            |           |                                         |             |            |                                        |            |            |                                         |                                         |                                         |           |                                         |    |    |         |               |                                         |            |
|         |                  |                      |                   |             |                |            |           |                                         |             |            |                                        |            |            |                                         |                                         |                                         |           |                                         |    |    |         |               |                                         |            |
| Notes:  | CAUTIONI F4 samp | les are concentrated | (16N) nitric acid | l           |                |            |           |                                         | <del></del> |            |                                        | ·····      | ····       |                                         |                                         | *************************************** | ····      | *************************************** |    |    |         |               | *************************************** |            |
|         | - 4 4 4          |                      |                   |             |                |            |           | *************************************** |             |            | ······································ |            |            |                                         |                                         |                                         |           |                                         |    |    |         |               |                                         |            |
| Relinqi | uished by:       |                      |                   | Compan      |                |            |           |                                         |             |            |                                        | Recei      | ved by     | $\Rightarrow$                           |                                         |                                         | -         | $\overline{a}$                          |    |    |         | mpany:        |                                         |            |
|         |                  | ny Dalton-Atha       |                   |             |                | incho      | QEA       |                                         |             |            |                                        |            | <u> </u>   |                                         |                                         | متعيم المفاقعين المعاديد                |           | 25/                                     | NO | 20 |         | 15            |                                         |            |
| Signati | ure/Print Name:  |                      |                   | Date/Tin    |                |            |           |                                         |             |            |                                        | Signa      | ture/P     | rint N                                  | ame:                                    |                                         |           |                                         |    |    | Da<br>/ | te/Time:      |                                         |            |
|         |                  |                      |                   |             | 5/2            | 9/202      | 0 10:0    | 00                                      |             |            | 1                                      |            |            | *************************************** | *************************************** |                                         |           |                                         |    |    | 5/      | 29/20 11      | 45                                      |            |
| Relinq  | uished by:       |                      |                   | Compan      | y:             |            |           |                                         |             |            |                                        | Recei      | ved by     | /:                                      |                                         |                                         |           | *************************************** |    |    | Co      | mpany:        |                                         | ********** |
|         |                  |                      |                   |             |                |            |           |                                         |             |            |                                        |            |            |                                         |                                         |                                         |           |                                         |    |    |         |               |                                         |            |
| Signati | ure/Print Name:  |                      |                   | Date/Tin    | ne:            |            |           |                                         |             |            |                                        | Signa      | ture/P     | rint N                                  | ame:                                    |                                         |           |                                         |    |    | Da      | te/Time:      |                                         |            |
|         | **               |                      |                   |             |                |            |           |                                         |             |            |                                        |            |            |                                         |                                         |                                         |           |                                         |    |    |         |               |                                         |            |
|         |                  |                      |                   | Distributio | on: A copy wil | l be ma    | de for ti | he labor                                | atory ar    | nd client  | . The P                                | roject fil | le will re | tain the                                | e origina                               | rl,                                     |           |                                         |    |    |         | Da            | na of                                   |            |

Chain of Custody Record & Laboratory Analysis Request



# **Miscellaneous Forms**

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

#### **Inorganic Data Qualifiers**

- \* The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- F. The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
  DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

#### **Metals Data Qualifiers**

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

#### **Organic Data Qualifiers**

- \* The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
  DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- $\boldsymbol{Q}$   $\;\;$  See case narrative. One or more quality control criteria was outside the limits.

#### **Additional Petroleum Hydrocarbon Specific Qualifiers**

- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

# ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

| Agency                   | Web Site                                                                                                                                        | Number      |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Alaska DEH               | http://dec.alaska.gov/eh/lab/cs/csapproval.htm                                                                                                  | UST-040     |
| Arizona DHS              | http://www.azdhs.gov/lab/license/env.htm                                                                                                        | AZ0339      |
| Arkansas - DEQ           | http://www.adeq.state.ar.us/techsvs/labcert.htm                                                                                                 | 88-0637     |
| California DHS (ELAP)    | http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx                                                                                             | 2795        |
| DOD ELAP                 | http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm                                                                                  | L16-58-R4   |
| Florida DOH              | http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm                                                                                         | E87412      |
| Hawaii DOH               | http://health.hawaii.gov/                                                                                                                       | -           |
| ISO 17025                | http://www.pjlabs.com/                                                                                                                          | L16-57      |
| Louisiana DEQ            | http://www.deq.louisiana.gov/page/la-lab-accreditation                                                                                          | 03016       |
| Maine DHS                | http://www.maine.gov/dhhs/                                                                                                                      | WA01276     |
| Minnesota DOH            | http://www.health.state.mn.us/accreditation                                                                                                     | 053-999-457 |
| Nevada DEP               | http://ndep.nv.gov/bsdw/labservice.htm                                                                                                          | WA01276     |
| New Jersey DEP           | http://www.nj.gov/dep/enforcement/oqa.html                                                                                                      | WA005       |
| New York - DOH           | https://www.wadsworth.org/regulatory/elap                                                                                                       | 12060       |
|                          | https://deq.nc.gov/about/divisions/water-resources/water-resources-data/water-sciences-home-page/laboratory-certification-branch/non-field-lab- |             |
| North Carolina DEQ       | certification                                                                                                                                   | 605         |
| Oklahoma DEQ             | http://www.deq.state.ok.us/CSDnew/labcert.htm                                                                                                   | 9801        |
| Oregon – DEQ (NELAP)     | http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx                                        | WA100010    |
| South Carolina DHEC      | http://www.scdhec.gov/environment/EnvironmentalLabCertification/                                                                                | 61002       |
| Texas CEQ                | http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html                                                                                   | T104704427  |
| Washington DOE           | http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html                                                                                  | C544        |
| Wyoming (EPA Region 8)   | https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-                                                                     | -           |
| Kelso Laboratory Website | www.alsglobal.com                                                                                                                               | NA          |

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

#### Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection

LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.



# Sample Results

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com



# Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

#### ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Anchor QEA, LLC **Client:** 

Service Request: K2004421 **Date Collected:** 05/28/20 10:45 **Project:** APC SSE **Sample Matrix:** Water

**Date Received:** 05/29/20 11:45

**Sample Name:** Blank\_F4\_022 Basis: NA

Lab Code: K2004421-011

#### **Total Metals**

|              | Analysis |        |       |     |     |      |                | Date      |   |
|--------------|----------|--------|-------|-----|-----|------|----------------|-----------|---|
| Analyte Name | Method   | Result | Units | MRL | MDL | Dil. | Date Analyzed  | Extracted | Q |
| Arsenic      | 6010C    | ND U   | ug/L  | 21  | 5   | 1    | 06/19/20 17:56 | 06/09/20  |   |
| Cobalt       | 6010C    | ND U   | ug/L  | 2.1 | 0.7 | 1    | 06/19/20 17:56 | 06/09/20  |   |
| Iron         | 6010C    | 21 J   | ug/L  | 42  | 8   | 1    | 06/19/20 17:56 | 06/09/20  |   |
| Lithium      | 6010C    | ND U   | ug/L  | 21  | 6   | 1    | 06/19/20 17:56 | 06/09/20  |   |
| Molybdenum   | 6010C    | ND U   | ug/L  | 8.4 | 2.1 | 1    | 06/19/20 17:56 | 06/09/20  |   |



# **QC Summary Forms**

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com



## Metals

#### Analytical Report

Client: Anchor QEA, LLC

Project:APC SSEDate Collected:NASample Matrix:WaterDate Received:NA

Sample Name: Method Blank Basis: NA

**Lab Code:** KQ2007746-02

#### **Total Metals**

|              | Analysis |        |       |     |     |      |                | Date      |   |
|--------------|----------|--------|-------|-----|-----|------|----------------|-----------|---|
| Analyte Name | Method   | Result | Units | MRL | MDL | Dil. | Date Analyzed  | Extracted | Q |
| Arsenic      | 6010C    | ND U   | ug/L  | 21  | 5   | 1    | 06/19/20 16:24 | 06/09/20  |   |
| Cobalt       | 6010C    | ND U   | ug/L  | 2.1 | 0.7 | 1    | 06/19/20 16:24 | 06/09/20  |   |
| Iron         | 6010C    | ND U   | ug/L  | 42  | 8   | 1    | 06/19/20 16:24 | 06/09/20  |   |
| Lithium      | 6010C    | ND U   | ug/L  | 21  | 6   | 1    | 06/19/20 16:24 | 06/09/20  |   |
| Molybdenum   | 6010C    | ND U   | ug/L  | 8.4 | 2.1 | 1    | 06/19/20 16:24 | 06/09/20  |   |

Service Request: K2004421

QA/QC Report

Client: Anchor QEA, LLC

**Project:** APC SSE **Sample Matrix:** Water

**Service Request: Date Collected:** 

K2004421

Date Conecteu:

05/28/20

**Date Received:** 

05/29/20

Date Analyzed: Date Extracted: 06/19/20 06/9/20

Matrix Spike Summary Total Metals

OLD-MW-2D\_F4\_012

K2004421-001

**Analysis Method:** 6010C

**Prep Method:** 

**Sample Name:** 

Lab Code:

EPA CLP ILM04.0

Units: Basis: ug/L NA

Matrix Spike

KQ2007746-04

| Analyte Name | Sample Result | Result  | Spike Amount | % Rec   | % Rec Limits |
|--------------|---------------|---------|--------------|---------|--------------|
| Arsenic      | ND U          | 960     | 1000         | 96      | 75-125       |
| Cobalt       | 74            | 513     | 500          | 88      | 75-125       |
| Iron         | 1050000       | 1020000 | 1000         | -2168 # | 75-125       |
| Lithium      | ND U          | 9900    | 10000        | 99      | 75-125       |
| Molybdenum   | ND U          | 952     | 1000         | 95      | 75-125       |

Results flagged with an asterisk (\*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

Printed 7/20/2020 11:05:55 AM

#### ALS Group USA, Corp.

#### dba ALS Environmental

QA/QC Report

Client: Anchor QEA, LLC

Water

**Project** APC SSE

**Sample Matrix:** 

Sample Name:

**Analyte Name** 

Arsenic

Cobalt

Lithium

Molybdenum

Iron

Lab Code:

 QEA, LLC
 Service Request:
 K2004421

 E
 Date Collected:
 05/28/20

**Date Received:** 05/29/20

**Date Analyzed:** 06/19/20

Replicate Sample Summary Total Metals

Sample

Result ND U

74

1050000

ND U

ND U

OLD-MW-2D\_F4\_012

**MRL** 

210

11

110

110

84

**MDL** 

50

4

40

30

21

Units: ug/L

Basis: NA

20

20

K2004421-001

**Analysis** 

Method

6010C

6010C

6010C

6010C

6010C

Duplicate

ND U

ND U

| Sample<br>KQ2007746-03<br>Result | Average | RPD | RPD Limit |
|----------------------------------|---------|-----|-----------|
| ND U                             | ND      | -   | 20        |
| 76                               | 75      | 3   | 20        |
| 1050000                          | 1050000 | <1  | 20        |

ND

ND

Results flagged with an asterisk (\*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 7/20/2020 11:05:55 AM

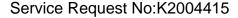
QA/QC Report

Client: Anchor QEA, LLC

**Project:** APC SSE

**Sample Matrix:** Water

Service Request: K2004421 Date Analyzed: 06/19/20


#### Lab Control Sample Summary Total Metals

Units:ug/L Basis:NA

#### **Lab Control Sample**

KQ2007746-01

| Analyte Name | <b>Analytical Method</b> | Result | Spike Amount | % Rec | % Rec Limits |
|--------------|--------------------------|--------|--------------|-------|--------------|
| Arsenic      | 6010C                    | 2540   | 2500         | 102   | 80-120       |
| Cobalt       | 6010C                    | 1190   | 1250         | 95    | 80-120       |
| Iron         | 6010C                    | 2340   | 2500         | 93    | 80-120       |
| Lithium      | 6010C                    | 9940   | 10000        | 99    | 80-120       |
| Molybdenum   | 6010C                    | 1010   | 1000         | 101   | 80-120       |





Anthony Dalton-Atha Anchor QEA, LLC 6720 SW Macadam Avenue Suite 125 Portland, OR 97219

Laboratory Results for: APC SSE

Dear Anthony,

Enclosed are the results of the sample(s) submitted to our laboratory May 29, 2020 For your reference, these analyses have been assigned our service request number **K2004415**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3376. You may also contact me via email at Mark.Harris@alsglobal.com.

Respectfully submitted,

noe D. Oar

ALS Group USA, Corp. dba ALS Environmental

Mark Harris

**Project Manager** 

dba ALS Environmental



## **Narrative Documents**



Client: Anchor QEA, LLC Service Request: K2004415

Project: APC SSE Date Received: 05/29/2020

Sample Matrix: Water

#### **CASE NARRATIVE**

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

#### Sample Receipt:

Three water samples were received for analysis at ALS Environmental on 05/29/2020. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

#### Metals:

No significant anomalies were noted with this analysis.

Approved by

Approved by

Date 06/15/2020



# Sample Receipt Information

**Chain of Custody Record & Laboratory Analysis Request Parameters** ANCHOR QEA Date: 5/29/2020 Project Name: APC SSE Jessica Goin Project Manager: Anthony Dalton-Atha 6720 SW Macadam Ave email: adalton-atha@anchorgea.com Containers Suite 125 Phone Number: 541-760-0851 Portland OR 97219 Molybdenum Shipment Method: Courier ŏ Lithium Collection Arsenic Field Sample ID Line Matrix Date Time Comments/Preservation 1 BY-AP-MW-11\_F1\_001 5/26/2020 9:00 Water 1 х х nitric acid 2 BY-AP-MW-12\_F1\_002 5/26/2020 9:05 Water х х nitric acid 3 BY-AP-MW-13\_F1\_003 5/26/2020 9:10 Water х nitric acid Х 4 BY-AP-MW-2\_F1\_004 5/26/2020 9:15 Water х Х nitric acid 5 BY-AP-MW-7\_F1\_005 5/26/2020 9:20 Water х х nitric acid 6 BY-AP-MW-9\_F1\_006 5/26/2020 9:25 Water х х nitric acid GC-AP-MW-1\_F1\_007 5/26/2020 9:30 Water х х Х nitric acid 8 GC-AP-MW-11\_F1\_008 5/26/2020 9:35 Water х X х nitric acid 9 GC-AP-MW-16\_F1\_009 5/26/2020 9:40 Water х nitric acid Х Х 10 OLD-MW-115\_F1\_010 5/26/2020 9:45 Water х Χ х nitric acid 11 OLD-MW-11\_F1\_011 5/26/2020 9:50 Water Х Х х nitric acid 12 OLD-MW-2D\_F1\_012 5/26/2020 9:55 Water Х х х nitric acid 13 GC-AP-MW-17\_F1\_013 5/26/2020 10:00 Water nitric acid Х Х X 14 GN-AP-MW-5\_F1\_014 5/26/2020 10:05 Water х х х nitric acid 15 GS-AP-MW-6D\_F1\_015 5/26/2020 10:10 Water nitric acid х Х Х Notes:

| Relinquished by:     | Company:        | Received by:          | Company:          |
|----------------------|-----------------|-----------------------|-------------------|
| Anthony Daiton-Atha  | Anchor QEA      | S subzr               | A25               |
| ignature/Print Name: | Date/Time:      | Signatore/Print Name: | Date/Time:        |
|                      | 5/29/2020 10:00 |                       | tot. 5/29/20 1149 |
| Relinquished by:     | Company:        | Received by:          | Company:          |
| ignature/Print Name: | Date/Time:      | Signature/Print Name: | Date/Time:        |
|                      |                 |                       |                   |

**Chain of Custody Record & Laboratory Analysis Request Parameters** ANCHOR OEA Date: 5/29/2020 Project Name: APC SSE Jessica Goin Project Manager: Anthony Dalton-Atha 6720 SW Macadam Ave email: adalton-atha@anchorgea.com Containers Suite 125 Phone Number: 541-760-0851 Portland OR 97219 Molybdenum Shipment Method: Courier No. of Lithium Collection Cobalt Field Sample ID Line Matrix Time Date Comments/Preservation 16 GS-AP-MW-8\_F1\_016 5/26/2020 10.15 Water 1 х х х nitric acid MR-AP-MW-3D\_F1\_017 17 5/26/2020 10:20 Water х х nitric acid MR-AP-MW-4\_F1\_018 5/26/2020 10:25 nitric acid Water 1 Х Х X 19 MR-AP-MW-5\_F1\_019 5/26/2020 10:30 Water 1 х Х х nitric acid 20 MW-1\_F1\_020 5/26/2020 10:35 Water х х Х nitric acid MW-12\_F1\_021 5/26/2020 10:40 Water х X х nitric acid 22 Blank\_F1\_022 5/26/2020 10:45 Water х Х X Х nitric acid 23 OLD-MW-2D-F1\_012\_DUP 5/26/2020 10:50 Water х х х nitric acid Notes: Relinquished by: Company: Company: Received by: Anthony Dalton-Atha Anchor QEA Signature/Print Name: Date/Time: Signature/Print Name: Date/Time: 5/29/2020 10:00 Relinquished by: Company: Received by: Company: Signature/Print Name: Date/Time: Signature/Print Name: Date/Time:



