2021 SEMI-ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

ALABAMA POWER COMPANY PLANT GADSDEN ASH POND

January 31, 2022

Prepared for

Alabama Power Company Birmingham, Alabama

By

Southern Company Services
Earth Science and Environmental Engineering

CERTIFICATION STATEMENT

This 2021 Semi-Annual Groundwater Monitoring and Corrective Action Report, Alabama Power Company - Plant Gadsden Ash Pond has been prepared in accordance with the United States Environmental Protection Agency's coal combustion residual rule (40 CFR Part 257, Subpart D), ADEM Admin. Code r. 335-13-15, and Part E of ADEM Administrative Order No. 18-095-GW, under the supervision of a licensed professional engineer in the State of Alabama. As such, I certify that the information contained herein is true and accurate to the best of my knowledge.

Austin C. Patton, P.G. AL Registered Professional Geologist No. 1585 01/31/2022

Date

Gregory Whetstone, PE

AL Registered Professional Engineer No

01/31/2022

Date

EXECUTIVE SUMMARY

In accordance with the United States Environmental Protection Agency (EPA) coal combustion residual (CCR) rule (40 CFR Part 257, Subpart 257), the Alabama Department of Environmental Management (ADEM) Admin. Code Ch. 335-13-15, and ADEM Administrative Order (AO) No. 19-104-GW, this 2021 Semi-Annual Groundwater Monitoring and Corrective Action Report has been prepared to document groundwater monitoring activities and results from the October 2021 semi-annual monitoring event at the Alabama Power Company (APC) Gadsden Electric Generating Plant (Plant Gadsden) Ash Pond and satisfies the requirements of § 257.90(e), ADEM Admin. Code r. 335-13-15-.06(1)(f), ADEM Admin. Code r. 335-13-15-.06(5)(g), and Part F of AO No. 19-104-GW. Semi-annual monitoring and associated reporting for the Ash Pond is performed in accordance with the monitoring requirements found in 40 CFR § 257.90 through § 257.95 and ADEM Admin. Code r. 335-13-15-.06(1) through r. 335-13-15-.06(6). Additionally, in an effort to streamline and provide more thorough reports to ADEM, APC requested approval to combine the information provided in the Semi-Annual Progress Reports described in Part F of AO No. 19-104-GW into the Semi-Annual Groundwater Monitoring and Corrective Action Reports on March 15, 2021.

The Semi-Annual Progress Reports have historically been provided to the Department in May and November. ADEM approved this approach and revised timeline for submittals on March 16, 2021. APC will now provide the Department with the combined semi-annual reports in February and August of each year.

The CCR unit began the monitoring period in Assessment Monitoring pursuant to 40 CFR § 257.95 and ADEM Admin. Code r. 335-13-15-.06(6). Statistically significant increases (SSIs) of Appendix III constituents over background were identified in the results of the first detection monitoring event (April 17, 2019) and assessment monitoring was initiated on July 16, 2019. Statistically significant levels (SSLs) of Appendix IV parameters above groundwater protection standards (GWPS) were identified while in assessment monitoring. Consequently, an assessment of corrective measures (ACM) was initiated on April 11, 2020, and completed on July 10, 2020 according to the requirements of § 257.96, ADEM Admin. Code r. 335-13-15-.06(7), and AO No. 19-104-GW. The ACM was subsequently submitted to ADEM and posted to the CCR compliance web site. A public meeting to discuss the ACM was held on October 19, 2020.

Since the submittal of the ACM extensive Site investigations have been performed to select effective corrective measures to address SSLs above GWPS. A Groundwater Remedy Selection Report was prepared

to meet the requirements of § 257.97, ADEM Admin. Code r. 335-13-15-.06(8), and Part C of AO No.19-

104-GW and submitted to ADEM on October 29, 2021. Subsequently, within 90 days of

remedy selection, a Corrective Action Groundwater Monitoring Program was developed and submitted to ADEM on January 27, 2022, for review.

The Corrective Action Groundwater Monitoring Program was prepared to meet § 257.98 and ADEM Admin. Code r. 335-13-15-.06(9) to detect potential downgradient changes in groundwater quality and assess the efficacy of the selected groundwater corrective action remedies. The Monitoring Program has been developed to meet the requirements of CFR § 257.98(a)(1) and ADEM Admin. Code r. 335-13-15-.06(9)(a)(1) and will supplement the ongoing CCR compliance groundwater monitoring currently being performed at the Site.

SSLs of Appendix IV parameters arsenic and lithium were detected above GWPS during 2021 first semiannual monitoring event. The following summarizes semi-annual groundwater monitoring activities at Plant Gadsden Ash Pond:

- Completed the installation and development of five additional vertical delineation wells (GSD-AP-MW-2VC, GSD-AP-MW-21VB, GSD-AP-MW-21VC, GSD-AP-MW-22VB, and GSD-AP-MW-23VB) as part of Phase III delineation efforts between August 17, 2021, and September 30, 2021.
- Completed the first semi-annual assessment groundwater sampling event between October 4, 2021, and October 12, 2021.
- Continued the evaluation of monitored natural attenuation (MNA) and geochemical manipulation as potential groundwater remediation technologies for the Site as described in the Semi-Annual Remedy Selection and Design Progress Report for the ACM submitted in June 2021 in accordance with § 257.97(a) and ADEM Admin. Code r. 335-13-15-.06(8)(a).
- Submitted the Groundwater Remedy Selection Report in accordance with § 257.97, ADEM Admin. Code r. 335-13-15-.06(8), and Part C of AO No.19-104-GW on October 29, 2021.
- Submitted a Corrective Action Groundwater Monitoring Program document presenting the groundwater corrective action remedies to be implemented at the Site to meet § 257.98 and ADEM Admin. Code r. 335-13-15-.06(9) on January 27, 2021.
- Pursuant to 40 CFR 257.90(e)(6), a Monitoring Period Summary table has been prepared to describe the status of groundwater monitoring and corrective action during the monitoring period for this report.

The CCR unit concluded the monitoring period in assessment monitoring and APC will begin implementing the selected groundwater remedies identified in the Groundwater Remedy Selection Report and the Corrective Action Groundwater Monitoring Program submitted to ADEM. The following future actions will be taken or are recommended for the site to further evaluate remedy selection:

- Collect soil and groundwater samples for treatability studies using Site aquifer media and impacted groundwater prior to field implementation of an injection treatment pilot study.
- Conduct batch studies for reagents and doses.
- Conduct column studies for effectiveness.
- Prepare Class V UIC permit.
- Conduct the first semi-annual assessment monitoring event of 2022 and submit the annual groundwater monitoring and corrective action report summarizing the findings to ADEM by August 1, 2022.

Executive Summary Table. Monitoring Period Summary Plant Gadsden - Ash Pond

Assessment Monitoring Initiated: July 16, 2019

Monitoring Period: August 1, 2021 - December 31, 2021

Beginning Status: Assessment Ending Status: Assessment

Statistical Analysis Results *			
Appendix III SSIs			
Parameter	Wells		
Boron	GSD-AP-MW-1, GSD-AP-MW-2, GSD-AP-MW-3, GSD-AP-MW-4, GSD-AP-MW-5, and GSD-AP-MW-11		
Calcium	GSD-AP-MW-1, GSD-AP-MW-2, GSD-AP-MW-3, GSD-AP-MW-5, GSD-AP-MW-8, GSD-AP-MW-9, GSD-AP-MW-10, GSD-AP-MW-11, and GSD-AP-MW-12		
Chloride	GSD-AP-MW-1, GSD-AP-MW-3, GSD-AP-MW-4, GSD-AP-MW-5, GSD-AP-MW-6, GSD-AP-MW-7, GSD-AP-MW-8, GSD-AP-MW-9, and GSD-AP-MW-10		
Fluoride	GSD-AP-MW-5, GSD-AP-MW-10, and GSD-AP-MW-11		
рН	GSD-AP-MW-12		
Sulfate	GSD-AP-MW-1 and GSD-AP-MW-3		
TDS	GSD-AP-MW-1, GSD-AP-MW-2, GSD-AP-MW-3, GSD-AP-MW-11, and GSD-AP-MW-12		
	Appendix IV SSLs		
Parameter	Wells		
Arsenic	GSD-AP-MW-2, GSD-AP-MW-4		
Lithium	None		
* See the atta	ched report for further details regarding statistical exceedances and alternate source demonstrations.		
	Assessment of Corrective Measures & Groundwater Remedy		
	Assessment of Corrective Measures		
Date Initated: April 11, 2020			
Date Complete: July 10, 2020			
Public Meeting Date: October 19, 2020			
	Groundwater Remedy		
	Selected During Period: Yes		
Selection Date: October 2021			
Initiated During Period: No			
	Ongoing During Period: No		

TABLE OF CONTENTS

EXE	ECUTI	VE SUMMARY	i
1.0	Int	roduction	1
2.0	Mo	onitoring Program Status	2
3.0	Site Location and Description		3
	3.1 Physical Setting.		3
	3.2 Site Geology and Hydrogeology		3
	3.2.1	Uppermost Aquifer	4
	3.2.2	Flow Interpretation	4
	3.3 Groundwater Monitoring System		5
	3.3.1	Monitoring Wells	6
	3.3	3.1.1 Upgradient Wells	6
	3.3	3.1.2 Downgradient Wells	6
	3.3	3.1.3 Delineation Wells	7
	3.3	3.1.4 Piezometers	8
	3.3.1.5 Monitoring Well Replacement and Abandonment		8
	3.4 GROUNDWATER MONITORING HISTORY		8
	3.4.1	Available Monitoring Data	9
	3.4.2	Historical Groundwater Flow	9
	3.4.3	Monitoring Variance	9
	3.5 Groundwater Sampling and Analysis		10
	3.5.1	Groundwater Sample Collection	10
	3.5.2	Sample Preservation and Handling	11
	3.5.3	Chain of Custody	11
	3.5.4	Laboratory Analysis	11
	3.5.5	Monitoring Period Sampling Events	12
4.0	Gr	oundwater Data Evaluation	13
	4.1	Groundwater Flow Velocity Calculations	13
5.0	Evaluation of Groundwater Quality Data		15
	5.2 Statistical Methodology and Tests		16
	5.2.1	Appendix III Evaluation	16
	5.2.2	Appendix IV Evaluation	17
	5.3 Statistical Exceedances.		18
	5.3.1	Appendix III Constituents	18
	5.3.2	Appendix IV Constituents	18

Plant Gadsden Ash Pond 2021 Semi-Annual Groundwater Monitoring and Corrective Action Report

	5.3.2	2.1 First Semi-Annual Monitoring Period	18
6.0	Grou	Groundwater Delineation	
	6.1 Ch	ronology of Delineation Activities	20
	6.1.1	Delineation Wells	20
	6.1.2	Discussion of Delineation Results	22
	6.2 Sta	atus of Delineation	22
7.0	Eval	uation of Groundwater Corrective Measures	28
	7.1 Pre	eliminary Results from the Geochemical Analysis	28
8.0	Summary and Conclusions		34
9.0	References		35

TABLES

Table Ta	Compliance Monitoring Well Network Details
Table 1b	Delineation Well Network Details
Table 1c	Abandoned Well Network Details
Table 2	Monitoring Parameters and Reporting Limits
Table 3	Recent Groundwater Elevation Summary
Table 4a	Relative Percent Difference Calculations
Table 4b	Field QC: Blank Detections
Table 4c	Field QC: Validation Results (Blanks)
Table 5	Summary of Background Levels and Groundwater Protection Standards
Table 6	Semi-Annual Monitoring Event Analytical Summary

FIGURES

Figure 1	Site Location Map
Figure 2	Site Topographic Map
Figure 3	Site Geologic Map
Figure 4A	Geologic Cross-Section A-A'
Figure 4B	Geologic Cross-Section B-B'
Figure 5	Monitoring Well Location Map
Figure 6	Potentiometric Surface Contour Map (October 4, 2021)
Figure 7	Arsenic Isoconcentration(s) Map (October 2021)
Figure 8	Lithium Isoconcentration(s) Map (October 2021)
Figure 9	Arsenic Concentrations along Geologic Profile A-A' (October 2021)
Figure 10	Lithium Concentrations along Geologic Profile A-A' (October 2021)

APPENDICES

Appendix A	Boring and Well Construction Logs
Appendix B	Groundwater Analytical Data
Appendix C	Historical Groundwater Elevations Summary
Appendix D	Laboratory and Field Records
Appendix E	Horizontal Groundwater Flow Velocity Calculations
Appendix F	Statistical Analysis

ABBREVIATIONS

ACM Assessment of Corrective Measures

ADEM Alabama Department of Environmental Management

AL Alabama

APC Alabama Power Company
APCEL APC Environmental Laboratory
ASD Alternate Source Demonstration

ASTM Alabama Power Company Environmental Laboratory

BGS below ground surface
CCR Coal Combustion Residual
CEC cation exchange capacity
CFR Code of Federal Regulations

COC chain of custody
COI constituents of interest

COI constituents of interest CSM conceptual site model DO dissolved oxygen

EPA United States Environmental Protection Agency

ft feet

GW groundwater

GWPS Groundwater Protection Standard(s)

LCL Lower Confidence Limit(s)

m meter

mg/L milligram per liter

MNA monitored natural attenuation

MSL mean sea level

MW- denotes "Monitoring Well" NCDS National Coal Data System

NELAP National Environmental Laboratory Accreditation Program

NTU nephelometric turbidity unit
ORP oxidation reduction potential

pCi/L picocuries per liter
PE Professional Engineer
PG Professional Geologist
PL prediction limits

PQL practical quantitation limit
PVC polymerizing vinyl chloride
QA/QC quality assurance/quality control

RL reporting limit

RPD relative percent difference SEM scanning electron microscopy

SM Standard Method(s)

SSE selective sequential extraction

SSI	statistically significant increase
SSL	statistically significant level

TAL Test America, Inc.
TOC top of casing

TDS total dissolved solids

USGS Unites States Geological Survey

UTLs Upper Tolerance Limits

XRD X-ray diffraction XRF X-ray fluorescence

1.0 INTRODUCTION

In accordance with the United States Environmental Protection Agency (EPA) coal combustion residual (CCR) rule (40 CFR Part 257, Subpart D) and the State of Alabama Department of Environmental Management (ADEM) Admin. Code Ch. 335-13-15, this 2021 Annual Groundwater Monitoring and Corrective Action Report has been prepared to document 2021 semi-annual assessment groundwater monitoring activities at the Plant Gadsden Ash Pond (Ash Pond) and to satisfy the requirements of § 257.90(e) and ADEM Admin. Code r. 335-13-15-.06(1)(f). Semi-annual assessment monitoring and associated reporting for the Ash Pond is performed in accordance with the monitoring requirements 40 CFR § 257.90 through § 257.95 and ADEM Admin. Code r. 335-13-15-.06(1) through r. 335-13-15-.06(6).

On March 15, 2021, in an effort to streamline reporting cycles and provide a single set of comprehensive semi-annual reports to ADEM, APC requested approval to re-locate the discussion of delineation results routinely provided in Semi-Annual Progress Reports to Semi-Annual Groundwater Monitoring and Corrective Action Reports. The Semi-Annual Progress Reports have historically been provided to the Department in March and September and covers content described in Part F of AO No. 19-104-GW. ADEM approved this approach and revised timeline for submittals on March 16, 2021. Semi-Annual and Annual Groundwater Monitoring and Corrective Action Reports will now include an update on groundwater delineation activities completed since the submittal of the Facility Plan for Groundwater Investigation (September 30, 2019) and will continue until released in writing.

2.0 MONITORING PROGRAM STATUS

The site is currently in assessment monitoring and is evaluating groundwater corrective actions alternatives. In accordance with § 257.94(e) and ADEM Admin. Code r. 335-13-15-.06(5)(e), APC implemented assessment monitoring in July 2019. SSIs of Appendix III and SSLs of Appendix IV parameters were identified at the Gadsden Ash Pond during sampling events conducted in the fall of 2020 and spring of 2021. Pursuant to § 257.95(g)(3)(i) and ADEM Admin. Code r. 335-13-15-.06(6)(g)4.(i), APC completed an ACM in accordance with § 257.96, ADEM Admin. Code r. 335-13-15-.06(7), and ADEM AO No. 19-104-GW. The ACM was completed July 10, 2020, and a public meeting was held to discuss the ACM on October 19, 2020.

In accordance with § 257.97(a), ADEM Admin. Code r. 335-13-15-.06(8)(a), and Part C of AO No. 19-104-GW, Semi-Annual Remedy Selection and Design Progress Report were submitted beginning in December 2020. The semi-annual progress reports were prepared to describe the progress made in selecting and designing a remedy for the Site.

A Groundwater Remedy Selection Report was prepared to meet the requirements of § 257.97, ADEM Admin. Code r. 335-13-15-.06(8), and Part C of AO No. 19-104-GW and submitted to ADEM on October 29, 2021. Subsequently, within 90 days of remedy selection, a Corrective Action Groundwater Monitoring Program was developed and submitted to ADEM on January 27, 2022, for review.

The Corrective Action Groundwater Monitoring Program was prepared to meet § 257.98 and ADEM Admin. Code r. 335-13-15-.06(9) to detect potential downgradient changes in groundwater quality and assess the efficacy of the selected groundwater corrective action remedies. The Monitoring Program has been developed to meet the requirements of CFR § 257.98(a)(1) and ADEM Admin. Code r. 335-13-15-.06(9)(a)(1) and will supplement the ongoing CCR compliance groundwater monitoring currently being performed at the Site.

3.0 SITE LOCATION AND DESCRIPTION

Plant Gadsden is located in the northeastern area of the city of Gadsden, in central Etowah County, Alabama. The physical address of the plant is 1000 Goodyear Avenue, Gadsden, AL 35903. Plant Gadsden occupies Sections 2, 3, and 11, Township 12 South, Range 6 East (USGS, 1986). The Ash Pond is located northeast of the plant and separated from the main plant by the Coosa River. **Figure 1, Site Location Map,** depicts the location of the Plant and Ash Pond with respect to the surrounding area.

3.1 PHYSICAL SETTING

Plant Gadsden is located within the Coosa Valley district of the Valley and Ridge physiographic section (Sapp and Emplaincourt, 1975). The neighboring Coosa River forms a broad, gently sloping valley with elevations ranging from 510 to 530 feet above mean sea level (MSL). To the west of the Coosa River is a series of ridges including Shinbone Ridge, Lookout Mountain, and Big Ridge, some of which reach elevations above 1,450 feet MSL (USGS, 1986). Local Site elevations near the Ash Pond are approximately 520 feet MSL. The embankment elevations that form the perimeter of the Ash Pond range from 520 to 525 feet MSL. **Figure 2**, **Site Topographic Map**, provides the topography of the Site.

3.2 SITE GEOLOGY AND HYDROGEOLOGY

Plant Gadsden is in the Appalachian thrust belt, which consists of a series of northeast trending thrust sheets and folds of Cambrian to Pennsylvanian strata. In general, the valleys represent eroded or breached anticlines underlain by Cambrian and Ordovician carbonates. The ridge crests are typically composed of relatively resistant sandstone and chert units and represent erosional remnants (Mann and Baker, 1995). The Appalachian thrust belt is bordered to the west by the Black Warrior basin, to the northwest by the East Warrior Platform, and to the north-northwest by the Nashville dome. It is bordered to the southeast by the Appalachian Piedmont (Osborne and Raymond, 1992).

A thrust fault lies near Plant Gadsden. The exact geometry and configuration of the fault is unknown because the fault is concealed under alluvium. To the north of the fault, folds and faults have a more moderate expression and generally trend to the northeast. To the south of the thrust fault, geologic structures become more complex, folding is more intense, and the structures trend in a more easterly orientation (Bossong, 1989). In general, faults in this region (including the Gadsden Fault) were active during the late Paleozoic Alleghanian orogeny but are not considered to be presently active. **Figure 3, Site Geologic Map**, illustrates the surface geology at the Site and neighboring areas.

Boring logs from monitoring well and piezometer installations provide details on subsurface geologic conditions between ground surface and 75 feet below ground surface (ft BGS). Site geology consists of two distinct formations underlying the Ash Pond, described from shallowest to deepest as follows:

- 1. Surficial soils are described as Quaternary-age alluvial low terrace deposits and high terrace deposits consisting of varying amounts of sand, silt, clay, and gravel associated with river deposition (Raymond et al., 1988). These deposits range from 20 to 30 feet in thickness at the Site. Site groundwater monitoring wells are installed within higher-permeability zones near the base of the alluvial deposits and near the interface with underlying rock.
- 2. The Conasauga Formation (Middle and Upper Cambrian), which consists of varying amounts of limestone, dolomite, and shale. Chert and siltstone horizons can be present locally. Limited core logs from the Site indicate the Conasauga to be a medium to dark gray mudstone or shale with noticeable calcite veining. In general, the Conasauga Formation is characterized as a shoaling-upward succession in which deep-water shale grades vertically into a diverse assemblage of carbonate ramp facies. In Etowah County, the Conasauga Formation has been targeted as a potential source for shale gas and is preserved within the Gadsden antiform (Pashin, 2008). The Conasauga Formation is not considered to be a water-bearing aquifer at the Site.

Figure 4A Geologic Cross-Sections A-A' and Figure 4B, Geologic Cross-Sections B-B' illustrate the geologic layering beneath the Site.

3.2.1 Uppermost Aquifer

The uppermost aquifer beneath the Site corresponds to a coarse and more permeable fraction of alluvial overburden soils and weathered or fractured rock near the soil-rock interface. The uppermost aquifer is typically located at depths between 15 and 50 feet below ground surface (BGS). Soils are generally poorly graded sands with layers of clay and well-graded gravels that overlay a mudstone or shale bedrock. Groundwater recharge to the uppermost aquifer is largely accomplished by infiltration of precipitation and subsequent percolation down to the water table. Monitoring wells are typically screened across reddish-brown (iron-coated) coarse sediments and/or weathered Conasauga mudstone/shale.

3.2.2 Flow Interpretation

Within overburden soils beneath the Site, groundwater flow occurs by porous (Darcy) flow mechanics with potential for preferential movement along more conductive sand and gravel lenses or channels. Slug and

Shelby Tube permeameter testing reveals that sandy fractions generally have a hydraulic conductivity between 0.5 and 7 feet per day.

Based on recent groundwater elevation data, it appears a localized groundwater divide is present in the drier later summer-fall season along the north side of the Ash Pond. During drier season monitoring events (August 2019, August 2020, and October 2021), groundwater elevations were an average of 4 to 6 feet lower in monitoring wells GSD-AP-PZ-1, GSD-AP-PZ-5, GSD-AP-PZ-6, GSD-AP-MW-18H, and GSD-AP-MW-19H when compared to the April 2020 and March 2021 monitoring events.

The result of the localized groundwater divide is a temporary reversal of flow from south to north in the direction of an intermittent stream that flows seasonally in response to the seasonal rise in the water table. It is possible that seasonal changes in evapotranspiration may cause a rise and fall in the water table, which produces bidirectionality in both stream-groundwater head gradients. Hydraulic gradients across the site, and Ash Pond, decrease during the drier season months leading to slower groundwater flow velocities.

During wetter months or seasons, this localized groundwater divide is not apparent on potentiometric surface contour maps. Instead, groundwater flow is more uniform with a predominantly southern flow direction. Groundwater flows from northeast to southwest prior to shifting to a more southern flow direction beneath the ash pond. Groundwater northwest and west of the ash pond provides some variability with a more local western flow component.

Groundwater elevations fluctuate in response to rainfall. Fluctuations are typically greater further away from the Coosa River, which is consistent with groundwater recharge areas.

Upgradient wells, located on the opposite side of the Coosa River, demonstrate groundwater flow to the north or northeast. The Coosa River forms a groundwater divide separating the upgradient and downgradient flow regimes.

3.3 GROUNDWATER MONITORING SYSTEM

Pursuant to § 257.91 and ADEM Admin. Code r. 335-13-15-.06(2), Plant Gadsden has installed a groundwater monitoring well network to evaluate groundwater quality within the uppermost aquifer. The certified groundwater monitoring system for the Plant Gadsden Ash Pond is designed to monitor groundwater flow passing the waste boundary of the CCR unit. Wells were sited to serve as upgradient and downgradient monitoring locations based on groundwater flow direction as determined by the potentiometric surface elevation contour maps. All groundwater monitoring wells were designed and

constructed using "Design and Installation of Groundwater Monitoring Wells in Aquifers," ASTM Subcommittee D18.21, as a guideline.

3.3.1 Monitoring Wells

Well locations at the site are designated as upgradient, downgradient, piezometer (water-level only), vertical delineation, and horizontal delineation. The following subsections provide a summary of well designations and, if applicable, changes or modifications to the well network or designations. As described in the site Groundwater Monitoring Plan, modifications to the well network or designation must first be approved by ADEM.

The location and designation of site wells are presented on Figure 5, Monitoring Well Location Map and Table 1a. Compliance Monitoring Well Network Detail, Table 1b. Delineation Monitoring Well Network Details, and Table 1c. Piezometer Well Network Details, summarizes the monitoring well construction details and design purpose for the Plant Gadsden Ash Pond.

3.3.1.1 Upgradient Wells

To evaluate upgradient well locations at the Site, groundwater elevations and CCR indicator parameters were reviewed. Radial flow has historically been observed at the Ash Pond and identifying a truly upgradient location in the vicinity was infeasible. To meet the requirements of the rules and establish background groundwater quality not affected by a release from the unit, on-site groundwater monitoring wells were installed within the same geologic formation as site monitoring wells and across the river from the Ash Pond. Monitoring well locations MW-14, MW-16, and MW-17 serve as upgradient locations for the Ash Pond. These well locations are located on the opposite side of the Coosa River and are hydraulically disconnected from downgradient flow away from the Gadsden Ash Pond. Groundwater flow in the area of upgradient locations is from south to north or southwest to northeast towards the Coosa River. **Table 1a**, summarizes the monitoring well construction details and design purpose.

3.3.1.2 Downgradient Wells

Monitoring well locations MW-1 through MW-12, PZ-1, PZ-2, PZ-5, and PZ-6 are used as downgradient locations. These well locations are proximal to the waste boundary to the north, east, south, and west of the Ash Pond. Because groundwater flow conditions can change seasonally in response to rainfall at the Site (as described in **Section 3.2.2**), wells previously identified as being downgradient to the north (GSD-AP-MW-1, GSD-AP-MW-2, GSD-AP-MW-3, GSD-AP-MW-4, GSD-AP-MW-5, GSD-AP-PZ-1, GSD-AP-MW-1, GSD-AP-MW-2, GSD-AP-MW-3, GSD-AP-MW-4, GSD-AP-MW-5, GSD-AP-PZ-1, GSD-AP-MW-1, GSD-AP-MW-2, GSD-AP-MW-3, GSD-AP-MW-4, GSD-AP-MW-5, GSD-AP-PZ-1, GSD-AP-MW-1, GSD-AP-MW-1, GSD-AP-MW-2, GSD-AP-MW-3, GSD-AP-MW-4, GSD-AP-MW-5, GSD-AP-PZ-1, GSD-AP-MW-1, GSD-AP-MW-2, GSD-AP-MW-3, GSD-AP-MW-4, GSD-AP-MW-5, GSD-AP-PZ-1, GSD-AP-MW-1, GSD-AP-MW-1, GSD-AP-MW-2, GSD-AP-MW-1, GSD-AP-MW-2, GSD-AP-MW-3, GSD-AP-MW-4, GSD-AP-MW-5, GSD-AP-PZ-1, GSD-AP-MW-1, GSD-AP-MW-

AP-PZ-5, GSD-AP-PZ-6) now appear hydraulically upgradient of the Site or hydraulically separated from the Site by a localized groundwater divide. APC will continue to monitor all wells surrounding the Ash Pond as downgradient compliance wells until a revision to the network is proposed to and approved by ADEM. Changes to well designations are not recommended at this time. **Table 1a**, summarizes the monitoring well construction details and design purpose.

3.3.1.3 Delineation Wells

Pursuant to AO 19-104-GW, additional wells were installed in October 2019, January 2020, and March 2021. These delineation wells were installed to define the horizontal and vertical extent of arsenic and lithium MCL exceedances. Horizontal delineation wells GSD-AP-MW-18H, GSD-AP-MW-19H, and GSD-AP-MW-20H were installed in October 2019 north of compliance wells GSD-AP-MW-2/GSD-AP-MW-4 and in areas historically interpreted as downgradient of the Ash Pond.

Two vertical delineation wells, GSD-AP-MW-2V and GSD-AP-MW-4V, were installed in October 2019, and one vertical delineation well, GSD-AP-MW-2VA, was installed in January 2020, to delineate the vertical extent of MCL exceedances. Vertical delineation well GSD-AP-MW-2V did not yield sufficient groundwater for well development and has been converted to a temporary piezometer. As a result, GSD-AP-MW-2VA was installed to replace GSD-AP-MW-2V. Because GSD-AP-MW-2VA exhibited elevated lithium concentrations above the GWPS, a second, deeper vertical delineation well was proposed and GSD-AP-MW-2VB was installed in March 2021. These vertical delineation wells were installed adjacent to monitoring wells GSD-AP-MW-2 and GSD-AP-MW4 where elevated concentrations of constituents had been observed.

Following a review of the March 2021 analytical data, it was determined that additional (Phase III) vertical delineation was necessary to further evaluate the spatial extent of lithium around wells GSD-AP-MW-2, GSD-AP-MW-2VA and GSD-AP-MW-2VB and further north and northwest in the direction of groundwater flow associated with the seasonal groundwater divide. Five vertical delineation wells (GSD-AP-MW-2VC, GSD-AP-MW21VB, GSD-P-MW-21VC, GSD-AP-MW-22VB, and GSD-AP-MW-23VB) were installed between August 17,2021 and September 3, 2021. Two of the vertical delineation wells (GSD-AP-MW-21VC and GSD-AP-MW-22VB) were successfully developed and sampled during the second 2021 semi-annual sampling event in October. Vertical delineation wells GSD-AP-MW-2VC, GSD-AP-MW21VB, and GSD-AP-MW-23VB did not produce sufficient water to be sampled and are designated as water level only piezometers.

Delineation wells are identified on **Figure 5** and detailed on **Table 1b**. All delineation wells are sampled semi-annually as part of the semi-annual assessment groundwater monitoring program. New delineation well boring logs and well installation records are included in **Appendix A, Boring and Well Construction Logs.**

3.3.1.4 Piezometers

Vertical delineation wells GSD-AP-MW-2V and GSD-AP-MW-2VC, GSD-AP-MW21VB, and GSD-AP-MW-23VB did not produce sufficient water for sampling. As a result, these wells have been designated as piezometers and will be used better define groundwater flow direction at the Site. **Table 1c**, summarizes the water level only piezometer construction details and design purpose.

3.3.1.5 Monitoring Well Replacement and Abandonment

No monitoring well replacements and/or abandonments were conducted during the reporting period.

3.4 GROUNDWATER MONITORING HISTORY

In accordance with § 257.94(b) and ADEM Admin. Code r. 335-13-15-.06(5)(b), eight independent samples were collected from each background and downgradient well and analyzed for the constituents listed in Appendix III and IV prior to April 17, 2019. Background sampling was performed over the period of December 2017 to February 2019. Groundwater sampling for the first detection monitoring event after the background period was performed in February 2019.

Based on results of the 2018 and 2019 monitoring, APC initiated an assessment monitoring program on July 16, 2019. Pursuant to 40 CFR § 257.95(a) and ADEM Admin. Code r. 335-13-15-.06(6)(a), monitoring wells were sampled for all Appendix IV parameters in August, within 90 days of initiating the assessment monitoring program.

The Site entered assessment monitoring pursuant to 40 CFR § 257.95(a) and ADEM Admin. Code r. 335-13-15-.06(6)(a) in July 2019. Statistical evaluations of the 2019 assessment monitoring data identified SSLs of Appendix IV constituents above the GWPS, and the Site entered Assessment of Corrective Measures. Pursuant to 40 CFR §257.95(g)(1), ADEM Admin. Code r. 335-13-15-.06(6)(g)2., and AO 19-104-GW, additional monitoring wells were installed to characterize the horizontal and vertical extent of GWPS exceedances identified during assessment monitoring in three phases of groundwater investigations between October 2019 and September 2021. These wells, along with the compliance monitoring well network, are sampled semi-annually. Delineation wells installed at the Site have been sampled concurrently

with the compliance monitoring well network beginning with the first semi-annual sampling event after the well installation.

3.4.1 Available Monitoring Data

Laboratory analytical data is available for the groundwater monitoring history outlined in Section 3.4. Tables summarizing analytical data from all previous groundwater monitoring events are included in Appendix B, Groundwater Analytical Data.

3.4.2 Historical Groundwater Flow

Groundwater level monitoring was initiated with background sampling in December 2017, before Ash Pond closure and dewatering was complete. Groundwater elevation contours between December 2017 and December 2018 displayed a radial pattern of groundwater flow away from the Site. Groundwater flow interpretations suggest flow to the north, south, east, and west from this mound. Thus, wells around the periphery of the pond are all classified as downgradient.

Between December 2018 and February 2019, as the pond was dewatered, the radial groundwater flow pattern appeared to diminish, exhibiting a more north-to-south groundwater flow pattern. The observed change in flow pattern likely represents groundwater flow returning to pre-pond conditions as the hydraulic influence of the pond was eliminated by closure and dewatering.

A less prominent groundwater mound was observed just to the north of the Site during the August 2019 August 2020, and October 2021 sampling events and appears to form a localized groundwater divide where groundwater flow bifurcates to the north (north of the divide) or to the south (south of the divide). The groundwater divide appears to be centered approximately 120 feet north of the Ash Pond, indicating north to south flow across the Ash Pond. This groundwater flow divide appears to be seasonal or temporary with occurrences during drier periods. Tables summarizing groundwater elevations from all groundwater monitoring events are included in **Appendix C**, **Historical Groundwater Elevations Summary**.

3.4.3 Monitoring Variance

The groundwater monitoring program at the site is operating under a Variance granted by ADEM on April 15, 2019, to conform State monitoring requirements under the CCR rule to Federal requirements. The variance:

- 1. Retains boron as an Appendix III detection monitoring parameter and excludes it as an Appendix IV assessment monitoring parameter.
- 2. Authorizes the use of Federally-published GWPS of 0.006 milligrams per liter (mg/L) for cobalt, 0.015 mg/L for lead, 0.040 mg/L for lithium, and 0.100 mg/L for molybdenum in lieu of background where those levels are greater than background levels.

3.5 GROUNDWATER SAMPLING AND ANALYSIS

Site compliance wells are sampled semi-annually between: (1) early to late fall and (2) late winter – mid-spring. The temporal spacing between sampling events is sufficient to ensure that sampling events yield independent groundwater samples and generally represent different climatic or meteorological seasons with often foster a degree of natural variability in groundwater quality.

During routine semi-annual monitoring events, all compliance and delineation network wells are sampled and analyzed for Appendix III and Appendix IV constituents. Additional general chemistry constituents (major ions and anions) are now being collected routinely as well. These non-compliance parameters will be periodically analyzed to explore seasonal or closure-related changes to geochemical facies in site groundwater.

The following subsections summarize the sequential steps and process for the sampling, handling/transport, and analysis of compliance-related groundwater samples at the site.

3.5.1 Groundwater Sample Collection

Prior to recording water levels and collecting samples, each well was opened and allowed to equilibrate to atmospheric pressure. Within a 24-hour period, depths to groundwater were measured to the nearest 0.01 foot with an electronic water level indicator with depth referenced from the top of the inner PVC well casing. Groundwater elevations were calculated by subtracting the depth to groundwater from surveyed top-of-casing (TOC) elevations.

Groundwater samples were collected from monitoring wells using low-flow sampling procedures in accordance with § 257.93(a) and ADEM Admin. Code r. 335-13-15-.06(4)(a). All monitoring wells at Plant Gadsden are equipped with a dedicated pump. Monitoring wells were purged and sampled using low-flow sampling procedures. In this procedure, field water quality parameters (pH, turbidity, conductivity, and dissolved oxygen) are measured to determine stabilization and groundwater samples are collected when the following stabilization criteria are met:

- 0.2 standard units for pH.
- 5% for specific conductance.
- 0.2 mg/L or 10% for DO > 0.5 mg/l (whichever is greater).
- Turbidity measurements less than 10 NTU.
- Temperature and ORP record only, no stabilization criteria.

During purging and sampling, an In-Situ Aqua Troll instrument was used to monitor and record field parameters. Once stabilization was achieved, samples were collected and submitted to the laboratory following standard chain-of-custody (COC) protocol. Field data recorded in support of groundwater sampling activities are included in **Appendix D**, **Laboratory and Field Records**.

3.5.2 Sample Preservation and Handling

Groundwater samples were collected within the designated size and type of laboratory-supplied containers required for specific parameters. Sample bottles were pre-preserved by the laboratory. Where temperature control was required, samples were placed in an ice-packed cooler and cooled to less than 6 °C immediately after collection. Blue ice or other cooling packs were not used for cooling samples. An ice-packed cooler was on hand when samples were collected.

3.5.3 Chain of Custody

A chain-of-custody (COC) record was used to track sample possession from the time of collection to the time of receipt at the laboratory. All samples were handled under strict COC procedures beginning in the field. COC records are included with the analytical laboratory reports included in **Appendix D**.

3.5.4 Laboratory Analysis

Laboratory analyses were performed by the APC Environmental Laboratory (APCEL) in Calera, Alabama and Pace Analytical Services, LLC (Pace). Each of these labs are accredited by National Environmental Laboratory Accreditation Program (NELAP) and maintain a NELAP certification for all parameters analyzed. Table 2, Monitoring Parameters and Reporting Limits, lists Assessment Monitoring constituents analyzed from site groundwater samples. Laboratory reports for the monitoring period are presented in Appendix D.

3.5.5 Monitoring Period Sampling Events Summary

As required by § 257.90(e) and ADEM Admin. Code r. 335-13-15-.06(1)(f), the following describes monitoring-related activities performed during the first semi-annual Assessment Monitoring sampling event that occurred between October 4, 2021 and October 12, 2021.

Groundwater samples were analyzed for the full list of Appendix III and Appendix IV parameters during the Assessment Monitoring event. All groundwater sampling activities were conducted by APC Field and Water Services. Pace Analytical Services performed the laboratory analyses of Radium-226 and Radium-228 (reported combined). APCEL performed the remaining Appendix III and Appendix IV analyses. Analytical data from the groundwater monitoring events is included as **Appendix D**, in accordance with the requirements of § 257.90(e)(3), and ADEM Admin. Code r. 335-13-15-.06(1)(f)3.

4.0 GROUNDWATER DATA EVALUATION

During the October 2021 sampling event, depths to water ranged from 3.02 to 25.74 feet below top of casing (ft BTOC) and groundwater elevations ranged from 530.89 to 508.03 feet above mean seal level (ft NAVD). Based on recent groundwater elevation data, a localized groundwater divide is present in the drier fall season along the north side of the Ash Pond. **Figure 6, Potentiometric Surface Contour Map** (October 4, 2021) depicts groundwater elevations and inferred groundwater flow direction from higher elevation to lower.

As shown on Figure 6, the seasonal groundwater divide is depicted north of the Ash Pond. Recent monitoring events have shown that this seasonal groundwater divide occurs during dry season monitoring events (i.e., August 2020 and August 2021).

Small magnitude vertical gradients were noted between compliance well GSD-AP-MW-2 and corresponding vertical delineation wells GSD-AP-MW-2VA, GSD-AP-MW-2VB, and GSD-AP-MW-21VC which implies that stratigraphic intervals monitored are not confined to a high degree and appear hydraulically connected.

Figures 6 also depicts a northeast groundwater flow direction on the opposite side of the Coosa River where upgradient wells are located. The Coosa River forms a groundwater divide separating the upgradient and downgradient flow regimes. Recent groundwater elevation data have been tabulated and are included in **Table 3, Recent Groundwater Elevations Summary.** All available groundwater elevation data recorded since 2017 have been tabulated and included in **Appendix C.**

4.1 GROUNDWATER FLOW VELOCITY CALCULATIONS

Groundwater flow velocity at the Site was calculated based on hydraulic gradients, hydraulic conductivity values derived from slug tests, and an estimated effective porosity of the screened horizon. To date, four slug tests have been analyzed. Based on these analyses, the horizontal hydraulic conductivities for the uppermost aquifer ranges from 2.28 ft/day and 67.75 ft/day, with 67.75 ft/day observed in a more permeable gravel zone. The geometric mean hydraulic conductivity for the Site is 12.33 ft/day. The hydraulic gradient was calculated between well pairs shown in **Appendix E**, **Horizontal Groundwater Flow Velocity Calculations**. The hydraulic conductivity value used in the calculations is 4.35 x 10-3 cm/sec or 12.33 ft/day and representative of the geometric mean. An estimated effective porosity of 20% is used in the flow rate calculations.

Horizontal flow velocity was calculated using the commonly-used derivative of Darcy's Law:

$$V = \frac{K * i}{n_e}$$

Where:

V =Groundwater flow velocity $\left(\frac{feet}{day}\right)$

K =Average permeability of the aquifer $\left(\frac{feet}{day}\right)$

i =Horizontal hydraulic gradient

 n_e = Effective porosity

Using this equation, horizontal groundwater flow velocity is calculated for the site flow regime. **Appendix E** presents the estimated horizontal flow velocity calculated using groundwater elevation data from the October 2021 sampling event.

5.0 EVALUATION OF GROUNDWATER QUALITY DATA

During each sampling event, quality assurance/quality control samples (QA/QC) were collected at an interval of 1 sample per group of 10 well samples. These QA/QC samples include well duplicates, equipment blanks, and field blanks. Routine analyses of field QA/QC samples are a method for evaluating whether artificial bias could have been introduced into lab results by ways of sampling activities or equipment.

5.1 DATA VALIDATION QUALITY ASSURANCE/QUALITY CONTROL

Analytical precision is measured through the calculation of the relative percent difference (RPD) of two data sets generated from a similar source. Here, a comparison of results between samples and field duplicate samples are used as measure of laboratory precision. Where field duplicates are collected, the RPD between the sample and duplicate sample is calculated as:

$$RPD = \frac{Conc1 - Conc2}{(Conc1 + Conc2)/2}$$

Where:

RPD = Relative Percent Difference (%)

Conc1 = Higher concentration of the sample or field duplicate

Conc2 = Lower concentration of the sample or field duplicate

Where the relative percent difference is below 20%, the difference is considered acceptable, and no further action is needed. Where an RPD is greater than 20%, further evaluation is required in attempt to determine the cause of the difference and potentially result in qualified data. **Table 4a, Relative Percent Difference**Calculations, provides the relative percent differences for sample and sample duplicates during the first semi-annual sampling event. RPD calculations are only conducted on sets of valid detections as estimated concentrations and non-detects do not provide a reliable base for comparison. All RPDs were below 20% for the October 2021 sampling event.

Analytical data reviewed provided low-level or trace detections in field and or equipment blanks during monitoring period sampling events. **Table 4B**, **Field QC**: **Blank Detections** provides a summary of low-

level detections observed during the first semi-annual monitoring event. Each of these detections were estimated concentrations, above the MDL but below the RL, and qualified in the laboratory analytical reports with "J flags." However, if concentrations are detected above the MDL in field QC samples, original results on the (1) date of a blank detection and (2) with a value less than 5 times the field QC detection are flagged with a (+) U* and MDL/RL values modified based upon the blank concentration.

Table 4C, Field QC: Validation Results (Blanks) provides a summarized list of data validation flags that could be applied to site data during the first semi-annual monitoring period. Validated flags do not have an impact on possible statistical analyses due to: (1) low-level concentrations flagged during validation and or (2) constituents flagged are not Site COI. The extent of trace chromium and lead detections in blanks can be explained by low MDL values ranging from 0.00021 to 0.00023 mg/L and 0.00014 mg/L, respectively.

5.2 STATISTICAL METHODOLOGY AND TESTS

The Sanitas groundwater statistical software is used to perform the statistical analyses. Sanitas is a decision support software package that incorporates the statistical tests required of Subtitle C and D facilities by EPA regulations. The analysis complies with the federal rule for the Disposal of Coal Combustion Residuals from Electric Utilities (CCR Rule, 2015) as well as with the USEPA Unified Guidance (2009).

5.2.1 Appendix III Evaluation

Intrawell prediction limits, combined with a 1-of-2 verification strategy, were constructed for fluoride and pH. Interwell prediction limits, combined with a 1-of-2 verification strategy, are used to evaluate boron, calcium, chloride, sulfate, and TDS. Interwell prediction limits pool upgradient well data to establish a background limit for an individual constituent. The most recent sample from each downgradient well is compared to the background limit to identify SSIs.

Groundwater Stats Consulting demonstrated that these test methods were appropriate in the April 2019 Statistical Analysis Plan. Time series plots were used to screen proposed background data for suspected outliers, or extreme values that would result in limits that are not conservative from a regulatory perspective. Suspected outliers at all wells for Appendix III parameters are formally tested using Tukey's box plot method and, when identified, flagged in the computer database.

The following adjustments were made:

- No statistical analyses are required on wells and analytes containing 100% non-detects (EPA Unified Guidance, 2009, Chapter 6).
- When data contain <15% non-detects in the background, simple substitution of one-half the reporting limit is utilized in the statistical analysis. The reporting limit utilized for non-detects is the practical quantitation limit (PQL) as reported by the laboratory.
- When data contain between 15-50% non-detects, the Kaplan-Meier non-detect adjustment is applied to the background data.
- Non-parametric prediction limits are used on data containing greater than 50% non-detects.

5.2.2 Appendix IV Evaluation

When in assessment, Appendix IV constituents are sampled semi-annually, and concentrations are statistically compared to GWPS. Following the Unified Guidance, spatial variation for Appendix III parameters is tested using the ANOVA; this test is not prescribed for Appendix IV constituents. Unlike the statistical evaluation of Appendix III constituents (where single-sample results are compared to the statistical limit), Appendix IV analysis uses the pooled results from each downgradient well to develop a well-specific Confidence Interval that is compared to the statistical limit. The statistical limit is either the Interwell Tolerance limit (i.e. background) calculated using the pool of all available upgradient well data (see Chapter 7 of the Unified Guidance), or an applicable groundwater protection standard such as the MCL. Appendix IV background data are screened for outliers and extreme trending patterns that would lead to artificially elevated statistical limits.

Parametric tolerance limits (i.e. UTLs) were calculated using pooled upgradient well data for Appendix IV parameters with a target of 95% confidence and 95% coverage. The confidence and coverage levels for nonparametric tolerance limits are dependent on the number of background samples. The UTLs were then used as the GWPS.

As described in 40 CFR §257.95(h)(1)-(3) and the ADEM Variance (see Section 3.4.3), the GWPS is:

- (1) The maximum contaminant level (MCL) established under 40 CFR §§141.62 and 141.66.
- (2) Where an MCL has not been established:
 - (i) Cobalt 0.006 mg/l.
 - (ii) Lead 0.015 mg/l.
 - (iii) Lithium 0.040 mg/l.
 - (iv) Molybdenum 0.100 mg/l.

(3) Background levels for constituents where the background level is higher than the MCL or rule-specified GWPS.

In assessment monitoring, when the Lower Confidence Limit (LCL), or the entire interval, exceeds the GWPS as discussed in the USEPA Unified Guidance (2009), the result is recorded as an SSL. GWPS for Appendix IV constituents are updated on a biennial schedule. This schedule was initiated in 2019 with updates generally occurring after the second semi-annual sampling event of each biennial year. Data from upgradient wells collected between updates may still be used to support ASDs if merited.

5.3 STATISTICAL EXCEEDANCES

Analytical data from the October 2021 assessment monitoring event were statistically analyzed in accordance with the Professional Engineer (PE)-certified Statistical Analysis Plan (April 2019 and revised in August 2020) by Groundwater Stats Consulting. Appendix III statistical analysis was performed to determine if constituents have returned to background levels. Appendix IV assessment monitoring parameters were evaluated to determine if concentrations statistically exceeded the established groundwater protection standard.

5.3.1 Appendix III Constituents

Based on review of the Appendix III statistical analysis presented in **Appendix F, Statistical Analyses**, Appendix III constituents have not returned to background levels.

5.3.2 Appendix IV Constituents

Table 5, Summary of Background Levels and Groundwater Protection Standards, summarizes the background limit established at each monitoring well and the GWPS. A summary table of the statistical limits accompanies the prediction limits in **Appendix F.**

5.3.2.1 First Semi-Annual Monitoring Period

Statistical analysis of Appendix IV data identified the following SSLs over GWPS at the listed wells during the first (October 2021) semi-annual monitoring event:

- GSD-AP-MW-2: Arsenic.
- GSD-AP-MW-4: Arsenic.

Laboratory analysis initially reported a combined radium (226+228) concentration of 6.52 picocuries per liter (pCi/L) in compliance well GSD-AP-MW-10 exceeding the GWPS of 5 pCi/L. However, after reanalyzing the sample, Pace revised the reported concentration to 0.778U pCi/L. This is more in-line with historical concentrations were 75% of sampling events have provided "not-detected" and when detected concentrations haver ranged from 0.474 to 0.678 pCi/L. The revised radium laboratory report for the

monitoring period is presented in Appendix D. Additionally, compliance well GSD-AP-MW-10 was

resampled on January 11, 2022, for radium and the results are pending laboratory analysis.

Table 6, First Semi-Annual Monitoring Event Analytical Summary provides a summary of all detected

constituents for the first 2021 semi-annual sampling event. Statistical reporting output is included as

Appendix F.

Limited groundwater analytical data is available for delineation wells installed at the Site; therefore,

groundwater quality is simply compared to the GWPS. A review of analytical data derived from delineation

wells revealed the following GWPS exceedances for the first semi-annual sampling event (October 2021):

• GSD-AP-MW-2VA: Lithium.

• GSD-AP-MW-2VB: Fluoride, Lithium.

• GSD-AP-MW-21VC: Fluoride, Lithium.

• GSD-AP-MW-22VB: Lithium.

Fluoride was detected at a concentration exceeding the GWPS in the newly installed vertical delineation

well GSD-AP-MW-2VB. However, it is not being considered as a potential impact from the Ash Pond.

Additional discussion is presented in Section 6.1.2 outlining rationale for why fluoride is not being

considered an impact from the Ash Pond.

An ACM was prepared to evaluate potential groundwater corrective measures for the occurrence of arsenic

and lithium in groundwater at the Site in accordance with § 257.96, ADEM Admin. Code r. 335-13-

15-.06(7), and ADEM Administrative Order No. 19-104-GW. The ACM was completed on July 10, 2020

and submitted to ADEM and placed on the CCR compliance web site on August 9, 2020. A summary of

ACM-related activities and findings is presented in **Section 7.**

19

6.0 GROUNDWATER ASSESSMENT

As required by Part F of the Order (AO 19-104-GW) and correspondence from ADEM (March 2021), this report provides an update on groundwater delineation activities completed since the submittal of the Facility Plan for Groundwater Investigation (September 30, 2019). The primary purpose of this plan and subsequent phases of work were to identify the horizontal and vertical extent of groundwater impacts defined by the EPA Appendix IV groundwater protection standards.

A comprehensive groundwater delineation report summarizing findings was submitted to ADEM in November 2020. The conclusion and results presented indicate that groundwater delineation have been completed to a sufficient degree to define the spatial extent of groundwater impacts and to inform a groundwater remedy selection plan. However, following a review of the March 2021 analytical data, it was determined that additional (Phase III) vertical delineation was necessary to further evaluate the spatial extent of lithium around wells GSD-AP-MW-2, GSD-AP-MW-2VA and GSD-AP-MW-2VB and further north and northwest in the direction of groundwater flow associated with the seasonal groundwater divide.

6.1 CHRONOLOGY OF DELINEATION ACTIVITIES

Initially, Semi-Annual Progress Reports were to be routinely provided to ADEM in May and November, annually. Alabama Power Company (APC) requested approval to combine information typically provided in the Semi-Annual Progress Reports with Semi-Annual Groundwater Monitoring and Corrective Action Reports on March 15, 2021. ADEM approved this approach and revised timeline for submittals on March 16, 2021. APC will now provide the Department with a discussion of delineation results and activities in each semi-annual groundwater monitoring and corrective action report (February; August) until released in writing.

6.1.1 Delineation Wells

Part C of the Order required the installation of additional wells as necessary to define the extent of groundwater impacts. The following sections describe monitoring wells installed to delineate impacts to groundwater.

Phase I - Groundwater Investigation (June 2019 - April 2020)

Phase I was conducted between the dates of June 5, 2019 to April 16, 2020. **Table 1b** and **Figure 5** present details and locations of the on-site delineation wells.

The following summarizes all activities that were completed during Phase I of groundwater delineation at the site:

- Installation of three horizontal delineation wells (GSD-AP-MW-18H through GSD-AP-MW-20H) north of compliance wells GSD-AP-MW-2 and GSD-AP-MW-4, and in areas historically interpreted as downgradient of the Ash Pond, between June 5, 2019 and October 24, 2019. Horizontal delineation wells were installed in coarse fractions of water-bearing alluvial deposits or in shallow, weathered intervals of the Conasauga formation.
- Installation of three vertical delineation wells (GSD-AP-MW-2V, GSD-AP-MW-2VA, and GSD-AP-MW-4V) adjacent to monitoring wells GSD-AP-MW-2 and GSD-AP-MW-4. GSD-AP-MW-2 and GSD-AP-MW-4 had historically exhibited elevated concentrations of Appendix IV constituents. Vertical delineation wells targeted more permeable/fractured water-bearing zones within the Conasauga formation in the upper 50 feet of bedrock.
- Vertical delineation well GSD-AP-MW-2VA was installed because the initial attempt (GSD-AP-MW-2V) at vertical delineation proximal to GSD-AP-MW-2 did not yield sufficient groundwater for well development or sampling. As a result, GSD-AP-MW-2V has been converted to a temporary piezometer.
- Successfully developed the three horizontal and two vertical delineation wells between June 25, 2019 and April 14, 2020.
- Sampled the delineation wells between April 13, 2020 and April 16, 2020.
- Submitted a Groundwater Investigation Report to the Department on May 22, 2020. This report
 recommended a second phase of groundwater investigation to complete delineation of groundwater
 impacts as required by Part C of the Order.
- Submitted an Assessment of Corrective Measures to the Department on July 10, 2020 as required by Part D of the Order.
- Submitted the 2020 Annual Groundwater Monitoring and Corrective Action Report to document groundwater monitoring activities and results from the August 2019 and April 2020 semi-annual monitoring events on August 1, 2020.

Phase II – Groundwater Investigation – March 2021 to July 2021

Field work for Phase II was conducted during March 2021 and included the installation of an additional, deeper vertical delineation well. GSD-AP-MW-2VB was installed in the vicinity of compliance well GSD-AP-MW-2 and vertical delineation well GSD-AP-MW-2VA to further evaluate the depth of potential impacts. The well was installed, developed, and sampled during the second semi-annual event in March 2021.

Phase II - Groundwater Investigation - August 2021 to Present

Field work for Phase III was conducted between August 2021 October 2021 and included the installation additional vertical delineation wells to further evaluate the depth of potential impacts. The following summarizes all activities that were completed during Phase III of groundwater delineation at the site:

- Installation of one additional vertical delineation well (GSD-AP-MW-2VC) to vertically delineate groundwater impacts at the Site in proximity to the GSD-AP-MW-2, GSD-AP-MW-2VA, and GSD-AP-MW-2VB well locations.
- Installation of two additional vertical delineation well (GSD-AP-MW-21VB and GSD-AP-MW-21VC) to vertically delineate groundwater impacts at the Site to the north of GSD-AP-MW-2, GSD-AP-MW-2VA, and GSD-AP-MW-2VB well locations and in the direction of historical groundwater flow.
- Installation of two additional vertical delineation well (GSD-AP-WW-22VB and GSD-AP-MW-23VB) to vertically delineate groundwater impacts at the Site to the north in the direction of historical groundwater flow.
- Successfully developed and sampled vertical delineation wells GSD-AP-MW-21VC and GSD-AP-WW-22VB. Wells GSD-AP-MW-21VB, GSD-AP-MW-2VC, and GSD-AP-MW-23VB did not yield sufficient groundwater for well development or sampling and have been designated as water level only piezometers.

Phase III delineation field work concluded with the first semi-annual groundwater sampling event in October 2021, and a discussion of the results are included in the following sections.

6.2 DISCUSSION OF DELINEATION RESULTS

Groundwater Monitoring and Corrective Action reports for the Plant Gadsden Ash Pond have historically identified SSLs in groundwater for arsenic and lithium in compliance well GSD-AP-MW-2 and arsenic in compliance well GSD-AP-MW-4. Lithium is no longer an SSL in GSD-AP-MW-2 and recent analytical results have identified only lithium concentrations above GWPS in deeper vertical delineation wells GSD-AP-MW-2VA, GSD-AP-MW-2VB, GSD-AP-MW-21VC, and GSD-AP-MW-22VB. However, these new vertical delineation wells are screened in a deeper section of the Conasauga Formation, which has different geochemical characteristics and can introduce new types of variability not observed in shallow site wells.

Additionally, with the most recent phase of groundwater investigation and assessment monitoring, fluoride exceedances were observed in vertical delineation wells GSD-AP-MW-2VB and GSD-AP-MW-21VC. However, it is not being considered as a potential impact from the Ash Pond. The reasons for this determination are date driven: (1) fluoride impacts have not been observed historically in the uppermost aquifer or other site delineation wells (including paired locations GSD-AP-MW-2, GSD-AP-MW-2VA) and (2) GSD-AP-MW-2VB and GSD-AP-MW-21VC are new wells, screened in a deeper section of the Conasauga Formation, which has different geochemical characteristics and can introduce new types of variability not observed in shallow site wells. Groundwater quality obtained from recently installed wells also have the potential to provide (temporary) unrepresentative results as the physical processes utilized during the boring and well installation process can disrupt equilibrium conditions for months to years.

Isoconcentration maps for arsenic and lithium are presented in **Figures 7** and **8**, respectively, and geologic profiles depicting arsenic and lithium concentrations in cross-section are presented in **Figures 9** and **10**, respectively. **Table 6** identifies the October 2021 sampling event Appendix IV constituents in delineation wells with concentrations above GWPS.

Isoconcentration lines shown on **Figures 7 and 8** are data-driven contours derived from the spatial distribution of constituent concentrations in the well network. When spatially distributed objects are spatially correlated (objects close to together have similar characteristics) interpolation analysis can be used to predict "unknowns" between objects. ArcGIS and geostatistical analyst are utilized to interpolate chemical concentrations between well locations. This process involves the transformation of chemical concentration data to log-normal distribution prior to interpolation. In cases where concentrations decrease below the GWPS in between well pairs, the extent of groundwater impacts are interpreted from the interpolated (predicted) data set. This method takes into account the spatial pattern of decreasing concentrations observed in nearby wells.

The location and spacing of delineation wells are largely based upon the following goals and site factors:

- 1. Determine if impacts to groundwater could extend off-site in the direction of groundwater flow away from the facility.
- 2. Evaluate potential for vertical migration adjacent to compliance wells with SSLs and within the context of site hydrogeology.
- 3. Address key data gaps between phases working in from property line or off-site depending on gaps.
- 4. Ability to safely access locations with drill rig and supporting equipment.
- 5. Occurrence of groundwater and sufficient groundwater yield/recharge at locations.

6. Delineate extent of impacts and capture additional hydrogeologic data necessary to evaluate the feasibility of groundwater remediation technologies.

As shown on **Table 1b**, nine delineation wells have been installed at the site to assess potential impacts. Additionally, as shown on **Table 1c**, four delineation wells were installed but did not produce sufficient water to sample and were converted to a water-level only piezometers.

6.2.1 Arsenic Delineation

As shown on **Figure 7**, **Arsenic Isoconcentration Map**, arsenic impacts to groundwater include two compliance wells GSD-AP-MW-2 and GSD-AP-MW-4. Phase I of groundwater delineation activities was executed to continue the investigation of impacts to groundwater at Plant Gadsden and delineation wells were installed to define the horizontal and vertical extent of Appendix IV exceedances. In addition, existing downgradient piezometers GSD-AP-PZ-1, GSD-AP-PZ-2, GSD-AP-PZ-5, and GSD-AP-PZ-6 were also sampled and utilized in delineation of Appendix IV exceedances.

Arsenic concentrations in well GSD-AP-MW-2 have shown a significant decline since October 2018 and the completion of ash pond closure. From October 2018 to the most recent sampling event, arsenic concentrations in well GSD-AP-MW-2 have decreased from 1.01 mg/L to 0.42 mg/L. This decreasing trend appears related to increasing ORP and decreasing TDS which are symbolic of the continued reestablishment of natural hydraulic conditions post-closure. As previously mentioned, this positive trend has also followed a decreasing lithium concentration trend which has dropped to below the GWPS in well GSD-AP-MW-2.

Compliance well GSD-AP-MW-4 has displayed a consistent or overall flat trend since sampling began in 2017. However, arsenic concentrations in well GSD-AP-MW-4 demonstrate a distinctive seasonal overprint pattern of higher concentrations in Fall/Winter sampling events and lower concentrations in spring sampling events. The magnitude of these seasonal trends is small with variations typically around 0.001 to 0.002 mg/L or presented differently, concentration variations of 9-11% between events. It should be noted that the average concentration (0.0127 mg/L) is just above the GWPS (0.01 mg/L). While arsenic does not show a decreasing trend, boron in well GSD-AP-MW-4, has shown a decreasing trend from 0.510 to 0.344 mg/L between December 2018 and the most recent sampling event. This indicates that throughout this period pond closure activities have had a positive impact on limiting CCR sources of COI and reducing concentrations overall. Arsenic concentrations and fluctuations in GSD-AP-MW-4 likely represent a geochemical dynamic of sorption and desorption from aquifer minerals.

Arsenic concentrations have not been detected above GWPS in horizontal delineation wells GSD-AP-MW-18H, GSD-AP-MW-19H, and GSD-AP-MW-20H or vertical delineation wells GSD-AP-MW-2VA and GSD-AP-MW-4V installed north of compliance wells GSD-AP-MW-2 and GSD-AP-MW-4 which are areas historically interpreted as downgradient of the Ash Pond. Vertical delineation wells targeted more permeable/fractured water-bearing zones within Conasauga Formation bedrock in the upper 50 feet of bedrock. Vertical delineation well GSD-AP-MW-2VA was installed because the initial attempt (GSD-AP-MW-2V) at vertical delineation proximal to GSD-AP-MW-2 did not yield sufficient groundwater for well development. As a result, GSD-AP-MW-2V has been converted to a temporary piezometer. Phase II and Phase III vertical delineation wells were installed to further evaluate the spatial extent of lithium around wells GSD-AP-MW-2 and GSD-AP-MW-2VA and further north and northwest in the direction of groundwater flow associated with the seasonal groundwater divide. Arsenic concentrations have not been detected above GWPS in Phase II or III vertical delineation wells GSD-AP-MW-2VB, GSD-AP-MW-21VC, or GSD-AP-MW-22VB. As shown on Figure 7, and Figure 9, analytical results for arsenic in horizontal and vertical delineation wells have been below GWPS and is sufficiently delineated laterally and vertically at the Site.

6.2.2 Lithium Delineation

Phase I and II of groundwater delineation also explored the extent of potential lithium impacts to groundwater in the vicinity of GSD-AP-MW-2. Analytical results from horizontal delineation wells have been below the GWPS for lithium as shown on **Figure 8**, **Lithium Isoconcentration Map**.

As described previously, the results from existing compliance wells installed near the northern waste boundary (GSD-AP-PZ-1, GSD-AP-PZ-2, GSD-AP-PZ-5, and GSD-AP-PZ-6) supplement delineation efforts to the north. These wells continued to be non-detect for lithium and thus, provide no indications of off-site migration.

Vertical delineation results obtained from GSD-AP-MW-2VA showed lithium concentrations above GWPS during the August 2020 sampling event with concentrations increasing with depth from MW-2 to MW-2VA. Additionally, an upward hydraulic gradient was noted at the well pair GSD-AP-MW-2 and GSD-AP-MW-2VA where groundwater appeared to be flowing from deeper intervals towards the shallow water table. To continue vertical delineation, a second deeper vertical delineation well, GSD-AP-MW-2VB, was installed to further assess groundwater conditions in the vicinity of compliance well GSD-AP-MW-2. Results from the recent March 2021 sampling event continue to indicate increased lithium concentrations with depth. The lithium concentration exhibited in vertical delineation well GSD-AP-MW-2VB was approximately twice the concentration exhibited in vertical delineation well GSD-AP-MW-2VA, and over

four times the concentration exhibited in the shallow compliance well GSD-AP-MW-2. Additional vertical delineation wells were installed to further evaluate lithium around wells GSD-AP-MW-2, GSD-AP-MW-2VA, and GSD-AP-MW-2VB further north and northwest in the direction of groundwater flow. Two vertical delineation wells GSD-AP-MW-21VC and GSD-AP-MW-22VB exhibited lithium concentrations of above GWPS during the recent October 2021 sampling event continuing to indicate increased lithium concentrations with depth.

Lithium concentrations in compliance well GSD-AP-MW-2 dropped below the GWPS for the second time during the October 2021 sampling event, and no longer an SSL. The decreasing lithium concentration trend in GSD-AP-MW-2 began between October 2018 and February 2019, which correlates exactly with the timing and disappearance of the radial flow pattern described in **Section 3.2.2**

6.3 STATUS OF DELINEATION

A comprehensive groundwater delineation report summarizing findings was submitted to ADEM in November 2020. The conclusion and results presented indicate that groundwater delineation have been completed to a sufficient degree to define the spatial extent of groundwater impacts and to inform a groundwater remedy selection plan. However, following a review of the March 2021 analytical data, it was determined that additional (Phase III) vertical delineation was necessary to further evaluate the spatial extent of lithium around wells GSD-AP-MW-2, GSD-AP-MW-2VA and GSD-AP-MW-2VB and further north and northwest in the direction of groundwater flow associated with the seasonal groundwater divide.

As presented in **Section 6.2**, the horizontal and vertical extent of arsenic impacts have been successfully delineated, and no future actions are planned. Lithium impacts appear to be delineated laterally but are not yet fully delineated in the vertical sense. Additional sampling and geochemical analyses will be performed to evaluate groundwater quality in deep rock intervals where constituents and concentrations may vary from the more-shallow monitoring network naturally.

6.4 GROUNDWATER QUALITY CHANGES AND TRENDS

Important groundwater quality changes or trends have been noted in **Section 6.2**. The key findings include:

- Arsenic concentrations exceeding GWPS are limited to two compliance wells GSD-AP-MW-2 and GSD-AP-MW-4. Arsenic has been delineated laterally and vertically.
- Arsenic concentrations in compliance well GSD-AP-MW-2 have exhibited a steady decreasing trend from 0.825 mg/L in August 2019 to 0.424 mg/L during the most recent sampling event in October 2021.

- Arsenic concentrations in compliance well GSD-AP-MW-4 historically have exhibited a trend of fluctuating concentrations of just slightly above GWPS.
- Lithium concentrations in compliance well GSD-AP-MW-2 have dropped below GWPS during the last two sampling events in March 2021 and October 2021 and is no longer an SSL.
- Recent analytical results have identified only lithium concentrations above GWPS in deeper vertical
 delineation wells GSD-AP-MW-2VA, GSD-AP-MW-2VB, GSD-AP-MW-21VC, and GSD-AP-MW22VB. Additional sampling and geochemical analyses will be performed to evaluate groundwater
 quality in deep rock intervals where constituents and concentrations may vary from the more-shallow
 monitoring network naturally.

7.0 EVALUATION OF GROUNDWATER CORRECTIVE MEASURES

Groundwater remedy selection has occurred in the following two stages: 1) completing an ACM to identify potentially feasible remedies for the Site after the initial determination that GWPSs have been exceeded; and 2) evaluating potential remedies to develop a site-specific remedy plan.

7.1 REMEDY SELECTION

Since submittal of the Assessment of Corrective Measures (ACM) in July 2020 (Anchor QEA 2020a), extensive investigations have been performed to select effective corrective measures for arsenic and lithium (constituents of interest [COIs]) in groundwater at the Plant Gadsden Ash Pond (Site). The following corrective measures were selected:

- 1) Source control to include dewatering, consolidation, capping of the Site.
- 2) Monitored Natural Attenuation (MNA).
- 3) Geochemical manipulation via injections in areas of relatively high concentrations of COIs to remove them from groundwater and immobilize them in situ.

7.1.1 Source Control

The Site was closed in a manner that controls "the source(s) of release so as to reduce or eliminate, to the maximum extent feasible, further releases of constituents in Appendix IV to this part into the environment," as required by 40 CFR § 257.97(b)(3) and ADEM Admin. Code r. 335-13-15-.06(8)(b)(3).

Construction activities associated with Site closure were substantially completed in August 2018. The proposed corrective action strategy incorporates the closure of the Site, which controls the source of CCR constituents to groundwater by removing free liquid from the CCR, consolidating the CCR, encircling the Site with a perimeter dike and drainage ditch, re-grading the Site, and capping the CCR in place to prevent stormwater infiltration.

Free water was removed through pumping, while maintaining compliance with the National Pollutant Discharge Elimination System (NPDES) discharge limits. The wet CCR was dewatered to the extent necessary to allow a stable working surface for earthwork equipment. Interstitial water was removed through one or a combination of trenching, ditching, or well point removal. All water was sent to an on-site water treatment system prior to discharge to ensure compliance with the NPDES discharge limits. Dewatering the existing CCR reduces the potential for COI releases to groundwater as the quantity of vertical flow is drastically reduced.

CCR was removed from certain areas and consolidated to reduce the size of the closure footprint. CCR was removed from the southwestern portion of the impoundment and was used to construct grades to provide draining on top of the consolidated footprint. Areas where CCR was removed were excavated to remove all visible CCR and were over excavated into the subgrade soils. The consolidated footprint area is approximately 55 acres.

The existing CCR was left in place or moved, compacted, and graded to final grades. In general, the surface of the CCR pond slopes at 3% to 5% from the crest in the center to a perimeter ditch around the exterior of the pond area. Side slopes range from 3H:1V to 4H:1V. The perimeter ditch conveys stormwater runoff to discharge points around the closed pond, which ensures positive drainage over the entire closed pond surface and prevents the pooling of water on the cover.

The final cover was constructed to "control, minimize or eliminate, to the maximum extent feasible, post-closure infiltration" of stormwater into the closed CCR unit, which mitigates potential releases of COIs to groundwater. The cover consists of the following (described from the final CCR surface upward):

- 6 inches of protective soil.
- 50-mil low-density polyethylene geosynthetic liner.
- Engineered synthetic turf product and sand infill material with a combined permeability of 10⁻⁷ cm/sec or less.

Infiltration will also be prevented by providing sufficient grades and slopes to:

- Preclude the probability of future impoundment of water or sediment on the cover system.
- Ensure slope and cover system stability.
- Minimize the need for further maintenance.
- Be completed in the shortest amount of time consistent with recognized and generally accepted good engineering practices.

7.1.2 Monitored Natural Attenuation

MNA is a selected remedy for the Plant Gadsden Ash Pond. Based on the geochemical investigations, several lines of evidence support multiple attenuating mechanisms, depending upon the COIs. The major attenuating mechanisms include the following:

- Sorption on and/or coprecipitation with iron or manganese oxides for arsenic and lithium.
- Ion exchange on clays for lithium.
- Precipitation of barium arsenate for arsenic.

Rates of attenuation were determined by results of reactive transport modeling and by extrapolating decreasing trends on the concentration versus time graphs to the GWPS for areas where decreasing trends were observed. For lithium, estimated time to achieve GWPSs by MNA is 13 years or less. Depending on location, estimated time to achieve GWPSs by MNA for arsenic ranges from less than 10 years for GSD-AP-MW-4 to approximately 80 years for GSD-AP-MW-2. Though these time frames are reasonable to achieve GWPSs, source control via closure and injection treatment (enhanced attenuation) are expected to shorten the time to achieve GWPSs, particularly in the area of GSD-AP-MW-2. Source control, geochemical manipulation via injections in the two areas with COIs to remove them from groundwater and immobilize them in situ, and MNA over the entire Site are expected to achieve GWPSs in approximately 13 years, which is a reasonable time frame as compared to the other, more aggressive methods investigated as part of the remedy selection process.

Column studies were performed to assess the ability for the aquifer media (soil) to take up COIs. Arsenic and lithium are attenuated by aquifer media, as arsenic in column effluent remained below 25% of the influent concentrations (i.e., 75% to more than 95% removal). Though not as strongly attenuated by aquifer media, lithium removal in the columns was more variable (30% to 90% removal in shallower soils and less than 10% removal in deeper soils), likely reflecting differences in soil mineralogy with depth. Arsenic and lithium attenuation capacity was extrapolated to the entire mass of the aquifer downgradient of the consolidated Site but within the property boundary. The extrapolation showed that the aquifer has an attenuating capacity of many more times the mass of arsenic and lithium requiring attenuation. SSE studies indicate that most of the mass of both COIs occur in the oxidizable and residual fractions, which are very stable attenuation phases. Therefore, remobilization back into groundwater is not expected. Some of the mass of arsenic occurs in the exchangeable fraction, which is somewhat less stable.

Corrective action performance monitoring consists of two major components: 1) monitoring for sitewide corrective action, which would include MNA and the positive benefits of source control and geochemical manipulation (injections) at the Site scale; and 2) remedial effectiveness monitoring for geochemical manipulation in the areas of injections. Sitewide monitoring applies to MNA because MNA will be implemented over the entire Site.

7.1.3 Geochemical Manipulation via Injection

Geochemical manipulation via subsurface injections is an in-situ remediation technology for inorganic constituents in groundwater. In this technology, treatment solutions are injected to create solid precipitates, which remove COIs from groundwater during their formation and continue to sorb COIs on their surfaces over time. Geochemical manipulation for arsenic is well established under a range of groundwater geochemical conditions. Geochemical manipulation is an emerging technology for lithium and has had significant technological development over the last 3 years.

Geochemical manipulation was selected because of its effectiveness, ease of implementation versatility (ability to treat more than one COI with the same treatment solution), ability to implement in areas with limited working space, and lack of byproducts that would require further treatment or disposal. Site-specific laboratory treatability studies using Site aquifer media and impacted groundwater will be performed prior to field implementation of injection treatment. These studies will evaluate multiple viable treatment solutions and a range of doses.

Because the areas for treatment at the Site are relatively small, pilot- and full-scale implementation are essentially the same. A requisite monitoring period (anticipated to be approximately 1 year) will follow the field implementation. Depending upon the effectiveness of treatment, injections may need to be repeated periodically, though required time between injection treatments is expected to be years (based on other injection treatment precedents). This approach to injection treatment is consistent with adaptive site management for corrective action.

7.1.4 Adaptive Site Management

As applied here, adaptive site management is a component of the corrective action monitoring program, in which monitoring results are continually evaluated to determine if the system is making progress toward achieving remedy goals. Based on system performance—either achieving goals or not making expected progress—the remedy system may need to be adapted or changed. Adaptation of the system may include ceasing actions no longer necessary or changing the system because it is not performing as expected. The adaptive site management approach plans for changes at the Site and provides a process to make changes as necessary.

7.2 CORRECTIVE ACTION MONITORING PROGRAM

As required by 40 CFR § 257.98(a) and ADEM Admin. Code r. 335-13-15-.06(9)(a), the owner/operator must implement the groundwater remedy within 90 days of selecting a remedy, including establishing a corrective action groundwater monitoring program. That monitoring program must perform the following actions: 1) meet the assessment monitoring requirements of 40 CFR § 257.95 and ADEM Admin. Code r. 335-13-15-.06(6); 2) document the effectiveness of the remedy; and 3) demonstrate compliance with the GWPS.

A Corrective Action Groundwater Monitoring Program (Anchor QEA 2022) document providing site-specific remedy monitoring details was submitted to ADEM on January 27, 2022. This Corrective Action Groundwater Monitoring Program (Monitoring Program) is provided per U.S. Environmental Protection Agency coal combustion residuals Rule 40 Code of Federal Regulations (CFR) § 257.98 and Alabama Department of Environmental Management (ADEM) Administrative Code (Admin. Code) r. 335-13-15-.06(9). Construction activities associated with Site closure were substantially completed in April 2018. The closure activities are expected to reduce COIs in groundwater over the long term but may have created disequilibrium and variability, including disruption of groundwater flow directions and temporary changes in groundwater chemistry during and immediately following the closure process. The first two years of this Monitoring Program will be composed of collection and analysis of background (in time) groundwater data as a baseline for the remainder of the Monitoring Program.

This Monitoring Program will be implemented during the first semiannual monitoring event of 2022. The Monitoring Program includes the following:

- CCR compliance and assessment monitoring
- Geochemical manipulation injection monitoring (remedial-effectiveness monitoring)
- MNA monitoring
- Sentinel/clean-line boundary monitoring

For the first 2 years (2022 through 2024), background monitoring will be conducted to establish postclosure baseline Site conditions with respect to MNA parameters. After the 2-year period, the baseline data will be evaluated, and subsequent adjustments to the Monitoring Program may be implemented. Specific adaptive triggers for MNA monitoring will also be developed after the initial 2-year background monitoring.

The corrective action system will utilize long-term performance standards defined in 40 CFR § 257.98(c) and ADEM Admin. Code r. 335-13-15-.06(9)(c): demonstrate compliance with GWPSs at all points that

lie beyond the groundwater monitoring system established under 40 CFR § 257.91 and ADEM Admin. Code r. 335-13-15-.06(2) for three consecutive years based on semiannual monitoring. This Monitoring Program will be utilized to adjust the application of selected remedial technologies as the Site progresses toward these long-term remedial goals. Data and correlations will be reviewed to promote a better understanding of the nature of geochemical changes and the efficacy of the remedial technologies.

8.0 SUMMARY AND CONCLUSIONS

The first semi-annual assessment monitoring event was conducted in October 2021. Statistical evaluations of the October 2021 assessment monitoring data identified SSLs of the Appendix IV constituent arsenic above the GWPS. To address previously identified SSLs, a Groundwater Remedy Selection Report was prepared and submitted to ADEM on October 29, 2021. Subsequently, within 90 days of remedy selection, a Corrective Action Groundwater Monitoring Program was developed and submitted to ADEM on January 27, 2022 for review.

The Corrective Action Groundwater Monitoring Program was prepared to detect potential downgradient changes in groundwater quality and assess the efficacy of the selected groundwater corrective action remedies. The Monitoring Program will supplement the ongoing CCR compliance groundwater monitoring currently being performed at the Site.

The following future actions will be taken or are recommended for the site:

- Collect soil and groundwater samples for treatability studies using Site aquifer media and impacted groundwater prior to field implementation of injection treatments.
- Conduct batch studies for reagents and doses.
- Conduct column studies for effectiveness.
- Prepare Class V UIC permit.
- Conduct the first semi-annual assessment monitoring event of 2022 and submit the annual groundwater monitoring and corrective action report summarizing the findings to ADEM by August 1, 2022.

9.0 REFERENCES

- Alabama Department of Environmental Management (ADEM), 2018, Solid Waste Program, Division 13, ADEM Admin. Code Chapter 335-13-15.
- Anchor QEA, Assessment of Corrective Measures. Plant Gadsden Ash Pond. Prepared for Alabama Power Company. July 2020.
- Anchor QEA, 2021, Semi-Annual Remedy Selection and Design Progress Report Plant Gadsden. Prepared for Alabama Power Company. June 2021.
- Anchor QEA, 2021. Groundwater Remedy Selection Report. Plant Barry. Prepared for Alabama Power Company. October 2021.
- Anchor QEA, 2021. Corrective Action Groundwater Monitoring Program. Plant Barry. Prepared for Alabama Power Company. January 2022.
- ASTM Standard D5092, 2004(2010)e1, Standard Practice for Design and Installation of Groundwater Monitoring Wells, ASTM International, West Conshohocken, PA, DOI 10.1520/D5092-04R10E01, www.astm.org.
- Bossong, C.R., 1989, Geohydrology and Susceptibility of Major Aquifers to Surface Contamination in Alabama; Area 2, USGS Water-Resources Investigations Report 88-4177.
- Geological Survey of Alabama (GSA), 2010b, Digital Geologic Map of Alabama, URL: http://www.gsa.state.al.us, accessed November 2010.
- Mann, S.D. and Baker, R.M., 1995, Ground-Water Availability in Etowah County, Alabama, Geological Survey of Alabama, Special Map 243.
- Osborne, W.E., Raymond, D.E., 1992, The Knox Group in the Appalachian Fold-Thrust Belt and Black Warrior Basin of Alabama: Stratigraphy and Petroleum Exploration, Geological Survey of Alabama, Circular 162.
- Pashin, J. C., 2008, Gas shale potential of Alabama: Tuscaloosa, Alabama, University of Alabama, College of Continuing Studies, 2008 International Coalbed & Shale Gas Symposium Proceedings, paper 0808, 13 p.
- Raymond, D.E., Osborne, W.E., Copeland, C.W., Neathery, T.L., 1988, Alabama Stratigraphy, Geological Survey of Alabama, Circular 140.
- USEPA. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance. Office of Resource Conservation and Recovery Program Implementation and Information Division. March.
- USEPA. 2015. Federal Register. Volume 80. No. 74. Friday April 17, 2015. Part II. Environmental Protection Agency. 40 CFR Parts 257and 261. Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule. [EPA-HQ-RCRA-2009-0640; FRL-9919-44-OSWER]. RIN-2050-AE81. April.

United States Geological Survey (USGS), 1986, Gadsden West and Gadsden East Alabama Quadrangles, 7.5 Minutes Series Topographic Map.

Sapp, C.D., and Emplaincourt, J., 1975, Physiographic regions of Alabama, Special Map 168, Geological Survey of Alabama.

Southern Company Services (SCS), 2018, Plant Gadsden Ash Pond Groundwater Monitoring Plan.

Tables

Table 1a. - Compliance Monitoring Well Network Details Plant Gadsden Ash Pond

Well ID	Hydraulic Location	Geologic Unit	Latitude	Longitude	Ground Surface Elevation (ft NAVD)	Top Of Casing Elevation (ft NAVD)	Well Depth (ft BTOC)	Top Of Screen Elevation (ft NAVD)	Bottom Of Screen Elevation (ft NAVD)	Screen Length (ft)	Date Of Installation
WELL NETWORK											
GSD-AP-MW-14	Upgradient	Alluvium	34.01101	-85.96841	545.49	548.34	32.8	525.90	515.90	10	3/27/2018
GSD-AP-MW-16	Upgradient	Alluvium	34.01086	-85.96891	553.08	555.83	36.2	530.00	520.00	10	9/20/2018
GSD-AP-MW-17	Upgradient	Alluvium	34.01036	-85.96866	546.88	550.11	62.8	497.73	487.73	10	9/24/2018
GSD-AP-MW-10	Downgradient	Alluvium	34.01752	-85.97338	527.70	530.91	48.4	492.89	482.89	10	8/3/2017
GSD-AP-MW-11	Downgradient	Alluvium	34.01615	-85.97171	514.18	517.01	34.0	493.41	483.41	10	7/17/2013
GSD-AP-MW-12	Downgradient	Alluvium	34.01662	-85.96922	518.73	521.82	31.8	500.47	490.47	10	7/17/2013
GSD-AP-MW-1	Downgradient	Alluvium	34.01809	-85.96893	523.48	526.37	27.8	508.98	498.98	10	8/8/2017
GSD-AP-MW-2	Downgradient	Alluvium	34.01929	-85.97051	523.04	526.16	28.2	508.39	498.39	10	8/10/2017
GSD-AP-MW-3	Downgradient	Alluvium	34.02036	-85.97215	523.68	526.80	27.5	509.75	499.75	10	8/11/2017
GSD-AP-MW-4	Downgradient	Alluvium	34.02107	-85.97287	517.27	520.60	26.3	504.73	494.73	10	7/15/2013
GSD-AP-MW-5	Downgradient	Alluvium	34.02208	-85.97386	513.26	516.27	26.9	499.79	489.79	10	8/15/2017
GSD-AP-MW-6	Downgradient	Alluvium	34.02311	-85.9759	512.09	515.23	26.3	499.38	489.38	10	8/3/2017
GSD-AP-MW-7	Downgradient	Alluvium	34.02142	-85.97702	517.05	519.86	30.3	499.96	489.96	10	7/16/2013
GSD-AP-MW-8	Downgradient	Alluvium	34.01903	-85.97735	516.02	519.22	32.7	496.94	486.94	10	8/2/2017
GSD-AP-MW-9	Downgradient	Alluvium	34.01809	-85.97538	517.41	520.36	35.2	495.57	485.57	10	7/16/2013
GSD-AP-PZ-1	Downgradient	Alluvium	34.02224	-85.97234	518.80	521.64	27.5	504.57	494.57	10	8/14/2017
GSD-AP-PZ-2	Downgradient	Alluvium	34.02369	-85.97598	513.46	516.49	23.9	502.95	492.95	10	8/16/2017
GSD-AP-PZ-5	Downgradient	Alluvium	34.0209	-85.9692	521.36	524.26	30.8	503.89	493.89	10	3/28/2018
GSD-AP-PZ-6	Downgradient	Alluvium	34.02082	-85.97066	516.69	519.60	22.4	507.65	497.65	10	3/28/2018

Notes:

ft = feet; ft NAVD = elevation in feet, referenced to North American Vertical Datum; ft BTOC = depth, referenced in feet below top of casing

⁽¹⁾ Coordinates have been transformed into WGS 84 from NAD 27/83, State Plane, Alabama, feet.

⁽²⁾ Vertical elevations are in feet relative to the North American Vertical Datum (NAVD)1988.

⁽³⁾ Total well depth accounts for sump if data provided on well construction logs.

Table 1b. - Delineation Well Network Details Plant Gadsden Ash Pond

Well ID	Hydraulic Location	Geologic Unit	Latitude	Longitude	Ground Surface Elevation (ft NAVD)	Top Of Casing Elevation (ft NAVD)	Well Depth (ft BTOC)	Top Of Screen Elevation (ft NAVD)	Bottom Of Screen Elevation (ft NAVD)	Screen Length (ft)	Date Of Installation
WELL NETWORK											
GSD-AP-MW-2VA	Vertical Delineation	Conasauga Formation	34.01938	-85.97044	521.54	524.94	78.6	456.79	446.79	10	1/30/2020
GSD-AP-MW-2VB	Vertical Delineation	Conasauga Formation	34.01951	-85.97042	519.74	522.56	105.5	427.44	417.44	10	3/6/2021
GSD-AP-MW-4V	Vertical Delineation	Conasauga Formation	34.02103	-85.97282	517.56	520.33	44.8	485.98	475.98	10	10/22/2019
GSD-AP-MW-21VC	Vertical Delineation	Conasauga - Knox Contact (Fault Zone)	34.01962	-85.97032	519.00	521.13	157.6	373.90	363.90	10	8/24/2021
GSD-AP-MW-22VB	Vertical Delineation	Conasauga - Knox Contact (Fault Zone)	34.02005	-85.97023	515.48	518.01	52.6	475.81	465.81	10	8/27/2021
GSD-AP-MW-18H	Horizontal Delineation	Alluvium	34.01929	-85.96866	522.28	524.45	27.6	507.25	497.25	10	10/24/2019
GSD-AP-MW-19H	Horizontal Delineation Alluvium		34.02013	-85.97054	513.95	517.32	22.1	505.64	495.64	10	10/24/2019
GSD-AP-MW-20H	Horizontal Delineation	Alluvium	34.02113	-85.97273	514.28	516.68	20.3	506.79	496.79	10	10/24/2019

Notes:

ft = feet; ft NAVD = elevation in feet, referenced to North American Vertical Datum; ft BTOC = depth, referenced in feet below top of casing

- (1) Coordinates have been transformed into WGS 84 from NAD 27/83, State Plane, Alabama, feet.
- (2) Vertical elevations are in feet relative to the North American Vertical Datum (NAVD)1988.
- (3) Total well depth accounts for sump if data provided on well construction logs.

Table 1c. - Piezometer Well Network Details Plant Gadsden Ash Pond

Well ID	Hydraulic Location	Geologic Unit	Latitude	Longitude	Ground Surface Elevation (ft NAVD)	Top Of Casing Elevation (ft NAVD)	Well Depth (ft BTOC)	Top Of Screen Elevation (ft NAVD)	Bottom Of Screen Elevation (ft NAVD)	Screen Length (ft)	Date Of Installation
WELL NETWORK											
GSD-AP-MW-2V	Piezometer	Conasauga Formation	34.01932	-85.97048	522.90	525.31	62.4	473.31	463.31	10	10/24/2019
GSD-AP-MW-2VC	Piezometer	Conasauga Formation	34.01945	-85.9705	520.45	522.87	139.9	427.44	417.44	10	8/22/2021
GSD-AP-MW-21VB	Piezometer	Conasauga - Knox Contact (Fault Zone)	34.01969	-85.97025	517.72	520.24	105.4	425.28	415.28	10	8/26/2021
GSD-AP-MW-23VB	Piezometer	Conasauga - Knox Contact (Fault Zone)	34.0208	-85.97068	516.58	519.03	102.7	426.70	416.70	10	8/30/2021

Notes:

ft = feet; ft NAVD = elevation in feet, referenced to North American Vertical Datum; ft BTOC = depth, referenced in feet below top of casing

- (1) Coordinates have been transformed into WGS 84 from NAD 27/83, State Plane, Alabama, feet.
- (2) Vertical elevations are in feet relative to the North American Vertical Datum (NAVD)1988.
- (3) Total well depth accounts for sump if data provided on well construction logs.

Table 2. Parameters And Reporting Limits

Plant Gadsden Ash Pond 10/04/2021 - 10/12/2021

	Appendix III Para	meters	
Parameters	Analytical Methods	Reporting Limits	Units of Measure
Boron	EPA 200.7	0.1015	mg/L
Calcium	EPA 200.7	0.406-4.06	mg/L
Chloride	SM4500C1 E	1-40	mg/L
Fluoride	SM4500F G 2017	0.1-0.3	mg/L
pH_Field	Field Sampling	NA	SU
Sulfate	SM4500SO4 E 2011	1-32	mg/L
TDS	NA	NA	mg/L
	Appendix IV Para	meters	
Parameters	Analytical Methods	Reporting Limits	Units of Measure
Antimony	EPA 200.8	0.001015	mg/L
Arsenic	EPA 200.8	0.000203	mg/L
Barium	EPA 200.8	0.000203	mg/L
Beryllium	EPA 200.8	0.001015	mg/L
Cadmium	EPA 200.8	0.000203	mg/L
Chromium	EPA 200.8	0.001015	mg/L
Cobalt	EPA 200.8	0.000203	mg/L
Combined Radium 226 + 228	Total Radium Calculation	NA	pCi/L
Fluoride	SM4500F G 2017	0.1-0.3	mg/L
Lead	EPA 200.8	0.000203	mg/L
Lithium	EPA 200.7	0.02	mg/L
Mercury	EPA 245.1	0.0005	mg/L
Molybdenum	EPA 200.8	0.000203	mg/L
Selenium	EPA 200.8	0.001015	mg/L
Thallium	EPA 200.8	0.000203	mg/L

- 1. Reporting Limit values can display range depending upon matrix interferences and dilution factors
- 2. pH is a field acquired parameter and does not have a laboratory method or reporting limit
- 3. Combined Radium 226 + 228 product of radium-226 + radium-228; reporting limits presented are sum of radium 226, radium 228 reporting limits
- 4. EPA 200.7 EPA methodology for the "Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry"
- 5. EPA 200.8 EPA methodology for the "Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS)"
- $6.\ SM\ 2320,\ 2540,\ 4500-Standard\ Methods\ for\ Examination\ of\ Water\ and\ Wastewater.$
- 7. Total Radium Calculation Term used herein for EPA 9315 + EPA 9320
- 8. EPA 9315 Used for Radium-226; SW-846: Alpha-Emitting Radium Isotopes, part of Test Methods for Evaluation Solid Waste, Physical/Chemical Methods
- 9. EPA 9320 Used for Radium-228; SW-846: Alpha-Emitting Radium Isotopes, part of Test Methods for Evaluation Solid Waste, Physical/Chemical Methods

Table 3.
Recent Groundwater Elevations Summary

	Top of Casing				Grou	ındwater Elev	ation			
Well Name	Elevation					(ft AMSL)				
	Dievation	1/3/2019	2/4/2019	2/25/2019	6/10/2019	8/19/2019	4/13/2020	8/24/2020	3/15/2021	10/4/2021
GSD-AP-MW-1	526.37		517.76	519.26	514.50	511.97	517.91	512.36	516.98	513.76
GSD-AP-MW-2	526.16		516.64	518.15	514.30	512.01	516.67	512.37	516.10	513.65
GSD-AP-MW-3	526.80		515.98	517.38	514.21	512.03	516.42	512.48	515.58	513.71
GSD-AP-MW-4	520.60		515.78	517.13	514.13	512.00	515.99	512.57	515.40	513.70
GSD-AP-MW-5	516.27		512.09	513.01	511.13	508.72	512.38	510.36	511.63	511.16
GSD-AP-MW-6	515.23		510.70	511.64	510.02	507.89	511.28	509.81	510.32	510.19
GSD-AP-MW-7	519.86		509.82	513.85	508.34	506.95	510.09	507.64	508.87	508.25
GSD-AP-MW-8	519.22		508.46	511.45	507.78	507.62	509.16	507.98	507.18	508.03
GSD-AP-MW-9	520.36		508.46	511.42	507.83	507.61	508.71	508.06	507.19	508.06
GSD-AP-MW-10	530.91		509.93	511.87	509.34	508.74	509.73	509.13	508.82	509.19
GSD-AP-MW-11	517.01		509.06	511.67	508.12	507.59	509.18	507.99	507.92	508.29
GSD-AP-MW-12	521.82		514.11	515.43	511.29	508.94	514.20	509.66	513.06	511.21
GSD-AP-MW-14	548.34		527.65	528.71	527.07	526.25	528.26	526.07	527.24	526.85
GSD-AP-MW-16	555.83	530.52	531.32	531.98	530.55	529.71	531.91	529.60	530.64	530.09
GSD-AP-MW-17	550.11	532.49	532.25	534.03	531.23	530.30	532.80	530.65	531.68	530.89
GSD-AP-PZ-1	521.64		517.29	519.05	513.54	510.14	517.30	510.78	516.46	513.04
GSD-AP-PZ-2	516.49		509.02	511.33	508.15	507.31	509.12	508.13	507.85	508.33
GSD-AP-PZ-5	524.26		517.72	519.28	513.81	510.37	518.21	511.00	516.90	513.14
GSD-AP-PZ-6	519.60		517.43	518.72	513.82	510.30	517.75	510.99	516.73	513.18
GSD-AP-MW-4V	520.33						516.09	512.39	515.31	513.51
GSD-AP-MW-18H	524.45						518.59	511.07	517.02	513.14
GSD-AP-MW-19H	517.32						516.97	511.36	516.29	513.21
GSD-AP-MW-20H	516.68						516.28	512.47	515.39	513.66
GSD-AP-MW-2V	525.31						516.60	512.43	516.13	516.13
GSD-AP-MW-2VA	524.94						519.33	512.43	516.13	516.13
GSD-AP-MW-2VB	522.56								516.15	516.15
GSD-AP-MW-2VC ⁵	522.87									483.16
GSD-AP-MW-21VB ⁵	520.24									467.53
GSD-AP-MW-21VC	521.13									513.09
GSD-AP-MW-22VB	518.01									513.30
GSD-AP-MW-23VB ⁵	519.03									510.42

^{1.} ft. AMSL - feet above mean sea level

Table 4a. Relative Percent Difference (RPD) Calculations

Plant Gadsden Ash Pond 10/05/2021 - 10/12/2021

прапу				
		GSD-AP-MW-14		
	S	Sample Date = 10/12/2	021	
Analyte	Units	Original Result	Duplicate Result	RPD (%)
Calcium	mg/L	11.8	11.8	0.00%
Chloride	mg/L	2.87	2.89	0.69%
Sulfate	mg/L	95.7	88.9	7.37%
TDS	mg/L	142	132	7.30%
Arsenic	mg/L	0.00131	0.00137	4.48%
Barium	mg/L	0.0268	0.0286	6.50%
Beryllium	mg/L	0.00115	0.00117	1.72%
Cadmium	mg/L	0.00059	0.00051	15.02%
Cobalt	mg/L	0.0291	0.0288	1.04%
Lead	mg/L	0.00156	0.00151	3.26%
Selenium	mg/L	0.00287	0.00291	1.38%
		GSD-AP-MW-4		
		Sample Date = 10/5/20)21	
Analyte	Units	Original Result	Duplicate Result	RPD (%)
Boron	mg/L	0.344	0.347	0.87%
Calcium	mg/L	27.4	27.8	1.45%
Chloride	mg/L	9.3	9.83	5.54%
Fluoride	mg/L	0.214	0.205	4.30%
Sulfate	mg/L	37.8	36.9	2.41%
TDS	mg/L	200	197	1.51%
Arsenic	mg/L	0.0147	0.0148	0.68%
Barium	mg/L	0.202	0.208	2.93%
Cobalt	mg/L	0.0238	0.0236	0.84%
Molybdenum	mg/L	0.00111	0.00109	1.82%
		GSD-AP-MW-5		
		Sample Date = 10/5/20)21	
Analyte	Units	Original Result	Duplicate Result	RPD (%)
Boron	mg/L	0.26	0.26	0.00%
Calcium	mg/L	36	35.9	0.28%
Chloride	mg/L	6.78	6.84	0.88%
Fluoride	mg/L	0.122	0.104	15.93%
Sulfate	mg/L	14.4	14.5	0.69%
TDS	mg/L	168	180	6.90%
Barium	mg/L	0.221	0.229	3.56%

Table 4a. Relative Percent Difference (RPD) Calculations

Plant Gadsden Ash Pond 10/04/2021 - 10/12/2021

GSD-AP-MW-5											
Sample Date = 10/5/2021											
Analyte	Units	Original Result	Duplicate Result	RPD (%)							
Cobalt	mg/L	0.00116	0.00108	7.14%							

- 1. The RPD calculations presented are for analyte pairs where original and duplicate results are valid, unqualified detections.
- 2. RPD calculation results less than or equal to 20% are considered acceptable.
- 3. Results greater than 20% are given data validation flags to indicate RPD criteria failure. Communication to sampling team and lab may be necessary to explore nature of RPD failure(s).

Table 4b. - Field QC: Blank Detections

Plant Gadsden Ash Pond 10/04/2021 - 10/12/2021

Parameters Detected Above MDL											
Sample Date	QC Location	Blank Concentration	Units	MDL							
10/06/2021	FB-2	Chromium	0.00023 J	mg/L	0.0002						
10/05/2021	EB-2	Chromium	0.00021 J	mg/L	0.0002						
10/05/2021	FB-1	Lead	0.00014 J	mg/L	7E-05						

- 1. Lab qualifiers have been appended to result when applicable
- 2. MDL = Method Detection Limit
 3. Only Appendix 4 Constituents were compared and validated. Radium data was not validated.
 4. mg/L = milligrams per liter

Table 4c – Field QC: Data Validation Results (Blanks)

Plant Gadsden Ash Pond 10/04/2021 - 10/12/2021

		List of Compli	ance Sample Concentration	ons < 5x Blank Concentrations	S		
Sample Date	QC Sample	Parameter	QC Sample Result (5x)	Sample Location	Result	Units	Validation Flag
10/05/2021	EB-2	Chromium	0.00103	GSD-AP-MW-1	0.00023 J	mg/L	+(U)*
10/05/2021	EB-2	Chromium	0.00103	GSD-AP-MW-12	0.00034 J	mg/L	+(U)*
10/06/2021	FB-2	Chromium	0.00115	GSD-AP-MW-16	0.00046 J	mg/L	+(U)*
10/06/2021	FB-2	Chromium	0.00115	GSD-AP-MW-17	0.00027 J	mg/L	+(U)*
10/06/2021	FB-2	Chromium	0.00115	GSD-AP-MW-21VC	0.00111 v	mg/L	+(U)*
10/06/2021	FB-2	Chromium	0.00115	GSD-AP-MW-2VA	0.00025 J	mg/L	+(U)*
10/05/2021	EB-2	Chromium	0.00103	GSD-AP-MW-3	0.00023 J	mg/L	+(U)*
10/05/2021	EB-2	Chromium	0.00103	GSD-AP-MW-5	0.00028 J	mg/L	+(U)*
10/05/2021	EB-2	Chromium	0.00103	GSD-AP-MW-6	0.00025 J	mg/L	+(U)*
10/05/2021	EB-2	Chromium	0.00103	GSD-AP-MW-7	0.00025 J	mg/L	+(U)*
10/05/2021	EB-2	Chromium	0.00103	GSD-AP-PZ-1	0.00035 J	mg/L	+(U)*
10/05/2021	FB-1	Lead	0.00069	GSD-AP-PZ-2	0.00012 J	mg/L	+(U)*
10/05/2021	EB-2	Chromium	0.00103	GSD-AP-PZ-2	0.00035 J	mg/L	+(U)*

- Lab qualifiers have been appended to result when applicable
 QC Sample listed represents the source of comparison, validation flag.
 Only Appendix 4 Constituents were compared and validated. Radium data was not validated.
- 4. mg/L = milligrams per liter
- 5. Wells with concentrations less than 5x Blank Detections are flagged with (U)*.

Table 5. Summary of Background Levels and Groundwater Protection Standards

Plant Gadsden Ash Pond

Appendix IV Analytes										
Analyte	Units	Background	GWPS							
Antimony	mg/L	0.003	0.006							
Arsenic	mg/L	0.00614	0.01							
Barium	mg/L	0.312	2							
Beryllium	mg/L	0.003	0.004							
Cadmium	mg/L	0.00101	0.005							
Chromium	mg/L	0.01	0.1							
Cobalt	mg/L	0.056	0.0538							
Combined Radium 226 + 228	pCi/L	2.01	5							
Fluoride	mg/L	0.23	4							
Lead	mg/L	0.005	0.015							
Lithium	mg/L	0.05	0.04							
Mercury	mg/L	0.000775	0.002							
Molybdenum	mg/L	0.01	0.1							
Selenium	mg/L	0.0134	0.05							
Thallium	mg/L	0.001	0.002							

- 1. mg/L Milligrams per liter
- 2. pCi/L Picocuries per liter
- 3. Background concentrations/limits are used when determining the groundwater protection standard (GWPS) under 40 CFR §257.95(h) and ADEM Rule 335-13-15-.06(h).
- 4. GWPS are generally updated on a 2 year basis which began in the Fall of 2019 (Fall 2019, Fall 2021, etc).

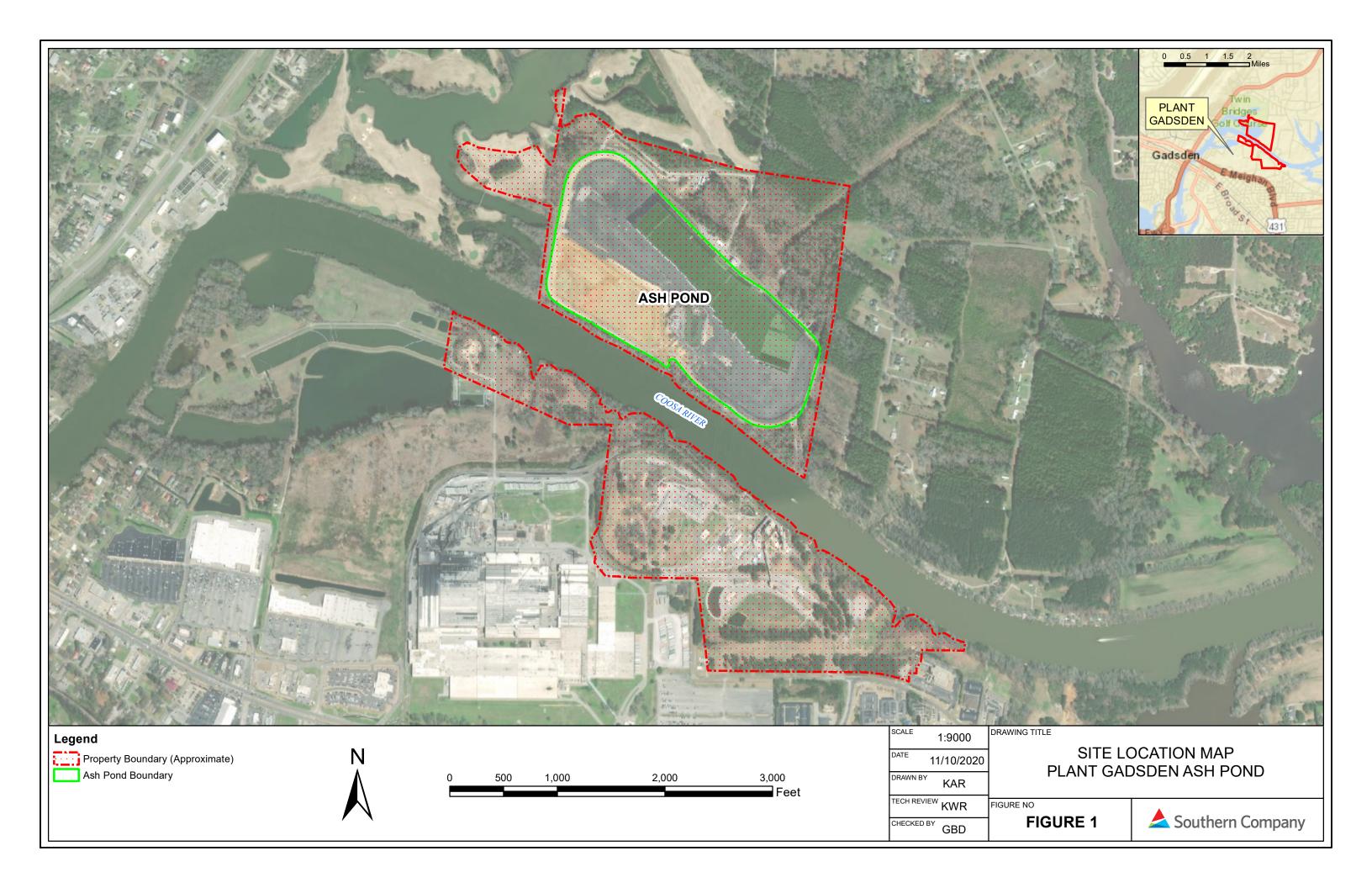
Table 6. First Semi-Annual Monitoring Event Analytical Summary Gadsden Ash Pond 10/4/2021-10/12/2021

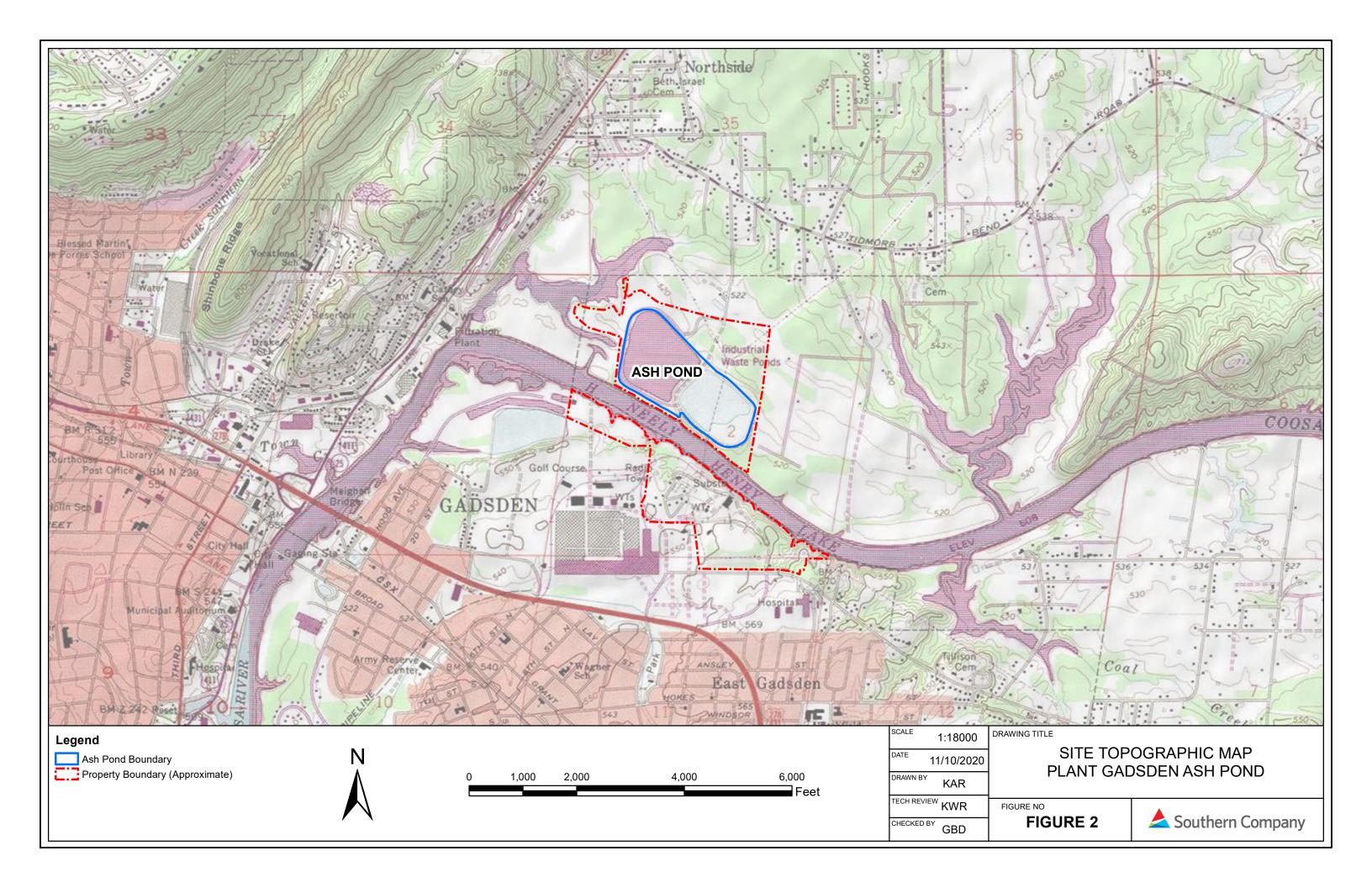
Analytes	Wells	GSD-AP-MW-14	GSD-AP-MW- 10	GSD-AP-MW- 16	GSD-AP-MW-	GSD-AP-MW- 12	GSD-AP-MW- 17	GSD-AP-MW-1	GSD-AP-MW-2	GSD-AP-MW-3	GSD-AP-MW-4	GSD-AP-MW-5	GSD-AP-MW-6	GSD-AP-MW-7
	Date	10/12/2021	10/11/2021	10/06/2021	10/12/2021	10/05/2021	10/06/2021	10/05/2021	10/11/2021	10/05/2021	10/05/2021	10/05/2021	10/05/2021	10/05/2021
Appendix III	Units													
Boron	mg/L	< 0.03	0.09 J	< 0.03	0.125	0.0661 J	0.0305 J	1.02	0.459	1.01	0.347	0.26	0.0649 J	0.0673 J
Calcium	mg/L	11.8	38.2	13.4	78.6	55.8	31	198	87.1	65.9	27.4	35.9	11.4	15.9
Chloride	mg/L	2.87	5.72	3.17	5.8	6.26	2.98	6.1	2.43	5.09	9.83	6.78	9.09	6.43
Fluoride	mg/L	< 0.06	0.201	< 0.06	0.134	< 0.06	0.175	0.0601 J	0.283	< 0.06	0.214	0.104	< 0.06	0.0933 J
pH_Field	SU	4.04	6.72	4.16	6.66	5.19	7.92	5.79	6.59	5.76	6.58	6.24	5.74	6.06
Sulfate	mg/L	88.9	7.75	93.5	142	195	10.2	567	112	228	37.8	14.5	14.2	9.19
TDS	mg/L	132	190	136	352	378	182	964	337	389	200	168	96.7	113
Appendix IV														
Antimony	mg/L	< 0.000508	< 0.000508	< 0.000508	< 0.000508	< 0.000508	< 0.000508	< 0.000508	< 0.000508	< 0.000508	< 0.000508	< 0.000508	< 0.000508	< 0.000508
Arsenic	mg/L	0.00131	0.0037	0.00207	0.00272	<6.8e-005	0.000263	0.00356	0.424	0.000207	0.0148	0.000133 J	<6.8e-005	6.94e-005 J
Barium	mg/L	0.0286	0.292	0.0215	0.17	0.0417	0.307	0.0304	0.0807	0.0344	0.202	0.229	0.0741	0.0716
Beryllium	mg/L	0.00115	< 0.000406	0.000487 J	< 0.000406	< 0.000406	< 0.000406	< 0.000406	< 0.000406	< 0.000406	< 0.000406	< 0.000406	< 0.000406	< 0.000406
Cadmium	mg/L	0.000505	<6.8e-005	0.00068	<6.8e-005	0.000367	<6.8e-005	0.000102 J	<6.8e-005	0.000213	<6.8e-005	<6.8e-005	<6.8e-005	<6.8e-005
Chromium	mg/L	0.000593 J	0.000285 J	0.000455 J	0.000267 J	0.000339 J	0.000273 J	0.000228 J	0.000479 J	0.000234 J	0.000224 J	0.000281 J	0.000246 J	0.000248 J
Cobalt	mg/L	0.0288	0.000886	0.0321	0.000275	0.00448	0.000126 J	0.0169	0.0165	0.016	0.0238	0.00108	0.00104	0.000182 J
Combined Radium 226 + 228	pCi/L	1.61	6.52	1.16 U	1.02 U	1.48	2.01	1.21	2.38	3.21	1.75	1.44	1.36	1.27
Fluoride	mg/L	< 0.06	0.201	< 0.06	0.134	< 0.06	0.175	0.0601 J	0.283	< 0.06	0.214	0.104	< 0.06	0.0933 J
Lead	mg/L	0.00151	<6.8e-005	0.00116	<6.8e-005	<6.8e-005	<6.8e-005	<6.8e-005	9.28e-005 J	<6.8e-005	<6.8e-005	<6.8e-005	<6.8e-005	<6.8e-005
Lithium	mg/L	< 0.007105	< 0.007105	< 0.007105	< 0.007105	< 0.007105	0.00881 J	< 0.007105	0.0225	< 0.007105	< 0.007105	< 0.007105	< 0.007105	< 0.007105
Mercury	mg/L	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003
Molybdenum	mg/L	<6.8e-005	0.000451	<6.8e-005	0.000152 J	<6.8e-005	0.000453	<6.8e-005	0.0204	<6.8e-005	0.00109	0.000142 J	<6.8e-005	9.55e-005 J
Selenium	mg/L	0.00287	< 0.000508	0.00262	< 0.000508	< 0.000508	< 0.000508	< 0.000508	< 0.000508	< 0.000508	< 0.000508	< 0.000508	< 0.000508	< 0.000508
Thallium	mg/L	<6.8e-005	<6.8e-005	<6.8e-005	<6.8e-005	<6.8e-005	<6.8e-005	<6.8e-005	0.000294	0.000136 J	<6.8e-005	<6.8e-005	<6.8e-005	<6.8e-005

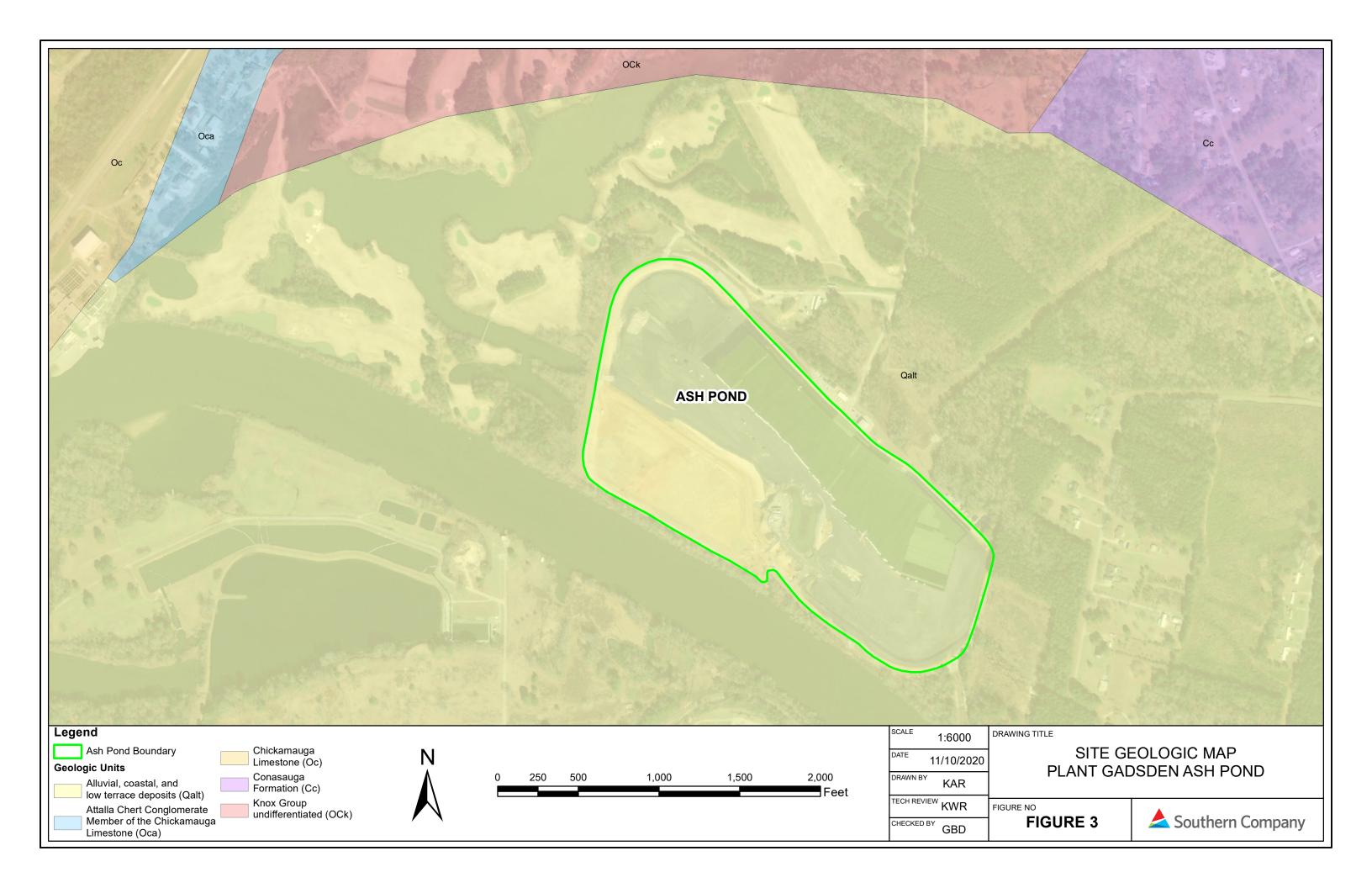
Notes:

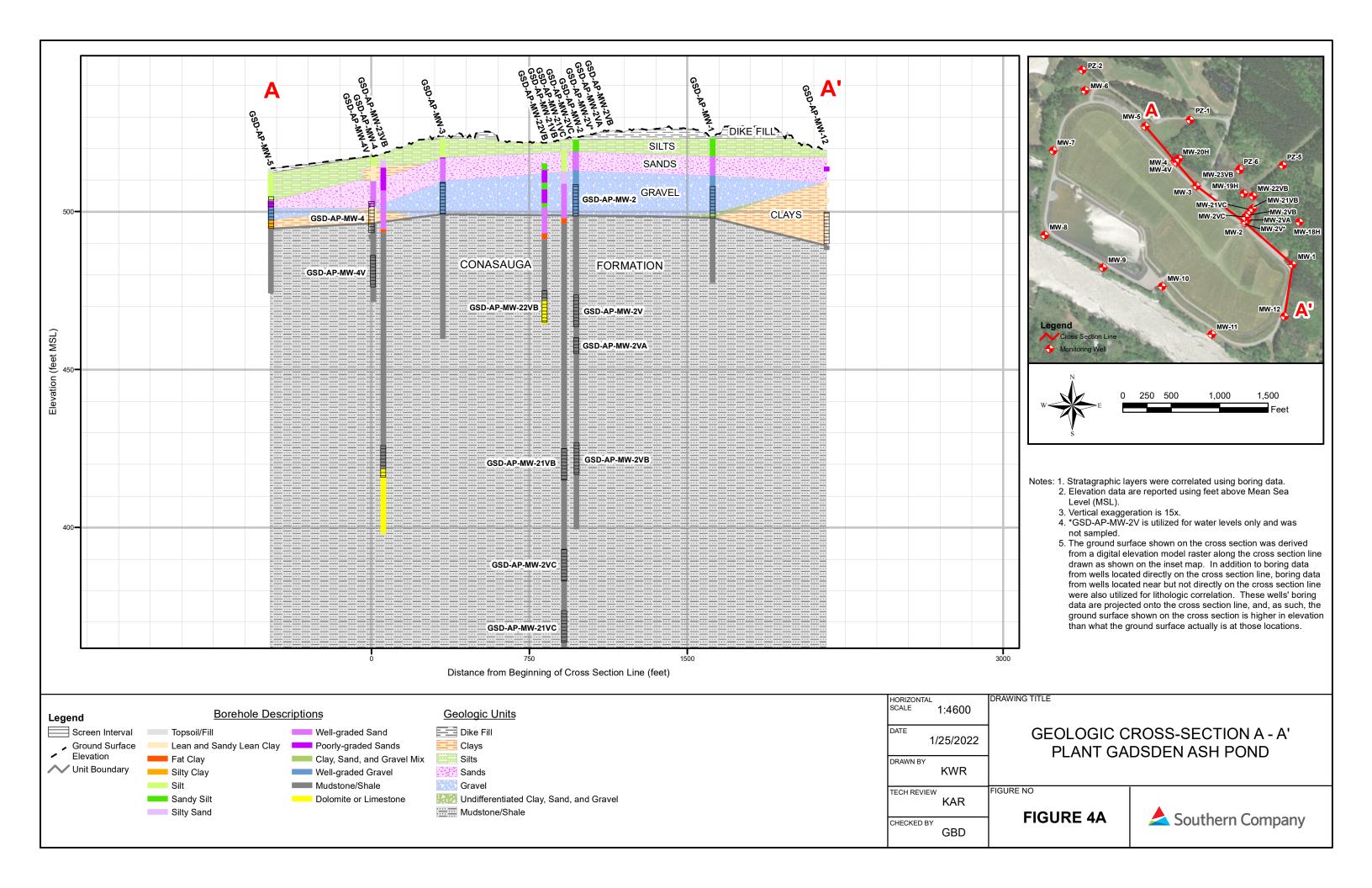
mg/L - Milligrams per Liter
 pCi/L - picocuries per Liter
 J - Result is an estimated value

4. "<MDL" or "U" indicates non-detect

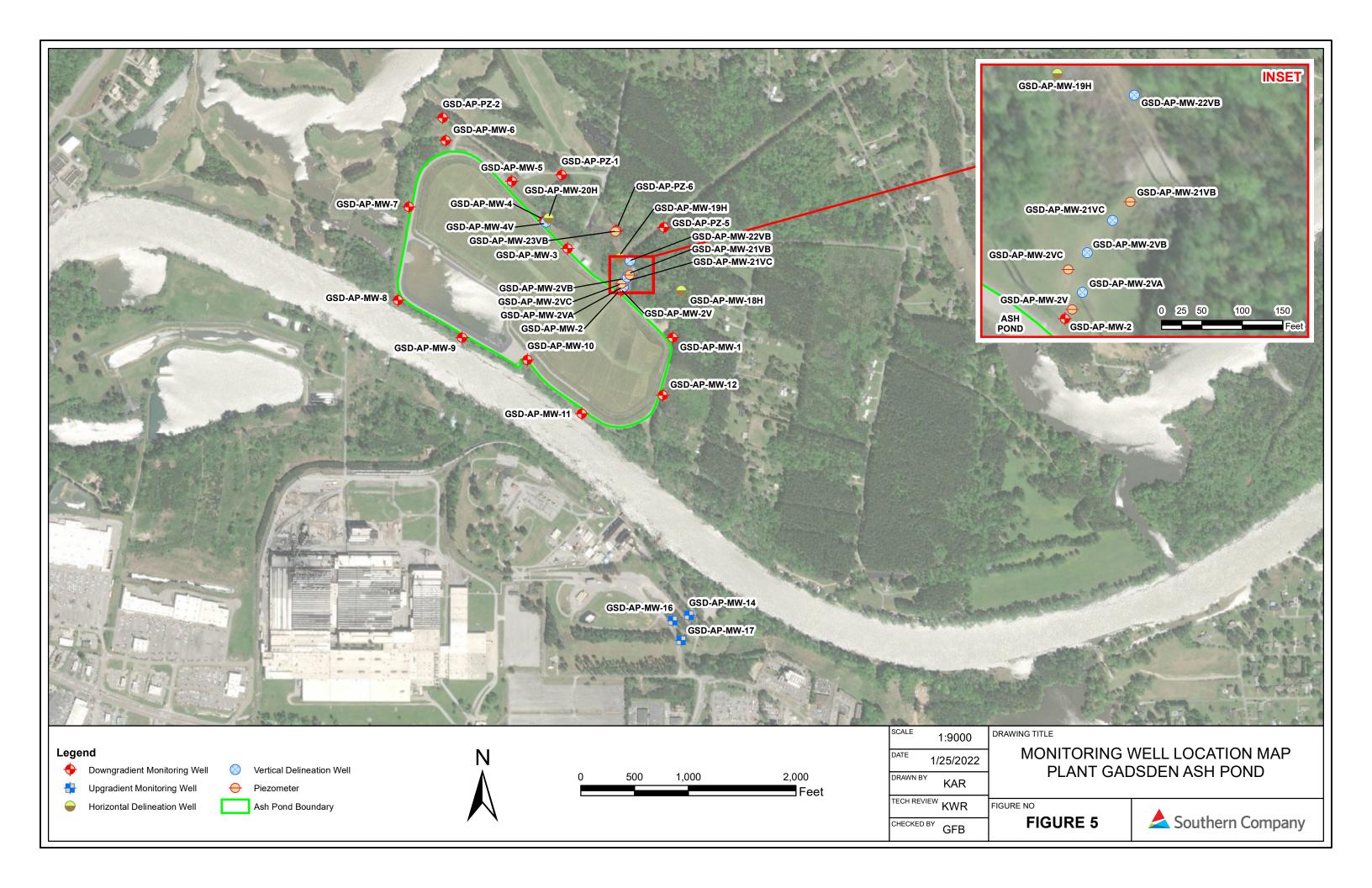


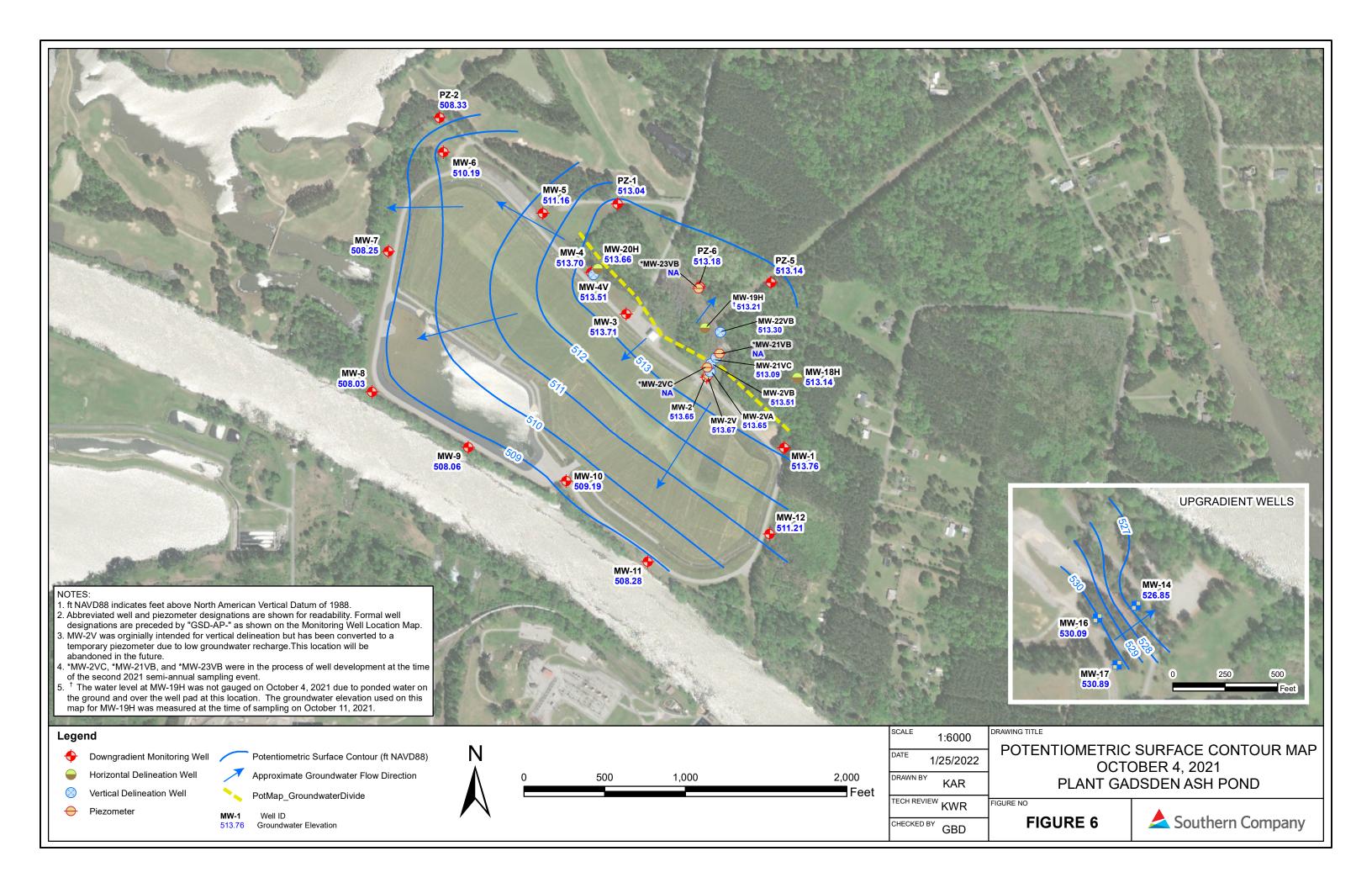

Table 6. First Semi-Annual Monitoring Event Analytical Summary Gadsden Ash Pond 10/4/2021-10/12/2021

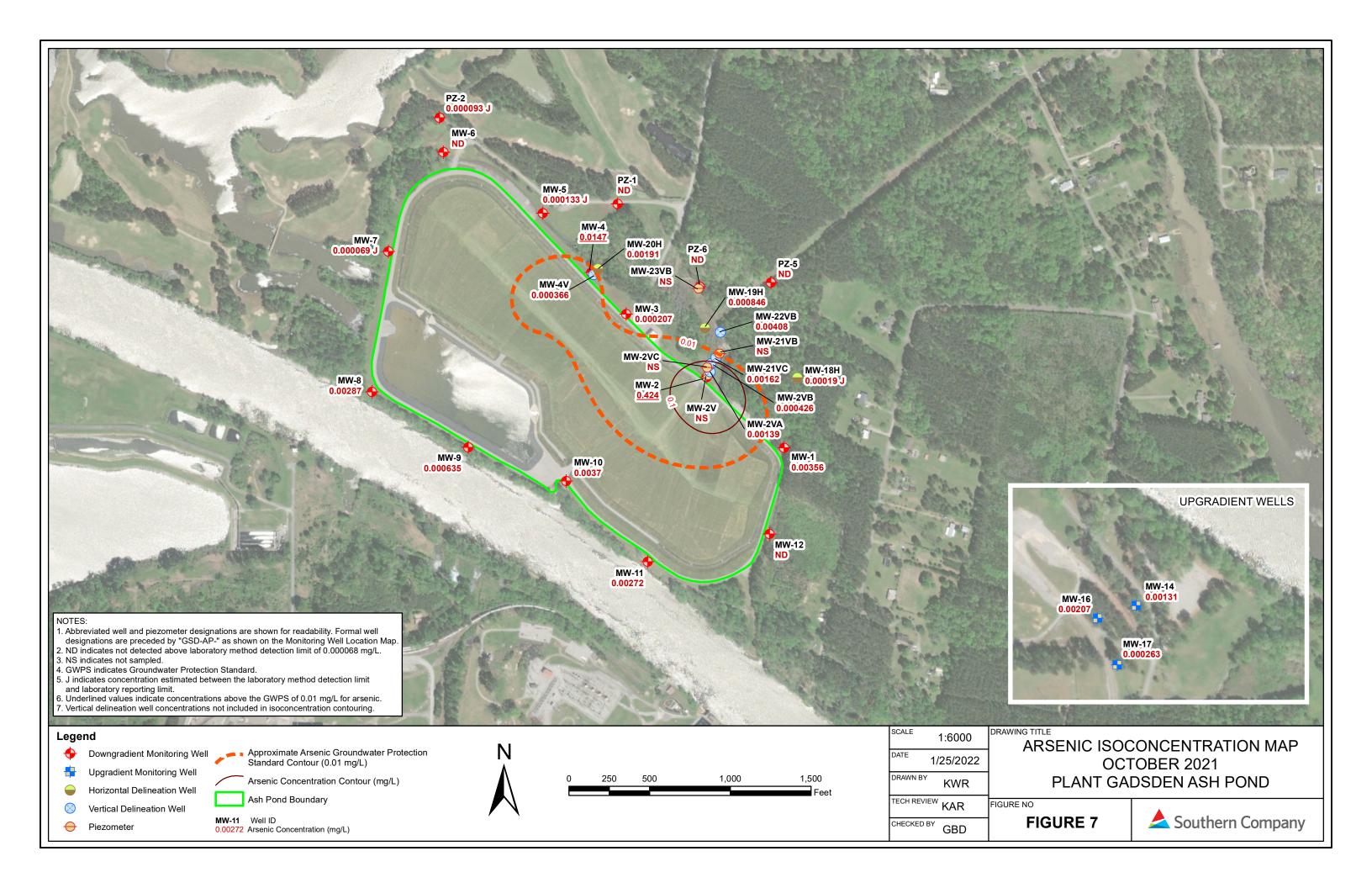

Analytes	Wells	GSD-AP-MW-8	GSD-AP-MW-9	GSD-AP-PZ-1	GSD-AP-PZ-2	GSD-AP-PZ-5	GSD-AP-PZ-6	GSD-AP-MW- 2VA	GSD-AP-MW- 2VB	GSD-AP-MW- 4V	GSD-AP-MW- 21VC	GSD-AP-MW- 22VB	GSD-AP-MW- 18H	GSD-AP-MW- 19H	GSD-AP-MW- 20H
	Date	10/12/2021	10/12/2021	10/05/2021	10/05/2021	10/12/2021	10/12/2021	10/06/2021	10/12/2021	10/11/2021	10/06/2021	10/11/2021	10/12/2021	10/11/2021	10/11/2021
Appendix III	Units														
Boron	mg/L	0.0462 J	0.0632 J	< 0.03	< 0.03	< 0.03	< 0.03	0.54	0.617	0.0596 J	0.532	0.378	0.0717 J	0.328	0.504
Calcium	mg/L	66.3	35.4	25.4	17.6	2.94	3.29	5.38	3.96	23	3.46	9.35	10.3	40	63.4
Chloride	mg/L	5.6	7.78	3.23	5.79	4.07	3.68	6.82	38	5.65	166	1.72	4.59	7.04	6.37
Fluoride	mg/L	0.123	0.147	< 0.06	< 0.06	< 0.06	< 0.06	2.56	5.97	0.23	8.34	1.43	< 0.06	0.0779 J	0.127
pH_Field	SU	6.61	6.9	6.46	5.72	5.33	5.41	8.36	8.62	7.82	8.53	8.13	5.12	6.08	6.36
Sulfate	mg/L	16	18	2.17	5.29	0.895 J	1.34	2.44	15.2	1.7	8.35	13.8	36.7	61.7	174
TDS	mg/L	245	169	108	101	38.7	35.3	317	536	220	864	230	78.7	202	384
Appendix IV															
Antimony	mg/L	< 0.000508	< 0.000508	< 0.000508	< 0.000508	< 0.000508	< 0.000508	< 0.000508	< 0.000508	< 0.000508	0.00051 J	0.00167	< 0.000508	< 0.000508	< 0.000508
Arsenic	mg/L	0.00287	0.000635	<6.8e-005	9.28e-005 J	<6.8e-005	<6.8e-005	0.00139	0.000426	0.000366	0.00162	0.00408	0.00019 J	0.000846	0.00191
Barium	mg/L	0.203	0.147	0.0811	0.118	0.0494	0.0303	0.12	0.242	0.483	0.374	0.238	0.0298	0.17	0.134
Beryllium	mg/L	< 0.000406	< 0.000406	< 0.000406	< 0.000406	< 0.000406	< 0.000406	< 0.000406	< 0.000406	< 0.000406	< 0.000406	< 0.000406	< 0.000406	< 0.000406	< 0.000406
Cadmium	mg/L	<6.8e-005	<6.8e-005	<6.8e-005	<6.8e-005	8.42e-005 J	<6.8e-005	<6.8e-005	<6.8e-005	<6.8e-005	<6.8e-005	<6.8e-005	<6.8e-005	0.000124 J	<6.8e-005
Chromium	mg/L	< 0.000203	0.00031 J	0.000352 J	0.000346 J	0.000337 J	0.000307 J	0.00025 J	0.000353 J	0.000314 J	0.00111	0.000412 J	0.000209 J	0.000475 J	0.000246 J
Cobalt	mg/L	0.00298	0.00113	0.000436	0.00287	8.08e-005 J	0.000142 J	<6.8e-005	<6.8e-005	<6.8e-005	0.000205	<6.8e-005	0.000615	0.00579	0.00995
Combined Radium 226 + 228	pCi/L	0.291 U	0.311 U	2.07	1.13	0.963 U	1.57	0.746 U	0.323 U	1.58	1.78	1.29	0.383 U	0.202 U	1.09 U
Fluoride	mg/L	0.123	0.147	< 0.06	< 0.06	< 0.06	< 0.06	2.56	5.97	0.23	8.34	1.43	< 0.06	0.0779 J	0.127
Lead	mg/L	<6.8e-005	<6.8e-005	<6.8e-005	0.000121 J	<6.8e-005	0.000119 J	<6.8e-005	<6.8e-005	<6.8e-005	0.000225	<6.8e-005	<6.8e-005	0.000155 J	8.19e-005 J
Lithium	mg/L	< 0.007105	< 0.007105	< 0.007105	< 0.007105	< 0.007105	< 0.007105	0.0685	0.129	0.0198 J	0.227	0.0544	< 0.007105	< 0.007105	< 0.007105
Mercury	mg/L	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003
Molybdenum	mg/L	0.000319	0.000177 J	7.3e-005 J	0.00028	<6.8e-005	<6.8e-005	0.00363	0.00156	0.00173	0.00107	0.00538	<6.8e-005	0.000118 J	0.000312
Selenium	mg/L	< 0.000508	< 0.000508	< 0.000508	< 0.000508	< 0.000508	< 0.000508	< 0.000508	< 0.000508	< 0.000508	< 0.000508	< 0.000508	0.000679 J	< 0.000508	< 0.000508
Thallium	mg/L	<6.8e-005	<6.8e-005	<6.8e-005	<6.8e-005	<6.8e-005	<6.8e-005	<6.8e-005	0.00013 J						

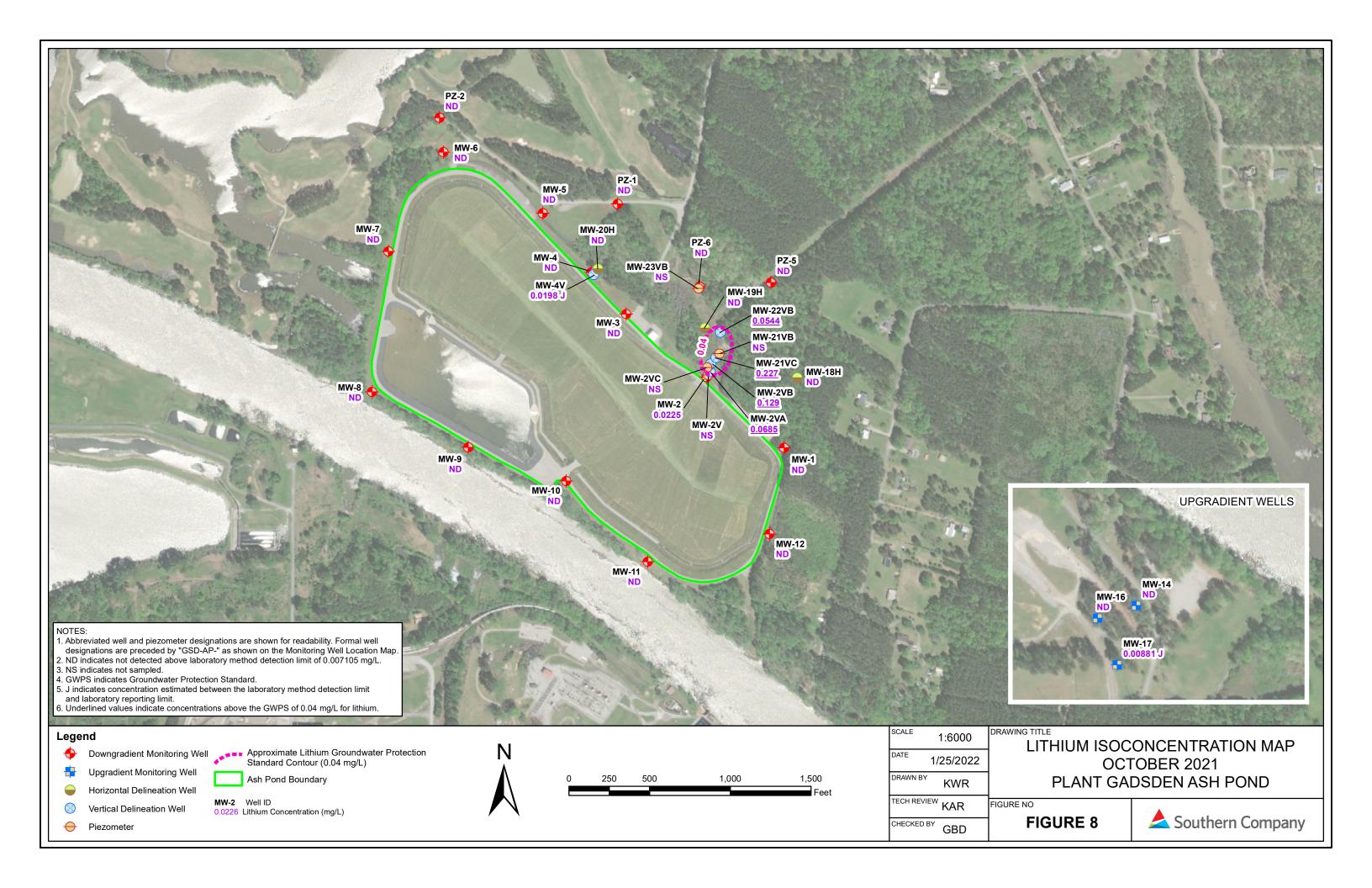

- mg/L Milligrams per Liter
 pCi/L picocuries per Liter
 J Result is an estimated value
- 4. "<MDL" or "U" indicates non-detect