~ \_\_\_\_\_

| MI | 4  |
|----|----|
|    | MI |

| 1. Were VO 2. Was C12  Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2/Res negative Imple ID on Bo Sample ID 2" Samp | ottle              | Bottle Count Bottle Type -125ml, eac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Samp Out of Temp | in the                                  | n COC        | pH      | Reagent HNO3        | Volume<br>added<br>0.5m/c | Identified by:  Reagent Lot Number  REL-54-C | Y Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------|--------------|---------|---------------------|---------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 1. Were VC 2. Was C12 Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2/Res negative                                  | ived without<br>e? | Bottle Count Bottle Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Samp Out of      | in the                                  | n COC        | low.    | Reagent             | Volume                    | Identified by:  Reagent Lot Number           | Ŷ Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N<br>N          |
| 1. Were VC 2. Was C12 Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2/Res negative                                  | ived without<br>e? | Bottle Count Bottle Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Samp Out of      | in the                                  | n COC        | low.    | Reagent             | Volume                    | Identified by:  Reagent Lot Number           | Ŷ Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N<br>N          |
| 1. Were VC 2. Was C12 Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2/Res negative                                  | ived without<br>e? | Bottle Count Bottle Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Samp Out of      | in the                                  | n COC        | low.    | Reagent             | Volume                    | Identified by:  Reagent Lot Number           | Ŷ Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N<br>N          |
| 1. Were VC 2. Was C12 Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2/Res negative                                  | ived without<br>e? | Bottle Count Bottle Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Samp Out of      | in the                                  | n COC        | low.    |                     | Volume                    | Identified by:  Reagent Lot Number           | Ŷ Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N<br>N          |
| 1. Were VC<br>2. Was C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2/Res negative                                  | ived without<br>e? |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Indicate         | in the                                  | table be     | -       | e pH? Indica        | ate in the ta             | (M)                                          | Y Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N               |
| 1. Were VC<br>2. Was C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2/Res negative                                  | ived without<br>e? |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Indicate         | in the                                  | table be     | -       | e pH? Indica        | ate in the ta             | (M)                                          | Y Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N               |
| 1. Were VO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 | ived without       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                |                                         |              | -       | e pH? Indica        | ate in the ta             | N.                                           | Y Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OA vials recei                                  | ·                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                |                                         |              | -       | e pH? <i>Indica</i> | ate in the ta             |                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -               |
| O Wassal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e pH-preserve                                   | d hottles (sa      | SMO GEN S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OP) recei        | te hav                                  |              |         |                     |                           |                                              | · Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                    | rs and volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                                         |              | indica  | ted?                |                           | N                                            | A (Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D N             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                               | * '                | e with custody                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                                         |              | or disc | repancies in        | the table of              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ma <sub>n</sub> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                               | If applicat        | ble, tissue sam<br>e analysis, pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | iples wei        | re recei                                | ived:        | Froze   |                     | ly Thawed                 | Thawed                                       | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | • •                | ed out (ink, sign<br>andition (temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                | •                                       | en)? In      | dicate  | in the table i      | below.                    | NA<br>NA                                     | The same of the sa | N C             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                    | gies Bubble                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                                         | acks (       | Wet Ic  | e Dry Ice           | Sleeves                   |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - William       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | *************************************** |              |         |                     |                           |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W-101 11114      |                                         |              |         |                     |                           | Anna anna anna anna anna anna anna anna      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| The second secon | 10.7                                            | 12.0               | 10.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.6              | T                                       | ROZ          |         |                     |                           |                                              | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |
| Temp Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sample 1                                        | Sample 2           | Sample 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sample           | 4 1                                     | IR GUN       | Co      | oler / COC ID       | NA                        | Tracking Numi                                | ber NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Filed           |
| If present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , were custod                                   | ly seals intac     | :t?<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | N                                       |              | If pres | ent, were the       | y signed an               | d dated?                                     | Ý                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ) N             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tody seals on                                   |                    | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (V)              | N                                       |              |         |                     |                           | Front                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | **              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | were received                                   |                    | And the second s |                  |                                         | Envelo       |         | Other               | urier) n                  | ana Deuverea                                 | NA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                 |                    | SPS Fed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | UPS                                     | Бу. <u>С</u> |         |                     |                           | and Delivered                                | . <u>ce</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |
| . Samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1-1100                                          | 200 One            | ned: 5/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6                | 1                                       | D            | Servic  | e Kequest I         | dad 5/                    | 71)                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •               |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1/29/202                                        | <u> </u>           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                         |              |         | <b>7</b> 0 . 1      | van mil                   | the                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |



## **Miscellaneous Forms**

#### **Inorganic Data Qualifiers**

- \* The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- F. The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
  DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

#### **Metals Data Qualifiers**

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

#### **Organic Data Qualifiers**

- \* The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
  DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- $\boldsymbol{Q}$   $\;\;$  See case narrative. One or more quality control criteria was outside the limits.

#### **Additional Petroleum Hydrocarbon Specific Qualifiers**

- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

# ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

| Agency                   | Web Site                                                                                                                                        | Number      |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Alaska DEH               | http://dec.alaska.gov/eh/lab/cs/csapproval.htm                                                                                                  | UST-040     |
| Arizona DHS              | http://www.azdhs.gov/lab/license/env.htm                                                                                                        | AZ0339      |
| Arkansas - DEQ           | http://www.adeq.state.ar.us/techsvs/labcert.htm                                                                                                 | 88-0637     |
| California DHS (ELAP)    | http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx                                                                                             | 2795        |
| DOD ELAP                 | http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm                                                                                  | L16-58-R4   |
| Florida DOH              | http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm                                                                                         | E87412      |
| Hawaii DOH               | http://health.hawaii.gov/                                                                                                                       | -           |
| ISO 17025                | http://www.pjlabs.com/                                                                                                                          | L16-57      |
| Louisiana DEQ            | http://www.deq.louisiana.gov/page/la-lab-accreditation                                                                                          | 03016       |
| Maine DHS                | http://www.maine.gov/dhhs/                                                                                                                      | WA01276     |
| Minnesota DOH            | http://www.health.state.mn.us/accreditation                                                                                                     | 053-999-457 |
| Nevada DEP               | http://ndep.nv.gov/bsdw/labservice.htm                                                                                                          | WA01276     |
| New Jersey DEP           | http://www.nj.gov/dep/enforcement/oqa.html                                                                                                      | WA005       |
| New York - DOH           | https://www.wadsworth.org/regulatory/elap                                                                                                       | 12060       |
|                          | https://deq.nc.gov/about/divisions/water-resources/water-resources-data/water-sciences-home-page/laboratory-certification-branch/non-field-lab- |             |
| North Carolina DEQ       | certification                                                                                                                                   | 605         |
| Oklahoma DEQ             | http://www.deq.state.ok.us/CSDnew/labcert.htm                                                                                                   | 9801        |
| Oregon – DEQ (NELAP)     | http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx                                        | WA100010    |
| South Carolina DHEC      | http://www.scdhec.gov/environment/EnvironmentalLabCertification/                                                                                | 61002       |
| Texas CEQ                | http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html                                                                                   | T104704427  |
| Washington DOE           | http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html                                                                                  | C544        |
| Wyoming (EPA Region 8)   | https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-                                                                     | -           |
| Kelso Laboratory Website | www.alsglobal.com                                                                                                                               | NA          |

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

#### Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection

LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.



# Sample Results



## Metals

Analytical Report

Anchor QEA, LLC **Client:** 

**Service Request:** K2004415 **Date Collected:** 05/26/20 10:10 **Project:** APC SSE **Date Received:** 05/29/20 11:45 **Sample Matrix:** Water

**Sample Name:** GS-AP-MW-6D\_F1\_015 Basis: NA

Lab Code: K2004415-015

|              | Analysis |        |       |     |                |      |                | Date      |   |
|--------------|----------|--------|-------|-----|----------------|------|----------------|-----------|---|
| Analyte Name | Method   | Result | Units | MRL | $\mathbf{MDL}$ | Dil. | Date Analyzed  | Extracted | Q |
| Arsenic      | 6010C    | ND U   | ug/L  | 21  | 5              | 1    | 06/11/20 15:21 | 06/09/20  |   |
| Lithium      | 6010C    | ND U   | ug/L  | 21  | 6              | 1    | 06/11/20 15:21 | 06/09/20  |   |
| Molybdenum   | 6010C    | ND U   | ug/L  | 8.4 | 2.1            | 1    | 06/11/20 15:21 | 06/09/20  |   |

Analytical Report

Anchor QEA, LLC **Client:** 

Water

**Project:** APC SSE **Service Request:** K2004415 **Date Collected:** 05/26/20 10:15

**Date Received:** 05/29/20 11:45

**Sample Name:** 

**Sample Matrix:** 

Lab Code:

GS-AP-MW-8\_F1\_016

K2004415-016

Basis: NA

|              | Analysis |        |       |     |     |      |                | Date      |   |
|--------------|----------|--------|-------|-----|-----|------|----------------|-----------|---|
| Analyte Name | Method   | Result | Units | MRL | MDL | Dil. | Date Analyzed  | Extracted | Q |
| Arsenic      | 6010C    | ND U   | ug/L  | 21  | 5   | 1    | 06/11/20 15:36 | 06/09/20  |   |
| Lithium      | 6010C    | ND U   | ug/L  | 21  | 6   | 1    | 06/11/20 15:36 | 06/09/20  |   |
| Molybdenum   | 6010C    | ND U   | ug/L  | 8.4 | 2.1 | 1    | 06/11/20 15:36 | 06/09/20  |   |

Analytical Report

Anchor QEA, LLC **Client:** 

**Service Request:** K2004415 **Date Collected:** 05/26/20 10:35 **Project:** APC SSE

**Date Received:** 05/29/20 11:45 **Sample Matrix:** Water

**Sample Name:** MW-1\_F1\_020 Basis: NA

Lab Code: K2004415-020

|              | Analysis |        |       |     |     |      |                | Date      |   |
|--------------|----------|--------|-------|-----|-----|------|----------------|-----------|---|
| Analyte Name | Method   | Result | Units | MRL | MDL | Dil. | Date Analyzed  | Extracted | Q |
| Arsenic      | 6010C    | ND U   | ug/L  | 21  | 5   | 1    | 06/11/20 15:46 | 06/09/20  |   |
| Lithium      | 6010C    | ND U   | ug/L  | 21  | 6   | 1    | 06/11/20 15:46 | 06/09/20  |   |
| Molybdenum   | 6010C    | ND U   | ug/L  | 8.4 | 2.1 | 1    | 06/11/20 15:46 | 06/09/20  |   |



# **QC Summary Forms**



## Metals

Analytical Report

Anchor QEA, LLC **Client:** 

Date Collected: NA **Project:** APC SSE **Sample Matrix:** Water

Date Received: NA

**Service Request:** K2004415

Basis: NA **Sample Name:** Method Blank

Lab Code: KQ2007740-02

|              | Analysis |        |       |     |     |      |                | Date      |   |
|--------------|----------|--------|-------|-----|-----|------|----------------|-----------|---|
| Analyte Name | Method   | Result | Units | MRL | MDL | Dil. | Date Analyzed  | Extracted | Q |
| Arsenic      | 6010C    | ND U   | ug/L  | 21  | 5   | 1    | 06/11/20 14:18 | 06/09/20  |   |
| Cobalt       | 6010C    | ND U   | ug/L  | 2.1 | 0.7 | 1    | 06/11/20 14:18 | 06/09/20  |   |
| Lithium      | 6010C    | ND U   | ug/L  | 21  | 6   | 1    | 06/11/20 14:18 | 06/09/20  |   |
| Molybdenum   | 6010C    | ND U   | ug/L  | 8.4 | 2.1 | 1    | 06/11/20 14:18 | 06/09/20  |   |

QA/QC Report

Client: Anchor QEA, LLC

**Project:** APC SSE **Sample Matrix:** Water

Service Request:
Date Collected:

K2004415

Date Received:

05/26/20 05/29/20

Date Analyzed:

06/11/20

**Date Extracted:** 

06/9/20

Matrix Spike Summary Total Metals

BY-AP-MW-11\_F1\_001

Units:

ug/L NA

**Lab Code:** K2004415-001

**Analysis Method:** 6010C

**Prep Method:** If

**Sample Name:** 

EPA CLP ILM04.0

Matrix Spike KQ2007740-04

| Analyte Name | Sample Result | Result | Spike Amount | % Rec | % Rec Limits |  |
|--------------|---------------|--------|--------------|-------|--------------|--|
| Arsenic      | 13 J          | 861    | 1000         | 85    | 75-125       |  |
| Cobalt       | 0.9 J         | 440    | 500          | 88    | 75-125       |  |
| Lithium      | ND U          | 9360   | 10000        | 94    | 75-125       |  |
| Molvbdenum   | 10.8          | 1010   | 1000         | 100   | 75-125       |  |

Results flagged with an asterisk (\*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

Printed 7/20/2020 11:01:01 AM

#### ALS Group USA, Corp.

#### dba ALS Environmental

QA/QC Report

Client: Anchor QEA, LLC

**Project** APC SSE

Sample Matrix:

Lab Code:

**Service Request:** K2004415

**Date Collected:** 05/26/20 **Date Received:** 05/29/20

**Date Analyzed:** 06/11/20

**Replicate Sample Summary** 

**Total Metals** 

Sample Name: BY-AP-MW-11\_F1\_001

Water

Units: ug/L

Basis: NA

K2004415-001

**Duplicate** 

| _   |     |
|-----|-----|
| Sam | ple |

|              | Analysis |     |     | Sample | Sample<br>KQ2007740-03 |         |     |           |
|--------------|----------|-----|-----|--------|------------------------|---------|-----|-----------|
| Analyte Name | Method   | MRL | MDL | Result | Result                 | Average | RPD | RPD Limit |
| Arsenic      | 6010C    | 21  | 5   | 13 J   | ND U                   | NC      | NC  | 20        |
| Cobalt       | 6010C    | 2.1 | 0.7 | 0.9 J  | 1.1 J                  | 1.0     | 20  | 20        |
| Lithium      | 6010C    | 21  | 6   | ND U   | ND U                   | ND      | -   | 20        |
| Molybdenum   | 6010C    | 8.4 | 2.1 | 10.8   | ND U                   | NC      | NC  | 20        |

Results flagged with an asterisk (\*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 7/20/2020 11:01:01 AM

QA/QC Report

Client: Anchor QEA, LLC

**Project:** APC SSE

**Sample Matrix:** Water

Service Request: K2004415 Date Analyzed: 06/11/20

#### Lab Control Sample Summary Total Metals

Units:ug/L Basis:NA

#### **Lab Control Sample**

KQ2007740-01

| <b>Analyte Name</b> | <b>Analytical Method</b> | Result | Spike Amount | % Rec | % Rec Limits |
|---------------------|--------------------------|--------|--------------|-------|--------------|
| Arsenic             | 6010C                    | 2440   | 2500         | 98    | 80-120       |
| Cobalt              | 6010C                    | 1200   | 1250         | 96    | 80-120       |
| Lithium             | 6010C                    | 9280   | 10000        | 93    | 80-120       |
| Molybdenum          | 6010C                    | 1010   | 1000         | 101   | 80-120       |





Anthony Dalton-Atha Anchor QEA, LLC 6720 SW Macadam Avenue Suite 125 Portland, OR 97219

Laboratory Results for: APC SSE

Dear Anthony,

Enclosed are the results of the sample(s) submitted to our laboratory May 29, 2020 For your reference, these analyses have been assigned our service request number **K2004416**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3376. You may also contact me via email at Mark.Harris@alsglobal.com.

Respectfully submitted,

noe D. Oar

ALS Group USA, Corp. dba ALS Environmental

Mark Harris

Project Manager

dba ALS Environmental



## **Narrative Documents**



Client:Anchor QEA, LLCService Request: K2004416Project:APC SSEDate Received: 05/29/2020

Sample Matrix: Water

#### **CASE NARRATIVE**

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

#### Sample Receipt:

Three water samples were received for analysis at ALS Environmental on 05/29/2020. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

#### Metals:

No significant anomalies were noted with this analysis.

Approved by

Approved by

Date 06/17/2020



# Sample Receipt Information

**Chain of Custody Record & Laboratory Analysis Request Parameters** ANCHOR OEA 5/29/2020 Date: Jessica Goin Project Name: APC SSE Project Manager: Anthony Dalton-Atha 6720 SW Macadam Ave email: adalton-atha@anchorgea.com Containers Suite 125 Phone Number: 541-760-0851 Portland OR 97219 Molybdenum Shipment Method: Courier No. of Lithium Collection Arsenic Line Field Sample ID Matrix Time Date Comments/Preservation 16 GS-AP-MW-8\_F1\_016 5/26/2020 10:15 Water х х х nitric acid MR-AP-MW-3D F1 017 17 5/26/2020 10:20 Water x х х nitric acid 18 MR-AP-MW-4\_F1\_018 5/26/2020 10:25 1 х nitric acid Water Х х 19 MR-AP-MW-5\_F1\_019 5/26/2020 10:30 Water 1 х х х nitric acid MW-1\_F1\_020 20 5/26/2020 10:35 Water х x х nitric acid 21 MW-12\_F1\_021 5/26/2020 10:40 Water х х X nitric acid 22 Blank\_F1\_022 5/26/2020 10:45 Water 1 nitric acid Х Х Х Х 23 OLD-MW-2D-F1\_012\_DUP 5/26/2020 10:50 Water 1 х х х nitric acid Notes: Relinguished by: Company: Received by: Company: Suns Anthony Dalton-Atha Anchor QEA Date/Time: Signature/Print Name: Date/Time: Signature/Print Name: 5/29/2020 10:00 Relinquished by: Received by: Company: Company: Signature/Print Name: Date/Time: Signature/Print Name: Date/Time: Distribution: A copy will be made for the laboratory and client. The Project file will retain the original. Page\_\_\_\_of\_\_\_

Chain of Custody Record & Laboratory Analysis Request **Parameters** L ANCHOR OEA Date: 5/29/2020 Project Name: APC SSE Jessica Goin Project Manager: Anthony Dalton-Atha 6720 SW Macadam Ave email: adalton-atha@anchorgea.com Containers Suite 125 Phone Number: 541-760-0851 Portland OR 97219 Molybdenum Shipment Method: Courier Manganese Calcium No. of Collection Lithium Cobalt Field Sample ID Line Matrix Time Date Comments/Preservation BY-AP-MW-11\_F2\_001 5/27/2020 9:00 Water х х х х х nitric acid BY-AP-MW-12\_F2\_002 5/27/2020 9:05 Water х X x x nitric acid 3 BY-AP-MW-13\_F2\_003 5/27/2020 nitric acid 9:10 1 Х х Water Х х 4 BY-AP-MW-2\_F2\_004 5/27/2020 9:15 Water 1 Х х х х Х nitric acid BY-AP-MW-7\_F2\_005 5 5/27/2020 9:20 Water х х x х nitric acid 6 BY-AP-MW-9\_F2\_006 5/27/2020 9:25 Water х х x х nitric acid х 7 GC-AP-MW-1\_F2\_007 5/27/2020 9:30 Water Х nitric acid X Х Х х Х 8 GC-AP-MW-11\_F2\_008 5/27/2020 9:35 Water х Х X х х х nitric acid 9 GC-AP-MW-16\_F2\_009 5/27/2020 1 х х nitric acid 9:40 Water х х х х OLD-MW-115\_F2\_010 5/27/2020 9:45 Water х Х х х Х nitric acid 11 OLD-MW-11\_F2\_011 5/27/2020 9:50 Water 1 Х X X x nitric acid х Х 12 OLD-MW-2D\_F2\_012 5/27/2020 9:55 Water 1 х х X х nitric acid X х 13 GC-AP-MW-17\_F2\_013 5/27/2020 10:00 nitric acid Water Х х х Х GN-AP-MW-5, F2, 014 5/27/2020 10:05 Water х х х х х nitric acid х 15 GS-AP-MW-6D\_F2\_015 5/27/2020 10:10 Water X х Х nitric acid Notes:

| Relinquished by:      | Company:        | Received by:          | Company:     |
|-----------------------|-----------------|-----------------------|--------------|
| Anthony Dalton-Atha   | Anchor QEA      | J Su                  | IN ALS       |
| Signature/Print Name: | Date/Time:      | Signature/Print Name: | Date/Time:,  |
|                       | 5/29/2020 10:00 | A                     | 5/29/20 1145 |
| Relinquished by:      | Company:        | Received by:          | Company:     |
| Signature/Print Name: | Date/Time:      | Signature/Print Name: | Date/Time:   |
|                       |                 |                       |              |

Chain of Custody Record & Laboratory Analysis Request **Parameters** ANCHOR OEA Date: 5/29/2020 Jessica Goin Project Name: APC SSE Project Manager: Anthony Dalton-Atha 6720 SW Macadam Ave email: adalton-atha@anchorgea.com Containers Suite 125 Phone Number: 541-760-0851 Portland OR 97219 Shipment Method: Courier Manganese No. of Lithium Collection Arsenic Cobalt Field Sample ID Line Matrix Date Time Comments/Preservation GS-AP-MW-8\_F2\_016 5/27/2020 1 х х х nitric acid 16 10:15 Water Х х MR-AP-MW-3D\_F2\_017 nitric acid 5/27/2020 х 10:20 Water х х х nitric acid 18 MR-AP-MW-4\_F2\_018 5/27/2020 10:25 Water Х Х х Х х х 19 MR-AP-MW-5\_F2\_019 5/27/2020 1 nitric acid 10:30 Water х Х х x X 20 nitric acid MW-1\_F2\_020 5/27/2020 10:35 Water 1 Х х Х Х X Х nitric acid MW-12\_F2\_021 5/27/2020 10:40 Water х Х х х Х 22 Blank\_F2\_022 5/27/2020 10:45 Water х nitric acid 1 X х х Χ Х nitric acid OLD-MW-2D-F2\_012\_DUP 5/27/2020 10:50 Water 1 Х х X X X Notes: Relinguished by: Received by: Company: Company: SWOLF Anthony Dalton-Atha Anchor QEA Date/Time: Signature/Print Name: Signature/Print Name: Date/Time: 5/29/2020 10:00 Relinquished by: Company: Received by: Company: Signature/Print Name: Date/Time: Signature/Print Name: Date/Time:

Distribution: A copy will be made for the laboratory and client. The Project file will retain the original.