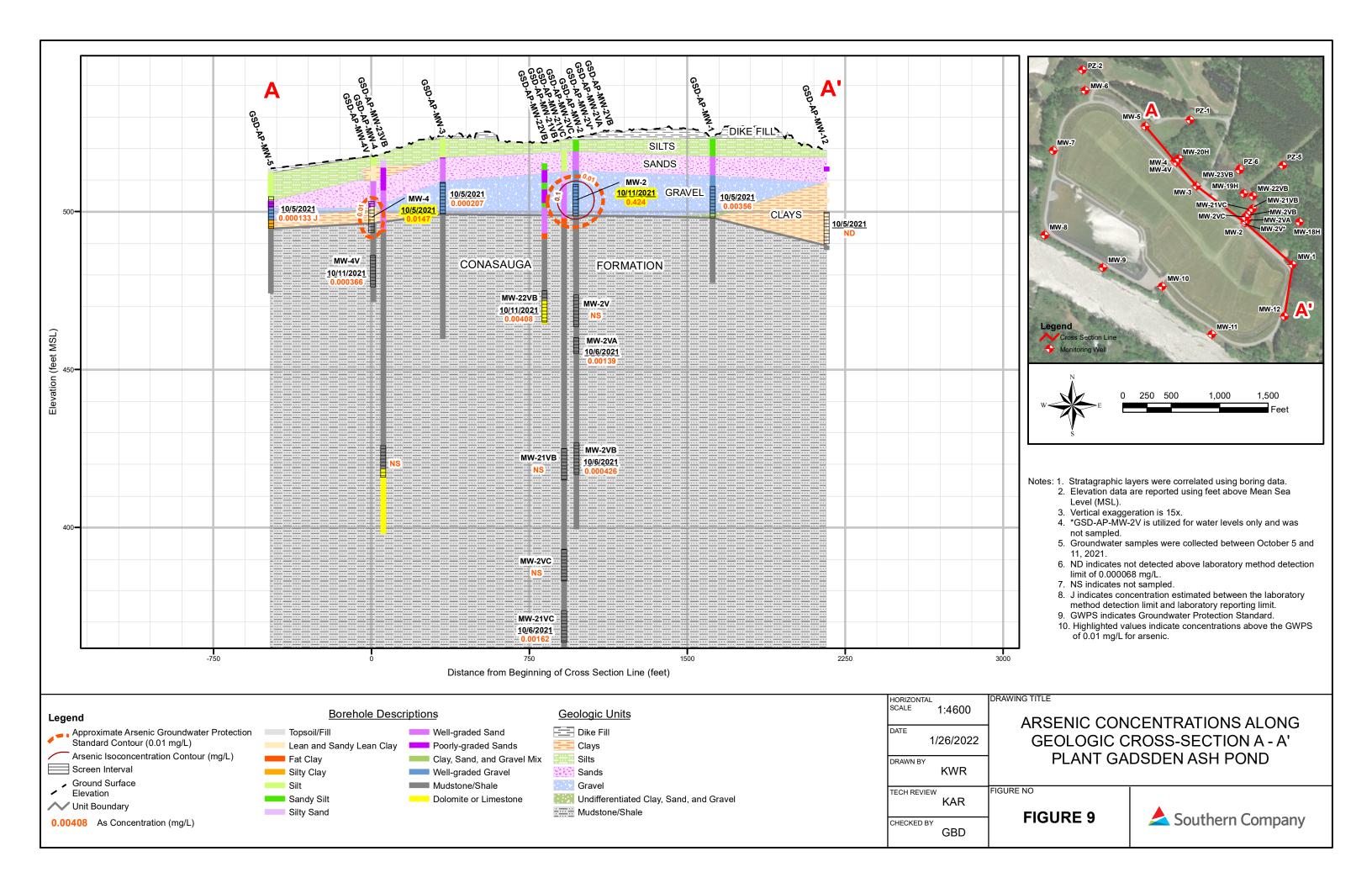
Figures

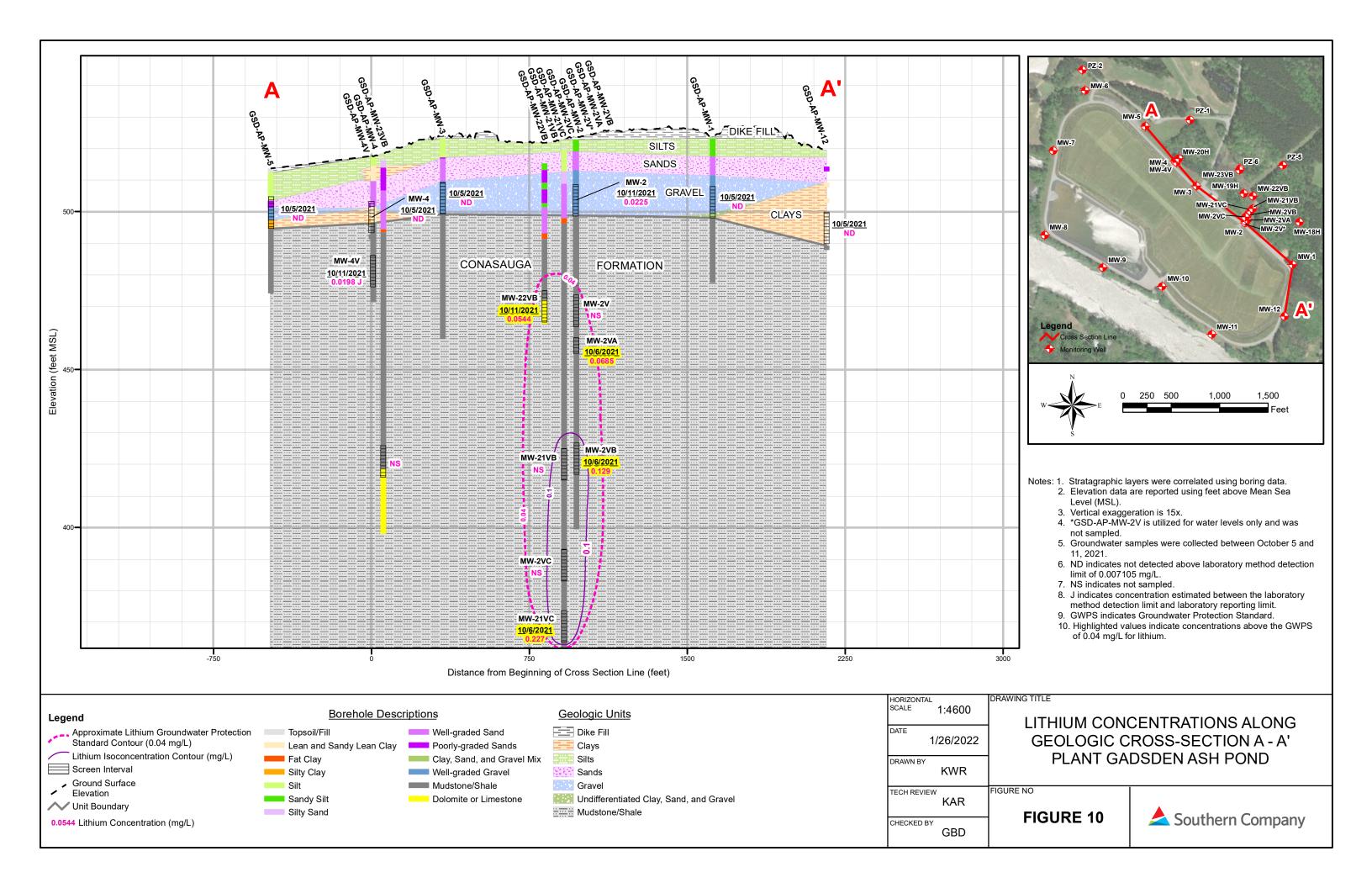












Appendix A

Page: 1 of 5

	lient F	Borehole	ID	GSD-AP-MW-21VB		Stanted	: Boring N	lo. GSD-A	P-MW-2	1VB	
	lient	orenoie	_	uthern Company			Location	1,280,497.32			
		Number				_		n 517.72 ft		on Datum N	AVD88
	-	Name		ant Gadsden		Date St		8/25/21	Comple		
	-	Location		Etowah Co, Gadsden, Alabama			o Water		Date/Ti	-	1 17:00
	•	or A. St	_			•	o Water ₋ o Water		Date/Ti		
	•			Hawkston (Subcontractor)		-	_	d ID Boart Lor	-		
	•		_	and Sampling Tools (Type and	d Size)	_					
			-	ype N/A Weight	N/A		rop N/A		fficiency	N/A	
	-	ed By _	-	Massey	App	roved By	E. Smith	1			
		Lithology			O	verburden:	Sample ¹	Depth Ft ²	Rec. Ft	Blows/PSI	
Dep	th Ft ²	Elevation		Description	R	lock Core:	RQD %	Run Ft	Rec. Ft	Rec. %	Remarks
- 0	0.0	517.7		Top of Hole							
	0.6	517.1		Topsoil, [FILL]							
-	1.9	515.8		SILT LITTLE SAND, ML, 10YR 4/6							
-	1.0	010.0	Ш	brown) to 10YR 7/6 (yellow), low plodor, no staining, weak cementation	-	- ,					
-				sand grains	ii, Subiot	arided /					
_			Ш	SILT TRACE SAND, MH, 10YR 4/6	ი (dark ve	ellowish	GR	0.0 - 7.0	5.0		
_			Ш	brown) to 10YR 6/4 (light yellowish							
- 5	5.8	511.9		plasticity, dry, no odor, no staining							
-			• .•	SILTY WELL GRADED SAND TRA	ACE GRA	VEL,					
-				SW, 7.5YR 5/6 (strong brown), fine	e to coars	se,			\vdash		
_				loose, moist, well graded							
	8.5	509.2		WELL ODADED CAND WITH OD	A) /EL O)/	V 5VD					
-				WELL GRADED SAND WITH GRA 4/6 (yellowish red) with 5B 6/1 (blui	-						
- 10				coarse, dense, moist, strong cemer							
-				graded							
_							GR	7.0 - 17.0	10.0		
								7.0 - 17.0	10.0		
-											
-											
- 15	15.0	502.7									
_			1	POORLY GRADED SAND TRACE 7.5YR 5/6 (strong brown), medium							
	17.0	500.7		moist, well graded	to coarse	e, 100Se,					
-					D. SW 5	YR 6/6			ΠΙ		
-				(reddish yellow), medium to coarse							
-				moist, well graded							
- 20											
20							GR	17.0 - 24.0	7.0		
-											
-											
-	00.5	404.0									
	23.5 24.0	494.2 493.7		EAT CLAV CH EB 6/1 /bluich gro							

11/19/21

FAT CLAY, CH, 5B 6/1 (bluish gray), very fine, high plasticity, hard, wet, no odor, no staining, weak

Page: 2 of 5

С	lient E	Borehole	D	GSD-AP-MW-21VB	Stantec	Boring N	o. GSD-AI	P-MW-2	1VB	
С	lient		Sou	uthern Company		_ocation	1,280,497.32			
Ρ	roject	Number	175	5520212	Surface	Elevation	1 517.72 ft	Elevation	on Datum_ N	IAVD88
		Lithology			Overburden:	Sample ¹	Depth Ft ²	Rec. Ft	Blows/PSI	
Dep	th Ft ²	Elevation		Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %	Remarks
- 25 - -	27.0	490.7))))	cementation, strong HCL reaction, Sapro with angular mudstone clasts Shale Mudstone, light gray, very fine gra moderately weathered to highly weathered	ned, hard,					
- - - 30 -				odor, no staining, carbonaceous, Reacts (N7) (Continued) Shale Mudstone, light gray to gray, very grained, hard, Reaction to HCL. No record geologic descriptions based on cuttings.	ine very,	GR	27.0 - 30.0	0.0		
- - 35 -						GR	30.0 - 40.0	0.0		
- - 40 - -										
- 45 - - -						GR	40.0 - 50.0	0.0		
- 50 - - -	50.0	467.7		Shale Mudstone, light gray to gray, very to grained, hard, Reaction to HCL. No record geologic descriptions based on cuttings.	very,					
- 55)			GR	50.0 - 60.0	0.0		

Page: 3 of 5

Clien	t Borehole	ID _	GSD-AP-MW-21VB	_ Stanted	Boring N	lo. GSD-AI	P-MW-2	21VB	
Clien	nt	So	uthern Company		Location	1,280,497.32			
Proje	ect Number	175	5520212	Surface	Elevation	n <u>517.72 ft</u>	Elevation	on Datum_ N	NAVD88
	Lithology			Overburden:	Sample ¹	Depth Ft ²	Rec. Ft	Blows/PSI	
Depth Ft	² Elevation		Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %	Remarks
		<u>\</u>	Shale Mudstone, light gray to gray, very f						
			grained, hard, Reaction to HCL. No recoving geologic descriptions based on cuttings.						
-		`	(Continued)	,					
-		<u></u>							
- 60							\vdash		
_		`							
_		<u>\</u>							
_									
		`							
-		<u> </u>							
- 65					GR	60.0 - 70.0	0.0		
-		`							
-		<u> </u>							
_									
_		`							
		<u> </u>							
- 70									
-		,							
-									
-									
-		. `							
- 75					GR	70.0 - 80.0	0.0		
_					5.1	. 0.0			
-		,							
-									
-									
- 80		,							
_		<u></u>							
_									
		`							
_		<u></u>							
- ¥ 1									
- 85	.0 432.7		Shale Mudstone, light gray to gray, very f	ine	GR	80.0 - 90.0	0.0		
-		,	grained, hard, Reaction to HCL. No recov						
_			geologic descriptions based on cuttings. (

Page: 4 of 5

Client	Borehole	ID _	GSD-AP-MW-21VB	_ Stanted	Boring N	lo. GSD-AF	P-MW-2	21VB	
Client		Sou	uthern Company	_ Boring l	Location	1,280,497.32	N; 614,679).72 E	
Projec	t Number	175	5520212	Surface	Elevatio	n <u>517.72 ft</u>	Elevati	on Datum_n	NAVD88
	Lithology			Overburden:	Sample ¹	Depth Ft ²	Rec. Ft	Blows/PSI	
Depth Ft ²	Elevation		Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %	Remarks
- 90 95 			Shale Mudstone, light gray to gray, very f grained, hard, Reaction to HCL. No recove geologic descriptions based on cuttings. (Continued)	/ery,	GR	90.0 - 100.0	0.0		
-		,							
-		\bigvee							
- 100		$\overline{}$					-		
-									
-)							
-)							
- 105		\setminus			GR	100.0 - 110.0	0.0		
_									
_		$\overline{}$							
-									
- 110									
-									
-									
-		\bigvee							
-									
- 115					GR	110.0 - 120.0	0.0		
-									
-									

Page: 5 of 5

Client	Borehole Number	So	GSD-AP-MW-21VB uthern Company 5520212	Boring	Location	No. GSD-Al 1,280,497.32 n 517.72 ft	N; 614,679		NAVD88
	Lithology			Overburden:	Sample ¹	Depth Ft ²	Rec. Ft	Blows/PSI	
Depth Ft ²	Elevation		Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %	Remarks

No Refusal /

Bottom of Hole at 120.0 Ft.

Top of Rock = 24.0 Ft.

Top of Rock Elevation = 493.7 Ft.

- Depths are reported in feet below ground surface
 Elevation in reference to feet above NAVD 1988 datum

Page: 1 of 6

С	lient E	Borehole	ID _	GSD-AP-MW-21VC	_ Stanted	Boring N	o. GSD-AI	P-MW-2	21VC	
С	lient		Sou	uthern Company	Boring	Location	1,280,474.22	N; 614,657	7.51 E	
Ρ	roject	Number	175	5520212	Surface	e Elevation	519.00 ft	Elevation	on Datum_n	NAVD88
Ρ	roject	Name	Pla	nt Gadsden	_ Date St	arted _	8/22/21	Comple	eted8/22/2	1
Ρ	roject	Location	า _	Etowah Co, Gadsden, Alabama	_ Depth t	o Water _	141.2 ft	Date/T	ime <u>8/22/2</u>	1 18:35
In	spect	or A. St	evens	Logger A. Stevens	_ Depth t	o Water _	8.9 ft	Date/T	ime9/3/21	09:34
D	rilling	Contract	or _	Hawkston (Subcontractor)	_ Drill Rio	g Type and	d ID Boart Lon	igyear LS60	00	
0	verbu	rden Dril	ling a	and Sampling Tools (Type and Siz	ze)4" X 6"	Rotosonic / 6	6" Air Rotosonic			
					I/A D	rop N/A	Ef	fficiency	N/A	
R	eview	ed By $_$	J. N	Massey A	Approved By	E. Smith				
		Lithology	_		Overburden:	Sample ¹	Depth Ft ²	Rec. Ft	Blows/PSI	
Dep	h Ft ²	Elevation		Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %	Remarks
- 0	0.0	519.0	пен	Top of Hole						
	0.5	518.5		Topsoil, [FILL]						
				SILT WITH SAND, ML, 10YR 4/6 (dark brown) to 10YR 7/6 (yellow), low plastici	•					
				odor, no staining, weak cementation, Su						
				sand grains		0.0	00.70			
	3.9	515.1				GR	0.0 - 7.0	5.0		
- 5			Ш	SILT SOME SAND, MH, 10YR 4/6 (dark brown) to 10YR 6/4 (light yellowish brown)						
Ü			Ш	plasticity, wet, no odor, no staining	,,g					
			Ш							
-			Ш							
			Ш							
Ţ	<u></u>		Ш							
			Ш							
- 10	44.0	500.0	Ш							
-	11.0	508.0		FAT CLAY SOME SAND, CH, 7.5YR 5/	6 (etrona					
-				brown) with (), fine to coarse, moist, we	, -	GR	7.0 - 17.0	8.5		
_										
	14.0	505.0								
-				POORLY GRADED SAND, SP, 10GY 6	/1 (greenish					
- 15	15.3	503.7		gray), very fine, very dense, moist, stron	g					
-	15.9	503.1	• •	\cementation, well graded						
_	17.0	502.0		POORLY GRADED SAND, SP, very fine	,					
				plasticity, loose, wet, weak cementation, graded	poorty					
				POORLY GRADED SAND, SP, 10GY 6	/1 (greenish					
-			• • •	gray), fine to medium, loose, moist, wear						
- 20				cementation, poorly graded						
	21.2	497.8		GRAVELLY WELL GRADED SAND, SV	•	GR	17.0 - 25.0	7.0		
	22.1	496.9		(reddish yellow), medium to coarse, med moist, well graded	dium dense,		5 20.0			
-	<i>ــــ</i> . I	+00.0			nu fine high					
				FAT CLAY, CH, 5B 6/1 (bluish gray), ve plasticity, hard, wet, no odor, no staining						
-				cementation, strong HCL reaction, Sapre						
25				with angular mudstone clasts						

Page: 2 of 6

С	lient E	Borehole	ID	GSD-AP-MW-21VC	Stanted	: Boring N	o. GSD-AF	P-MW-2	21VC	
С	lient		Sou	uthern Company		Location	1,280,474.22			
Р	roject	Number	175	5520212	Surface	Elevation	n <u>519.00 ft</u>	Elevati	on Datum_ <u>N</u>	NAVD88
		Lithology			Overburden:	Sample ¹	Depth Ft ²	Rec. Ft	Blows/PSI	
Dep	th Ft ²	Elevation		Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %	Remarks
- 25 - -	27.0	492.0))))	Shale Mudstone, light gray, very fine grai moderately hard, moderately weathered t weathered, dry, no odor, no staining, carl Reacts to HCL. (N7) (Continued) Shale Mudstone, light gray to gray, very f	to highly bonaceous,	GR	25.0 - 30.0	0.0		
- - 30 -				grained, moderately hard, Reaction to HC calcite fragment present. No recovery, ge descriptions based on cuttings. (N7 - N5)	eologic					
-										
- 35						GR	30.0 - 40.0	0.0		
-			_\\\							
_			V,							
_										
- 40			V,							
_			<u>\</u>							
-										
_			V,							
- 45 -			<u>\</u>			GR	40.0 - 50.0	0.0		
_			V,							
-			<u>\</u>							
-			<u>\</u>							
- 50 -			V,							
_			<u> </u>							
_										
- - 55))			GR	50.0 - 60.0	0.0		

SUBSURFACE LOG

Page: 3 of 6

С	lient E	orehole	ID _	GSD-AP-MW-21VC	Stantec	Boring N	o. GSD-AF	P-MW-2	1VC	
С	lient		Sou	ithern Company	_	ocation	1,280,474.22	N; 614,657	.51 E	
Р	roject	Number	175	5520212	_ Surface	Elevation	1 519.00 ft	Elevation	on Datum_N	IAVD88
		Lithology			Overburden:	Sample ¹	Depth Ft ²	Rec. Ft	Blows/PSI	
Dept	th Ft ²	Elevation		Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %	Remarks
- - - 60 -	61.0	458.0		Shale Mudstone, light gray to gray, very grained, moderately hard, Reaction to HC calcite fragment present. No recovery, ge descriptions based on cuttings. (N7 - N5 (Continued) Shale Mudstone, light gray to gray, very grained, moderately hard, More compete Reaction to HCL. Few calcite fragment precovery, geologic descriptions based on	CL. Few eologic) fine nt layer. present. No					
_			$\overline{}$	(N7 - N5)	cuttings.					
- 65						GR	60.0 - 70.0	0.0		
_										
- 70										
_			\bigvee							
_			$\overline{\ }$							
- 75 -			\bigvee			GR	70.0 - 80.0	0.0		
_										
- 80 -										
_										
_										
– 85 –	86.0	433.0				GR	80.0 - 90.0	0.0		
	87.0	432.0	\checkmark	Shale Mudstone, light gray to gray, very	fine					

SUBSURFACE LOG

Page: 4 of 6

Client l	Borehole	ID _	GSD-AP-MW-21VC	Stanted	Boring N	lo. GSD-AF	P-MW-2	21VC	
Client		Sou	uthern Company	_ Boring I	Location	1,280,474.22	N; 614,657	'.51 E	
Projec	t Number	175	5520212	_ Surface	Elevatio	n <u>519.00 ft</u>	Elevation	on Datum_ N	NAVD88
	Lithology			Overburden:	Sample ¹	Depth Ft ²	Rec. Ft	Blows/PSI	
Depth Ft ²	Elevation		Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %	Remarks
- - - 90 - - - - - 95 -			grained, soft, Weak layer potiental fracture. Reaction to HCL. Few calcite fragment precovery, geologic descriptions based on (N7 - N5) Shale Mudstone, light gray to gray, very grained, moderately hard, More competer Reaction to HCL. Few calcite fragment precovery, geologic descriptions based on (N7 - N5) (Continued)	oresent. No cuttings. fine ent layer. oresent. No	GR	90.0 - 100.0	0.0		
_									
- 100						<u> </u>			
_									
_									
-									
- 105					GR	100.0 - 110.0	0.0		
_									
-									
-									
- 110 -							1		
-									
_									
-									
- 115 -					GR	110.0 - 120.0	0.0		
_		<u>\</u>							

SUBSURFACE LOG

Page: 5 of 6

	lient F	Borehole		GSD-AP-MW-21VC	Stanted	· Roring N	lo. GSD-AF	P-MW-2	21VC	
	lient	orenoie		uthern Company		Location	1,280,474.22			
		Number			_		n 519.00 ft		on Datum N	
Don	th Ft ²	Lithology Elevation		Description	Overburden: Rock Core:	Sample ¹	Depth Ft ² Run Ft	Rec. Ft	Blows/PSI Rec. %	Remarks
Бер	ווורנ	Elevation		Description	Rock Core.	RQD %	Run Ft	Rec. Ft	Rec. %	Remarks
			$\overline{}$				_			
_	100.0									
- 120	120.0	399.0)	Shale Mudstone, light gray to gray, very t	ine		<u> </u>			
_				grained, hard, Very competent layer. Rea	action to					
_)	HCL. Few calcite fragment present. No r geologic descriptions based on cuttings.						
_			$\overline{}$,					
_										
- 125						GR	120.0 - 130.0	0.0		
_			\setminus							
			$\overline{}$							
			\bigcirc							
			$\overline{}$							
– 130			$\overline{}$				<u> </u>			
_										
_			$\overline{)}$							
-			$\overline{}$							
_										
- 135						GR	130.0 - 140.0	0.0		
_			\vee							
_)							
_										
_			\bigcirc							
- 140			$\overline{}$				_			
	7									
7	-									
			\backslash							
_										
_										
- 145						GR	140.0 - 150.0	0.0		
_										
_										
_										
			$\overline{}$							

Page: 6 of 6

С	lient E	Borehole	ID _	GSD-AP-MW-21VC	_ Stanted	Boring N	lo. GSD-A F	P-MW-2	21VC	
С	lient		Sol	uthern Company	_ Boring l	Location	1,280,474.22	N; 614,657	7.51 E	
Р	roject	Number	175	5520212	Surface	e Elevatio	n <u>519.00 ft</u>	Elevati	on Datum_ <u>۱</u>	NAVD88
		Lithology			Overburden:	Sample ¹	Depth Ft ²	Rec. Ft	Blows/PSI	
Dep	th Ft ²	Elevation		Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %	Remarks
- 150 - - -				Shale Mudstone, light gray to gray, very f grained, hard, Very competent layer. Rea HCL. Few calcite fragment present. No re geologic descriptions based on cuttings. (Continued)	ecovery,					
- 155	155.0	364.0								
- 155 - -	158.0	361.0)))	Shale Mudstone, light gray to gray, very f grained, moderately hard, potiental fractu Reaction to HCL. Few calcite fragment por recovery, geologic descriptions based on (N7 - N5)	re. resent. No	GR	150.0 - 160.5	0.0		
				Shale Mudstone, light gray to gray, very f	ino					
– – 160				grained, hard, Very competent layer. Rea HCL. Few calcite fragment present. No re geologic descriptions based on cuttings. (ecovery,					
_			<u>\</u>							
_			V,							
– 165			<u>\</u>							
_			<u>\</u>							
			\smile							
170										
- 170 	170.5	348.5		No Refusal / Bottom of Hole at 170.5 Ft.						
				Top of Rock = 22.1 Ft. Top of Rock Elevation = 496.9 Ft.						
			1. 2.	Depths are reported in feet below ground su Elevation in reference to feet above NAVD 1	rface 988 datum					

Page: 1 of 3

С	lient B	orehole	ID _	GSD-AP-MW-22VB	_ Stanted	Boring N	o. GSD-AI	P-MW-2	2VB	
С	lient		Sou	uthern Company	Boring	Location	1,280,629.98	N; 614,685	i.11 E	
Р	roject	Number	175	5520212	Surface	Elevation	515.48 ft	Elevation	on Datum_N	IAVD88
Р	roject	Name	Pla	nt Gadsden	_ Date St	arted _	8/27/21	Comple	eted8/27/2	1
Р	roject	Location	า _	Etowah Co, Gadsden, Alabama	_ Depth t	o Water _	11.8 ft	Date/Ti	ime <u>8/27/2</u>	1 11:59
	•	or A. St				o Water _		Date/Ti		09:50
	-		_	Hawkston (Subcontractor)	`	, ,,	d ID Boart Lon	ngyear LS60	00	
			-	and Sampling Tools (Type and Siz	· —			rr: ·		
	-		-	, i =	NA D Approved By	rop N/A		fficiency	N/A	
K	eviewe	ed By _	J. I	<u>viassey </u>	ърргочеа ву	E. 3111111	l			
	I	_ithology			Overburden:	Sample ¹	Depth Ft ²	Rec. Ft	Blows/PSI	
Dept	h Ft²	Elevation		Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %	Remarks
	0.0	515.5		Top of Hole	1 10011 00101	7102 71			1100.70	. tomanto
0	0.0			SILT WITH SAND, ML, 10YR 4/6 (dark	yellowish					
				brown) to 10YR 7/6 (yellow), low plastic	ty, wet, no					
				odor, no staining, weak cementation, Su sand grains	brounded					
Ţ	2.0	513.5	 		CD 10CV					
				POORLY GRADED SAND LITTLE SILT 6/1 (greenish gray) and 7.5YR 6/6 (redd		0.5	0.0.00			
				very fine, very dense, moist, strong cem	entation,	GR	0.0 - 6.0	5.0		
				well graded						
5										
	6.0	509.5								
			Ш	SILT SOME SAND, MH, 7.5YR 4/6 (stro	ong brown),					
				high plasticity, wet, no odor, no staining						
	8.5	507.0								
				POORLY GRADED SAND LITTLE SILT	, SP, 10GY					
				6/1 (greenish gray) and 7.5YR 6/6 (redd						
10				very fine, very dense, moist, strong cem well graded	entation,					
						GR	6.0 - 16.0	7.0		
Ž	<u>z</u>									
	13.0	502.5	111							
	14.0	501.5		SILT WITH SAND, ML, 10YR 4/6 (dark brown) to 10YR 7/6 (yellow), low plastici						
	14.0	001.0		odor, no staining, weak cementation						
15				GRAVELLY WELL GRADED SAND, SV	V, 5YR 6/6					
				(reddish yellow), medium to coarse, med	dium dense,					
	16.0	499.5		moist, well graded	TH CLAY			H = I		
				GRAVELLY WELL GRADED SAND WI SW, 5YR 6/6 (reddish yellow), medium						
				medium dense, moist, well graded	,					

SUBSURFACE LOG

Page: 2 of 3

С	lient E	Borehole	ID _	GSD-AP-MW-22VB	Stanted	Boring N	lo. GSD-AF	P-MW-2	2VB	
С	lient		Sou	thern Company	_ Boring I	_ocation	1,280,629.98 I	N; 614,685	5.11 E	
Р	roject	Number	175	520212	Surface	Elevatio	n <u>515.48 ft</u>	Elevation	on Datum_N	NAVD88
		Lithology			Overburden:	Sample ¹	Depth Ft ²	Rec. Ft	Blows/PSI	
Dep	th Ft ²	Elevation		Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %	Remarks
- - - 20 -	22.0	493.5		GRAVELLY WELL GRADED SAND WITSW, 5YR 6/6 (reddish yellow), medium to medium dense, moist, well graded (Cor	o coarse,	GR	16.0 - 26.0	8.0		
_	24.0	491.5		FAT CLAY, CH, 5B 6/1 (bluish gray), ver plasticity, hard, wet, no odor, no staining, cementation, strong HCL reaction, Sapro with angular mudstone clasts	, weak					
- 25				Shale Mudstone, light gray to gray, very to grained, hard, Reaction to HCL. No recordeologic descriptions based on cuttings.	very,					
_						GR	26.0 - 30.0	0.0		
_										
- 30			\bigvee				_			
_										
			\bigvee							
_										
- 35						GR	30.0 - 40.0	0.0		
			\vee							
_										
- - 40										
40			_ \							

Page: 3 of 3

Client E	Borehole	ID _	GSD-AP-MW-22VB	Stanted	Boring N	o. GSD-A	P-MW-2	2VB	
Client		Sou	uthern Company		Location	1,280,629.98			
Project	Number	175	5520212	Surface	e Elevation	515.48 ft	Elevation	on Datum_ N	AVD88
	Lithology			Overburden:	Sample ¹	Depth Ft ²	Rec. Ft	Blows/PSI	
Depth Ft ²	Elevation		Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %	Remarks
43.0 43.0 45.0 46.0 51.0	472.5 470.5 469.5)))]]]]]]]]]]]]]]]]]	Shale Mudstone, light gray to gray, very trained, hard, Reaction to HCL. No recorgeologic descriptions based on cuttings. (Continued) Limestone (80%) With Shale (20%) Limestone, light blue gray to gray, microx very fine grained, hard, no staining, calcate Reacts to HCL, Calcite veins present. Not geologic descriptions based on cuttings. (N5) Limestone, light blue gray to gray, microx very fine grained, hard, no staining, calcate Potential fractue zone. Reacts to HCL, Capresent. No recovery, geologic description on cuttings. (5B 7/1 - N5) Limestone (80%) With Shale (20%) Limestone, light blue gray to gray, microx very fine grained, hard, no staining, calcate Reacts to HCL, Calcite veins present. Not geologic descriptions based on cuttings. (N5) No Refusal / Bottom of Hole at 51.0 Ft. Top of Rock = 24.0 Ft. Top of Rock Elevation = 491.5 Ft. Depths are reported in feet below ground subjective in reference to feet above NAVD 19	crystalline to areous, (5B 7/1 - crystalline to areous, calcite veins ans based crystalline to areous, calcite veins areous, crecovery, (5B 7/1 - crystalline to areous, calcite veins areous, crecovery, (5B 7/1 - crystalline to areous, crecovery, consideration of the consideration of the consideration of the crystalline to areous, consideration of the consideration of the crystalline to areous, consideration of the crystalline to areous are crystalline to areous areas are crystalline to are consideration of the crystalline to are considerati	GR GR	40.0 - 50.0 50.0 - 51.0	0.0		TOTAL CONTRACTOR OF THE PROPERTY OF THE PROPER

Page: 1 of 5

	liont B	orobolo	ID	GSD-AP-MW-23VB	Stanton	- Poring No	GSD-A	P-MW-2	3VB	
		Sorehole	_			Location				
	lient			uthern Company	_		1,280,901.32			
	-	Number			_	Elevation			on Datum_N	
	-	Name		nt Gadsden	_ Date St	_	8/28/21	Comple		
	-	Locatio	_	Etowah Co, Gadsden, Alabama		o Water _	92.3 ft	Date/Ti		1 18:30
	•	or A.S				o Water _	50.0 ft	Date/Ti		09:05
	_	Contrac	_		_		ID Boart Lor	ngyear LS60	0	
			_	and Sampling Tools (Type and Siz	· —					
			-	,,,		rop N/A	E	fficiency	N/A	
R	eviewe	ed By _	J. I	Massey A	pproved By	E. Smith				
		ithology			Overburden:	Sample ¹	Depth Ft ²	Rec. Ft	Blows/PSI	
Doni		Lithology		Description			•	+		Domorko
Бер	th Ft ²	Elevation 516.6		Description Top of Hole	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %	Remarks
0	0.0	516.0		•	_					
-	0.1	010.2		Topsoil, [FILL]						
	1.8	514.8	$\parallel \downarrow \downarrow$	SILT WITH SAND, ML, 10YR 4/6 (dark y brown) to 10YR 7/6 (yellow), low plasticit						
				odor, no staining, weak cementation, Sul	- / /					
•				sand grains		GR	0.0 - 6.0	6.0		
				POORLY GRADED SAND LITTLE SILT	, SP, 10GY					
- 5			• • •	6/1 (greenish gray) and 7.5YR 6/6 (reddi						
				very fine, very dense, moist, strong ceme well graded	entation,					
•				g. aaca				П		
-	7.5	509.1								
				POORLY GRADED SAND SOME SILT,	SP, 7.5YR					
	8.7 9.2	507.9 507.4		4/6 (strong brown), very fine to fine, med	lium /					
	5.2	307.4		\plasticity, wet, no odor, no staining	——/ _П					
10				POORLY GRADED SAND, SP, 7.5YR 4						
				brown), medium to coarse, medium plasi no odor, no staining	ticity, wet,	GR	6.0 - 16.0	8.5		
					TH OLAY					
				GRAVELLY WELL GRADED SAND WITS SW, 5YR 6/6 (reddish yellow), medium t	·					
				medium dense, moist, well graded, 1-2 in						
				of chert, quatz, limestone						
15										
•								П		
20										
	21.0	495.6				GR	16.0 - 26.0	9.0		
				FAT CLAY, CH, 5B 6/1 (bluish gray), ver plasticity, hard, wet, no odor, no staining						
	22.5	494.1		cementation, strong HCL reaction, Sapro						
				with angular mudstone clasts						
				Mudstone, light gray, finely crystalline, so						
25			`	weathered, dry, calcareous, Reaction to	HCL. (N5)					

Page: 2 of 5

С	lient E	Borehole I	D	GSD-AP-MW-23VB	Stantec	Boring N	o. GSD-AI	P-MW-2	3VB	
	lient		_	uthern Company		_ocation	1,280,901.32			
Р	roject	Number	175	5520212	Surface	Elevatio	1 516.58 ft	Elevation	on Datum_n	NAVD88
		Lithology			Overburden:	Sample ¹	Depth Ft ²	Rec. Ft	Blows/PSI	
Dep	th Ft ²	Elevation		Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %	Remarks
- 25										
_	26.0	490.6	$\Big) \Big]$							
_			$\overline{)}$	Mudstone, light gray, finely crystalline, so weathered, wet, calcareous, Reaction to						
			$\overline{}$	Wodinarda, Wot, Calculateda, Modelloff to	1102. (110)					
_	30.0	486.6				GR	26.0 - 33.0	7.0		
- 30)	Mudstone, light blue gray to gray, microc						
_				very fine grained, hard, freshly weathered staining, calcareous, Reacts to HCL, Cal						
_				present (5B 7/1 - N5)						
_)							
_			$\overline{}$							
- 35										
_										
_			\backslash							
_			$\overline{}$							
_						GR	33.0 - 44.0	11.0		
- 40										
_			\setminus							
_			$\overline{}$							
_										
_										
- 45			\vee							
			$\overline{}$			GR	44.0 - 48.0	4.0		
						OIX	77.0 - 70.0	4.0		
	48.0	468.6								
)	Mudstone, dark gray to gray, microcrysta						
	7		$\overline{)}$	very thin, freshly weathered, damp, no st calcareous, Reacts to HCL, small 2-3 cm						
- 50	<u>-</u>			layers present (N6 - N5)		GR	48.0 - 52.0	4.0		
_			\searrow							
_										
_			$\overline{}$							
_						GR	52.0 - 57.0	5.0		
- 55			$\overline{}$							
l		I						 		I

Page: 3 of 5

С	lient E	Borehole	ID _	GSD-AP-MW-23VB	Stanted	: Boring N	lo. GSD-A	P-MW-2	23VB	
С	lient		Sol	uthern Company		Location	1,280,901.32			
Р	roject	Number	175	5520212	_ Surface	e Elevatio	n <u>516.58 ft</u>	Elevation	on Datum_n	NAVD88
		Lithology			Overburden:	Sample ¹	Depth Ft ²	Rec. Ft	Blows/PSI	
Dep	th Ft²	Elevation		Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %	Remarks
- - - 60 - -	62.0 63.0	454.6 453.6		Mudstone, dark gray to gray, microcrystal very thin, freshly weathered, damp, no st calcareous, Reacts to HCL, small 2-3 cm layers present (N6 - N5) (Continued) Fault Gouge Mudstone, dark gray to gray grained to microcrystalline, soft, thin bed	taining, in shale y, very fine ded, freshly	GR	57.0 - 65.0	9.0		
- - 65 - - -				weathered, dry, no odor, no staining, cald Potential fault gouge, reacts to HCL Mudstone, dark gray to gray, very fine gramicrocrystalline, soft, thin bedded, freshlaweathered, dry, no odor, no staining, cald Potential fault gouge, weak reaction to Hrocks phyllitic in texture. Slickensides pre	ained to y careous, CL, some	GR	65.0 - 69.0	4.0		
- 70 - - -						GR	69.0 - 75.0	6.0		
- 75 - - -						GR	75.0 - 79.0	4.0		
- 80 - - -						GR	79.0 - 85.0	4.0		
- 85 -	85.0	431.6))							

Page: 4 of 5

O	lient E	Borehole l	D _	GSD-AP-MW-23VB	Stantec	Boring N	lo. GSD-AF	?-MW-2	3VB		
С	lient		Sou	uthern Company	_ Boring	Location	1,280,901.32 I	N; 614,549	.19 E		
Р	roject	Number	175	5520212	_ Surface	e Elevation	n <u>516.58 ft</u>	Elevation	on Datum_N	IAVD88	ļ
		Lithology			Overburden:	Sample ¹	Depth Ft ²	Rec. Ft	Blows/PSI		
Dep	th Ft ²	Elevation		Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %	Remarks	
- - - 90 -	93.0	423.6		Mudstone, dark gray to gray, microcrysta very thin, freshly weathered, damp, no st calcareous, Reacts to HCL, small 2-3 cm layers present (N6 - N5) (Continued) Marlstone Fault Gouge, gray to dark gray grained to very finely crystalline, soft, mo	taining, n shale y, very fine oderately	GR	85.0 - 93.0	8.0			
- 95 -	07.0	440.6		weathered, dry, no odor, no staining, dist carbonaceous, Weak reaction to HCL. Sl present.		GR	93.0 - 97.0	4.0			
- - - 100 -	100.0	419.6		Fault Gouge Dolomite, dark gray to gray, grained to microcrystalline, soft, thin bedde weathered, dry, no odor, no staining, calcomposed Potential fault gouge, weak reaction to Herocks phyllitic in texture. Slickensides present Limestone, light gray, microcrystalline to crystalline, hard, dry, dolomitic, (N5)	Ided, freshly careous, ICL, some esent.	- GR	97.0 - 103.0	6.0			
- - 105 - - - - -						GR	103.0 - 110.0	7.0			
-						GR	110.0 - 115.0	5.0			

GR

115.0 - 119.0

4.0

Page: 5 of 5

Client E	Borehole II		GSD-AP-MW-23VB	: Boring N	lo. GSD-AI	P-MW-2	23VB			
Client		Soi	uthern Company			Location	1,280,901.32			
Project Number 175520212					Surface	e Elevatio	n <u>516.58 ft</u>	Elevati	on Datum_ <u>N</u>	NAVD88
	Lithology				Overburden:	Sample ¹	Depth Ft ²	Rec. Ft	Blows/PSI	
Depth Ft ²	Elevation		Description		Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %	Remarks
119.0										
			No Refusal /							

Bottom of Hole at 119.0 Ft.

Top of Rock = 22.5 Ft.

Top of Rock Elevation = 494.1 Ft.

- Depths are reported in feet below ground surface
 Elevation in reference to feet above NAVD 1988 datum

Page: 1 of 5

							000 45	2 2 2 2 2	2) /D	
		Borehole	_	GSD-AP-MW-2VB			lo. GSD-AF			
	lient 			uthern Company	_	Location	1,280,433.80			
	-	Number			_		n 519.74 ft		on Datum_r	
	-	Name		nt Gadsden	_ Date St	-	3/2/21	Compl		
	•	Location	_	Etowah Co, Gadsden, Alabama		o Water ₋	80.2 ft	Date/T		<u> </u>
	•	or A. St				o Water _	N/A	Date/T		
	_	Contract	_	Cascade (subcontractor) and Sampling Tools (Type and Size	_ `	g Type an Rotosonic	d ID Truck Mou	unted PS-1	150 Sonic	
			_		,	rop N/A	⊏f	ficiency	N/A	
	•	ed By _	•		pproved By	•		псістсу	19/73	
11	CVICVV	ей Бу _			рргочес Бу					
		Lithology			Overburden:	Sample ¹	Depth Ft ²	Rec. Ft	Blows/PSI	
Dept	th Ft ²	Elevation		Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %	- Remarks
	0.0	519.7		Top of Hole	T took Co. c.	1102 70		1100111	. 100. 70	, remaine
- 0	0.5	519.2	//	WELL GRADED SAND WITH CLAY, SC	, 10YR 4/4 /-					
-				(dark yellowish brown), wet, Top soil, root	/					
				WELL GRADED SAND WITH CLAY, SC	, 10YR 6/6					
				(brownish yellow) to 7.5YR 5/3 (brown), r		RS	0.0 - 5.0	1.2	N/A	
				plasticity, very loose, moist, no odor, no s	taining					
-										
- 5								₩		
	6.5	513.2								
-	0.0	010.2		WELL GRADED SAND SOME CLAY, SV	N, 5YR 5/6					
				(yellowish red), very fine to medium, low t						
				plasticity, dry to wet, Quartz, Plagioclase	sands					
-										
10						RS	5.0 - 15.0	6.0	N/A	
-										
- 15	15.0	504.7	• • •				-	\mathbb{H}		
-				WELL GRADED SAND WITH GRAVEL, 7/6 (yellow), medium to coarse, non-plast	-					
				gravel consists of prominently quartz and						
	18.0	501.7		plagioclase. Few angular mudstone clasts	3					
	10.0	501.7		WELL GRADED GRAVEL WITH CLAY,	GC 10YR					
-				4/4 (dark yellowish brown) to 10YR 6/8 (b						
- 20				yellow), very fine to coarse, medium to his	gh	RS	15.0 - 25.0	10.0	N/A	
	21.0	498.7		plasticity, moist						
				Mudstone/shale, light gray to dark gray, v	-					
-				grained, moderately hard, thin bedded, da odor, no staining, calcareous, 60° to 75° l						
-				angle, Calcite veins	bodding					
-										
			1							

Page: 2 of 5

Client	Borehole	ID _	GSD-AP-MW-2VB	Stanted	Boring N	lo. GSD-AF	P-MW-2	NB	
Client		Sou	ithern Company	_ Boring I	Location	1,280,433.80	N; 614,626	.44 E	
Projec	t Number	175	520212	Surface	Elevatio	n <u>519.74 ft</u>	Elevation	on Datum_ NA	AVD88
	Lithology			Overburden:	Sample ¹	Depth Ft ²	Rec. Ft	Blows/PSI	
Depth Ft ²	Elevation		Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %	Remarks
- 25			Mudstone/shale, light gray to dark gray, vegrained, moderately hard, thin bedded, da odor, no staining, calcareous, 60° to 75° bangle, Calcite veins (Continued)	mp, no	RS	25.0 - 35.0	2.5	N/A	
- 40					RS	35.0 - 45.0	3.0	N/A	
- 50					RS	45.0 - 55.0	4.0	N/A	
- 55					RS	55.0 - 56.0	1.0	N/A	

Page: 3 of 5

Client F	Borehole II		GSD-AP-MW-2VB	Stanted	Boring N	lo. GSD-A F	P-MW-2	PVB	
Client	Jorenole II	_	ithern Company		Location	1,280,433.80			
	Number			_		n 519.74 ft		on Datum_ <u>N</u>	NAVD88
	Lithology			Overburden:	Sample ¹	Depth Ft ²	Rec. Ft	Blows/PSI	
Depth Ft ²	Elevation		Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %	Remarks
- - - 60 - -			Mudstone/shale, light gray to dark gray, v grained, moderately hard, thin bedded, da odor, no staining, calcareous, 60° to 75° angle, Calcite veins (Continued)	amp, no	RS	56.0 - 65.0	5.0	N/A	
- 65 - - - - 70 - - - - 75					RS	65.0 - 75.0	3.0	N/A	
- 80 <u>V</u> - 80 <u>V</u> 					RS	75.0 - 85.0	3.0	N/A	

Page: 4 of 5

С	lient E	Borehole	D	GSD-AP-MW-2VB	Stantec	Boring N	lo. GSD-AF	P-MW-2	2VB	
С	lient		Sou	uthern Company		_ocation	1,280,433.80			
Р	roject	Number	175	5520212	Surface	Elevatio	n <u>519.74 ft</u>	Elevation	on Datum_n	NAVD88
		Lithology			Overburden:	Sample ¹	Depth Ft ²	Rec. Ft	Blows/PSI	
Dep	th Ft ²	Elevation		Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %	Remarks
- - - 90 -				Mudstone/shale, light gray to dark gray, vigrained, moderately hard, thin bedded, do odor, no staining, calcareous, 60° to 75° angle, Calcite veins (Continued)	amp, no bedding	RS	85.0 - 95.0	7.0	N/A	
L	93.0	426.7)	@ 92.0' -93.0' bgs becomes soft, moderative weathered, wet.	ately					
- - 95 -	96.0	423.7)))))))	Mudstone/shale, light gray to dark gray, vingrained, moderately hard, thin bedded, do odor, no staining, calcareous, 60° to 75° angle, Calcite veins @ 95.0' to 96.0' bgs becomes soft, mode weathered, wet.	amp, no bedding					
_ -) `	Mudstone/shale, light gray to gray, very fivery hard, thin bedded, damp, no odor, no						
_)	calcareous, 60° to 75° bedding angle, Ca						
- 100)			RS	95.0 - 105.0	7.0	N/A	
_) `							
_) (
_)							
- 105 -) `							
_)							
_) (
_)							
– 110 –) (RS	105.0 - 115.0	10.0	N/A	
_) (
_										
_			\rangle							
– 115 –										
_)			RS	115.0 - 120.0	5.0	N/A	

Page: 1 of 6

	li t D			CCD AD MINI OVO	011	Danis a Na	CSD VI	D M/M 2	VC	
		orehole	_				GSD-AI			
	lient	—		uthern Company		Location	1,280,413.14			
	-	Number			_	Elevation			on Datum_n	
	-	Name		nt Gadsden	_ Date St	_	8/20/21	Comple		
	-	Location	_	Etowah Co, Gadsden, Alabama		o Water _	141.6 ft	Date/Ti		1 17:20
	•	or A. St				o Water _		Date/Ti		09:20
	•		_	Hawkston (Subcontractor)			ID Boart Lon	gyear LS60	0	
			_	and Sampling Tools (Type and Siz				···		
				/ ·····g···		rop N/A	Ei	ficiency	N/A	
R	eview	ed By _	J. I	Massey A	approved By	E. Smith				
		Lithology			Overburden:	Sample ¹	Depth Ft ²	Rec. Ft	Blows/PSI	
Dont	th Ft ²			Decembration .		RQD %	Run Ft		Rec. %	Domorko
Бері		Elevation 520.5		Description Top of Hole	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %	Remarks
0	0.0	519.9		'						
	0.0	010.0		Topsoil, [FILL]						
	1.9	518.6	Ш	SILT LITTLE SAND, ML, 10YR 4/6 (dark → brown) to 10YR 7/6 (yellow), low plasticit						
			Ш	odor, no staining, weak cementation, Sul						
			Ш	sand grains		GR	0.0 - 7.0	5.0		
				SILT TRACE SAND, MH, 10YR 4/6 (dar	,					
5				brown) to 10YR 6/4 (light yellowish brow	n), high					
				plasticity, dry, no odor, no staining						
	6.7	513.8	Ш							
				SILTY WELL GRADED SAND TRACE O	•					
				SW, 7.5YR 5/6 (strong brown), fine to co	oarse,					
				loose, moist, well graded						
			• • •							
10										
	11.3	509.2								
				WELL GRADED SAND WITH GRAVEL,		GR	7.0 - 17.0	8.5		
				4/6 (yellowish red), medium to coarse, lo weak cementation, well graded	ose, moist,					
				weak cernentation, well graded						
15			• •							
	17.0	503.5								
	11.0	000.0		GRAVELLY WELL GRADED SAND, SW	V. 5YR 6/6					
				(reddish yellow), medium to coarse, med	•					
				moist, well graded						
20										
20										
	21.2	499.3		547 CLAY CH - 5 CH "	<i>c</i>					
	22.1	498.4		FAT CLAY, CH, 5B 6/1 (bluish gray), ver plasticity, hard, wet, no odor, no staining		GR	17.0 - 27.0			
			$ $	cementation, strong HCL reaction, Sapro						
				with angular mudstone clasts						
			``							
25			١							

SUBSURFACE LOG

Page: 2 of 6

С	lient E	Borehole I	D _	GSD-AP-MW-2VC	Stanted	Boring N	lo. GSD-A F	P-MW-2	.VC	
С	lient		Sou	uthern Company	_ Boring I	_ocation	1,280,413.14	N; 614,602	.69 E	
Р	roject	Number	175	5520212	Surface	Surface Elevation 5		0.45 ft Elevation Datum NAVD88		JAVD88
		Lithology			Overburden:	Sample ¹	Depth Ft ²	Rec. Ft	Blows/PSI	
Dep	th Ft ²	Elevation		Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %	Remarks
- 25 - - - - - 30 -	27.0	493.5		Shale Mudstone, light gray, very fine gramoderately weathered to highly weathered odor, no staining, carbonaceous, Reacts (N7) (Continued) Shale Mudstone, light gray to gray, very grained, hard, Reaction to HCL. No recogeologic descriptions based on cuttings.	ed, dry, no to HCL. fine very,	GR	27.0 - 30.0	0.0		
- - 35 - - -						GR	30.0 - 40.0	0.0		
- 40 50	50.0	470.5		Shale Mudstone, light gray to gray, very	fine	GR	40.0 - 50.0	0.0		
- - - - 55				grained, hard, Reaction to HCL. No reco geologic descriptions based on cuttings.	very,	GR	50.0 - 60.0	0.0		

Page: 3 of 6

С	lient E	Borehole l	D _	GSD-AP-MW-2VC	Stanted	Boring N	o. GSD-A l	P-MW-2	VC	
С	lient		Sou	uthern Company	Boring	Location	1,280,413.14	N; 614,602	.69 E	
Р	roject	Number	175	5520212	Surface	e Elevation	520.45 ft	Elevation	on Datum_N	IAVD88
	ļ	Lithology			Overburden:	Sample ¹	Depth Ft ²	Rec. Ft	Blows/PSI	
Dep	th Ft ²	Elevation		Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %	Remarks
				Shale Mudstone, light gray to gray, very f grained, hard, Reaction to HCL. No recover geologic descriptions based on cuttings. (Continued)	ery,	GR	60.0 - 70.0	0.0		
- 70 70 75 	75.0	445.5		Shale Mudstone, light gray to gray, very f grained, hard, Reaction to HCL. No recov geologic descriptions based on cuttings. (ery,	GR	70.0 - 80.0	0.0		
- 80 - - - - - - 85						GR	80.0 - 90.0	0.0		

Page: 4 of 6

С	lient E	Borehole	D _	GSD-AP-MW-2VC	Stantec	Boring N	lo. GSD-A F	P-MW-2	VC	
С	lient		Sou	uthern Company		_ocation	1,280,413.14			
Р	roject	Number	175	5520212	Surface	Elevatio	n <u>520.45 ft</u>	Elevation	on Datum_ N	IAVD88
		Lithology			Overburden:	Sample ¹	Depth Ft ²	Rec. Ft	Blows/PSI	
Dep	th Ft ²	Elevation		Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %	Remarks
- 90 95				Shale Mudstone, light gray to gray, very f grained, hard, Reaction to HCL. No recover geologic descriptions based on cuttings. (Continued)	very,	GR	90.0 - 100.0	0.0		
_			$\overline{}$							
- 100	100.0	420.5						4		
- - -) $)$ $)$ $)$	Shale Mudstone, light gray to gray, very f grained, hard, Reaction to HCL. No recove geologic descriptions based on cuttings.	very,					
_			\rangle							
- 105						GR	100.0 - 110.0	0.0		
_										
_										
)							
– 110			\rangle							
_			\vee							
_			$\overline{}$							
_										
_										
- 115						GR	110.0 - 120.0	0.0		
_										
_			$\overline{}$							

Page: 5 of 6

C	lient B	Borehole I	ID _	GSD-AP-MW-2VC	_ Stanted	Boring N	lo. GSD-AF	P-MW-2	2VC	
C	lient		Sou	uthern Company	_ Boring l	Location	1,280,413.14	N; 614,602	2.69 E	
Р	roject	Number	175	5520212	Surface	e Elevatio	n <u>520.45 ft</u>	Elevati	on Datum_n	NAVD88
		Lithology			Overburden:	Sample ¹	Depth Ft ²	Rec. Ft	Blows/PSI	
Dep	th Ft ²	Elevation		Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %	Remarks
- - 120 -)))	Shale Mudstone, light gray to gray, very f grained, hard, Reaction to HCL. No recove geologic descriptions based on cuttings. (Continued)	very,					
-										
- -			\ \ \							
- 125			V			GR	120.0 - 130.0	0.0		
-) \							
_			· ·							
- 130										
-			V,							
_			V							
- - 135)			GR	130.0 - 140.0	0.0		
-						J. C.	100.0	0.0		
_			Ì							
_	138.0	382.5		Shale Mudstone, light gray to gray, very f	ine					
_	139.0	381.5	` \	grained, soft, highly weathered, Soft zone	e, potiental 🦵					
- 140 -			· ·	fracture. Reaction to HCL. No recovery, odescriptions based on cuttings						
	Z			Shale Mudstone, light gray to gray, very f grained, hard, Reaction to HCL. No recove geologic descriptions based on cuttings. I	very,					
-			V,							
- 145			<u>\</u>			GR	140.0 - 150.0	0.0		
_)							
_										

Page: 6 of 6

Client Borehole II	GSD-AP-MW-2VC	Stantec Boring No	GSD-AP	-MW-2VC		
Client	Southern Company	Boring Location	1,280,413.14 N	I; 614,602.69 E		
Project Number	175520212	Surface Elevation	520.45 ft	Elevation Datum	NAVD88	

Lithology				Overburden:	Sample ¹	Depth Ft ²	Rec. Ft	Blows/PSI	
Depth Ft ²	Elevation		Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %	Remarks
- 150 -			Shale Mudstone, light gray to gray, very to grained, hard, Reaction to HCL. No recogeologic descriptions based on cuttings. (Continued)	very,					
_ _ _ 155 _					GR	150.0 - 160.0	0.0		
- - - - 160									
- - -									
- 165 - - -					GR	160.0 - 170.5	0.0		
- 170 170.5	350.0	<u>\</u>	No Refusal /						

Bottom of Hole at 170.5 Ft.

Top of Rock = 22.1 Ft.

Top of Rock Elevation = 498.4 Ft.

- Depths are reported in feet below ground surface
 Elevation in reference to feet above NAVD 1988 datum

Southern	Company

Project Name:	Plant Gadsden Phase III Delineation MW Installati
Borehole/Well No:	GSD-AP-MW-2VC
Plant Name:	Plant Gadsden
Plant Address:	1000 Goodyear Ave, Gadsden, AL 35903
Project & Task Number:	175520212/300.02
Goals/Task:	Phase III Vertical Delineation Well
Drilling Company:	Hawkston Drilling
Drilling Equipment/Rig Type:	Boart Longyear LS600 Sonic
Drilling Method:	4" x 6" Rotosonic
Sampling Method:	Sonic 4" Core Barrel
Prepared By:	Andrew Stevens
Review By:	Edgar Smith

Date Started: 8/21/2021

Northing (ft): 1280413.69

Latitude: 34.0194561

Location Datum: AL East NAD 1983

Surface/ Ground Elevation: 520.45

Borehole Diameter (in): 6" (0.00-160.5')

Well Casing Diameter (in): 2.0"

Top of Casing elev (ft): 522.87

DTW at Completion (ft, bgs): 96.7

Date Completed: 8/22/2021

Easting (ft): 614603.04

Longitude: -85.9705000

Elevation Datum: NAVD 1988

Stickup (ft, ags): 2.4

Borehole Depth (ft, bgs): 160.5

Well Depth (ft bas): 137.5

Well Depth (ft, bgs): 160.5

Well Depth (ft, bgs): 137.5

Screen length (ft): 10

Southern	Company

Project Name:	Plant Gadsden Phase III Delineation MW Installatio
Borehole/Well No:	GSD-AP-MW-21VB
Plant Name:	Plant Gadsden
Plant Address:	1000 Goodyear Ave, Gadsden, AL 35903
Project & Task Number:	175520212/300.02
Goals/Task:	Phase III Vertical Delineation Well
Drilling Company:	Hawkston Drilling
Drilling Equipment/Rig Type:	Boart Longyear LS600 Sonic
Drilling Method:	4" x 6" Rotosonic
Sampling Method:	Sonic 4" Core Barrel
Prepared By:	Andrew Stevens
Review By:	Edgar Smith
	·

Date Started: 8/26/2021

Northing (ft): 1280497.87

Latitude: 34.0196877

Location Datum: AL East NAD 1983

Surface/ Ground Elevation: 517.72

Borehole Diameter (in): 6" (0.00-116.3")

Well Casing Diameter (in): 2.0"

Top of Casing elev (ft): 520.24

DTW at Completion (ft, bgs): 84.0

Easting (ft): 614680.15
Longitude: -85.9702462
Elevation Datum: NAVD 1988
Stickup (ft, ags): 2.5

Borehole Depth (ft, bgs): 116.3

Date Completed: 8/26/2021

Well Depth (ft, bgs): 102.9
Screen length (ft): 10

Review By	: Edgar Smith				*Not to Scale
Depth (feet)		We	II Construct	ion	Materials Inventory
	Stick up	2.5 ft, ags		4" Inch Diameter Protective Cover with Locking Lid	Stick up: 2.5 ft, ags
_	Ground surface - 0.0'			Outer casing	
+	Ground surface - 0.0			Outer casing	Casing Type (steel or PVC, schedule 40 or 80): 2" PVC, Schedule 40
<u> </u>					Casing Top: 2.5 ft, ags Bottom: 92.5 ft, bgs
$\frac{1}{2}$	Bottom of Grout <u>8</u> . Top of Bentonite	4.9 ft, bgs			Screen Type: Sch 40, 2" ID x 3" OD U-Pack
$\frac{1}{2}$				2" inch casing	Screen Slot Size:
+					Screen Top: 92.5 ft, bgs Bottom: 102.5 ft, bgs
+ +	Bottom of Bentonite 9 Top of Filter Pack	0.0 ft , bgs		16/40 mesh Filter pack	Sump/end cap Top: 102.5 ft, bgs Bottom: 102.9 ft, bgs
<u> </u>	Top of Screen 9	2.5 ft , bgs			Grout Quantity: 80 gallons
<u> </u>				0.010 Slot screen	Grout Type:Baroid Aqua Guard 30% Solids Grout
<u> </u>					Grout Top: 0.5 ft, bgs Bottom: 84.0 ft, bgs
-					Density Initial: NA Ibs/gal Return: NA Ibs/gal
Ŧ					Bentonite Type: Pel Plug 3/8" PDS TR30 pellets
Ŧ			H		Bentonite Seal Top: 84.9 ft, bgs Bottom: 90.0 ft, bgs
					Filter Pack - Pre-pack and Annular Space Type (manufacturer, size): Southern Product & Silica Co. Filter Sand and Gravel #1
<u> </u>			H		Filter Pack: Top: 90.0 ft, bgs Bottom: 105.0 ft, bgs
‡	Bottom of screen 10	2.5 ft , bgs		102.9 ft , bgs Sump/end cap	Notes: Bentonite seal hydrated a minimum of 4-hours prior to grout backfill placement. Bentonite Pellets
	Top of backfill bolow			, - <u></u> -5p, 5d cap	placed from 105.0-116.3 ft bgs.
	Top of backfill below filter pack (see notes) 10	05.0 ft , bgs		105.0 ft , bgs Base of filter pack	
+	Terminus of borehole 11	6.3 ft , bgs			

Southern	Company

Project Name:	Plant Gadsden Phase III Delineation MW Installation
Borehole/Well No:	GSD-AP-MW-21VC
Plant Name:	Plant Gadsden
Plant Address:	1000 Goodyear Ave, Gadsden, AL 35903
Project & Task Number:	175520212/300.02
Goals/Task:	Phase III Vertical Delineation Well
Drilling Company:	Hawkston Drilling
Drilling Equipment/Rig Type:	Boart Longyear LS600 Sonic
Drilling Method:	4" x 6" Rotosonic
Sampling Method:	Sonic 4" Core Barrel
Prepared By:	Andrew Stevens
Review By:	Edgar Smith

Date Started: 8/23/2021

Northing (ft): 1280474.22

Latitude: 34.0196242

Location Datum: AL East NAD 1983

Surface/ Ground Elevation: 519.00

Borehole Diameter (in): 6" (0.00-170.5")

Well Casing Diameter (in): 2.0"

Top of Casing elev (ft): 521.13

DTW at Completion (ft, bgs): 8.9

Date Completed: 8/24/2021

Easting (ft): 614657.51

Longitude: -85.9703194

Elevation Datum: NAVD 1988

Stickup (ft, ags): 2.1

Borehole Depth (ft, bgs): 170.5

Well Depth (ft, bgs): 155.9

Screen length (ft): 10

	- Lagar offilm			*Not to Scale
Depth (feet)	Well Construction			Materials Inventory
			4" Inch Diameter Protective	
	Stick up 2.1 ft, ags		Cover with Locking Lid	Stick up: 2.1 ft, ags
		7	g .	
	Ground surface - 0.0'		Outer casing	
<u> </u>				Casing Type (steel or PVC, schedule 40 or 80):
<u> </u>				2" PVC, Schedule 40
 				Continu
+				Casing Top: 2.2 ft, ags Bottom: 145.1 ft, bgs
+				10p1, ags1, bgs
+	Bottom of Grout 138.7 ft , bgs			Screen Type:
<u> </u>	Top of Bentonite			Sch 40, 2" ID x 3" OD U-Pack
l T				
				Screen Slot Size:
<u> </u>			2" inch casing	0.010"
<u>+</u>				
+				Screen
+				Top: <u>145.1</u> ft, bgs Bottom: <u>155.1</u> ft, bgs
 	Bottom of Bentonite 144.2 ft , bgs		16/40 mesh Filter pack	Sump/end cap
l T	Top of Filter Pack			Top: 155.1 ft, bgs Bottom: 155.5 ft, bgs
I				
<u> </u>				Grout Quantity:
	Top of Screen 145.1 ft , bgs	_		120 gallons
 		-		Consult I was as
 	-	-	0.010 Slot screen	Grout Type: Baroid Aqua Guard 30% Solids Grout
†				
+				Grout
I I				Top:0.5ft, bgs
\perp				
<u> </u>	_	4 1		Density
<u>+</u>		_		Initial: NA Ibs/gal Return: NA Ibs/gal
+		- 1		Bentonite Type:
+		- 1		Pel Plug 3/8" PDS TR30 pellets
 	F	- 1		- 1 or 1 log 6/6 1 26 1100 policis
1 +		7 1		Bentonite Seal
				Top: <u>138.7</u> ft, bgs Bottom: <u>144.2</u> ft, bgs
<u> </u>		_		
1 +		_		Filter Pack - Pre-pack and Annular Space
+		4 1		Type (manufacturer, size):
l +		-		Southern Product & Silica Co. Filter Sand and Gravel #1
1 +		\dashv \parallel		Filter Pack:
 		-		Top: 144.2 ft, bgs Bottom: 160.5 ft, bgs
1				
	Bottom of screen 155.1 ft , bgs			Notes: Bentonite seal hydrated a minimum of 4-hours
1 +			155.5 ft , bgs Sump/end cap	prior to grout backfill placement. Bentonite Pellets
 	To a of la columbia			placed from 160.5-170.5 ft bgs.
+	Top of backfill below		140.5 ft has Base of filter paci-	
l +	filter pack (see notes) 160.5 ft , bgs		160.5 ft , bgs Base of filter pack	
l +				
<u> </u>	Terminus of borehole 170.5			

Southern	Company

Project Name:	Plant Gadsden Phase III Delineation MW Installation
Borehole/Well No:	GSD-AP-MW-22VB
Plant Name:	Plant Gadsden
Plant Address:	1000 Goodyear Ave, Gadsden, AL 35903
Project & Task Number:	175520212/300.02
Goals/Task:	Phase III Vertical Delineation Well
Drilling Company:	Hawkston Drilling
Drilling Equipment/Rig Type:	Boart Longyear LS600 Sonic
Drilling Method:	4" x 6" Rotosonic
Sampling Method:	Sonic 4" Core Barrel
Prepared By:	Andrew Stevens
Review By:	Edgar Smith
	

Date Started: 8/27/2021 Northing (ft): 1280629.98 Latitude: 34.0207974 Location Datum: AL East NAD 1983 Surface/ Ground Elevation: 515.48 Borehole Diameter (in): 6" (0.00-51.0')

Stickup (ft, ags): 2,5 Borehole Depth (ft, bgs): 51.0 Well Depth (ft, bgs): 50.1 Screen length (ft): 10

Date Completed: 8/27/2021

Easting (ft): 614685.11 Longitude: <u>-85</u>.9706788

Elevation Datum: NAVD 1988

Well Casing Diameter (in): 2.0"

Top of Casing elev (ft): 518.01

DTW at Completion (ft, bgs): 2.0

			*Not to Scale
Depth (feet)	Well Constructi	on.	Materials Inventory
Depin (leet)	Well Collaboration		Malendis inventory
		4" Inch Diameter Protective	
	Stick up 2.5 ft, ags	Cover with Locking Lid	Stick up: 2.5 ft, ags
-	Ground surface - 0.0'	Outer casing	
			Casing Type (steel or PVC, schedule 40 or 80):
 			2" PVC, Schedule 40
 			2 1 7 0, 001104010 40
 			Cardina
 			Casing
<u></u>			Top: 2.5 ft, ags Bottom: 39.7 ft, bgs
<u>_L</u>			
	Bottom of Grout 32.8 ft , bgs		Screen Type:
T	Top of Bentonite		Sch 40, 2" ID x 3" OD U-Pack
 			
+			Screen Slot Size:
 		Oll Control of the	
		2" inch casing	0.010"
<u> </u>			
<u>_</u>			Screen
			Top: 39.7 ft, bgs Bottom: 49.7 ft, bgs
T			
 	Bottom of Bentonite 36.8 ft , bgs	16/40 mesh Filter pack	Sump/end cap
l	Top of Filter Pack		Top: 49.7 ft, bgs Bottom: 50.1 ft, bgs
 	Top of time it don		., aga sanann <u>aan n, ag</u>
l +			Grout Quantity:
			· ·
 	Top of Screen 39.7 ft , bgs		40 gallons
<u> </u>			
			Grout Type:
I		0.010 Slot screen	Baroid Aqua Guard 30% Solids Grout
I T			
T T			Grout
+			Top: 0.5 ft, bgs Bottom: 32.8 ft, bgs
 			1, bg3 Bollotti. <u>02.0</u> 11, bg3
+			5 3
			Density
<u> </u>			Initial: NA Ibs/gal Return: NA Ibs/gal
<u> </u>			
<u>_L</u>			Bentonite Type:
T			Pel Plug 3/8" PDS TR30 pellets
T			
l			Bentonite Seal
 			Top: 32.8 ft, bgs Bottom: 36.8 ft, bgs
 			17, 593 5511011111, 593
 			Filter Deals Dromants and Applies Comme
+			Filter Pack - Pre-pack and Annular Space
1 4			Type (manufacturer, size):
l +			Southern Product & Silica Co. Filter Sand and Gravel #1
<u> </u>			
<u>_L</u>			Filter Pack:
T			Top: 36.8 ft, bgs Bottom: 51.0 ft, bgs
l			
 	Bottom of screen 49.7 ft , bgs		Notes: Bentonite seal hydrated a minimum of 4-hours
 		50.1 ft , bgs Sump/end cap	prior to grout backfill placement.
 		20, 2gs cop, ond cap	p g. co co
 	Top of bookfill below		
 	Top of backfill below		
1 4	filter pack (see notes) 51.0 ft , bgs	51.0 ft , bgs Base of filter pack	
<u> </u>			
l			
l	Terminus of borehole 51.0 ft , bgs		

Southern	Company

Project Name:	Plant Gadsden Phase III Delineation MW Installatio
Borehole/Well No:	GSD-AP-MW-23VB
Plant Name:	Plant Gadsden
Plant Address:	1000 Goodyear Ave, Gadsden, AL 35903
Project & Task Number:	175520212/300.02
Goals/Task:	Phase III Vertical Delineation Well
Drilling Company:	Hawkston Drilling
Drilling Equipment/Rig Type:	Boart Longyear LS600 Sonic
Drilling Method:	4" x 6" Rotosonic
Sampling Method:	Sonic 4" Core Barrel
Prepared By:	Andrew Stevens
Review By:	Edgar Smith

| Date Started: 8/29/2021 |
| Northing (ft): 1280901.32 |
| Latitude: 34.0207974 |
| Location Datum: AL East NAD 1983 |
| Surface/ Ground Elevation: 516.58 |
| Borehole Diameter (in): 6" (0.00-119.0") |
| Well Casing Diameter (in): 2.0" |
| Top of Casing elev (ft): 519.03 |

DTW at Completion (ft, bgs): 50.0

Elevation Datum: NAVD 1988
Stickup (ft, ags): 2.5

Borehole Depth (ft, bgs): 119.0

Well Depth (ft, bgs): 100.1

Screen length (ft): 10

Date Completed: 8/30/2021

Easting (ft): 614549.19 Longitude: -85.9706788

	, Lagaroniin		*Not to Scale
Depth (feet)	Well Construction	Materials Inventory	
		4" Inch Diameter Protective	
-	Stick up 2.5 ft, ags	Cover with Locking Lid	Stick up: 2.5 ft, ags
_			
	Ground surface - 0.0'	Outer casing	
⊥			Casing Type (steel or PVC, schedule 40 or 80):
			2" PVC, Schedule 40
T			Casing
I T			Top: 2.6 ft, ags Bottom: 89.7 ft, bgs
I T			
I T	Bottom of Grout 82.9 ft , bgs		Screen Type:
<u>†</u>	Top of Bentonite		Sch 40, 2" ID x 3" OD U-Pack
+			
l +			Screen Slot Size:
I +		2" inch casing	0.010"
 			
l +			Screen
 			Top: 89.7 ft, bgs Bottom: 99.7 ft, bgs
 			10 10 10 10 10 10 10 10 10 10 10 10 10 1
 	Bottom of Bentonite 87.0 ft , bgs	16/40 mesh Filter pack	Sump/end cap
 	Top of Filter Pack		Top: 99.7 ft, bgs Bottom: 100.1 ft, bgs
 			., 49
 			Grout Quantity:
 	Top of Screen 89.7 ft , bgs		80 Gallons
 			
 			Grout Type:
 		0.010 Slot screen	Baroid Aqua Guard 30% Solids Grout
T T			·
T T			Grout
T T			Top: 0.5 ft, bgs Bottom: 82.9 ft, bgs
T T			
T T			Density
T T			Initial: NA Ibs/gal Return: NA Ibs/gal
<u>†</u>			
T T			Bentonite Type:
I T			Pel Plug 3/8" PDS TR30 pellets
T T			
I T			Bentonite Seal
I T			Top: 82.9 ft, bgs Bottom: 87.0 ft, bgs
			Filter Pack - Pre-pack and Annular Space
			Type (manufacturer, size):
I			Southern Product & Silica Co. Filter Sand and Gravel #1
l <u> </u>			Filter Pack:
<u> </u>			Top: <u>87.0</u> ft, bgs Bottom: <u>102.0</u> ft, bgs
l +	Bottom of screen 99.7 ft , bgs	100 1 (1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Notes: Bentonite seal hydrated a minimum of 4-hours
l +		100.1 ft , bgs Sump/end cap	prior to grout backfill placement. Bentonite Pellets
l +	To a file and file and		placed from 102.0-119.0 ft bgs.
+	Top of backfill below		
l +	filter pack (see notes) 102.0 ft , bgs	102.0 ft , bgs Base of filter pack	
l +			
l +			
	Terminus of borehole 119.0 ft , bgs		

LOG OF TEST BORING

S		HERN LOG OF TE	ST BOR	ING		BORING GSD-AP-MW-2 PAGE 1 OF 2 APC439007
			O IECT Dient	Cadadar	A A b Da	nd
		CIENCE AND ENVIRONMENTAL ENCINEEDING	ROJECT Plant CATION Plan			nd
			CATION TIAIL	t Gausue	ā11	
		TED <u>8/8/2017</u> COMPLETED <u>8/10/2017</u> SURF. EL				
		OR Cascade Drilling EQUIPMENT Supers				
		T. Taylor LOGGED BY S. McDonald CHE				
		PTH _44 ft GROUND WATER DEPTH: DURING _10				
		S THE SECTION WOLLD HOLD HOLD TO WOLL GARD SHOOT.				
				Z O	K S	WELL DATA
Ξ	£ (5			HCL REACTION	GROUNDWATER	
DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		RE/	YAZ	Completion: protective steel cover; 3-foot square
	GF			Weak Moderate Strong	SEF	concrete pad
	-477	─ (FILL)		Moc	R 8	Surface Seal:
		- dark yellowish brown (10YR 4/4) and dark yellowish brown	wn (10YR 4/6)			concrete
		topsoil dry, loose, sandy silt Silt (ML)				
		- alluvium dry, slightly cohesive, sandy silt, with organics a	nd sparse			A
5		black mottles Poorly-graded Sand (SP)				Annular Fill: cement-bentonite grout
		- alluvium moist, loose, sand, becoming gravelly, fine- to m	nedium-			
		grained				
10		✓ Well-graded Gravel (GW)		-		Annular Seal:
		▼ - alluvium WET, loose, gravelly sand, medium- to coarse-c	grained, with			bentonite pellets
		about 25% subrounded gravel to 1"				_ Filter:
15		- GW: alluvium WET, loose, gravelly sand, medium- to coa	arse-grained			silica filter sand
13		• · · · · · · · · · · · · · · · · · · ·	g			
					:	
		- GW: alluvium WET, loose, gravelly sand, with about 30%	gravel to		:	Standpipe:
20		1.5", primarily quartz, subrounded	g.a.ve. te		ľ	2" OD PVC (SCH 40) Screen:
						10 ft; slotted
					:	
25		mudstone (NA)				Sump:0.5 ft.
		 medium dark gray (N4) very fine grain, soft, highly weath weathered shale and mudstone, low HCl reaction, somewh 				
30						
						Backfill:Silica Sand over
		mudetones banded with modified acres (AIT) and an a	dorle const (NLA)			bentonite pellets
35		 mudstone: banded with medium gray (N5) and medium very fine grain, medium, lower weathered, flow banded, mu 	udstone, with			-
		dark gray and gray bands, low HCl reaction, less weathere abundant calcite, white (N9.5)	ed, with			
		· ,				
40	1			1 1		444444444444

SIMPLE GEOLOGY WITH WELL - ESEE DATABASE.GDT - 26/18 08:33 - T'AESEE MAJOR PROJECTS/PROJECTS/PROJECTS_ATTORNEY CLIENT PRIVILEGE_DRAFTAPCIPLANT GADSDENISITE CHARACTERIZATIONIFIELD DATABORING AND PIEZOMETER DATAGADSDEN 20

LOG OF TEST BORING

BORING GSD-AP-MW-2 PAGE 2 OF 2 APC439007

sol	UTHE	RN COMPANY SERVI	ICES, INC.	PROJECT	Plant Gadsde	n Ash F	Pond	
EAF	RTH S	CIENCE AND ENVIR	CES, INC. ONMENTAL ENGINEERING	LOCATION	Plant Gadsd	en		
DEPTH (ft)	GRAPHIC LOG		MATERIAL DESCRIPTION		Weak Moderate Strong	GROUNDWATER OBSERVATIONS	Complet protective concrete (CONTINUED)	WELL DATA tion: re steel cover; 3-foot square
		mudstone (Con't)						Backfill:Silica Sand over bentonite pellets
45		I	Bottom of borehole at 44.0 feet.				becommone	
50								
JU	-							
55								
60								
	.]							
65								
70								
75	_							
80								
85	-							

LOG OF TEST BORING

BORING GSD-AP-MW-2V PAGE 1 OF 2 APC439007

.GPJ			MIPAINI				
019.			COMPANY SERVICES, INC.	PROJECT Plant			
EN 2	EAR	TH SCIEN	NCE AND ENVIRONMENTAL ENGINEERING	LOCATION Plan	t Gadsden	, Gadsden, Alabama	
NDSD							
19/G/	DATE	STARTE	D 10/23/2019 COMPLETED 10/23/2019 SU	RF. ELEV. Not Surve	eyed COO	RDINATES:	
S 20	CONT	RACTOR	Cascade EQUIPMENT	Sonic 8140LMETHOD	Rotosoni	C	
ZING ZING	DRILL	ED BY N	M. Rodrigues LOGGED BY S. McDonald	CHECKED BY B.	Coates	ANGLE	BEARING
) BO	BORIN	IG DEPTH	H 60 ft. GROUND WATER DEPTH: DURIN	G COM	P. <u>5.42 ft.</u>	DELAYED	
- AN	NOTES	S Well i	nstalled. Refer to well data sheet.				
WEL							
PS/APC GENERAL SERVICE COMPLEXICIVIL LECH SUPPORT/DRILLING/PROJECTS/AL-GADSDEN/GADSDEN WELL AND BORINGS 2019/GADSDEN 2019.	DЕРТН (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		Weak Moderate REACTION Strong	СОМ	MENTS
STS/			Topsoil (TOPSOIL)	VD 5 (4) 4			
OJE			 yellowish brown / moderate yellowish brown (10 nonplastic, silty, noncohesive, with organics 	14K 5/4) topsoli ary,			
G/PR			Silt (ML)				
ILI	· · · · · · · · · · · · · · · · · · ·		 grading reddish yellow (5YR 6/8) and red (2.5' medium stiff to stiff, nonplastic, noncohesive, wit 	YR 5/8) alluvium dry, h sparse black			
TDR	5	म स्थापनात प्राचित्रप्रसीत	▼ mottles				
POR		19194) 19191	Silty Sand (SM)	ollow (7 EVD 6/9)			
SUF			 mottled yellowish red (5YR 5/8) and reddish yealluvium dry, loose to medium dense, fine-graine 	d, with sparse			
ECH		100	(<10%) subangular to subrounded gravel to 1/2", ~20% by 10'	gravel increasing to			
VIL T	10	11111	<u> </u>				
=X\C			Well-graded Sand (SW) - mottled light yellowish brown (10YR 6/4) and b	rownish vellow /			
MPLI			dark yellowish orange (10YR 6/6) alluvium wet, fi	ne- to coarse-			
ECC			grained, angular to subrounded grains, with ~25- subrounded gravel to 1"	30% angular to			
RVIC	15		Ç				
/L SE			 very dark brown / dusky yellowish brown (10YR fine- to coarse-grained, with ~25-30% gravel to 1 	2/2) alluvium wet,			
NER			- mottled brownish yellow (10YR 6/8) and yellow	v (10YR 7/8) alluvium			
GE			wet, loose, fine- to coarse-grained, angular to su with ~30% gravel to 1.5", subrounded to subangu				
SAP	20		g g , ,				
			- mottled brownish yellow (10YR 6/8) and yellow				
KGK			wet, loose, fine- to coarse-grained, with ~40-50% subangular to subrounded, abundant quartz	gravel to 2",			
- S:\WORKGRUU			ga.a. to caproundou, apartaint quarte				
08:2	25		Well-graded Gravel (GW)				
29/19			- mottled brownish yellow (10YR 6/8) and yellow				
- 10/2			wet, loose, ~50-60% graveÌ, small to 1.5", suban abundant quartz	gular to subrounded,			
GDT		^	Silt (ML)		1 : :		
ASE.	30		- brownish yellow (10YR 6/8) saprolite dry, stiff,	low plasticity, clayey,			
4TAB		\sim	cohesive mudstone				
E D		^_	- medium light gray (N6) and medium gray (N5)				
- ES			medium hard to hard, moderately weathered, sha HCL reaction in rock to strong reaction in crushe				
LOR	35		reaction in reaction and reaction in order	2 . 5 on			
V/CO	- 50	~	- mudstone: medium dark gray (N4) and medium				
00		\sim	fine grain, medium hard, slightly weathered, flow alluvial gravel at top, angular to subrounded, low				
GY L		~~	to medium reaction in crushed rock				
EOLOGY LOG W/COLOR - ESEE DATABASE.GDT - 10/29/19 08:23		~					
اب	40	- 1			1 - 1		

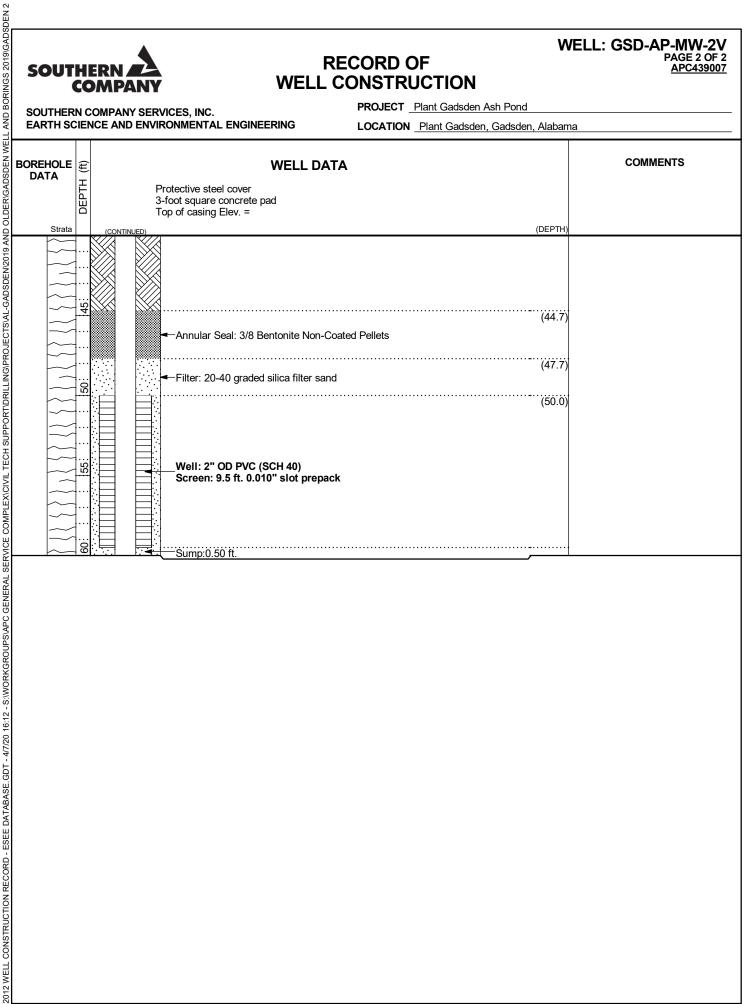
LOG OF TEST BORING

BORING GSD-AP-MW-2V PAGE 2 OF 2 APC439007

		JWIPAIN I		
so		COMPANY SERVICES, INC. PROJECT Plan		
EAI	RTH SCIE	NCE AND ENVIRONMENTAL ENGINEERING LOCATION Plants	ant Gad	dsden, Gadsden, Alabama
			Z	2
5	()		Weak Moderate REACTION	2
	GRAPHIC LOG		\(\frac{1}{2} \)	2
DEPTH (ft)	βĞ	MATERIAL DESCRIPTION	ш	COMMENTS
	R		ate	
			Weak Moder	trong
 	~	mudstone (Con't)	<u> </u>	σ
<u>: </u>		- no recovery		
\$				
<u></u>				
<u> </u>				
45		mudetene; medium dark grov (NA) and medium grov (NE) very fin		
3		 mudstone: medium dark gray (N4) and medium gray (N5) very fine grain, medium hard, slightly weathered, flow banded, with thin calcite 	9 : :	
5		infilling, low HCL reaction in rock to medium reaction in crushed rock		
ᢤ				
<u>-</u>	. ~			
50	^			
5		- no recovery		
<u> </u>				
₹ 				
<u> </u>				
55				
2		- mudstone: medium dark gray (N4) and medium gray (N5) very fine grain, medium hard to hard, slightly weathered, flow banded, bands 2	9	
5	~	mm to 1" thick, low HCL reaction in rock to medium reaction in	2 : :	
-	~	crushed rock, with calcite, shaly/fissile in spots		
٥				
60				
5		Bottom of borehole at 60.0 feet.		
۲ ا				
2				
65				
2				
5				
3				
70				
### ### ### ### ### ### ### ### ### ##	1			
3				
9				
75				
<u> </u>	1			
<u>:</u>				
) 				
? 	1			
<u>{</u>				
80	1			
3				
<u>.</u>				
3				
85	1			
5[
3				

RECORD OF WELL CONSTRUCTION

SOUTH	IERN A			ORD OF NSTRUCTION	WELL	: GSD-AP-MW-2 PAGE 1 OF APC43900
		Y SERVICES, INC.	ı	PROJECT Plant Gadsden Ash	Pond	
			ENGINEERING I	LOCATION Plant Gadsden, Ga	dsden, Alabama	
				ELEV. Not Surveyed COORD		
				8140L@METHOD Rotosonic HECKED BY B. Coates		
				COMP. 5.42 ft.		
		Refer to well data she				
SOREHOLE	(h		WELL DATA			COMMENTS
		Protective steel				
DATA HOUSE		3-foot square of Top of casing E	oncrete pad			
Strata	210000000	Top or casing E			(DEPTH)	
		Surface Se	al: concrete			
					(1.0)	
9 9 9 3 9 9 9 1						
11.1.1.						
	ii 🔣					
	💥					
*****		Annular Fil	l: cement-bentonite grout			
in n						
- 2						
	2					
\		$\rangle\rangle\rangle\rangle\rangle$			1	



RECORD OF WELL CONSTRUCTION

WELL: GSD-AP-MW-2V PAGE 2 OF 2 APC439007

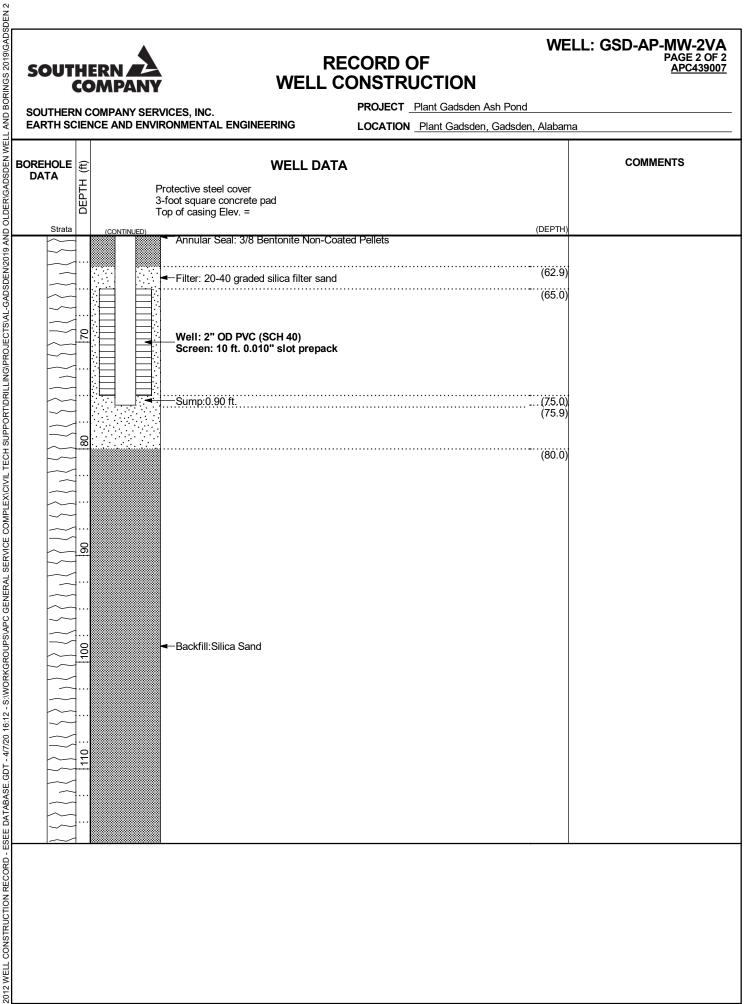
SOUTHERN COMPANY SERVICES, INC. EARTH SCIENCE AND ENVIRONMENTAL ENGINEERING PROJECT Plant Gadsden Ash Pond

LOCATION Plant Gadsden, Gadsden, Alabama

RECORD OF

WELL: GSD-AP-MW-2VA

PAGE 1 OF 2 APC439007


22012 WELL CONSTRUCTION RECORD - ESEE DATABASE. GDT - 47720 16:12 - S;WORKGROUPS/APC GENERAL SERVICE COMPLEX/CIVIL TECH SUPPORT/DRILLING/PROJECTS/AL-GADSDEN/2019 AND OLDER/GADSDEN WELL AND BORINGS 2019/GADSDEN 2 WELL CONSTRUCTION PROJECT Plant Gadsden Ash Pond SOUTHERN COMPANY SERVICES, INC. EARTH SCIENCE AND ENVIRONMENTAL ENGINEERING **LOCATION** Plant Gadsden, Gadsden, Alabama DATE STARTED 1/28/2020 COMPLETED 1/30/2020 SURF. ELEV. Not Surveyed COORDINATES: CONTRACTOR Cascade EQUIPMENT Sonic Truck METHOD Rotosonic **DRILLED BY** J. Smith LOGGED BY S. Baxter CHECKED BY B. Coates ANGLE BEARING BORING DEPTH _117 ft. ____ GROUND WATER DEPTH: DURING _8.5 ft. ___ COMP. _40.15 ft. ___ DELAYED ____ NOTES Well installed. Refer to well data sheet. **BOREHOLE WELL DATA COMMENTS DATA** DEPTH Protective steel cover 3-foot square concrete pad Top of casing Elev. = (DEPTH Surface Seal: concrete ... (0.5)-Annular Fill: cement-bentonite grout

RECORD OF WELL CONSTRUCTION

WELL: GSD-AP-MW-2VA PAGE 2 OF 2 APC439007

SOUTHERN COMPANY SERVICES, INC. EARTH SCIENCE AND ENVIRONMENTAL ENGINEERING PROJECT Plant Gadsden Ash Pond

15.0

18.0

21.0

25

30

504.7

501.7

498.7

clasts

high plasticity, moist

angle, Calcite veins

SUBSURFACE LOG

Page: 1 of 4

С	lient E	Borehole	ID _	GSD-AP-MW-2VB		Stanted	Boring N	lo. GSD-AF	P-MW-2	2VB	
С	lient		So	uthern Company		Boring	Location	1,280,433.80	N; 614,62	6.44 E	
Р	roject	Number	175	5520212		Surface	e Elevatio	n 519.74 ft	Elevati	on Datum_ N	NAVD88
Project Name Plant Gadsden				_ Date St	tarted	3/2/21	Compl	eted3/6/21	<u> </u>		
Р					Depth t	o Water	80.2 ft	Date/T	ime <u>3/6/21</u>		
Inspector A. Stevens Logger A. Stevens				_ Depth t	to Water_	N/A	Date/T	ime N/A			
D	rilling	Contract	or _	Cascade (subcontractor)		_ Drill Rio	g Type ar	nd ID Truck Mou	unted PS-	150 Sonic	
С	verbu	ırden Dril	ling	and Sampling Tools (Type	e and S	ize) 4" X 6"	Rotosonic				
				ype N/A Weig			rop N/A		ficiency	N/A	
R	Review	ed By	J. I	Massey	_ A	Approved By	y E. Smit	h			
	l	Lithology				Overburden:	Sample ¹	Depth Ft ²	Rec. Ft	Blows/PSI	
Dep	th Ft ²	Elevation		Description		Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %	Remarks
- 0	0.0	519.7		Top of Hole							
- - -	0.5	519.2		WELL GRADED SAND WITH 4/4 (dark yellowish brown), we present WELL GRADED SAND WITH 6/6 (brownish yellow) to 7.5YI to low plasticity, very loose, m	et, Top so I CLAY, S R 5/3 (bro	SC, 10YR pwn), non	RS01	0.0 - 5.0	1.2	24	
- 5 - -	6.5	513.2		well graded sand som 5/6 (yellowish red), very fine t medium plasticity, dry to wet,	E CLAY,	SW, 5YR n, low to					
- - 10				sands			RS02	5.0 - 15.0	60	60	

RS03

RS04

15.0 - 25.0

25.0 - 35.0

10.0

2.5

100

25

WELL GRADED SAND WITH GRAVEL, SW, 10YR 7/6 (yellow), medium to coarse, non-plastic, wet, gravel consists of prominently

quartz and plagioclase. Few angular mudstone

WELL GRADED GRAVEL WITH CLAY, GC,

10YR 4/4 (dark yellowish brown) to 10YR 6/8

(brownish yellow), very fine to coarse, medium to

Mudstone/shale, light gray to dark gray, very fine grained, moderately hard, thin bedded, damp, no odor, no staining, calcareous, 60° to 75° bedding

SUBSURFACE LOG

Page: 2 of 4

Client Boreh	ole ID GSD-AP-MW-2VB	Stantec Boring No. GSD-AP-MW-2VB
Client _	Southern Company	Boring Location 1,280,433.80 N; 614,626.44 E
Project Num	ber 175520212	Surface Elevation 519.74 ft Elevation Datum_NAVD88

Project Number 1755		1755	20212	n <u>519.74 ft</u>	Elevation Datum NAVD88				
	Lithology			Overburden: Sample ¹ Depth Ft ²		Depth Ft ²	Rec. Ft Blows/PSI		
Depth Ft ²	Elevation		Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %	Remarks
			Mudstone/shale, light gray to dark gray grained, moderately hard, thin bedded odor, no staining, calcareous, 60° to 7° angle, Calcite veins (Continued)	damp, no					
35						-			
		✓							
40		_			RS05	35.0 - 45.0	3.0	30	
45									
50					RS06	45.0 - 55.0	4.0	40	
. 55					RS07	55.0 - 56.0	1.0	100	
60					RS08	56.0 - 65.0	5.0	56	
65									

SUBSURFACE LOG

Page: 3 of 4

Client Borehole I	D GSD-AP-MW-2VB	Stantec Boring No	GSD-AF	P-MW-2VB	
Client	Southern Company	Boring Location	1,280,433.80	N; 614,626.44 E	
Project Number	175520212	Surface Elevation	519.74 ft	Elevation Datum NAVD88	

Project	Number_	175520212	Surface	e Elevatio	on 519.74 ft	Elevati	on Datum_r	NAVD88
	Lithology		Overburden:	Sample ¹	Depth Ft ²	Rec. Ft	Blows/PSI	
Depth Ft ²	Elevation	Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %	Remarks
70		Mudstone/shale, light gray to dark gra grained, moderately hard, thin bedded odor, no staining, calcareous, 60° to 7 angle, Calcite veins (Continued)	l, damp, no	RS09	65.0 - 75.0	3.0	30	
. 75								
· 80 ⊈ ·				RS10	75.0 - 85.0	3.0	30	
85								
90				RS11	85.0 - 95.0	7.0	70	
93.0	426.7	@ 92.0' -93.0' bgs becomes soft, mod weathered, wet. Mudstone/shale, light gray to dark gra grained, moderately hard, thin bedded	y, very fine					
96.0	423.7	odor, no staining, calcareous, 60° to 7 angle, Calcite veins @ 95.0' to 96.0' bgs becomes soft, move weathered, wet. Mudstone/shale, light gray to gray, very grained, very hard, thin bedded, damp no staining, calcareous, 60° to 75° becomes	oderately ry fine o, no odor,	RS12	95.0 - 105.0	7.0	70	
105		angle, Calcite veins						

SUBSURFACE LOG

Page: 4 of 4

Client Borehole I	D GSD-AP-MW-2VB	Stantec Boring No	GSD-AP	P-MW-2VB
Client	Southern Company	Boring Location	1,280,433.80	N; 614,626.44 E
Project Number	175520212	Surface Elevation	519.74 ft	Elevation Datum NAVD88

	Lithology			Overburden:	Sample ¹	Depth Ft ²	Rec. Ft	Blows/PSI	
Depth Ft	² Elevation		Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %	Remarks
- - - 110 - - -			Mudstone/shale, light gray to gray, ver grained, very hard, thin bedded, damp no staining, calcareous, 60° to 75° bed angle, Calcite veins (Continued)	, no odor,	RS13	105.0 - 115.0	10.0	100	
- 115 -)))							
-))			RS14	115.0 - 120.0	5.0	100	
^{- 120} 120	.5 399.2						1		

No Refusal /

Bottom of Hole at 120.5 Ft.

Top of Rock = 21.0 Ft.

Top of Rock Elevation = 498.7 Ft.

- Depths are reported in feet below ground surface
 Elevation in reference to feet above NAVD 1988 datum

Depths are reported in feet below ground surface

Southern	Company

Well Installation Field Log

Project Name:	Plant Gadsden Phase II Delineation MW Installation
Borehole/Well No:	GSD-AP-MW-2VB
Plant Name:	Plant Gadsden
Plant Address:	1000 Goodyear Ave, Gadsden, AL 35903
Project & Task Number:	175520212
Goals/Task:	Phase II Vertical Delineation Well
Drilling Company:	Cascade
Drilling Equipment/Rig Type:	Truck Mounted PS-150 Sonic
Drilling Method:	4" x 6" Rotosonic
Sampling Method:	Sonic 4" core barrel
Prepared By:	Andrew Stevens
Review By:	Josh Massey

| Date Started: 3/5/2021 |
| Northing (ft): 1280433.80 |
| Latitude: 34.0195130 |
| Location Datum: AL East NAD 1983 |
| Surface/ Ground Elevation: 519.74' NAVD 1988 |
| Borehole Diameter (in): 6" (0.00-75.00') |
| Well Casing Diameter (in): 2 |
| Top of Casing elev (ft): 522.56 |

DTW at Completion (ft, bgs): 80.2

Easting (ft): 614626.44

Longitude: -85.9704218

Elevation Datum: NAVD 1988

Stickup (ft, ags): 2.5

Date Completed: 3/6/2021

| Borehole Depth (ft, bgs): 120.6 | Well Depth (ft, bgs): 102.7 | Screen length (ft): 10

	T		*Not to Scale					
Depth (feet)	Well Constr	uction	Materials Inventory					
		4" Inch Diameter Protective						
_	Stick up 2.5 ft, ags	Cover with Locking Lid	Stick up: 2.5 ft, ags					
_	Ground surface - 0.0'	Outer casing						
			Casing Type (steel or PVC, schedule 40 or 80):					
\perp			2" PVC, Schedule 40					
工								
			Casing					
T			Top: 2.5 ft, ags Bottom: 92.3 ft, bgs					
\perp								
\perp	Bottom of Grout 84.8 ft , bgs		Screen Type:					
T	Top of Bentonite		Sch 40, 2" ID x 3" OD U-Pack					
T								
工			Screen Slot Size:					
T		2" inch casing	0.010"					
T								
$oldsymbol{ol}oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{ol}oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{ol}}}}}}}}}}}}}}}$			Screen					
T			Top: 92.3 ft, bgs Bottom: 102.3 ft, bgs					
T								
Ŧ	Bottom of Bentonite 89.9 ft , bgs	16/40 mesh Filter pack	Sump/end cap					
<u> </u>	Top of Filter Pack		Top: <u>102.3</u> ft, bgs Bottom: <u>102.7</u> ft, bgs					
<u> </u>								
<u> </u>			Grout Quantity:					
<u> </u>	Top of Screen 92.3 ft , bgs		130 gal					
<u></u>			Grout Type:					
<u> </u>		0.010 Slot screen	Baroid Aqua Guard 30% Solids Grout					
<u> </u>								
<u> </u>			Grout					
<u> </u>			Top: 3.8 ft, bgs Bottom: 84.8 ft, bgs					
<u> </u>								
<u> </u>			Density					
<u> </u>			Initial: NA Ibs/gal Return: NA Ibs/gal					
<u> </u>								
<u> </u>			Bentonite Type:					
<u> </u>			Pel Plug 3/8" PDS TR30 pellets					
<u> </u>								
<u></u>			Bentonite Seal					
<u> </u>			Top: <u>84.8</u> ft, bgs Bottom: <u>89.9</u> ft, bgs					
<u> </u>								
<u></u>			Filter Pack - Pre-pack and Annular Space					
<u> </u>			Type (manufacturer, size):					
<u> </u>			Southern Product & Silica Co. Filter Sand and Gravel #1					
<u> </u>								
<u> </u>			Filter Pack:					
+			Top: <u>89.9</u> ft, bgs Bottom: <u>105.8</u> ft, bgs					
+	I							
+	Bottom of screen 102.3 ft , bgs		Notes: Bentonite seal hydrated a minimum of 4-hours					
+		102.7 ft , bgs Sump/end cap	prior to grout backfill placement. Bentonite Pellets					
+			placed from 105.8-120.6 ft bgs.					
+	Top of backfill below							
+	filter pack (see notes) 105.8 ft , bgs	105.8 ft , bgs Base of filter pack						
+								
+								
	Terminus of borehole 120.6ft , bgs							

Location	Well	
Start Date/Time	End Date/Time	
Technician		
Weather		
Depth to Water	Total Volume Purged	
Depth to Bottom	Well Capacity	
Gallons per well volume		
Comment		

Time	Vol	Cum Vol	Rate	DTW	рН	Cond	Temp	Turb	Color	ORP	DO	Comment
	(Gallons)	(Gallons)	(GPM)	(Feet)	(SU)	(uS/cm)	(C)	(NTU)	(Desc)	(mV)	(mg/L)	
					<u> </u>	<u> </u>				<u> </u>		

Location	Well	
Start Date/Time	End Date/Time	
Technician		
Weather		
Depth to Water	Total Volume Purged	
Depth to Bottom	Well Capacity	
Gallons per well volume		
Comment		

Time	Vol	Cum Vol	Rate	DTW	рН	Cond	Temp	Turb	Color	ORP	DO	Comment
	(Gallons)	(Gallons)	(GPM)	(Feet)	(SU)	(uS/cm)	(C)	(NTU)	(Desc)	(mV)	(mg/L)	
					<u> </u>	<u> </u>				<u> </u>		

Location	Well	
Start Date/Time	End Date/Time	
Technician		
Weather		
Depth to Water	Total Volume Purged	
Depth to Bottom	Well Capacity	
Gallons per well volume		
Comment		

Time	Vol	Cum Vol	Rate	DTW	рН	Cond	Temp	Turb	Color	ORP	DO	Comment
	(Gallons)	(Gallons)	(GPM)	(Feet)	(SU)	(uS/cm)	(C)	(NTU)	(Desc)	(mV)	(mg/L)	
					<u> </u>	<u> </u>				<u> </u>		

Appendix B

Analytes	Wells					GSD-AP-MW-14												
	Date	06/27/2018	07/18/2018	08/06/2018	09/05/2018	09/24/2018	10/24/2018	12/05/2018	02/05/2019	02/28/2019	08/20/2019	04/16/2020	08/25/2020	03/22/2021	10/12/2021			
Appendix III																		
Boron	mg/L	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.03	<0.03	<0.03	<0.03	<0.03			
Calcium	mg/L	16.6	15.3	13.8	12.1	11.8	10.2	9.14	15.1	21.4	14.4	20.1	13.1	12.2	11.8			
Chloride	mg/L	3.1	3.4	2.8	2.8	3.1	2.8	2.2	3.12	3.45	3.27	3.74	3.03	3.15	2.87			
Fluoride	mg/L	0.18	0.23	0.23	0.22	0.2	0.14	0.07 J	<0.05	<0.05	<0.05	<0.06	<0.06	<0.06	<0.06			
pH_Field	рН	3.95	4.02	4.07	4.07	4.07	4.1	4.1	4.02	3.94	4	3.93	4.03	3.25	4.04			
Sulfate	mg/L	120	120	110	86	80	68	54	126	207	106	191	98.4	83.8	95.7			
TDS	mg/L	219	195	175	153	127	125	101	180	287	265	280	160	126	132			
Appendix IV																		
Antimony	mg/L	<0.0006	<0.0006	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008		<0.0008	<0.0008	<0.0008	<0.000507	<0.000508			
Arsenic	mg/L	0.00165 J	0.00117 J	<0.001	<0.001	0.00148 J	<0.001	<0.001	0.00119 J		0.00216 J	0.00483 J	0.002 J	0.00188	0.00137			
Barium	mg/L	0.0338	0.03	0.0274	0.0275	0.0264	0.0276	0.0256	0.0314		0.0274	0.0327	0.0291	0.0254	0.0268			
Beryllium	mg/L	0.00134 J	0.00133 J	0.00129 J	0.00106 J	0.000991 J	0.00082 J	0.00141 J	0.0011 J		0.00129 J	0.00157 J	0.00117 J	0.000918 J	0.00115			
Cadmium	mg/L	0.00064 J	0.000679 J	0.000536 J	0.000479 J	0.00039 J	0.000436 J	0.000307 J	0.000515 J		0.000622 J	0.00101	0.000584 J	0.000407	0.000505			
Chromium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	0.000771 J	0.00061 J			
Cobalt	mg/L	0.0382	0.0366	0.0308	0.0291	0.0286	0.0269	0.0215	0.0359		0.0391	0.056	0.0365	0.0262	0.0288			
Combined Radium 226 + 228	pCi/L	0.616	0.859	0.654	0.855	0.787	1.14	0.64	0.873		0.774	0.865	0.976	1.04	1.61			
Lead	mg/L	0.00158 J	0.00152 J	0.00143 J	0.00118 J	0.00156 J	0.00121 J	0.00117 J	0.00156 J		0.00176 J	0.00258 J	0.0018 J	0.00143	0.00151			
Lithium	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	<0.007105	<0.007105			
Mercury	mg/L	0.000661	0.000398 J	0.00042 J	0.00037 J	0.000329 J	<0.00025	0.000253 J	0.000664		0.000301 J	0.000558	<0.0003	0.000363 J	<0.0003			
Molybdenum	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<6.8e-005	<6.8e-005			
Selenium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.00208 J	0.00387 J		0.00328 J	0.00608 J	0.00247 J	0.00488	0.00287			
Thallium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002	<0.0002	<6.8e-005	<6.8e-005			

Notes:
1. mg/L - Milligrams per Liter
2. pCi/L - picocuries per Liter

3. J - Result is an estimated value

Analytes	Wells		GSD-AP-MW-10												
	Date	12/06/2017	02/07/2018	04/24/2018	06/27/2018	08/07/2018	10/22/2018	12/04/2018	02/06/2019	02/26/2019	08/22/2019	04/15/2020	08/26/2020	03/23/2021	10/11/2021
Appendix III	,	•							•						
Boron	mg/L	0.135	0.12	0.144	0.0903 J	0.106	0.107	0.103	0.105	0.146	0.0951 J	0.164	0.108	0.188	0.09 J
Calcium	mg/L	42	47.6	50.1	37.1	37.4	36.3	42.1	41.3	53.3	38.5	54.1	37.8	57	38.2
Chloride	mg/L	6.9	6.1		5.6	5.1	5.5	5.6	6.24	8.28	5.66	6.49	5.39	7.14	5.72
Fluoride	mg/L	0.09 J	0.08 J		0.09 J	0.04 J	0.1	0.07 J	0.107	0.0813 J	0.084 J	0.112	0.0997 J	0.101	0.201
pH_Field	рН	6.83	6.82	6.74	6.67	6.72	6.73	6.77	6.67	6.77	6.37	6.85	6.73	6.87	6.72
Sulfate	mg/L	11	19		<1.4	<1.4	<1.4	11	16.8	38.4	6.74	50.7	10.5	60.1	7.75
TDS	mg/L	215	237	242	194	195	184	215	208	252	194	262	186	273	190
Appendix IV		•													
Antimony	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0008	<0.0008	<0.0008	<0.0008		<0.0008	<0.0008	<0.0008	<0.000507	<0.000508
Arsenic	mg/L	0.00247 J	0.00192 J	0.00218 J	0.00419 J	0.00365 J	0.00404 J	0.00332 J	0.00333 J		0.00394 J	0.00236 J	0.00422 J	0.00163	0.0037
Barium	mg/L	0.308	0.289	0.359	0.307	0.25	0.29	0.305	0.265		0.302	0.35	0.322	0.395	0.292
Beryllium	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006		<0.0006	<0.0006	<0.0006	<0.000406	<0.000406
Cadmium	mg/L	<0.0002	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003		<0.0003	<0.0003	<0.0003	<6.8e-005	<6.8e-005
Chromium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	0.00035 J	0.000285 J
Cobalt	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	0.00037	0.000886
Combined Radium 226 + 228	pCi/L	0.585 U	0.474	0.463 U	0.678	0.495 U	0.36 U	0.407 U	0.537		-0.021 U	0.64 U	0.221 U	0.83 U	6.52
Lead	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001	<0.001	<6.8e-005	<6.8e-005
Lithium	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	<0.007105	<0.007105
Mercury	mg/L	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	0.000302 J	<0.0003		<0.0003	<0.0003	<0.0003	<0.0003	<0.0003
Molybdenum	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	0.000204	0.000451
Selenium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<0.000507	<0.000508
Thallium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002	<0.0002	<6.8e-005	<6.8e-005

Notes:
1. mg/L - Milligrams per Liter
2. pCi/L - picocuries per Liter

3. J - Result is an estimated value

Analytes	Wells				GSD-AP-MW-16												
	Date	10/24/2018	11/14/2018	11/28/2018	12/05/2018	12/18/2018	01/03/2019	01/24/2019	02/05/2019	02/28/2019	08/19/2019	04/15/2020	08/25/2020	03/22/2021	10/06/2021		
Appendix III																	
Boron	mg/L	0.0261 J	0.0209 J	0.0239 J	<0.02	<0.02	-	0.0271 J	0.0245 J	<0.02	<0.03	<0.03	<0.03	<0.03	<0.03		
Calcium	mg/L	18	14.9	14.8	14.8	16.4		19.6	20.8	21.5	12.8	13.1	12.2	18.4	13.4		
Chloride	mg/L	3.3	3.6	3.5	3.3	3.6	3.4	3.91	3.94	4.15	3.42	3.39	2.94	3.61	3.17		
Fluoride	mg/L	0.11	0.1	0.1	0.11	0.14	0.16	<0.05	<0.05	<0.05	<0.05	<0.06	0.0863 J	<0.06	<0.06		
pH_Field	рН	5.27	4.99	4.74	4.76	4.57		4.45	4.3	4.35	4.57	4.49	4.2	3.45	4.16		
Sulfate	mg/L	44	44	46	51	76	94	135	183	192	66.6	92.8	74.1	128	93.5		
TDS	mg/L	107	96.7	102	103	126		212	269	261	121	155	131	204	136		
Appendix IV																	
Antimony	mg/L	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008		0.000922 J	<0.0008		<0.0008	<0.0008	<0.0008	<0.000507	<0.000508		
Arsenic	mg/L	<0.001	<0.001	0.00124 J	0.00113 J	0.00113 J		0.00257 J	0.00355 J		0.00228 J	0.0034 J	0.00237 J	0.00614	0.00207		
Barium	mg/L	0.0499	0.0458	0.0476	0.0475	0.0461		0.0485	0.0354		0.0314	0.028	0.0261	0.0278	0.0215		
Beryllium	mg/L	<0.0006	<0.0006	0.00133 J	<0.0006	0.000761 J		0.000703 J	0.000711 J		<0.0006	<0.0006	<0.0006	0.000537 J	0.000487 J		
Cadmium	mg/L	0.000307 J	0.000417 J	0.000387 J	0.000317 J	0.000438 J		0.000736 J	0.00101		0.000499 J	0.000697 J	0.000507 J	0.000852	0.00068		
Chromium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	0.000546 J	0.000455 J		
Cobalt	mg/L	0.0129	0.0114	0.0168	0.0161	0.0234		0.04	0.0538		0.0247	0.0373	0.0294	0.0469	0.0321		
Combined Radium 226 + 228	pCi/L	0.564	-0.0027 U	0.222 U	0.288 U	0.822	0.844	0.162 U	0.431 U		0.377 U	0.449 U	0.851	0.942 U	1.16 U		
Lead	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001		0.00114 J	0.00135 J		<0.001	<0.001	0.0011 J	0.0016	0.00116		
Lithium	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01		<0.01	<0.01	<0.01	<0.007105	<0.007105		
Mercury	mg/L	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025		0.000411 J	0.000473 J		<0.0003	<0.0003	<0.0003	0.000775	<0.0003		
Molybdenum	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<6.8e-005	<6.8e-005		
Selenium	mg/L	<0.002	<0.002	<0.002	0.00349 J	0.00395 J		0.00707 J	0.00938 J		0.00316 J	0.00434 J	0.00262 J	0.0134	0.00262		
Thallium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002		<0.0002	<0.0002	<0.0002	<6.8e-005	<6.8e-005		

Notes:
1. mg/L - Milligrams per Liter
2. pCi/L - picocuries per Liter

3. J - Result is an estimated value

Analytes	Wells							GSD-AP	-MW-11						
	Date	12/06/2017	02/07/2018	04/24/2018	06/27/2018	08/08/2018	10/23/2018	12/04/2018	02/06/2019	02/27/2019	08/22/2019	04/14/2020	08/26/2020	03/23/2021	10/12/2021
Appendix III															
Boron	mg/L	0.12	0.109	0.124	0.111	0.135	0.114	0.124	0.112	0.14	0.272	0.154	0.257	0.142	0.125
Calcium	mg/L	70	72.4	72.3	73.1	76	70.2	74	73.1	82.2	133	82.4	111	75.9	78.6
Chloride	mg/L	6.3	5.4		5.4	5.2	5.4	5.3	5.89	6.2	4.64	5.46	4.74	5.54	5.8
Fluoride	mg/L	0.06 J	0.05 J		0.06 J	0.06 J	0.06 J	<0.032	0.0678 J	0.0985 J	<0.05	0.0878 J	<0.06	0.0819 J	0.134
pH_Field	рН	6.81	6.74	6.62	6.69	6.67	6.73	6.67	6.58	6.56	6.26	6.63	6.38	6.58	6.66
Sulfate	mg/L	83	84		95	110	78	97	113	135	305	146	280	135	142
TDS	mg/L	312	323	324	333	346	311	343	317	360	555	372	517	361	352
Appendix IV															
Antimony	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0008	<0.0008	<0.0008	<0.0008		<0.0008	<0.0008	<0.0008	<0.000507	<0.000508
Arsenic	mg/L	0.00279 J	0.00252 J	0.00283 J	0.00289 J	0.00265 J	0.00287 J	0.00271 J	0.00272 J		0.00229 J	0.00286 J	0.00246 J	0.00275	0.00272
Barium	mg/L	0.349	0.297	0.338	0.338	0.307	0.311	0.331	0.286		0.214	0.168	0.165	0.169	0.17
Beryllium	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006		<0.0006	<0.0006	<0.0006	<0.000406	<0.000406
Cadmium	mg/L	<0.0002	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003		<0.0003	<0.0003	<0.0003	<6.8e-005	<6.8e-005
Chromium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	0.000513 J	0.000267 J
Cobalt	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		0.00756	<0.002	0.00599	0.000388	0.000275
Combined Radium 226 + 228	pCi/L	0.891 U	0.786	0.935	0.537	1.28	1.3	1.05	0.779		1.34 U	0.922 U	1.28	0.592 U	1.02 U
Lead	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001	<0.001	<6.8e-005	<6.8e-005
Lithium	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	<0.007105	<0.007105
Mercury	mg/L	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.0003		<0.0003	<0.0003	<0.0003	<0.0003	<0.0003
Molybdenum	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	0.000124 J	0.000152 J
Selenium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<0.000507	<0.000508
Thallium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002	<0.0002	<6.8e-005	<6.8e-005

Notes:
1. mg/L - Milligrams per Liter
2. pCi/L - picocuries per Liter

3. J - Result is an estimated value

Analytes	Wells							GSD-AP	P-MW-12						
	Date	12/06/2017	02/08/2018	04/24/2018	06/27/2018	08/08/2018	10/23/2018	12/05/2018	02/06/2019	02/27/2019	08/22/2019	04/14/2020	08/26/2020	03/23/2021	10/05/2021
Appendix III															
Boron	mg/L	0.0605 J	0.0527 J	0.0476 J	0.0539 J	0.0637 J	0.0696 J	0.0652 J	0.051 J	0.0494 J	0.0625 J	0.0377 J	0.0698 J	0.0452 J	0.0661 J
Calcium	mg/L	49	50	50.5	56.3	65.7	68.3	64.3	52.3	60.2	89.4	40	68.4	42	55.8
Chloride	mg/L	6.2	6.1		5.5	5.3	5.8	6	5.92	5.88	6.31	5.74	5.91	6.3	6.26
Fluoride	mg/L	<0.032	<0.032		<0.032	<0.032	0.04 J	<0.032	<0.05	<0.05	<0.05	<0.06	<0.06	<0.06	<0.06
pH_Field	рН	5.6	5.44	5.41	5.45	5.46	5.47	5.45	5.31	5.4	5.35	5.39	5.63	5.5	5.19
Sulfate	mg/L	200	200		240	260	280	280	249	257	339	155	282	160	195
TDS	mg/L	371	367	365	421	479	507	479	385	422	501	278	472	286	378
Appendix IV															
Antimony	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0008	<0.0008	<0.0008	<0.0008		<0.0008	<0.0008	<0.0008	<0.000507	<0.000508
Arsenic	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001	<0.001	<6.8e-005	<6.8e-005
Barium	mg/L	0.0501	0.0375	0.0405	0.0466	0.0448	0.054	0.0493	0.0357		0.0455	0.0279	0.0503	0.0315	0.0417
Beryllium	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006		<0.0006	<0.0006	<0.0006	<0.000406	<0.000406
Cadmium	mg/L	0.000596 J	0.00064 J	0.000702 J	0.000732 J	0.000587 J	0.000552 J	0.000661 J	0.000601 J		0.000755 J	0.000425 J	0.000618 J	0.000405	0.000367
Chromium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	0.000431 J	0.000339 J
Cobalt	mg/L	0.00221 J	0.00221 J	0.00257 J	0.00266 J	0.00251 J	0.00399 J	0.00466 J	0.00475 J		0.00658	0.0035 J	0.00547	0.00378	0.00448
Combined Radium 226 + 228	pCi/L	0.435 U	0.477	0.695	0.183 U	0.817	0.796	0.498 U	-0.0241 U		0.145 U	0.643 U	1.31	0.565 U	1.48
Lead	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001	<0.001	<6.8e-005	<6.8e-005
Lithium	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	<0.007105	<0.007105
Mercury	mg/L	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.0003		<0.0003	<0.0003	<0.0003	<0.0003	<0.0003
Molybdenum	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<6.8e-005	<6.8e-005
Selenium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<0.000507	<0.000508
Thallium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002	<0.0002	<6.8e-005	<6.8e-005

Notes:
1. mg/L - Milligrams per Liter
2. pCi/L - picocuries per Liter

3. J - Result is an estimated value

Analytes	Wells							GSD-AP	-MW-17						
	Date	10/24/2018	11/14/2018	11/28/2018	12/05/2018	12/18/2018	01/03/2019	01/24/2019	02/05/2019	02/28/2019	08/19/2019	04/16/2020	08/24/2020	03/22/2021	10/06/2021
Appendix III															
Boron	mg/L	0.0357 J	0.0348 J	0.0313 J	0.0363 J	0.033 J		0.0307 J	0.0306 J	0.0206 J	0.0341 J	0.0331 J	0.0303 J	0.0333 J	0.0305 J
Calcium	mg/L	28.3	27.5	20.7	25.3	20.9		17	17.1	18.6	25.3	30.7	30.8	31	31
Chloride	mg/L	4	3.6	3.5	3.2	3.4	3.2	3.15	2.98	3.05	2.8	2.93	2.82	2.94	2.98
Fluoride	mg/L	0.23	0.2	0.19	0.19	0.15	0.19	0.168	0.192	0.182	0.187	0.166	0.163	0.18	0.175
pH_Field	рН	7.92	8.23	8.95	8.77	8.99		9.42	9.23	9.48	7.93	8.1	8.17	7.85	7.92
Sulfate	mg/L	16	13	11	12	11	10	10.2	10.4	9.86	8.74	11.5	10	10.6	10.2
TDS	mg/L	184	170	167	185	164	-	137	138	140	240	166	162	157	182
Appendix IV															
Antimony	mg/L	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008		<0.0008	<0.0008		<0.0008	<0.0008	<0.0008	<0.000507	<0.000508
Arsenic	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	-	<0.001	<0.001		<0.001	<0.001	<0.001	0.00031	0.000263
Barium	mg/L	0.218	0.203	0.191	0.209	0.199		0.206	0.168		0.259	0.257	0.312	0.29	0.307
Beryllium	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	-	<0.0006	<0.0006		<0.0006	<0.0006	<0.0006	<0.000406	<0.000406
Cadmium	mg/L	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	-	<0.0003	<0.0003		<0.0003	<0.0003	<0.0003	<6.8e-005	<6.8e-005
Chromium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002		<0.002	0.00267 J	<0.002	0.000509 J	0.000273 J
Cobalt	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	-	<0.002	<0.002		<0.002	<0.002	<0.002	0.000133 J	0.000126 J
Combined Radium 226 + 228	pCi/L	0.694	0.398 U	0.428 U	0.302 U	0.535 U	0.64	0.331 U	0.307 U		0.683	0.603	0.404 U	0.497 U	2.01
Lead	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001		<0.001	<0.001	<0.001	<6.8e-005	<6.8e-005
Lithium	mg/L	<0.01	<0.01	0.0111 J	0.0124 J	0.0121 J		0.0134 J	0.0126 J		<0.01	0.0127 J	<0.01	0.0083 J	0.00881 J
Mercury	mg/L	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	-	<0.0003	<0.0003		<0.0003	<0.0003	<0.0003	<0.0003	<0.0003
Molybdenum	mg/L	0.00507 J	0.00358 J	0.00322 J	0.00256 J	0.00215 J	-	0.00211 J	0.00205 J		<0.002	<0.002	<0.002	0.000723	0.000453
Selenium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	-	<0.002	<0.002		<0.002	<0.002	<0.002	<0.000507	<0.000508
Thallium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002		<0.0002	<0.0002	<0.0002	<6.8e-005	<6.8e-005

Notes:
1. mg/L - Milligrams per Liter
2. pCi/L - picocuries per Liter

3. J - Result is an estimated value

Analytes	Wells							GSD-AF	P-MW-1						
	Date	12/06/2017	02/06/2018	04/23/2018	06/26/2018	08/07/2018	10/22/2018	12/04/2018	02/05/2019	02/26/2019	08/21/2019	04/15/2020	08/25/2020	03/16/2021	10/05/2021
Appendix III	,														
Boron	mg/L	1.28	1.29	1.21	1.25	1.21	1.22	1.08	1.2	1.15	1.24	1.13	1.11	1.08	1.02
Calcium	mg/L	271	275	269	268	259	240	254	292	254	272	231	218	218	198
Chloride	mg/L	6.2	5.9		5.7	5.3	5.6	5.8	5.8	5.92	5.26	5.5	5.59	6.2	6.1
Fluoride	mg/L	0.1	0.08 J		0.08 J	0.07 J	0.07 J	0.04 J	0.0525 J	<0.05	<0.05	<0.06	<0.06	<0.06	0.0601 J
pH_Field	рН	6.5	6.48	6.36	6.32	6.32	6.2	6.31	6.1	6.11	6.01	5.65	6	5.87	5.79
Sulfate	mg/L	650	560		670	660	580	580	702	748	708	647	642	593	567
TDS	mg/L	1300	1310	1210	1250	1220	1150	1090	1200	1210	1200	1060	1060	1040	964
Appendix IV															
Antimony	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0008	<0.0008	<0.0008	<0.0008		<0.0008	<0.0008	<0.0008	<0.000507	<0.000508
Arsenic	mg/L	0.00179 J	0.00191 J	0.0023 J	0.00306 J	0.00336 J	0.00451 J	0.00471 J	0.00365 J		0.00444 J	0.00309 J	0.00435 J	0.0029	0.00356
Barium	mg/L	0.0807	0.0546	0.0488	0.0479	0.0402	0.0427	0.0434	0.0439		0.037	0.0329	0.0358	0.0331	0.0304
Beryllium	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006		<0.0006	<0.0006	<0.0006	<0.000406	<0.000406
Cadmium	mg/L	<0.0002	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003		<0.0003	<0.0003	<0.0003	0.000102 J	0.000102 J
Chromium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	0.000376 J	0.000228 J
Cobalt	mg/L	0.00818 J	0.0123	0.0204	0.0224	0.0193	0.0243	0.0166	0.0264		0.0242	0.0178	0.0193	0.0184	0.0169
Combined Radium 226 + 228	pCi/L	0.694 U	0.641	-0.0527 U	0.162 U	0.87	0.691	0.213 U	0.637		0.643 U	0.538 U	0.502 U	0.722 U	1.21
Lead	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001	<0.001	<6.8e-005	<6.8e-005
Lithium	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	<0.007105	<0.007105
Mercury	mg/L	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.0003		<0.0003	<0.0003	<0.0003	<0.0003	<0.0003
Molybdenum	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<6.8e-005	<6.8e-005
Selenium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<0.000507	<0.000508
Thallium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002	<0.0002	0.000112 J	<6.8e-005

Notes:
1. mg/L - Milligrams per Liter
2. pCi/L - picocuries per Liter

3. J - Result is an estimated value

Analytes	Wells							GSD-AF	P-MW-2						
	Date	12/06/2017	02/06/2018	04/23/2018	06/27/2018	08/07/2018	10/22/2018	12/04/2018	02/05/2019	02/26/2019	08/20/2019	04/15/2020	08/25/2020	03/24/2021	10/11/2021
Appendix III									•						
Boron	mg/L	0.758	0.733	0.608	0.619	0.697	0.754	0.737	0.575	0.566	0.566	0.461	0.528	0.437	0.459
Calcium	mg/L	128	130	95.9	99.4	107	107	120	80.6	79.6	92.3	69.2	80.5	61.5	87.1
Chloride	mg/L	4.1	3.1		2.2	2.6	2.8	4.1	2.56	3.03	2.24	2.16	2	2.29	2.43
Fluoride	mg/L	0.3	0.27		0.28	0.24	0.24	0.15	0.207	0.264	0.252	0.21	0.273	0.194	0.283
pH_Field	рН	6.61	6.66	6.54	6.63	6.57	6.55	6.52	6.47	6.54	6.3	6.45	6.65	6.49	6.59
Sulfate	mg/L	210	190		130	150	160	170	145	148	110	116	114	101	112
TDS	mg/L	574	572	414	440	485	484	504	366	372	369	300	339	287	337
Appendix IV															
Antimony	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0008	<0.0008	<0.0008	<0.0008		<0.0008	<0.0008	<0.0008	<0.000507	<0.000508
Arsenic	mg/L	0.809	0.774	0.643	1.01	0.988	1.01	0.553	0.74		0.825	0.709	0.727	0.489	0.424
Barium	mg/L	0.0842	0.0716	0.0518	0.0578	0.0566	0.0536	0.0589	0.0418		0.0685	0.0607	0.0812	0.0676	0.0807
Beryllium	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006		<0.0006	<0.0006	<0.0006	<0.000406	<0.000406
Cadmium	mg/L	<0.0002	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003		<0.0003	<0.0003	<0.0003	6.88e-005 J	<6.8e-005
Chromium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	0.00047 J	0.000479 J
Cobalt	mg/L	0.0246	0.0243	0.0258	0.0362	0.0332	0.0438	0.0252	0.0362		0.0366	0.0324	0.0298	0.0316	0.0165
Combined Radium 226 + 228	pCi/L	0.772 U	0.679	0.447 U	0.117 U	1.22	0.996	0.739	1.09		0.553 U	0.182 U	0.43 U	0.769 U	2.38
Lead	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001	<0.001	<6.8e-005	9.28e-005 J
Lithium	mg/L	0.092	0.0817	0.051	0.0734	0.0764	0.0804	0.0474	0.0545		0.0583	0.0406	0.041	0.0318	0.0225
Mercury	mg/L	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.0003		<0.0003	<0.0003	<0.0003	<0.0003	<0.0003
Molybdenum	mg/L	0.0254	0.0239	0.0165	0.0302	0.0209	0.0198	0.0118	0.0196		0.027	0.0202	0.0269	0.0164	0.0204
Selenium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<0.000507	<0.000508
Thallium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.000213 J	<0.0002	0.000256 J		0.000322 J	0.000318 J	0.000347 J	0.00037	0.000294

Notes:
1. mg/L - Milligrams per Liter
2. pCi/L - picocuries per Liter

3. J - Result is an estimated value

Analytes	Wells							GSD-AF	P-MW-3						
	Date	12/06/2017	02/06/2018	04/24/2018	06/27/2018	08/07/2018	10/22/2018	12/03/2018	02/05/2019	02/25/2019	08/20/2019	04/13/2020	08/26/2020	03/22/2021	10/05/2021
Appendix III															
Boron	mg/L	0.959	1.04	0.979	0.982	1	1.08	1.05	1.01	1.08	1.06	1.19	1.16	1.13	1.01
Calcium	mg/L	125	110	88.8	80.8	88.5	92.7	105	68.6	70.6	74.1	69.5	75.7	64.9	65.9
Chloride	mg/L	7.6	7.6		7.3	7.6	6.9	6.8	6.95	6.55	6.07	5.95	5.89	5.26	5.09
Fluoride	mg/L	0.13	0.08 J		0.07 J	0.09 J	0.11	0.08 J	0.064 J	<0.05	0.0592 J	<0.06	<0.06	<0.06	<0.06
pH_Field	рН	6.54	6.39	6.02	6.07	6.28	6.3	6.38	5.83	5.93	5.73	5.83	5.87	5.51	5.76
Sulfate	mg/L	250	230		230	200	190	200	263	246	222	256	246	254	228
TDS	mg/L	628	556	510	486	487	450	492	428	441	416	433	455	427	389
Appendix IV															
Antimony	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0008	<0.0008	<0.0008	<0.0008		<0.0008	<0.0008	<0.0008	<0.000507	<0.000508
Arsenic	mg/L	0.00101 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001	<0.001	0.0002 J	0.000207
Barium	mg/L	0.126	0.0721	0.0492	0.0453	0.0431	0.0541	0.0545	0.0363		0.0405	0.0349	0.0363	0.0354	0.0344
Beryllium	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006		<0.0006	<0.0006	<0.0006	<0.000406	<0.000406
Cadmium	mg/L	<0.0002	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003		<0.0003	0.000438 J	<0.0003	0.00039	0.000213
Chromium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	0.000293 J	0.000234 J
Cobalt	mg/L	0.0302	0.0371	0.0251	0.0234	0.0223	0.03	0.0238	0.0232		0.0257	0.0209	0.0191	0.0183	0.016
Combined Radium 226 + 228	pCi/L	0.643 U	0.209 U	0.596	0.363 U	0.788	0.749	0.749	0.299 U		0.709 U	0.942 U	0.177 U	0.263 U	3.21
Lead	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001	<0.001	<6.8e-005	<6.8e-005
Lithium	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	<0.007105	<0.007105
Mercury	mg/L	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.0003		<0.0003	<0.0003	<0.0003	<0.0003	<0.0003
Molybdenum	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<6.8e-005	<6.8e-005
Selenium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<0.000507	<0.000508
Thallium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002	<0.0002	0.000121 J	0.000136 J

Notes:
1. mg/L - Milligrams per Liter
2. pCi/L - picocuries per Liter

3. J - Result is an estimated value

Analytes	Wells							GSD-AF	P-MW-4						
	Date	12/07/2017	02/06/2018	04/24/2018	06/26/2018	08/06/2018	10/22/2018	12/03/2018	02/05/2019	02/26/2019	08/20/2019	04/15/2020	08/26/2020	03/24/2021	10/05/2021
Appendix III															
Boron	mg/L	0.515	0.541	0.475	0.444	0.474	0.496	0.51	0.43	0.411	0.399	0.344	0.398	0.326	0.347
Calcium	mg/L	30.1	30.6	27.8	26.2	27.5	27.7	32.3	25.5	26.4	23.5	22	22.8	23.1	27.8
Chloride	mg/L	8.5	8.8		8.7	11	8.6	9.1	9.81	13	9.62	9.27	8.96	8.61	9.83
Fluoride	mg/L	0.25	0.24		0.22	0.22	0.24	0.22	0.259	0.246	0.197	0.238	0.251	0.227	0.214
pH_Field	рН	6.73	6.76	6.66	6.61	6.68	6.63	6.67	6.63	6.64	6.33	6.77	6.68	6.86	6.58
Sulfate	mg/L	<1.4	<1.4		<1.4	<1.4	<1.4	<1.4	5.38	5.1	7.34	17.2	15.5	19.9	36.9
TDS	mg/L	189	206	193	180	182	204	168	158	191	164	170	168	180	197
Appendix IV	,														
Antimony	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0008	<0.0008	<0.0008	<0.0008		<0.0008	<0.0008	<0.0008	<0.000507	<0.000508
Arsenic	mg/L	0.0132	0.0105	0.0124	0.0132	0.013	0.0144	0.0119	0.0107		0.0141	0.0121	0.0133	0.011	0.0147
Barium	mg/L	0.239	0.206	0.217	0.208	0.189	0.209	0.214	0.173		0.188	0.159	0.181	0.171	0.208
Beryllium	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006		<0.0006	<0.0006	<0.0006	<0.000406	<0.000406
Cadmium	mg/L	<0.0002	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003		<0.0003	<0.0003	<0.0003	<6.8e-005	<6.8e-005
Chromium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	0.000323 J	0.000224 J
Cobalt	mg/L	0.0252	0.0243	0.027	0.0242	0.0205	0.0259	0.0228	0.0263		0.0293	0.0252	0.0231	0.0268	0.0238
Combined Radium 226 + 228	pCi/L	1.04 U	0.989	0.405 U	1.03	0.622	1.06	0.697	0.467 U		0.814	-0.0841 U	0.26 U	0.664 U	1.75
Lead	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001	<0.001	<6.8e-005	<6.8e-005
Lithium	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	<0.007105	<0.007105
Mercury	mg/L	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.0003		<0.0003	<0.0003	<0.0003	<0.0003	<0.0003
Molybdenum	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	0.00118	0.00111
Selenium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<0.000507	<0.000508
Thallium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002	<0.0002	<6.8e-005	<6.8e-005

Notes:
1. mg/L - Milligrams per Liter
2. pCi/L - picocuries per Liter

3. J - Result is an estimated value

Analytes	Wells							GSD-AF	P-MW-5						
	Date	12/07/2017	02/06/2018	04/25/2018	06/27/2018	08/07/2018	10/23/2018	12/05/2018	02/05/2019	02/27/2019	08/20/2019	04/13/2020	08/24/2020	03/16/2021	10/05/2021
Appendix III		•							•						
Boron	mg/L	0.566	0.614	0.498	0.446	0.442	0.436	0.456	0.453	0.457	0.378	0.359	0.329	0.328	0.26
Calcium	mg/L	48.2	47.8	41.8	36.9	37.6	35.3	36.3	36.6	39.6	33.7	43	35.5	38.1	35.9
Chloride	mg/L	8.7	8.5		7.1	6.9	6.7	6.7	7.24	7.38	6.53	6.48	6.64	7.14	6.78
Fluoride	mg/L	0.06 J	0.05 J		0.06 J	0.06 J	0.07 J	0.04 J	0.0651 J	0.0578 J	0.0567 J	0.0688 J	0.0607 J	0.065 J	0.122
pH_Field	рН	6.32	6.27	6.14	6.15	6.18	6.15	6.15	6.08	6.11	6.11	6.18	6.11	6.22	6.24
Sulfate	mg/L	19	20		18	20	18	20	24.3	24.7	21.3	21.9	21.2	18.8	14.5
TDS	mg/L	215	204	192	180	183	169	177	198	185	174	192	175	184	180
Appendix IV		•													
Antimony	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0008	<0.0008	<0.0008	<0.0008		<0.0008	<0.0008	<0.0008	<0.000507	<0.000508
Arsenic	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001	<0.001	8.17e-005 J	0.000133 J
Barium	mg/L	0.279	0.195	0.26	0.249	0.216	0.26	0.245	0.215		0.238	0.241	0.238	0.217	0.221
Beryllium	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006		<0.0006	<0.0006	<0.0006	<0.000406	<0.000406
Cadmium	mg/L	<0.0002	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003		<0.0003	<0.0003	<0.0003	<6.8e-005	<6.8e-005
Chromium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	0.000397 J	0.000281 J
Cobalt	mg/L	0.00331 J	0.00323 J	0.00258 J	0.00218 J	<0.002	0.0023 J	0.00233 J	0.0021 J		0.00223 J	<0.002	0.00222 J	0.00136	0.00108
Combined Radium 226 + 228	pCi/L	0.885 U	0.524	0.341 U	0.546	1.09	1.01	0.876	0.551 U		0.206 U	1.19	0.482 U	0.709 U	1.44
Lead	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001	<0.001	<6.8e-005	<6.8e-005
Lithium	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	<0.007105	<0.007105
Mercury	mg/L	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.0003		<0.0003	<0.0003	<0.0003	<0.0003	<0.0003
Molybdenum	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<6.8e-005	0.00015 J
Selenium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<0.000507	<0.000508
Thallium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002	<0.0002	<6.8e-005	<6.8e-005

Notes:
1. mg/L - Milligrams per Liter
2. pCi/L - picocuries per Liter

3. J - Result is an estimated value

Analytes	Wells							GSD-AF	P-MW-6						
	Date	12/07/2017	02/08/2018	04/25/2018	06/26/2018	08/07/2018	10/23/2018	12/03/2018	02/05/2019	02/26/2019	08/20/2019	04/13/2020	08/26/2020	03/17/2021	10/05/2021
Appendix III	,	•													
Boron	mg/L	0.063 J	0.0508 J	0.0548 J	0.0571 J	0.0571 J	0.0636 J	0.0568 J	0.0517 J	0.0491 J	0.0608 J	0.0561 J	0.0633 J	0.0563 J	0.0649 J
Calcium	mg/L	29.8	24.3	19.8	17.8	18.3	18.1	16.6	14.4	16	15.1	12.5	12.9	11.3	11.4
Chloride	mg/L	10	9.5		9.5	9	9.9	8.7	8.76	8.63	9.55	8.6	9.21	8.59	9.09
Fluoride	mg/L	0.06 J	0.04 J		0.05 J	0.05 J	0.06 J	<0.032	0.0583 J	0.0618 J	<0.05	<0.06	<0.06	<0.06	<0.06
pH_Field	рН	6.38	6.29	6.15	6.09	6.16	6.1	6.09	6.04	6.17	5.4	5.82	5.96	5.92	5.74
Sulfate	mg/L	10	11		11	12	11	12	13.7	14	12.3	13.9	13.1	13.7	14.2
TDS	mg/L	136	122	102	106	71.3	105	102	86.7	91.3	98.7	90.7	91.3	80	96.7
Appendix IV	,	•													
Antimony	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0008	<0.0008	<0.0008	<0.0008		<0.0008	<0.0008	<0.0008	<0.000507	<0.000508
Arsenic	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001	<0.001	<6.8e-005	<6.8e-005
Barium	mg/L	0.0809	0.0566	0.0553	0.0604	0.0542	0.0608	0.0633	0.05		0.0731	0.0635	0.0771	0.0656	0.0741
Beryllium	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006		<0.0006	<0.0006	<0.0006	<0.000406	<0.000406
Cadmium	mg/L	<0.0002	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003		<0.0003	<0.0003	<0.0003	<6.8e-005	<6.8e-005
Chromium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	0.000338 J	0.000246 J
Cobalt	mg/L	0.00592 J	0.00297 J	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	0.00102	0.00104
Combined Radium 226 + 228	pCi/L	0.394 U	0.489	-0.0902 U	0.245 U	0.439 U	0.243 U	0.304 U	0.196 U		-0.086 U	0.0901 U	0.416 U	0.539 U	1.36
Lead	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001	<0.001	<6.8e-005	<6.8e-005
Lithium	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	<0.007105	<0.007105
Mercury	mg/L	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.0003		<0.0003	<0.0003	<0.0003	<0.0003	<0.0003
Molybdenum	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<6.8e-005	<6.8e-005
Selenium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<0.000507	<0.000508
Thallium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002	<0.0002	<6.8e-005	<6.8e-005

Notes:
1. mg/L - Milligrams per Liter
2. pCi/L - picocuries per Liter

3. J - Result is an estimated value

Analytes	Wells							GSD-AF	P-MW-7						
	Date	12/07/2017	02/08/2018	04/25/2018	06/26/2018	08/08/2018	10/23/2018	12/04/2018	02/06/2019	02/27/2019	08/21/2019	04/15/2020	08/26/2020	03/23/2021	10/05/2021
Appendix III	,														
Boron	mg/L	0.102	0.0787 J	0.0734 J	0.094 J	0.103	0.106	0.085 J	0.0733 J	0.0548 J	0.091 J	0.0534 J	0.0665 J	0.0587 J	0.0673 J
Calcium	mg/L	23.4	20.1	17.4	21.8	25.4	25.6	19	16.4	15.6	23.5	14	16.7	12.5	15.9
Chloride	mg/L	7.9	6.7		7.4	7.7	8	6.7	6.84	6.21	7.35	4.99	6.19	4.87	6.43
Fluoride	mg/L	0.09 J	0.07 J		0.09 J	0.1	0.1	0.06 J	<0.05	0.0824 J	0.068 J	0.0775 J	<0.06	<0.06	0.0933 J
pH_Field	рН	6.62	6.39	6.17	6.38	6.56	6.54	6.33	6.13	6.12	5.97	6.16	6.11	6.04	6.06
Sulfate	mg/L	14	10		11	13	13	9.8	10.8	8.98	11.8	7.95	9.19	8.08	9.19
TDS	mg/L	137	124	106	129	142	142	121	108	103	133	102	109	92.7	113
Appendix IV															
Antimony	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0008	<0.0008	<0.0008	<0.0008		<0.0008	<0.0008	<0.0008	<0.000507	<0.000508
Arsenic	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001	<0.001	<6.8e-005	6.94e-005 J
Barium	mg/L	0.083	0.0756	0.0764	0.0799	0.0791	0.0898	0.0789	0.0685		0.0946	0.0653	0.0845	0.0602	0.0716
Beryllium	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006		<0.0006	<0.0006	<0.0006	<0.000406	<0.000406
Cadmium	mg/L	<0.0002	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003		<0.0003	<0.0003	<0.0003	9.7e-005 J	<6.8e-005
Chromium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	0.000406 J	0.000248 J
Cobalt	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	0.00102	0.000182 J
Combined Radium 226 + 228	pCi/L	0.895 U	0.322 U	0.0097 U	0.587	0.364 U	0.703	0.325 U	0.0774 U		-0.0134 U	0.526 U	0.691 U	0.45 U	1.27
Lead	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001	<0.001	<6.8e-005	<6.8e-005
Lithium	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	<0.007105	<0.007105
Mercury	mg/L	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	0.00034 J	<0.0003		<0.0003	<0.0003	<0.0003	<0.0003	<0.0003
Molybdenum	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<6.8e-005	9.55e-005 J
Selenium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<0.000507	<0.000508
Thallium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002	<0.0002	<6.8e-005	<6.8e-005

Notes:
1. mg/L - Milligrams per Liter
2. pCi/L - picocuries per Liter

3. J - Result is an estimated value

Analytes	Wells							GSD-AP	P-MW-8						
	Date	12/07/2017	02/08/2018	04/25/2018	06/26/2018	08/08/2018	10/23/2018	12/04/2018	02/06/2019	02/27/2019	08/21/2019	04/14/2020	08/26/2020	03/23/2021	10/12/2021
Appendix III															
Boron	mg/L	0.0828 J	0.0691 J	0.0571 J	0.0634 J	0.0659 J	0.0666 J	0.0617 J	0.0586 J	0.0428 J	0.0569 J	0.0474 J	0.0501 J	0.0476 J	0.0462 J
Calcium	mg/L	66.1	58	56.3	57.7	51.2	50.9	51.9	55	53.4	71.5	56.2	55.5	48.9	66.3
Chloride	mg/L	5.2	4.1		5	4.8	4.4	4.2	5.84	6.52	5.89	5.21	5.16	5.3	5.6
Fluoride	mg/L	0.14	0.11		0.1	0.1	0.11	0.08 J	<0.05	0.108	0.0648 J	0.0845 J	0.0732 J	0.0802 J	0.123
pH_Field	рН	6.81	6.73	6.61	6.59	6.6	6.64	6.68	6.62	6.56	6.16	6.49	6.29	6.47	6.61
Sulfate	mg/L	6.5	8.9		7.5	7.3	7.8	8.2	9.53	8.25	10.8	12.5	16.1	9.21	16
TDS	mg/L	253	229	223	232	208	209	213	212	211	226	222	215	200	245
Appendix IV															
Antimony	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0008	<0.0008	<0.0008	<0.0008		<0.0008	<0.0008	<0.0008	<0.000507	<0.000508
Arsenic	mg/L	0.00313 J	0.00247 J	0.00291 J	0.00265 J	0.00203 J	0.00246 J	0.00328 J	0.00325 J		0.00302 J	0.00295 J	0.00304 J	0.00282	0.00287
Barium	mg/L	0.244	0.135	0.224	0.181	0.134	0.17	0.189	0.226		0.194	0.262	0.235	0.249	0.203
Beryllium	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006		<0.0006	<0.0006	<0.0006	<0.000406	<0.000406
Cadmium	mg/L	<0.0002	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003		<0.0003	<0.0003	<0.0003	8.32e-005 J	<6.8e-005
Chromium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	0.0003 J	<0.000203
Cobalt	mg/L	0.00212 J	<0.002	0.00204 J	<0.002	<0.002	<0.002	<0.002	0.00232 J		0.00303 J	0.00385 J	0.00388 J	0.003	0.00298
Combined Radium 226 + 228	pCi/L	7.45 U	0.549	0.65	0.436 U	0.486 U	0.319 U	0.875	0.378 U		0.552 U	0.641 U	0.339 U	0.662 U	0.291 U
Lead	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001	<0.001	<6.8e-005	<6.8e-005
Lithium	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	<0.007105	<0.007105
Mercury	mg/L	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	0.000284 J	<0.0003		<0.0003	<0.0003	<0.0003	<0.0003	<0.0003
Molybdenum	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	0.000357	0.000319
Selenium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<0.000507	<0.000508
Thallium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002	<0.0002	<6.8e-005	<6.8e-005