Page\_\_\_\_of\_\_\_



|             | sample ID<br>2" Samp             |               | Bottle Count<br>Bottle Type<br>- 125mL, eac | Out of<br>Temp |          | Broke        | pH X    | Reagent<br>HNO2 | Volume added O. 5m.L | Reagent Lot<br>Number<br>REL-54-C | initials      | Time<br>1100 G/fz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------|----------------------------------|---------------|---------------------------------------------|----------------|----------|--------------|---------|-----------------|----------------------|-----------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | ample ID<br>2" Samp              |               | <b>Bottle Type</b>                          | Temp           |          | Broke        | pH<br>X | 1670            | added                | Number                            | initials<br>6 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | ample ID                         |               | <b>Bottle Type</b>                          | Temp           |          | Broke        | рĦ      | Reagent         | added                | Number                            | Initials      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sai         |                                  |               |                                             |                |          |              |         |                 |                      |                                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sai         |                                  |               |                                             |                |          |              |         |                 |                      |                                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | mple ID on Bo                    | ttle          |                                             | Samp           | le ID or | n COC        |         |                 |                      | identified by:                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | )A vials recei<br>//Res negative |               | headspace?                                  | Indicate       | in the i | table be     | elow.   |                 |                      | (N)                               | $\overline{}$ | N<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ). Were the | pH-preserve                      | d bottles (se | e SMO GEN S                                 | OP) recei      | ved at   | the app      | ropria  |                 | cate in the ta       |                                   | A Y           | <b>(A)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             | nple labels ar<br>ropriate bottl |               | •                                           |                |          | _            |         | •               | n the table oi       | n page 2. N.<br>N.                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were all sa | ample labels                     |               | ole, tissue san<br>e analysis, pr           | •              |          |              | Fro     | en Partid       | illy Thawed          | Thawed<br>N                       |               | ) N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | iples received                   | l in good co  | ndition (temp                               | erature, u     | nbrok    | -            |         |                 |                      | N.                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | naterial: Instody papers p       |               |                                             |                |          | icks (       | Wet I   | Dry Ice         | Sleeves              | N.                                |               | ) N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |                                  |               |                                             |                |          |              |         |                 |                      |                                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                  |               |                                             |                |          |              |         |                 |                      |                                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | 10.7                             | 12.0          | 10.6                                        | 9.6            |          | 202          |         |                 |                      |                                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| lemp Blank  | Sample 1                         | Sample 2      | Sample 3                                    | Samnia 4       |          | R GUN        | G       | poler / COC 10  | NA                   | Tracking Numi                     | nor NA        | Filed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| If present, | were custody                     | y seals intac | t?                                          | 0              | N        |              | If pre  | sent, were the  | ey signed and        | d dated?                          | (Ý            | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -           | ody seals on                     | , ,           | NA                                          | 1              | N        |              | -       | *******         | where?/              | Front                             | NA            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | vere received<br>vere received   |               | SPS Fed<br>Cooler                           |                | UPS      | DH<br>Envel  |         | PDX Co<br>Other | ourier Ho            | and Delivered                     | <b>B</b> 7.4  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •           | 129/202                          | Ope           | ned: <u>5/29</u>                            | 1202 c         | <u> </u> | 3y: <u>∠</u> | 6       | Unlo            | aded: <u>5/2</u>     | 416<br>29/2020 By                 | : <u>CG</u>   | NHA CONTRACTOR OF THE CONTRACT |
| Samples v   |                                  |               | ,                                           | /              |          |              | Servi   | ce Request      | Λ20 <u>00</u>        | -116                              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



## **Miscellaneous Forms**

#### **Inorganic Data Qualifiers**

- \* The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- F. The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
  DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

#### **Metals Data Qualifiers**

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

#### **Organic Data Qualifiers**

- \* The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
  DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- $\boldsymbol{Q}$   $\;\;$  See case narrative. One or more quality control criteria was outside the limits.

#### **Additional Petroleum Hydrocarbon Specific Qualifiers**

- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

## ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

| Agency                   | Web Site                                                                                                                                        | Number      |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Alaska DEH               | http://dec.alaska.gov/eh/lab/cs/csapproval.htm                                                                                                  | UST-040     |
| Arizona DHS              | http://www.azdhs.gov/lab/license/env.htm                                                                                                        | AZ0339      |
| Arkansas - DEQ           | http://www.adeq.state.ar.us/techsvs/labcert.htm                                                                                                 | 88-0637     |
| California DHS (ELAP)    | http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx                                                                                             | 2795        |
| DOD ELAP                 | http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm                                                                                  | L16-58-R4   |
| Florida DOH              | http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm                                                                                         | E87412      |
| Hawaii DOH               | http://health.hawaii.gov/                                                                                                                       | -           |
| ISO 17025                | http://www.pjlabs.com/                                                                                                                          | L16-57      |
| Louisiana DEQ            | http://www.deq.louisiana.gov/page/la-lab-accreditation                                                                                          | 03016       |
| Maine DHS                | http://www.maine.gov/dhhs/                                                                                                                      | WA01276     |
| Minnesota DOH            | http://www.health.state.mn.us/accreditation                                                                                                     | 053-999-457 |
| Nevada DEP               | http://ndep.nv.gov/bsdw/labservice.htm                                                                                                          | WA01276     |
| New Jersey DEP           | http://www.nj.gov/dep/enforcement/oqa.html                                                                                                      | WA005       |
| New York - DOH           | https://www.wadsworth.org/regulatory/elap                                                                                                       | 12060       |
|                          | https://deq.nc.gov/about/divisions/water-resources/water-resources-data/water-sciences-home-page/laboratory-certification-branch/non-field-lab- |             |
| North Carolina DEQ       | certification                                                                                                                                   | 605         |
| Oklahoma DEQ             | http://www.deq.state.ok.us/CSDnew/labcert.htm                                                                                                   | 9801        |
| Oregon – DEQ (NELAP)     | http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx                                        | WA100010    |
| South Carolina DHEC      | http://www.scdhec.gov/environment/EnvironmentalLabCertification/                                                                                | 61002       |
| Texas CEQ                | http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html                                                                                   | T104704427  |
| Washington DOE           | http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html                                                                                  | C544        |
| Wyoming (EPA Region 8)   | https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-                                                                     | -           |
| Kelso Laboratory Website | www.alsglobal.com                                                                                                                               | NA          |

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

## Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection

LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.



# Sample Results



## Metals

Analytical Report

Anchor QEA, LLC **Client:** 

Service Request: K2004416 **Date Collected:** 05/26/20 10:40 **Project:** APC SSE

**Date Received:** 05/29/20 11:45 **Sample Matrix:** Water

**Sample Name:** MW-12\_F1\_021 Basis: NA

Lab Code: K2004416-001

|              | Analysis |        |       |     |     |      |                | Date      |   |
|--------------|----------|--------|-------|-----|-----|------|----------------|-----------|---|
| Analyte Name | Method   | Result | Units | MRL | MDL | Dil. | Date Analyzed  | Extracted | Q |
| Arsenic      | 6010C    | ND U   | ug/L  | 21  | 5   | 1    | 06/11/20 15:09 | 06/09/20  |   |
| Lithium      | 6010C    | ND U   | ug/L  | 21  | 6   | 1    | 06/11/20 15:09 | 06/09/20  |   |
| Molybdenum   | 6010C    | 52.0   | ug/L  | 8.4 | 2.1 | 1    | 06/11/20 15:09 | 06/09/20  |   |

## Analytical Report

Anchor QEA, LLC **Client:** 

Service Request: K2004416 **Date Collected:** 05/27/20 10:10 **Project:** APC SSE **Date Received:** 05/29/20 11:45 **Sample Matrix:** Water

**Sample Name:** GS-AP-MW-6D\_F2\_015 Basis: NA

Lab Code: K2004416-018

|              | Analysis |        |       |     |     |      |                | Date      |   |
|--------------|----------|--------|-------|-----|-----|------|----------------|-----------|---|
| Analyte Name | Method   | Result | Units | MRL | MDL | Dil. | Date Analyzed  | Extracted | Q |
| Arsenic      | 6010C    | 9 J    | ug/L  | 21  | 5   | 1    | 06/15/20 12:33 | 06/09/20  |   |
| Calcium      | 6010C    | 1140   | ug/L  | 21  | 3   | 1    | 06/15/20 12:33 | 06/09/20  |   |
| Iron         | 6010C    | 430    | ug/L  | 42  | 8   | 1    | 06/15/20 12:33 | 06/09/20  |   |
| Lithium      | 6010C    | ND U   | ug/L  | 21  | 6   | 1    | 06/15/20 12:33 | 06/09/20  |   |
| Manganese    | 6010C    | 31.8   | ug/L  | 1.1 | 0.2 | 1    | 06/15/20 12:33 | 06/09/20  |   |
| Molybdenum   | 6010C    | 13.1   | ug/L  | 8.4 | 2.1 | 1    | 06/15/20 12:33 | 06/09/20  |   |

Analytical Report

Anchor QEA, LLC **Client:** 

Service Request: K2004416 **Date Collected:** 05/27/20 10:15 **Project:** APC SSE **Date Received:** 05/29/20 11:45 **Sample Matrix:** Water

**Sample Name:** GS-AP-MW-8\_F2\_016 Basis: NA

Lab Code: K2004416-019

|              | Analysis |        |       |     |     |      |                | Date      |   |
|--------------|----------|--------|-------|-----|-----|------|----------------|-----------|---|
| Analyte Name | Method   | Result | Units | MRL | MDL | Dil. | Date Analyzed  | Extracted | Q |
| Arsenic      | 6010C    | 86     | ug/L  | 21  | 5   | 1    | 06/15/20 12:36 | 06/09/20  |   |
| Calcium      | 6010C    | 265    | ug/L  | 21  | 3   | 1    | 06/15/20 12:36 | 06/09/20  |   |
| Iron         | 6010C    | 1160   | ug/L  | 42  | 8   | 1    | 06/15/20 12:36 | 06/09/20  |   |
| Lithium      | 6010C    | ND U   | ug/L  | 21  | 6   | 1    | 06/15/20 12:36 | 06/09/20  |   |
| Manganese    | 6010C    | 41.4   | ug/L  | 1.1 | 0.2 | 1    | 06/15/20 12:36 | 06/09/20  |   |
| Molybdenum   | 6010C    | 7.2 J  | ug/L  | 8.4 | 2.1 | 1    | 06/15/20 12:36 | 06/09/20  |   |



# **QC Summary Forms**



## Metals

## Analytical Report

Client: Anchor QEA, LLC

Project:APC SSEDate Collected:NASample Matrix:WaterDate Received:NA

Sample Name: Method Blank Basis: NA

**Lab Code:** KQ2007741-02

## **Total Metals**

|              | Analysis |        |       |     |     |      |                | Date      |   |
|--------------|----------|--------|-------|-----|-----|------|----------------|-----------|---|
| Analyte Name | Method   | Result | Units | MRL | MDL | Dil. | Date Analyzed  | Extracted | Q |
| Arsenic      | 6010C    | ND U   | ug/L  | 21  | 5   | 1    | 06/11/20 15:02 | 06/09/20  |   |
| Calcium      | 6010C    | 3 J    | ug/L  | 21  | 3   | 1    | 06/11/20 15:02 | 06/09/20  |   |
| Cobalt       | 6010C    | ND U   | ug/L  | 2.1 | 0.7 | 1    | 06/11/20 15:02 | 06/09/20  |   |
| Iron         | 6010C    | ND U   | ug/L  | 21  | 8   | 1    | 06/11/20 15:02 | 06/09/20  |   |
| Lithium      | 6010C    | ND U   | ug/L  | 21  | 6   | 1    | 06/11/20 15:02 | 06/09/20  |   |
| Manganese    | 6010C    | 0.4 J  | ug/L  | 1.1 | 0.2 | 1    | 06/11/20 15:02 | 06/09/20  |   |
| Molybdenum   | 6010C    | ND U   | ug/L  | 8.4 | 2.1 | 1    | 06/11/20 15:02 | 06/09/20  |   |

Service Request: K2004416

QA/QC Report

Client: Anchor QEA, LLC

**Project:** APC SSE **Sample Matrix:** Water

**Service Request:** 

K2004416

**Date Collected:** 

05/26/20

**Date Received:** Date Analyzed: 05/29/20 06/11/20

**Date Extracted:** 

06/9/20

**Matrix Spike Summary Total Metals** 

MW-12\_F1\_021

K2004416-001

**Units:** ug/L **Basis:** NA

**Analysis Method:** 

6010C

**Prep Method:** 

Sample Name:

Lab Code:

EPA CLP ILM04.0

**Matrix Spike** KQ2007741-04

| Analyte Name | Sample Result | Result | Spike Amount | % Rec | % Rec Limits |
|--------------|---------------|--------|--------------|-------|--------------|
| Arsenic      | ND U          | 916    | 1000         | 92    | 75-125       |
| Calcium      | 4060          | 13300  | 10000        | 93    | 75-125       |
| Cobalt       | 16.9          | 427    | 500          | 82    | 75-125       |
| Iron         | 62            | 975    | 1000         | 91    | 75-125       |
| Lithium      | ND U          | 10000  | 10000        | 100   | 75-125       |
| Manganese    | 287           | 774    | 500          | 97    | 75-125       |
| Molybdenum   | 52.0          | 999    | 1000         | 95    | 75-125       |

Results flagged with an asterisk (\*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

## ALS Group USA, Corp.

## dba ALS Environmental

QA/QC Report

Client: Anchor QEA, LLC

**Project** APC SSE

Sample Matrix:

Sample Name:

Lab Code:

Service Request: K2004416

Date Collected: 05/26/20

Date Received: 05/29/20

**Date Analyzed:** 06/11/20

Replicate Sample Summary Total Metals

MW-12\_F1\_021

Units: ug/L

K2004416-001

Water

Basis: NA

Duplicate Sample

|              |          |     |     |        | Sample       |         |     |           |
|--------------|----------|-----|-----|--------|--------------|---------|-----|-----------|
|              | Analysis |     |     | Sample | KQ2007741-03 |         |     |           |
| Analyte Name | Method   | MRL | MDL | Result | Result       | Average | RPD | RPD Limit |
| Arsenic      | 6010C    | 21  | 5   | ND U   | ND U         | ND      | -   | 20        |
| Calcium      | 6010C    | 21  | 3   | 4060   | 4050         | 4060    | <1  | 20        |
| Cobalt       | 6010C    | 2.1 | 0.7 | 16.9   | 17.9         | 17.4    | 6   | 20        |
| Iron         | 6010C    | 21  | 8   | 62     | 62           | 62      | <1  | 20        |
| Lithium      | 6010C    | 21  | 6   | ND U   | ND U         | ND      | -   | 20        |
| Manganese    | 6010C    | 1.1 | 0.2 | 287    | 290          | 289     | 1   | 20        |
| Molybdenum   | 6010C    | 8.4 | 2.1 | 52.0   | 52.3         | 52.2    | <1  | 20        |

Results flagged with an asterisk (\*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 7/20/2020 11:15:25 AM

QA/QC Report

Client: Anchor QEA, LLC

**Project:** APC SSE **Sample Matrix:** Water

Lab Control Sample Summary Total Metals

> Units:ug/L Basis:NA

Service Request: K2004416

**Date Analyzed:** 06/11/20

**Lab Control Sample** 

KQ2007741-01

| <b>Analyte Name</b> | <b>Analytical Method</b> | Result | Spike Amount | % Rec | % Rec Limits |
|---------------------|--------------------------|--------|--------------|-------|--------------|
| Arsenic             | 6010C                    | 2790   | 2500         | 111   | 80-120       |
| Calcium             | 6010C                    | 12600  | 12500        | 101   | 80-120       |
| Cobalt              | 6010C                    | 1230   | 1250         | 98    | 80-120       |
| Iron                | 6010C                    | 2490   | 2500         | 99    | 80-120       |
| Lithium             | 6010C                    | 9750   | 10000        | 98    | 80-120       |
| Manganese           | 6010C                    | 1250   | 1250         | 100   | 80-120       |
| Molybdenum          | 6010C                    | 1040   | 1000         | 104   | 80-120       |





Anthony Dalton-Atha Anchor QEA, LLC 6720 SW Macadam Avenue Suite 125 Portland, OR 97219

Laboratory Results for: APC SSE

Dear Anthony,

Enclosed are the results of the sample(s) submitted to our laboratory May 29, 2020 For your reference, these analyses have been assigned our service request number **K2004418**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3376. You may also contact me via email at Mark.Harris@alsglobal.com.