Notes:
1. mg/L - Milligrams per Liter
2. pCi/L - picocuries per Liter

3. J - Result is an estimated value

Analytes	Wells							GSD-AF	P-MW-9						
	Date	12/07/2017	02/08/2018	04/25/2018	06/26/2018	08/08/2018	10/23/2018	12/05/2018	02/06/2019	02/27/2019	08/21/2019	04/14/2020	08/26/2020	03/23/2021	10/12/2021
Appendix III	,														
Boron	mg/L	0.0614 J	0.0531 J	0.0551 J	0.0568 J	0.0524 J	0.0576 J	0.0561 J	0.0627 J	0.0474 J	0.0524 J	0.0562 J	0.0565 J	0.0609 J	0.0632 J
Calcium	mg/L	38.7	38.8	40.3	39.9	42.3	39.8	43.8	34.9	42.5	50.9	43.6	43.2	38.1	35.4
Chloride	mg/L	7			6.4	5.5	6.7	5.9	7.26	6.77	6.16	7.27	6.57	7.42	7.78
Fluoride	mg/L	0.12			0.13	0.12	0.13	0.04 J	<0.05	0.147	0.0984 J	0.133	0.13	0.132	0.147
pH_Field	рН	6.93	6.96	6.89	6.85	6.94	6.93	6.94	6.73	6.85	6.61	7.02	6.75	6.85	6.9
Sulfate	mg/L	9			8.5	6.7	9.4	7.8	17	12.4	11.3	15.9	12.9	15.7	18
TDS	mg/L	183		180	191	192	185	200	151	186	200	187	192	178	169
Appendix IV	,														
Antimony	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0008	<0.0008	<0.0008	<0.0008		<0.0008	<0.0008	<0.0008	<0.000507	<0.000508
Arsenic	mg/L	0.00112 J	<0.001	<0.001	<0.001	<0.001	<0.001	0.00111 J	<0.001		<0.001	0.00118 J	<0.001	0.00063	0.000635
Barium	mg/L	0.187	0.148	0.158	0.16	0.161	0.183	0.186	0.128		0.183	0.186	0.202	0.157	0.147
Beryllium	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006		<0.0006	<0.0006	<0.0006	<0.000406	<0.000406
Cadmium	mg/L	<0.0002	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003		<0.0003	<0.0003	<0.0003	<6.8e-005	<6.8e-005
Chromium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	0.000422 J	0.00031 J
Cobalt	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	0.00103	0.00113
Combined Radium 226 + 228	pCi/L	0.226 U	0.071 U	0.569	0.43 U	0.656	0.395 U	0.52 U	0.244 U		1.53 U	0.119 U	1.18	0.694 U	0.311 U
Lead	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001	<0.001	<6.8e-005	<6.8e-005
Lithium	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	<0.007105	<0.007105
Mercury	mg/L	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.0003		<0.0003	<0.0003	<0.0003	<0.0003	<0.0003
Molybdenum	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	0.00027	0.000177 J
Selenium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<0.000507	<0.000508
Thallium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002	<0.0002	<6.8e-005	<6.8e-005

Notes:
1. mg/L - Milligrams per Liter
2. pCi/L - picocuries per Liter

3. J - Result is an estimated value

Analytes	Wells							GSD-A	AP-PZ-1						
	Date	06/27/2018	07/18/2018	08/07/2018	09/05/2018	09/24/2018	10/22/2018	12/03/2018	02/05/2019	02/25/2019	08/20/2019	04/13/2020	08/24/2020	03/24/2021	10/05/2021
Appendix III	,														
Boron	mg/L	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.03	<0.03	<0.03	<0.03	<0.03
Calcium	mg/L	39.4	38.4	36.7	43.6	44.5	45	33.7	30.1	25.3	38.3	25.9	29	22.2	25.4
Chloride	mg/L	3.6	3.8	3.3	3.4	3.8	3.3	3.2	3.78	3.75	3.52	3.36	3.35	3.45	3.23
Fluoride	mg/L	0.13	0.11	0.11	0.13	0.13	0.13	0.08 J	0.0934 J	<0.05	0.0889 J	0.103	0.114	0.0725 J	<0.06
pH_Field	рН	6.79	6.8	6.73	6.75	6.83	6.76	6.6	6.66	6.6	6.3	6.66	6.64	5.85	6.46
Sulfate	mg/L	2.2 J	2.5 J	<1.4	1.4 J	<1.4	1.7 J	2.1 J	3.99	3.86	3.73	3.83	4.16	2.88	2.17
TDS	mg/L	144	156	140	154	165	148	127	113	107	141	104	114	94	108
Appendix IV															
Antimony	mg/L	<0.0006	<0.0006	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008		<0.0008	<0.0008	<0.0008	<0.000507	<0.000508
Arsenic	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001	<0.001	<6.8e-005	<6.8e-005
Barium	mg/L	0.115	0.116	0.0906	0.116	0.125	0.102	0.0784	0.0578		0.097	0.0529	0.0733	0.0525	0.0811
Beryllium	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006		<0.0006	<0.0006	<0.0006	<0.000406	<0.000406
Cadmium	mg/L	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003		<0.0003	<0.0003	<0.0003	<6.8e-005	<6.8e-005
Chromium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	0.000442 J	0.000352 J
Cobalt	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<6.8e-005	0.000436
Combined Radium 226 + 228	pCi/L	0.188 U	0.314 U	0.279 U	0.589	0.772	0.621	0.188 U	0.274 U		0.663	-0.129 U	0.177 U	0.245 U	2.07
Lead	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001	<0.001	<6.8e-005	<6.8e-005
Lithium	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	<0.007105	<0.007105
Mercury	mg/L	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.0003		<0.0003	<0.0003	<0.0003	<0.0003	<0.0003
Molybdenum	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	9.88e-005 J	7.3e-005 J
Selenium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<0.000507	<0.000508
Thallium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002	<0.0002	<6.8e-005	<6.8e-005

Notes:
1. mg/L - Milligrams per Liter
2. pCi/L - picocuries per Liter

3. J - Result is an estimated value

Analytes	Wells		GSD-A	P-PZ-2		GSD-AP-PZ-5													
	Date	04/13/2020	08/24/2020	03/17/2021	10/05/2021	06/27/2018	07/18/2018	08/08/2018	09/05/2018	09/24/2018	10/23/2018	12/03/2018	02/07/2019	02/25/2019	08/21/2019	04/15/2020	08/24/2020	03/16/2021	10/12/2021
Appendix III	pendix III																		
Boron	mg/L	<0.03	<0.03	<0.03	<0.03	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.03	<0.03	<0.03	<0.03	<0.03
Calcium	mg/L	16.1	24.8	5.21	17.6	4.56	3.92	3.74	3.38	3.25	3.37	3.67	2.89	2.95	3.04	2.93	2.94	2.9	2.94
Chloride	mg/L	5.42	5.46	5.53	5.79	4.2	4.1	3.3	3.7	3.9	4	3.6	3.72	3.95	3.85	3.83	3.96	3.98	4.07
Fluoride	mg/L	<0.06	<0.06	<0.06	<0.06	0.05 J	0.04 J	0.04 J	0.04 J	0.04 J	0.04 J	<0.032	<0.05	<0.05	<0.05	<0.06	<0.06	<0.06	<0.06
pH_Field	рН	5.84	6	5.34	5.72	5.81	5.74	5.7	5.61	5.59	5.6	5.73	5.44	5.46	5.13	5.31	4.65	5.47	5.33
Sulfate	mg/L	1.48	3.88	1.64	5.29	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4	0.639 J	<0.5	1.21	0.554 J	<0.5	1.02	0.895 J
TDS	mg/L	88	115	53.3	101	48.7	46	48	47.3	44.7	35.3	48.7	42.7	40.7	46	41.3	42.7	42	38.7
Appendix IV		•																	
Antimony	mg/L	<0.0008	<0.0008	<0.000507	<0.000508	<0.0006	<0.0006	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	0.00114 J		<0.0008	<0.0008	<0.0008	<0.000507	<0.000508
Arsenic	mg/L	<0.001	<0.001	8.26e-005 J	9.28e-005 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001	<0.001	8.08e-005 J	<6.8e-005
Barium	mg/L	0.0832	0.132	0.045	0.118	0.154	0.15	0.119	0.123	0.112	0.125	0.126	0.0602		0.085	0.0535	0.0565	0.0553	0.0494
Beryllium	mg/L	<0.0006	<0.0006	<0.000406	<0.000406	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006		<0.0006	<0.0006	<0.0006	<0.000406	<0.000406
Cadmium	mg/L	<0.0003	<0.0003	<6.8e-005	<6.8e-005	0.000304 J	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003		<0.0003	<0.0003	<0.0003	<6.8e-005	8.42e-005 J
Chromium	mg/L	<0.002	<0.002	0.000764 J	0.000346 J	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	0.000534 J	0.000337 J
Cobalt	mg/L	0.00489 J	0.00237 J	0.00616	0.00287	0.00341 J	0.00341 J	0.00221 J	0.00202 J	<0.002	<0.002	0.00227 J	<0.002		0.00225 J	<0.002	<0.002	0.000384	8.08e-005 J
Combined Radium 226 + 228	pCi/L	0.472 U	-0.00312 U	0.756 U	1.13	0.259 U	0.434	0.763	0.631	0.588	0.383 U	0.736	0.0202 U		0.442 U	0.432 U	0.454 U	0.32 U	0.963 U
Lead	mg/L	<0.001	<0.001	0.000191 J	0.000121 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001	<0.001	0.00013 J	<6.8e-005
Lithium	mg/L	<0.01	<0.01	<0.007105	<0.007105	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	<0.007105	<0.007105
Mercury	mg/L	<0.0003	<0.0003	<0.0003	<0.0003	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.0003		<0.0003	<0.0003	<0.0003	<0.0003	<0.0003
Molybdenum	mg/L	<0.002	<0.002	<6.8e-005	0.00028	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<6.8e-005	<6.8e-005
Selenium	mg/L	<0.002	<0.002	<0.000507	<0.000508	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<0.000507	<0.000508
Thallium	mg/L	<0.0002	<0.0002	<6.8e-005	<6.8e-005	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002	<0.0002	<6.8e-005	<6.8e-005

Notes:
1. mg/L - Milligrams per Liter
2. pCi/L - picocuries per Liter

3. J - Result is an estimated value

Analytes	Wells		GSD-AP-PZ-6													
	Date	06/27/2018	07/18/2018	08/08/2018	09/05/2018	09/24/2018	10/23/2018	12/03/2018	02/07/2019	02/25/2019	08/21/2019	04/15/2020	08/24/2020	03/16/2021	10/12/2021	
Appendix III																
Boron	mg/L	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.03	<0.03	<0.03	<0.03	<0.03	
Calcium	mg/L	3.89	3.8	3.89	3.78	3.73	3.79	3.79	3.75	3.81	3.71	3.56	3.45	3.44	3.29	
Chloride	mg/L	4.1	4.3	3.8	3.9	4.2	4.1	3.8	4.15	4.2	4	3.71	3.59	3.66	3.68	
Fluoride	mg/L	0.04 J	0.04 J	0.04 J	0.04 J	0.04 J	0.04 J	<0.032	<0.05	<0.05	<0.05	<0.06	<0.06	<0.06	<0.06	
pH_Field	рН	5.44	5.58	5.55	5.56	5.57	5.55	5.6	5.51	5.54	5.44	5.52	5.38	5.56	5.41	
Sulfate	mg/L	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4	1.69	1.53	1.62	1.68	1.31	1.7	1.34	
TDS	mg/L	44	42.7	46	67.3	49.3	31.3	46	32.7	31.3	42.7	37.3	37.3	41.3	35.3	
Appendix IV																
Antimony	mg/L	<0.0006	<0.0006	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	0.00181 J		<0.0008	<0.0008	<0.0008	<0.000507	<0.000508	
Arsenic	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001	<0.001	<6.8e-005	<6.8e-005	
Barium	mg/L	0.0298	0.0312	0.0265	0.0291	0.029	0.0298	0.0307	0.028		0.0312	0.0296	0.031	0.0293	0.0303	
Beryllium	mg/L	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006		<0.0006	<0.0006	<0.0006	<0.000406	<0.000406	
Cadmium	mg/L	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003		<0.0003	<0.0003	<0.0003	<6.8e-005	<6.8e-005	
Chromium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	0.000534 J	0.000307 J	
Cobalt	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	0.000108 J	0.000142 J	
Combined Radium 226 + 228	pCi/L	0.231 U	0.676	0.496	0.62	-0.12 U	0.352 U	0.238 U	0.395 U		-0.00256 U	0.000738 U	0.404 U	0.589 U	1.57	
Lead	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001	<0.001	8.35e-005 J	0.000119 J	
Lithium	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	<0.007105	<0.007105	
Mercury	mg/L	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.0003		<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	
Molybdenum	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<6.8e-005	<6.8e-005	
Selenium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<0.000507	<0.000508	
Thallium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002	<0.0002	<6.8e-005	<6.8e-005	

Notes:
1. mg/L - Milligrams per Liter
2. pCi/L - picocuries per Liter

3. J - Result is an estimated value

Analytes	Wells		G	SD-AP-MW-2V	/A		GSD-AP-	MW-2VB		GSD-AP	-MW-4V		GSD-AP-MW- 21VC	GSD-AP-MW 22VB
	Date	04/15/2020	07/01/2020	08/25/2020	03/22/2021	10/06/2021	03/30/2021	10/12/2021	04/15/2020	08/26/2020	03/24/2021	10/11/2021	10/06/2021	10/11/2021
Appendix III									L		l.	l.		
Boron	mg/L	0.587		0.552	0.537	0.54	0.605	0.617	0.0634 J	0.0611 J	0.0618 J	0.0596 J	0.532	0.378
Calcium	mg/L	5		4.97	5.71	5.38	3.71	3.96	23.9	23.5	22.9	23	3.46	9.35
Chloride	mg/L	6.47		6.4	6.65	6.82	32	38	5.16	5.37	5.55	5.65	166	1.72
Fluoride	mg/L	2.51		2.4	2.33	2.56	6.09	5.97	0.218	0.217	0.212	0.23	8.34	1.43
pH_Field	рН	8.6	8.36	8.43	8.34	8.36	8.52	8.62	7.93	7.83	8.01	7.82	8.53	8.13
Sulfate	mg/L	4.18		4.83	2.04	2.44	10.3	15.2	1.25	1.21	1.39	1.7	8.35	13.8
TDS	mg/L	324		321	314	317	528	536	218	239	222	220	864	230
Appendix IV														
Antimony	mg/L	<0.0008		<0.0008	<0.000507	<0.000508	<0.000507	<0.000508	<0.0008	<0.0008	<0.000507	<0.000508	0.00051 J	0.00167
Arsenic	mg/L	<0.001		0.00135 J	0.00145	0.00139	0.000278	0.000426	<0.001	<0.001	0.00034	0.000366	0.00162	0.00408
Barium	mg/L	0.2		0.135	0.114	0.12	0.313	0.242	0.457	0.534	0.477	0.483	0.374	0.238
Beryllium	mg/L	<0.0006		<0.0006	<0.000406	<0.000406	<0.000406	<0.000406	<0.0006	<0.0006	<0.000406	<0.000406	<0.000406	<0.000406
Cadmium	mg/L	<0.0003		<0.0003	<6.8e-005	<6.8e-005	<6.8e-005	<6.8e-005	<0.0003	<0.0003	<6.8e-005	<6.8e-005	<6.8e-005	<6.8e-005
Chromium	mg/L	<0.002		<0.002	0.000433 J	0.00025 J	0.00112	0.000353 J	<0.002	<0.002	0.000402 J	0.000314 J	0.00111	0.000412 J
Cobalt	mg/L	<0.002		<0.002	<6.8e-005	<6.8e-005	0.000116 J	<6.8e-005	<0.002	<0.002	8.16e-005 J	<6.8e-005	0.000205	<6.8e-005
Combined Radium 226 + 228	pCi/L	0.231 U		0.807	0.58 U	0.746 U	0.185 U	0.323 U	0.329 U	0.839	0.725 U	1.58	1.78	1.29
Lead	mg/L	<0.001		<0.001	<6.8e-005	<6.8e-005	<6.8e-005	<6.8e-005	<0.001	<0.001	<6.8e-005	<6.8e-005	0.000225	<6.8e-005
Lithium	mg/L	0.0783	0.069	0.0666	0.0666	0.0685	0.13	0.129	0.0219	0.0203	0.0203	0.0198 J	0.227	0.0544
Mercury	mg/L	<0.0003		<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003
Molybdenum	mg/L	<0.002		0.00323 J	0.00386	0.00363	0.000673	0.00156	<0.002	<0.002	0.00188	0.00173	0.00107	0.00538
Selenium	mg/L	<0.002		<0.002	<0.000507	<0.000508	<0.000507	<0.000508	<0.002	<0.002	<0.000507	<0.000508	<0.000508	<0.000508
Thallium	mg/L	<0.0002		<0.0002	<6.8e-005	<6.8e-005	<6.8e-005	<6.8e-005	<0.0002	<0.0002	<6.8e-005	<6.8e-005	<6.8e-005	<6.8e-005

Notes:
1. mg/L - Milligrams per Liter
2. pCi/L - picocuries per Liter

3. J - Result is an estimated value

Analytes	Wells		GSD-AP-	MW-18H			G	SD-AP-MW-19	Н	GSD-AP-MW-20H				
	Date	04/15/2020	08/25/2020	03/16/2021	10/12/2021	04/14/2020	06/01/2020	08/26/2020	03/23/2021	10/11/2021	04/14/2020	08/26/2020	03/23/2021	10/11/2021
Appendix III														
Boron	mg/L	0.124	0.105	0.0545 J	0.0717 J	0.448		0.39	0.41	0.328	0.308	0.308	0.419	0.504
Calcium	mg/L	19.1	14.9	5.77	10.3	32.9		39.3	31.7	40	51.5	47.6	57.6	63.4
Chloride	mg/L	6	5.79	3.85	4.59	7.35		7.03	7.11	7.04	6.64	6.73	6.33	6.37
Fluoride	mg/L	<0.06	<0.06	<0.06	<0.06	<0.06		<0.06	<0.06	0.0779 J	0.125	0.103	0.108	0.127
pH_Field	рН	5.1	5.13	5.08	5.12	5.79		6.33	5.88	6.08	6.02	6.36	6.38	6.36
Sulfate	mg/L	67.1	52.6	18.5	36.7	75.3		72.9	71.8	61.7	135	112	168	174
TDS	mg/L	126	107	52	78.7	190		202	174	202	323	310	385	384
Appendix IV														
Antimony	mg/L	<0.0008	<0.0008	<0.000507	<0.000508	<0.0008		<0.0008	<0.000507	<0.000508	<0.0008	<0.0008	<0.000507	<0.000508
Arsenic	mg/L	<0.001	<0.001	0.000136 J	0.00019 J	<0.001		<0.001	0.000512	0.000846	0.00287 J	0.00186 J	0.00226	0.00191
Barium	mg/L	0.0389	0.0388	0.0243	0.0298	0.153		0.201	0.148	0.17	0.189	0.197	0.217	0.134
Beryllium	mg/L	<0.0006	<0.0006	<0.000406	<0.000406	<0.0006		<0.0006	<0.000406	<0.000406	<0.0006	<0.0006	<0.000406	<0.000406
Cadmium	mg/L	<0.0003	<0.0003	<6.8e-005	<6.8e-005	<0.0003		<0.0003	<6.8e-005	0.000124 J	<0.0003	<0.0003	<6.8e-005	<6.8e-005
Chromium	mg/L	<0.002	<0.002	0.000363 J	0.000209 J	<0.002		<0.002	0.000404 J	0.000475 J	<0.002	<0.002	0.000417 J	0.000246 J
Cobalt	mg/L	<0.002	<0.002	0.000577	0.000615	0.00886		0.0101	0.00674	0.00579	0.0122	0.0104	0.0125	0.00995
Combined Radium 226 + 228	pCi/L	0.419 U	1.45	0.405 U	0.383 U	42.6	0.215 U	0.265 U	0.562 U	0.202 U	0.0962 U	0.413 U	0.847 U	1.09 U
Lead	mg/L	<0.001	<0.001	<6.8e-005	<6.8e-005	<0.001		<0.001	0.000201 J	0.000155 J	<0.001	<0.001	<6.8e-005	8.19e-005 J
Lithium	mg/L	<0.01	<0.01	<0.007105	<0.007105	<0.01		<0.01	<0.007105	<0.007105	<0.01	<0.01	<0.007105	<0.007105
Mercury	mg/L	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003		<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003
Molybdenum	mg/L	<0.002	<0.002	<6.8e-005	<6.8e-005	<0.002		<0.002	<6.8e-005	0.000118 J	<0.002	<0.002	0.000481	0.000312
Selenium	mg/L	<0.002	<0.002	0.000935 J	0.000679 J	<0.002		<0.002	<0.000507	<0.000508	<0.002	<0.002	<0.000507	<0.000508
Thallium	mg/L	<0.0002	<0.0002	<6.8e-005	<6.8e-005	<0.0002		<0.0002	<6.8e-005	<6.8e-005	<0.0002	<0.0002	0.000145 J	0.00013 J

Notes:
1. mg/L - Milligrams per Liter
2. pCi/L - picocuries per Liter

3. J - Result is an estimated value

Appendix C

Appendix C. Historical Groundwater Elevations Summary

	Ton of Cosing							Groundwat	er Elevation	ľ					
Well Name	Top of Casing Elevation							(ft Al	MSL)						
	Zic v ii ci cii	12/4/2017	2/6/2018	2/9/2018	3/19/2018	3/28/2018	4/9/2018	4/23/2018	5/9/2018	5/16/2018	5/21/2018	5/23/2018	5/25/2018	5/31/2018	6/4/2018
GSD-AP-MW-1	526.37	513.72	514.90	515.77	517.56	517.24	516.72	517.40	516.17	515.59	515.20	515.13	515.05	514.81	514.65
GSD-AP-MW-2	526.16	513.78	514.70	515.20	516.58	516.30	515.95	516.38	515.53	515.11	514.82	514.82	514.73	514.60	514.46
GSD-AP-MW-3	526.80	513.81	514.75	515.11	515.92	515.73	515.41	516.19	514.95	514.64	514.43	514.61	514.46	514.50	514.26
GSD-AP-MW-4	520.60	513.76	514.69	515.01	515.76	515.59	515.27	516.05	514.83	514.51	514.32	514.55	514.38	514.45	514.18
GSD-AP-MW-5	516.27	510.81	511.80	512.14	512.25	512.09	511.85	512.49	511.46	511.22	511.12	511.32	511.24	511.24	511.09
GSD-AP-MW-6	515.23	509.89	510.60	510.88	510.72	510.59	510.36	511.08	510.16	510.02	509.97	510.15	510.06	510.10	509.98
GSD-AP-MW-7	519.86	507.66	508.62	509.44	509.33	509.14	508.62	509.52	508.85	508.67	508.49	508.61	508.55	508.34	508.39
GSD-AP-MW-8	519.22	506.85	506.90	508.22	506.94	507.09	506.60	508.02	507.99	507.84	507.96	508.03	507.85	507.70	508.20
GSD-AP-MW-9	520.36	505.87	506.86	508.09	506.98	507.04	506.60	507.85	507.99	507.88	508.01	508.01	507.88	507.74	508.20
GSD-AP-MW-10	530.91	509.82	509.68	510.06	509.78	509.25	509.14	509.75	509.61	509.55	509.56	509.64	509.52	509.56	509.52
GSD-AP-MW-11	517.01	507.46	507.93	508.88	507.96	507.98	507.59	508.66	508.43	508.24	508.27	508.35	508.21	508.07	508.39
GSD-AP-MW-12	521.82	511.62	513.11	513.83	513.99	513.71	513.20	514.13	512.81	512.33	511.87	512.12	511.94	512.73	511.60
GSD-AP-MW-14	548.34														-
GSD-AP-MW-16	555.83		-												-
GSD-AP-MW-17	550.11														-
GSD-AP-PZ-1	521.64	512.46	514.59	516.13	517.26	517.01	516.42	517.21	515.69	514.88	514.30	514.40	514.26	514.01	513.76
GSD-AP-PZ-2	516.49	506.92	507.81	508.83	507.87	507.96	507.47	508.58	508.37	508.15	508.25	508.35	508.19	508.04	508.29
GSD-AP-PZ-5	524.26		-	-	-		516.71		515.97	515.11	514.46	514.59	514.43	514.16	513.87
GSD-AP-PZ-6	519.60		-	-	-		516.57		515.86	515.03	514.45	514.58	514.42	514.18	513.88
GSD-AP-MW-4V	520.33										-				
GSD-AP-MW-18H	524.45														
GSD-AP-MW-19H	517.32										-				
GSD-AP-MW-20H	516.68														
GSD-AP-MW-2V	525.31														
GSD-AP-MW-2VA	524.94														
GSD-AP-MW-2VB	522.56														
GSD-AP-MW-2VC	522.81				-										
GSD-AP-MW-21VB	520.24														
GSD-AP-MW-21VC	521.13				-										
GSD-AP-MW-22VB	518.01														
GSD-AP-MW-23VB	519.03														
Notae		•	·			•								•	

Notes

1. ft. AMSL - feet above mean sea level

Appendix C. Historical Groundwater Elevations Summary

Well Name	Top of Casing Elevation		Groundwater Elevation (ft AMSL)												
		6/7/2018	6/11/2018	6/14/2018	6/18/2018	6/21/2018	6/25/2018	6/28/2018	7/2/2018	7/5/2018	7/9/2018	7/12/2018	7/18/2018	7/19/2018	7/23/2018
GSD-AP-MW-1	526.37	514.49	514.27	514.14	513.94	513.83	513.69	513.61	513.51	513.44	513.30	513.21		513.03	512.90
GSD-AP-MW-2	526.16	514.32	514.12	514.00	513.83	513.73	513.63	513.55	513.49	513.40	513.30	513.21		513.05	512.93
GSD-AP-MW-3	526.80	514.11	513.91	513.86	513.67	513.61	513.55	513.51	513.48	513.37	513.26	513.17		513.05	512.92
GSD-AP-MW-4	520.60	514.02	513.85	513.71	513.60	513.56	513.46	513.45	513.41	513.29	513.17	513.09		512.98	512.85
GSD-AP-MW-5	516.27	510.88	510.66	510.41	510.52	510.60	510.60	510.83	510.81	510.49	510.18	509.95		510.06	509.68
GSD-AP-MW-6	515.23	509.85	509.61	509.46	509.72	509.73	509.72	509.90	509.89	509.67	509.32	509.13		509.27	508.86
GSD-AP-MW-7	519.86	508.33	508.18	508.05	507.92	508.01	507.90	507.87	507.97	507.82	507.71	507.65		507.58	507.42
GSD-AP-MW-8	519.22	507.87	507.69	507.68	507.86	507.84	507.88	507.55	507.79	507.81	507.43	507.69		507.54	507.39
GSD-AP-MW-9	520.36	507.91	507.70	507.72	507.90	507.88	507.90	507.60	507.83	507.83	507.48	507.73		507.59	507.45
GSD-AP-MW-10	530.91	509.44	509.31	509.26	509.43	509.51	509.56	509.41	509.51	509.41	509.26	509.24		509.23	509.10
GSD-AP-MW-11	517.01	508.19	507.98	507.95	508.03	508.09	508.09	507.86	508.03	507.99	507.73	507.85		507.74	507.62
GSD-AP-MW-12	521.82	511.43	511.20	511.06	510.92	510.89	510.80	510.75	510.75	510.61	510.47	510.35		510.24	510.07
GSD-AP-MW-14	548.34		-			-	526.46	-			-		526.24		-
GSD-AP-MW-16	555.83						-	-							
GSD-AP-MW-17	550.11														
GSD-AP-PZ-1	521.64	513.50	513.23	513.00	512.73	512.65	512.43	512.40	512.24	512.08	511.89	511.73	511.47	511.49	511.26
GSD-AP-PZ-2	516.49	508.08	507.92	507.81	507.88	508.00	507.98	507.79	508.00	507.91	507.61	507.67		507.62	507.41
GSD-AP-PZ-5	524.26	513.61	513.38	513.18	512.91	512.85	512.60	512.52	512.39	512.24	512.06	511.92	511.72	511.67	511.46
GSD-AP-PZ-6	519.60	513.61	513.35	513.16	512.90	512.80	512.57	512.51	512.39	512.28	512.02	511.90	511.70	511.65	511.42
GSD-AP-MW-4V	520.33														
GSD-AP-MW-18H	524.45														
GSD-AP-MW-19H	517.32														
GSD-AP-MW-20H	516.68														
GSD-AP-MW-2V	525.31							-							
GSD-AP-MW-2VA	524.94							-							
GSD-AP-MW-2VB	522.56														
GSD-AP-MW-2VC	522.81							-							
GSD-AP-MW-21VB	520.24						-	-							
GSD-AP-MW-21VC	521.13														
GSD-AP-MW-22VB	518.01							-							
GSD-AP-MW-23VB	519.03							-							

Notes

1. ft. AMSL - feet above mean sea level

Appendix C. Historical Groundwater Elevations Summary

Well Name	Top of Casing Elevation		Groundwater Elevation (ft AMSL)												
		7/26/2018	8/2/2018	8/6/2018	8/20/2018	8/23/2018	8/27/2018	8/30/2018	9/6/2018	9/10/2018	9/13/2018	9/20/2018	9/24/2018	9/27/2018	10/1/2018
GSD-AP-MW-1	526.37	512.81	512.90	512.90	512.69	512.63	512.54	512.48	512.27	512.17	512.08	511.88		511.81	512.02
GSD-AP-MW-2	526.16	512.85	513.01	513.03	512.78	512.71	512.61	512.54	512.36	512.25	512.16	511.97		512.05	512.23
GSD-AP-MW-3	526.80	512.83	513.38	513.09	512.88	512.82	512.67	512.60	512.42	512.30	512.23	512.05		512.53	512.55
GSD-AP-MW-4	520.60	512.77	513.42	513.08	512.86	512.79	514.66	512.57	512.38	512.28	512.19	512.01		512.63	512.58
GSD-AP-MW-5	516.27	509.48	510.79	510.60	510.62	510.32	510.00	509.79	509.37	509.25	509.21	508.88		510.63	510.63
GSD-AP-MW-6	515.23	508.68	510.15	509.85	509.81	509.61	509.26	509.11	508.68	508.56	508.56	508.21		510.16	509.95
GSD-AP-MW-7	519.86	507.33	507.82	507.96	507.92	507.85	507.68	507.54	507.24	507.15	507.11	506.97		507.68	507.98
GSD-AP-MW-8	519.22	507.48	508.25	507.98	507.76	507.78	507.70	507.79	507.77	507.61	507.74	507.75		508.30	507.81
GSD-AP-MW-9	520.36	507.54	508.25	508.06	507.76	507.82	507.70	507.84	507.79	507.66	507.79	507.82		508.28	507.86
GSD-AP-MW-10	530.91	509.04	509.96	509.81	509.35	509.32	509.19	509.18	509.09	509.05	509.10	509.09		509.54	509.55
GSD-AP-MW-11	517.01	507.64	508.55	508.26	507.93	507.95	507.89	507.92	507.88	507.74	507.82	507.84		508.48	508.14
GSD-AP-MW-12	521.82	509.93	511.43	510.99	510.70	510.54	510.35	510.24	510.00	509.79	509.69	509.68		510.31	510.57
GSD-AP-MW-14	548.34			526.24			-	-	526.00		-		525.80		
GSD-AP-MW-16	555.83			-							-				
GSD-AP-MW-17	550.11														
GSD-AP-PZ-1	521.64	511.10	511.48	511.38	511.18	511.11	510.87	510.74	510.46	510.29	510.18	509.86	509.63	510.16	510.48
GSD-AP-PZ-2	516.49	507.39	508.46	508.19	508.03	507.96	507.81	507.83	507.70	507.56	507.62	507.50		508.50	508.22
GSD-AP-PZ-5	524.26	511.31	511.54	511.42	511.24	511.11	510.98	510.88	510.62	510.44	510.36	510.07	509.95	510.12	
GSD-AP-PZ-6	519.60	511.28	511.60	511.44	511.26	511.15	510.98	510.89	510.61	510.45	510.34	509.93	509.91	510.19	
GSD-AP-MW-4V	520.33														
GSD-AP-MW-18H	524.45														
GSD-AP-MW-19H	517.32														
GSD-AP-MW-20H	516.68														
GSD-AP-MW-2V	525.31														
GSD-AP-MW-2VA	524.94			-											
GSD-AP-MW-2VB	522.56														
GSD-AP-MW-2VC	522.81														
GSD-AP-MW-21VB	520.24														
GSD-AP-MW-21VC	521.13			-							-				
GSD-AP-MW-22VB	518.01														
GSD-AP-MW-23VB	519.03														

Notes

1. ft. AMSL - feet above mean sea level

Appendix C. Historical Groundwater Elevations Summary

Top of Casing Elevation Top of Casing To	512.36 512.37 512.48 512.57 510.36 509.81 507.64	3/15/2021 516.98 516.10 515.58 515.41 511.63
GSD-AP-MW-1 526.37 511.94 511.70 511.57 513.12 517.76 519.26 514.50 511.97 517.91 GSD-AP-MW-2 526.16 512.12 511.84 511.73 513.15 516.64 518.15 514.30 512.01 516.67 GSD-AP-MW-3 526.80 512.39 512.03 511.90 513.50 515.98 517.38 514.21 512.03 516.42 GSD-AP-MW-4 520.60 512.40 512.03 511.89 513.54 515.78 517.13 514.13 512.00 515.99 GSD-AP-MW-5 516.27 510.40 509.76 509.64 510.58 510.70 511.64 510.02 507.89 511.28 GSD-AP-MW-6 515.23 509.78 509.17 509.05 510.58	512.36 512.37 512.48 512.57 510.36 509.81 507.64	516.98 516.10 515.58 515.41 511.63
GSD-AP-MW-2 526.16 512.12 511.84 511.73 513.15 516.64 518.15 514.30 512.01 516.67 GSD-AP-MW-3 526.80 512.39 512.03 511.90 513.50 515.98 517.38 514.21 512.03 516.42 GSD-AP-MW-4 520.60 512.40 512.03 511.89 513.54 515.78 517.13 514.13 512.00 515.99 GSD-AP-MW-5 516.27 510.40 509.76 509.64 511.52 512.09 513.01 511.13 508.72 512.38 GSD-AP-MW-6 515.23 509.78 509.17 509.05 510.58 510.70 511.64 510.02 507.89 511.28 GSD-AP-MW-7 519.86 507.94 507.76 507.54 509.41	512.37 512.48 512.57 510.36 509.81 507.64	516.10 515.58 515.41 511.63
GSD-AP-MW-3 526.80 512.39 512.03 511.90 513.50 515.98 517.38 514.21 512.03 516.42 GSD-AP-MW-4 520.60 512.40 512.03 511.89 513.54 515.78 517.13 514.13 512.00 515.99 GSD-AP-MW-5 516.27 510.40 509.76 509.64 511.52 512.09 513.01 511.13 508.72 512.38 GSD-AP-MW-6 515.23 509.78 509.17 509.05 510.58 510.70 511.64 510.02 507.89 511.28 GSD-AP-MW-7 519.86 507.94 507.76 507.54 509.41 509.82 513.85 508.34 506.95 510.09 GSD-AP-MW-8 519.22 507.90 507.62 507.37 508.69	512.48 512.57 510.36 509.81 507.64	515.58 515.41 511.63
GSD-AP-MW-4 520.60 512.40 512.03 511.89 513.54 515.78 517.13 514.13 512.00 515.99 GSD-AP-MW-5 516.27 510.40 509.76 509.64 511.52 512.09 513.01 511.13 508.72 512.38 GSD-AP-MW-6 515.23 509.78 509.17 509.05 510.58 510.70 511.64 510.02 507.89 511.28 GSD-AP-MW-7 519.86 507.94 507.76 507.54 509.41 509.82 513.85 508.34 506.95 510.09 GSD-AP-MW-8 519.22 507.90 507.62 507.37 508.98 508.46 511.45 507.78 507.62 509.16 GSD-AP-MW-10 530.91 509.39 509.03 508.97 509.66	512.57 510.36 509.81 507.64	515.41 511.63
GSD-AP-MW-5 516.27 510.40 509.76 509.64 511.52 512.09 513.01 511.13 508.72 512.38 GSD-AP-MW-6 515.23 509.78 509.17 509.05 510.58 510.70 511.64 510.02 507.89 511.28 GSD-AP-MW-7 519.86 507.94 507.76 507.54 509.41 509.82 513.85 508.34 506.95 510.09 GSD-AP-MW-8 519.22 507.90 507.62 507.37 508.98 508.46 511.45 507.78 507.62 509.16 GSD-AP-MW-9 520.36 507.93 507.63 507.39 508.69 508.46 511.42 507.83 507.61 508.71 GSD-AP-MW-10 530.91 509.39 509.03 508.97 509.66	510.36 509.81 507.64	511.63
GSD-AP-MW-6 515.23 509.78 509.17 509.05 510.58 510.70 511.64 510.02 507.89 511.28 GSD-AP-MW-7 519.86 507.94 507.76 507.54 509.41 509.82 513.85 508.34 506.95 510.09 GSD-AP-MW-8 519.22 507.90 507.62 507.37 508.98 508.46 511.45 507.78 507.62 509.16 GSD-AP-MW-9 520.36 507.93 507.63 507.39 508.69 508.46 511.42 507.83 507.61 508.71 GSD-AP-MW-10 530.91 509.39 509.03 508.97 509.66 509.06 511.67 508.12 507.59 509.18 GSD-AP-MW-11 517.01 508.07 507.77 507.53 509.29	509.81 507.64	
GSD-AP-MW-7 519.86 507.94 507.76 507.54 509.41 509.82 513.85 508.34 506.95 510.09 GSD-AP-MW-8 519.22 507.90 507.62 507.37 508.98 508.46 511.45 507.78 507.62 509.16 GSD-AP-MW-9 520.36 507.93 507.63 507.39 508.69 508.46 511.42 507.83 507.61 508.71 GSD-AP-MW-10 530.91 509.39 509.03 508.97 509.66 509.93 511.87 509.34 508.74 509.73 GSD-AP-MW-11 517.01 508.07 507.77 507.53 509.29 509.06 511.67 508.12 507.59 509.18 GSD-AP-MW-12 521.82 510.38 509.87 509.64 512.76	507.64	
GSD-AP-MW-8 519.22 507.90 507.62 507.37 508.98 508.46 511.45 507.78 507.62 509.16 GSD-AP-MW-9 520.36 507.93 507.63 507.39 508.69 508.46 511.42 507.83 507.61 508.71 GSD-AP-MW-10 530.91 509.39 509.03 508.97 509.66 509.93 511.87 509.34 508.74 509.73 GSD-AP-MW-11 517.01 508.07 507.77 507.53 509.29 509.06 511.67 508.12 507.59 509.18 GSD-AP-MW-12 521.82 510.38 509.87 509.64 512.76 514.11 515.43 511.29 508.94 514.20		510.32
GSD-AP-MW-9 520.36 507.93 507.63 507.39 508.69 508.46 511.42 507.83 507.61 508.71 GSD-AP-MW-10 530.91 509.39 509.03 508.97 509.66 509.93 511.87 509.34 508.74 509.73 GSD-AP-MW-11 517.01 508.07 507.77 507.53 509.29 509.06 511.67 508.12 507.59 509.18 GSD-AP-MW-12 521.82 510.38 509.87 509.64 512.76 514.11 515.43 511.29 508.94 514.20	507.08	508.87
GSD-AP-MW-10 530.91 509.39 509.03 508.97 509.66 509.93 511.87 509.34 508.74 509.73 GSD-AP-MW-11 517.01 508.07 507.77 507.53 509.29 509.06 511.67 508.12 507.59 509.18 GSD-AP-MW-12 521.82 510.38 509.87 509.64 512.76 514.11 515.43 511.29 508.94 514.20	307.70	507.18
GSD-AP-MW-11 517.01 508.07 507.77 507.53 509.29 509.06 511.67 508.12 507.59 509.18 GSD-AP-MW-12 521.82 510.38 509.87 509.64 512.76 514.11 515.43 511.29 508.94 514.20	508.06	507.19
GSD-AP-MW-12 521.82 510.38 509.87 509.64 512.76 514.11 515.43 511.29 508.94 514.20	509.13	508.82
002 12 12 12 12 12 12 12 12 12 12 12 12 12	507.99	507.92
COD AD MW 14 540 24 527 05 520 07 527	509.66	513.06
GSD-AP-MW-14 548.34 525.80 526.19 527.65 528.71 527.07 526.25 528.26	526.07	527.24
GSD-AP-MW-16 555.83 529.67 529.34 529.51 529.75 529.98 530.52 531.32 531.98 530.55 529.71 531.91	529.60	530.64
GSD-AP-MW-17 550.11 531.30 530.47 530.50 530.77 531.44 532.49 532.25 534.03 531.23 530.30 532.80	530.65	531.68
GSD-AP-PZ-1 521.64 512.40 510.01 509.86 512.99 517.29 519.05 513.54 510.14 517.30	510.78	516.46
GSD-AP-PZ-2 516.49 508.16 507.79 507.51 509.29 509.02 511.33 508.15 507.31 509.12	508.13	507.85
GSD-AP-PZ-5 524.26 510.25 510.02 509.93 512.73 517.72 519.28 513.81 510.37 518.21	511.00	516.90
GSD-AP-PZ-6 519.60 510.33 510.06 509.95 513.05 517.43 518.72 513.82 510.30 517.75	510.99	516.73
GSD-AP-MW-4V 520.33 516.09	512.39	515.31
GSD-AP-MW-18H 524.45 518.59		517.02
GSD-AP-MW-19H 517.32 516.97	511.36	516.29
GSD-AP-MW-20H 516.68 516.28		515.39
GSD-AP-MW-2V 525.31 516.60		516.13
GSD-AP-MW-2VA 524.94 519.33		516.13
GSD-AP-MW-2VB 522.56		516.15
GSD-AP-MW-2VC 522.81		
GSD-AP-MW-21VB 520.24		
GSD-AP-MW-21VC 521.13		
GSD-AP-MW-22VB 518.01		
GSD-AP-MW-23VB 519.03		

Notes:

1. ft. AMSL - feet above mean sea level

Appendix C. Historical Groundwater Elevations Summary

Well Name	Top of Casing Elevation	10/4/2021
CCD AD MW 1	526.25	
GSD-AP-MW-1	526.37	513.76
GSD-AP-MW-2	526.16	513.65
GSD-AP-MW-3	526.80	513.71
GSD-AP-MW-4	520.60	513.70
GSD-AP-MW-5	516.27	511.16
GSD-AP-MW-6	515.23	510.19
GSD-AP-MW-7	519.86	508.25
GSD-AP-MW-8	519.22	508.03
GSD-AP-MW-9	520.36	508.06
GSD-AP-MW-10	530.91	509.19
GSD-AP-MW-11	517.01	508.29
GSD-AP-MW-12	521.82	511.21
GSD-AP-MW-14	548.34	526.85
GSD-AP-MW-16	555.83	530.09
GSD-AP-MW-17	550.11	530.89
GSD-AP-PZ-1	521.64	513.04
GSD-AP-PZ-2	516.49	508.33
GSD-AP-PZ-5	524.26	513.14
GSD-AP-PZ-6	519.60	513.18
GSD-AP-MW-4V	520.33	513.51
GSD-AP-MW-18H	524.45	513.14
GSD-AP-MW-19H	517.32	517.32
GSD-AP-MW-20H	516.68	513.66
GSD-AP-MW-2V	525.31	513.67
GSD-AP-MW-2VA	524.94	513.65
GSD-AP-MW-2VB	522.56	513.51
GSD-AP-MW-2VC	522.81	483.10
GSD-AP-MW-21VB	520.24	467.53
GSD-AP-MW-21VC	521.13	513.09
GSD-AP-MW-22VB	518.01	513.30
GSD-AP-MW-23VB	519.03	510.42

Notes

^{1.} ft. AMSL - feet above mean sea level

^{2. --} Not Measured

Appendix D

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6032 or 6171 FAX (205) 257-1654

Field Case Narrative

Plant Gadsden Ash Pond

2021 Compliance Event 2

All samples were collected using methods defined in Alabama Power's Water Field Group Low-Flow Groundwater Sampling Procedure and the associated site-specific Sampling and Analysis Plan (SAP).

Light rain was present when pumping and sampling wells MW-2VA & FB-2.

Field quality control procedures were performed as follows:

- Blanks and Sample Duplicates were collected as described in the SAP.
- Calibration verification for all required field parameters were performed daily, before and after sample collection.

Analytical Report

Sample Group: WMWGADAP_1341

Project/Site: Gadsden Ash Pond

Gadsden, AL 35903

For: Southern Company Services

3535 Colonnade Parkway Birmingham, AL 35243

Attention: Dustin Brooks & Greg Dyer

Released By: Laura Midkiff

lbmidkif@southernco.com

(205) 664-6197

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040 (205) 664-6001

November 19, 2021

Dear Dustin Brooks,

Enclosed are the analytical results for sample(s) received by the laboratory between October 06, 2021 and October 13, 2021. All results reported herein conform to the laboratory's most current Quality Assurance Manual. Results marked with an asterisk conform to the most current applicable TNI/NELAC requirements. Exceptions will be noted in the body of the report.

Laboratory certification ID: E571114

Issued By: State of Florida, Department of Health

Expiration: June 30, 2022

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Quality Control: Laura Midkiff Company, our Company, our

Digitally signed by Laura Midkiff

DN: cn=Laura Midkiff, o=Alabama Power
Company, ou=Environmental Affairs,
email=ibmidkif@southernco.com, c=US
Date: 2021 11 19 13:36:15 .06:00'

Supervision: T. Durant

Maske

DN: cn=T. Durant Maske, o=Alabama Power Company, ou=Environmental Affairs, email=tdmaske@southernco.com c=US Date: 2021.11.19 15:08:23 -06'00'

This Certificate states the physical and/or chemical characteristics of the sample as submitted.

This document shall not be reproduced, except in full, without written consent from

Alabama Power's General Test Laboratory.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

Total Metals ICP

Gadsden Ash Pond

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

Sample ID	Batch ID	Project ID
BB18668	710248	WMWGADAP_1341
BB18669	710248	WMWGADAP_1341
BB18670	710248	WMWGADAP_1341
BB18671	710248	WMWGADAP_1341
BB18672	710248	WMWGADAP_1341
BB18673	710248	WMWGADAP_1341
BB18674	710248	WMWGADAP_1341
BB18675	710248	WMWGADAP_1341
BB18737	710248	WMWGADAP_1341
BB18738	710248	WMWGADAP_1341
BB18739	710249	WMWGADAP_1341
BB18740	710249	WMWGADAP_1341
BB18741	710249	WMWGADAP_1341
BB18742	710249	WMWGADAP_1341
BB18743	710249	WMWGADAP_1341
BB18744	710249	WMWGADAP_1341
BB18745	710249	WMWGADAP_1341
BB18746	710249	WMWGADAP_1341
BB18995	711002	WMWGADAP_1341
BB18996	711002	WMWGADAP_1341
BB18997	711002	WMWGADAP_1341
BB18998	711002	WMWGADAP_1341
BB18999	711002	WMWGADAP_1341
BB19000	711002	WMWGADAP_1341
BB19001	711002	WMWGADAP_1341
BB19002	711002	WMWGADAP_1341
BB19003	711002	WMWGADAP_1341
BB19004	711002	WMWGADAP_1341
BB19005	711003	WMWGADAP_1341
BB19006	711003	WMWGADAP_1341
BB19007	711003	WMWGADAP_1341

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

BB19008	711003	WMWGADAP_1341
BB19009	711003	WMWGADAP_1341
BB19010	711003	WMWGADAP_1341
BB19011	711003	WMWGADAP 1341

- 4. All of the above samples were analyzed by EPA 200.7 and prepared by EPA 1638.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

General Quality Control Procedures:

- Prior to sample analysis, an initial calibration verification (ICV) was analyzed, and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the limit of quantitation for all requested analytes.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analytes.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analytes.
- A preparation method blank and laboratory control sample were digested and analyzed with the samples in each digestion batch.
- All laboratory control sample criteria were met.
- The method blank associated with each digestion batch passed all acceptance criteria for all requested analytes.
- All calibration curve requirements were within acceptance criteria.
- All sample internal standard criteria were met.
- The spectral interference check associated with EPA 200.7 was analyzed and all acceptance criteria were met.
- It is noted that the QC summary page typically provides the QC results from the original batch analytical sequence. If dilutions were subsequently performed to bring sample concentrations within the calibration range, any additional QC data from the dilution analyses may need to be obtained from the laboratory. Any qualifications applied to original analyses or dilution re-analyses are based upon QC data available at the time of review.

Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were digested and analyzed with each ICP batch. All acceptance criteria for accuracy were met.
- A matrix spike and matrix spike duplicate were digested and analyzed with each ICP batch. All acceptance criteria for precision were met.

Revision 5

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

7. The following samples were diluted due to the analyzed sample concentration being greater than the high standard of the calibration curve:

<u>Analyte</u>	Dilution Factor
Calcium	10.15
Iron	101.5
Iron	101.5
Calcium	10.15
Calcium & Magnesium	10.15
Sodium	101.5
Sodium	101.5
Sodium	10.15
Calcium & Iron	10.15
Sodium	101.5
Sodium	10.15
Calcium	10.15
Iron	10.15
Calcium & Iron	10.15
Calcium & Iron	10.15
	Calcium Iron Iron Calcium Calcium Magnesium Sodium Sodium Sodium Calcium & Iron Sodium Calcium Iron Calcium Iron Calcium

8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

Dissolved Metals ICP

Gadsden Ash Pond

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

Sample ID	Batch ID	Project ID
BB18668	710212	WMWGADAP_1341
BB18669	710212	WMWGADAP_1341
BB18670	710212	WMWGADAP_1341
BB18671	710212	WMWGADAP_1341
BB18672	710212	WMWGADAP_1341
BB18674	710212	WMWGADAP_1341
BB18675	710212	WMWGADAP_1341
BB18738	710212	WMWGADAP_1341
BB18739	710212	WMWGADAP_1341
BB18740	710212	WMWGADAP_1341
BB18741	710213	WMWGADAP_1341
BB18742	710213	WMWGADAP_1341
BB18743	710213	WMWGADAP_1341
BB18744	710213	WMWGADAP_1341
BB18745	710213	WMWGADAP_1341
BB18995	710932	WMWGADAP_1341
BB18996	710932	WMWGADAP_1341
BB18997	710932	WMWGADAP_1341
BB18999	710932	WMWGADAP_1341
BB19000	710932	WMWGADAP_1341
BB19001	710932	WMWGADAP_1341
BB19002	710932	WMWGADAP_1341
BB19003	710932	WMWGADAP_1341
BB19004	710932	WMWGADAP_1341
BB19005	710932	WMWGADAP_1341
BB19006	710933	WMWGADAP_1341
BB19007	710933	WMWGADAP_1341
BB19008	710933	WMWGADAP_1341
BB19009	710933	WMWGADAP_1341
BB19010	710933	WMWGADAP_1341

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

- 4. All of the above samples were analyzed and prepared by EPA 200.7 for dissolved analysis.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

General Quality Control Procedures:

- Prior to sample analysis, an initial calibration verification (ICV) was analyzed, and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the limit of quantitation for all requested analytes.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analytes.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analytes.
- Due to no filtered method blank (MB) or laboratory control sample (LCS) submitted with the sample set, an unfiltered MB and LCS were analyzed with the samples in each batch.
- All laboratory control sample criteria were met.
- The method blank associated with each batch passed all acceptance criteria for all requested analytes.
- All calibration curve requirements were within acceptance criteria.
- All sample internal standard criteria were met.
- The spectral interference check associated with EPA 200.7 was analyzed and all acceptance criteria were met.
- It is noted that the QC summary page typically provides the QC results from the original batch analytical sequence. If dilutions were subsequently performed to bring sample concentrations within the calibration range, any additional QC data from the dilution analyses may need to be obtained from the laboratory. Any qualifications applied to original analyses or dilution re-analyses are based upon QC data available at the time of review.

Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were analyzed with each ICP batch. All acceptance criteria for accuracy were met, except for the following:
 - BB19005 and BB19010 Iron MS/MSD spike levels were <30% of the sample concentrations.
- A matrix spike and matrix spike duplicate were analyzed with each ICP batch. All acceptance criteria for precision were met.

Revision 5

Reported: 11/19/2021 Version: 3.4 COA_CCR

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

7. The following samples were diluted due to the analyzed sample concentration being greater than the high standard of the calibration curve:

Sample ID	<u>Analyte</u>	Dilution Factor
BB18671	Iron	101.5
BB18672	Iron	101.5
BB18997	Iron	10.15
BB19005	Iron	10.15
BB19008	Iron	10.15
BB19010	Iron	10.15

8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

Total Metals ICPMS

Gadsden Ash Pond

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

Sample ID	Batch ID	Project ID
BB18668	710792	WMWGADAP_1341
BB18669	710792	WMWGADAP_1341
BB18670	710792	WMWGADAP_1341
BB18671	710792	WMWGADAP_1341
BB18672	710792	WMWGADAP_1341
BB18673	710792	WMWGADAP_1341
BB18674	710792	WMWGADAP_1341
BB18675	710792	WMWGADAP_1341
BB18737	710792	WMWGADAP_1341
BB18738	710792	WMWGADAP_1341
BB18739	710793	WMWGADAP_1341
BB18740	710793	WMWGADAP_1341
BB18741	710793	WMWGADAP_1341
BB18742	710793	WMWGADAP_1341
BB18743	710793	WMWGADAP_1341
BB18744	710793	WMWGADAP_1341
BB18745	710793	WMWGADAP_1341
BB18746	710793	WMWGADAP_1341
BB18995	710820	WMWGADAP_1341
BB18996	710820	WMWGADAP_1341
BB18997	710820	WMWGADAP_1341
BB18998	710820	WMWGADAP_1341
BB18999	710820	WMWGADAP_1341
BB19000	710820	WMWGADAP_1341
BB19001	710820	WMWGADAP_1341
BB19002	710820	WMWGADAP_1341
BB19003	710820	WMWGADAP_1341
BB19004	710820	WMWGADAP_1341
BB19005	710821	WMWGADAP_1341
BB19006	710821	WMWGADAP_1341
BB19007	710821	WMWGADAP_1341

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

BB19008	710821	WMWGADAP_1341
BB19009	710821	WMWGADAP_1341
BB19010	710821	WMWGADAP_1341
BB19011	710821	WMWGADAP 1341

- 4. All of the above samples were analyzed by EPA 200.8 and prepared by EPA 1638.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

General Quality Control Procedures:

- All tune and calibration met criteria for all requested analytes.
- Prior to sample analysis, an initial calibration verification (ICV) was analyzed, and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the limit of quantitation for all requested analytes.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analytes.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analytes.
- A preparation method blank and laboratory control sample were digested and analyzed with the samples in each digestion batch.
- All laboratory control sample criteria were met.
- The method blank associated with each digestion batch passed all acceptance criteria for all requested analytes.
- The interference check samples associated with EPA 200.8 were analyzed and passed for all requested analytes.
- All sample internal standard criteria were met.
- It is noted that the QC summary page typically provides the QC results from the original batch analytical sequence. If dilutions were subsequently performed to bring sample concentrations within the calibration range, any additional QC data from the dilution analyses may need to be obtained from the laboratory. Any qualifications applied to original analyses or dilution re-analyses are based upon QC data available at the time of review.

Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were digested and analyzed with each ICPMS batch. All acceptance criteria for accuracy were met, except for the following:
 - o BB19004 Manganese MS/MSD spike level was <30% of the sample concentration.
- A matrix spike and matrix spike duplicate were digested and analyzed with each ICPMS batch. All acceptance criteria for precision were met.

Revision 5

Reported: 11/19/2021 Version: 3.4 COA_CCR

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

7. The following samples were diluted due to the analyzed sample concentration being greater than the high standard of the calibration curve:

Sample ID	<u>Analyte</u>	Dilution Factor
BB18670	Manganese	92.365
BB18671	Manganese	5.075
BB18672	Manganese	5.075
BB18741	Manganese	5.075
BB18742	Manganese	5.075
BB18997	Manganese	5.075
BB19004	Manganese	92.365
BB19008	Manganese	5.075
BB19009	Manganese	5.075

8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

Dissolved Metals ICPMS

Gadsden Ash Pond

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

Sample ID	Batch ID	Project ID
BB18668	710722	WMWGADAP_1341
BB18669	710722	WMWGADAP_1341
BB18670	710722	WMWGADAP_1341
BB18671	710722	WMWGADAP_1341
BB18672	710722	WMWGADAP_1341
BB18674	710722	WMWGADAP_1341
BB18675	710722	WMWGADAP_1341
BB18738	710722	WMWGADAP_1341
BB18739	710722	WMWGADAP_1341
BB18740	710722	WMWGADAP_1341
BB18741	710723	WMWGADAP_1341
BB18742	710723	WMWGADAP_1341
BB18743	710723	WMWGADAP_1341
BB18744	710723	WMWGADAP_1341
BB18745	710723	WMWGADAP_1341
BB18995	710731	WMWGADAP_1341
BB18996	710731	WMWGADAP_1341
BB18997	710731	WMWGADAP_1341
BB18999	710731	WMWGADAP_1341
BB19000	710731	WMWGADAP_1341
BB19001	710731	WMWGADAP_1341
BB19002	710731	WMWGADAP_1341
BB19003	710731	WMWGADAP_1341
BB19004	710731	WMWGADAP_1341
BB19005	710731	WMWGADAP_1341
BB19006	710732	WMWGADAP_1341
BB19007	710732	WMWGADAP_1341
BB19008	710732	WMWGADAP_1341
BB19009	710732	WMWGADAP_1341
BB19010	710732	WMWGADAP_1341

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

- 4. All of the above samples were analyzed and prepared by EPA 200.8 for dissolved analysis.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

General Quality Control Procedures:

- All tune and calibration met criteria for all requested analytes.
- Prior to sample analysis, an initial calibration verification (ICV) was analyzed, and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the limit of quantitation for all requested analytes.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analytes.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analytes.
- Due to no filtered method blank (MB) or laboratory control sample (LCS) submitted with the sample set, an unfiltered MB and LCS were analyzed with the samples in each batch.
- All laboratory control sample criteria were met.
- The method blank associated with each preparation batch passed all acceptance criteria for all requested analytes.
- The interference check samples associated with EPA 200.8 were analyzed and passed for all requested analytes.
- All sample internal standard criteria were met.
- It is noted that the QC summary page typically provides the QC results from the original batch analytical sequence. If dilutions were subsequently performed to bring sample concentrations within the calibration range, any additional QC data from the dilution analyses may need to be obtained from the laboratory. Any qualifications applied to original analyses or dilution re-analyses are based upon QC data available at the time of review.

Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were analyzed with each ICPMS batch. All acceptance criteria for accuracy were met.
- A matrix spike and matrix spike duplicate were analyzed with each ICPMS batch. All acceptance criteria for precision were met.

Revision 5

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

7. The following samples were diluted due to the analyzed sample concentration being greater than the high standard of the calibration curve:

Sample ID	Analyte <u>Dilution Facto</u>	
BB18670	Manganese	92.365
BB18671	Manganese	5.075
BB18672	Manganese	5.075
BB18741	Manganese	5.075
BB18742	Manganese	5.075
BB18997	Manganese	5.075
BB19004	Manganese	92.365
BB19008	Manganese	5.075
BB19009	Manganese	5.075

8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

Mercury

Gadsden Ash Pond

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

Sample ID	Batch ID	Project ID
BB18668	710155	WMWGADAP_1341
BB18669	710155	WMWGADAP_1341
BB18670	710155	WMWGADAP_1341
BB18671	710155	WMWGADAP_1341
BB18672	710155	WMWGADAP_1341
BB18673	710155	WMWGADAP_1341
BB18674	710155	WMWGADAP_1341
BB18675	710155	WMWGADAP_1341
BB18737	710155	WMWGADAP_1341
BB18738	710155	WMWGADAP_1341
BB18739	710156	WMWGADAP_1341
BB18740	710156	WMWGADAP_1341
BB18741	710156	WMWGADAP_1341
BB18742	710156	WMWGADAP_1341
BB18743	710156	WMWGADAP_1341
BB18744	710156	WMWGADAP_1341
BB18745	710156	WMWGADAP_1341
BB18746	710156	WMWGADAP_1341
BB18995	710867	WMWGADAP_1341
BB18996	710867	WMWGADAP_1341
BB18997	710867	WMWGADAP_1341
BB18998	710867	WMWGADAP_1341
BB18999	710867	WMWGADAP_1341
BB19000	710867	WMWGADAP_1341
BB19001	710867	WMWGADAP_1341
BB19002	710867	WMWGADAP_1341
BB19003	710867	WMWGADAP_1341
BB19004	710867	WMWGADAP_1341
BB19005	710868	WMWGADAP_1341
BB19006	710868	WMWGADAP_1341
BB19007	710868	WMWGADAP_1341

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

BB19008	710868	WMWGADAP_1341
BB19009	710868	WMWGADAP_1341
BB19010	710868	WMWGADAP_1341
BB19011	710868	WMWGADAP 1341

- 4. All of the above samples were analyzed and prepared by EPA 245.1.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

General Quality Control Procedures:

- Prior to sample analysis, an initial calibration verification (ICV) was analyzed, and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the method detection limit for the requested analyte.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analyte.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analyte.
- A preparation method blank and laboratory control sample were digested and analyzed with the samples in each digestion batch.
- All laboratory control sample criteria were met.
- The method blank associated with each digestion batch was below the limit of quantitation for the requested analyte.
- All calibration met criteria for the requested analyte.
- All response signals were satisfactory.

Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were digested and analyzed with each batch. All acceptance criteria for accuracy were met.
- A matrix spike and matrix spike duplicate were digested and analyzed with each batch. All acceptance criteria for precision were met.
- 7. All samples were analyzed without a dilution.
- 8. The raw data results are shown with dilution factors included.

Revision 5

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

TDS

Gadsden Ash Pond

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

Sample ID	Batch ID	Project ID
BB18668	710066	WMWGADAP_1341
BB18669	710066	WMWGADAP_1341
BB18670	710066	WMWGADAP_1341
BB18671	710066	WMWGADAP_1341
BB18672	710066	WMWGADAP_1341
BB18673	710066	WMWGADAP_1341
BB18674	710066	WMWGADAP_1341
BB18675	710144	WMWGADAP_1341
BB18737	710067	WMWGADAP_1341
BB18738	710066	WMWGADAP_1341
BB18739	710067	WMWGADAP_1341
BB18740	710067	WMWGADAP_1341
BB18741	710067	WMWGADAP_1341
BB18742	710067	WMWGADAP_1341
BB18743	710067	WMWGADAP_1341
BB18744	710144	WMWGADAP_1341
BB18745	710144	WMWGADAP_1341
BB18746	710144	WMWGADAP_1341
BB18995	710395	WMWGADAP_1341
BB18996	710395	WMWGADAP_1341
BB18997	710395	WMWGADAP_1341
BB18998	710395	WMWGADAP_1341
BB18999	710395	WMWGADAP_1341
BB19000	710395	WMWGADAP_1341
BB19001	710395	WMWGADAP_1341
BB19002	710396	WMWGADAP_1341
BB19003	710396	WMWGADAP_1341
BB19004	710396	WMWGADAP_1341
BB19005	710396	WMWGADAP_1341
BB19006	710396	WMWGADAP_1341
BB19007	710396	WMWGADAP_1341

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

BB19008	710396	WMWGADAP_1341
BB19009	710396	WMWGADAP_1341
BB19010	710396	WMWGADAP_1341
BB19011	710396	WMWGADAP 1341

- 4. All of the above samples were analyzed and prepared by Standard Method 2540C.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

General Quality Control Procedures:

- A Method Blank was analyzed with each batch. All criteria were met.
- All final weights of samples, standards, and blanks agreed within 0.5mg of the previous weight.
- A sample duplicate was analyzed with each batch. RPD/2 was less than 5%.
- A laboratory control sample was analyzed with each batch. All criteria were met.
- Samples were between 2.5mg and 200mg residue.
- All samples with residue <2.5mg had the maximum volume of 150mL filtered. Affected samples are as follows:
 - o BB18673
 - o BB18737
 - o BB18746
 - o BB18998
 - o BB19011

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

Anions

Gadsden Ash Pond

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

Sample ID	Batch ID	Project ID
BB18668	710076, 710334, & 710088	WMWGADAP_1341
BB18669	710076, 710334, & 710088	WMWGADAP_1341
BB18670	710076, 710334, & 710088	WMWGADAP_1341
BB18671	710076, 710334, & 710088	WMWGADAP_1341
BB18672	710076, 710334, & 710088	WMWGADAP_1341
BB18673	710076, 710334, & 710088	WMWGADAP_1341
BB18674	710076, 710334, & 710088	WMWGADAP_1341
BB18675	710076, 710334, & 710088	WMWGADAP_1341
BB18737	710077, 710334, & 710089	WMWGADAP_1341
BB18738	710077, 710334, & 710089	WMWGADAP_1341
BB18739	710077, 710335, & 710089	WMWGADAP_1341
BB18740	710077, 710335, & 710089	WMWGADAP_1341
BB18741	710077, 710335, & 710089	WMWGADAP_1341
BB18742	710077, 710335, & 710089	WMWGADAP_1341
BB18743	710077, 710335, & 710089	WMWGADAP_1341
BB18744	710077, 710335, & 710089	WMWGADAP_1341
BB18745	710077, 710335, & 710089	WMWGADAP_1341
BB18746	710077, 710335, & 710089	WMWGADAP_1341
BB18995	710405, 710336, & 710964	WMWGADAP_1341
BB18996	710405, 710336, & 710964	WMWGADAP_1341
BB18997	710405, 710336, & 710964	WMWGADAP_1341
BB18998	710405, 710336, & 710964	WMWGADAP_1341
BB18999	710405, 710336, & 710964	WMWGADAP_1341
BB19000	710405, 710336, & 710964	WMWGADAP_1341
BB19001	710405, 710336, & 710964	WMWGADAP_1341
BB19002	710405, 710336, & 710964	WMWGADAP_1341
BB19003	710405, 710336, & 710964	WMWGADAP_1341
BB19004	710405, 710336, & 710964	WMWGADAP_1341
BB19005	710406, 710337, & 710965	WMWGADAP_1341
BB19006	710406, 710337, & 710965	WMWGADAP_1341
BB19007	710406, 710337, & 710965	WMWGADAP_1341

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

BB19008	710406, 710337, & 710965	WMWGADAP_1341
BB19009	710406, 710337, & 710965	WMWGADAP_1341
BB19010	710406, 710337, & 710965	WMWGADAP_1341
BB19011	710406, 710337, & 710965	WMWGADAP_1341

- 4. All of the above samples were analyzed and prepared by SM4500 Cl E, SM4500 F G, and SM4500 SO4 E.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

General Quality Control Procedures:

- All calibration met criteria for the requested analyte.
- Prior to sample analysis, an initial calibration verification (ICV), and all criteria were met.
- Prior to sample analysis, an initial calibration blank (ICB) was analyzed and was below the limit of quantitation for the requested analyte.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analyte.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analyte.
- It is noted that the QC summary page typically provides the QC results from the original batch analytical sequence. If dilutions were subsequently performed to bring sample concentrations within the calibration range, any additional QC data from the dilution analyses may need to be obtained from the laboratory. Any qualifications applied to original analyses or dilution re-analyses are based upon QC data available at the time of review.

Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike was analyzed with each batch. Acceptance criteria for accuracy were met.
- A sample duplicate was analyzed with each batch. Acceptance criteria for precision were met, except for the following:
 - BB19011 Sulfate precision is invalid due to sample concentration.
- 7. Samples BB18675, BB19006, & BB19007 results for Fluoride are qualified due to potential matrix interferences.

Revision 5

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

8. The following samples were diluted due to the analyzed sample concentration being greater than the high standard of the calibration curve:

Sample ID	<u>Analyte</u> <u>Dilution Fa</u>	
BB18670	Sulfate	16
BB18675	Sulfate	5
BB18741	Sulfate	16
BB18742	Sulfate	32
BB18745	Chloride & Fluoride	40 & 3
BB18996	Sulfate	2
BB18997	Sulfate	5
BB18999	Chloride & Fluoride	4 & 2
BB19004	Sulfate	16
BB19006	Sulfate	5
BB19007	Sulfate	5
BB19010	Sulfate	8

9. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

Alkalinity

Gadsden Ash Pond

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions meet NELAP traceability requirements and were used within their recommended shelf life.

Sample ID	Batch ID	Project ID
BB18668	710513 & 710514	WMWGADAP_1341
BB18669	710513 & 710514	WMWGADAP_1341
BB18670	710513 & 710514	WMWGADAP_1341
BB18671	710513 & 710514	WMWGADAP_1341
BB18672	710513 & 710514	WMWGADAP_1341
BB18674	710513 & 710514	WMWGADAP_1341
BB18675	710513 & 710514	WMWGADAP_1341
BB18738	710513 & 710514	WMWGADAP_1341
BB18739	710513 & 710514	WMWGADAP_1341
BB18740	710513 & 710514	WMWGADAP_1341
BB18741	710513 & 710514	WMWGADAP_1341
BB18742	710513 & 710514	WMWGADAP_1341
BB18743	710513 & 710514	WMWGADAP_1341
BB18744	710513 & 710514	WMWGADAP_1341
BB18745	710513 & 710514	WMWGADAP_1341
BB18995	710513 & 710514	WMWGADAP_1341
BB18996	710513 & 710514	WMWGADAP_1341
BB18997	710513 & 710514	WMWGADAP_1341
BB18999	710513 & 710514	WMWGADAP_1341
BB19000	710513 & 710514	WMWGADAP_1341
BB19001	710927 & 710928	WMWGADAP_1341
BB19002	710927 & 710928	WMWGADAP_1341
BB19003	710927 & 710928	WMWGADAP_1341
BB19004	710927 & 710928	WMWGADAP_1341
BB19005	710927 & 710928	WMWGADAP_1341
BB19006	710927 & 710928	WMWGADAP_1341
BB19007	710927 & 710928	WMWGADAP_1341
BB19008	710927 & 710928	WMWGADAP_1341
BB19009	710927 & 710928	WMWGADAP_1341
BB19010	710927 & 710928	WMWGADAP_1341

Alabama Power General Test Laboratory 744 County Road 87, GSC #8 Calera, AL 35040

- 4. All of the above samples were analyzed and prepared by Standard Method 2320B, except for the following:
 - a. Samples BB18675, BB19006, & BB19007 were not analyzed for Alkalinity due to the initial pH readings were below the titration end point.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

General Quality Control Procedures:

- An initial pH check was analyzed with each batch. The acceptance criteria were met.
- A final pH check was analyzed with each batch. The acceptance criteria were met.
- An alkalinity laboratory control sample was analyzed with each batch. Range criteria of within 10% of true value was met.
- An alkalinity sample duplicate was analyzed with each batch. Precision criteria less than 10 RPD was met.