Respectfully submitted,

noe D. Oar

ALS Group USA, Corp. dba ALS Environmental

Mark Harris

Project Manager

dba ALS Environmental



## **Narrative Documents**



Client:Anchor QEA, LLCService Request: K2004418Project:APC SSEDate Received: 05/29/2020

Sample Matrix: Water

## **CASE NARRATIVE**

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

### Sample Receipt:

Five water samples were received for analysis at ALS Environmental on 05/29/2020. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

## Metals:

Method 6010C, 06/19/2020: Samples in this delivery group required dilution to non-target matrix components. Attempts to analyze the undiluted samples resulted in failed instrument QC check samples. The detection limits were elevated accordingly. No further corrective action was appropriate.

Approved by

Approved by

Date 06/22/2020



## Sample Receipt Information

**Chain of Custody Record & Laboratory Analysis Request Parameters** V ANCHOR OEA ₩ Date: 5/29/2020 Project Name: APC SSE Jessica Goin Project Manager: Anthony Dalton-Atha 6720 SW Macadam Ave email: adalton-atha@anchorgea.com Containers Suite 125 Phone Number: 541-760-0851 Portland OR 97219 Molybdenum Shipment Method: Courier Manganese Calcium No. of Lithium Collection Arsenic Cobalt Field Sample ID Matrix Line Date Time Comments/Preservation 16 GS-AP-MW-8\_F2\_016 5/27/2020 Water х х х х nitric acid 10:15 MR-AP-MW-3D\_F2\_017 17 5/27/2020 10:20 Water х х Х х х х nitric acid 18 MR-AP-MW-4\_F2\_018 5/27/2020 10:25 nitric acid Water х х Х Х Х х MR-AP-MW-5\_F2\_019 nitric acid 5/27/2020 10:30 Water х х х х x х 20 MW-1\_F2\_020 5/27/2020 10:35 Water х х х х x х nitric acid 21 MW-12\_F2\_021 5/27/2020 10:40 Water x X X Х х nitric acid Х Blank\_F2\_022 5/27/2020 10:45 nitric acid Water х х Х х х х 23 OLD-MW-2D-F2\_012\_DUP 5/27/2020 10:50 Water х х Х Х х х nitric acid Notes: Received by: Company: Relinquished by: Company: SWOLF Anthony Dalton-Atha Anchor OEA Date/Time: Signature/Print Name: Date/Time: Signature/Print Name: 5/29/2020 10:00 Relinquished by: Company: Received by: Company: Signature/Print Name: Date/Time: Signature/Print Name: Date/Time:

Chain of Custody Record & Laboratory Analysis Request **Parameters** 5/29/2020 Date: Project Name: APC SSE Jessica Goin Project Manager: Anthony Dalton-Atha 6720 SW Macadam Ave email: adalton-atha@anchorgea.com Containers Suite 125 Phone Number: 541-760-0851 Portland OR 97219 Molybdenum Shipment Method: Courier Manganese Aluminum Collection No. of Arsenic Lithium Cobalt Line Field Sample ID Matrix Date Time Comments/Preservation BY-AP-MW-11\_F3\_001 Water nitric acid Х Х 2 BY-AP-MW-12\_F3\_002 Water Х Х х X nitric acid Х 3 BY-AP-MW-13\_F3\_003 Water 1 nitric acid х х х X Х 4 BY-AP-MW-2\_F3\_004 1 nitric acid Water X х Х Х Х 5 BY-AP-MW-7\_F3\_005 Water х nitric acid x х х х 6 BY-AP-MW-9\_F3\_006 1 nitric acid Water Х х Х Х Х GC-AP-MW-1\_F3\_007 1 Water Х Х х х Х Х nitric acid 8 GC-AP-MW-11\_F3\_008 nitric acid Water 1 Х Х Х Х Х X 9 GC-AP-MW-16\_F3\_009 Water 1 Х Х х х Х nitric acid 10 OLD-MW-11S\_F3\_010 Water 1 х Х X nitric acid Х Х Х 11 OLD-MW-11\_F3\_011 Water 1 х х х х х Х nitric acid 12 OLD-MW-2D\_F3\_012 Water 1 х х х X х Х nitric acid 13 GC-AP-MW-17\_F3\_013 Water х nitric acid Х Х Х GN-AP-MW-5\_F3\_014 nitric acid Water Х Х Х х Х Х 15 GS-AP-MW-6D\_F3\_015 Water Х Х Х nitric acid Notes: Relinquished by: Received by: Company: Company: Thors Anthony Dalton-Atha Anchor QEA Signature/Print Name: Date/Time: Signature/Print Name: Date/Time: 5/29/2020 10:00 Relinquished by: Received by: Company: Company: Signature/Print Name: Date/Time: Signature/Print Name: Date/Time:



**Cooler Receipt and Preservation Form** 

| Client A                                                                                    | SCHOR                                                                            | QEA                                                                                            | ,                                                                                                                 |                                                               | -                                                   |                                                   | Serv                 | ice Req                               | uest <i>K</i>         | 20044                           | 118                   |                             |           |
|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------|----------------------|---------------------------------------|-----------------------|---------------------------------|-----------------------|-----------------------------|-----------|
| Received: <u>5</u>                                                                          | 129/202                                                                          | Ope                                                                                            | ned: <u>5/29</u>                                                                                                  | 12020                                                         | <u> </u>                                            | By: <u>∠</u>                                      | 6                    | 1                                     | Unload                | led: <u>5/2</u>                 | 29/2020 By            | r. CG                       |           |
| 2. Samples v                                                                                | vere received<br>vere received<br>ody seals on                                   | l in: (circle)                                                                                 | SPS Fed<br>Cooler<br>NA                                                                                           | Bo                                                            | <i>UPS</i><br>x<br>N                                | DH<br>Envel                                       | оре                  | PDX ( Otl                             | her                   |                                 | and Delivered  Fron + | . NA                        |           |
|                                                                                             | were custod                                                                      |                                                                                                |                                                                                                                   |                                                               | N                                                   | _                                                 |                      | ,                                     | -                     | signed an                       |                       | Ŷ                           | N         |
| Temp Blank                                                                                  | Sample 1                                                                         | Sample 2                                                                                       | Sample 3                                                                                                          |                                                               |                                                     | IR GUN                                            |                      | ooler / C                             | OC 10 (               | NA NA                           | Tracking Num          | ber (NA                     | Filed     |
|                                                                                             | 10.7                                                                             | 12.0                                                                                           | 10.6                                                                                                              | 9.6                                                           | 14                                                  | R02                                               | •                    |                                       |                       |                                 |                       |                             |           |
|                                                                                             |                                                                                  |                                                                                                |                                                                                                                   |                                                               |                                                     |                                                   |                      |                                       |                       |                                 |                       |                             |           |
|                                                                                             |                                                                                  |                                                                                                |                                                                                                                   |                                                               |                                                     |                                                   |                      | · · · · · · · · · · · · · · · · · · · | ·                     |                                 |                       |                             |           |
| 6. Were sam 7. Were all sa 8. Did all san 9. Were appl 10. Were the 11. Were VO 12. Was C12 | ples received<br>ample labels<br>aple labels ar<br>ropriate bottl<br>pH-preserve | If applicate the complete (i.e., and tags agreed es/container and bottles (see ived without e? | d out (ink, sign dition (tempole, tissue same analysis, prewith custody as and volume e SMO GEN State theadspace? | erature, unples wer eservation y papers? es receive OP) recei | inbrok<br>e recei<br>n, etc.)<br>Indic<br>d for the | ived:  ??  cate maj  the tests  the app  table be | Frontior distinction | zen l<br>screpane<br>ated?            | Partiall <sub>.</sub> | y <b>Thawed</b><br>the table of | N                     | A CY<br>A CY<br>A CY<br>A Y | N C       |
|                                                                                             |                                                                                  |                                                                                                | Bottle Count                                                                                                      | Out of                                                        |                                                     | Danks                                             | рH                   | Pas                                   | igent                 | Volume added                    | Reagent Lot<br>Number | initials                    | Time      |
| All "F                                                                                      | ample ID<br>2" <i>Sam</i> p                                                      | les 1-                                                                                         | Bottle Type<br>-125mL, eac                                                                                        |                                                               | space                                               | DIOKE                                             | X                    | HN                                    | 70                    | 0.5ml                           | RE1-54-C              | 6                           | 1100 G/g/ |
| Notes, Discr                                                                                | epancies, &                                                                      | 2 Resolution                                                                                   | ns: Temp                                                                                                          | okay                                                          |                                                     | mete                                              | 1/3                  | anal                                  | yse                   | 5                               |                       |                             |           |



## **Miscellaneous Forms**

#### **Inorganic Data Qualifiers**

- \* The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- F. The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
  DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

#### **Metals Data Qualifiers**

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

#### **Organic Data Qualifiers**

- \* The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
  DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- $\boldsymbol{Q}$   $\;\;$  See case narrative. One or more quality control criteria was outside the limits.

#### **Additional Petroleum Hydrocarbon Specific Qualifiers**

- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

## ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

| Agency                   | Web Site                                                                                                                                        | Number      |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Alaska DEH               | http://dec.alaska.gov/eh/lab/cs/csapproval.htm                                                                                                  | UST-040     |
| Arizona DHS              | http://www.azdhs.gov/lab/license/env.htm                                                                                                        | AZ0339      |
| Arkansas - DEQ           | http://www.adeq.state.ar.us/techsvs/labcert.htm                                                                                                 | 88-0637     |
| California DHS (ELAP)    | http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx                                                                                             | 2795        |
| DOD ELAP                 | http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm                                                                                  | L16-58-R4   |
| Florida DOH              | http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm                                                                                         | E87412      |
| Hawaii DOH               | http://health.hawaii.gov/                                                                                                                       | -           |
| ISO 17025                | http://www.pjlabs.com/                                                                                                                          | L16-57      |
| Louisiana DEQ            | http://www.deq.louisiana.gov/page/la-lab-accreditation                                                                                          | 03016       |
| Maine DHS                | http://www.maine.gov/dhhs/                                                                                                                      | WA01276     |
| Minnesota DOH            | http://www.health.state.mn.us/accreditation                                                                                                     | 053-999-457 |
| Nevada DEP               | http://ndep.nv.gov/bsdw/labservice.htm                                                                                                          | WA01276     |
| New Jersey DEP           | http://www.nj.gov/dep/enforcement/oqa.html                                                                                                      | WA005       |
| New York - DOH           | https://www.wadsworth.org/regulatory/elap                                                                                                       | 12060       |
|                          | https://deq.nc.gov/about/divisions/water-resources/water-resources-data/water-sciences-home-page/laboratory-certification-branch/non-field-lab- |             |
| North Carolina DEQ       | certification                                                                                                                                   | 605         |
| Oklahoma DEQ             | http://www.deq.state.ok.us/CSDnew/labcert.htm                                                                                                   | 9801        |
| Oregon – DEQ (NELAP)     | http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx                                        | WA100010    |
| South Carolina DHEC      | http://www.scdhec.gov/environment/EnvironmentalLabCertification/                                                                                | 61002       |
| Texas CEQ                | http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html                                                                                   | T104704427  |
| Washington DOE           | http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html                                                                                  | C544        |
| Wyoming (EPA Region 8)   | https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-                                                                     | -           |
| Kelso Laboratory Website | www.alsglobal.com                                                                                                                               | NA          |

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

## Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection

LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.



# Sample Results



## Metals

Analytical Report

Anchor QEA, LLC **Client:** 

**Service Request:** K2004418 **Date Collected:** 05/27/20 10:50 **Project:** APC SSE **Date Received:** 05/29/20 11:45 **Sample Matrix:** Water

**Sample Name:** OLD-MW-2D-F2\_012\_DUP Basis: NA

Lab Code: K2004418-006

|              | Analysis |        |       |     |     |      |                | Date      |   |
|--------------|----------|--------|-------|-----|-----|------|----------------|-----------|---|
| Analyte Name | Method   | Result | Units | MRL | MDL | Dil. | Date Analyzed  | Extracted | Q |
| Arsenic      | 6010C    | 30 J   | ug/L  | 110 | 30  | 5    | 06/19/20 12:17 | 06/09/20  |   |
| Calcium      | 6010C    | 25600  | ug/L  | 110 | 20  | 5    | 06/19/20 12:17 | 06/09/20  |   |
| Iron         | 6010C    | 440    | ug/L  | 210 | 40  | 5    | 06/19/20 12:17 | 06/09/20  |   |
| Lithium      | 6010C    | ND U   | ug/L  | 110 | 30  | 5    | 06/19/20 12:17 | 06/09/20  |   |
| Manganese    | 6010C    | 667    | ug/L  | 5.3 | 1.1 | 5    | 06/19/20 12:17 | 06/09/20  |   |
| Molybdenum   | 6010C    | ND U   | ug/L  | 42  | 11  | 5    | 06/19/20 12:17 | 06/09/20  |   |

Analytical Report

Anchor QEA, LLC **Client:** 

**Service Request:** K2004418 **Date Collected:** 05/28/20 09:45 **Project:** APC SSE **Date Received:** 05/29/20 11:45 **Sample Matrix:** Water

**Sample Name:** OLD-MW-11S\_F3\_010 Basis: NA

Lab Code: K2004418-016

|              | Analysis |        |       |     |     |      |                | Date      |   |
|--------------|----------|--------|-------|-----|-----|------|----------------|-----------|---|
| Analyte Name | Method   | Result | Units | MRL | MDL | Dil. | Date Analyzed  | Extracted | Q |
| Aluminum     | 6010C    | 600    | ug/L  | 110 | 30  | 5    | 06/19/20 12:50 | 06/09/20  |   |
| Arsenic      | 6010C    | ND U   | ug/L  | 110 | 30  | 5    | 06/19/20 12:50 | 06/09/20  |   |
| Iron         | 6010C    | 3720   | ug/L  | 210 | 40  | 5    | 06/19/20 12:50 | 06/09/20  |   |
| Lithium      | 6010C    | ND U   | ug/L  | 110 | 30  | 5    | 06/19/20 12:50 | 06/09/20  |   |
| Manganese    | 6010C    | 607    | ug/L  | 5.3 | 1.1 | 5    | 06/19/20 12:50 | 06/09/20  |   |
| Molybdenum   | 6010C    | ND U   | ug/L  | 42  | 11  | 5    | 06/19/20 12:50 | 06/09/20  |   |

## Analytical Report

Anchor QEA, LLC **Client:** 

**Service Request:** K2004418 **Date Collected:** 05/28/20 09:50 **Project:** APC SSE **Date Received:** 05/29/20 11:45 **Sample Matrix:** Water

**Sample Name:** OLD-MW-11\_F3\_011 Basis: NA

Lab Code: K2004418-017

|              | Analysis |        |       |     |     |      |                | Date      |   |
|--------------|----------|--------|-------|-----|-----|------|----------------|-----------|---|
| Analyte Name | Method   | Result | Units | MRL | MDL | Dil. | Date Analyzed  | Extracted | Q |
| Aluminum     | 6010C    | 770    | ug/L  | 110 | 30  | 5    | 06/19/20 12:53 | 06/09/20  |   |
| Arsenic      | 6010C    | ND U   | ug/L  | 110 | 30  | 5    | 06/19/20 12:53 | 06/09/20  |   |
| Iron         | 6010C    | 2280   | ug/L  | 210 | 40  | 5    | 06/19/20 12:53 | 06/09/20  |   |
| Lithium      | 6010C    | ND U   | ug/L  | 110 | 30  | 5    | 06/19/20 12:53 | 06/09/20  |   |
| Manganese    | 6010C    | 961    | ug/L  | 5.3 | 1.1 | 5    | 06/19/20 12:53 | 06/09/20  |   |
| Molybdenum   | 6010C    | ND U   | ug/L  | 42  | 11  | 5    | 06/19/20 12:53 | 06/09/20  |   |

Analytical Report

Anchor QEA, LLC **Client:** 

**Service Request:** K2004418 **Date Collected:** 05/28/20 09:55 **Project:** APC SSE **Date Received:** 05/29/20 11:45 **Sample Matrix:** Water

**Sample Name:** OLD-MW-2D\_F3\_012 Basis: NA

Lab Code: K2004418-018

|              | Analysis |        |       |     |     |      |                | Date      |   |
|--------------|----------|--------|-------|-----|-----|------|----------------|-----------|---|
| Analyte Name | Method   | Result | Units | MRL | MDL | Dil. | Date Analyzed  | Extracted | Q |
| Aluminum     | 6010C    | 50 J   | ug/L  | 110 | 30  | 5    | 06/19/20 12:55 | 06/09/20  |   |
| Arsenic      | 6010C    | ND U   | ug/L  | 110 | 30  | 5    | 06/19/20 12:55 | 06/09/20  |   |
| Iron         | 6010C    | 2370   | ug/L  | 210 | 40  | 5    | 06/19/20 12:55 | 06/09/20  |   |
| Lithium      | 6010C    | ND U   | ug/L  | 110 | 30  | 5    | 06/19/20 12:55 | 06/09/20  |   |
| Manganese    | 6010C    | 410    | ug/L  | 5.3 | 1.1 | 5    | 06/19/20 12:55 | 06/09/20  |   |
| Molybdenum   | 6010C    | ND U   | ug/L  | 42  | 11  | 5    | 06/19/20 12:55 | 06/09/20  |   |

## Analytical Report

Anchor QEA, LLC **Client:** 

**Service Request:** K2004418 **Date Collected:** 05/28/20 10:05 **Project:** APC SSE

**Date Received:** 05/29/20 11:45 **Sample Matrix:** Water

**Sample Name:** GN-AP-MW-5\_F3\_014 Basis: NA

Lab Code: K2004418-020

|              | Analysis |        |       |     |     |      |                | Date      |   |
|--------------|----------|--------|-------|-----|-----|------|----------------|-----------|---|
| Analyte Name | Method   | Result | Units | MRL | MDL | Dil. | Date Analyzed  | Extracted | Q |
| Aluminum     | 6010C    | 180    | ug/L  | 110 | 30  | 5    | 06/19/20 13:00 | 06/09/20  |   |
| Arsenic      | 6010C    | ND U   | ug/L  | 110 | 30  | 5    | 06/19/20 13:00 | 06/09/20  |   |
| Iron         | 6010C    | 1040   | ug/L  | 210 | 40  | 5    | 06/19/20 13:00 | 06/09/20  |   |
| Lithium      | 6010C    | ND U   | ug/L  | 110 | 30  | 5    | 06/19/20 13:00 | 06/09/20  |   |
| Manganese    | 6010C    | 102    | ug/L  | 5.3 | 1.1 | 5    | 06/19/20 13:00 | 06/09/20  |   |
| Molybdenum   | 6010C    | ND U   | ug/L  | 42  | 11  | 5    | 06/19/20 13:00 | 06/09/20  |   |