Certificate Of Analysis

Description: Gadsden Ash Pond - PZ-2

Location Code:

WMWGADAP 10/5/21 11:00

Collected: Customer ID:

Submittal Date:

10/6/21 15:07

Laboratory ID Number: BB18668

Name	Prepared Analyzed Vio S	pec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Analyst: RDA		Preparati	on Method: E	PA 1638		
* Boron, Total	10/13/21 10:10 10/15/21 11:07	1.015	Not Detected	mg/L	0.030000	0.1015	U
* Calcium, Total	10/13/21 10:10 10/15/21 11:07	1.015	17.6	mg/L	0.070035	0.406	
* Iron, Total	10/13/21 10:10 10/15/21 11:07	1.015	0.170	mg/L	0.008120	0.0406	
* Lithium, Total	10/13/21 10:10 10/15/21 11:07	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	10/13/21 10:10 10/15/21 11:07	1.015	3.58	mg/L	0.021315	0.406	
* Sodium, Total	10/13/21 10:10 10/15/21 11:07	1.015	6.56	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Analyst: RDA						
* Iron, Dissolved	10/13/21 09:10 10/14/21 12:15	1.015	0.0923	mg/L	0.008120	0.0406	
Analytical Method: EPA 200.8	Analyst: DLJ		Preparati	on Method: E	PA 1638		
* Antimony, Total	10/8/21 11:18 10/11/21 11:29	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Arsenic, Total	10/8/21 11:18 10/11/21 11:29	1.015	0.0000928	mg/L	0.000068	0.000203	J
* Barium, Total	10/8/21 11:18 10/11/21 11:29	1.015	0.118	mg/L	0.000102	0.000203	
* Beryllium, Total	10/8/21 11:18 10/11/21 11:29	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	10/8/21 11:18 10/11/21 11:29	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	10/8/21 11:18 10/11/21 11:29	1.015	0.000346	mg/L	0.000203	0.001015	J
* Cobalt, Total	10/8/21 11:18 10/11/21 11:29	1.015	0.00287	mg/L	0.000068	0.000203	
* Lead, Total	10/8/21 11:18 10/11/21 11:29	1.015	0.000121	mg/L	0.000068	0.000203	J
* Molybdenum, Total	10/8/21 11:18 10/11/21 11:29	1.015	0.000280	mg/L	0.000068	0.000203	
* Potassium, Total	10/8/21 11:18 10/11/21 11:29	1.015	0.535	mg/L	0.169505	0.5075	
* Manganese, Total	10/8/21 11:18 10/11/21 11:29	1.015	0.195	mg/L	0.000068	0.000203	
* Selenium, Total	10/8/21 11:18 10/11/21 11:29	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	10/8/21 11:18 10/11/21 11:29	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Analyst: DLJ						
* Manganese, Dissolved	10/8/21 11:57 10/8/21 14:25	1.015	0.191	mg/L	0.000068	0.000203	
Analytical Method: EPA 245.1	Analyst: CRB						
* Mercury, Total by CVAA	10/14/21 16:58 10/14/21 21:54	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: SM 2320 B	Analyst: JAG						
Alkalinity, Total as CaCO3	10/15/21 10:30 10/15/21 11:41	1	67.4	mg/L		0.1	
Analytical Method: SM 2540C	Analyst: CNJ						
* Solids, Dissolved	10/11/21 12:09 10/12/21 13:44	1	101	mg/L		25	

MDL's and RL's are adjusted for sample dilution, as applicable

Laboratory ID Number: BB18668

Analytical Method: Field Measurements

* Sulfate

Conductivity

Temperature

Turbidity

Certificate Of Analysis

Description: Gadsden Ash Pond - PZ-2

Location Code:

WMWGADAP 10/5/21 11:00

Collected: Customer ID:

Submittal Date:

mg/L

uS/cm

SU

NTU

С

5.29

165.56

5.72

21.06

4.86

10/6/21 15:07

0.50

1

FΑ

FΑ

FΑ

FΑ

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM 4500CO2 D	An	alyst: JAG							
Bicarbonate Alkalinity, (calc.)	10/15/21 10	:30 10/15/21 1	1:41	1	67.4	mg/L			
Carbonate Alkalinity, (calc.)	10/15/21 10	:30 10/15/21 1	1:41	1	0.01	mg/L			
Analytical Method: SM4500Cl E	An	alyst: JCC							
* Chloride	10/7/21 12:2	1 10/7/21 12	::21	1	5.79	mg/L	0.50	1	
Analytical Method: SM4500F G 2017	An	alyst: JCC							
* Fluoride	10/13/21 10	:25 10/13/21 1	0:25	1	Not Detected	mg/L	0.06	0.1	U
Analytical Method: SM4500SO4 E 2011	Δn	alvst: JCC							

10/7/21 10:14 10/7/21 10:14

Analyst: TJD

10/5/21 10:55 10/5/21 10:55

10/5/21 10:55 10/5/21 10:55

10/5/21 10:55 10/5/21 10:55

10/5/21 10:55 10/5/21 10:55

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWGADAP

Sample Date: 10/5/21 11:00

Customer ID:

Delivery Date: 10/6/21 15:07

Description: Gadsden Ash Pond - PZ-2

Laboratory ID Number: BB18668

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
3B18738	Barium, Total	mg/L	0.0000090	0.000200	0.100	0.169	0.168	0.0995	0.0850 to 0.115	87.9	70.0 to 130	0.593	20.0
3B18738	Thallium, Total	mg/L	0.0000035	0.000147	0.100	0.103	0.105	0.0961	0.0850 to 0.115	103	70.0 to 130	1.92	20.0
3B18738	Arsenic, Total	mg/L	-0.0000050	0.000147	0.100	0.0999	0.104	0.102	0.0850 to 0.115	99.9	70.0 to 130	4.02	20.0
3B18738	Boron, Total	mg/L	-1.620E-05	0.0650	1.00	0.987	0.999	0.989	0.850 to 1.15	98.7	70.0 to 130	1.21	20.0
B18740	Manganese, Dissolved	mg/L	-0.0000191	0.000147	0.100	0.268	0.275	0.101	0.0850 to 0.115	101	70.0 to 130	2.58	20.0
3B18738	Manganese, Total	mg/L	0.0000059	0.000147	0.100	0.148	0.152	0.101	0.0850 to 0.115	98.6	70.0 to 130	2.67	20.0
3B18738	Cobalt, Total	mg/L	-0.0000028	0.000147	0.100	0.0998	0.102	0.100	0.0850 to 0.115	99.4	70.0 to 130	2.18	20.0
3B18738	Sodium, Total	mg/L	0.00361	0.0660	5.00	9.14	9.19	5.00	4.25 to 5.75	105	70.0 to 130	0.546	20.0
3B18740	Iron, Dissolved	mg/L	-4.310E-05	0.0176	0.2	0.408	0.412	0.203	0.170 to 0.230	97.0	70.0 to 130	0.976	20.0
3B18738	Lead, Total	mg/L	0.0000022	0.000147	0.100	0.106	0.104	0.102	0.0850 to 0.115	106	70.0 to 130	1.90	20.0
3B18738	Iron, Total	mg/L	0.000319	0.0176	0.2	0.244	0.248	0.203	0.170 to 0.230	97.8	70.0 to 130	1.63	20.0
3B18738	Antimony, Total	mg/L	0.000163	0.00100	0.100	0.0914	0.0919	0.0919	0.0850 to 0.115	91.4	70.0 to 130	0.546	20.0
3B18738	Magnesium, Total	mg/L	-0.00772	0.0462	5.00	8.97	9.07	5.14	4.25 to 5.75	102	70.0 to 130	1.11	20.0
3B18738	Potassium, Total	mg/L	0.00310	0.367	10.0	10.5	10.6	9.99	8.50 to 11.5	100	70.0 to 130	0.948	20.0
3B18738	Cadmium, Total	mg/L	0.0000000	0.000147	0.100	0.0962	0.0937	0.0952	0.0850 to 0.115	96.2	70.0 to 130	2.63	20.0
3B18738	Beryllium, Total	mg/L	0.0000303	0.000880	0.100	0.0988	0.0942	0.0913	0.0850 to 0.115	98.8	70.0 to 130	4.77	20.0
3B18738	Lithium, Total	mg/L	-5.480E-05	0.0154	0.200	0.202	0.206	0.198	0.170 to 0.230	101	70.0 to 130	1.96	20.0
3B18738	Calcium, Total	mg/L	0.00499	0.152	5.00	30.3	30.5	5.12	4.25 to 5.75	98.0	70.0 to 130	0.658	20.0
3B18738	Molybdenum, Total	mg/L	0.0000224	0.000147	0.100	0.0993	0.0995	0.0962	0.0850 to 0.115	99.2	70.0 to 130	0.201	20.0
3B18738	Mercury, Total by CVAA	mg/L	6.000E-05	0.000500	0.004	0.00409	0.00403	0.0038	0.00340 to 0.00460	102	70.0 to 130	1.48	20.0
3B18738	Selenium, Total	mg/L	0.0000698	0.00100	0.100	0.0989	0.0999	0.0973	0.0850 to 0.115	98.9	70.0 to 130	1.01	20.0
3B18738	Chromium, Total	mg/L	-0.0000170	0.000440	0.100	0.0984	0.102	0.0988	0.0850 to 0.115	98.0	70.0 to 130	3.59	20.0

Batch QC Summary

Customer Account: WMWGADAP

Sample Date:

10/5/21 11:00

Customer ID:

Delivery Date:

10/6/21 15:07

Description: Gadsden Ash Pond - PZ-2

Laboratory ID Number: BB18668

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	l Limit	Rec	Limit	Prec	<u>Li</u> mit
BB18674	Solids, Dissolved	mg/L	0.0000	25.0			173	49.0	40.0 to 60.0			2.54	10.0
BB18738	Fluoride	mg/L	-0.0124	0.100	2.50	2.60	0.0527	2.38	2.25 to 2.75	104	80.0 to 120	0.00	20.0
BB19000	Alkalinity, Total as CaCO3	mg/L					4.20	50.9	45.0 to 55.0			4.88	10.0
BB18675	Chloride	mg/L	0.0266	1.00	10.0	13.7	3.25	10.1	9.00 to 11.0	105	80.0 to 120	2.49	20.0
BB18675	Sulfate	mg/L	0.420	1.00	100	201	83.5	20.3	18.0 to 22.0	108	80.0 to 120	11.3	20.0

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified.

Reported: 11/19/2021 Version: 3.4 COA_CCR

Certificate Of Analysis

Description: Gadsden Ash Pond - MW-6Location Code:WMWGADAPCollected:10/5/21 12:10

Customer ID:

Submittal Date: 10/6/21 15:07

Laboratory ID Number: BB18669

Name	Prepared A	nalyzed Vio S	Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Analys	t: RDA		Preparation Method: EPA 1638				
* Boron, Total	10/13/21 10:10	10/15/21 11:10	1.015	0.0649	mg/L	0.030000	0.1015	J
* Calcium, Total	10/13/21 10:10	10/15/21 11:10	1.015	11.4	mg/L	0.070035	0.406	
* Iron, Total	10/13/21 10:10	10/15/21 11:10	1.015	0.0726	mg/L	0.008120	0.0406	
* Lithium, Total	10/13/21 10:10	10/15/21 11:10	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	10/13/21 10:10	10/15/21 11:10	1.015	3.29	mg/L	0.021315	0.406	
* Sodium, Total	10/13/21 10:10	10/15/21 11:10	1.015	11.8	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Analys	t: RDA						
* Iron, Dissolved	10/13/21 09:10	10/14/21 12:18	1.015	0.0714	mg/L	0.008120	0.0406	
Analytical Method: EPA 200.8	Analys	t: DLJ		Preparati	on Method: E	PA 1638		
* Antimony, Total	10/8/21 11:18	10/11/21 11:33	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Arsenic, Total	10/8/21 11:18	10/11/21 11:33	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Barium, Total	10/8/21 11:18	10/11/21 11:33	1.015	0.0741	mg/L	0.000102	0.000203	
* Beryllium, Total	10/8/21 11:18	10/11/21 11:33	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	10/8/21 11:18	10/11/21 11:33	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	10/8/21 11:18	10/11/21 11:33	1.015	0.000246	mg/L	0.000203	0.001015	J
* Cobalt, Total	10/8/21 11:18	10/11/21 11:33	1.015	0.00104	mg/L	0.000068	0.000203	
* Lead, Total	10/8/21 11:18	10/11/21 11:33	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Molybdenum, Total	10/8/21 11:18	10/11/21 11:33	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Potassium, Total	10/8/21 11:18	10/11/21 11:33	1.015	0.979	mg/L	0.169505	0.5075	
* Manganese, Total	10/8/21 11:18	10/11/21 11:33	1.015	0.241	mg/L	0.000068	0.000203	
* Selenium, Total	10/8/21 11:18	10/11/21 11:33	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	10/8/21 11:18	10/11/21 11:33	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Analys	t: DLJ						
* Manganese, Dissolved	10/8/21 11:57	10/8/21 14:29	1.015	0.231	mg/L	0.000068	0.000203	
Analytical Method: EPA 245.1	Analys	t: CRB						
* Mercury, Total by CVAA	10/14/21 16:58	10/14/21 21:58	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: SM 2320 B	Analys	t: JAG						
Alkalinity, Total as CaCO3	10/15/21 10:30		1	45.5	mg/L		0.1	
Analytical Method: SM 2540C	Analys	t: CNJ						
* Solids, Dissolved	10/11/21 12:09	10/12/21 13:44	1	96.7	mg/L		25	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Gadsden Ash Pond - MW-6

Location Code:

WMWGADAP

Collected:

Customer ID: Submittal Date: 10/5/21 12:10

10/6/21 15:07

Laboratory ID Number: BB18669									
Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM 4500CO2 D	Ana	lyst: JAG							
Bicarbonate Alkalinity, (calc.)	10/15/21 10:3	30 10/15/21 11:	41 1	1	45.5	mg/L			
Carbonate Alkalinity, (calc.)	10/15/21 10:3	30 10/15/21 11:	41 1	1	0.01	mg/L			
Analytical Method: SM4500Cl E	Ana	lyst: JCC							
* Chloride	10/7/21 12:22	2 10/7/21 12:2	2 ′	1	9.09	mg/L	0.50	1	
Analytical Method: SM4500F G 2017	Ana	lyst: JCC							
* Fluoride	10/13/21 10:2	6 10/13/21 10:	26	1	Not Detected	mg/L	0.06	0.1	U
Analytical Method: SM4500SO4 E 2011	Ana	lyst: JCC							
* Sulfate	10/7/21 10:17	7 10/7/21 10:1	7	1	14.2	mg/L	0.50	1	
Analytical Method: Field Measurements	Ana	lyst: TJD							
Conductivity	10/5/21 12:05	10/5/21 12:0	5		166.61	uS/cm			FA
рН	10/5/21 12:05	10/5/21 12:0	5		5.74	SU			FA
Temperature	10/5/21 12:05	10/5/21 12:0	5		20.04	С			FA
Turbidity	10/5/21 12:05	10/5/21 12:0	5		0.56	NTU			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWGADAP

Sample Date: 10/5/21 12:10

Customer ID:

Delivery Date: 10/6/21 15:07

Description: Gadsden Ash Pond - MW-6

Laboratory ID Number: BB18669

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BB18740	Iron, Dissolved	mg/L	-4.310E-05	0.0176	0.2	0.408	0.412	0.203	0.170 to 0.230	97.0	70.0 to 130	0.976	20.0
BB18738	Lead, Total	mg/L	0.0000022	0.000147	0.100	0.106	0.104	0.102	0.0850 to 0.115	106	70.0 to 130	1.90	20.0
BB18738	Sodium, Total	mg/L	0.00361	0.0660	5.00	9.14	9.19	5.00	4.25 to 5.75	105	70.0 to 130	0.546	20.0
BB18738	Manganese, Total	mg/L	0.0000059	0.000147	0.100	0.148	0.152	0.101	0.0850 to 0.115	98.6	70.0 to 130	2.67	20.0
BB18738	Cobalt, Total	mg/L	-0.0000028	0.000147	0.100	0.0998	0.102	0.100	0.0850 to 0.115	99.4	70.0 to 130	2.18	20.0
BB18738	Arsenic, Total	mg/L	-0.0000050	0.000147	0.100	0.0999	0.104	0.102	0.0850 to 0.115	99.9	70.0 to 130	4.02	20.0
BB18738	Boron, Total	mg/L	-1.620E-05	0.0650	1.00	0.987	0.999	0.989	0.850 to 1.15	98.7	70.0 to 130	1.21	20.0
BB18740	Manganese, Dissolved	mg/L	-0.0000191	0.000147	0.100	0.268	0.275	0.101	0.0850 to 0.115	101	70.0 to 130	2.58	20.0
BB18738	Iron, Total	mg/L	0.000319	0.0176	0.2	0.244	0.248	0.203	0.170 to 0.230	97.8	70.0 to 130	1.63	20.0
BB18738	Antimony, Total	mg/L	0.000163	0.00100	0.100	0.0914	0.0919	0.0919	0.0850 to 0.115	91.4	70.0 to 130	0.546	20.0
BB18738	Magnesium, Total	mg/L	-0.00772	0.0462	5.00	8.97	9.07	5.14	4.25 to 5.75	102	70.0 to 130	1.11	20.0
BB18738	Potassium, Total	mg/L	0.00310	0.367	10.0	10.5	10.6	9.99	8.50 to 11.5	100	70.0 to 130	0.948	20.0
BB18738	Barium, Total	mg/L	0.0000090	0.000200	0.100	0.169	0.168	0.0995	0.0850 to 0.115	87.9	70.0 to 130	0.593	20.0
BB18738	Thallium, Total	mg/L	0.0000035	0.000147	0.100	0.103	0.105	0.0961	0.0850 to 0.115	103	70.0 to 130	1.92	20.0
BB18738	Cadmium, Total	mg/L	0.0000000	0.000147	0.100	0.0962	0.0937	0.0952	0.0850 to 0.115	96.2	70.0 to 130	2.63	20.0
BB18738	Beryllium, Total	mg/L	0.0000303	0.000880	0.100	0.0988	0.0942	0.0913	0.0850 to 0.115	98.8	70.0 to 130	4.77	20.0
BB18738	Lithium, Total	mg/L	-5.480E-05	0.0154	0.200	0.202	0.206	0.198	0.170 to 0.230	101	70.0 to 130	1.96	20.0
BB18738	Calcium, Total	mg/L	0.00499	0.152	5.00	30.3	30.5	5.12	4.25 to 5.75	98.0	70.0 to 130	0.658	20.0
BB18738	Molybdenum, Total	mg/L	0.0000224	0.000147	0.100	0.0993	0.0995	0.0962	0.0850 to 0.115	99.2	70.0 to 130	0.201	20.0
BB18738	Mercury, Total by CVAA	mg/L	6.000E-05	0.000500	0.004	0.00409	0.00403	0.0038	0.00340 to 0.00460	102	70.0 to 130	1.48	20.0
BB18738	Selenium, Total	mg/L	0.0000698	0.00100	0.100	0.0989	0.0999	0.0973	0.0850 to 0.115	98.9	70.0 to 130	1.01	20.0
BB18738	Chromium, Total	mg/L	-0.0000170	0.000440	0.100	0.0984	0.102	0.0988	0.0850 to 0.115	98.0	70.0 to 130	3.59	20.0

Batch QC Summary

Customer Account: WMWGADAP

Sample Date: 1

10/5/21 12:10

Customer ID:

Delivery Date:

10/6/21 15:07

Description: Gadsden Ash Pond - MW-6

Laboratory ID Number: BB18669

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	l Limit	Rec	Limit	Prec	<u>Li</u> mit
BB18674	Solids, Dissolved	mg/L	0.0000	25.0			173	49.0	40.0 to 60.0			2.54	10.0
BB18738	Fluoride	mg/L	-0.0124	0.100	2.50	2.60	0.0527	2.38	2.25 to 2.75	104	80.0 to 120	0.00	20.0
BB18675	Sulfate	mg/L	0.420	1.00	100	201	83.5	20.3	18.0 to 22.0	108	80.0 to 120	11.3	20.0
BB19000	Alkalinity, Total as CaCO3	mg/L					4.20	50.9	45.0 to 55.0			4.88	10.0
BB18675	Chloride	mg/L	0.0266	1.00	10.0	13.7	3.25	10.1	9.00 to 11.0	105	80.0 to 120	2.49	20.0

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified.

Certificate Of Analysis

Description: Gadsden Ash Pond - MW-3Location Code:WMWGADAPCollected:10/5/21 13:25

Customer ID:

Submittal Date: 10/6/21 15:07

Laboratory ID Number: BB18670

Name	Prepared A	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	C
Analytical Method: EPA 200.7	Analys	st: RDA			Preparati	on Method: EP	A 1638		
* Boron, Total	10/13/21 10:10	10/15/21 1	1:13	1.015	1.01	mg/L	0.030000	0.1015	
* Calcium, Total	10/13/21 10:10	10/15/21 13	3:31	10.15	65.9	mg/L	0.70035	4.06	
* Iron, Total	10/13/21 10:10	10/15/21 1	1:13	1.015	0.256	mg/L	0.008120	0.0406	
* Lithium, Total	10/13/21 10:10	10/15/21 1	1:13	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	10/13/21 10:10	10/15/21 1	1:13	1.015	16.8	mg/L	0.021315	0.406	
* Sodium, Total	10/13/21 10:10	10/15/21 1	1:13	1.015	12.4	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Analys	st: RDA							
* Iron, Dissolved	10/13/21 09:10	10/14/21 12	2:21	1.015	0.244	mg/L	0.008120	0.0406	
Analytical Method: EPA 200.8	Analys	st: DLJ			Preparati	on Method: EP	A 1638		
* Antimony, Total	10/8/21 11:18	10/11/21 1	1:36	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Arsenic, Total	10/8/21 11:18	10/11/21 1	1:36	1.015	0.000207	mg/L	0.000068	0.000203	
* Barium, Total	10/8/21 11:18	10/11/21 1	1:36	1.015	0.0344	mg/L	0.000102	0.000203	
* Beryllium, Total	10/8/21 11:18	10/11/21 1	1:36	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	10/8/21 11:18	10/11/21 1	1:36	1.015	0.000213	mg/L	0.000068	0.000203	
* Chromium, Total	10/8/21 11:18	10/11/21 1	1:36	1.015	0.000234	mg/L	0.000203	0.001015	J
* Cobalt, Total	10/8/21 11:18	10/11/21 1	1:36	1.015	0.0160	mg/L	0.000068	0.000203	
* Lead, Total	10/8/21 11:18	10/11/21 1	1:36	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Molybdenum, Total	10/8/21 11:18	10/11/21 1	1:36	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Potassium, Total	10/8/21 11:18	10/11/21 1	1:36	1.015	3.32	mg/L	0.169505	0.5075	
* Manganese, Total	10/8/21 11:18	10/11/21 13	3:09	92.365	24.8	mg/L	0.006188	0.018473	
* Selenium, Total	10/8/21 11:18	10/11/21 1	1:36	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	10/8/21 11:18	10/11/21 1	1:36	1.015	0.000136	mg/L	0.000068	0.000203	J
Analytical Method: EPA 200.8	Analys	st: DLJ							
* Manganese, Dissolved	10/8/21 11:57	10/11/21 10	0:54	92.365	25.1	mg/L	0.006188	0.018473	
Analytical Method: EPA 245.1	Analys	st: CRB							
* Mercury, Total by CVAA	10/14/21 16:58	10/14/21 22	2:02	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: SM 2320 B	Analy	st: JAG							
Alkalinity, Total as CaCO3	10/15/21 10:30		1:41	1	74.0	mg/L		0.1	
Analytical Method: SM 2540C		st: CNJ				-			
* Solids, Dissolved	10/11/21 12:09		3·44	1	389	mg/L		25	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Gadsden Ash Pond - MW-3

Location Code:

WMWGADAP

Collected:

Customer ID:

10/5/21 13:25

Justonner ID.

Submittal Date:

10/6/21 15:07

Laboratory ID Number: BB18670					Submit	iai Date:	10/6/21 15	:07	
Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM 4500CO2 D	Ana	lyst: JAG							_
Bicarbonate Alkalinity, (calc.)	10/15/21 10:3	0 10/15/21 1	1:41	1	74.0	mg/L			
Carbonate Alkalinity, (calc.)	10/15/21 10:3	0 10/15/21 1	1:41	1	0.01	mg/L			
Analytical Method: SM4500Cl E	Ana	lyst: JCC							
* Chloride	10/7/21 12:25	10/7/21 12	2:25	1	5.09	mg/L	0.50	1	
Analytical Method: SM4500F G 2017	Ana	lyst: JCC							
* Fluoride	10/13/21 10:2	7 10/13/21 1	0:27	1	Not Detected	mg/L	0.06	0.1	U
Analytical Method: SM4500SO4 E 2011	Ana	lyst: JCC							
* Sulfate	10/7/21 10:26	10/7/21 10):26	16	228	mg/L	8.00	16	
Analytical Method: Field Measurements	Ana	lyst: TJD							
Conductivity	10/5/21 13:21	10/5/21 13	3:21		622.14	uS/cm			FA
рН	10/5/21 13:21	10/5/21 13	3:21		5.76	SU			FA
Temperature	10/5/21 13:21	10/5/21 13	3:21		21.28	С			FA
Turbidity	10/5/21 13:21	10/5/21 13	3:21		0.41	NTU			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWGADAP

Customer ID:

Sample Date: 10/5/21 13:25

Delivery Date:

Date: 10/6/21 15:07

Description: Gadsden Ash Pond - MW-3

Laboratory ID Number: BB18670

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BB18740	Iron, Dissolved	mg/L	-4.310E-05	0.0176	0.2	0.408	0.412	0.203	0.170 to 0.230	97.0	70.0 to 130	0.976	20.0
BB18738	Lead, Total	mg/L	0.0000022	0.000147	0.100	0.106	0.104	0.102	0.0850 to 0.115	106	70.0 to 130	1.90	20.0
BB18738	Manganese, Total	mg/L	0.0000059	0.000147	0.100	0.148	0.152	0.101	0.0850 to 0.115	98.6	70.0 to 130	2.67	20.0
BB18738	Cobalt, Total	mg/L	-0.0000028	0.000147	0.100	0.0998	0.102	0.100	0.0850 to 0.115	99.4	70.0 to 130	2.18	20.0
BB18738	Sodium, Total	mg/L	0.00361	0.0660	5.00	9.14	9.19	5.00	4.25 to 5.75	105	70.0 to 130	0.546	20.0
BB18738	Barium, Total	mg/L	0.0000090	0.000200	0.100	0.169	0.168	0.0995	0.0850 to 0.115	87.9	70.0 to 130	0.593	20.0
BB18738	Thallium, Total	mg/L	0.0000035	0.000147	0.100	0.103	0.105	0.0961	0.0850 to 0.115	103	70.0 to 130	1.92	20.0
BB18738	Arsenic, Total	mg/L	-0.0000050	0.000147	0.100	0.0999	0.104	0.102	0.0850 to 0.115	99.9	70.0 to 130	4.02	20.0
BB18738	Boron, Total	mg/L	-1.620E-05	0.0650	1.00	0.987	0.999	0.989	0.850 to 1.15	98.7	70.0 to 130	1.21	20.0
BB18740	Manganese, Dissolved	mg/L	-0.0000191	0.000147	0.100	0.268	0.275	0.101	0.0850 to 0.115	101	70.0 to 130	2.58	20.0
BB18738	Iron, Total	mg/L	0.000319	0.0176	0.2	0.244	0.248	0.203	0.170 to 0.230	97.8	70.0 to 130	1.63	20.0
BB18738	Antimony, Total	mg/L	0.000163	0.00100	0.100	0.0914	0.0919	0.0919	0.0850 to 0.115	91.4	70.0 to 130	0.546	20.0
BB18738	Magnesium, Total	mg/L	-0.00772	0.0462	5.00	8.97	9.07	5.14	4.25 to 5.75	102	70.0 to 130	1.11	20.0
BB18738	Potassium, Total	mg/L	0.00310	0.367	10.0	10.5	10.6	9.99	8.50 to 11.5	100	70.0 to 130	0.948	20.0
BB18738	Cadmium, Total	mg/L	0.0000000	0.000147	0.100	0.0962	0.0937	0.0952	0.0850 to 0.115	96.2	70.0 to 130	2.63	20.0
BB18738	Beryllium, Total	mg/L	0.0000303	0.000880	0.100	0.0988	0.0942	0.0913	0.0850 to 0.115	98.8	70.0 to 130	4.77	20.0
BB18738	Lithium, Total	mg/L	-5.480E-05	0.0154	0.200	0.202	0.206	0.198	0.170 to 0.230	101	70.0 to 130	1.96	20.0
BB18738	Calcium, Total	mg/L	0.00499	0.152	5.00	30.3	30.5	5.12	4.25 to 5.75	98.0	70.0 to 130	0.658	20.0
BB18738	Molybdenum, Total	mg/L	0.0000224	0.000147	0.100	0.0993	0.0995	0.0962	0.0850 to 0.115	99.2	70.0 to 130	0.201	20.0
BB18738	Mercury, Total by CVAA	mg/L	6.000E-05	0.000500	0.004	0.00409	0.00403	0.0038	0.00340 to 0.00460	102	70.0 to 130	1.48	20.0
BB18738	Selenium, Total	mg/L	0.0000698	0.00100	0.100	0.0989	0.0999	0.0973	0.0850 to 0.115	98.9	70.0 to 130	1.01	20.0
BB18738	Chromium, Total	mg/L	-0.0000170	0.000440	0.100	0.0984	0.102	0.0988	0.0850 to 0.115	98.0	70.0 to 130	3.59	20.0

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified.

Batch QC Summary

Customer Account: WMWGADAP

Sample Date:

10/5/21 13:25

Customer ID:

Delivery Date:

10/6/21 15:07

Description: Gadsden Ash Pond - MW-3

Laboratory ID Number: BB18670

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BB18675	Sulfate	mg/L	0.420	1.00	100	201	83.5	20.3	18.0 to 22.0	108	80.0 to 120	11.3	20.0
BB19000	Alkalinity, Total as CaCO3	mg/L					4.20	50.9	45.0 to 55.0			4.88	10.0
BB18675	Chloride	mg/L	0.0266	1.00	10.0	13.7	3.25	10.1	9.00 to 11.0	105	80.0 to 120	2.49	20.0
BB18674	Solids, Dissolved	mg/L	0.0000	25.0			173	49.0	40.0 to 60.0			2.54	10.0
BB18738	Fluoride	mg/L	-0.0124	0.100	2.50	2.60	0.0527	2.38	2.25 to 2.75	104	80.0 to 120	0.00	20.0

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified.

Certificate Of Analysis

Description: Gadsden Ash Pond - MW-4Location Code:WMWGADAPCollected:10/5/21 14:35

Customer ID:

Submittal Date: 10/6/21 15:07

Laboratory ID Number: BB18671

Name	Prepared Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Analyst: RDA		Preparati	on Method: EPA	1638		
* Boron, Total	10/13/21 10:10 10/15/21 11:	17 1.015	0.344	mg/L	0.030000	0.1015	
* Calcium, Total	10/13/21 10:10 10/15/21 11:	17 1.015	27.4	mg/L	0.070035	0.406	
* Iron, Total	10/13/21 10:10 10/15/21 13:	34 101.5	44.5	mg/L	0.8120	4.06	
* Lithium, Total	10/13/21 10:10 10/15/21 11: ¹	17 1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	10/13/21 10:10 10/15/21 11:	17 1.015	7.93	mg/L	0.021315	0.406	
* Sodium, Total	10/13/21 10:10 10/15/21 11:	17 1.015	14.3	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Analyst: RDA						
* Iron, Dissolved	10/13/21 09:10 10/14/21 13:3	36 101.5	45.0	mg/L	0.8120	4.06	
Analytical Method: EPA 200.8	Analyst: DLJ		Preparati	on Method: EPA	1638		
* Antimony, Total	10/8/21 11:18 10/11/21 11:4	40 1.015	Not Detected	mg/L	0.000508	0.001015	U
* Arsenic, Total	10/8/21 11:18 10/11/21 11:4	40 1.015	0.0147	mg/L	0.000068	0.000203	
* Barium, Total	10/8/21 11:18 10/11/21 11:4	40 1.015	0.202	mg/L	0.000102	0.000203	
* Beryllium, Total	10/8/21 11:18 10/11/21 11:4	40 1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	10/8/21 11:18 10/11/21 11:4	40 1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	10/8/21 11:18 10/11/21 11:4	40 1.015	Not Detected	mg/L	0.000203	0.001015	U
* Cobalt, Total	10/8/21 11:18 10/11/21 11:4	40 1.015	0.0238	mg/L	0.000068	0.000203	
* Lead, Total	10/8/21 11:18 10/11/21 11:4	40 1.015	Not Detected	mg/L	0.000068	0.000203	U
* Molybdenum, Total	10/8/21 11:18 10/11/21 11:4	40 1.015	0.00111	mg/L	0.000068	0.000203	
* Potassium, Total	10/8/21 11:18 10/11/21 11:4	40 1.015	2.46	mg/L	0.169505	0.5075	
* Manganese, Total	10/8/21 11:18 10/11/21 13: ⁻	13 5.075	1.24	mg/L	0.000340	0.001015	
* Selenium, Total	10/8/21 11:18 10/11/21 11:4	40 1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	10/8/21 11:18 10/11/21 11:4	40 1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Analyst: DLJ						
* Manganese, Dissolved	10/8/21 11:57 10/11/21 10:	57 5.075	1.31	mg/L	0.000340	0.001015	
Analytical Method: EPA 245.1	Analyst: CRB						
* Mercury, Total by CVAA	10/14/21 16:58 10/14/21 22:0	06 1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: SM 2320 B	Analyst: JAG						
Alkalinity, Total as CaCO3	10/15/21 10:30 10/15/21 11:4	41 1	113	mg/L		0.1	
Analytical Method: SM 2540C	Analyst: CNJ						
* Solids, Dissolved	10/11/21 12:09 10/12/21 13:4	44 1	200	mg/L		25	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Gadsden Ash Pond - MW-4

Location Code:

WMWGADAP 10/5/21 14:35

Collected:

Customer ID: Submittal Date:

10/6/21 15:07

Laboratory ID Number: BB18671

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM 4500CO2 D	An	alyst: JAG							
Bicarbonate Alkalinity, (calc.)	10/15/21 10:	30 10/15/21 1	11:41	1	113	mg/L			
Carbonate Alkalinity, (calc.)	10/15/21 10:	30 10/15/21 1	11:41	1	0.03	mg/L			
Analytical Method: SM4500Cl E	An	alyst: JCC							
* Chloride	10/7/21 12:2	6 10/7/21 12	2:26	1	9.30	mg/L	0.50	1	
Analytical Method: SM4500F G 2017	An	alyst: JCC							
* Fluoride	10/13/21 10:	29 10/13/21 1	10:29	1	0.214	mg/L	0.06	0.1	
Analytical Method: SM4500SO4 E 2011	An	alyst: JCC							
* Sulfate	10/7/21 10:1	9 10/7/21 10	0:19	1	37.8	mg/L	0.50	1	
Analytical Method: Field Measurements	An	alyst: TJD							
Conductivity	10/5/21 14:3	4 10/5/21 14	1:34		431.22	uS/cm			FA
рН	10/5/21 14:3	4 10/5/21 14	1:34		6.58	SU			FA
Temperature	10/5/21 14:3	4 10/5/21 14	1:34		20.73	С			FA
Turbidity	10/5/21 14:3	4 10/5/21 14	1:34		2.08	NTU			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWGADAP **Sample Date:** 10/5/21 14:35

Customer ID:

Delivery Date: 1

10/6/21 15:07

Description: Gadsden Ash Pond - MW-4

Laboratory ID Number: BB18671

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
B18740	Iron, Dissolved	mg/L	-4.310E-05	0.0176	0.2	0.408	0.412	0.203	0.170 to 0.230	97.0	70.0 to 130	0.976	20.0
B18738	Lead, Total	mg/L	0.0000022	0.000147	0.100	0.106	0.104	0.102	0.0850 to 0.115	106	70.0 to 130	1.90	20.0
B18738	Manganese, Total	mg/L	0.0000059	0.000147	0.100	0.148	0.152	0.101	0.0850 to 0.115	98.6	70.0 to 130	2.67	20.0
B18738	Cobalt, Total	mg/L	-0.0000028	0.000147	0.100	0.0998	0.102	0.100	0.0850 to 0.115	99.4	70.0 to 130	2.18	20.0
B18738	Sodium, Total	mg/L	0.00361	0.0660	5.00	9.14	9.19	5.00	4.25 to 5.75	105	70.0 to 130	0.546	20.0
B18738	Iron, Total	mg/L	0.000319	0.0176	0.2	0.244	0.248	0.203	0.170 to 0.230	97.8	70.0 to 130	1.63	20.0
B18738	Antimony, Total	mg/L	0.000163	0.00100	0.100	0.0914	0.0919	0.0919	0.0850 to 0.115	91.4	70.0 to 130	0.546	20.0
B18738	Magnesium, Total	mg/L	-0.00772	0.0462	5.00	8.97	9.07	5.14	4.25 to 5.75	102	70.0 to 130	1.11	20.0
B18738	Potassium, Total	mg/L	0.00310	0.367	10.0	10.5	10.6	9.99	8.50 to 11.5	100	70.0 to 130	0.948	20.0
B18738	Barium, Total	mg/L	0.0000090	0.000200	0.100	0.169	0.168	0.0995	0.0850 to 0.115	87.9	70.0 to 130	0.593	20.0
B18738	Thallium, Total	mg/L	0.0000035	0.000147	0.100	0.103	0.105	0.0961	0.0850 to 0.115	103	70.0 to 130	1.92	20.0
B18738	Arsenic, Total	mg/L	-0.0000050	0.000147	0.100	0.0999	0.104	0.102	0.0850 to 0.115	99.9	70.0 to 130	4.02	20.0
B18738	Boron, Total	mg/L	-1.620E-05	0.0650	1.00	0.987	0.999	0.989	0.850 to 1.15	98.7	70.0 to 130	1.21	20.0
B18740	Manganese, Dissolved	mg/L	-0.0000191	0.000147	0.100	0.268	0.275	0.101	0.0850 to 0.115	101	70.0 to 130	2.58	20.0
B18738	Cadmium, Total	mg/L	0.0000000	0.000147	0.100	0.0962	0.0937	0.0952	0.0850 to 0.115	96.2	70.0 to 130	2.63	20.0
B18738	Beryllium, Total	mg/L	0.0000303	0.000880	0.100	0.0988	0.0942	0.0913	0.0850 to 0.115	98.8	70.0 to 130	4.77	20.0
B18738	Lithium, Total	mg/L	-5.480E-05	0.0154	0.200	0.202	0.206	0.198	0.170 to 0.230	101	70.0 to 130	1.96	20.0
B18738	Calcium, Total	mg/L	0.00499	0.152	5.00	30.3	30.5	5.12	4.25 to 5.75	98.0	70.0 to 130	0.658	20.0
B18738	Molybdenum, Total	mg/L	0.0000224	0.000147	0.100	0.0993	0.0995	0.0962	0.0850 to 0.115	99.2	70.0 to 130	0.201	20.0
B18738	Mercury, Total by CVAA	mg/L	6.000E-05	0.000500	0.004	0.00409	0.00403	0.0038	0.00340 to 0.00460	102	70.0 to 130	1.48	20.0
B18738	Selenium, Total	mg/L	0.0000698	0.00100	0.100	0.0989	0.0999	0.0973	0.0850 to 0.115	98.9	70.0 to 130	1.01	20.0
B18738	Chromium, Total	mg/L	-0.0000170	0.000440	0.100	0.0984	0.102	0.0988	0.0850 to 0.115	98.0	70.0 to 130	3.59	20.0

Batch QC Summary

Customer Account: WMWGADAP

Sample Date:

10/5/21 14:35

Customer ID:

Delivery Date:

10/6/21 15:07

Description: Gadsden Ash Pond - MW-4

Laboratory ID Number: BB18671

					MB			Sample		Standard		Rec		Prec
	Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
Е	3B18675	Sulfate	mg/L	0.420	1.00	100	201	83.5	20.3	18.0 to 22.0	108	80.0 to 120	11.3	20.0
Е	3B19000	Alkalinity, Total as CaCO3	mg/L					4.20	50.9	45.0 to 55.0			4.88	10.0
Е	3B18675	Chloride	mg/L	0.0266	1.00	10.0	13.7	3.25	10.1	9.00 to 11.0	105	80.0 to 120	2.49	20.0
Е	3B18674	Solids, Dissolved	mg/L	0.0000	25.0			173	49.0	40.0 to 60.0			2.54	10.0
E	3B18738	Fluoride	mg/L	-0.0124	0.100	2.50	2.60	0.0527	2.38	2.25 to 2.75	104	80.0 to 120	0.00	20.0

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified.

Certificate Of Analysis

Description: Gadsden Ash Pond - MW-4 DUPLocation Code:WMWGADAPCollected:10/5/21 14:35

Customer ID:

Submittal Date: 10/6/21 15:07

Laboratory ID Number: BB18672					Submitt	ai Date:	10/6/21 15:0	1	
Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Ana	lyst: RDA			Preparati	on Method: E	EPA 1638		
* Boron, Total	10/13/21 10:	10 10/15/21	11:20	1.015	0.347	mg/L	0.030000	0.1015	
* Calcium, Total	10/13/21 10:	10 10/15/21	11:20	1.015	27.8	mg/L	0.070035	0.406	
* Iron, Total	10/13/21 10:	10 10/15/21	13:37	101.5	44.9	mg/L	0.8120	4.06	
* Lithium, Total	10/13/21 10:	10 10/15/21	11:20	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	10/13/21 10:	10 10/15/21	11:20	1.015	7.98	mg/L	0.021315	0.406	
* Sodium, Total	10/13/21 10:	10 10/15/21	11:20	1.015	14.4	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Ana	lyst: RDA							
* Iron, Dissolved	10/13/21 09:	10 10/14/21	13:39	101.5	44.5	mg/L	0.8120	4.06	
Analytical Method: EPA 200.8	Ana	lyst: DLJ			Preparati	on Method: E	EPA 1638		
* Antimony, Total	10/8/21 11:18	3 10/11/21	11:44	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Arsenic, Total	10/8/21 11:18	3 10/11/21	11:44	1.015	0.0148	mg/L	0.000068	0.000203	
* Barium, Total	10/8/21 11:18	3 10/11/21	11:44	1.015	0.208	mg/L	0.000102	0.000203	
* Beryllium, Total	10/8/21 11:18	3 10/11/21	11:44	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	10/8/21 11:18	3 10/11/21	11:44	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	10/8/21 11:18	3 10/11/21	11:44	1.015	0.000224	mg/L	0.000203	0.001015	J
* Cobalt, Total	10/8/21 11:18	3 10/11/21	11:44	1.015	0.0236	mg/L	0.000068	0.000203	
* Lead, Total	10/8/21 11:18	3 10/11/21	11:44	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Molybdenum, Total	10/8/21 11:18	3 10/11/21	11:44	1.015	0.00109	mg/L	0.000068	0.000203	
* Potassium, Total	10/8/21 11:18	3 10/11/21	11:44	1.015	2.48	mg/L	0.169505	0.5075	
* Manganese, Total	10/8/21 11:18	3 10/11/21	13:16	5.075	1.29	mg/L	0.000340	0.001015	
* Selenium, Total	10/8/21 11:18	3 10/11/21	11:44	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	10/8/21 11:18	3 10/11/21	11:44	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Ana	lyst: DLJ							
* Manganese, Dissolved	10/8/21 11:5	7 10/11/21	11:01	5.075	1.33	mg/L	0.000340	0.001015	
Analytical Method: EPA 245.1	Ana	lyst: CRB							
* Mercury, Total by CVAA	10/14/21 16:	58 10/14/21	22:10	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: SM 2320 B	Ana	alyst: JAG							
Alkalinity, Total as CaCO3	10/15/21 10:	•	11:41	1	118	mg/L		0.1	
Analytical Method: SM 2540C	Ana	alyst: CNJ							
* Solids, Dissolved	10/11/21 12:	ng 10/12/21	13:44	1	197	mg/L		25	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Gadsden Ash Pond - MW-4 DUP

Location Code:

WMWGADAP

Collected:

Customer ID:

10/5/21 14:35

Laboratory ID Number: BB18672

Submittal Date: 10/6/21 15:07

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: SM 4500CO2 D	Ana	lyst: JAG						
Bicarbonate Alkalinity, (calc.)	10/15/21 10:3	0 10/15/21 11:	41 1	118	mg/L			
Carbonate Alkalinity, (calc.)	10/15/21 10:3	0 10/15/21 11:	41 1	0.03	mg/L			
Analytical Method: SM4500Cl E	Ana	lyst: JCC						
* Chloride	10/7/21 12:27	10/7/21 12:2	7 1	9.83	mg/L	0.50	1	
Analytical Method: SM4500F G 2017	Ana	lyst: JCC						
* Fluoride	10/13/21 10:3	0 10/13/21 10:	30 1	0.205	mg/L	0.06	0.1	
Analytical Method: SM4500SO4 E 2011	Ana	lyst: JCC						
* Sulfate	10/7/21 10:20	10/7/21 10:2	1 1	36.9	mg/L	0.50	1	
Analytical Method: Field Measurements	Ana	lyst: TJD						
Conductivity	10/5/21 14:34	10/5/21 14:3	4	431.22	uS/cm			FA
рН	10/5/21 14:34	10/5/21 14:3	34	6.58	SU			FA
Temperature	10/5/21 14:34	10/5/21 14:3	4	20.73	С			FA
Turbidity	10/5/21 14:34	10/5/21 14:3	4	2.08	NTU			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWGADAP

Sample Date: 10/5/21 14:35

Customer ID:

Delivery Date: 10/6/21 15:07

Description: Gadsden Ash Pond - MW-4 DUP

Laboratory ID Number: BB18672

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BB18740	Iron, Dissolved	mg/L	-4.310E-05	0.0176	0.2	0.408	0.412	0.203	0.170 to 0.230	97.0	70.0 to 130	0.976	20.0
BB18738	Lead, Total	mg/L	0.0000022	0.000147	0.100	0.106	0.104	0.102	0.0850 to 0.115	106	70.0 to 130	1.90	20.0
BB18738	Barium, Total	mg/L	0.0000090	0.000200	0.100	0.169	0.168	0.0995	0.0850 to 0.115	87.9	70.0 to 130	0.593	20.0
BB18738	Thallium, Total	mg/L	0.0000035	0.000147	0.100	0.103	0.105	0.0961	0.0850 to 0.115	103	70.0 to 130	1.92	20.0
BB18738	Manganese, Total	mg/L	0.0000059	0.000147	0.100	0.148	0.152	0.101	0.0850 to 0.115	98.6	70.0 to 130	2.67	20.0
BB18738	Cobalt, Total	mg/L	-0.0000028	0.000147	0.100	0.0998	0.102	0.100	0.0850 to 0.115	99.4	70.0 to 130	2.18	20.0
BB18738	Sodium, Total	mg/L	0.00361	0.0660	5.00	9.14	9.19	5.00	4.25 to 5.75	105	70.0 to 130	0.546	20.0
BB18738	Arsenic, Total	mg/L	-0.0000050	0.000147	0.100	0.0999	0.104	0.102	0.0850 to 0.115	99.9	70.0 to 130	4.02	20.0
BB18738	Boron, Total	mg/L	-1.620E-05	0.0650	1.00	0.987	0.999	0.989	0.850 to 1.15	98.7	70.0 to 130	1.21	20.0
BB18740	Manganese, Dissolved	mg/L	-0.0000191	0.000147	0.100	0.268	0.275	0.101	0.0850 to 0.115	101	70.0 to 130	2.58	20.0
BB18738	Iron, Total	mg/L	0.000319	0.0176	0.2	0.244	0.248	0.203	0.170 to 0.230	97.8	70.0 to 130	1.63	20.0
BB18738	Antimony, Total	mg/L	0.000163	0.00100	0.100	0.0914	0.0919	0.0919	0.0850 to 0.115	91.4	70.0 to 130	0.546	20.0
BB18738	Magnesium, Total	mg/L	-0.00772	0.0462	5.00	8.97	9.07	5.14	4.25 to 5.75	102	70.0 to 130	1.11	20.0
BB18738	Potassium, Total	mg/L	0.00310	0.367	10.0	10.5	10.6	9.99	8.50 to 11.5	100	70.0 to 130	0.948	20.0
BB18738	Cadmium, Total	mg/L	0.0000000	0.000147	0.100	0.0962	0.0937	0.0952	0.0850 to 0.115	96.2	70.0 to 130	2.63	20.0
BB18738	Beryllium, Total	mg/L	0.0000303	0.000880	0.100	0.0988	0.0942	0.0913	0.0850 to 0.115	98.8	70.0 to 130	4.77	20.0
BB18738	Lithium, Total	mg/L	-5.480E-05	0.0154	0.200	0.202	0.206	0.198	0.170 to 0.230	101	70.0 to 130	1.96	20.0
BB18738	Calcium, Total	mg/L	0.00499	0.152	5.00	30.3	30.5	5.12	4.25 to 5.75	98.0	70.0 to 130	0.658	20.0
BB18738	Molybdenum, Total	mg/L	0.0000224	0.000147	0.100	0.0993	0.0995	0.0962	0.0850 to 0.115	99.2	70.0 to 130	0.201	20.0
BB18738	Mercury, Total by CVAA	mg/L	6.000E-05	0.000500	0.004	0.00409	0.00403	0.0038	0.00340 to 0.00460	102	70.0 to 130	1.48	20.0
BB18738	Selenium, Total	mg/L	0.0000698	0.00100	0.100	0.0989	0.0999	0.0973	0.0850 to 0.115	98.9	70.0 to 130	1.01	20.0
BB18738	Chromium, Total	mg/L	-0.0000170	0.000440	0.100	0.0984	0.102	0.0988	0.0850 to 0.115	98.0	70.0 to 130	3.59	20.0

Batch QC Summary

Customer Account: WMWGADAP

Sample Date: 10

10/5/21 14:35

Customer ID:

Delivery Date: 10/6/21 15:07

Description: Gadsden Ash Pond - MW-4 DUP

Laboratory ID Number: BB18672

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BB19000	Alkalinity, Total as CaCO3	mg/L					4.20	50.9	45.0 to 55.0			4.88	10.0
BB18675	Chloride	mg/L	0.0266	1.00	10.0	13.7	3.25	10.1	9.00 to 11.0	105	80.0 to 120	2.49	20.0
BB18675	Sulfate	mg/L	0.420	1.00	100	201	83.5	20.3	18.0 to 22.0	108	80.0 to 120	11.3	20.0
BB18674	Solids, Dissolved	mg/L	0.0000	25.0			173	49.0	40.0 to 60.0			2.54	10.0
BB18738	Fluoride	mg/L	-0.0124	0.100	2.50	2.60	0.0527	2.38	2.25 to 2.75	104	80.0 to 120	0.00	20.0

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified.

Certificate Of Analysis

Description: Gadsden Ash Pond Field Blank-1Location Code:WMWGADAPFBCollected:10/5/21 15:30

Customer ID:

Submittal Date: 10/6/21 15:07

Laboratory ID Number: BB18673

Name	Prepared Analyzed Vio S	Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Analyst: RDA		Preparati	on Method: EPA	1638		
* Boron, Total	10/13/21 10:10 10/15/21 11:23	1.015	Not Detected	mg/L	0.030000	0.1015	U
* Calcium, Total	10/13/21 10:10 10/15/21 11:23	1.015	Not Detected	mg/L	0.070035	0.406	U
* Iron, Total	10/13/21 10:10 10/15/21 11:23	1.015	Not Detected	mg/L	0.008120	0.0406	U
* Lithium, Total	10/13/21 10:10 10/15/21 11:23	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	10/13/21 10:10 10/15/21 11:23	1.015	Not Detected	mg/L	0.021315	0.406	U
* Sodium, Total	10/13/21 10:10 10/15/21 11:23	1.015	Not Detected	mg/L	0.03045	0.406	U
Analytical Method: EPA 200.8	Analyst: DLJ		Preparati	on Method: EPA	1638		
* Antimony, Total	10/8/21 11:18 10/11/21 11:47	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Arsenic, Total	10/8/21 11:18 10/11/21 11:47	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Barium, Total	10/8/21 11:18 10/11/21 11:47	1.015	Not Detected	mg/L	0.000102	0.000203	U
* Beryllium, Total	10/8/21 11:18 10/11/21 11:47	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	10/8/21 11:18 10/11/21 11:47	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	10/8/21 11:18 10/11/21 11:47	1.015	Not Detected	mg/L	0.000203	0.001015	U
* Cobalt, Total	10/8/21 11:18 10/11/21 11:47	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Lead, Total	10/8/21 11:18 10/11/21 11:47	1.015	0.000138	mg/L	0.000068	0.000203	J
* Molybdenum, Total	10/8/21 11:18 10/11/21 11:47	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Total	10/8/21 11:18 10/11/21 11:47	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Potassium, Total	10/8/21 11:18 10/11/21 11:47	1.015	Not Detected	mg/L	0.169505	0.5075	U
* Selenium, Total	10/8/21 11:18 10/11/21 11:47	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	10/8/21 11:18 10/11/21 11:47	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Analyst: CRB						
* Mercury, Total by CVAA	10/14/21 16:58 10/14/21 22:14	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: SM 2540C	Analyst: CNJ						
* Solids, Dissolved	10/11/21 12:09 10/12/21 13:44	1	Not Detected	mg/L		25	U
Analytical Method: SM4500Cl E	Analyst: JCC						
* Chloride	10/7/21 12:28 10/7/21 12:28	1	Not Detected	mg/L	0.50	1	U
Analytical Method: SM4500F G 2017	Analyst: JCC						
* Fluoride	10/13/21 10:31 10/13/21 10:31	1	Not Detected	mg/L	0.06	0.1	U
Analytical Method: SM4500SO4 E 2011	Analyst: JCC						
* Sulfate	10/7/21 10:21 10/7/21 10:21	1	Not Detected	mg/L	0.50	1	U

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

Batch QC Summary

Customer Account: WMWGADAPFB

Sample Date: 10/5/21 15:30

Customer ID:

Delivery Date: 10/6/21 15:07

Description: Gadsden Ash Pond Field Blank-1

Laboratory ID Number: BB18673

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BB18738	Lead, Total	mg/L	0.0000022	0.000147	0.100	0.106	0.104	0.102	0.0850 to 0.115	106	70.0 to 130	1.90	20.0
BB18738	Sodium, Total	mg/L	0.00361	0.0660	5.00	9.14	9.19	5.00	4.25 to 5.75	105	70.0 to 130	0.546	20.0
BB18738	Manganese, Total	mg/L	0.0000059	0.000147	0.100	0.148	0.152	0.101	0.0850 to 0.115	98.6	70.0 to 130	2.67	20.0
BB18738	Cobalt, Total	mg/L	-0.0000028	0.000147	0.100	0.0998	0.102	0.100	0.0850 to 0.115	99.4	70.0 to 130	2.18	20.0
BB18738	Barium, Total	mg/L	0.0000090	0.000200	0.100	0.169	0.168	0.0995	0.0850 to 0.115	87.9	70.0 to 130	0.593	20.0
BB18738	Thallium, Total	mg/L	0.0000035	0.000147	0.100	0.103	0.105	0.0961	0.0850 to 0.115	103	70.0 to 130	1.92	20.0
BB18738	Arsenic, Total	mg/L	-0.0000050	0.000147	0.100	0.0999	0.104	0.102	0.0850 to 0.115	99.9	70.0 to 130	4.02	20.0
BB18738	Boron, Total	mg/L	-1.620E-05	0.0650	1.00	0.987	0.999	0.989	0.850 to 1.15	98.7	70.0 to 130	1.21	20.0
BB18738	Cadmium, Total	mg/L	0.0000000	0.000147	0.100	0.0962	0.0937	0.0952	0.0850 to 0.115	96.2	70.0 to 130	2.63	20.0
BB18738	Beryllium, Total	mg/L	0.0000303	0.000880	0.100	0.0988	0.0942	0.0913	0.0850 to 0.115	98.8	70.0 to 130	4.77	20.0
BB18738	Lithium, Total	mg/L	-5.480E-05	0.0154	0.200	0.202	0.206	0.198	0.170 to 0.230	101	70.0 to 130	1.96	20.0
BB18738	Calcium, Total	mg/L	0.00499	0.152	5.00	30.3	30.5	5.12	4.25 to 5.75	98.0	70.0 to 130	0.658	20.0
BB18738	Molybdenum, Total	mg/L	0.0000224	0.000147	0.100	0.0993	0.0995	0.0962	0.0850 to 0.115	99.2	70.0 to 130	0.201	20.0
BB18738	Mercury, Total by CVAA	mg/L	6.000E-05	0.000500	0.004	0.00409	0.00403	0.0038	0.00340 to 0.00460	102	70.0 to 130	1.48	20.0
BB18738	Selenium, Total	mg/L	0.0000698	0.00100	0.100	0.0989	0.0999	0.0973	0.0850 to 0.115	98.9	70.0 to 130	1.01	20.0
BB18738	Chromium, Total	mg/L	-0.0000170	0.000440	0.100	0.0984	0.102	0.0988	0.0850 to 0.115	98.0	70.0 to 130	3.59	20.0
BB18738	Iron, Total	mg/L	0.000319	0.0176	0.2	0.244	0.248	0.203	0.170 to 0.230	97.8	70.0 to 130	1.63	20.0
BB18738	Antimony, Total	mg/L	0.000163	0.00100	0.100	0.0914	0.0919	0.0919	0.0850 to 0.115	91.4	70.0 to 130	0.546	20.0
BB18738	Magnesium, Total	mg/L	-0.00772	0.0462	5.00	8.97	9.07	5.14	4.25 to 5.75	102	70.0 to 130	1.11	20.0
BB18738	Potassium, Total	mg/L	0.00310	0.367	10.0	10.5	10.6	9.99	8.50 to 11.5	100	70.0 to 130	0.948	20.0

Comments:

Batch QC Summary

Customer Account: WMWGADAPFB

Sample Date:

10/5/21 15:30

Customer ID:

Delivery Date:

10/6/21 15:07

Description: Gadsden Ash Pond Field Blank-1

Laboratory ID Number: BB18673

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BB18675	Chloride	mg/L	0.0266	1.00	10.0	13.7	3.25	10.1	9.00 to 11.0	105	80.0 to 120	2.49	20.0
BB18675	Sulfate	mg/L	0.420	1.00	100	201	83.5	20.3	18.0 to 22.0	108	80.0 to 120	11.3	20.0
BB18674	Solids, Dissolved	mg/L	0.0000	25.0			173	49.0	40.0 to 60.0			2.54	10.0
BB18738	Fluoride	mg/L	-0.0124	0.100	2.50	2.60	0.0527	2.38	2.25 to 2.75	104	80.0 to 120	0.00	20.0

Comments:

Certificate Of Analysis

Description: Gadsden Ash Pond - MW-17Location Code:WMWGADAPCollected:10/6/21 08:45

Customer ID:

Laboratory ID Number: BB18674 Submittal Date: 10/6/21 15:07

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Ana	lyst: RDA			Preparati	on Method: E	PA 1638	_	
* Boron, Total	10/13/21 10:1	0 10/15/21 1	1:27	1.015	0.0305	mg/L	0.030000	0.1015	J
* Calcium, Total	10/13/21 10:1	0 10/15/21 1	1:27	1.015	31.0	mg/L	0.070035	0.406	
* Iron, Total	10/13/21 10:1	0 10/15/21 1	1:27	1.015	0.0754	mg/L	0.008120	0.0406	
* Lithium, Total	10/13/21 10:1	0 10/15/21 1	1:27	1.015	0.00881	mg/L	0.007105	0.01999956	J
* Magnesium, Total	10/13/21 10:1	0 10/15/21 1	1:27	1.015	5.30	mg/L	0.021315	0.406	
* Sodium, Total	10/13/21 10:1	0 10/15/21 1	1:27	1.015	26.7	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Ana	lyst: RDA							
* Iron, Dissolved	10/13/21 09:1	0 10/14/21 1	2:32	1.015	0.0106	mg/L	0.008120	0.0406	J
Analytical Method: EPA 200.8	Ana	lyst: DLJ			Preparati	on Method: E	PA 1638		
* Antimony, Total	10/8/21 11:18	10/11/21 1	1:51	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Arsenic, Total	10/8/21 11:18	10/11/21 1	1:51	1.015	0.000263	mg/L	0.000068	0.000203	
* Barium, Total	10/8/21 11:18	10/11/21 1	1:51	1.015	0.307	mg/L	0.000102	0.000203	
* Beryllium, Total	10/8/21 11:18	10/11/21 1	1:51	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	10/8/21 11:18	10/11/21 1	1:51	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	10/8/21 11:18	10/11/21 1	1:51	1.015	0.000273	mg/L	0.000203	0.001015	J
* Cobalt, Total	10/8/21 11:18	10/11/21 1	1:51	1.015	0.000126	mg/L	0.000068	0.000203	J
* Lead, Total	10/8/21 11:18	10/11/21 1	1:51	1.015	Not Detected	mg/L	0.000068	0.000203	U
 Molybdenum, Total 	10/8/21 11:18	10/11/21 1	1:51	1.015	0.000453	mg/L	0.000068	0.000203	
* Potassium, Total	10/8/21 11:18	10/11/21 1	1:51	1.015	0.567	mg/L	0.169505	0.5075	
* Manganese, Total	10/8/21 11:18	10/11/21 1	1:51	1.015	0.0175	mg/L	0.000068	0.000203	
* Selenium, Total	10/8/21 11:18	10/11/21 1	1:51	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	10/8/21 11:18	10/11/21 1	1:51	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Ana	lyst: DLJ							
* Manganese, Dissolved	10/8/21 11:57	10/8/21 14	:43	1.015	0.0169	mg/L	0.000068	0.000203	
Analytical Method: EPA 245.1	Ana	lyst: CRB							
* Mercury, Total by CVAA	10/14/21 16:5	8 10/14/21 2	2:18	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: SM 2320 B	Ana	lyst: JAG							
Alkalinity, Total as CaCO3	10/15/21 10:3	0 10/15/21 1	1:41	1	123	mg/L		0.1	
Analytical Method: SM 2540C	Ana	lyst: CNJ							
* Solids, Dissolved	10/11/21 12:0	-)9 10/12/21 1:	3:44	1	182	mg/L		25	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Gadsden Ash Pond - MW-17

Location Code:

WMWGADAP

Collected:

Customer ID: Submittal Date:

10/6/21 08:45 10/6/21 15:07

Laboratory ID Number: BB18674

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: SM 4500CO2 D	Ana	lyst: JAG						
Bicarbonate Alkalinity, (calc.)	10/15/21 10:3	30 10/15/21 11	:41 1	122	mg/L			
Carbonate Alkalinity, (calc.)	10/15/21 10:3	30 10/15/21 11	:41 1	1.23	mg/L			
Analytical Method: SM4500Cl E	Ana	lyst: JCC						
* Chloride	10/7/21 12:23	3 10/7/21 12:2	23 1	2.98	mg/L	0.50	1	
Analytical Method: SM4500F G 2017	Ana	lyst: JCC						
* Fluoride	10/13/21 10:3	32 10/13/21 10	:32 1	0.175	mg/L	0.06	0.1	
Analytical Method: SM4500SO4 E 2011	Ana	lyst: JCC						
* Sulfate	10/7/21 10:15	5 10/7/21 10:	15 1	10.2	mg/L	0.50	1	
Analytical Method: Field Measurements	Ana	lyst: TJD						
Conductivity	10/6/21 08:42	2 10/6/21 08:4	12	317.65	uS/cm			FA
рН	10/6/21 08:42	2 10/6/21 08:4	12	7.92	SU			FA
Temperature	10/6/21 08:42	2 10/6/21 08:4	12	20.50	С			FA
Turbidity	10/6/21 08:42	2 10/6/21 08:4	12	8.25	NTU			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWGADAP Sample Date: 10/6/21 08:45

10/6/21 15:07

Delivery Date:

Customer ID:

Description: Gadsden Ash Pond - MW-17

Laboratory ID Number: BB18674

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
3B18740	Iron, Dissolved	mg/L	-4.310E-05	0.0176	0.2	0.408	0.412	0.203	0.170 to 0.230	97.0	70.0 to 130	0.976	20.0
3B18738	Lead, Total	mg/L	0.0000022	0.000147	0.100	0.106	0.104	0.102	0.0850 to 0.115	106	70.0 to 130	1.90	20.0
3B18738	Sodium, Total	mg/L	0.00361	0.0660	5.00	9.14	9.19	5.00	4.25 to 5.75	105	70.0 to 130	0.546	20.0
3B18738	Barium, Total	mg/L	0.0000090	0.000200	0.100	0.169	0.168	0.0995	0.0850 to 0.115	87.9	70.0 to 130	0.593	20.0
3B18738	Thallium, Total	mg/L	0.0000035	0.000147	0.100	0.103	0.105	0.0961	0.0850 to 0.115	103	70.0 to 130	1.92	20.0
3B18738	Manganese, Total	mg/L	0.0000059	0.000147	0.100	0.148	0.152	0.101	0.0850 to 0.115	98.6	70.0 to 130	2.67	20.0
3B18738	Cobalt, Total	mg/L	-0.0000028	0.000147	0.100	0.0998	0.102	0.100	0.0850 to 0.115	99.4	70.0 to 130	2.18	20.0
3B18738	Arsenic, Total	mg/L	-0.0000050	0.000147	0.100	0.0999	0.104	0.102	0.0850 to 0.115	99.9	70.0 to 130	4.02	20.0
3B18738	Boron, Total	mg/L	-1.620E-05	0.0650	1.00	0.987	0.999	0.989	0.850 to 1.15	98.7	70.0 to 130	1.21	20.0
3B18740	Manganese, Dissolved	mg/L	-0.0000191	0.000147	0.100	0.268	0.275	0.101	0.0850 to 0.115	101	70.0 to 130	2.58	20.0
3B18738	Iron, Total	mg/L	0.000319	0.0176	0.2	0.244	0.248	0.203	0.170 to 0.230	97.8	70.0 to 130	1.63	20.0
3B18738	Antimony, Total	mg/L	0.000163	0.00100	0.100	0.0914	0.0919	0.0919	0.0850 to 0.115	91.4	70.0 to 130	0.546	20.0
3B18738	Magnesium, Total	mg/L	-0.00772	0.0462	5.00	8.97	9.07	5.14	4.25 to 5.75	102	70.0 to 130	1.11	20.0
3B18738	Potassium, Total	mg/L	0.00310	0.367	10.0	10.5	10.6	9.99	8.50 to 11.5	100	70.0 to 130	0.948	20.0
3B18738	Cadmium, Total	mg/L	0.0000000	0.000147	0.100	0.0962	0.0937	0.0952	0.0850 to 0.115	96.2	70.0 to 130	2.63	20.0
3B18738	Beryllium, Total	mg/L	0.0000303	0.000880	0.100	0.0988	0.0942	0.0913	0.0850 to 0.115	98.8	70.0 to 130	4.77	20.0
3B18738	Lithium, Total	mg/L	-5.480E-05	0.0154	0.200	0.202	0.206	0.198	0.170 to 0.230	101	70.0 to 130	1.96	20.0
3B18738	Calcium, Total	mg/L	0.00499	0.152	5.00	30.3	30.5	5.12	4.25 to 5.75	98.0	70.0 to 130	0.658	20.0
3B18738	Molybdenum, Total	mg/L	0.0000224	0.000147	0.100	0.0993	0.0995	0.0962	0.0850 to 0.115	99.2	70.0 to 130	0.201	20.0
3B18738	Mercury, Total by CVAA	mg/L	6.000E-05	0.000500	0.004	0.00409	0.00403	0.0038	0.00340 to 0.00460	102	70.0 to 130	1.48	20.0
3B18738	Selenium, Total	mg/L	0.0000698	0.00100	0.100	0.0989	0.0999	0.0973	0.0850 to 0.115	98.9	70.0 to 130	1.01	20.0
3B18738	Chromium, Total	mg/L	-0.0000170	0.000440	0.100	0.0984	0.102	0.0988	0.0850 to 0.115	98.0	70.0 to 130	3.59	20.0

Batch QC Summary

Customer Account: WMWGADAP

Sample Date:

10/6/21 08:45

Customer ID:

Delivery Date:

10/6/21 15:07

Description: Gadsden Ash Pond - MW-17

Laboratory ID Number: BB18674

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BB18675	Sulfate	mg/L	0.420	1.00	100	201	83.5	20.3	18.0 to 22.0	108	80.0 to 120	11.3	20.0
BB19000	Alkalinity, Total as CaCO3	mg/L					4.20	50.9	45.0 to 55.0			4.88	10.0
BB18675	Chloride	mg/L	0.0266	1.00	10.0	13.7	3.25	10.1	9.00 to 11.0	105	80.0 to 120	2.49	20.0
BB18674	Solids, Dissolved	mg/L	0.0000	25.0			173	49.0	40.0 to 60.0			2.54	10.0
BB18738	Fluoride	mg/L	-0.0124	0.100	2.50	2.60	0.0527	2.38	2.25 to 2.75	104	80.0 to 120	0.00	20.0

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified.

Certificate Of Analysis

WMWGADAP

10/6/21 10:10

Description: Gadsden Ash Pond - MW-16

Location Code:
Collected:

Customer ID:

Submittal Date: 10/6/21 15:07

Laboratory ID Number: BB18675

Name	Prepared Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Analyst: RDA			Preparati	on Method: EPA	1638		_
* Boron, Total	10/13/21 10:10 10/15/21	11:30 1	.015	Not Detected	mg/L	0.030000	0.1015	U
* Calcium, Total	10/13/21 10:10 10/15/21	11:30 1	.015	13.4	mg/L	0.070035	0.406	
* Iron, Total	10/13/21 10:10 10/15/21	11:30 1	.015	0.00888	mg/L	0.008120	0.0406	J
* Lithium, Total	10/13/21 10:10 10/15/21	11:30 1	.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	10/13/21 10:10 10/15/21	11:30 1	.015	5.08	mg/L	0.021315	0.406	
* Sodium, Total	10/13/21 10:10 10/15/21	11:30 1	.015	2.74	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Analyst: RDA							
* Iron, Dissolved	10/13/21 09:10 10/14/21	12:35 1	.015	Not Detected	mg/L	0.008120	0.0406	U
Analytical Method: EPA 200.8	Analyst: DLJ			Preparati	on Method: EPA	1638		
* Antimony, Total	10/8/21 11:18 10/11/21	11:54 1	.015	Not Detected	mg/L	0.000508	0.001015	U
* Arsenic, Total	10/8/21 11:18 10/11/21	11:54 1	.015	0.00207	mg/L	0.000068	0.000203	
* Barium, Total	10/8/21 11:18 10/11/21	11:54 1	.015	0.0215	mg/L	0.000102	0.000203	
* Beryllium, Total	10/8/21 11:18 10/11/21	11:54 1	.015	0.000487	mg/L	0.000406	0.001015	J
* Cadmium, Total	10/8/21 11:18 10/11/21	11:54 1	.015	0.000680	mg/L	0.000068	0.000203	
* Chromium, Total	10/8/21 11:18 10/11/21	11:54 1	.015	0.000455	mg/L	0.000203	0.001015	J
* Cobalt, Total	10/8/21 11:18 10/11/21	11:54 1	.015	0.0321	mg/L	0.000068	0.000203	
* Lead, Total	10/8/21 11:18 10/11/21	11:54 1	.015	0.00116	mg/L	0.000068	0.000203	
* Molybdenum, Total	10/8/21 11:18 10/11/21	11:54 1	.015	Not Detected	mg/L	0.000068	0.000203	U
* Potassium, Total	10/8/21 11:18 10/11/21	11:54 1	.015	0.349	mg/L	0.169505	0.5075	J
* Manganese, Total	10/8/21 11:18 10/11/21	11:54 1	.015	0.382	mg/L	0.000068	0.000203	
* Selenium, Total	10/8/21 11:18 10/11/21	11:54 1	.015	0.00262	mg/L	0.000508	0.001015	
* Thallium, Total	10/8/21 11:18 10/11/21	11:54 1	.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Analyst: DLJ							
* Manganese, Dissolved	10/8/21 11:57 10/8/21	14:46 1	.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Analyst: CRB							
* Mercury, Total by CVAA	10/14/21 16:58 10/14/21	22:22 1		Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: SM 2540C	Analyst: CNJ							
* Solids, Dissolved	10/12/21 11:15 10/13/21	12:56 1		136	mg/L		25	
Analytical Method: SM4500CI E	Analyst: JCC							
* Chloride	10/7/21 12:29 10/7/21	12:29 1		3.17	mg/L	0.50	1	

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified.

Sample BB18675 was not analyzed for Alkalinity due to the initial sample pH reading was below the Alkalinity titration end point of 4.5 SU. Fluoride result is qualified due to potential matrix interference.

Certificate Of Analysis

Description: Gadsden Ash Pond - MW-16

Location Code:

WMWGADAP

Collected:

Customer ID:

10/6/21 10:10

Submittal Date:

10/6/21 15:07

				Subiliiti	iai Date.	10/0/21 13	.07	
Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Ana	alyst: JCC							
10/13/21 10:	33 10/13/21 10	0:33	1	Not Detected	mg/L	0.06	0.1	U
Ana	alyst: JCC							
10/7/21 10:24	4 10/7/21 10:	24	5	93.5	mg/L	2.50	5	
Ana	alyst: TJD							
10/6/21 10:08	8 10/6/21 10:	.08		272.73	uS/cm			FA
10/6/21 10:08	8 10/6/21 10:	.08		4.16	SU			FA
10/6/21 10:08	8 10/6/21 10:	.08		19.55	С			FA
10/6/21 10:08	8 10/6/21 10:	.08		3.19	NTU			FA
	10/13/21 10:3 Ana 10/7/21 10:24 Ana 10/6/21 10:03 10/6/21 10:03	Analyst: JCC 10/13/21 10:33 10/13/21 10 Analyst: JCC 10/7/21 10:24 10/7/21 10: Analyst: TJD 10/6/21 10:08 10/6/21 10: 10/6/21 10:08 10/6/21 10:	Analyst: JCC 10/13/21 10:33 10/13/21 10:33 Analyst: JCC 10/7/21 10:24 10/7/21 10:24 Analyst: TJD 10/6/21 10:08 10/6/21 10:08 10/6/21 10:08 10/6/21 10:08 10/6/21 10:08 10/6/21 10:08	Analyst: JCC 10/13/21 10:33 10/13/21 10:33 1 Analyst: JCC 10/7/21 10:24 10/7/21 10:24 5 Analyst: TJD 10/6/21 10:08 10/6/21 10:08 10/6/21 10:08 10/6/21 10:08 10/6/21 10:08 10/6/21 10:08	Prepared Analyzed Vio Spec DF Results Analyst: JCC 10/13/21 10:33 10/13/21 10:33 1 Not Detected Analyst: JCC 10/7/21 10:24 10/7/21 10:24 5 93.5 Analyst: TJD 10/6/21 10:08 10/6/21 10:08 272.73 10/6/21 10:08 10/6/21 10:08 4.16 10/6/21 10:08 10/6/21 10:08 19.55	Analyst: JCC 10/13/21 10:33 10/13/21 10:33 1 Not Detected mg/L Analyst: JCC 10/7/21 10:24 10/7/21 10:24 5 93.5 mg/L Analyst: TJD 10/6/21 10:08 10/6/21 10:08 272.73 uS/cm 10/6/21 10:08 10/6/21 10:08 4.16 SU 10/6/21 10:08 10/6/21 10:08 19.55 C	Prepared Analyzed Vio Spec DF Results Units MDL Analyst: JCC 10/7/21 10:24 10/7/21 10:24 5 93.5 mg/L 2.50 Analyst: TJD 10/6/21 10:08 10/6/21 10:08 272.73 uS/cm 10/6/21 10:08 10/6/21 10:08 4.16 SU 10/6/21 10:08 10/6/21 10:08 19.55 C	Prepared Analyzed Vio Spec DF Results Units MDL RL Analyst: JCC 10/7/21 10:24 10/7/21 10:24 5 93.5 mg/L 2.50 5 Analyst: TJD 10/6/21 10:08 272.73 uS/cm 10/6/21 10:08 10/6/21 10:08 4.16 SU 10/6/21 10:08 10/6/21 10:08 19.55 C

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. Sample BB18675 was not analyzed for Alkalinity due to the initial sample pH reading was below the Alkalinity titration end point of 4.5 SU. Fluoride result is qualified due to potential matrix interference.

Batch QC Summary

Customer Account: WMWGADAP

Sample Date: 1

10/6/21 10:10

Customer ID:

Delivery Date: 10/6/21 15:07

Description: Gadsden Ash Pond - MW-16

Laboratory ID Number: BB18675

•				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BB18738	Manganese, Total	mg/L	0.0000059	0.000147	0.100	0.148	0.152	0.101	0.0850 to 0.115	98.6	70.0 to 130	2.67	20.0
BB18738	Cobalt, Total	mg/L	-0.0000028	0.000147	0.100	0.0998	0.102	0.100	0.0850 to 0.115	99.4	70.0 to 130	2.18	20.0
BB18738	Iron, Total	mg/L	0.000319	0.0176	0.2	0.244	0.248	0.203	0.170 to 0.230	97.8	70.0 to 130	1.63	20.0
BB18738	Antimony, Total	mg/L	0.000163	0.00100	0.100	0.0914	0.0919	0.0919	0.0850 to 0.115	91.4	70.0 to 130	0.546	20.0
BB18738	Magnesium, Total	mg/L	-0.00772	0.0462	5.00	8.97	9.07	5.14	4.25 to 5.75	102	70.0 to 130	1.11	20.0
BB18738	Potassium, Total	mg/L	0.00310	0.367	10.0	10.5	10.6	9.99	8.50 to 11.5	100	70.0 to 130	0.948	20.0
BB18738	Sodium, Total	mg/L	0.00361	0.0660	5.00	9.14	9.19	5.00	4.25 to 5.75	105	70.0 to 130	0.546	20.0
BB18738	Arsenic, Total	mg/L	-0.0000050	0.000147	0.100	0.0999	0.104	0.102	0.0850 to 0.115	99.9	70.0 to 130	4.02	20.0
BB18738	Boron, Total	mg/L	-1.620E-05	0.0650	1.00	0.987	0.999	0.989	0.850 to 1.15	98.7	70.0 to 130	1.21	20.0
BB18740	Manganese, Dissolved	mg/L	-0.0000191	0.000147	0.100	0.268	0.275	0.101	0.0850 to 0.115	101	70.0 to 130	2.58	20.0
BB18740	Iron, Dissolved	mg/L	-4.310E-05	0.0176	0.2	0.408	0.412	0.203	0.170 to 0.230	97.0	70.0 to 130	0.976	20.0
BB18738	Lead, Total	mg/L	0.0000022	0.000147	0.100	0.106	0.104	0.102	0.0850 to 0.115	106	70.0 to 130	1.90	20.0
BB18738	Barium, Total	mg/L	0.0000090	0.000200	0.100	0.169	0.168	0.0995	0.0850 to 0.115	87.9	70.0 to 130	0.593	20.0
BB18738	Thallium, Total	mg/L	0.0000035	0.000147	0.100	0.103	0.105	0.0961	0.0850 to 0.115	103	70.0 to 130	1.92	20.0
BB18738	Cadmium, Total	mg/L	0.0000000	0.000147	0.100	0.0962	0.0937	0.0952	0.0850 to 0.115	96.2	70.0 to 130	2.63	20.0
BB18738	Beryllium, Total	mg/L	0.0000303	0.000880	0.100	0.0988	0.0942	0.0913	0.0850 to 0.115	98.8	70.0 to 130	4.77	20.0
BB18738	Lithium, Total	mg/L	-5.480E-05	0.0154	0.200	0.202	0.206	0.198	0.170 to 0.230	101	70.0 to 130	1.96	20.0
BB18738	Calcium, Total	mg/L	0.00499	0.152	5.00	30.3	30.5	5.12	4.25 to 5.75	98.0	70.0 to 130	0.658	20.0
BB18738	Molybdenum, Total	mg/L	0.0000224	0.000147	0.100	0.0993	0.0995	0.0962	0.0850 to 0.115	99.2	70.0 to 130	0.201	20.0
BB18738	Mercury, Total by CVAA	mg/L	6.000E-05	0.000500	0.004	0.00409	0.00403	0.0038	0.00340 to 0.00460	102	70.0 to 130	1.48	20.0
BB18738	Selenium, Total	mg/L	0.0000698	0.00100	0.100	0.0989	0.0999	0.0973	0.0850 to 0.115	98.9	70.0 to 130	1.01	20.0
BB18738	Chromium, Total	mg/L	-0.0000170	0.000440	0.100	0.0984	0.102	0.0988	0.0850 to 0.115	98.0	70.0 to 130	3.59	20.0

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. Sample BB18675 was not analyzed for Alkalinity due to the initial sample pH reading was below the Alkalinity titration end point of 4.5 SU. Fluoride result is qualified due to potential matrix interference.

Batch QC Summary

Customer Account: WMWGADAP

Sample Date: 10/6/21 10:10

Customer ID:

Delivery Date: 10/6/21 15:07

Description: Gadsden Ash Pond - MW-16

Laboratory ID Number: BB18675

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BB18675	Chloride	mg/L	0.0266	1.00	10.0	13.7	3.25	10.1	9.00 to 11.0	105	80.0 to 120	2.49	20.0
BB18675	Sulfate	mg/L	0.420	1.00	100	201	83.5	20.3	18.0 to 22.0	108	80.0 to 120	11.3	20.0
BB18744	Solids, Dissolved	mg/L	1.00	25.0			326	50.0	40.0 to 60.0			1.40	10.0
BB18738	Fluoride	mg/L	-0.0124	0.100	2.50	2.60	0.0527	2.38	2.25 to 2.75	104	80.0 to 120	0.00	20.0

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. Sample BB18675 was not analyzed for Alkalinity due to the initial sample pH reading was below the Alkalinity titration end point of 4.5 SU. Fluoride result is qualified due to potential matrix interference.

Certificate Of Analysis

Description: Gadsden Ash Pond Equipment Blank-2Location Code:WMWGADAPEBCollected:10/5/21 10:20

Customer ID:

Submittal Date: 10/7/21 10:17

Laboratory ID Number: BB18737

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Ana	yst: RDA			Preparati	on Method: EPA	1638		_
* Boron, Total	10/13/21 10:1	0 10/15/21 1	1:34	1.015	Not Detected	mg/L	0.030000	0.1015	U
* Calcium, Total	10/13/21 10:1	0 10/15/21 1	1:34	1.015	Not Detected	mg/L	0.070035	0.406	U
* Iron, Total	10/13/21 10:1	0 10/15/21 1	1:34	1.015	Not Detected	mg/L	0.008120	0.0406	U
* Lithium, Total	10/13/21 10:1	0 10/15/21 1	1:34	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	10/13/21 10:1	0 10/15/21 1	1:34	1.015	Not Detected	mg/L	0.021315	0.406	U
* Sodium, Total	10/13/21 10:1	0 10/15/21 1	1:34	1.015	Not Detected	mg/L	0.03045	0.406	U
Analytical Method: EPA 200.8	Ana	yst: DLJ			Preparati	on Method: EPA	1638		
* Antimony, Total	10/8/21 11:18	10/11/21 1	1:58	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Arsenic, Total	10/8/21 11:18	10/11/21 1	1:58	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Barium, Total	10/8/21 11:18	10/11/21 1	1:58	1.015	Not Detected	mg/L	0.000102	0.000203	U
* Beryllium, Total	10/8/21 11:18	10/11/21 1	1:58	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	10/8/21 11:18	10/11/21 1	1:58	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	10/8/21 11:18	10/11/21 1	1:58	1.015	0.000206	mg/L	0.000203	0.001015	J
* Cobalt, Total	10/8/21 11:18	10/11/21 1	1:58	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Lead, Total	10/8/21 11:18	10/11/21 1	1:58	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Molybdenum, Total	10/8/21 11:18	10/11/21 1	1:58	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Total	10/8/21 11:18	10/11/21 1	1:58	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Potassium, Total	10/8/21 11:18	10/11/21 1	1:58	1.015	Not Detected	mg/L	0.169505	0.5075	U
* Selenium, Total	10/8/21 11:18	10/11/21 1	1:58	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	10/8/21 11:18	10/11/21 1	1:58	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Ana	yst: CRB							
* Mercury, Total by CVAA	10/14/21 16:5	8 10/14/21 2	2:26	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: SM 2540C	Ana	yst: CNJ							
* Solids, Dissolved	10/11/21 12:0	9 10/12/21 1	3:44	1	Not Detected	mg/L		25	U
Analytical Method: SM4500Cl E	Ana	yst: JCC							
* Chloride	10/7/21 12:43	10/7/21 12	2:43	1	Not Detected	mg/L	0.50	1	U
Analytical Method: SM4500F G 2017	Ana	yst: JCC							
* Fluoride	10/13/21 10:3	5 10/13/21 1	0:35	1	Not Detected	mg/L	0.06	0.1	U
Analytical Method: SM4500SO4 E 2011	Ana	lyst: JCC							
* Sulfate	10/11/21 12:2	•	2:21	1	Not Detected	mg/L	0.50	1	U

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

Batch QC Summary

Customer Account: WMWGADAPEB

Sample Date: 1

10/5/21 10:20

Customer ID:

Delivery Date:

10/7/21 10:17

Description: Gadsden Ash Pond Equipment Blank-2

Laboratory ID Number: BB18737

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BB18738	Lead, Total	mg/L	0.0000022	0.000147	0.100	0.106	0.104	0.102	0.0850 to 0.115	106	70.0 to 130	1.90	20.0
BB18738	Sodium, Total	mg/L	0.00361	0.0660	5.00	9.14	9.19	5.00	4.25 to 5.75	105	70.0 to 130	0.546	20.0
BB18738	Arsenic, Total	mg/L	-0.0000050	0.000147	0.100	0.0999	0.104	0.102	0.0850 to 0.115	99.9	70.0 to 130	4.02	20.0
BB18738	Boron, Total	mg/L	-1.620E-05	0.0650	1.00	0.987	0.999	0.989	0.850 to 1.15	98.7	70.0 to 130	1.21	20.0
BB18738	Manganese, Total	mg/L	0.0000059	0.000147	0.100	0.148	0.152	0.101	0.0850 to 0.115	98.6	70.0 to 130	2.67	20.0
BB18738	Cobalt, Total	mg/L	-0.0000028	0.000147	0.100	0.0998	0.102	0.100	0.0850 to 0.115	99.4	70.0 to 130	2.18	20.0
BB18738	Iron, Total	mg/L	0.000319	0.0176	0.2	0.244	0.248	0.203	0.170 to 0.230	97.8	70.0 to 130	1.63	20.0
BB18738	Antimony, Total	mg/L	0.000163	0.00100	0.100	0.0914	0.0919	0.0919	0.0850 to 0.115	91.4	70.0 to 130	0.546	20.0
BB18738	Magnesium, Total	mg/L	-0.00772	0.0462	5.00	8.97	9.07	5.14	4.25 to 5.75	102	70.0 to 130	1.11	20.0
BB18738	Potassium, Total	mg/L	0.00310	0.367	10.0	10.5	10.6	9.99	8.50 to 11.5	100	70.0 to 130	0.948	20.0
BB18738	Barium, Total	mg/L	0.0000090	0.000200	0.100	0.169	0.168	0.0995	0.0850 to 0.115	87.9	70.0 to 130	0.593	20.0
BB18738	Thallium, Total	mg/L	0.0000035	0.000147	0.100	0.103	0.105	0.0961	0.0850 to 0.115	103	70.0 to 130	1.92	20.0
BB18738	Cadmium, Total	mg/L	0.0000000	0.000147	0.100	0.0962	0.0937	0.0952	0.0850 to 0.115	96.2	70.0 to 130	2.63	20.0
BB18738	Beryllium, Total	mg/L	0.0000303	0.000880	0.100	0.0988	0.0942	0.0913	0.0850 to 0.115	98.8	70.0 to 130	4.77	20.0
BB18738	Lithium, Total	mg/L	-5.480E-05	0.0154	0.200	0.202	0.206	0.198	0.170 to 0.230	101	70.0 to 130	1.96	20.0
BB18738	Calcium, Total	mg/L	0.00499	0.152	5.00	30.3	30.5	5.12	4.25 to 5.75	98.0	70.0 to 130	0.658	20.0
BB18738	Molybdenum, Total	mg/L	0.0000224	0.000147	0.100	0.0993	0.0995	0.0962	0.0850 to 0.115	99.2	70.0 to 130	0.201	20.0
BB18738	Mercury, Total by CVAA	mg/L	6.000E-05	0.000500	0.004	0.00409	0.00403	0.0038	0.00340 to 0.00460	102	70.0 to 130	1.48	20.0
BB18738	Selenium, Total	mg/L	0.0000698	0.00100	0.100	0.0989	0.0999	0.0973	0.0850 to 0.115	98.9	70.0 to 130	1.01	20.0
BB18738	Chromium, Total	mg/L	-0.0000170	0.000440	0.100	0.0984	0.102	0.0988	0.0850 to 0.115	98.0	70.0 to 130	3.59	20.0

Comments:

Batch QC Summary

Customer Account: WMWGADAPEB

Sample Date:

10/5/21 10:20

Customer ID:

Delivery Date:

10/7/21 10:17

Description: Gadsden Ash Pond Equipment Blank-2

Laboratory ID Number: BB18737

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BB18746	Chloride	mg/L	0.0118	1.00	10.0	9.96	0.0703	10.1	9.00 to 11.0	99.6	80.0 to 120	0.00	20.0
BB18738	Fluoride	mg/L	-0.0124	0.100	2.50	2.60	0.0527	2.38	2.25 to 2.75	104	80.0 to 120	0.00	20.0
BB18741	Solids, Dissolved	mg/L	0.0000	25.0			377	49.0	40.0 to 60.0			0.132	10.0
BB18746	Sulfate	mg/L	0.312	1.00	20.0	20.0	0.414	19.6	18.0 to 22.0	100	80.0 to 120	0.00	20.0

Comments:

Certificate Of Analysis

Description: Gadsden Ash Pond - PZ-1Location Code:WMWGADAPCollected:10/5/21 11:00

Customer ID:

Submittal Date: 10/7/21 10:17

Laboratory ID Number: BB18738

Name	Prepared Analyzed Vio Sp	ec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Analyst: RDA		Preparati	on Method: EP	A 1638		
* Boron, Total	10/13/21 10:10 10/15/21 11:37	1.015	Not Detected	mg/L	0.030000	0.1015	U
* Calcium, Total	10/13/21 10:10 10/15/21 11:37	1.015	25.4	mg/L	0.070035	0.406	
* Iron, Total	10/13/21 10:10 10/15/21 11:37	1.015	0.0485	mg/L	0.008120	0.0406	
* Lithium, Total	10/13/21 10:10 10/15/21 11:37	1.015	Not Detected	mg/L	0.007105	0.01999956	3 U
* Magnesium, Total	10/13/21 10:10 10/15/21 11:37	1.015	3.87	mg/L	0.021315	0.406	
* Sodium, Total	10/13/21 10:10 10/15/21 11:37	1.015	3.90	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Analyst: RDA						
* Iron, Dissolved	10/13/21 09:10 10/14/21 12:38	1.015	Not Detected	mg/L	0.008120	0.0406	U
Analytical Method: EPA 200.8	Analyst: DLJ		Preparati	on Method: EP	A 1638		
* Antimony, Total	10/8/21 11:18 10/11/21 12:01	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Arsenic, Total	10/8/21 11:18 10/11/21 12:01	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Barium, Total	10/8/21 11:18 10/11/21 12:01	1.015	0.0811	mg/L	0.000102	0.000203	
* Beryllium, Total	10/8/21 11:18 10/11/21 12:01	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	10/8/21 11:18 10/11/21 12:01	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	10/8/21 11:18 10/11/21 12:01	1.015	0.000352	mg/L	0.000203	0.001015	J
* Cobalt, Total	10/8/21 11:18 10/11/21 12:01	1.015	0.000436	mg/L	0.000068	0.000203	
* Lead, Total	10/8/21 11:18 10/11/21 12:01	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Molybdenum, Total	10/8/21 11:18 10/11/21 12:01	1.015	0.0000730	mg/L	0.000068	0.000203	J
* Potassium, Total	10/8/21 11:18 10/11/21 12:01	1.015	0.497	mg/L	0.169505	0.5075	J
* Manganese, Total	10/8/21 11:18 10/11/21 12:01	1.015	0.0494	mg/L	0.000068	0.000203	
* Selenium, Total	10/8/21 11:18 10/11/21 12:01	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	10/8/21 11:18 10/11/21 12:01	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Analyst: DLJ						
* Manganese, Dissolved	10/8/21 11:57 10/8/21 14:50	1.015	0.0265	mg/L	0.000068	0.000203	
Analytical Method: EPA 245.1	Analyst: CRB						
* Mercury, Total by CVAA	10/14/21 16:58 10/14/21 22:30	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: SM 2320 B	Analyst: JAG						
Alkalinity, Total as CaCO3	10/15/21 10:30 10/15/21 11:41	1	81.2	mg/L		0.1	
Analytical Method: SM 2540C	Analyst: CNJ						
* Solids, Dissolved	10/11/21 12:09 10/12/21 13:44	1	108	mg/L		25	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

FΑ

FΑ

Description: Gadsden Ash Pond - PZ-1

Location Code:

WMWGADAP

Collected:

Customer ID: Submittal Date:

С

NTU

19.85

0.96

10/5/21 11:00

10/7/21 10:17

Laboratory ID Number: BB18738

Temperature

Turbidity

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM 4500CO2 D	<u> </u>	lyst: JAG	V.0 0p00						
Bicarbonate Alkalinity, (calc.)	10/15/21 10:3	30 10/15/21 11	:41	1	81.2	mg/L			
Carbonate Alkalinity, (calc.)	10/15/21 10:3	30 10/15/21 11	:41	1	0.03	mg/L			
Analytical Method: SM4500Cl E	Ana	lyst: JCC							
* Chloride	10/7/21 12:44	10/7/21 12:4	14	1	3.23	mg/L	0.50	1	
Analytical Method: SM4500F G 2017	Ana	lyst: JCC							
* Fluoride	10/13/21 10:3	6 10/13/21 10	:36	1	Not Detected	mg/L	0.06	0.1	U
Analytical Method: SM4500SO4 E 2011	Ana	lyst: JCC							
* Sulfate	10/11/21 12:2	2 10/11/21 12	:22	1	2.17	mg/L	0.50	1	
Analytical Method: Field Measurements	Ana	lyst: DKG							
Conductivity	10/5/21 10:57	10/5/21 10:5	57		168.13	uS/cm			FA
pH	10/5/21 10:57	7 10/5/21 10:5	57		6.46	SU			FA

10/5/21 10:57 10/5/21 10:57

10/5/21 10:57 10/5/21 10:57

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWGADAP

Sample Date: 10/5/21 11:00

Customer ID:

Delivery Date: 10/7/21 10:17

Description: Gadsden Ash Pond - PZ-1

Laboratory ID Number: BB18738

				MB	·		·		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BB18740	Iron, Dissolved	mg/L	-4.310E-05	0.0176	0.2	0.408	0.412	0.203	0.170 to 0.230	97.0	70.0 to 130	0.976	20.0
3B18738	Lead, Total	mg/L	0.0000022	0.000147	0.100	0.106	0.104	0.102	0.0850 to 0.115	106	70.0 to 130	1.90	20.0
3B18738	Sodium, Total	mg/L	0.00361	0.0660	5.00	9.14	9.19	5.00	4.25 to 5.75	105	70.0 to 130	0.546	20.0
3B18738	Manganese, Total	mg/L	0.0000059	0.000147	0.100	0.148	0.152	0.101	0.0850 to 0.115	98.6	70.0 to 130	2.67	20.0
3B18738	Cobalt, Total	mg/L	-0.0000028	0.000147	0.100	0.0998	0.102	0.100	0.0850 to 0.115	99.4	70.0 to 130	2.18	20.0
3B18738	Barium, Total	mg/L	0.0000090	0.000200	0.100	0.169	0.168	0.0995	0.0850 to 0.115	87.9	70.0 to 130	0.593	20.0
3B18738	Thallium, Total	mg/L	0.0000035	0.000147	0.100	0.103	0.105	0.0961	0.0850 to 0.115	103	70.0 to 130	1.92	20.0
3B18738	Iron, Total	mg/L	0.000319	0.0176	0.2	0.244	0.248	0.203	0.170 to 0.230	97.8	70.0 to 130	1.63	20.0
3B18738	Antimony, Total	mg/L	0.000163	0.00100	0.100	0.0914	0.0919	0.0919	0.0850 to 0.115	91.4	70.0 to 130	0.546	20.0
3B18738	Magnesium, Total	mg/L	-0.00772	0.0462	5.00	8.97	9.07	5.14	4.25 to 5.75	102	70.0 to 130	1.11	20.0
3B18738	Potassium, Total	mg/L	0.00310	0.367	10.0	10.5	10.6	9.99	8.50 to 11.5	100	70.0 to 130	0.948	20.0
3B18738	Cadmium, Total	mg/L	0.0000000	0.000147	0.100	0.0962	0.0937	0.0952	0.0850 to 0.115	96.2	70.0 to 130	2.63	20.0
3B18738	Beryllium, Total	mg/L	0.0000303	0.000880	0.100	0.0988	0.0942	0.0913	0.0850 to 0.115	98.8	70.0 to 130	4.77	20.0
3B18738	Lithium, Total	mg/L	-5.480E-05	0.0154	0.200	0.202	0.206	0.198	0.170 to 0.230	101	70.0 to 130	1.96	20.0
3B18738	Calcium, Total	mg/L	0.00499	0.152	5.00	30.3	30.5	5.12	4.25 to 5.75	98.0	70.0 to 130	0.658	20.0
3B18738	Molybdenum, Total	mg/L	0.0000224	0.000147	0.100	0.0993	0.0995	0.0962	0.0850 to 0.115	99.2	70.0 to 130	0.201	20.0
3B18738	Mercury, Total by CVAA	mg/L	6.000E-05	0.000500	0.004	0.00409	0.00403	0.0038	0.00340 to 0.00460	102	70.0 to 130	1.48	20.0
3B18738	Selenium, Total	mg/L	0.0000698	0.00100	0.100	0.0989	0.0999	0.0973	0.0850 to 0.115	98.9	70.0 to 130	1.01	20.0
3B18738	Chromium, Total	mg/L	-0.0000170	0.000440	0.100	0.0984	0.102	0.0988	0.0850 to 0.115	98.0	70.0 to 130	3.59	20.0
3B18738	Arsenic, Total	mg/L	-0.0000050	0.000147	0.100	0.0999	0.104	0.102	0.0850 to 0.115	99.9	70.0 to 130	4.02	20.0
3B18738	Boron, Total	mg/L	-1.620E-05	0.0650	1.00	0.987	0.999	0.989	0.850 to 1.15	98.7	70.0 to 130	1.21	20.0
BB18740	Manganese, Dissolved	mg/L	-0.0000191	0.000147	0.100	0.268	0.275	0.101	0.0850 to 0.115	101	70.0 to 130	2.58	20.0

Batch QC Summary

Customer Account: WMWGADAP

Sample Date:

10/5/21 11:00

Customer ID:

Delivery Date:

10/7/21 10:17

Description: Gadsden Ash Pond - PZ-1

Laboratory ID Number: BB18738

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BB19000	Alkalinity, Total as CaCO3	mg/L					4.20	50.9	45.0 to 55.0			4.88	10.0
BB18746	Chloride	mg/L	0.0118	1.00	10.0	9.96	0.0703	10.1	9.00 to 11.0	99.6	80.0 to 120	0.00	20.0
BB18674	Solids, Dissolved	mg/L	0.0000	25.0			173	49.0	40.0 to 60.0			2.54	10.0
BB18738	Fluoride	mg/L	-0.0124	0.100	2.50	2.60	0.0527	2.38	2.25 to 2.75	104	80.0 to 120	0.00	20.0
BB18746	Sulfate	mg/L	0.312	1.00	20.0	20.0	0.414	19.6	18.0 to 22.0	100	80.0 to 120	0.00	20.0

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified.

Certificate Of Analysis

Description: Gadsden Ash Pond - MW-5

Location Code: WMWGADAP Collected: 10/5/21 11:53

Customer ID:

Submittal Date: 10/7/21 10:17

Laboratory ID Number: BB18739					Submit	tal Date:	10/7/21 10:1	7	
Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	An	alyst: RDA			Preparati	on Method: L	EPA 1638		_
* Boron, Total	10/13/21 10	:10 10/15/21	11:54	1.015	0.260	mg/L	0.030000	0.1015	
* Calcium, Total	10/13/21 10	:10 10/15/21	11:54	1.015	36.0	mg/L	0.070035	0.406	
* Iron, Total	10/13/21 10	:10 10/15/21	11:54	1.015	0.283	mg/L	0.008120	0.0406	
* Lithium, Total	10/13/21 10	:10 10/15/21	11:54	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	10/13/21 10	:10 10/15/21	11:54	1.015	7.42	mg/L	0.021315	0.406	
* Sodium, Total	10/13/21 10	:10 10/15/21	11:54	1.015	13.7	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	An	alyst: RDA							
* Iron, Dissolved	10/13/21 09	:10 10/14/21	12:42	1.015	0.213	mg/L	0.008120	0.0406	
Analytical Method: EPA 200.8	An	nalyst: DLJ			Preparati	on Method: E	EPA 1638		
* Antimony, Total	10/8/21 11:1	8 10/11/21	12:23	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Arsenic, Total	10/8/21 11:1	8 10/11/21	12:23	1.015	0.000133	mg/L	0.000068	0.000203	J
* Barium, Total	10/8/21 11:1	8 10/11/21	12:23	1.015	0.221	mg/L	0.000102	0.000203	
* Beryllium, Total	10/8/21 11:1	8 10/11/21	12:23	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	10/8/21 11:1	8 10/11/21	12:23	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	10/8/21 11:1	8 10/11/21	12:23	1.015	0.000281	mg/L	0.000203	0.001015	J
* Cobalt, Total	10/8/21 11:1	8 10/11/21	12:23	1.015	0.00116	mg/L	0.000068	0.000203	
* Lead, Total	10/8/21 11:1	8 10/11/21	12:23	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Molybdenum, Total	10/8/21 11:1	8 10/11/21	12:23	1.015	0.000150	mg/L	0.000068	0.000203	J
* Potassium, Total	10/8/21 11:1	8 10/11/21	12:23	1.015	0.736	mg/L	0.169505	0.5075	
* Manganese, Total	10/8/21 11:1	8 10/11/21	12:23	1.015	0.166	mg/L	0.000068	0.000203	
* Selenium, Total	10/8/21 11:1	8 10/11/21	12:23	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	10/8/21 11:1	8 10/11/21	12:23	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	An	nalyst: DLJ							
* Manganese, Dissolved	10/8/21 11:5	7 10/8/21 1	4:53	1.015	0.174	mg/L	0.000068	0.000203	
Analytical Method: EPA 245.1	An	alyst: ABB							
* Mercury, Total by CVAA	10/15/21 10	:53 10/15/21	15:22	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: SM 2320 B	An	nalyst: JAG							
Alkalinity, Total as CaCO3	10/15/21 10	:30 10/15/21	11:41	1	135	mg/L		0.1	
Analytical Method: SM 2540C	Ar	nalyst: CNJ							
* Solids, Dissolved	10/11/21 12	:09 10/12/21	13:44	1	168	mg/L		25	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Gadsden Ash Pond - MW-5

Location Code:

WMWGADAP

Collected:

Customer ID:

10/5/21 11:53

Laboratory ID Number: BB18739

Submittal Date:

10/7/21 10:17

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: SM 4500CO2 D	Ana	lyst: JAG						
Bicarbonate Alkalinity, (calc.)	10/15/21 10:3	30 10/15/21 11	:41 1	135	mg/L			
Carbonate Alkalinity, (calc.)	10/15/21 10:3	30 10/15/21 11	:41 1	0.03	mg/L			
Analytical Method: SM4500Cl E	Ana	lyst: JCC						
* Chloride	10/7/21 12:45	5 10/7/21 12:4	15 1	6.78	mg/L	0.50	1	
Analytical Method: SM4500F G 2017	Ana	lyst: JCC						
* Fluoride	10/13/21 12:4	1 10/13/21 12	:41 1	0.122	mg/L	0.06	0.1	
Analytical Method: SM4500SO4 E 2011	Ana	lyst: JCC						
* Sulfate	10/11/21 12:2	24 10/11/21 12	:24 1	14.4	mg/L	0.50	1	
Analytical Method: Field Measurements	Ana	lyst: DKG						
Conductivity	10/5/21 11:50	10/5/21 11:5	50	267.75	uS/cm			FA
рН	10/5/21 11:50	10/5/21 11:5	50	6.24	SU			FA
Temperature	10/5/21 11:50	10/5/21 11:5	50	21.08	С			FA
Turbidity	10/5/21 11:50	10/5/21 11:5	50	2.81	NTU			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWGADAP

Sample Date: 10/5/21 11:53

Customer ID:

Delivery Date: 10/7/21 10:17

Description: Gadsden Ash Pond - MW-5

Laboratory ID Number: BB18739

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BB18746	Arsenic, Total	mg/L	-0.0000050	0.000147	0.100	0.0998	0.0982	0.102	0.0850 to 0.115	99.8	70.0 to 130	1.62	20.0
BB18746	Molybdenum, Total	mg/L	0.0000224	0.000147	0.100	0.0936	0.0980	0.0962	0.0850 to 0.115	93.6	70.0 to 130	4.59	20.0
BB18746	Cobalt, Total	mg/L	-0.0000028	0.000147	0.100	0.0983	0.100	0.100	0.0850 to 0.115	98.3	70.0 to 130	1.71	20.0
BB18746	Calcium, Total	mg/L	0.00499	0.152	5.00	5.04	5.08	5.12	4.25 to 5.75	101	70.0 to 130	0.791	20.0
BB18746	Selenium, Total	mg/L	0.0000698	0.00100	0.100	0.0976	0.0975	0.0973	0.0850 to 0.115	97.6	70.0 to 130	0.103	20.0
BB18746	Magnesium, Total	mg/L	-0.00772	0.0462	5.00	5.05	5.11	5.14	4.25 to 5.75	101	70.0 to 130	1.18	20.0
BB18746	Boron, Total	mg/L	-1.620E-05	0.0650	1.00	0.967	0.973	0.989	0.850 to 1.15	96.7	70.0 to 130	0.619	20.0
BB18746	Chromium, Total	mg/L	-0.0000170	0.000440	0.100	0.0979	0.0983	0.0988	0.0850 to 0.115	97.7	70.0 to 130	0.408	20.0
BB18746	Mercury, Total by CVAA	mg/L	5.000E-05	0.000500	0.004	0.0029	0.00311	0.00359	0.00340 to 0.00460	72.5	70.0 to 130	6.99	20.0
BB18746	Antimony, Total	mg/L	0.000163	0.00100	0.100	0.0904	0.0913	0.0919	0.0850 to 0.115	90.4	70.0 to 130	0.991	20.0
BB18746	Cadmium, Total	mg/L	0.0000000	0.000147	0.100	0.0918	0.0935	0.0952	0.0850 to 0.115	91.8	70.0 to 130	1.83	20.0
BB18740	Manganese, Dissolved	mg/L	-0.0000191	0.000147	0.100	0.268	0.275	0.101	0.0850 to 0.115	101	70.0 to 130	2.58	20.0
BB18746	Thallium, Total	mg/L	0.0000035	0.000147	0.100	0.103	0.101	0.0961	0.0850 to 0.115	103	70.0 to 130	1.96	20.0
BB18746	Manganese, Total	mg/L	0.0000059	0.000147	0.100	0.0992	0.0986	0.101	0.0850 to 0.115	99.2	70.0 to 130	0.607	20.0
BB18746	Barium, Total	mg/L	0.0000090	0.000200	0.100	0.0965	0.100	0.0995	0.0850 to 0.115	96.5	70.0 to 130	3.56	20.0
BB18746	Sodium, Total	mg/L	0.00361	0.0660	5.00	4.88	4.93	5.00	4.25 to 5.75	97.6	70.0 to 130	1.02	20.0
BB18746	Potassium, Total	mg/L	0.00310	0.367	10.0	9.92	9.86	9.99	8.50 to 11.5	99.2	70.0 to 130	0.607	20.0
BB18746	Lithium, Total	mg/L	-5.480E-05	0.0154	0.200	0.193	0.196	0.198	0.170 to 0.230	96.5	70.0 to 130	1.54	20.0
BB18746	Lead, Total	mg/L	0.0000022	0.000147	0.100	0.105	0.102	0.102	0.0850 to 0.115	105	70.0 to 130	2.90	20.0
BB18740	Iron, Dissolved	mg/L	-4.310E-05	0.0176	0.2	0.408	0.412	0.203	0.170 to 0.230	97.0	70.0 to 130	0.976	20.0
BB18746	Iron, Total	mg/L	0.000319	0.0176	0.2	0.201	0.203	0.203	0.170 to 0.230	100	70.0 to 130	0.990	20.0
BB18746	Beryllium, Total	mg/L	0.0000303	0.000880	0.100	0.0975	0.0886	0.0913	0.0850 to 0.115	97.5	70.0 to 130	9.56	20.0

Batch QC Summary

Customer Account: WMWGADAP

Sample Date:

10/5/21 11:53

Customer ID:

Delivery Date:

10/7/21 10:17

Description: Gadsden Ash Pond - MW-5

Laboratory ID Number: BB18739

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BB19000	Alkalinity, Total as CaCO3	mg/L					4.20	50.9	45.0 to 55.0			4.88	10.0
BB18746	Chloride	mg/L	0.0118	1.00	10.0	9.96	0.0703	10.1	9.00 to 11.0	99.6	80.0 to 120	0.00	20.0
BB18746	Fluoride	mg/L	0.026	0.100	2.50	2.72	0.0256	2.62	2.25 to 2.75	109	80.0 to 120	0.00	20.0
BB18741	Solids, Dissolved	mg/L	0.0000	25.0			377	49.0	40.0 to 60.0			0.132	10.0
BB18746	Sulfate	mg/L	0.312	1.00	20.0	20.0	0.414	19.6	18.0 to 22.0	100	80.0 to 120	0.00	20.0

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified.

Certificate Of Analysis

Description: Gadsden Ash Pond - MW-5 DUPLocation Code:WMWGADAPCollected:10/5/21 11:53

Customer ID:

Laboratory ID Number: BB18740 Submittal Date: 10/7/21 10:17

Name	Prepared Analyzed Vio S	Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Analyst: RDA		Preparati	on Method: El	PA 1638		
* Boron, Total	10/13/21 10:10 10/15/21 11:57	1.015	0.260	mg/L	0.030000	0.1015	
* Calcium, Total	10/13/21 10:10 10/15/21 11:57	1.015	35.9	mg/L	0.070035	0.406	
* Iron, Total	10/13/21 10:10 10/15/21 11:57	1.015	0.286	mg/L	0.008120	0.0406	
* Lithium, Total	10/13/21 10:10 10/15/21 11:57	1.015	Not Detected	mg/L	0.007105	0.01999956	; U
* Magnesium, Total	10/13/21 10:10 10/15/21 11:57	1.015	7.37	mg/L	0.021315	0.406	
* Sodium, Total	10/13/21 10:10 10/15/21 11:57	1.015	13.7	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Analyst: RDA						
* Iron, Dissolved	10/13/21 09:10 10/14/21 12:45	1.015	0.214	mg/L	0.008120	0.0406	
Analytical Method: EPA 200.8	Analyst: DLJ		Preparati	on Method: El	PA 1638		
* Antimony, Total	10/8/21 11:18 10/11/21 12:26	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Arsenic, Total	10/8/21 11:18 10/11/21 12:26	1.015	0.000162	mg/L	0.000068	0.000203	J
* Barium, Total	10/8/21 11:18 10/11/21 12:26	1.015	0.229	mg/L	0.000102	0.000203	
* Beryllium, Total	10/8/21 11:18 10/11/21 12:26	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	10/8/21 11:18 10/11/21 12:26	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	10/8/21 11:18 10/11/21 12:26	1.015	0.000275	mg/L	0.000203	0.001015	J
* Cobalt, Total	10/8/21 11:18 10/11/21 12:26	1.015	0.00108	mg/L	0.000068	0.000203	
* Lead, Total	10/8/21 11:18 10/11/21 12:26	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Molybdenum, Total	10/8/21 11:18 10/11/21 12:26	1.015	0.000142	mg/L	0.000068	0.000203	J
* Potassium, Total	10/8/21 11:18 10/11/21 12:26	1.015	0.689	mg/L	0.169505	0.5075	
* Manganese, Total	10/8/21 11:18 10/11/21 12:26	1.015	0.160	mg/L	0.000068	0.000203	
* Selenium, Total	10/8/21 11:18 10/11/21 12:26	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	10/8/21 11:18 10/11/21 12:26	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Analyst: DLJ						
* Manganese, Dissolved	10/8/21 11:57 10/8/21 14:57	1.015	0.167	mg/L	0.000068	0.000203	
Analytical Method: EPA 245.1	Analyst: ABB						
* Mercury, Total by CVAA	10/15/21 10:53 10/15/21 15:26	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: SM 2320 B	Analyst: JAG						
Alkalinity, Total as CaCO3	10/15/21 10:30 10/15/21 11:41	1	142	mg/L		0.1	
Analytical Method: SM 2540C	Analyst: CNJ						
* Solids, Dissolved	10/11/21 12:09 10/12/21 13:44	1	180	mg/L		25	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Gadsden Ash Pond - MW-5 DUP

Location Code:

WMWGADAP

Collected:

Customer ID:

10/5/21 11:53

10/7/21 10:17

Laboratory ID Number: BB18740

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM 4500CO2 D	Ana	lyst: JAG							
Bicarbonate Alkalinity, (calc.)	10/15/21 10:3	30 10/15/21 1°	1:41	1	142	mg/L			
Carbonate Alkalinity, (calc.)	10/15/21 10:3	30 10/15/21 1°	1:41	1	0.04	mg/L			
Analytical Method: SM4500Cl E	Ana	lyst: JCC							
* Chloride	10/7/21 12:46	3 10/7/21 12:	46	1	6.84	mg/L	0.50	1	
Analytical Method: SM4500F G 2017	Ana	lyst: JCC							
* Fluoride	10/13/21 12:4	12 10/13/21 12	2:42	1	0.104	mg/L	0.06	0.1	
Analytical Method: SM4500SO4 E 2011	Ana	lyst: JCC							
* Sulfate	10/11/21 12:2	25 10/11/21 12	2:25	1	14.5	mg/L	0.50	1	
Analytical Method: Field Measurements	Ana	lyst: DKG							
Conductivity	10/5/21 11:50) 10/5/21 11:	50		267.75	uS/cm			FA
рН	10/5/21 11:50	0 10/5/21 11:	50		6.24	SU			FA
Temperature	10/5/21 11:50	0 10/5/21 11:	50		21.08	С			FA
Turbidity	10/5/21 11:50	0 10/5/21 11:	50		2.81	NTU			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWGADAP **Sample Date:** 10/5/21 11:53

Customer ID:

Delivery Date: 10/7/21 10:17

Description: Gadsden Ash Pond - MW-5 DUP

Laboratory ID Number: BB18740

•				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BB18746	Molybdenum, Total	mg/L	0.0000224	0.000147	0.100	0.0936	0.0980	0.0962	0.0850 to 0.115	93.6	70.0 to 130	4.59	20.0
BB18746	Cobalt, Total	mg/L	-0.0000028	0.000147	0.100	0.0983	0.100	0.100	0.0850 to 0.115	98.3	70.0 to 130	1.71	20.0
BB18746	Arsenic, Total	mg/L	-0.0000050	0.000147	0.100	0.0998	0.0982	0.102	0.0850 to 0.115	99.8	70.0 to 130	1.62	20.0
BB18746	Calcium, Total	mg/L	0.00499	0.152	5.00	5.04	5.08	5.12	4.25 to 5.75	101	70.0 to 130	0.791	20.0
BB18746	Potassium, Total	mg/L	0.00310	0.367	10.0	9.92	9.86	9.99	8.50 to 11.5	99.2	70.0 to 130	0.607	20.0
BB18746	Lithium, Total	mg/L	-5.480E-05	0.0154	0.200	0.193	0.196	0.198	0.170 to 0.230	96.5	70.0 to 130	1.54	20.0
BB18746	Lead, Total	mg/L	0.0000022	0.000147	0.100	0.105	0.102	0.102	0.0850 to 0.115	105	70.0 to 130	2.90	20.0
BB18740	Iron, Dissolved	mg/L	-4.310E-05	0.0176	0.2	0.408	0.412	0.203	0.170 to 0.230	97.0	70.0 to 130	0.976	20.0
BB18746	Iron, Total	mg/L	0.000319	0.0176	0.2	0.201	0.203	0.203	0.170 to 0.230	100	70.0 to 130	0.990	20.0
BB18746	Beryllium, Total	mg/L	0.0000303	0.000880	0.100	0.0975	0.0886	0.0913	0.0850 to 0.115	97.5	70.0 to 130	9.56	20.0
BB18746	Selenium, Total	mg/L	0.0000698	0.00100	0.100	0.0976	0.0975	0.0973	0.0850 to 0.115	97.6	70.0 to 130	0.103	20.0
BB18746	Magnesium, Total	mg/L	-0.00772	0.0462	5.00	5.05	5.11	5.14	4.25 to 5.75	101	70.0 to 130	1.18	20.0
BB18746	Boron, Total	mg/L	-1.620E-05	0.0650	1.00	0.967	0.973	0.989	0.850 to 1.15	96.7	70.0 to 130	0.619	20.0
BB18746	Chromium, Total	mg/L	-0.0000170	0.000440	0.100	0.0979	0.0983	0.0988	0.0850 to 0.115	97.7	70.0 to 130	0.408	20.0
BB18746	Mercury, Total by CVAA	mg/L	5.000E-05	0.000500	0.004	0.0029	0.00311	0.00359	0.00340 to 0.00460	72.5	70.0 to 130	6.99	20.0
BB18746	Thallium, Total	mg/L	0.0000035	0.000147	0.100	0.103	0.101	0.0961	0.0850 to 0.115	103	70.0 to 130	1.96	20.0
BB18746	Manganese, Total	mg/L	0.0000059	0.000147	0.100	0.0992	0.0986	0.101	0.0850 to 0.115	99.2	70.0 to 130	0.607	20.0
BB18746	Barium, Total	mg/L	0.0000090	0.000200	0.100	0.0965	0.100	0.0995	0.0850 to 0.115	96.5	70.0 to 130	3.56	20.0
BB18746	Sodium, Total	mg/L	0.00361	0.0660	5.00	4.88	4.93	5.00	4.25 to 5.75	97.6	70.0 to 130	1.02	20.0
BB18746	Antimony, Total	mg/L	0.000163	0.00100	0.100	0.0904	0.0913	0.0919	0.0850 to 0.115	90.4	70.0 to 130	0.991	20.0
BB18746	Cadmium, Total	mg/L	0.0000000	0.000147	0.100	0.0918	0.0935	0.0952	0.0850 to 0.115	91.8	70.0 to 130	1.83	20.0
BB18740	Manganese, Dissolved	mg/L	-0.0000191	0.000147	0.100	0.268	0.275	0.101	0.0850 to 0.115	101	70.0 to 130	2.58	20.0

Batch QC Summary

Customer Account: WMWGADAP

Sample Date:

10/5/21 11:53

Customer ID:

Delivery Date:

10/7/21 10:17

Description: Gadsden Ash Pond - MW-5 DUP

Laboratory ID Number: BB18740

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	l Limit	Rec	Limit	Prec	<u>Li</u> mit
BB18746	Chloride	mg/L	0.0118	1.00	10.0	9.96	0.0703	10.1	9.00 to 11.0	99.6	80.0 to 120	0.00	20.0
BB18746	Fluoride	mg/L	0.026	0.100	2.50	2.72	0.0256	2.62	2.25 to 2.75	109	80.0 to 120	0.00	20.0
BB19000	Alkalinity, Total as CaCO3	mg/L					4.20	50.9	45.0 to 55.0			4.88	10.0
BB18741	Solids, Dissolved	mg/L	0.0000	25.0			377	49.0	40.0 to 60.0			0.132	10.0
BB18746	Sulfate	mg/L	0.312	1.00	20.0	20.0	0.414	19.6	18.0 to 22.0	100	80.0 to 120	0.00	20.0

Certificate Of Analysis

Description: Gadsden Ash Pond - MW-12Location Code:WMWGADAPCollected:10/5/21 12:58

Customer ID:

Laboratory ID Number: BB18741 Submittal Date: 10/7/21 10:17

Name	Prepared A	nalyzed V	io Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Analys	st: RDA		Preparati	ion Method: I	EPA 1638		
* Boron, Total	10/13/21 10:10	10/15/21 12:01	1.015	0.0661	mg/L	0.030000	0.1015	J
* Calcium, Total	10/13/21 10:10	10/15/21 13:41	10.15	55.8	mg/L	0.70035	4.06	
* Iron, Total	10/13/21 10:10	10/15/21 12:01	1.015	0.0729	mg/L	0.008120	0.0406	
* Lithium, Total	10/13/21 10:10	10/15/21 12:01	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	10/13/21 10:10	10/15/21 12:01	1.015	26.0	mg/L	0.021315	0.406	
* Sodium, Total	10/13/21 10:10	10/15/21 12:01	1.015	15.7	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Analys	st: RDA						
* Iron, Dissolved	10/13/21 09:10	10/14/21 13:02	1.015	0.0602	mg/L	0.008120	0.0406	
Analytical Method: EPA 200.8	Analys	st: DLJ		Preparati	ion Method: I	EPA 1638		
* Antimony, Total	10/8/21 11:18	10/11/21 12:30	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Arsenic, Total	10/8/21 11:18	10/11/21 12:30	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Barium, Total	10/8/21 11:18	10/11/21 12:30	1.015	0.0417	mg/L	0.000102	0.000203	
* Beryllium, Total	10/8/21 11:18	10/11/21 12:30	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	10/8/21 11:18	10/11/21 12:30	1.015	0.000367	mg/L	0.000068	0.000203	
* Chromium, Total	10/8/21 11:18	10/11/21 12:30	1.015	0.000339	mg/L	0.000203	0.001015	J
* Cobalt, Total	10/8/21 11:18	10/11/21 12:30	1.015	0.00448	mg/L	0.000068	0.000203	
* Lead, Total	10/8/21 11:18	10/11/21 12:30	1.015	Not Detected	mg/L	0.000068	0.000203	U
 Molybdenum, Total 	10/8/21 11:18	10/11/21 12:30	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Potassium, Total	10/8/21 11:18	10/11/21 12:30	1.015	0.853	mg/L	0.169505	0.5075	
* Manganese, Total	10/8/21 11:18	10/11/21 13:20	5.075	1.87	mg/L	0.000340	0.001015	
* Selenium, Total	10/8/21 11:18	10/11/21 12:30	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	10/8/21 11:18	10/11/21 12:30	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Analys	st: DLJ						
* Manganese, Dissolved	10/8/21 11:57	10/11/21 11:04	5.075	1.86	mg/L	0.000340	0.001015	
Analytical Method: EPA 245.1	Analys	st: ABB						
* Mercury, Total by CVAA	10/15/21 10:53		1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: SM 2320 B	Analys	st: JAG						
Alkalinity, Total as CaCO3	10/15/21 10:30		1	39.6	mg/L		0.1	
Analytical Method: SM 2540C		st: CNJ			-			
* Solids, Dissolved	10/11/21 12:09		1	378	mg/L		25	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Gadsden Ash Pond - MW-12

Location Code:

WMWGADAP

Collected:

Customer ID:

10/5/21 12:58

Customer ID:

Submittal Date:

10/7/21 10:17

Laboratory ID Number: BB18741					Submit	iai Date:	10/7/21 10	:17	
Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM 4500CO2 D	An	alyst: JAG							_
Bicarbonate Alkalinity, (calc.)	10/15/21 10:	30 10/15/21 1	1:41	1	39.6	mg/L			
Carbonate Alkalinity, (calc.)	10/15/21 10:	30 10/15/21 1	1:41	1	0.00	mg/L			
Analytical Method: SM4500CI E	An	alyst: JCC							
* Chloride	10/7/21 12:4	8 10/7/21 12	2:48	1	6.26	mg/L	0.50	1	
Analytical Method: SM4500F G 2017	An	alyst: JCC							
* Fluoride	10/13/21 12:	44 10/13/21 1	2:44	1	Not Detected	mg/L	0.06	0.1	U
Analytical Method: SM4500SO4 E 2011	An	alyst: JCC							
* Sulfate	10/11/21 12:	26 10/11/21 1	2:26	16	195	mg/L	8.00	16	
Analytical Method: Field Measurements	An	alyst: DKG							
Conductivity	10/5/21 12:5	5 10/5/21 12	2:55		510.48	uS/cm			FA
рН	10/5/21 12:5	5 10/5/21 12	2:55		5.19	SU			FA
Temperature	10/5/21 12:5	5 10/5/21 12	2:55		18.44	С			FA
Turbidity	10/5/21 12:5	5 10/5/21 12	2:55		0.39	NTU			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWGADAP

Sample Date:

10/5/21 12:58

Customer ID:

Delivery Date:

10/7/21 10:17

Description: Gadsden Ash Pond - MW-12

Laboratory ID Number: BB18741

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BB18746	Molybdenum, Total	mg/L	0.0000224	0.000147	0.100	0.0936	0.0980	0.0962	0.0850 to 0.115	93.6	70.0 to 130	4.59	20.0
BB18746	Cobalt, Total	mg/L	-0.0000028	0.000147	0.100	0.0983	0.100	0.100	0.0850 to 0.115	98.3	70.0 to 130	1.71	20.0
BB18746	Selenium, Total	mg/L	0.0000698	0.00100	0.100	0.0976	0.0975	0.0973	0.0850 to 0.115	97.6	70.0 to 130	0.103	20.0
BB18746	Magnesium, Total	mg/L	-0.00772	0.0462	5.00	5.05	5.11	5.14	4.25 to 5.75	101	70.0 to 130	1.18	20.0
BB18746	Boron, Total	mg/L	-1.620E-05	0.0650	1.00	0.967	0.973	0.989	0.850 to 1.15	96.7	70.0 to 130	0.619	20.0
BB18746	Chromium, Total	mg/L	-0.0000170	0.000440	0.100	0.0979	0.0983	0.0988	0.0850 to 0.115	97.7	70.0 to 130	0.408	20.0
BB18746	Mercury, Total by CVAA	mg/L	5.000E-05	0.000500	0.004	0.0029	0.00311	0.00359	0.00340 to 0.00460	72.5	70.0 to 130	6.99	20.0
BB18746	Arsenic, Total	mg/L	-0.0000050	0.000147	0.100	0.0998	0.0982	0.102	0.0850 to 0.115	99.8	70.0 to 130	1.62	20.0
BB18746	Calcium, Total	mg/L	0.00499	0.152	5.00	5.04	5.08	5.12	4.25 to 5.75	101	70.0 to 130	0.791	20.0
BB18746	Antimony, Total	mg/L	0.000163	0.00100	0.100	0.0904	0.0913	0.0919	0.0850 to 0.115	90.4	70.0 to 130	0.991	20.0
BB18746	Cadmium, Total	mg/L	0.0000000	0.000147	0.100	0.0918	0.0935	0.0952	0.0850 to 0.115	91.8	70.0 to 130	1.83	20.0
BB18745	Manganese, Dissolved	mg/L	-0.0000191	0.000147	0.100	0.103	0.104	0.101	0.0850 to 0.115	97.1	70.0 to 130	0.966	20.0
BB18746	Thallium, Total	mg/L	0.0000035	0.000147	0.100	0.103	0.101	0.0961	0.0850 to 0.115	103	70.0 to 130	1.96	20.0
BB18746	Manganese, Total	mg/L	0.0000059	0.000147	0.100	0.0992	0.0986	0.101	0.0850 to 0.115	99.2	70.0 to 130	0.607	20.0
BB18746	Barium, Total	mg/L	0.0000090	0.000200	0.100	0.0965	0.100	0.0995	0.0850 to 0.115	96.5	70.0 to 130	3.56	20.0
BB18746	Sodium, Total	mg/L	0.00361	0.0660	5.00	4.88	4.93	5.00	4.25 to 5.75	97.6	70.0 to 130	1.02	20.0
BB18746	Potassium, Total	mg/L	0.00310	0.367	10.0	9.92	9.86	9.99	8.50 to 11.5	99.2	70.0 to 130	0.607	20.0
BB18746	Lithium, Total	mg/L	-5.480E-05	0.0154	0.200	0.193	0.196	0.198	0.170 to 0.230	96.5	70.0 to 130	1.54	20.0
BB18745	Iron, Dissolved	mg/L	-4.310E-05	0.0176	0.2	0.211	0.214	0.203	0.170 to 0.230	99.2	70.0 to 130	1.41	20.0
BB18746	Lead, Total	mg/L	0.0000022	0.000147	0.100	0.105	0.102	0.102	0.0850 to 0.115	105	70.0 to 130	2.90	20.0
BB18746	Iron, Total	mg/L	0.000319	0.0176	0.2	0.201	0.203	0.203	0.170 to 0.230	100	70.0 to 130	0.990	20.0
BB18746	Beryllium, Total	mg/L	0.0000303	0.000880	0.100	0.0975	0.0886	0.0913	0.0850 to 0.115	97.5	70.0 to 130	9.56	20.0

Batch QC Summary

Customer Account: WMWGADAP

Sample Date:

10/5/21 12:58

Customer ID:

Delivery Date:

10/7/21 10:17

Description: Gadsden Ash Pond - MW-12

Laboratory ID Number: BB18741

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BB19000	Alkalinity, Total as CaCO3	mg/L					4.20	50.9	45.0 to 55.0			4.88	10.0
BB18746	Chloride	mg/L	0.0118	1.00	10.0	9.96	0.0703	10.1	9.00 to 11.0	99.6	80.0 to 120	0.00	20.0
BB18746	Fluoride	mg/L	0.026	0.100	2.50	2.72	0.0256	2.62	2.25 to 2.75	109	80.0 to 120	0.00	20.0
BB18741	Solids, Dissolved	mg/L	0.0000	25.0			377	49.0	40.0 to 60.0			0.132	10.0
BB18746	Sulfate	mg/L	0.312	1.00	20.0	20.0	0.414	19.6	18.0 to 22.0	100	80.0 to 120	0.00	20.0

Certificate Of Analysis

Description: Gadsden Ash Pond - MW-1

Location Code: W

WMWGADAP 10/5/21 14:18

Customer ID:

Submittal Date:

10/7/21 10:17

Laboratory ID Number: BB18742						ai Dale.	10/1/21 10.17		
Name	Prepared A	nalyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Analys	t: RDA			Preparati	on Method: EPA	1638		_
* Boron, Total	10/13/21 10:10	10/15/21 1	2:04	1.015	1.02	mg/L	0.030000	0.1015	
* Calcium, Total	10/13/21 10:10	10/15/21 1	3:44	10.15	198	mg/L	0.70035	4.06	
* Iron, Total	10/13/21 10:10	10/15/21 1	2:04	1.015	2.38	mg/L	0.008120	0.0406	
* Lithium, Total	10/13/21 10:10	10/15/21 1	2:04	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	10/13/21 10:10	10/15/21 1	3:44	10.15	41.7	mg/L	0.21315	4.06	
* Sodium, Total	10/13/21 10:10	10/15/21 1	2:04	1.015	21.8	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Analys	t: RDA							
* Iron, Dissolved	10/13/21 09:10	10/14/21 1	3:05	1.015	2.39	mg/L	0.008120	0.0406	
Analytical Method: EPA 200.8	Analys	t: DLJ			Preparati	on Method: EPA	1638		
* Antimony, Total	10/8/21 11:18	10/11/21 1	2:34	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Arsenic, Total	10/8/21 11:18	10/11/21 1	2:34	1.015	0.00356	mg/L	0.000068	0.000203	
* Barium, Total	10/8/21 11:18	10/11/21 1	2:34	1.015	0.0304	mg/L	0.000102	0.000203	
* Beryllium, Total	10/8/21 11:18	10/11/21 1	2:34	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	10/8/21 11:18	10/11/21 1	2:34	1.015	0.000102	mg/L	0.000068	0.000203	J
* Chromium, Total	10/8/21 11:18	10/11/21 1	2:34	1.015	0.000228	mg/L	0.000203	0.001015	J
* Cobalt, Total	10/8/21 11:18	10/11/21 1	2:34	1.015	0.0169	mg/L	0.000068	0.000203	
* Lead, Total	10/8/21 11:18	10/11/21 1	2:34	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Molybdenum, Total	10/8/21 11:18	10/11/21 1	2:34	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Potassium, Total	10/8/21 11:18	10/11/21 1	2:34	1.015	8.76	mg/L	0.169505	0.5075	
* Manganese, Total	10/8/21 11:18	10/11/21 1	3:24	5.075	3.57	mg/L	0.000340	0.001015	
* Selenium, Total	10/8/21 11:18	10/11/21 1	2:34	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	10/8/21 11:18	10/11/21 1	2:34	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Analys	t: DLJ							
* Manganese, Dissolved	10/8/21 11:57	10/11/21 1	1:08	5.075	3.74	mg/L	0.000340	0.001015	
Analytical Method: EPA 245.1	Analys	t: ABB							
* Mercury, Total by CVAA	10/15/21 10:53	10/15/21 1	5:34	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: SM 2320 B	Analys	t: JAG							
Alkalinity, Total as CaCO3	10/15/21 10:30	10/15/21 1	1:41	1	107	mg/L		0.1	
Analytical Method: SM 2540C	Analys	t: CNJ							
* Solids, Dissolved	10/11/21 12:09	10/12/21 1	3:44	1	964	mg/L		50	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Gadsden Ash Pond - MW-1

Location Code:

WMWGADAP

Collected:

Customer ID:

10/5/21 14:18

10/7/21 10:17

Laboratory ID Number: BB18742

Submittal Date:

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: SM 4500CO2 D	An	alyst: JAG						
Bicarbonate Alkalinity, (calc.)	10/15/21 10:	30 10/15/21 11	:41 1	107	mg/L			
Carbonate Alkalinity, (calc.)	10/15/21 10:	30 10/15/21 11	:41 1	0.01	mg/L			
Analytical Method: SM4500Cl E	An	alyst: JCC						
* Chloride	10/7/21 12:4	9 10/7/21 12:4	19 1	6.10	mg/L	0.50	1	
Analytical Method: SM4500F G 2017	An	alyst: JCC						
* Fluoride	10/13/21 12:	45 10/13/21 12	:45 1	0.0601	mg/L	0.06	0.1	J
Analytical Method: SM4500SO4 E 2011	An	alyst: JCC						
* Sulfate	10/11/21 12:	27 10/11/21 12	:27 32	567	mg/L	16.00	32	
Analytical Method: Field Measurements	An	alyst: DKG						
Conductivity	10/5/21 14:1	5 10/5/21 14:1	15	1200.42	uS/cm			FA
рН	10/5/21 14:1	5 10/5/21 14:1	15	5.79	SU			FA
Temperature	10/5/21 14:1	5 10/5/21 14:1	15	18.80	С			FA
Turbidity	10/5/21 14:1	5 10/5/21 14:1	15	2.76	NTU			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWGADAP Sample Date: 10/5/21 14:18

Delivery Date:

Customer ID:

10/7/21 10:17

Description: Gadsden Ash Pond - MW-1

Laboratory ID Number: BB18742

'				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BB18746	Molybdenum, Total	mg/L	0.0000224	0.000147	0.100	0.0936	0.0980	0.0962	0.0850 to 0.115	93.6	70.0 to 130	4.59	20.0
BB18746	Cobalt, Total	mg/L	-0.0000028	0.000147	0.100	0.0983	0.100	0.100	0.0850 to 0.115	98.3	70.0 to 130	1.71	20.0
BB18746	Calcium, Total	mg/L	0.00499	0.152	5.00	5.04	5.08	5.12	4.25 to 5.75	101	70.0 to 130	0.791	20.0
BB18746	Potassium, Total	mg/L	0.00310	0.367	10.0	9.92	9.86	9.99	8.50 to 11.5	99.2	70.0 to 130	0.607	20.0
BB18746	Lithium, Total	mg/L	-5.480E-05	0.0154	0.200	0.193	0.196	0.198	0.170 to 0.230	96.5	70.0 to 130	1.54	20.0
BB18745	Iron, Dissolved	mg/L	-4.310E-05	0.0176	0.2	0.211	0.214	0.203	0.170 to 0.230	99.2	70.0 to 130	1.41	20.0
BB18746	Lead, Total	mg/L	0.0000022	0.000147	0.100	0.105	0.102	0.102	0.0850 to 0.115	105	70.0 to 130	2.90	20.0
BB18746	Iron, Total	mg/L	0.000319	0.0176	0.2	0.201	0.203	0.203	0.170 to 0.230	100	70.0 to 130	0.990	20.0
BB18746	Beryllium, Total	mg/L	0.0000303	0.000880	0.100	0.0975	0.0886	0.0913	0.0850 to 0.115	97.5	70.0 to 130	9.56	20.0
BB18746	Arsenic, Total	mg/L	-0.0000050	0.000147	0.100	0.0998	0.0982	0.102	0.0850 to 0.115	99.8	70.0 to 130	1.62	20.0
BB18746	Thallium, Total	mg/L	0.0000035	0.000147	0.100	0.103	0.101	0.0961	0.0850 to 0.115	103	70.0 to 130	1.96	20.0
BB18746	Manganese, Total	mg/L	0.0000059	0.000147	0.100	0.0992	0.0986	0.101	0.0850 to 0.115	99.2	70.0 to 130	0.607	20.0
BB18746	Barium, Total	mg/L	0.0000090	0.000200	0.100	0.0965	0.100	0.0995	0.0850 to 0.115	96.5	70.0 to 130	3.56	20.0
BB18746	Sodium, Total	mg/L	0.00361	0.0660	5.00	4.88	4.93	5.00	4.25 to 5.75	97.6	70.0 to 130	1.02	20.0
BB18746	Selenium, Total	mg/L	0.0000698	0.00100	0.100	0.0976	0.0975	0.0973	0.0850 to 0.115	97.6	70.0 to 130	0.103	20.0
BB18746	Magnesium, Total	mg/L	-0.00772	0.0462	5.00	5.05	5.11	5.14	4.25 to 5.75	101	70.0 to 130	1.18	20.0
BB18746	Boron, Total	mg/L	-1.620E-05	0.0650	1.00	0.967	0.973	0.989	0.850 to 1.15	96.7	70.0 to 130	0.619	20.0
BB18746	Chromium, Total	mg/L	-0.0000170	0.000440	0.100	0.0979	0.0983	0.0988	0.0850 to 0.115	97.7	70.0 to 130	0.408	20.0
BB18746	Mercury, Total by CVAA	mg/L	5.000E-05	0.000500	0.004	0.0029	0.00311	0.00359	0.00340 to 0.00460	72.5	70.0 to 130	6.99	20.0
BB18746	Antimony, Total	mg/L	0.000163	0.00100	0.100	0.0904	0.0913	0.0919	0.0850 to 0.115	90.4	70.0 to 130	0.991	20.0
BB18746	Cadmium, Total	mg/L	0.0000000	0.000147	0.100	0.0918	0.0935	0.0952	0.0850 to 0.115	91.8	70.0 to 130	1.83	20.0
BB18745	Manganese, Dissolved	mg/L	-0.0000191	0.000147	0.100	0.103	0.104	0.101	0.0850 to 0.115	97.1	70.0 to 130	0.966	20.0

Batch QC Summary

Customer Account: WMWGADAP

Sample Date:

10/5/21 14:18

Customer ID:

Delivery Date:

10/7/21 10:17

Description: Gadsden Ash Pond - MW-1

Laboratory ID Number: BB18742

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	l Limit	Rec	Limit	Prec	<u>Li</u> mit
BB18746	Chloride	mg/L	0.0118	1.00	10.0	9.96	0.0703	10.1	9.00 to 11.0	99.6	80.0 to 120	0.00	20.0
BB18746	Fluoride	mg/L	0.026	0.100	2.50	2.72	0.0256	2.62	2.25 to 2.75	109	80.0 to 120	0.00	20.0
BB18741	Solids, Dissolved	mg/L	0.0000	25.0			377	49.0	40.0 to 60.0			0.132	10.0
BB18746	Sulfate	mg/L	0.312	1.00	20.0	20.0	0.414	19.6	18.0 to 22.0	100	80.0 to 120	0.00	20.0
BB19000	Alkalinity, Total as CaCO3	mg/L					4.20	50.9	45.0 to 55.0			4.88	10.0

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified.

Certificate Of Analysis

Description: Gadsden Ash Pond - MW-7

Location Code:

WMWGADAP 10/5/21 15:11

Collected:

Customer ID: Submittal Date:

10/7/21 10:17

Laboratory ID Number: BB18743

Name	Prepared /	Analyzed Vid	Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Analy	st: RDA		Preparati	on Method: I	EPA 1638		
* Boron, Total	10/13/21 10:10	10/15/21 12:07	1.015	0.0673	mg/L	0.030000	0.1015	J
* Calcium, Total	10/13/21 10:10	10/15/21 12:07	1.015	15.9	mg/L	0.070035	0.406	
* Iron, Total	10/13/21 10:10	10/15/21 12:07	1.015	0.0213	mg/L	0.008120	0.0406	J
* Lithium, Total	10/13/21 10:10	10/15/21 12:07	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	10/13/21 10:10	10/15/21 12:07	1.015	3.51	mg/L	0.021315	0.406	
* Sodium, Total	10/13/21 10:10	10/15/21 12:07	1.015	15.9	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Analy	st: RDA						
* Iron, Dissolved	10/13/21 09:10	10/14/21 13:09	1.015	Not Detected	mg/L	0.008120	0.0406	U
Analytical Method: EPA 200.8	Analy	st: DLJ		Preparati	on Method: I	EPA 1638		
* Antimony, Total	10/8/21 11:18	10/11/21 12:37	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Arsenic, Total	10/8/21 11:18	10/11/21 12:37	1.015	0.0000694	mg/L	0.000068	0.000203	J
* Barium, Total	10/8/21 11:18	10/11/21 12:37	1.015	0.0716	mg/L	0.000102	0.000203	
* Beryllium, Total	10/8/21 11:18	10/11/21 12:37	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	10/8/21 11:18	10/11/21 12:37	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	10/8/21 11:18	10/11/21 12:37	1.015	0.000248	mg/L	0.000203	0.001015	J
* Cobalt, Total	10/8/21 11:18	10/11/21 12:37	1.015	0.000182	mg/L	0.000068	0.000203	J
* Lead, Total	10/8/21 11:18	10/11/21 12:37	1.015	Not Detected	mg/L	0.000068	0.000203	U
 Molybdenum, Total 	10/8/21 11:18	10/11/21 12:37	1.015	0.0000955	mg/L	0.000068	0.000203	J
* Potassium, Total	10/8/21 11:18	10/11/21 12:37	1.015	0.292	mg/L	0.169505	0.5075	J
* Manganese, Total	10/8/21 11:18	10/11/21 12:37	1.015	0.0486	mg/L	0.000068	0.000203	
* Selenium, Total	10/8/21 11:18	10/11/21 12:37	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	10/8/21 11:18	10/11/21 12:37	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Analy	st: DLJ						
* Manganese, Dissolved	10/8/21 11:57	10/8/21 15:26	1.015	0.0551	mg/L	0.000068	0.000203	
Analytical Method: EPA 245.1		st: ABB						
Mercury, Total by CVAA	10/15/21 10:53	10/15/21 15:38	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: SM 2320 B	Analy	st: JAG						
Alkalinity, Total as CaCO3	•	10/15/21 11:41	1	70.2	mg/L		0.1	
Analytical Method: SM 2540C	Analy	st: CNJ						
* Solids, Dissolved	10/11/21 12:09		1	113	mg/L		25	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Gadsden Ash Pond - MW-7

Location Code:

WMWGADAP

Collected:

Customer ID:

10/5/21 15:11

10/7/21 10:17

Laboratory ID Number: BB18743

Submittal Date:

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM 4500CO2 D	An	alyst: JAG					-		
Bicarbonate Alkalinity, (calc.)	10/15/21 10:	30 10/15/21 1	1:41	1	70.2	mg/L			
Carbonate Alkalinity, (calc.)	10/15/21 10:	30 10/15/21 1	1:41	1	0.02	mg/L			
Analytical Method: SM4500Cl E	An	alyst: JCC							
* Chloride	10/7/21 12:5	0 10/7/21 12	2:50	1	6.43	mg/L	0.50	1	
Analytical Method: SM4500F G 2017	An	alyst: JCC							
Fluoride	10/13/21 12:	46 10/13/21 1	2:46	1	0.0933	mg/L	0.06	0.1	J
Analytical Method: SM4500SO4 E 2011	An	alyst: JCC							
Sulfate	10/11/21 12:	28 10/11/21 1	2:28	1	9.19	mg/L	0.50	1	
Analytical Method: Field Measurements	An	alyst: DKG							
Conductivity	10/5/21 15:0	8 10/5/21 15	3:08		162.09	uS/cm			FA
рН	10/5/21 15:0	8 10/5/21 15	5:08		6.06	SU			FA
Temperature	10/5/21 15:0	8 10/5/21 15	5:08		19.14	С			FA
Turbidity	10/5/21 15:0	8 10/5/21 15	:08		0.99	NTU			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWGADAP

Sample Date: 10/5/21 15:11

Customer ID:

Delivery Date: 10/7/21 10:17

Description: Gadsden Ash Pond - MW-7

Laboratory ID Number: BB18743

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BB18746	Calcium, Total	mg/L	0.00499	0.152	5.00	5.04	5.08	5.12	4.25 to 5.75	101	70.0 to 130	0.791	20.0
BB18746	Selenium, Total	mg/L	0.0000698	0.00100	0.100	0.0976	0.0975	0.0973	0.0850 to 0.115	97.6	70.0 to 130	0.103	20.0
BB18746	Magnesium, Total	mg/L	-0.00772	0.0462	5.00	5.05	5.11	5.14	4.25 to 5.75	101	70.0 to 130	1.18	20.0
BB18746	Boron, Total	mg/L	-1.620E-05	0.0650	1.00	0.967	0.973	0.989	0.850 to 1.15	96.7	70.0 to 130	0.619	20.0
BB18746	Chromium, Total	mg/L	-0.0000170	0.000440	0.100	0.0979	0.0983	0.0988	0.0850 to 0.115	97.7	70.0 to 130	0.408	20.0
BB18746	Mercury, Total by CVAA	mg/L	5.000E-05	0.000500	0.004	0.0029	0.00311	0.00359	0.00340 to 0.00460	72.5	70.0 to 130	6.99	20.0
BB18746	Arsenic, Total	mg/L	-0.0000050	0.000147	0.100	0.0998	0.0982	0.102	0.0850 to 0.115	99.8	70.0 to 130	1.62	20.0
BB18746	Molybdenum, Total	mg/L	0.0000224	0.000147	0.100	0.0936	0.0980	0.0962	0.0850 to 0.115	93.6	70.0 to 130	4.59	20.0
BB18746	Cobalt, Total	mg/L	-0.0000028	0.000147	0.100	0.0983	0.100	0.100	0.0850 to 0.115	98.3	70.0 to 130	1.71	20.0
BB18746	Antimony, Total	mg/L	0.000163	0.00100	0.100	0.0904	0.0913	0.0919	0.0850 to 0.115	90.4	70.0 to 130	0.991	20.0
BB18746	Cadmium, Total	mg/L	0.0000000	0.000147	0.100	0.0918	0.0935	0.0952	0.0850 to 0.115	91.8	70.0 to 130	1.83	20.0
BB18745	Manganese, Dissolved	mg/L	-0.0000191	0.000147	0.100	0.103	0.104	0.101	0.0850 to 0.115	97.1	70.0 to 130	0.966	20.0
BB18746	Thallium, Total	mg/L	0.0000035	0.000147	0.100	0.103	0.101	0.0961	0.0850 to 0.115	103	70.0 to 130	1.96	20.0
BB18746	Manganese, Total	mg/L	0.0000059	0.000147	0.100	0.0992	0.0986	0.101	0.0850 to 0.115	99.2	70.0 to 130	0.607	20.0
BB18746	Barium, Total	mg/L	0.0000090	0.000200	0.100	0.0965	0.100	0.0995	0.0850 to 0.115	96.5	70.0 to 130	3.56	20.0
BB18746	Sodium, Total	mg/L	0.00361	0.0660	5.00	4.88	4.93	5.00	4.25 to 5.75	97.6	70.0 to 130	1.02	20.0
BB18746	Potassium, Total	mg/L	0.00310	0.367	10.0	9.92	9.86	9.99	8.50 to 11.5	99.2	70.0 to 130	0.607	20.0
BB18746	Lithium, Total	mg/L	-5.480E-05	0.0154	0.200	0.193	0.196	0.198	0.170 to 0.230	96.5	70.0 to 130	1.54	20.0
BB18745	Iron, Dissolved	mg/L	-4.310E-05	0.0176	0.2	0.211	0.214	0.203	0.170 to 0.230	99.2	70.0 to 130	1.41	20.0
BB18746	Lead, Total	mg/L	0.0000022	0.000147	0.100	0.105	0.102	0.102	0.0850 to 0.115	105	70.0 to 130	2.90	20.0
BB18746	Iron, Total	mg/L	0.000319	0.0176	0.2	0.201	0.203	0.203	0.170 to 0.230	100	70.0 to 130	0.990	20.0
BB18746	Beryllium, Total	mg/L	0.0000303	0.000880	0.100	0.0975	0.0886	0.0913	0.0850 to 0.115	97.5	70.0 to 130	9.56	20.0

Batch QC Summary

Customer Account: WMWGADAP

Sample Date:

10/5/21 15:11

Customer ID:

Delivery Date:

10/7/21 10:17

Description: Gadsden Ash Pond - MW-7

Laboratory ID Number: BB18743

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BB19000	Alkalinity, Total as CaCO3	mg/L					4.20	50.9	45.0 to 55.0			4.88	10.0
BB18746	Chloride	mg/L	0.0118	1.00	10.0	9.96	0.0703	10.1	9.00 to 11.0	99.6	80.0 to 120	0.00	20.0
BB18746	Fluoride	mg/L	0.026	0.100	2.50	2.72	0.0256	2.62	2.25 to 2.75	109	80.0 to 120	0.00	20.0
BB18741	Solids, Dissolved	mg/L	0.0000	25.0			377	49.0	40.0 to 60.0			0.132	10.0
BB18746	Sulfate	mg/L	0.312	1.00	20.0	20.0	0.414	19.6	18.0 to 22.0	100	80.0 to 120	0.00	20.0

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified.