# **QC Summary Forms**



## Metals

## Analytical Report

Client: Anchor QEA, LLC

Project:APC SSEDate Collected:NASample Matrix:WaterDate Received:NA

Sample Name: Method Blank Basis: NA

**Lab Code:** KQ2007742-02

## **Total Metals**

|              | Analysis |        |       |     |     |      |                | Date      |   |
|--------------|----------|--------|-------|-----|-----|------|----------------|-----------|---|
| Analyte Name | Method   | Result | Units | MRL | MDL | Dil. | Date Analyzed  | Extracted | Q |
| Aluminum     | 6010C    | ND U   | ug/L  | 21  | 5   | 1    | 06/19/20 11:09 | 06/09/20  |   |
| Arsenic      | 6010C    | ND U   | ug/L  | 21  | 5   | 1    | 06/19/20 11:09 | 06/09/20  |   |
| Calcium      | 6010C    | 8 J    | ug/L  | 21  | 3   | 1    | 06/19/20 11:09 | 06/09/20  |   |
| Cobalt       | 6010C    | ND U   | ug/L  | 2.1 | 0.7 | 1    | 06/19/20 11:09 | 06/09/20  |   |
| Iron         | 6010C    | ND U   | ug/L  | 21  | 8   | 1    | 06/19/20 11:09 | 06/09/20  |   |
| Lithium      | 6010C    | ND U   | ug/L  | 21  | 6   | 1    | 06/19/20 11:09 | 06/09/20  |   |
| Manganese    | 6010C    | ND U   | ug/L  | 1.1 | 0.2 | 1    | 06/19/20 11:09 | 06/09/20  |   |
| Molybdenum   | 6010C    | ND U   | ug/L  | 8.4 | 2.1 | 1    | 06/19/20 11:09 | 06/09/20  |   |

**Service Request:** K2004418

QA/QC Report

Client: Anchor QEA, LLC

**Project:** APC SSE **Sample Matrix:** Water

Service Request:

K2004418

Date Collected:

05/27/20

Date Received: Date Analyzed: 05/29/20 06/19/20

**Date Extracted:** 

06/9/20

Matrix Spike Summary Total Metals

MR-AP-MW-4\_F2\_018

K2004418-001

Units: ug/L Basis: NA

**Analysis Method:** 60

6010C

**Prep Method:** 

Sample Name:

Lab Code:

EPA CLP ILM04.0

Matrix Spike KQ2007742-04

| Analyte Name | Sample Result | Result | Spike Amount | % Rec | % Rec Limits |
|--------------|---------------|--------|--------------|-------|--------------|
| Aluminum     | 790           | 2470   | 2000         | 84    | 75-125       |
| Arsenic      | ND U          | 980    | 1000         | 98    | 75-125       |
| Calcium      | 9980          | 19600  | 10000        | 97    | 75-125       |
| Cobalt       | 14            | 481    | 500          | 93    | 75-125       |
| Iron         | 300           | 1270   | 1000         | 97    | 75-125       |
| Lithium      | ND U          | 10300  | 10000        | 103   | 75-125       |
| Manganese    | 1960          | 2350   | 500          | 78    | 75-125       |
| Molybdenum   | 24 J          | 1050   | 1000         | 102   | 75-125       |

Results flagged with an asterisk (\*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

#### ALS Group USA, Corp.

#### dba ALS Environmental

QA/QC Report

Client: Anchor QEA, LLC

**Project** APC SSE

Sample Matrix:

Lab Code:

Service Request: K2004418

Date Collected: 05/27/20

**Date Received:** 05/29/20

**Date Analyzed:** 06/19/20

Replicate Sample Summary Total Metals

**Sample Name:** MR-AP-MW-4\_F2\_018

Water

Units: ug/L

K2004418-001

Basis: NA

**Duplicate** 

|              | Analysis |     |     | Sample | Sample<br>KQ2007742-03 |         |      |           |
|--------------|----------|-----|-----|--------|------------------------|---------|------|-----------|
| Analyte Name | Method   | MRL | MDL | Result | Result                 | Average | RPD  | RPD Limit |
| Aluminum     | 6010C    | 110 | 30  | 790    | 760                    | 780     | 4    | 20        |
| Arsenic      | 6010C    | 110 | 30  | ND U   | ND U                   | ND      | -    | 20        |
| Calcium      | 6010C    | 110 | 20  | 9980   | 9390                   | 9690    | 6    | 20        |
| Cobalt       | 6010C    | 11  | 4   | 14     | 11                     | 13      | 24 # | 20        |
| Iron         | 6010C    | 110 | 40  | 300    | 310                    | 310     | 3    | 20        |
| Lithium      | 6010C    | 110 | 30  | ND U   | ND U                   | ND      | -    | 20        |
| Manganese    | 6010C    | 5.3 | 1.1 | 1960   | 1850                   | 1910    | 6    | 20        |
| Molybdenum   | 6010C    | 42  | 11  | 24 J   | 18 J                   | 21      | 29 # | 20        |

Results flagged with an asterisk (\*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 7/20/2020 11:12:52 AM

### ALS Group USA, Corp. dba ALS Environmental

QA/QC Report

Client: Anchor QEA, LLC

**Project:** APC SSE **Sample Matrix:** Water

**Service Request:** K2004418 **Date Analyzed:** 06/19/20

#### Lab Control Sample Summary Total Metals

Units:ug/L Basis:NA

#### **Lab Control Sample**

KQ2007742-01

| Analyte Name | <b>Analytical Method</b> | Result | Spike Amount | % Rec | % Rec Limits |
|--------------|--------------------------|--------|--------------|-------|--------------|
| Aluminum     | 6010C                    | 5240   | 5000         | 105   | 80-120       |
| Arsenic      | 6010C                    | 2610   | 2500         | 105   | 80-120       |
| Calcium      | 6010C                    | 12800  | 12500        | 102   | 80-120       |
| Cobalt       | 6010C                    | 1210   | 1250         | 97    | 80-120       |
| Iron         | 6010C                    | 2580   | 2500         | 103   | 80-120       |
| Lithium      | 6010C                    | 10600  | 10000        | 106   | 80-120       |
| Manganese    | 6010C                    | 1220   | 1250         | 97    | 80-120       |
| Molybdenum   | 6010C                    | 1030   | 1000         | 103   | 80-120       |





Anthony Dalton-Atha Anchor QEA, LLC 6720 SW Macadam Avenue Suite 125 Portland, OR 97219

Laboratory Results for: APC SSE

Dear Anthony,

Enclosed are the results of the sample(s) submitted to our laboratory May 29, 2020 For your reference, these analyses have been assigned our service request number **K2004418**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3376. You may also contact me via email at Mark.Harris@alsglobal.com.

Respectfully submitted,

noe D. Oar

ALS Group USA, Corp. dba ALS Environmental

Mark Harris

Project Manager

dba ALS Environmental



## **Narrative Documents**



Client: Anchor QEA, LLC Service Request: K2004418

Project: APC SSE Date Received: 05/29/2020

Sample Matrix: Water

#### **CASE NARRATIVE**

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

#### Sample Receipt:

Two water samples were received for analysis at ALS Environmental on 05/29/2020. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

#### Metals:

Method 6010C, 06/19/2020: Samples in this delivery group required dilution to non-target matrix components. Attempts to analyze the undiluted samples resulted in failed instrument QC check samples. The detection limits were elevated accordingly. No further corrective action was appropriate.

Approved by

Approved by

Date 06/22/2020



# Sample Receipt Information

**Chain of Custody Record & Laboratory Analysis Request Parameters** V ANCHOR OEA ₩ Date: 5/29/2020 Project Name: APC SSE Jessica Goin Project Manager: Anthony Dalton-Atha 6720 SW Macadam Ave email: adalton-atha@anchorgea.com Containers Suite 125 Phone Number: 541-760-0851 Portland OR 97219 Molybdenum Shipment Method: Courier Manganese Calcium No. of Lithium Collection Arsenic Cobalt Field Sample ID Matrix Line Date Time Comments/Preservation 16 GS-AP-MW-8\_F2\_016 5/27/2020 Water х х х х nitric acid 10:15 MR-AP-MW-3D\_F2\_017 17 5/27/2020 10:20 Water х х Х х х х nitric acid 18 MR-AP-MW-4\_F2\_018 5/27/2020 10:25 nitric acid Water х х Х х Х х MR-AP-MW-5\_F2\_019 nitric acid 5/27/2020 10:30 Water х х х х x х 20 MW-1\_F2\_020 5/27/2020 10:35 Water х х х х x х nitric acid 21 MW-12\_F2\_021 5/27/2020 10:40 Water x X X Х х nitric acid Х Blank\_F2\_022 5/27/2020 10:45 nitric acid Water х х Х х х х 23 OLD-MW-2D-F2\_012\_DUP 5/27/2020 10:50 Water х х Х Х х х nitric acid Notes: Received by: Company: Relinquished by: Company: SWOLF Anthony Dalton-Atha Anchor OEA Date/Time: Signature/Print Name: Date/Time: Signature/Print Name: 5/29/2020 10:00 Relinquished by: Company: Received by: Company: Signature/Print Name: Date/Time: Signature/Print Name: Date/Time:



**Cooler Receipt and Preservation Form** 

| Client A                                                                                    | SCHOR                                                                            | QEA                                                                                              | ,                                                                                                                 |                                                               | -                                                   |                                                   | Serv                 | ice Req                               | uest <i>K</i>         | 20044                           | 118                   |                             |           |
|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------|----------------------|---------------------------------------|-----------------------|---------------------------------|-----------------------|-----------------------------|-----------|
| Received: <u>5</u>                                                                          | 129/202                                                                          | Ope                                                                                              | ned: <u>5/29</u>                                                                                                  | 12020                                                         | <u> </u>                                            | By: <u>∠</u>                                      | 6                    | 1                                     | Unload                | led: <u>5/2</u>                 | 29/2020 By            | r. CG                       |           |
| 2. Samples v                                                                                | vere received<br>vere received<br>ody seals on                                   | l in: (circle)                                                                                   | SPS Fed<br>Cooler<br>NA                                                                                           | Bo                                                            | <i>UPS</i><br>x<br>N                                | DH<br>Envel                                       | оре                  | PDX ( Otl                             | her                   |                                 | and Delivered  Fron + | . NA                        |           |
|                                                                                             | were custod                                                                      |                                                                                                  |                                                                                                                   |                                                               | N                                                   | _                                                 |                      | ,                                     | -                     | signed an                       |                       | Ŷ                           | N         |
| Temp Blank                                                                                  | Sample 1                                                                         | Sample 2                                                                                         | Sample 3                                                                                                          |                                                               |                                                     | IR GUN                                            |                      | ooler / C                             | OC 10 (               | NA NA                           | Tracking Num          | ber (NA                     | Filed     |
|                                                                                             | 10.7                                                                             | 12.0                                                                                             | 10.6                                                                                                              | 9.6                                                           | 14                                                  | R02                                               | •                    |                                       |                       |                                 |                       |                             |           |
|                                                                                             |                                                                                  |                                                                                                  |                                                                                                                   |                                                               |                                                     |                                                   |                      |                                       |                       |                                 |                       |                             |           |
|                                                                                             |                                                                                  |                                                                                                  |                                                                                                                   |                                                               |                                                     |                                                   |                      | · · · · · · · · · · · · · · · · · · · | ·                     |                                 |                       |                             |           |
| 6. Were sam 7. Were all sa 8. Did all san 9. Were appl 10. Were the 11. Were VO 12. Was C12 | ples received<br>ample labels<br>aple labels ar<br>ropriate bottl<br>pH-preserve | If applicate the complete (i.e., and tags agreed es/container and bottles (see ived without er). | d out (ink, sign dition (tempole, tissue same analysis, prewith custody as and volume e SMO GEN State theadspace? | erature, unples wer eservation y papers? es receive OP) recei | inbrok<br>e recei<br>n, etc.)<br>Indic<br>d for the | ived:  ??  cate maj  the tests  the app  table be | Frontior distinction | zen l<br>screpane<br>ated?            | Partiall <sub>.</sub> | y <b>Thawed</b><br>the table of | N                     | A CY<br>A CY<br>A CY<br>A Y | N C       |
|                                                                                             |                                                                                  |                                                                                                  | Bottle Count                                                                                                      | Out of                                                        |                                                     | Danks                                             | рH                   | Pas                                   | igent                 | Volume added                    | Reagent Lot<br>Number | initials                    | Time      |
| All "F                                                                                      | ample ID<br>2" <i>Sam</i> p                                                      | les 1-                                                                                           | Bottle Type<br>-125mL, eac                                                                                        |                                                               | space                                               | DIOKE                                             | X                    | HN                                    | 70                    | 0.5ml                           | RE1-54-C              | 6                           | 1100 G/g/ |
| Notes, Discr                                                                                | epancies, &                                                                      | 2 Resolution                                                                                     | ns: Temp                                                                                                          | okay                                                          |                                                     | mete                                              | 1/3                  | anal                                  | yse                   | 5                               |                       |                             |           |



## Miscellaneous Forms

#### **Inorganic Data Qualifiers**

- \* The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- F. The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
  DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

#### **Metals Data Qualifiers**

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

#### **Organic Data Qualifiers**

- \* The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
  DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- $\boldsymbol{Q}$   $\;\;$  See case narrative. One or more quality control criteria was outside the limits.

#### **Additional Petroleum Hydrocarbon Specific Qualifiers**

- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

# ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

| Agency                   | Web Site                                                                                                                                        | Number      |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Alaska DEH               | http://dec.alaska.gov/eh/lab/cs/csapproval.htm                                                                                                  | UST-040     |
| Arizona DHS              | http://www.azdhs.gov/lab/license/env.htm                                                                                                        | AZ0339      |
| Arkansas - DEQ           | http://www.adeq.state.ar.us/techsvs/labcert.htm                                                                                                 | 88-0637     |
| California DHS (ELAP)    | http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx                                                                                             | 2795        |
| DOD ELAP                 | http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm                                                                                  | L16-58-R4   |
| Florida DOH              | http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm                                                                                         | E87412      |
| Hawaii DOH               | http://health.hawaii.gov/                                                                                                                       | -           |
| ISO 17025                | http://www.pjlabs.com/                                                                                                                          | L16-57      |
| Louisiana DEQ            | http://www.deq.louisiana.gov/page/la-lab-accreditation                                                                                          | 03016       |
| Maine DHS                | http://www.maine.gov/dhhs/                                                                                                                      | WA01276     |
| Minnesota DOH            | http://www.health.state.mn.us/accreditation                                                                                                     | 053-999-457 |
| Nevada DEP               | http://ndep.nv.gov/bsdw/labservice.htm                                                                                                          | WA01276     |
| New Jersey DEP           | http://www.nj.gov/dep/enforcement/oqa.html                                                                                                      | WA005       |
| New York - DOH           | https://www.wadsworth.org/regulatory/elap                                                                                                       | 12060       |
|                          | https://deq.nc.gov/about/divisions/water-resources/water-resources-data/water-sciences-home-page/laboratory-certification-branch/non-field-lab- |             |
| North Carolina DEQ       | certification                                                                                                                                   | 605         |
| Oklahoma DEQ             | http://www.deq.state.ok.us/CSDnew/labcert.htm                                                                                                   | 9801        |
| Oregon – DEQ (NELAP)     | http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx                                        | WA100010    |
| South Carolina DHEC      | http://www.scdhec.gov/environment/EnvironmentalLabCertification/                                                                                | 61002       |
| Texas CEQ                | http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html                                                                                   | T104704427  |
| Washington DOE           | http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html                                                                                  | C544        |
| Wyoming (EPA Region 8)   | https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-                                                                     | -           |
| Kelso Laboratory Website | www.alsglobal.com                                                                                                                               | NA          |

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

#### Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection

LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.



# Sample Results



## Metals

#### ALS Group USA, Corp. dba ALS Environmental

#### Analytical Report

Anchor QEA, LLC **Client:** 

**Service Request:** K2004418 **Date Collected:** 05/27/20 10:35 **Project:** APC SSE **Date Received:** 05/29/20 11:45 **Sample Matrix:** Water

**Sample Name:** MW-1\_F2\_020 Basis: NA

Lab Code: K2004418-003

#### **Total Metals**

|              | Analysis |        |       |     |     |      |                | Date      |   |
|--------------|----------|--------|-------|-----|-----|------|----------------|-----------|---|
| Analyte Name | Method   | Result | Units | MRL | MDL | Dil. | Date Analyzed  | Extracted | Q |
| Arsenic      | 6010C    | ND U   | ug/L  | 110 | 30  | 5    | 06/19/20 12:10 | 06/09/20  |   |
| Calcium      | 6010C    | 590    | ug/L  | 110 | 20  | 5    | 06/19/20 12:10 | 06/09/20  |   |
| Iron         | 6010C    | 940    | ug/L  | 210 | 40  | 5    | 06/19/20 12:10 | 06/09/20  |   |
| Lithium      | 6010C    | ND U   | ug/L  | 110 | 30  | 5    | 06/19/20 12:10 | 06/09/20  |   |
| Manganese    | 6010C    | 663    | ug/L  | 5.3 | 1.1 | 5    | 06/19/20 12:10 | 06/09/20  |   |
| Molybdenum   | 6010C    | 18 J   | ug/L  | 42  | 11  | 5    | 06/19/20 12:10 | 06/09/20  |   |

#### ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Anchor QEA, LLC **Client:** 

**Service Request:** K2004418 **Date Collected:** 05/27/20 10:40 **Project:** APC SSE **Date Received:** 05/29/20 11:45 **Sample Matrix:** Water

**Sample Name:** MW-12\_F2\_021 Basis: NA

Lab Code: K2004418-004

#### **Total Metals**

|              | Analysis |        |       |     |     |      |                | Date      |   |
|--------------|----------|--------|-------|-----|-----|------|----------------|-----------|---|
| Analyte Name | Method   | Result | Units | MRL | MDL | Dil. | Date Analyzed  | Extracted | Q |
| Arsenic      | 6010C    | 70 J   | ug/L  | 110 | 30  | 5    | 06/19/20 12:12 | 06/09/20  |   |
| Calcium      | 6010C    | 500    | ug/L  | 110 | 20  | 5    | 06/19/20 12:12 | 06/09/20  |   |
| Iron         | 6010C    | 1850   | ug/L  | 210 | 40  | 5    | 06/19/20 12:12 | 06/09/20  |   |
| Lithium      | 6010C    | ND U   | ug/L  | 110 | 30  | 5    | 06/19/20 12:12 | 06/09/20  |   |
| Manganese    | 6010C    | 174    | ug/L  | 5.3 | 1.1 | 5    | 06/19/20 12:12 | 06/09/20  |   |
| Molybdenum   | 6010C    | 70     | ug/L  | 42  | 11  | 5    | 06/19/20 12:12 | 06/09/20  |   |



# **QC Summary Forms**



## Metals

### ALS Group USA, Corp. dba ALS Environmental

#### Analytical Report

Client: Anchor QEA, LLC

Project:APC SSEDate Collected:NASample Matrix:WaterDate Received:NA

Sample Name: Method Blank Basis: NA

**Lab Code:** KQ2007742-02

#### **Total Metals**

|              | Analysis |        |       |     |     |      |                | Date      |   |
|--------------|----------|--------|-------|-----|-----|------|----------------|-----------|---|
| Analyte Name | Method   | Result | Units | MRL | MDL | Dil. | Date Analyzed  | Extracted | Q |
| Aluminum     | 6010C    | ND U   | ug/L  | 21  | 5   | 1    | 06/19/20 11:09 | 06/09/20  |   |
| Arsenic      | 6010C    | ND U   | ug/L  | 21  | 5   | 1    | 06/19/20 11:09 | 06/09/20  |   |
| Calcium      | 6010C    | 8 J    | ug/L  | 21  | 3   | 1    | 06/19/20 11:09 | 06/09/20  |   |
| Cobalt       | 6010C    | ND U   | ug/L  | 2.1 | 0.7 | 1    | 06/19/20 11:09 | 06/09/20  |   |
| Iron         | 6010C    | ND U   | ug/L  | 21  | 8   | 1    | 06/19/20 11:09 | 06/09/20  |   |
| Lithium      | 6010C    | ND U   | ug/L  | 21  | 6   | 1    | 06/19/20 11:09 | 06/09/20  |   |
| Manganese    | 6010C    | ND U   | ug/L  | 1.1 | 0.2 | 1    | 06/19/20 11:09 | 06/09/20  |   |
| Molybdenum   | 6010C    | ND U   | ug/L  | 8.4 | 2.1 | 1    | 06/19/20 11:09 | 06/09/20  |   |

**Service Request:** K2004418

### ALS Group USA, Corp. dba ALS Environmental

QA/QC Report

Client: Anchor QEA, LLC

**Project:** APC SSE **Sample Matrix:** Water

Service Request:

K2004418

Date Collected:

05/27/20

Date Received: Date Analyzed: 05/29/20 06/19/20

**Date Extracted:** 

06/9/20

Matrix Spike Summary Total Metals

MR-AP-MW-4\_F2\_018

K2004418-001

Units: ug/L Basis: NA

**Analysis Method:** 60

6010C

**Prep Method:** 

Sample Name:

Lab Code:

EPA CLP ILM04.0

Matrix Spike KQ2007742-04

| Analyte Name | Sample Result | Result | Spike Amount | % Rec | % Rec Limits |
|--------------|---------------|--------|--------------|-------|--------------|
| Aluminum     | 790           | 2470   | 2000         | 84    | 75-125       |
| Arsenic      | ND U          | 980    | 1000         | 98    | 75-125       |
| Calcium      | 9980          | 19600  | 10000        | 97    | 75-125       |
| Cobalt       | 14            | 481    | 500          | 93    | 75-125       |
| Iron         | 300           | 1270   | 1000         | 97    | 75-125       |
| Lithium      | ND U          | 10300  | 10000        | 103   | 75-125       |
| Manganese    | 1960          | 2350   | 500          | 78    | 75-125       |
| Molybdenum   | 24 J          | 1050   | 1000         | 102   | 75-125       |

Results flagged with an asterisk (\*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

#### ALS Group USA, Corp.

#### dba ALS Environmental

QA/QC Report

Client: Anchor QEA, LLC

**Project** APC SSE

Sample Matrix:

Lab Code:

Service Request: K2004418

Date Collected: 05/27/20

**Date Received:** 05/29/20

**Date Analyzed:** 06/19/20

Replicate Sample Summary Total Metals

**Sample Name:** MR-AP-MW-4\_F2\_018

Water

Units: ug/L

K2004418-001

Basis: NA

**Duplicate** 

|              | Analysis |     |     | Sample | Sample<br>KQ2007742-03 |         |      |           |
|--------------|----------|-----|-----|--------|------------------------|---------|------|-----------|
| Analyte Name | Method   | MRL | MDL | Result | Result                 | Average | RPD  | RPD Limit |
| Aluminum     | 6010C    | 110 | 30  | 790    | 760                    | 780     | 4    | 20        |
| Arsenic      | 6010C    | 110 | 30  | ND U   | ND U                   | ND      | -    | 20        |
| Calcium      | 6010C    | 110 | 20  | 9980   | 9390                   | 9690    | 6    | 20        |
| Cobalt       | 6010C    | 11  | 4   | 14     | 11                     | 13      | 24 # | 20        |
| Iron         | 6010C    | 110 | 40  | 300    | 310                    | 310     | 3    | 20        |
| Lithium      | 6010C    | 110 | 30  | ND U   | ND U                   | ND      | -    | 20        |
| Manganese    | 6010C    | 5.3 | 1.1 | 1960   | 1850                   | 1910    | 6    | 20        |
| Molybdenum   | 6010C    | 42  | 11  | 24 J   | 18 J                   | 21      | 29 # | 20        |

Results flagged with an asterisk (\*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 7/20/2020 11:12:52 AM

### ALS Group USA, Corp. dba ALS Environmental

QA/QC Report

Client: Anchor QEA, LLC

**Project:** APC SSE **Sample Matrix:** Water

**Service Request:** K2004418 **Date Analyzed:** 06/19/20

#### Lab Control Sample Summary Total Metals

Units:ug/L Basis:NA

#### **Lab Control Sample**

KQ2007742-01

| Analyte Name | <b>Analytical Method</b> | Result | Spike Amount | % Rec | % Rec Limits |
|--------------|--------------------------|--------|--------------|-------|--------------|
| Aluminum     | 6010C                    | 5240   | 5000         | 105   | 80-120       |
| Arsenic      | 6010C                    | 2610   | 2500         | 105   | 80-120       |
| Calcium      | 6010C                    | 12800  | 12500        | 102   | 80-120       |
| Cobalt       | 6010C                    | 1210   | 1250         | 97    | 80-120       |
| Iron         | 6010C                    | 2580   | 2500         | 103   | 80-120       |
| Lithium      | 6010C                    | 10600  | 10000        | 106   | 80-120       |
| Manganese    | 6010C                    | 1220   | 1250         | 97    | 80-120       |
| Molybdenum   | 6010C                    | 1030   | 1000         | 103   | 80-120       |





Anthony Dalton-Atha Anchor QEA, LLC 6720 SW Macadam Avenue Suite 125 Portland, OR 97219

Laboratory Results for: APC SSE

Dear Anthony,

Enclosed are the results of the sample(s) submitted to our laboratory May 29, 2020 For your reference, these analyses have been assigned our service request number **K2004421**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3376. You may also contact me via email at Mark.Harris@alsglobal.com.

Respectfully submitted,

noe D. Oar

ALS Group USA, Corp. dba ALS Environmental

Mark Harris

Project Manager

dba ALS Environmental



## **Narrative Documents**



Client: Anchor QEA, LLC Service Request: K2004421

Project: APC SSE Date Received: 05/29/2020

Sample Matrix: Water

#### **CASE NARRATIVE**

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

#### Sample Receipt:

Four water samples were received for analysis at ALS Environmental on 05/29/2020. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

#### Metals:

Method 6010C, 06/19/2020: Samples in this delivery group required dilution to non-target matrix components. Attempts to analyze the undiluted samples resulted in failed instrument QC check samples. The detection limits were elevated accordingly. No further corrective action was appropriate.

Approved by

Approved by

Date 06/22/2020



# Sample Receipt Information

**Chain of Custody Record & Laboratory Analysis Request Parameters** Date: 5/29/2020 Jessica Goin Project Name: APC SSE Project Manager: Anthony Dalton-Atha 6720 SW Macadam Ave adalton-atha@anchorgea.com Containers Suite 125 Phone Number: 541-760-0851 Portland OR 97219 Molybdenum Shipment Method: Courier No. of Lithium Collection Arsenic Cobalt Field Sample ID Line Matrix ē Date Time Comments/Preservation BY-AP-MW-11\_F4\_001 nitric acid Water х Х 2 BY-AP-MW-12\_F4\_002 х nitric acid Water Х х 3 BY-AP-MW-13\_F4\_003 Х х nitric acid Water Х BY-AP-MW-2\_F4\_004 nitric acid 4 Water 1 х х Х 5 BY-AP-MW-7 F4 005 nitric acid Water Х х х 6 BY-AP-MW-9\_F4\_006 nitric acid Water 1 х х Х 7 GC-AP-MW-1\_F4\_007 Water 1 х Х х Х nitric acid 8 GC-AP-MW-11\_F4\_008 nitric acid Water Х Х х Х 9 GC-AP-MW-16 F4 009 Water х х X nitric acid 10 OLD-MW-115\_F4\_010 nitric acid Water х Х х Х 11 OLD-MW-11 F4 011 Water 1 х х х Х nitric acid 12 OLD-MW-2D\_F4\_012 Water 1 X Х Х Х nitric acid GC-AP-MW-17\_F4\_013 Water nitric acid х Х 14 GN-AP-MW-5 F4 014 nitric acid Water Х Х х х GS-AP-MW-6D\_F4\_015 Water х х х nitric acid Notes: CAUTION! F4 samples are concentrated (16N) nitric acid. Relinquished by: Received by: Company: Company: Anthony Dalton-Atha Anchor OEA Signature/Print Name: Date/Time: Signature/Print Name: Date/Time: 5/29/2020 10:00 Relinquished by: Received by: Company: Company: Signature/Print Name: Date/Time: Signature/Print Name: Date/Time:

| Ĺ       |                  |                      |                   |             |                |            | 8.5       | Sang san                                | (na sessi)  | 55.55      | 4.77                                   |            |            | Paran                                   | neter         | \$                                      | Andrews A |                                         |    |    | ******  | ⊥             | CHOR                                    |            |
|---------|------------------|----------------------|-------------------|-------------|----------------|------------|-----------|-----------------------------------------|-------------|------------|----------------------------------------|------------|------------|-----------------------------------------|---------------|-----------------------------------------|-----------|-----------------------------------------|----|----|---------|---------------|-----------------------------------------|------------|
|         | Date:            |                      | 5/29/2020         |             |                |            |           |                                         |             |            |                                        |            |            |                                         |               |                                         |           |                                         |    |    |         | Z AN OE       | ٨٣                                      |            |
|         | Project Name:    | APC SSE              |                   |             |                |            |           |                                         |             |            |                                        |            |            |                                         |               |                                         |           |                                         |    | 1  |         | Jessica Goin  |                                         |            |
|         | Project Manager: | Anthony Dalton-A     | tha               |             |                | 1          |           |                                         |             |            |                                        |            |            |                                         |               |                                         |           |                                         |    | ı  |         | 6720 SW Mac   | adam Ave                                |            |
|         | email:           | adalton-atha@        | anchorgea.        | com         |                | 2          |           |                                         |             |            |                                        |            |            |                                         |               |                                         |           |                                         |    |    |         | Suite 125     |                                         |            |
|         | Phone Number:    | 541-760-0851         |                   |             |                | ië         |           |                                         |             |            |                                        |            |            |                                         |               |                                         |           |                                         | ļ  |    |         | Portland OR 9 | 7219                                    |            |
| Sh      | ipment Method:   | Courier              |                   |             |                | Containers |           |                                         |             | ᇣ          |                                        |            |            |                                         |               |                                         |           |                                         | 1  |    |         |               |                                         |            |
|         |                  |                      | Collect           | ion         | I              | ō          | ·돋        | Ę                                       | j.          | rbde       |                                        |            |            |                                         |               |                                         |           |                                         |    | ł  |         |               |                                         |            |
| Line    | Field S          | ample ID             | Date              | Time        | Matrix         | ĝ          | Arsenic   | Lithium                                 | Cobalt      | Molybdenum | <u>0</u>                               |            |            |                                         |               |                                         |           |                                         |    |    | l       | Comments/     | Preservation                            |            |
| 16      | GS-AP-MW-8_F4_   | _016                 |                   |             | Water          | 1          | x         | х                                       |             | x          | Х                                      |            |            |                                         |               |                                         |           |                                         |    |    |         | nitric acid   |                                         |            |
| 17      | MR-AP-MW-3D_F    | 4_017                |                   |             | Water          | 1          | х         | х                                       | х           |            | х                                      |            |            |                                         |               |                                         |           |                                         |    |    |         | nitric acid   |                                         |            |
| 18      | MR-AP-MW-4_F4    | _018                 |                   |             | Water          | 1          | х         | х                                       | х           |            | х                                      |            |            | *************************************** |               |                                         |           |                                         |    |    |         | nitric acid   |                                         |            |
| 19      | MR-AP-MW-5_F4    | _019                 |                   |             | Water          | 1          | х         | х                                       | х           |            | X                                      |            |            |                                         |               |                                         |           |                                         |    |    |         | nitric acid   |                                         |            |
| 20      | MW-1_F4_020      |                      |                   |             | Water          | 1          | х         | х                                       |             | х          | х                                      |            |            |                                         |               |                                         |           |                                         |    |    |         | nitric acid   |                                         |            |
| 21      | MW-12_F4_021     |                      |                   |             | Water          | 1          | х         | х                                       |             | х          | x                                      |            |            |                                         |               |                                         |           |                                         |    |    |         | nitric acid   |                                         |            |
| 22      | Blank_F4_022     |                      |                   |             | Water          | 1          | Х         | х                                       | х           | х          | X                                      |            |            |                                         |               |                                         |           |                                         |    |    |         | nitric acid   |                                         |            |
| 23      | OLD-MW-2D-F4_    | 012_DUP              |                   |             | Water          | 1          | x         | х                                       |             | х          | х                                      |            |            |                                         |               |                                         |           |                                         |    |    |         | nitric acid   |                                         |            |
|         |                  |                      |                   |             |                |            |           |                                         |             |            |                                        |            |            |                                         |               |                                         |           |                                         |    |    |         |               |                                         |            |
|         |                  |                      |                   |             |                |            |           |                                         |             |            |                                        |            |            |                                         |               |                                         |           |                                         |    |    |         |               |                                         |            |
|         |                  |                      |                   |             |                |            |           |                                         |             |            |                                        |            |            |                                         |               |                                         |           |                                         |    |    |         |               |                                         |            |
|         |                  |                      |                   |             |                |            |           |                                         |             |            |                                        |            |            |                                         |               |                                         |           |                                         |    |    |         |               |                                         |            |
|         |                  |                      |                   |             |                |            |           |                                         |             |            |                                        |            |            |                                         |               |                                         |           |                                         |    |    |         |               |                                         |            |
|         |                  |                      |                   |             |                |            |           |                                         |             |            |                                        |            |            |                                         |               |                                         |           |                                         |    |    |         |               |                                         |            |
|         |                  |                      |                   |             |                |            |           |                                         |             |            |                                        |            |            |                                         |               |                                         |           |                                         |    |    |         |               |                                         |            |
| Notes:  | CAUTIONI F4 samp | les are concentrated | (16N) nitric acid | l           |                |            |           |                                         | <del></del> |            |                                        | ·····      | ····       |                                         |               | *************************************** | ····      | *************************************** |    |    |         |               | *************************************** |            |
|         | - 4 4 4          |                      |                   |             |                |            |           | *************************************** |             |            | ······································ |            |            |                                         |               |                                         |           |                                         |    |    |         |               |                                         |            |
| Relinqi | uished by:       |                      |                   | Compan      |                |            |           |                                         |             |            |                                        | Recei      | ved by     | $\Rightarrow$                           |               |                                         | -         | $\overline{a}$                          |    |    |         | mpany:        |                                         |            |
|         |                  | ny Dalton-Atha       |                   |             |                | incho      | QEA       |                                         |             |            |                                        |            | <u> </u>   |                                         |               | متعيم المفاقعين المعاديد                |           | 25/                                     | NO | 20 |         | 15            |                                         |            |
| Signati | ure/Print Name:  |                      |                   | Date/Tin    |                |            |           |                                         |             |            |                                        | Signa      | ture/P     | rint N                                  | ame:          |                                         |           |                                         |    |    | Da<br>/ | te/Time:      |                                         |            |
|         |                  |                      |                   |             | 5/2            | 9/202      | 0 10:0    | 00                                      |             |            |                                        |            |            | *************************************** | ************* |                                         |           |                                         |    |    | 5/      | 29/20 11      | 45                                      |            |
| Relinq  | uished by:       |                      |                   | Compan      | y:             |            |           |                                         |             |            |                                        | Recei      | ved by     | /:                                      |               |                                         |           | *************************************** |    |    | Co      | mpany:        |                                         | ********** |
|         |                  |                      |                   |             |                |            |           |                                         |             |            |                                        |            |            |                                         |               |                                         |           |                                         |    |    |         |               |                                         |            |
| Signati | ure/Print Name:  |                      |                   | Date/Tin    | ne:            |            |           |                                         |             |            |                                        | Signa      | ture/P     | rint N                                  | ame:          |                                         |           |                                         |    |    | Da      | te/Time:      |                                         |            |
|         | **               |                      |                   |             |                |            |           |                                         |             |            |                                        |            |            |                                         |               |                                         |           |                                         |    |    |         |               |                                         |            |
|         |                  |                      |                   | Distributio | on: A copy wil | l be ma    | de for ti | he labor                                | atory ar    | nd client  | . The P                                | roject fil | le will re | tain the                                | e origina     | rl,                                     |           |                                         |    |    |         | Da            | na of                                   |            |

Chain of Custody Record & Laboratory Analysis Request



**Cooler Receipt and Preservation Form** 

| Samples were received via? USPS Fed Ex UPS DHL PDX Courier Hand Delivered  Samples were received in: (circle) Cooler Bax Envelope Other NA  Were custody seals on coolers? NA N If yes, how many and where? / Front  If present, were custody seals intact? N If present, were they signed and dated? N  Temp Blank Sample 1 Sample 2 Sample 3 Sample 4 IR GUN Cooler / COC ID NA Tracking Number NA Filed  I O T 1 2 O 10 O 9 O DRO DRO DRO NA  Packing material: Inserts Baggies Bubble Wrap Gel Packs Wet Ice Dry Ice Sleeves  Were custody papers properly filled out (ink, signed, etc.)? NA N  NA N  Were samples received in good condition (temperature, unbroken)? Indicate in the table below. NA N  NA  | Client A                                                                                                | VCHOR (                                                                                           | QEA                                                                                                                        |                                                                                                               | ici ice                                                                            | cipt a                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                          |                                      | 004                                 | 421                                      |          |                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------|--------------------------------------|-------------------------------------|------------------------------------------|----------|----------------------|
| Samples were received via? USPS Fed Ex UPS DHL PDX Control Hand Delivered  Samples were received in: (circle) Cooler Bax Envelope Other NA  Were custody seals on coolers? NA N If yes, how many and where? I Front If present, were custody seals intact? N N If yes, how many and where? I Front If present, were custody seals intact? N N If present, were they signed and dated? N N  Temp Blank Bample 1 Sample 2 Sample 3 Sample 4 IR GUN Cooler I COG ID NA Tracking Number NA Filed  ID. T 12 O 10 O 9 O FRO2 NA NA N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                         |                                                                                                   |                                                                                                                            | ned: 5/29                                                                                                     | 12020                                                                              | > E                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                          |                                      |                                     | ,                                        | :66      |                      |
| Temp Blank Sample 1 Sample 2 Sample 3 Sample 4 IR GUN Gooler / COC 10 NA Tracking Number (NA) Filed  10.7 17.0 10.6 9.6 JR.02  NA N  | <ol> <li>Samples v</li> <li>Samples v</li> </ol>                                                        | vere received<br>vere received                                                                    | via? <i>US</i><br>in: (circle)                                                                                             | SPS Fed<br>Cooler                                                                                             | Ex l                                                                               | UPS<br>x                                                  | DH<br>Envel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IL<br>ope   | Oti                      | her                                  |                                     |                                          | NA       |                      |
| 1. Packing material: Inserts Eagets Bubble Wrap Gel Packs Wet let Dry Ice Sleeves  5. Were custody papers properly filled out (ink, signed, etc.)?  6. Were samples received in good condition (temperature, unbroken)? Indicate in the table below.  17. If applicable, tissue samples were received: Frozen Partially Thawed Thawed  7. Were all sample labels complete (i.e analysis, preservation, etc.)?  8. Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2. NA NA NA  9. Were appropriate bottles/containers and volumes received for the tests indicated?  10. Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below  11. Were VOA vials received without headspace? Indicate in the table below.  12. Was C12/Res negative?  13. Sample ID on Bottle  14. Sample ID on Bottle  15. Sample ID on Bottle  16. Sample ID on COC  16. Identified by:  17. Intitate Time  17. Intitate Time  18. All "F2" Samples II - 125mL, each II on COC  18. All III Intitate Time  18. All "F2" Samples II - 125mL, each III Intitate II | If present,                                                                                             | were custod                                                                                       | y seals intac                                                                                                              | t?                                                                                                            | 00                                                                                 | N                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | If pre      | sent, w                  | ere they s                           | igned and                           | d dated?                                 | (Y       | N                    |
| Packing material: Inserts Baggies Bubble Wrap Gel Packs Wet lever Dry Ice Sleeves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Temp Blank                                                                                              |                                                                                                   | ······································                                                                                     | <del></del>                                                                                                   |                                                                                    |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | ooler / C                | COC ID (N                            | ia)                                 | Tracking Numi                            | per (NA  | Filed                |
| Were custody papers properly filled out (ink, signed, etc.)?  NA N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Control                                                                                                 | 10.                                                                                               | 16.0                                                                                                                       | 10-6                                                                                                          | 7.0                                                                                |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -           |                          |                                      |                                     |                                          |          |                      |
| Were custody papers properly filled out (ink, signed, etc.)?  NA N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                         |                                                                                                   |                                                                                                                            |                                                                                                               |                                                                                    |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                          |                                      |                                     |                                          |          |                      |
| Sample ID  Bottle Type Temp space Broke pH Reagent added Number Initials Time  A (I "F2" Samples I-125mL, each X HNO3 0.5mL RE1-54-C C IIOO Glybc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5. Were cust 6. Were sam 7. Were all sa 8. Did all sam 9. Were app 10. Were the 11. Were VC 12. Was C12 | ody papers p ples received ample labels uple labels an ropriate bottl pH-preserve A vials receive | oroperly filled in good configuration of the complete (i.e., and tags agreed es/container and bottles (see ived without e? | ed out (ink, signature) and (tempole, tissue sande analysis, property with custoders and volume are SMO GEN S | gned, etc. perature, unples wereservation by papers? es receive by recei lindicate | )? anbroke e recei n, etc.) Indic d for the ved at in the | en)? Inved:  ived:  ive | ndicat From | e in the zen crepanated? | table bei<br>Partially<br>cies in th | low.<br><b>Thawed</b><br>e table or | N. Thawed  N. n page 2. N. ble below  N. |          | и ()<br>и ()<br>и () |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                         | !/                                                                                                | oles 1:                                                                                                                    | <b>Bottle Type</b>                                                                                            | Temp                                                                               |                                                           | Broke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | рН          | Re                       | 70                                   | added                               | Number                                   | Initials |                      |
| Notes, Discrepancies, & Resolutions: Temp okay - metals analyses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                         |                                                                                                   |                                                                                                                            |                                                                                                               |                                                                                    |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                          |                                      |                                     |                                          |          |                      |
| Notes, Discrepancies, & Resolutions: Temp okay - metals analyses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                         |                                                                                                   |                                                                                                                            |                                                                                                               |                                                                                    |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                          |                                      |                                     |                                          |          |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Notes, Discr                                                                                            | epancies, &                                                                                       | Resolutio                                                                                                                  | ons: Temp                                                                                                     | pokay                                                                              |                                                           | neta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2(3         | anai                     | yses                                 |                                     |                                          |          |                      |



## Miscellaneous Forms

#### **Inorganic Data Qualifiers**

- \* The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- F. The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
  DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

#### **Metals Data Qualifiers**

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

#### **Organic Data Qualifiers**

- \* The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
  DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- $\boldsymbol{Q}$   $\;\;$  See case narrative. One or more quality control criteria was outside the limits.

#### **Additional Petroleum Hydrocarbon Specific Qualifiers**

- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

# ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

| Agency                   | Web Site                                                                                                                                        | Number      |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Alaska DEH               | http://dec.alaska.gov/eh/lab/cs/csapproval.htm                                                                                                  | UST-040     |
| Arizona DHS              | http://www.azdhs.gov/lab/license/env.htm                                                                                                        | AZ0339      |
| Arkansas - DEQ           | http://www.adeq.state.ar.us/techsvs/labcert.htm                                                                                                 | 88-0637     |
| California DHS (ELAP)    | http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx                                                                                             | 2795        |
| DOD ELAP                 | http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm                                                                                  | L16-58-R4   |
| Florida DOH              | http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm                                                                                         | E87412      |
| Hawaii DOH               | http://health.hawaii.gov/                                                                                                                       | -           |
| ISO 17025                | http://www.pjlabs.com/                                                                                                                          | L16-57      |
| Louisiana DEQ            | http://www.deq.louisiana.gov/page/la-lab-accreditation                                                                                          | 03016       |
| Maine DHS                | http://www.maine.gov/dhhs/                                                                                                                      | WA01276     |
| Minnesota DOH            | http://www.health.state.mn.us/accreditation                                                                                                     | 053-999-457 |
| Nevada DEP               | http://ndep.nv.gov/bsdw/labservice.htm                                                                                                          | WA01276     |
| New Jersey DEP           | http://www.nj.gov/dep/enforcement/oqa.html                                                                                                      | WA005       |
| New York - DOH           | https://www.wadsworth.org/regulatory/elap                                                                                                       | 12060       |
|                          | https://deq.nc.gov/about/divisions/water-resources/water-resources-data/water-sciences-home-page/laboratory-certification-branch/non-field-lab- |             |
| North Carolina DEQ       | certification                                                                                                                                   | 605         |
| Oklahoma DEQ             | http://www.deq.state.ok.us/CSDnew/labcert.htm                                                                                                   | 9801        |
| Oregon – DEQ (NELAP)     | http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx                                        | WA100010    |
| South Carolina DHEC      | http://www.scdhec.gov/environment/EnvironmentalLabCertification/                                                                                | 61002       |
| Texas CEQ                | http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html                                                                                   | T104704427  |
| Washington DOE           | http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html                                                                                  | C544        |
| Wyoming (EPA Region 8)   | https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-                                                                     | -           |
| Kelso Laboratory Website | www.alsglobal.com                                                                                                                               | NA          |

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

#### Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection

LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.



# Sample Results



## Metals

#### ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Anchor QEA, LLC **Client:** 

Service Request: K2004421 **Date Collected:** 05/28/20 10:10 **Project:** APC SSE **Sample Matrix:** Water

**Date Received:** 05/29/20 11:45

**Sample Name:** GS-AP-MW-6D\_F4\_015 Basis: NA

Lab Code: K2004421-004

#### **Total Metals**

|              | Analysis |        |       |     |     |      |                | Date      |   |
|--------------|----------|--------|-------|-----|-----|------|----------------|-----------|---|
| Analyte Name | Method   | Result | Units | MRL | MDL | Dil. | Date Analyzed  | Extracted | Q |
| Arsenic      | 6010C    | ND U   | ug/L  | 110 | 30  | 5    | 06/19/20 16:58 | 06/09/20  |   |
| Iron         | 6010C    | 3530   | ug/L  | 110 | 40  | 5    | 06/19/20 11:37 | 06/09/20  |   |
| Lithium      | 6010C    | ND U   | ug/L  | 110 | 30  | 5    | 06/19/20 11:37 | 06/09/20  |   |
| Molybdenum   | 6010C    | ND U   | ug/L  | 42  | 11  | 5    | 06/19/20 16:58 | 06/09/20  |   |

Analytical Report

Anchor QEA, LLC **Client:** 

Service Request: K2004421 **Date Collected:** 05/28/20 10:15 **Project:** APC SSE **Date Received:** 05/29/20 11:45 **Sample Matrix:** Water

**Sample Name:** GS-AP-MW-8\_F4\_016 Basis: NA

Lab Code: K2004421-005

|              | Analysis |         |       |     |     |      |                | Date      |   |
|--------------|----------|---------|-------|-----|-----|------|----------------|-----------|---|
| Analyte Name | Method   | Result  | Units | MRL | MDL | Dil. | Date Analyzed  | Extracted | Q |
| Arsenic      | 6010C    | 380     | ug/L  | 210 | 50  | 10   | 06/19/20 17:12 | 06/09/20  |   |
| Iron         | 6010C    | 2180000 | ug/L  | 420 | 80  | 10   | 06/19/20 17:12 | 06/09/20  |   |
| Lithium      | 6010C    | ND U    | ug/L  | 110 | 30  | 5    | 06/19/20 11:41 | 06/09/20  |   |
| Molybdenum   | 6010C    | ND U    | ug/L  | 84  | 21  | 10   | 06/19/20 17:12 | 06/09/20  |   |

Analytical Report

Anchor QEA, LLC **Client:** 

Service Request: K2004421 **Date Collected:** 05/28/20 10:35 **Project:** APC SSE **Sample Matrix:** Water

**Date Received:** 05/29/20 11:45

**Sample Name:** MW-1\_F4\_020 Basis: NA

Lab Code: K2004421-009

|              | Analysis |        |       |     |     |      |                | Date      |   |
|--------------|----------|--------|-------|-----|-----|------|----------------|-----------|---|
| Analyte Name | Method   | Result | Units | MRL | MDL | Dil. | Date Analyzed  | Extracted | Q |
| Arsenic      | 6010C    | ND U   | ug/L  | 110 | 30  | 5    | 06/19/20 17:26 | 06/09/20  |   |
| Iron         | 6010C    | 37100  | ug/L  | 110 | 40  | 5    | 06/19/20 12:38 | 06/09/20  |   |
| Lithium      | 6010C    | ND U   | ug/L  | 110 | 30  | 5    | 06/19/20 12:38 | 06/09/20  |   |
| Molybdenum   | 6010C    | 55     | ug/L  | 42  | 11  | 5    | 06/19/20 17:26 | 06/09/20  |   |

Analytical Report

Anchor QEA, LLC **Client:** 

Lab Code:

Service Request: K2004421 **Date Collected:** 05/28/20 10:40 **Project:** APC SSE

**Date Received:** 05/29/20 11:45 **Sample Matrix:** Water

**Sample Name:** MW-12\_F4\_021 Basis: NA

K2004421-010

|              | Analysis |        |       |     |                |      |                | Date      |   |
|--------------|----------|--------|-------|-----|----------------|------|----------------|-----------|---|
| Analyte Name | Method   | Result | Units | MRL | $\mathbf{MDL}$ | Dil. | Date Analyzed  | Extracted | Q |
| Arsenic      | 6010C    | 300    | ug/L  | 110 | 30             | 5    | 06/19/20 17:30 | 06/09/20  |   |
| Iron         | 6010C    | 135000 | ug/L  | 110 | 40             | 5    | 06/19/20 12:41 | 06/09/20  |   |
| Lithium      | 6010C    | ND U   | ug/L  | 110 | 30             | 5    | 06/19/20 12:41 | 06/09/20  |   |
| Molybdenum   | 6010C    | 144    | ug/L  | 42  | 11             | 5    | 06/19/20 17:30 | 06/09/20  |   |



# **QC Summary Forms**



## Metals

### Analytical Report

Client: Anchor QEA, LLC

Project:APC SSEDate Collected:NASample Matrix:WaterDate Received:NA

Sample Name: Method Blank Basis: NA

**Lab Code:** KQ2007746-02

### **Total Metals**

|              | Analysis |        |       |     |     |      |                | Date      |   |
|--------------|----------|--------|-------|-----|-----|------|----------------|-----------|---|
| Analyte Name | Method   | Result | Units | MRL | MDL | Dil. | Date Analyzed  | Extracted | Q |
| Arsenic      | 6010C    | ND U   | ug/L  | 21  | 5   | 1    | 06/19/20 16:24 | 06/09/20  |   |
| Cobalt       | 6010C    | ND U   | ug/L  | 2.1 | 0.7 | 1    | 06/19/20 16:24 | 06/09/20  |   |
| Iron         | 6010C    | ND U   | ug/L  | 42  | 8   | 1    | 06/19/20 16:24 | 06/09/20  |   |
| Lithium      | 6010C    | ND U   | ug/L  | 21  | 6   | 1    | 06/19/20 16:24 | 06/09/20  |   |
| Molybdenum   | 6010C    | ND U   | ug/L  | 8.4 | 2.1 | 1    | 06/19/20 16:24 | 06/09/20  |   |

Service Request: K2004421

QA/QC Report

Client: Anchor QEA, LLC

**Project:** APC SSE **Sample Matrix:** Water

**Service Request: Date Collected:** 

K2004421

Date Conecteu:

05/28/20

**Date Received:** 

05/29/20

Date Analyzed: Date Extracted: 06/19/20 06/9/20

Matrix Spike Summary Total Metals

OLD-MW-2D\_F4\_012

K2004421-001

**Analysis Method:** 6010C

**Prep Method:** 

Sample Name:

Lab Code:

EPA CLP ILM04.0

Units: Basis: ug/L NA

Matrix Spike

KQ2007746-04

| Analyte Name | Sample Result | Result  | Spike Amount | % Rec   | % Rec Limits |
|--------------|---------------|---------|--------------|---------|--------------|
| Arsenic      | ND U          | 960     | 1000         | 96      | 75-125       |
| Cobalt       | 74            | 513     | 500          | 88      | 75-125       |
| Iron         | 1050000       | 1020000 | 1000         | -2168 # | 75-125       |
| Lithium      | ND U          | 9900    | 10000        | 99      | 75-125       |
| Molybdenum   | ND U          | 952     | 1000         | 95      | 75-125       |

Results flagged with an asterisk (\*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

Printed 7/20/2020 11:05:55 AM

### ALS Group USA, Corp.

### dba ALS Environmental

QA/QC Report

Client: Anchor QEA, LLC

Water

**Project** APC SSE

**Sample Matrix:** 

Sample Name:

**Analyte Name** 

Arsenic

Cobalt

Lithium

Molybdenum

Iron

Lab Code:

 QEA, LLC
 Service Request:
 K2004421

 E
 Date Collected:
 05/28/20

**Date Received:** 05/29/20

**Date Analyzed:** 06/19/20

Replicate Sample Summary Total Metals

Sample

Result ND U

74

1050000

ND U

ND U

OLD-MW-2D\_F4\_012

**MRL** 

210

11

110

110

84

**MDL** 

50

4

40

30

21

Units: ug/L

Basis: NA

20

20

K2004421-001

**Analysis** 

Method

6010C

6010C

6010C

6010C

6010C

Duplicate

ND U

ND U

| Sample<br>KQ2007746-03<br>Result | Average | RPD | RPD Limit |
|----------------------------------|---------|-----|-----------|
| ND U                             | ND      | -   | 20        |
| 76                               | 75      | 3   | 20        |
| 1050000                          | 1050000 | <1  | 20        |

ND

ND

Results flagged with an asterisk (\*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 7/20/2020 11:05:55 AM

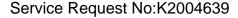
QA/QC Report

Client: Anchor QEA, LLC

**Project:** APC SSE

**Sample Matrix:** Water

Service Request: K2004421 Date Analyzed: 06/19/20


### Lab Control Sample Summary Total Metals

Units:ug/L Basis:NA

### **Lab Control Sample**

KQ2007746-01

| Analyte Name | <b>Analytical Method</b> | Result | Spike Amount | % Rec | % Rec Limits |
|--------------|--------------------------|--------|--------------|-------|--------------|
| Arsenic      | 6010C                    | 2540   | 2500         | 102   | 80-120       |
| Cobalt       | 6010C                    | 1190   | 1250         | 95    | 80-120       |
| Iron         | 6010C                    | 2340   | 2500         | 93    | 80-120       |
| Lithium      | 6010C                    | 9940   | 10000        | 99    | 80-120       |
| Molybdenum   | 6010C                    | 1010   | 1000         | 101   | 80-120       |





Anthony Dalton-Atha Anchor QEA, LLC 6720 SW Macadam Avenue Suite 125 Portland, OR 97219

Laboratory Results for: APC SSE

Dear Anthony,

Enclosed are the results of the sample(s) submitted to our laboratory June 04, 2020 For your reference, these analyses have been assigned our service request number **K2004639**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3376. You may also contact me via email at Mark.Harris@alsglobal.com.

Respectfully submitted,

noe D. Oar

ALS Group USA, Corp. dba ALS Environmental

Mark Harris

**Project Manager** 

dba ALS Environmental



## **Narrative Documents**



Client:Anchor QEA, LLCService Request: K2004639Project:APC SSEDate Received: 06/04/2020

Sample Matrix: Soil

### **CASE NARRATIVE**

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

#### **Sample Receipt:**

Twenty three soil samples were received for analysis at ALS Environmental on 06/04/2020. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

### **Metals:**

No significant anomalies were noted with this analysis.

Approved by Moe D. Dan

Date 07/21/2020



## Sample Receipt Information

4 2004634

**Chain of Custody Record & Laboratory Analysis Request Parameters** Date: 5/29/2020 Project Name: APC SSE Jessica Goin 6720 SW Macadam Ave Project Manager: Anthony Dalton-Atha email: adalton-atha@anchorgea.com No. of Containers Suite 125 Phone Number: 541-760-0851 Portland OR 97219 Molybdenum Shipment Method: Courier Arsenic Lithium Collection Cobalt Field Sample ID Matrix Line Time Date Comments/Preservation BY-AP-MW-11\_F5\_001 SED BY-AP-MW-12\_F5\_002 2 SED 3 BY-AP-MW-13\_F5\_003 SED 4 BY-AP-MW-2\_F5\_004 SED 5 BY-AP-MW-7\_F5\_005 SED 6 BY-AP-MW-9\_F5\_006 SED 7 GC-AP-MW-1\_F5\_007 SED 1 8 GC-AP-MW-11\_F5\_008 SED 9 GC-AP-MW-16\_F5\_009 SED OLD-MW-11S\_F5\_010 SED 10 1 11 OLD-MW-11\_F5\_011 SED OLD-MW-2D\_F5\_012 12 SED 1 13 GC-AP-MW-17\_F5\_013 SED GN-AP-MW-5\_F5\_014 SED 1 15 GS-AP-MW-6D\_F5\_015 SED nitric acid Notes: Relinquished by: Company: Received by: Company: 4/20 142 Anchor QEA Anthony Dalton-Atha 6/4/2020 PAN Signature/Print Name: Date/Time: Signature/Print Name: Date/Time: -5/29/2020**(**0:00) Relinquished by: Received by: Company: Company: Signature/Print Name: Signature/Print Name: Date/Time: Date/Time:

K2004639

**Chain of Custody Record & Laboratory Analysis Request** ANCHOR OEA **Parameters** Date: 5/29/2020 Project Name: APC SSE Jessica Goin Project Manager: Anthony Dalton-Atha 6720 SW Macadam Ave No. of Containers email: adalton-atha@anchorgea.com Suite 125 Phone Number: 541-760-0851 Portland OR 97219 Molybdenum Shipment Method: Courier Lithium Collection Cobalt Field Sample ID Matrix Line Date Time Comments/Preservation 16 GS-AP-MW-8\_F5\_016 SED MR-AP-MW-3D\_F5\_017 17 SED 1 MR-AP-MW-4\_F5\_018 SED 1 19 MR-AP-MW-5\_F5\_019 SED 1 20 MW-1\_F5\_020 SED 1 MW-12\_F5\_021 SED 21 1 Blank\_F5\_022 SED 1 OLD-MW-2D-F5\_012\_DUP SED Notes: Received by: Company: Relinquished by: Company: Anchor QEA Anthony Dalton-Atha 19/2020/M Signature/Print Name: Date/Time: Signature/Print Name: Date/Time: \*572972020 10:00 Received by: Company: Relinquished by: Company: Signature/Print Name: Date/Time: Signature/Print Name: Date/Time:

Distribution: A copy will be made for the laboratory and client. The Project file will retain the original.

Page\_\_\_\_of\_\_\_\_



PC M

|                                                                    |                                                               |                                                                             | Coc                                                                                    | oler Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eipt and                                                    | Presei                              | vatio                   | a Form                         |                          | A. (                 | · 🗥                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------|-------------------------|--------------------------------|--------------------------|----------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Client                                                             | And                                                           | w d                                                                         | EA                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             | Serv                                | ice Red                 | quest <i>K20</i>               | )                        | 0463                 | 59                            | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Received:                                                          | 614/20                                                        | Ope                                                                         | ned:( <u></u>                                                                          | (4(20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | By:                                                         | V                                   |                         | Unloaded                       | 1:_6                     | 4/20                 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2. Samples v 3. Were cust                                          | vere received<br>vere received<br>ody seals on<br>were custod | l in: (circle)<br>coolers?                                                  | Cooler<br>NA                                                                           | Box<br>(Y)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <i>UPS</i><br>X <i>Ei</i><br>N                              | -                                   | ow mar                  | Courie ther and wheere they si | re?                      | and Delivered        | /                             | <i>NA</i> Y 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Temp Blank                                                         | <b>Sample 1</b>                                               | <b>Sample 2</b> / 7- 9                                                      | Sample 3                                                                               | <b>Sample 4</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TLO                                                         | ·····                               | ooler / (               | COCID (N                       |                          | Tracking N           | lumber (                      | NA I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Filec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                    |                                                               |                                                                             |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                                     |                         |                                |                          |                      | 446.2. 4.4.4.4                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6. Were sam 7. Were all sa 8. Did all sam 9. Were app 10. Were the | nple labels au                                                | If applical complete (i. nd tags agrees/container d bottles (seived without | ndition (tempole, tissue sand e analysis, pe with custoons and volume of the SMO GEN S | perature, using perature, using perature, using persecution persec | nbroken)'e received<br>n, etc.)?<br>Indicate<br>d for the t | major di<br>ests indica<br>appropri | zen<br>screpan<br>ated? | Partially T                    | <b>'hawed</b><br>table o |                      | NA | (Y) : | N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sai                                                                | mple ID on Bo                                                 | ettie                                                                       |                                                                                        | Sampl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e ID on C                                                   | )C                                  |                         |                                |                          | Identified by:       |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| s                                                                  | iample ID                                                     |                                                                             | Bottle Count<br>Bottle Type                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Head-<br>space Bro                                          | oke pH                              | Re                      |                                | /olume<br>added          | Reagent Lo<br>Number | ot Initi                      | als Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                    |                                                               |                                                                             |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                                     |                         |                                |                          |                      |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Amazon a proposition de la companya |
| Notes, Discr                                                       | epancies, &                                                   | Resolutio                                                                   | ns:                                                                                    | * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                           |                                     |                         |                                |                          |                      |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |



## **Miscellaneous Forms**

#### **Inorganic Data Qualifiers**

- \* The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- F. The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
  DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

#### **Metals Data Qualifiers**

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

#### **Organic Data Qualifiers**

- \* The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
  DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- $\boldsymbol{Q}$   $\;\;$  See case narrative. One or more quality control criteria was outside the limits.

#### **Additional Petroleum Hydrocarbon Specific Qualifiers**

- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

## ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

| Agency                   | Web Site                                                                                                                                        | Number      |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Alaska DEH               | http://dec.alaska.gov/eh/lab/cs/csapproval.htm                                                                                                  | UST-040     |
| Arizona DHS              | http://www.azdhs.gov/lab/license/env.htm                                                                                                        | AZ0339      |
| Arkansas - DEQ           | http://www.adeq.state.ar.us/techsvs/labcert.htm                                                                                                 | 88-0637     |
| California DHS (ELAP)    | http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx                                                                                             | 2795        |
| DOD ELAP                 | http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm                                                                                  | L16-58-R4   |
| Florida DOH              | http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm                                                                                         | E87412      |
| Hawaii DOH               | http://health.hawaii.gov/                                                                                                                       | -           |
| ISO 17025                | http://www.pjlabs.com/                                                                                                                          | L16-57      |
| Louisiana DEQ            | http://www.deq.louisiana.gov/page/la-lab-accreditation                                                                                          | 03016       |
| Maine DHS                | http://www.maine.gov/dhhs/                                                                                                                      | WA01276     |
| Minnesota DOH            | http://www.health.state.mn.us/accreditation                                                                                                     | 053-999-457 |
| Nevada DEP               | http://ndep.nv.gov/bsdw/labservice.htm                                                                                                          | WA01276     |
| New Jersey DEP           | http://www.nj.gov/dep/enforcement/oqa.html                                                                                                      | WA005       |
| New York - DOH           | https://www.wadsworth.org/regulatory/elap                                                                                                       | 12060       |
|                          | https://deq.nc.gov/about/divisions/water-resources/water-resources-data/water-sciences-home-page/laboratory-certification-branch/non-field-lab- |             |
| North Carolina DEQ       | certification                                                                                                                                   | 605         |
| Oklahoma DEQ             | http://www.deq.state.ok.us/CSDnew/labcert.htm                                                                                                   | 9801        |
| Oregon – DEQ (NELAP)     | http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx                                        | WA100010    |
| South Carolina DHEC      | http://www.scdhec.gov/environment/EnvironmentalLabCertification/                                                                                | 61002       |
| Texas CEQ                | http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html                                                                                   | T104704427  |
| Washington DOE           | http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html                                                                                  | C544        |
| Wyoming (EPA Region 8)   | https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-                                                                     | -           |
| Kelso Laboratory Website | www.alsglobal.com                                                                                                                               | NA          |

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

### Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection

LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.



# Sample Results



## Metals

Analytical Report

Client: Anchor QEA, LLC

**Project:** APC SSE

Sample Matrix: Soil

Service Request: K2004639

**Date Collected:** NA

**Date Received:** 06/04/20 14:20

Basis: As Received

**Sample Name:** 

GS-AP-MW-6D\_F5\_015

Lab Code:

K2004639-015

|              | Analysis |        |       |      |      |      |                | Date      |   |
|--------------|----------|--------|-------|------|------|------|----------------|-----------|---|
| Analyte Name | Method   | Result | Units | MRL  | MDL  | Dil. | Date Analyzed  | Extracted | Q |
| Arsenic      | 6010C    | ND U   | mg/Kg | 8.3  | 2.1  | 2    | 06/18/20 16:45 | 06/15/20  |   |
| Cobalt       | 6010C    | 0.23 J | mg/Kg | 0.83 | 0.10 | 2    | 06/18/20 16:45 | 06/15/20  |   |
| Lithium      | 6010C    | ND U   | mg/Kg | 4.1  | 0.6  | 2    | 06/18/20 16:45 | 06/15/20  |   |
| Molybdenum   | 6010C    | ND U   | mg/Kg | 0.83 | 0.21 | 2    | 06/18/20 16:45 | 06/15/20  |   |

Analytical Report

Client: Anchor QEA, LLC

Project: APC SSE

Sample Matrix: Soil Date Received: 06/04/20 14:20

Sample Name: GS-AP-MW-8\_F5\_016 Basis: As Received

**Lab Code:** K2004639-016

### **Total Metals**

|              | Analysis |        |       |     |     |      |                | Date      |   |
|--------------|----------|--------|-------|-----|-----|------|----------------|-----------|---|
| Analyte Name | Method   | Result | Units | MRL | MDL | Dil. | Date Analyzed  | Extracted | Q |
| Arsenic      | 6010C    | ND U   | mg/Kg | 16  | 4   | 2    | 06/18/20 16:55 | 06/15/20  |   |
| Cobalt       | 6010C    | 0.9 J  | mg/Kg | 1.6 | 0.2 | 2    | 06/18/20 16:55 | 06/15/20  |   |
| Lithium      | 6010C    | ND U   | mg/Kg | 8.0 | 1.2 | 2    | 06/18/20 16:55 | 06/15/20  |   |
| Molybdenum   | 6010C    | 8.1    | mg/Kg | 1.6 | 0.4 | 2    | 06/18/20 16:55 | 06/15/20  |   |

**Service Request:** K2004639 **Date Collected:** NA

Analytical Report

Client: Anchor QEA, LLC

**Project:** APC SSE

Sample Matrix: Soil

Date Collected: NA

Service Request: K2004639

**Date Received:** 06/04/20 14:20

Sample Name: MW-1\_F5\_020 Basis: As Received

**Lab Code:** K2004639-020

|              | Analysis |        |       |      |      |      |                | Date      |   |
|--------------|----------|--------|-------|------|------|------|----------------|-----------|---|
| Analyte Name | Method   | Result | Units | MRL  | MDL  | Dil. | Date Analyzed  | Extracted | Q |
| Arsenic      | 6010C    | 2.9 J  | mg/Kg | 8.8  | 2.2  | 2    | 06/18/20 17:05 | 06/15/20  |   |
| Cobalt       | 6010C    | 1.63   | mg/Kg | 0.88 | 0.11 | 2    | 06/18/20 17:05 | 06/15/20  |   |
| Lithium      | 6010C    | 3.7 J  | mg/Kg | 4.4  | 0.7  | 2    | 06/18/20 17:05 | 06/15/20  |   |
| Molybdenum   | 6010C    | 6.51   | mg/Kg | 0.88 | 0.22 | 2    | 06/18/20 17:05 | 06/15/20  |   |

Analytical Report

Anchor QEA, LLC **Client:** 

**Project:** APC SSE

**Sample Matrix:** Soil Date Collected: NA

Service Request: K2004639

**Date Received:** 06/04/20 14:20

MW-12\_F5\_021

Basis: As Received

**Sample Name:** Lab Code: K2004639-021

|              | Analysis |        |       |      |      |      |                | Date      |   |
|--------------|----------|--------|-------|------|------|------|----------------|-----------|---|
| Analyte Name | Method   | Result | Units | MRL  | MDL  | Dil. | Date Analyzed  | Extracted | Q |
| Arsenic      | 6010C    | 14.5   | mg/Kg | 8.2  | 2.0  | 2    | 06/18/20 17:15 | 06/15/20  |   |
| Cobalt       | 6010C    | 9.24   | mg/Kg | 0.82 | 0.10 | 2    | 06/18/20 17:15 | 06/15/20  |   |
| Lithium      | 6010C    | 7.1    | mg/Kg | 4.1  | 0.6  | 2    | 06/18/20 17:15 | 06/15/20  |   |
| Molybdenum   | 6010C    | 50.8   | mg/Kg | 0.82 | 0.20 | 2    | 06/18/20 17:15 | 06/15/20  |   |



# **QC Summary Forms**



## Metals

Analytical Report

Client: Anchor QEA, LLC

Project:APC SSEDate Collected:NASample Matrix:SoilDate Received:NA

Sample Name: Method Blank Basis: As Received

**Lab Code:** KQ2007817-01

### **Total Metals**

|              | Analysis |        |       |      |      |      |                | Date      |   |
|--------------|----------|--------|-------|------|------|------|----------------|-----------|---|
| Analyte Name | Method   | Result | Units | MRL  | MDL  | Dil. | Date Analyzed  | Extracted | Q |
| Arsenic      | 6010C    | ND U   | mg/Kg | 8.0  | 2.0  | 2    | 06/18/20 15:50 | 06/15/20  |   |
| Cobalt       | 6010C    | ND U   | mg/Kg | 0.80 | 0.10 | 2    | 06/18/20 15:50 | 06/15/20  |   |
| Lithium      | 6010C    | ND U   | mg/Kg | 4.0  | 0.6  | 2    | 06/18/20 15:50 | 06/15/20  |   |
| Molybdenum   | 6010C    | ND U   | mg/Kg | 0.80 | 0.20 | 2    | 06/18/20 15:50 | 06/15/20  |   |

Service Request: K2004639

Analytical Report

Client: Anchor QEA, LLC

Project:APC SSEDate Collected:NASample Matrix:SoilDate Received:NA

Sample Name: Method Blank Basis: As Received

**Lab Code:** KQ2007818-01

### **Total Metals**

|              | Analysis |        |       |      |      |      |                | Date      |   |
|--------------|----------|--------|-------|------|------|------|----------------|-----------|---|
| Analyte Name | Method   | Result | Units | MRL  | MDL  | Dil. | Date Analyzed  | Extracted | Q |
| Arsenic      | 6010C    | ND U   | mg/Kg | 8.0  | 2.0  | 2    | 06/18/20 17:08 | 06/15/20  |   |
| Cobalt       | 6010C    | ND U   | mg/Kg | 0.80 | 0.10 | 2    | 06/18/20 17:08 | 06/15/20  |   |
| Lithium      | 6010C    | ND U   | mg/Kg | 4.0  | 0.6  | 2    | 06/18/20 17:08 | 06/15/20  |   |
| Molybdenum   | 6010C    | ND U   | mg/Kg | 0.80 | 0.20 | 2    | 06/18/20 17:08 | 06/15/20  |   |

Service Request: K2004639

QA/QC Report

Client: Anchor QEA, LLC

**Project:** APC SSE

Sample Matrix: Soil

Service Request: K2004639 Date Analyzed: 06/18/20

### Lab Control Sample Summary Total Metals

Units:mg/Kg
Basis:As Received

### **Lab Control Sample**

KQ2007817-02

| <b>Analyte Name</b> | <b>Analytical Method</b> | Result | Spike Amount | % Rec | % Rec Limits |
|---------------------|--------------------------|--------|--------------|-------|--------------|
| Arsenic             | 6010C                    | 97.3   | 100          | 97    | 80-120       |
| Cobalt              | 6010C                    | 96.0   | 100          | 96    | 80-120       |
| Lithium             | 6010C                    | 490    | 500          | 98    | 80-120       |
| Molybdenum          | 6010C                    | 101    | 100          | 101   | 80-120       |

QA/QC Report

**Client:** Anchor QEA, LLC

Service Request: K2004639 **Project:** APC SSE **Date Analyzed:** 06/18/20

**Sample Matrix:** Soil

### **Lab Control Sample Summary Total Metals**

Units:mg/Kg Basis: As Received

### **Lab Control Sample**

KQ2007818-02

| <b>Analyte Name</b> | <b>Analytical Method</b> | Result | Spike Amount | % Rec | % Rec Limits |
|---------------------|--------------------------|--------|--------------|-------|--------------|
| Arsenic             | 6010C                    | 94.5   | 100          | 95    | 80-120       |
| Cobalt              | 6010C                    | 93.6   | 100          | 94    | 80-120       |
| Lithium             | 6010C                    | 477    | 500          | 95    | 80-120       |
| Molybdenum          | 6010C                    | 98.1   | 100          | 98    | 80-120       |