Certificate Of Analysis

Description: Gadsden Ash Pond - MW-2VALocation Code:WMWGADAPCollected:10/6/21 10:25

Customer ID:

Laboratory ID Number: BB18744

Name	Prepared Analyzed Vio S	pec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Analyst: RDA		Preparati	on Method: E	PA 1638		
* Boron, Total	10/13/21 10:10 10/15/21 12:11	1.015	0.540	mg/L	0.030000	0.1015	
* Calcium, Total	10/13/21 10:10 10/15/21 12:11	1.015	5.38	mg/L	0.070035	0.406	
* Iron, Total	10/13/21 10:10 10/15/21 12:11	1.015	0.0933	mg/L	0.008120	0.0406	
* Lithium, Total	10/13/21 10:10 10/15/21 12:11	1.015	0.0685	mg/L	0.007105	0.01999956	6
* Magnesium, Total	10/13/21 10:10 10/15/21 12:11	1.015	1.31	mg/L	0.021315	0.406	
* Sodium, Total	10/13/21 10:10 10/15/21 13:47	101.5	126	mg/L	3.045	40.6	
Analytical Method: EPA 200.7	Analyst: RDA						
* Iron, Dissolved	10/13/21 09:10 10/14/21 13:12	1.015	0.0384	mg/L	0.008120	0.0406	J
Analytical Method: EPA 200.8	Analyst: DLJ		Preparati	on Method: E	PA 1638		
* Antimony, Total	10/8/21 11:18 10/11/21 12:41	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Arsenic, Total	10/8/21 11:18 10/11/21 12:41	1.015	0.00139	mg/L	0.000068	0.000203	
* Barium, Total	10/8/21 11:18 10/11/21 12:41	1.015	0.120	mg/L	0.000102	0.000203	
* Beryllium, Total	10/8/21 11:18 10/11/21 12:41	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	10/8/21 11:18 10/11/21 12:41	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	10/8/21 11:18 10/11/21 12:41	1.015	0.000250	mg/L	0.000203	0.001015	J
* Cobalt, Total	10/8/21 11:18 10/11/21 12:41	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Lead, Total	10/8/21 11:18 10/11/21 12:41	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Molybdenum, Total	10/8/21 11:18 10/11/21 12:41	1.015	0.00363	mg/L	0.000068	0.000203	
* Potassium, Total	10/8/21 11:18 10/11/21 12:41	1.015	0.706	mg/L	0.169505	0.5075	
* Manganese, Total	10/8/21 11:18 10/11/21 12:41	1.015	0.0144	mg/L	0.000068	0.000203	
* Selenium, Total	10/8/21 11:18 10/11/21 12:41	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	10/8/21 11:18 10/11/21 12:41	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Analyst: DLJ						
* Manganese, Dissolved	10/8/21 11:57 10/8/21 15:29	1.015	0.0135	mg/L	0.000068	0.000203	
Analytical Method: EPA 245.1	Analyst: ABB						
* Mercury, Total by CVAA	10/15/21 10:53 10/15/21 15:42	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: SM 2320 B	Analyst: JAG						
Alkalinity, Total as CaCO3	10/15/21 10:30 10/15/21 11:41	1	269	mg/L		0.1	
Analytical Method: SM 2540C	Analyst: CNJ						
* Solids, Dissolved	10/12/21 11:15 10/13/21 12:56	1	317	mg/L		25	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Gadsden Ash Pond - MW-2VA

Location Code:

WMWGADAP

Collected:

Customer ID:

10/6/21 10:25

Laboratory ID Number: BB18744

Submittal Date: 10/7/21 10:17

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM 4500CO2 D	An	alyst: JAG					-		
Bicarbonate Alkalinity, (calc.)	10/15/21 10:	30 10/15/21 1	1:41	1	265	mg/L			
Carbonate Alkalinity, (calc.)	10/15/21 10:	30 10/15/21 1	1:41	1	4.23	mg/L			
Analytical Method: SM4500Cl E	An	alyst: JCC							
* Chloride	10/7/21 12:5	1 10/7/21 12	:51	1	6.82	mg/L	0.50	1	
Analytical Method: SM4500F G 2017	An	alyst: JCC							
* Fluoride	10/13/21 12:	47 10/13/21 1	2:47	1	2.56	mg/L	0.06	0.1	
Analytical Method: SM4500SO4 E 2011	An	alyst: JCC							
* Sulfate	10/11/21 12:	30 10/11/21 1	2:30	1	2.44	mg/L	0.50	1	
Analytical Method: Field Measurements	An	alyst: DKG							
Conductivity	10/6/21 10:2	2 10/6/21 10	:22		470.65	uS/cm			FA
рН	10/6/21 10:2	2 10/6/21 10	:22		8.36	SU			FA
Temperature	10/6/21 10:2	2 10/6/21 10	:22		22.40	С			FA
Turbidity	10/6/21 10:2	2 10/6/21 10	:22		0.62	NTU			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWGADAP **Sample Date:** 10/6/21 10:25

Customer ID:

Delivery Date: 10/7/21 10:17

Description: Gadsden Ash Pond - MW-2VA

Laboratory ID Number: BB18744

				MB	<u> </u>				Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BB18746	Calcium, Total	mg/L	0.00499	0.152	5.00	5.04	5.08	5.12	4.25 to 5.75	101	70.0 to 130	0.791	20.0
BB18746	Molybdenum, Total	mg/L	0.0000224	0.000147	0.100	0.0936	0.0980	0.0962	0.0850 to 0.115	93.6	70.0 to 130	4.59	20.0
BB18746	Cobalt, Total	mg/L	-0.0000028	0.000147	0.100	0.0983	0.100	0.100	0.0850 to 0.115	98.3	70.0 to 130	1.71	20.0
BB18746	Arsenic, Total	mg/L	-0.0000050	0.000147	0.100	0.0998	0.0982	0.102	0.0850 to 0.115	99.8	70.0 to 130	1.62	20.0
BB18746	Thallium, Total	mg/L	0.0000035	0.000147	0.100	0.103	0.101	0.0961	0.0850 to 0.115	103	70.0 to 130	1.96	20.0
BB18746	Manganese, Total	mg/L	0.0000059	0.000147	0.100	0.0992	0.0986	0.101	0.0850 to 0.115	99.2	70.0 to 130	0.607	20.0
BB18746	Barium, Total	mg/L	0.0000090	0.000200	0.100	0.0965	0.100	0.0995	0.0850 to 0.115	96.5	70.0 to 130	3.56	20.0
BB18746	Sodium, Total	mg/L	0.00361	0.0660	5.00	4.88	4.93	5.00	4.25 to 5.75	97.6	70.0 to 130	1.02	20.0
BB18746	Potassium, Total	mg/L	0.00310	0.367	10.0	9.92	9.86	9.99	8.50 to 11.5	99.2	70.0 to 130	0.607	20.0
BB18746	Lithium, Total	mg/L	-5.480E-05	0.0154	0.200	0.193	0.196	0.198	0.170 to 0.230	96.5	70.0 to 130	1.54	20.0
BB18745	Iron, Dissolved	mg/L	-4.310E-05	0.0176	0.2	0.211	0.214	0.203	0.170 to 0.230	99.2	70.0 to 130	1.41	20.0
BB18746	Lead, Total	mg/L	0.0000022	0.000147	0.100	0.105	0.102	0.102	0.0850 to 0.115	105	70.0 to 130	2.90	20.0
BB18746	Iron, Total	mg/L	0.000319	0.0176	0.2	0.201	0.203	0.203	0.170 to 0.230	100	70.0 to 130	0.990	20.0
BB18746	Beryllium, Total	mg/L	0.0000303	0.000880	0.100	0.0975	0.0886	0.0913	0.0850 to 0.115	97.5	70.0 to 130	9.56	20.0
BB18746	Selenium, Total	mg/L	0.0000698	0.00100	0.100	0.0976	0.0975	0.0973	0.0850 to 0.115	97.6	70.0 to 130	0.103	20.0
BB18746	Magnesium, Total	mg/L	-0.00772	0.0462	5.00	5.05	5.11	5.14	4.25 to 5.75	101	70.0 to 130	1.18	20.0
BB18746	Boron, Total	mg/L	-1.620E-05	0.0650	1.00	0.967	0.973	0.989	0.850 to 1.15	96.7	70.0 to 130	0.619	20.0
BB18746	Chromium, Total	mg/L	-0.0000170	0.000440	0.100	0.0979	0.0983	0.0988	0.0850 to 0.115	97.7	70.0 to 130	0.408	20.0
BB18746	Mercury, Total by CVAA	mg/L	5.000E-05	0.000500	0.004	0.0029	0.00311	0.00359	0.00340 to 0.00460	72.5	70.0 to 130	6.99	20.0
BB18746	Antimony, Total	mg/L	0.000163	0.00100	0.100	0.0904	0.0913	0.0919	0.0850 to 0.115	90.4	70.0 to 130	0.991	20.0
BB18746	Cadmium, Total	mg/L	0.0000000	0.000147	0.100	0.0918	0.0935	0.0952	0.0850 to 0.115	91.8	70.0 to 130	1.83	20.0
BB18745	Manganese, Dissolved	mg/L	-0.0000191	0.000147	0.100	0.103	0.104	0.101	0.0850 to 0.115	97.1	70.0 to 130	0.966	20.0

Batch QC Summary

Customer Account: WMWGADAP

Sample Date: 10/6/21 10:25

Customer ID:

Delivery Date: 10/7/21 10:17

Description: Gadsden Ash Pond - MW-2VA

Laboratory ID Number: BB18744

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BB19000	Alkalinity, Total as CaCO3	mg/L					4.20	50.9	45.0 to 55.0			4.88	10.0
BB18746	Chloride	mg/L	0.0118	1.00	10.0	9.96	0.0703	10.1	9.00 to 11.0	99.6	80.0 to 120	0.00	20.0
BB18746	Fluoride	mg/L	0.026	0.100	2.50	2.72	0.0256	2.62	2.25 to 2.75	109	80.0 to 120	0.00	20.0
BB18744	Solids, Dissolved	mg/L	1.00	25.0			326	50.0	40.0 to 60.0			1.40	10.0
BB18746	Sulfate	mg/L	0.312	1.00	20.0	20.0	0.414	19.6	18.0 to 22.0	100	80.0 to 120	0.00	20.0

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified.

Certificate Of Analysis

Description: Gadsden Ash Pond - MW-21VCLocation Code:WMWGADAPCollected:10/6/21 12:46

Customer ID:

Laboratory ID Number: BB18745 Submittal Date: 10/7/21 10:17

Name	Prepared Analyzed Vio	Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Analyst: RDA		Preparati	ion Method: E	PA 1638		
* Boron, Total	10/13/21 10:10 10/15/21 12:14	1.015	0.532	mg/L	0.030000	0.1015	
* Calcium, Total	10/13/21 10:10 10/15/21 12:14	1.015	3.46	mg/L	0.070035	0.406	
* Iron, Total	10/13/21 10:10 10/15/21 12:14	1.015	0.536	mg/L	0.008120	0.0406	
* Lithium, Total	10/13/21 10:10 10/15/21 12:14	1.015	0.227	mg/L	0.007105	0.01999956	
* Magnesium, Total	10/13/21 10:10 10/15/21 12:14	1.015	1.16	mg/L	0.021315	0.406	
* Sodium, Total	10/13/21 10:10 10/15/21 13:51	101.5	357	mg/L	3.045	40.6	
Analytical Method: EPA 200.7	Analyst: RDA						
* Iron, Dissolved	10/13/21 09:10 10/14/21 13:15	1.015	0.0126	mg/L	0.008120	0.0406	J
Analytical Method: EPA 200.8	Analyst: DLJ		Preparati	ion Method: E	PA 1638		
* Antimony, Total	10/8/21 11:18 10/11/21 12:44	1.015	0.000510	mg/L	0.000508	0.001015	J
* Arsenic, Total	10/8/21 11:18 10/11/21 12:44	1.015	0.00162	mg/L	0.000068	0.000203	
* Barium, Total	10/8/21 11:18 10/11/21 12:44	1.015	0.374	mg/L	0.000102	0.000203	
* Beryllium, Total	10/8/21 11:18 10/11/21 12:44	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	10/8/21 11:18 10/11/21 12:44	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	10/8/21 11:18 10/11/21 12:44	1.015	0.00111	mg/L	0.000203	0.001015	
* Cobalt, Total	10/8/21 11:18 10/11/21 12:44	1.015	0.000205	mg/L	0.000068	0.000203	
* Lead, Total	10/8/21 11:18 10/11/21 12:44	1.015	0.000225	mg/L	0.000068	0.000203	
* Molybdenum, Total	10/8/21 11:18 10/11/21 12:44	1.015	0.00107	mg/L	0.000068	0.000203	
* Potassium, Total	10/8/21 11:18 10/11/21 12:44	1.015	1.08	mg/L	0.169505	0.5075	
* Manganese, Total	10/8/21 11:18 10/11/21 12:44	1.015	0.00930	mg/L	0.000068	0.000203	
* Selenium, Total	10/8/21 11:18 10/11/21 12:44	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	10/8/21 11:18 10/11/21 12:44	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Analyst: DLJ						
* Manganese, Dissolved	10/8/21 11:57 10/8/21 15:33	1.015	0.00586	mg/L	0.000068	0.000203	
Analytical Method: EPA 245.1	Analyst: ABB						
* Mercury, Total by CVAA	10/15/21 10:53 10/15/21 15:46	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: SM 2320 B	Analyst: JAG						
Alkalinity, Total as CaCO3	10/15/21 10:30 10/15/21 11:41	1	549	mg/L		0.1	
Analytical Method: SM 2540C	Analyst: CNJ						
* Solids, Dissolved	10/12/21 11:15 10/13/21 12:56	1	864	mg/L		75.8	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Gadsden Ash Pond - MW-21VC

Location Code:

WMWGADAP

Collected:

Customer ID:

10/6/21 12:46

Laboratory ID Number: BB18745

Submittal Date: 10/7/21 10:17

Name	Prepared	Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: SM 4500CO2 D	An	alyst: JAG						
Bicarbonate Alkalinity, (calc.)	10/15/21 10:	30 10/15/21 11	:41 1	533	mg/L			
Carbonate Alkalinity, (calc.)	10/15/21 10:	30 10/15/21 11	:41 1	16.2	mg/L			
Analytical Method: SM4500Cl E	An	alyst: JCC						
* Chloride	10/7/21 12:5	8 10/7/21 12:	58 40	166	mg/L	20.00	40	
Analytical Method: SM4500F G 2017	An	alyst: JCC						
* Fluoride	10/13/21 12:	53 10/13/21 12	2:53 3	8.34	mg/L	0.18	0.3	
Analytical Method: SM4500SO4 E 2011	An	alyst: JCC						
* Sulfate	10/11/21 12:	31 10/11/21 12	2:31 1	8.35	mg/L	0.50	1	
Analytical Method: Field Measurements	An	alyst: DKG						
Conductivity	10/6/21 12:4	3 10/6/21 12:	43	1478.62	uS/cm			FA
рН	10/6/21 12:4	3 10/6/21 12:	43	8.53	SU			FA
Temperature	10/6/21 12:4	3 10/6/21 12:	43	19.22	С			FA
Turbidity	10/6/21 12:4	3 10/6/21 12:	43	9.3	NTU			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWGADAP **Sample Date:** 10/6/21 12:46

Customer ID:

Delivery Date: 10/7/21 10:17

Description: Gadsden Ash Pond - MW-21VC

Laboratory ID Number: BB18745

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BB18746	Molybdenum, Total	mg/L	0.0000224	0.000147	0.100	0.0936	0.0980	0.0962	0.0850 to 0.115	93.6	70.0 to 130	4.59	20.0
BB18746	Cobalt, Total	mg/L	-0.0000028	0.000147	0.100	0.0983	0.100	0.100	0.0850 to 0.115	98.3	70.0 to 130	1.71	20.0
BB18746	Arsenic, Total	mg/L	-0.0000050	0.000147	0.100	0.0998	0.0982	0.102	0.0850 to 0.115	99.8	70.0 to 130	1.62	20.0
BB18746	Calcium, Total	mg/L	0.00499	0.152	5.00	5.04	5.08	5.12	4.25 to 5.75	101	70.0 to 130	0.791	20.0
BB18746	Antimony, Total	mg/L	0.000163	0.00100	0.100	0.0904	0.0913	0.0919	0.0850 to 0.115	90.4	70.0 to 130	0.991	20.0
BB18746	Cadmium, Total	mg/L	0.0000000	0.000147	0.100	0.0918	0.0935	0.0952	0.0850 to 0.115	91.8	70.0 to 130	1.83	20.0
BB18745	Manganese, Dissolved	mg/L	-0.0000191	0.000147	0.100	0.103	0.104	0.101	0.0850 to 0.115	97.1	70.0 to 130	0.966	20.0
BB18746	Thallium, Total	mg/L	0.0000035	0.000147	0.100	0.103	0.101	0.0961	0.0850 to 0.115	103	70.0 to 130	1.96	20.0
BB18746	Manganese, Total	mg/L	0.0000059	0.000147	0.100	0.0992	0.0986	0.101	0.0850 to 0.115	99.2	70.0 to 130	0.607	20.0
BB18746	Barium, Total	mg/L	0.0000090	0.000200	0.100	0.0965	0.100	0.0995	0.0850 to 0.115	96.5	70.0 to 130	3.56	20.0
BB18746	Sodium, Total	mg/L	0.00361	0.0660	5.00	4.88	4.93	5.00	4.25 to 5.75	97.6	70.0 to 130	1.02	20.0
BB18746	Potassium, Total	mg/L	0.00310	0.367	10.0	9.92	9.86	9.99	8.50 to 11.5	99.2	70.0 to 130	0.607	20.0
BB18746	Lithium, Total	mg/L	-5.480E-05	0.0154	0.200	0.193	0.196	0.198	0.170 to 0.230	96.5	70.0 to 130	1.54	20.0
BB18745	Iron, Dissolved	mg/L	-4.310E-05	0.0176	0.2	0.211	0.214	0.203	0.170 to 0.230	99.2	70.0 to 130	1.41	20.0
BB18746	Lead, Total	mg/L	0.0000022	0.000147	0.100	0.105	0.102	0.102	0.0850 to 0.115	105	70.0 to 130	2.90	20.0
BB18746	Iron, Total	mg/L	0.000319	0.0176	0.2	0.201	0.203	0.203	0.170 to 0.230	100	70.0 to 130	0.990	20.0
BB18746	Beryllium, Total	mg/L	0.0000303	0.000880	0.100	0.0975	0.0886	0.0913	0.0850 to 0.115	97.5	70.0 to 130	9.56	20.0
BB18746	Selenium, Total	mg/L	0.0000698	0.00100	0.100	0.0976	0.0975	0.0973	0.0850 to 0.115	97.6	70.0 to 130	0.103	20.0
BB18746	Magnesium, Total	mg/L	-0.00772	0.0462	5.00	5.05	5.11	5.14	4.25 to 5.75	101	70.0 to 130	1.18	20.0
BB18746	Boron, Total	mg/L	-1.620E-05	0.0650	1.00	0.967	0.973	0.989	0.850 to 1.15	96.7	70.0 to 130	0.619	20.0
BB18746	Chromium, Total	mg/L	-0.0000170	0.000440	0.100	0.0979	0.0983	0.0988	0.0850 to 0.115	97.7	70.0 to 130	0.408	20.0
BB18746	Mercury, Total by CVAA	mg/L	5.000E-05	0.000500	0.004	0.0029	0.00311	0.00359	0.00340 to 0.00460	72.5	70.0 to 130	6.99	20.0

Batch QC Summary

Customer Account: WMWGADAP

Sample Date:

10/6/21 12:46

Customer ID:

Delivery Date:

10/7/21 10:17

Description: Gadsden Ash Pond - MW-21VC

Laboratory ID Number: BB18745

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	l Limit	Rec	Limit	Prec	<u>Li</u> mit
BB19000	Alkalinity, Total as CaCO3	mg/L					4.20	50.9	45.0 to 55.0			4.88	10.0
BB18744	Solids, Dissolved	mg/L	1.00	25.0			326	50.0	40.0 to 60.0			1.40	10.0
BB18746	Sulfate	mg/L	0.312	1.00	20.0	20.0	0.414	19.6	18.0 to 22.0	100	80.0 to 120	0.00	20.0
BB18746	Chloride	mg/L	0.0118	1.00	10.0	9.96	0.0703	10.1	9.00 to 11.0	99.6	80.0 to 120	0.00	20.0
BB18746	Fluoride	mg/L	0.026	0.100	2.50	2.72	0.0256	2.62	2.25 to 2.75	109	80.0 to 120	0.00	20.0

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified.

Certificate Of Analysis

Description: Gadsden Ash Pond Field Blank-2Location Code:WMWGADAPFBCollected:10/6/21 13:15

Customer ID:

Submittal Date: 10/7/21 10:17

Laboratory ID Number: BB18746

Name	Prepared /	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Analy	st: RDA			Preparati	on Method: EPA	1638		
* Boron, Total	10/13/21 10:10	10/15/21 12	2:18	1.015	Not Detected	mg/L	0.030000	0.1015	U
* Calcium, Total	10/13/21 10:10	10/15/21 12	2:18	1.015	Not Detected	mg/L	0.070035	0.406	U
* Iron, Total	10/13/21 10:10	10/15/21 12	2:18	1.015	Not Detected	mg/L	0.008120	0.0406	U
* Lithium, Total	10/13/21 10:10	10/15/21 12	2:18	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	10/13/21 10:10	10/15/21 12	2:18	1.015	Not Detected	mg/L	0.021315	0.406	U
* Sodium, Total	10/13/21 10:10	10/15/21 12	2:18	1.015	Not Detected	mg/L	0.03045	0.406	U
Analytical Method: EPA 200.8	Analy	st: DLJ			Preparati	on Method: EPA	1638		
* Antimony, Total	10/8/21 11:18	10/11/21 12	2:48	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Arsenic, Total	10/8/21 11:18	10/11/21 12	2:48	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Barium, Total	10/8/21 11:18	10/11/21 12	2:48	1.015	Not Detected	mg/L	0.000102	0.000203	U
* Beryllium, Total	10/8/21 11:18	10/11/21 12	2:48	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	10/8/21 11:18	10/11/21 12	2:48	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	10/8/21 11:18	10/11/21 12	2:48	1.015	0.000230	mg/L	0.000203	0.001015	J
* Cobalt, Total	10/8/21 11:18	10/11/21 12	2:48	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Lead, Total	10/8/21 11:18	10/11/21 12	2:48	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Molybdenum, Total	10/8/21 11:18	10/11/21 12	2:48	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Total	10/8/21 11:18	10/11/21 12	2:48	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Potassium, Total	10/8/21 11:18	10/11/21 12	2:48	1.015	Not Detected	mg/L	0.169505	0.5075	U
* Selenium, Total	10/8/21 11:18	10/11/21 12	2:48	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	10/8/21 11:18	10/11/21 12	2:48	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Analy	st: ABB							
* Mercury, Total by CVAA	10/15/21 10:53	10/15/21 15	5:50	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: SM 2540C	Analy	st: CNJ							
* Solids, Dissolved	10/12/21 11:15	10/13/21 12	2:56	1	Not Detected	mg/L		25	U
Analytical Method: SM4500CI E	Analy	st: JCC							
* Chloride	10/7/21 12:57	10/7/21 12:	57	1	Not Detected	mg/L	0.50	1	U
Analytical Method: SM4500F G 2017	Analy	st: JCC							
* Fluoride	10/13/21 12:50	10/13/21 12	2:50	1	Not Detected	mg/L	0.06	0.1	U
Analytical Method: SM4500SO4 E 2011	Analy	st: JCC							
* Sulfate	10/11/21 12:32		2:32	1	Not Detected	mg/L	0.50	1	U

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

Batch QC Summary

Customer Account: WMWGADAPFB

Sample Date: **Customer ID:**

10/6/21 13:15

Delivery Date: 10/7/21 10:17

Description: Gadsden Ash Pond Field Blank-2

Laboratory ID Number: BB18746

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BB18746	Selenium, Total	mg/L	0.0000698	0.00100	0.100	0.0976	0.0975	0.0973	0.0850 to 0.115	97.6	70.0 to 130	0.103	20.0
BB18746	Magnesium, Total	mg/L	-0.00772	0.0462	5.00	5.05	5.11	5.14	4.25 to 5.75	101	70.0 to 130	1.18	20.0
BB18746	Boron, Total	mg/L	-1.620E-05	0.0650	1.00	0.967	0.973	0.989	0.850 to 1.15	96.7	70.0 to 130	0.619	20.0
BB18746	Chromium, Total	mg/L	-0.0000170	0.000440	0.100	0.0979	0.0983	0.0988	0.0850 to 0.115	97.7	70.0 to 130	0.408	20.0
BB18746	Mercury, Total by CVAA	mg/L	5.000E-05	0.000500	0.004	0.0029	0.00311	0.00359	0.00340 to 0.00460	72.5	70.0 to 130	6.99	20.0
BB18746	Calcium, Total	mg/L	0.00499	0.152	5.00	5.04	5.08	5.12	4.25 to 5.75	101	70.0 to 130	0.791	20.0
BB18746	Antimony, Total	mg/L	0.000163	0.00100	0.100	0.0904	0.0913	0.0919	0.0850 to 0.115	90.4	70.0 to 130	0.991	20.0
BB18746	Cadmium, Total	mg/L	0.0000000	0.000147	0.100	0.0918	0.0935	0.0952	0.0850 to 0.115	91.8	70.0 to 130	1.83	20.0
BB18746	Arsenic, Total	mg/L	-0.0000050	0.000147	0.100	0.0998	0.0982	0.102	0.0850 to 0.115	99.8	70.0 to 130	1.62	20.0
BB18746	Molybdenum, Total	mg/L	0.0000224	0.000147	0.100	0.0936	0.0980	0.0962	0.0850 to 0.115	93.6	70.0 to 130	4.59	20.0
BB18746	Cobalt, Total	mg/L	-0.0000028	0.000147	0.100	0.0983	0.100	0.100	0.0850 to 0.115	98.3	70.0 to 130	1.71	20.0
BB18746	Potassium, Total	mg/L	0.00310	0.367	10.0	9.92	9.86	9.99	8.50 to 11.5	99.2	70.0 to 130	0.607	20.0
BB18746	Lithium, Total	mg/L	-5.480E-05	0.0154	0.200	0.193	0.196	0.198	0.170 to 0.230	96.5	70.0 to 130	1.54	20.0
BB18746	Lead, Total	mg/L	0.0000022	0.000147	0.100	0.105	0.102	0.102	0.0850 to 0.115	105	70.0 to 130	2.90	20.0
BB18746	Iron, Total	mg/L	0.000319	0.0176	0.2	0.201	0.203	0.203	0.170 to 0.230	100	70.0 to 130	0.990	20.0
BB18746	Beryllium, Total	mg/L	0.0000303	0.000880	0.100	0.0975	0.0886	0.0913	0.0850 to 0.115	97.5	70.0 to 130	9.56	20.0
BB18746	Thallium, Total	mg/L	0.0000035	0.000147	0.100	0.103	0.101	0.0961	0.0850 to 0.115	103	70.0 to 130	1.96	20.0
BB18746	Manganese, Total	mg/L	0.0000059	0.000147	0.100	0.0992	0.0986	0.101	0.0850 to 0.115	99.2	70.0 to 130	0.607	20.0
BB18746	Barium, Total	mg/L	0.0000090	0.000200	0.100	0.0965	0.100	0.0995	0.0850 to 0.115	96.5	70.0 to 130	3.56	20.0
BB18746	Sodium, Total	mg/L	0.00361	0.0660	5.00	4.88	4.93	5.00	4.25 to 5.75	97.6	70.0 to 130	1.02	20.0

Comments:

Batch QC Summary

Customer Account: WMWGADAPFB

Sample Date: 10

10/6/21 13:15

Customer ID:

Delivery Date:

10/7/21 10:17

Description: Gadsden Ash Pond Field Blank-2

Laboratory ID Number: BB18746

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	Limit
BB18746	Chloride	mg/L	0.0118	1.00	10.0	9.96	0.0703	10.1	9.00 to 11.0	99.6	80.0 to 120	0.00	20.0
BB18746	Fluoride	mg/L	0.026	0.100	2.50	2.72	0.0256	2.62	2.25 to 2.75	109	80.0 to 120	0.00	20.0
BB18744	Solids, Dissolved	mg/L	1.00	25.0			326	50.0	40.0 to 60.0			1.40	10.0
BB18746	Sulfate	mg/L	0.312	1.00	20.0	20.0	0.414	19.6	18.0 to 22.0	100	80.0 to 120	0.00	20.0

Comments:

Certificate Of Analysis

WMWGADAP

Description: Gadsden Ash Pond - MW-22VB

Collected:

Collected: 10/11/21 11:37

Customer ID:

Submittal Date: 10/13/21 09:46

Laboratory ID Number: BB18995					Submit	al Date:	10/13/21 09:	46	
Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	An	alyst: RDA			Preparati	on Method: I	EPA 1638		
* Boron, Total	10/21/21 12:	00 10/22/21 (09:58	1.015	0.378	mg/L	0.030000	0.1015	
* Calcium, Total	10/21/21 12:	00 10/22/21 (09:58	1.015	9.35	mg/L	0.070035	0.406	
* Iron, Total	10/21/21 12:	00 10/22/21 (09:58	1.015	0.102	mg/L	0.008120	0.0406	
* Lithium, Total	10/21/21 12:	00 10/22/21 (09:58	1.015	0.0544	mg/L	0.007105	0.01999956	j
* Magnesium, Total	10/21/21 12:	00 10/22/21 (09:58	1.015	2.05	mg/L	0.021315	0.406	
* Sodium, Total	10/21/21 12:	00 10/22/21 1	13:39	10.15	85.5	mg/L	0.3045	4.06	
Analytical Method: EPA 200.7	An	alyst: RDA							
* Iron, Dissolved	10/20/21 14:	00 10/21/21 (9:54	1.015	Not Detected	mg/L	0.008120	0.0406	U
Analytical Method: EPA 200.8	An	alyst: DLJ			Preparati	on Method: I	EPA 1638		
* Antimony, Total	10/13/21 14:	45 10/14/21	17:40	1.015	0.00167	mg/L	0.000508	0.001015	
* Arsenic, Total	10/13/21 14:	45 10/14/21	17:40	1.015	0.00408	mg/L	0.000068	0.000203	
* Barium, Total	10/13/21 14:	45 10/14/21	17:40	1.015	0.238	mg/L	0.000102	0.000203	
* Beryllium, Total	10/13/21 14:	45 10/14/21	17:40	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	10/13/21 14:	45 10/14/21	17:40	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	10/13/21 14:	45 10/14/21	17:40	1.015	0.000412	mg/L	0.000203	0.001015	J
* Cobalt, Total	10/13/21 14:	45 10/14/21	17:40	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Lead, Total	10/13/21 14:	45 10/14/21	17:40	1.015	Not Detected	mg/L	0.000068	0.000203	U
 Molybdenum, Total 	10/13/21 14:	45 10/14/21	17:40	1.015	0.00538	mg/L	0.000068	0.000203	
* Potassium, Total	10/13/21 14:	45 10/14/21 1	17:40	1.015	0.586	mg/L	0.169505	0.5075	
 Manganese, Total 	10/13/21 14:	45 10/14/21	17:40	1.015	0.0151	mg/L	0.000068	0.000203	
* Selenium, Total	10/13/21 14:	45 10/14/21	17:40	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	10/13/21 14:	45 10/14/21 1	17:40	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	An	alyst: DLJ							
 Manganese, Dissolved 	10/13/21 14:	19 10/14/21	10:33	1.015	0.0147	mg/L	0.000068	0.000203	
Analytical Method: EPA 245.1	An	alyst: CRB							
Mercury, Total by CVAA	10/19/21 13:	32 10/19/21	17:29	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: SM 2320 B	An	alyst: JAG							
Alkalinity, Total as CaCO3	10/15/21 10:	30 10/15/21	11:41	1	231	mg/L		0.1	
Analytical Method: SM 2540C	An	alyst: CNJ							
* Solids, Dissolved	10/14/21 10:	:52 10/15/21 <i>1</i>	13:04	1	230	mg/L		25	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Gadsden Ash Pond - MW-22VB

Location Code:

WMWGADAP

Collected:

Customer ID:

10/11/21 11:37

Laboratory ID Number: BB18995

Submittal Date: 10/13/21 09:46

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM 4500CO2 D	An	alyst: JAG							
Bicarbonate Alkalinity, (calc.)	10/15/21 10:	30 10/15/21 1	11:41	1	226	mg/L			
Carbonate Alkalinity, (calc.)	10/15/21 10:	30 10/15/21 1	11:41	1	4.87	mg/L			
Analytical Method: SM4500Cl E	An	alyst: JCC							
* Chloride	10/14/21 11:	12 10/14/21 1	11:12	1	1.72	mg/L	0.50	1	
Analytical Method: SM4500F G 2017	An	alyst: JCC							
* Fluoride	10/13/21 13:	45 10/13/21 1	13:45	1	1.43	mg/L	0.06	0.1	
Analytical Method: SM4500SO4 E 2011	An	alyst: JCC							
* Sulfate	10/20/21 13:	00 10/20/21 1	13:00	1	13.8	mg/L	0.50	1	
Analytical Method: Field Measurements	An	alyst: DKG							
Conductivity	10/11/21 11:	34 10/11/21 1	11:34		370.58	uS/cm			FA
рН	10/11/21 11:	34 10/11/21 1	11:34		8.13	SU			FA
Temperature	10/11/21 11:	34 10/11/21 1	11:34		18.07	С			FA
Turbidity	10/11/21 11:	:34 10/11/21 1	11:34		2.76	NTU			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWGADAP **Sample Date:** 10/11/21 11:37

Customer ID:

Delivery Date: 10/13/21 09:46

Description: Gadsden Ash Pond - MW-22VB

Laboratory ID Number: BB18995

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BB19004	Cadmium, Total	mg/L	0.0000114	0.000147	0.100	0.0998	0.102	0.102	0.0850 to 0.115	99.8	70.0 to 130	2.18	20.0
BB19004	Lithium, Total	mg/L	-3.720E-05	0.0154	0.200	0.219	0.220	0.200	0.170 to 0.230	110	70.0 to 130	0.456	20.0
BB19004	Selenium, Total	mg/L	0.0000000	0.00100	0.100	0.0995	0.102	0.102	0.0850 to 0.115	99.5	70.0 to 130	2.48	20.0
BB19005	Iron, Dissolved	mg/L	3.760E-05	0.0176	0.2	21.3	21.0	0.202	0.170 to 0.230	50.0	70.0 to 130	1.42	20.0
BB19004	Mercury, Total by CVAA	mg/L	6.000E-05	0.000500	0.004	0.0041	0.00411	0.00406	0.00340 to 0.00460	102	70.0 to 130	0.244	20.0
BB19004	Arsenic, Total	mg/L	-0.0000440	0.000147	0.100	0.103	0.101	0.103	0.0850 to 0.115	101	70.0 to 130	1.96	20.0
BB19004	Boron, Total	mg/L	0.00185	0.0650	1.00	1.52	1.53	1.01	0.850 to 1.15	102	70.0 to 130	0.656	20.0
BB19004	Molybdenum, Total	mg/L	0.0000340	0.000147	0.100	0.0978	0.0964	0.0973	0.0850 to 0.115	97.5	70.0 to 130	1.44	20.0
BB19004	Manganese, Total	mg/L	-0.0000042	0.000147	0.100	30.6	31.2	0.0985	0.0850 to 0.115	-1300	70.0 to 130	1.94	20.0
BB19004	Antimony, Total	mg/L	0.000138	0.00100	0.100	0.0999	0.100	0.0965	0.0850 to 0.115	99.9	70.0 to 130	0.100	20.0
BB19004	Cobalt, Total	mg/L	0.0000042	0.000147	0.100	0.107	0.108	0.101	0.0850 to 0.115	97.0	70.0 to 130	0.930	20.0
BB19004	Calcium, Total	mg/L	0.00219	0.152	5.00	69.3	67.7	5.05	4.25 to 5.75	118	70.0 to 130	2.34	20.0
BB19004	Thallium, Total	mg/L	-0.0000007	0.000147	0.100	0.0949	0.0935	0.0987	0.0850 to 0.115	94.8	70.0 to 130	1.49	20.0
BB19004	Sodium, Total	mg/L	0.000246	0.0660	5.00	23.0	23.1	5.04	4.25 to 5.75	112	70.0 to 130	0.434	20.0
BB19004	Barium, Total	mg/L	0.0000000	0.000200	0.100	0.236	0.236	0.0970	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BB19004	Potassium, Total	mg/L	-0.00835	0.367	10.0	13.1	13.3	10.4	8.50 to 11.5	101	70.0 to 130	1.52	20.0
BB19004	Lead, Total	mg/L	0.0000123	0.000147	0.100	0.101	0.100	0.105	0.0850 to 0.115	101	70.0 to 130	0.995	20.0
BB19004	Iron, Total	mg/L	0.00115	0.0176	0.2	3.06	3.04	0.203	0.170 to 0.230	95.0	70.0 to 130	0.656	20.0
BB19005	Manganese, Dissolved	mg/L	-0.0000354	0.000147	0.100	0.790	0.786	0.102	0.0850 to 0.115	98.0	70.0 to 130	0.508	20.0
BB19004	Chromium, Total	mg/L	-0.0000467	0.000440	0.100	0.0974	0.0981	0.0993	0.0850 to 0.115	97.2	70.0 to 130	0.716	20.0
BB19004	Beryllium, Total	mg/L	0.0000297	0.000880	0.100	0.103	0.102	0.105	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
BB19004	Magnesium, Total	mg/L	0.00137	0.0462	5.00	23.3	23.3	5.13	4.25 to 5.75	100	70.0 to 130	0.00	20.0

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified.

Batch QC Summary

Customer Account: WMWGADAP

Sample Date: 10

10/11/21 11:37

Customer ID:

Delivery Date: 10

10/13/21 09:46

Description: Gadsden Ash Pond - MW-22VB

Laboratory ID Number: BB18995

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	l Limit	Rec	Limit	Prec	<u>Li</u> mit
BB18997	Solids, Dissolved	mg/L	0.0000	25.0			342	50.0	40.0 to 60.0			0.736	10.0
BB19004	Fluoride	mg/L	0.0194	0.100	2.50	2.78	0.128	2.61	2.25 to 2.75	106	80.0 to 120	0.784	20.0
BB19000	Alkalinity, Total as CaCO3	mg/L					4.20	50.9	45.0 to 55.0			4.88	10.0
BB19004	Sulfate	mg/L	-0.00907	1.00	320	533	175	19.7	18.0 to 22.0	112	80.0 to 120	0.573	20.0
BB19004	Chloride	mg/L	0.000283	1.00	10.0	16.4	6.36	9.96	9.00 to 11.0	100	80.0 to 120	0.157	20.0

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified.

Certificate Of Analysis

Description: Gadsden Ash Pond - MW-19HLocation Code:WMWGADAPCollected:10/11/21 12:57

Customer ID:

Laboratory ID Number: BB18996 Submittal Date: 10/13/21 09:46

Name	Prepared Analyz	ed Vio Spe	c DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Analyst: RDA			Preparati	on Method: E	EPA 1638		
* Boron, Total	10/21/21 12:00 10/22	/21 10:01	1.015	0.328	mg/L	0.030000	0.1015	
* Calcium, Total	10/21/21 12:00 10/22	/21 10:01	1.015	40.0	mg/L	0.070035	0.406	
* Iron, Total	10/21/21 12:00 10/22	/21 10:01	1.015	2.14	mg/L	0.008120	0.0406	
* Lithium, Total	10/21/21 12:00 10/22	/21 10:01	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	10/21/21 12:00 10/22	/21 10:01	1.015	8.00	mg/L	0.021315	0.406	
* Sodium, Total	10/21/21 12:00 10/22	/21 10:01	1.015	14.1	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Analyst: RDA							
* Iron, Dissolved	10/20/21 14:00 10/21	/21 09:58	1.015	1.92	mg/L	0.008120	0.0406	
Analytical Method: EPA 200.8	Analyst: DLJ			Preparati	on Method: E	EPA 1638		
* Antimony, Total	10/13/21 14:45 10/14	/21 17:44	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Arsenic, Total	10/13/21 14:45 10/14	/21 17:44	1.015	0.000846	mg/L	0.000068	0.000203	
* Barium, Total	10/13/21 14:45 10/14	/21 17:44	1.015	0.170	mg/L	0.000102	0.000203	
* Beryllium, Total	10/13/21 14:45 10/14	/21 17:44	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	10/13/21 14:45 10/14	/21 17:44	1.015	0.000124	mg/L	0.000068	0.000203	J
* Chromium, Total	10/13/21 14:45 10/14	/21 17:44	1.015	0.000475	mg/L	0.000203	0.001015	J
* Cobalt, Total	10/13/21 14:45 10/14	/21 17:44	1.015	0.00579	mg/L	0.000068	0.000203	
* Lead, Total	10/13/21 14:45 10/14	/21 17:44	1.015	0.000155	mg/L	0.000068	0.000203	J
* Molybdenum, Total	10/13/21 14:45 10/14	/21 17:44	1.015	0.000118	mg/L	0.000068	0.000203	J
* Potassium, Total	10/13/21 14:45 10/14	/21 17:44	1.015	0.999	mg/L	0.169505	0.5075	
* Manganese, Total	10/13/21 14:45 10/14	/21 17:44	1.015	1.01	mg/L	0.000068	0.000203	
* Selenium, Total	10/13/21 14:45 10/14	/21 17:44	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	10/13/21 14:45 10/14	/21 17:44	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Analyst: DLJ							
* Manganese, Dissolved	10/13/21 14:19 10/14	/21 10:37	1.015	1.01	mg/L	0.000068	0.000203	
Analytical Method: EPA 245.1	Analyst: CRE							
* Mercury, Total by CVAA	10/19/21 13:32 10/19	/21 17:33	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: SM 2320 B	Analyst: JAG							
Alkalinity, Total as CaCO3	10/15/21 10:30 10/15		1	95.6	mg/L		0.1	
Analytical Method: SM 2540C	Analyst: CNJ							
* Solids, Dissolved	10/14/21 10:52 10/15		1	202	mg/L		25	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Gadsden Ash Pond - MW-19H

Location Code:

WMWGADAP 10/11/21 12:57

Collected: Customer ID:

Submittal Date:

10/13/21 09:46

Laboratory ID Number: BB18996

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM 4500CO2 D	An	alyst: JAG							
Bicarbonate Alkalinity, (calc.)	10/15/21 10:	30 10/15/21	11:41	1	95.6	mg/L			
Carbonate Alkalinity, (calc.)	10/15/21 10:	30 10/15/21	11:41	1	0.02	mg/L			
Analytical Method: SM4500Cl E	An	alyst: JCC							
* Chloride	10/14/21 11:	13 10/14/21	11:13	1	7.04	mg/L	0.50	1	
Analytical Method: SM4500F G 2017	An	alyst: JCC							
* Fluoride	10/13/21 13:	46 10/13/21	13:46	1	0.0779	mg/L	0.06	0.1	J
Analytical Method: SM4500SO4 E 2011	An	alyst: JCC							
* Sulfate	10/20/21 13:	01 10/20/21	13:01	2	61.7	mg/L	1.00	2	
Analytical Method: Field Measurements	An	alyst: DKG							
Conductivity	10/11/21 12:	54 10/11/21	12:54		315.23	uS/cm			FA
рН	10/11/21 12:	54 10/11/21	12:54		6.08	SU			FA
Temperature	10/11/21 12:	54 10/11/21	12:54		24.19	С			FA
Turbidity	10/11/21 12:	54 10/11/21	12:54		7.48	NTU			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWGADAP **Sample Date:** 10/11/21 12:57

Customer ID:

Delivery Date: 10/13/21 09:46

Description: Gadsden Ash Pond - MW-19H

Laboratory ID Number: BB18996

			·	MB	·				Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BB19004	Potassium, Total	mg/L	-0.00835	0.367	10.0	13.1	13.3	10.4	8.50 to 11.5	101	70.0 to 130	1.52	20.0
BB19004	Cadmium, Total	mg/L	0.0000114	0.000147	0.100	0.0998	0.102	0.102	0.0850 to 0.115	99.8	70.0 to 130	2.18	20.0
BB19004	Lithium, Total	mg/L	-3.720E-05	0.0154	0.200	0.219	0.220	0.200	0.170 to 0.230	110	70.0 to 130	0.456	20.0
BB19004	Selenium, Total	mg/L	0.0000000	0.00100	0.100	0.0995	0.102	0.102	0.0850 to 0.115	99.5	70.0 to 130	2.48	20.0
BB19005	Iron, Dissolved	mg/L	3.760E-05	0.0176	0.2	21.3	21.0	0.202	0.170 to 0.230	50.0	70.0 to 130	1.42	20.0
BB19004	Mercury, Total by CVAA	mg/L	6.000E-05	0.000500	0.004	0.0041	0.00411	0.00406	0.00340 to 0.00460	102	70.0 to 130	0.244	20.0
BB19004	Arsenic, Total	mg/L	-0.0000440	0.000147	0.100	0.103	0.101	0.103	0.0850 to 0.115	101	70.0 to 130	1.96	20.0
BB19004	Boron, Total	mg/L	0.00185	0.0650	1.00	1.52	1.53	1.01	0.850 to 1.15	102	70.0 to 130	0.656	20.0
BB19004	Molybdenum, Total	mg/L	0.0000340	0.000147	0.100	0.0978	0.0964	0.0973	0.0850 to 0.115	97.5	70.0 to 130	1.44	20.0
BB19004	Lead, Total	mg/L	0.0000123	0.000147	0.100	0.101	0.100	0.105	0.0850 to 0.115	101	70.0 to 130	0.995	20.0
BB19004	Iron, Total	mg/L	0.00115	0.0176	0.2	3.06	3.04	0.203	0.170 to 0.230	95.0	70.0 to 130	0.656	20.0
BB19005	Manganese, Dissolved	mg/L	-0.0000354	0.000147	0.100	0.790	0.786	0.102	0.0850 to 0.115	98.0	70.0 to 130	0.508	20.0
BB19004	Chromium, Total	mg/L	-0.0000467	0.000440	0.100	0.0974	0.0981	0.0993	0.0850 to 0.115	97.2	70.0 to 130	0.716	20.0
BB19004	Beryllium, Total	mg/L	0.0000297	0.000880	0.100	0.103	0.102	0.105	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
BB19004	Magnesium, Total	mg/L	0.00137	0.0462	5.00	23.3	23.3	5.13	4.25 to 5.75	100	70.0 to 130	0.00	20.0
BB19004	Manganese, Total	mg/L	-0.0000042	0.000147	0.100	30.6	31.2	0.0985	0.0850 to 0.115	-1300	70.0 to 130	1.94	20.0
BB19004	Antimony, Total	mg/L	0.000138	0.00100	0.100	0.0999	0.100	0.0965	0.0850 to 0.115	99.9	70.0 to 130	0.100	20.0
BB19004	Cobalt, Total	mg/L	0.0000042	0.000147	0.100	0.107	0.108	0.101	0.0850 to 0.115	97.0	70.0 to 130	0.930	20.0
BB19004	Calcium, Total	mg/L	0.00219	0.152	5.00	69.3	67.7	5.05	4.25 to 5.75	118	70.0 to 130	2.34	20.0
BB19004	Thallium, Total	mg/L	-0.0000007	0.000147	0.100	0.0949	0.0935	0.0987	0.0850 to 0.115	94.8	70.0 to 130	1.49	20.0
BB19004	Sodium, Total	mg/L	0.000246	0.0660	5.00	23.0	23.1	5.04	4.25 to 5.75	112	70.0 to 130	0.434	20.0
BB19004	Barium, Total	mg/L	0.0000000	0.000200	0.100	0.236	0.236	0.0970	0.0850 to 0.115	102	70.0 to 130	0.00	20.0

Batch QC Summary

Customer Account: WMWGADAP

Sample Date: 10/11/21 12:57

Customer ID:

Delivery Date: 10/13/21 09:46

Description: Gadsden Ash Pond - MW-19H

Laboratory ID Number: BB18996

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	l Limit	Rec	Limit	Prec	<u>Li</u> mit
BB19004	Sulfate	mg/L	-0.00907	1.00	320	533	175	19.7	18.0 to 22.0	112	80.0 to 120	0.573	20.0
BB19004	Chloride	mg/L	0.000283	1.00	10.0	16.4	6.36	9.96	9.00 to 11.0	100	80.0 to 120	0.157	20.0
BB19004	Fluoride	mg/L	0.0194	0.100	2.50	2.78	0.128	2.61	2.25 to 2.75	106	80.0 to 120	0.784	20.0
BB19000	Alkalinity, Total as CaCO3	mg/L					4.20	50.9	45.0 to 55.0			4.88	10.0
BB18997	Solids, Dissolved	mg/L	0.0000	25.0			342	50.0	40.0 to 60.0			0.736	10.0

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified.

Certificate Of Analysis

Description: Gadsden Ash Pond - MW-2

Location Code: Collected:

WMWGADAP 10/11/21 14:49

Customer ID:

Submittal Date:

10/13/21 09:46

Laboratory ID Number: BB18997					Submitt	tal Date:	10/13/21 09:	46	
Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Ar	nalyst: RDA			Preparati	on Method: E	EPA 1638		
* Boron, Total	10/21/21 12	:00 10/22/21	10:04	1.015	0.459	mg/L	0.030000	0.1015	
* Calcium, Total	10/21/21 12	:00 10/22/21	13:42	10.15	87.1	mg/L	0.70035	4.06	
* Iron, Total	10/21/21 12	:00 10/22/21	13:42	10.15	6.30	mg/L	0.08120	0.406	
* Lithium, Total	10/21/21 12	:00 10/22/21	10:04	1.015	0.0225	mg/L	0.007105	0.01999956	
* Magnesium, Total	10/21/21 12	:00 10/22/21 1	10:04	1.015	11.2	mg/L	0.021315	0.406	
* Sodium, Total	10/21/21 12	:00 10/22/21 1	10:04	1.015	5.42	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Ar	nalyst: RDA							
* Iron, Dissolved	10/20/21 14	:00 10/21/21 1	13:06	10.15	6.02	mg/L	0.08120	0.406	
Analytical Method: EPA 200.8	Ar	nalyst: DLJ			Preparati	on Method: E	EPA 1638		
* Antimony, Total	10/13/21 14	:45 10/14/21 1	17:48	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Arsenic, Total	10/13/21 14	:45 10/14/21 1	17:48	1.015	0.424	mg/L	0.000068	0.000203	
* Barium, Total	10/13/21 14	:45 10/14/21 1	17:48	1.015	0.0807	mg/L	0.000102	0.000203	
* Beryllium, Total	10/13/21 14	:45 10/14/21 1	17:48	1.015	Not Detected	mg/L	0.000406	0.001015	U
Cadmium, Total	10/13/21 14	:45 10/14/21 1	17:48	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	10/13/21 14	:45 10/14/21 1	17:48	1.015	0.000479	mg/L	0.000203	0.001015	J
* Cobalt, Total	10/13/21 14	:45 10/14/21 1	17:48	1.015	0.0165	mg/L	0.000068	0.000203	
* Lead, Total	10/13/21 14	:45 10/14/21 1	17:48	1.015	0.0000928	mg/L	0.000068	0.000203	J
* Molybdenum, Total	10/13/21 14	:45 10/14/21 1	17:48	1.015	0.0204	mg/L	0.000068	0.000203	
* Potassium, Total	10/13/21 14	:45 10/14/21 1	17:48	1.015	7.84	mg/L	0.169505	0.5075	
* Manganese, Total	10/13/21 14	:45 10/14/21 1	19:17	5.075	5.30	mg/L	0.000340	0.001015	
* Selenium, Total	10/13/21 14	:45 10/14/21 1	17:48	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	10/13/21 14	:45 10/14/21 1	17:48	1.015	0.000294	mg/L	0.000068	0.000203	
Analytical Method: EPA 200.8	Ar	nalyst: DLJ							
 Manganese, Dissolved 	10/13/21 14	:19 10/14/21 1	11:52	5.075	5.19	mg/L	0.000340	0.001015	
Analytical Method: EPA 245.1	Ar	nalyst: CRB							
* Mercury, Total by CVAA	10/19/21 13	:32 10/19/21 1	17:37	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: SM 2320 B	Ar	nalyst: JAG							
Alkalinity, Total as CaCO3	10/15/21 10	:30 10/15/21 1	11:41	1	175	mg/L		0.1	
Analytical Method: SM 2540C	Ar	nalyst: CNJ							
* Solids, Dissolved	10/14/21 10	:52 10/15/21	13:04	1	337	mg/L		25	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Gadsden Ash Pond - MW-2

Location Code:

WMWGADAP

10/13/21 09:46

Collected:

Customer ID: Submittal Date:

10/11/21 14:49

Laboratory ID Number: BB18997

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM 4500CO2 D	An	alyst: JAG							
Bicarbonate Alkalinity, (calc.)	10/15/21 10:	30 10/15/21 1	11:41	1	175	mg/L			
Carbonate Alkalinity, (calc.)	10/15/21 10:	30 10/15/21 1	11:41	1	0.12	mg/L			
Analytical Method: SM4500CI E	An	alyst: JCC							
* Chloride	10/14/21 11:	14 10/14/21 1	11:14	1	2.43	mg/L	0.50	1	
Analytical Method: SM4500F G 2017	An	alyst: JCC							
* Fluoride	10/13/21 13:	47 10/13/21 1	13:47	1	0.283	mg/L	0.06	0.1	
Analytical Method: SM4500SO4 E 2011	An	alyst: JCC							
* Sulfate	10/20/21 13:	:02 10/20/21 1	13:02	5	112	mg/L	2.50	5	
Analytical Method: Field Measurements	An	alyst: DKG							
Conductivity	10/11/21 14:	46 10/11/21 1	14:46		524.27	uS/cm			FA
рН	10/11/21 14:	46 10/11/21 1	14:46		6.59	SU			FA
Temperature	10/11/21 14:	46 10/11/21 1	14:46		21.20	С			FA
Turbidity	10/11/21 14:	:46 10/11/21 1	14:46		6.7	NTU			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWGADAP **Sample Date:** 10/11/21 14:49

Customer ID:

Delivery Date: 10/13/21 09:46

Description: Gadsden Ash Pond - MW-2

Laboratory ID Number: BB18997

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BB19004	Boron, Total	mg/L	0.00185	0.0650	1.00	1.52	1.53	1.01	0.850 to 1.15	102	70.0 to 130	0.656	20.0
BB19004	Molybdenum, Total	mg/L	0.0000340	0.000147	0.100	0.0978	0.0964	0.0973	0.0850 to 0.115	97.5	70.0 to 130	1.44	20.0
BB19004	Potassium, Total	mg/L	-0.00835	0.367	10.0	13.1	13.3	10.4	8.50 to 11.5	101	70.0 to 130	1.52	20.0
BB19004	Beryllium, Total	mg/L	0.0000297	0.000880	0.100	0.103	0.102	0.105	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
BB19004	Magnesium, Total	mg/L	0.00137	0.0462	5.00	23.3	23.3	5.13	4.25 to 5.75	100	70.0 to 130	0.00	20.0
BB19004	Cadmium, Total	mg/L	0.0000114	0.000147	0.100	0.0998	0.102	0.102	0.0850 to 0.115	99.8	70.0 to 130	2.18	20.0
BB19004	Lithium, Total	mg/L	-3.720E-05	0.0154	0.200	0.219	0.220	0.200	0.170 to 0.230	110	70.0 to 130	0.456	20.0
BB19004	Calcium, Total	mg/L	0.00219	0.152	5.00	69.3	67.7	5.05	4.25 to 5.75	118	70.0 to 130	2.34	20.0
BB19004	Thallium, Total	mg/L	-0.0000007	0.000147	0.100	0.0949	0.0935	0.0987	0.0850 to 0.115	94.8	70.0 to 130	1.49	20.0
BB19004	Sodium, Total	mg/L	0.000246	0.0660	5.00	23.0	23.1	5.04	4.25 to 5.75	112	70.0 to 130	0.434	20.0
BB19004	Barium, Total	mg/L	0.0000000	0.000200	0.100	0.236	0.236	0.0970	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BB19004	Lead, Total	mg/L	0.0000123	0.000147	0.100	0.101	0.100	0.105	0.0850 to 0.115	101	70.0 to 130	0.995	20.0
BB19004	Iron, Total	mg/L	0.00115	0.0176	0.2	3.06	3.04	0.203	0.170 to 0.230	95.0	70.0 to 130	0.656	20.0
BB19005	Manganese, Dissolved	mg/L	-0.0000354	0.000147	0.100	0.790	0.786	0.102	0.0850 to 0.115	98.0	70.0 to 130	0.508	20.0
BB19004	Chromium, Total	mg/L	-0.0000467	0.000440	0.100	0.0974	0.0981	0.0993	0.0850 to 0.115	97.2	70.0 to 130	0.716	20.0
BB19004	Selenium, Total	mg/L	0.0000000	0.00100	0.100	0.0995	0.102	0.102	0.0850 to 0.115	99.5	70.0 to 130	2.48	20.0
BB19005	Iron, Dissolved	mg/L	3.760E-05	0.0176	0.2	21.3	21.0	0.202	0.170 to 0.230	50.0	70.0 to 130	1.42	20.0
BB19004	Mercury, Total by CVAA	mg/L	6.000E-05	0.000500	0.004	0.0041	0.00411	0.00406	0.00340 to 0.00460	102	70.0 to 130	0.244	20.0
BB19004	Arsenic, Total	mg/L	-0.0000440	0.000147	0.100	0.103	0.101	0.103	0.0850 to 0.115	101	70.0 to 130	1.96	20.0
BB19004	Manganese, Total	mg/L	-0.0000042	0.000147	0.100	30.6	31.2	0.0985	0.0850 to 0.115	-1300	70.0 to 130	1.94	20.0
BB19004	Antimony, Total	mg/L	0.000138	0.00100	0.100	0.0999	0.100	0.0965	0.0850 to 0.115	99.9	70.0 to 130	0.100	20.0
BB19004	Cobalt, Total	mg/L	0.0000042	0.000147	0.100	0.107	0.108	0.101	0.0850 to 0.115	97.0	70.0 to 130	0.930	20.0

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified.

Batch QC Summary

Customer Account: WMWGADAP

Sample Date:

10/11/21 14:49

Customer ID:

Delivery Date:

10/13/21 09:46

Description: Gadsden Ash Pond - MW-2

Laboratory ID Number: BB18997

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BB19004	Fluoride	mg/L	0.0194	0.100	2.50	2.78	0.128	2.61	2.25 to 2.75	106	80.0 to 120	0.784	20.0
BB19000	Alkalinity, Total as CaCO3	mg/L					4.20	50.9	45.0 to 55.0			4.88	10.0
BB18997	Solids, Dissolved	mg/L	0.0000	25.0			342	50.0	40.0 to 60.0			0.736	10.0
BB19004	Sulfate	mg/L	-0.00907	1.00	320	533	175	19.7	18.0 to 22.0	112	80.0 to 120	0.573	20.0
BB19004	Chloride	mg/L	0.000283	1.00	10.0	16.4	6.36	9.96	9.00 to 11.0	100	80.0 to 120	0.157	20.0

Certificate Of Analysis

Description: Gadsden Ash Pond Field Blank-3Location Code:WMWGADAPFBCollected:10/11/21 15:15

Customer ID:

Submittal Date: 10/13/21 09:46

Laboratory ID Number: BB18998

Name	Prepared Analy	zed Vio S	pec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Analyst: RE	A		Preparati	on Method:	EPA 1638		
* Boron, Total	10/21/21 12:00 10/2	2/21 10:08	1.015	Not Detected	mg/L	0.030000	0.1015	U
* Calcium, Total	10/21/21 12:00 10/2	2/21 10:08	1.015	Not Detected	mg/L	0.070035	0.406	U
* Iron, Total	10/21/21 12:00 10/2	2/21 10:08	1.015	Not Detected	mg/L	0.008120	0.0406	U
* Lithium, Total	10/21/21 12:00 10/2	2/21 10:08	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	10/21/21 12:00 10/2	2/21 10:08	1.015	Not Detected	mg/L	0.021315	0.406	U
* Sodium, Total	10/21/21 12:00 10/2	2/21 10:08	1.015	Not Detected	mg/L	0.03045	0.406	U
Analytical Method: EPA 200.8	Analyst: DL	J		Preparati	on Method:	EPA 1638		
* Antimony, Total	10/13/21 14:45 10/1	4/21 17:51	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Arsenic, Total	10/13/21 14:45 10/1	4/21 17:51	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Barium, Total	10/13/21 14:45 10/1	4/21 17:51	1.015	Not Detected	mg/L	0.000102	0.000203	U
* Beryllium, Total	10/13/21 14:45 10/1	4/21 17:51	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	10/13/21 14:45 10/1	4/21 17:51	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	10/13/21 14:45 10/1	4/21 17:51	1.015	Not Detected	mg/L	0.000203	0.001015	U
* Cobalt, Total	10/13/21 14:45 10/1	4/21 17:51	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Lead, Total	10/13/21 14:45 10/1	4/21 17:51	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Molybdenum, Total	10/13/21 14:45 10/1	4/21 17:51	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Total	10/13/21 14:45 10/1	4/21 17:51	1.015	0.0000787	mg/L	0.000068	0.000203	J
* Potassium, Total	10/13/21 14:45 10/1	4/21 17:51	1.015	Not Detected	mg/L	0.169505	0.5075	U
* Selenium, Total	10/13/21 14:45 10/1	4/21 17:51	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	10/13/21 14:45 10/1	4/21 17:51	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Analyst: CF	В						
* Mercury, Total by CVAA	10/19/21 13:32 10/1	9/21 17:41	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: SM 2540C	Analyst: CN	J						
* Solids, Dissolved	10/14/21 10:52 10/1	5/21 13:04	1	Not Detected	mg/L		25	U
Analytical Method: SM4500Cl E	Analyst: JC	С						
* Chloride	10/14/21 11:15 10/1	4/21 11:15	1	Not Detected	mg/L	0.50	1	U
Analytical Method: SM4500F G 2017	Analyst: JC	С						
* Fluoride	10/13/21 13:49 10/1	3/21 13:49	1	Not Detected	mg/L	0.06	0.1	U
Analytical Method: SM4500SO4 E 2011	Analyst: JC	С						
* Sulfate	10/20/21 13:03 10/2		1	Not Detected	mg/L	0.50	1	U

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

Batch QC Summary

Customer Account: WMWGADAPFB Sample Date:

10/11/21 15:15

Customer ID:

Delivery Date: 10/13/21 09:46

Description: Gadsden Ash Pond Field Blank-3

Laboratory ID Number: BB18998

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BB19004	Selenium, Total	mg/L	0.0000000	0.00100	0.100	0.0995	0.102	0.102	0.0850 to 0.115	99.5	70.0 to 130	2.48	20.0
BB19004	Mercury, Total by CVAA	mg/L	6.000E-05	0.000500	0.004	0.0041	0.00411	0.00406	0.00340 to 0.00460	102	70.0 to 130	0.244	20.0
BB19004	Arsenic, Total	mg/L	-0.0000440	0.000147	0.100	0.103	0.101	0.103	0.0850 to 0.115	101	70.0 to 130	1.96	20.0
BB19004	Potassium, Total	mg/L	-0.00835	0.367	10.0	13.1	13.3	10.4	8.50 to 11.5	101	70.0 to 130	1.52	20.0
BB19004	Lead, Total	mg/L	0.0000123	0.000147	0.100	0.101	0.100	0.105	0.0850 to 0.115	101	70.0 to 130	0.995	20.0
BB19004	Iron, Total	mg/L	0.00115	0.0176	0.2	3.06	3.04	0.203	0.170 to 0.230	95.0	70.0 to 130	0.656	20.0
BB19004	Chromium, Total	mg/L	-0.0000467	0.000440	0.100	0.0974	0.0981	0.0993	0.0850 to 0.115	97.2	70.0 to 130	0.716	20.0
BB19004	Cadmium, Total	mg/L	0.0000114	0.000147	0.100	0.0998	0.102	0.102	0.0850 to 0.115	99.8	70.0 to 130	2.18	20.0
BB19004	Lithium, Total	mg/L	-3.720E-05	0.0154	0.200	0.219	0.220	0.200	0.170 to 0.230	110	70.0 to 130	0.456	20.0
BB19004	Boron, Total	mg/L	0.00185	0.0650	1.00	1.52	1.53	1.01	0.850 to 1.15	102	70.0 to 130	0.656	20.0
BB19004	Molybdenum, Total	mg/L	0.0000340	0.000147	0.100	0.0978	0.0964	0.0973	0.0850 to 0.115	97.5	70.0 to 130	1.44	20.0
BB19004	Beryllium, Total	mg/L	0.0000297	0.000880	0.100	0.103	0.102	0.105	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
BB19004	Magnesium, Total	mg/L	0.00137	0.0462	5.00	23.3	23.3	5.13	4.25 to 5.75	100	70.0 to 130	0.00	20.0
BB19004	Manganese, Total	mg/L	-0.0000042	0.000147	0.100	30.6	31.2	0.0985	0.0850 to 0.115	-1300	70.0 to 130	1.94	20.0
BB19004	Antimony, Total	mg/L	0.000138	0.00100	0.100	0.0999	0.100	0.0965	0.0850 to 0.115	99.9	70.0 to 130	0.100	20.0
BB19004	Cobalt, Total	mg/L	0.0000042	0.000147	0.100	0.107	0.108	0.101	0.0850 to 0.115	97.0	70.0 to 130	0.930	20.0
BB19004	Calcium, Total	mg/L	0.00219	0.152	5.00	69.3	67.7	5.05	4.25 to 5.75	118	70.0 to 130	2.34	20.0
BB19004	Thallium, Total	mg/L	-0.0000007	0.000147	0.100	0.0949	0.0935	0.0987	0.0850 to 0.115	94.8	70.0 to 130	1.49	20.0
BB19004	Sodium, Total	mg/L	0.000246	0.0660	5.00	23.0	23.1	5.04	4.25 to 5.75	112	70.0 to 130	0.434	20.0
BB19004	Barium, Total	mg/L	0.0000000	0.000200	0.100	0.236	0.236	0.0970	0.0850 to 0.115	102	70.0 to 130	0.00	20.0

Comments:

Batch QC Summary

Customer Account: WMWGADAPFB

Sample Date: 10/11/21 15:15

Customer ID:

Delivery Date: 10/13/21 09:46

Description: Gadsden Ash Pond Field Blank-3

Laboratory ID Number: BB18998

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BB19004	Sulfate	mg/L	-0.00907	1.00	320	533	175	19.7	18.0 to 22.0	112	80.0 to 120	0.573	20.0
BB19004	Chloride	mg/L	0.000283	1.00	10.0	16.4	6.36	9.96	9.00 to 11.0	100	80.0 to 120	0.157	20.0
BB18997	Solids, Dissolved	mg/L	0.0000	25.0			342	50.0	40.0 to 60.0			0.736	10.0
BB19004	Fluoride	mg/L	0.0194	0.100	2.50	2.78	0.128	2.61	2.25 to 2.75	106	80.0 to 120	0.784	20.0

Comments:

Certificate Of Analysis

Description: Gadsden Ash Pond - MW-2VBLocation Code:WMWGADAPCollected:10/12/21 09:28

Customer ID:

Submittal Date: 10/13/21 09:46

Laboratory ID Number: BB18999

Name	Prepared Ana	lyzed Vio Spe	ec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Analyst: F	RDA		Preparati	on Method: E	PA 1638		
* Boron, Total	10/21/21 12:00 10	/22/21 10:11	1.015	0.617	mg/L	0.030000	0.1015	
* Calcium, Total	10/21/21 12:00 10	/22/21 10:11	1.015	3.96	mg/L	0.070035	0.406	
* Iron, Total	10/21/21 12:00 10	/22/21 10:11	1.015	0.181	mg/L	0.008120	0.0406	
* Lithium, Total	10/21/21 12:00 10	/22/21 10:11	1.015	0.129	mg/L	0.007105	0.01999956	ò
* Magnesium, Total	10/21/21 12:00 10	/22/21 10:11	1.015	1.33	mg/L	0.021315	0.406	
* Sodium, Total	10/21/21 12:00 10	/22/21 13:46	101.5	222	mg/L	3.045	40.6	
Analytical Method: EPA 200.7	Analyst: F	RDA						
* Iron, Dissolved	10/20/21 14:00 10	/21/21 10:05	1.015	0.0290	mg/L	0.008120	0.0406	J
Analytical Method: EPA 200.8	Analyst: L	OLJ		Preparati	on Method: E	PA 1638		
* Antimony, Total	10/13/21 14:45 10	/14/21 17:55	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Arsenic, Total	10/13/21 14:45 10	/14/21 17:55	1.015	0.000426	mg/L	0.000068	0.000203	
* Barium, Total	10/13/21 14:45 10	/14/21 17:55	1.015	0.242	mg/L	0.000102	0.000203	
* Beryllium, Total	10/13/21 14:45 10	/14/21 17:55	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	10/13/21 14:45 10	/14/21 17:55	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	10/13/21 14:45 10	/14/21 17:55	1.015	0.000353	mg/L	0.000203	0.001015	J
* Cobalt, Total	10/13/21 14:45 10	/14/21 17:55	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Lead, Total	10/13/21 14:45 10	/14/21 17:55	1.015	Not Detected	mg/L	0.000068	0.000203	U
 Molybdenum, Total 	10/13/21 14:45 10	/14/21 17:55	1.015	0.00156	mg/L	0.000068	0.000203	
* Potassium, Total	10/13/21 14:45 10	/14/21 17:55	1.015	1.06	mg/L	0.169505	0.5075	
* Manganese, Total	10/13/21 14:45 10	/14/21 17:55	1.015	0.0396	mg/L	0.000068	0.000203	
* Selenium, Total	10/13/21 14:45 10	/14/21 17:55	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	10/13/21 14:45 10	/14/21 17:55	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Analyst: L	OLJ						
* Manganese, Dissolved	10/13/21 14:19 10	/14/21 10:44	1.015	0.0415	mg/L	0.000068	0.000203	
Analytical Method: EPA 245.1	Analyst: 0	CRB						
* Mercury, Total by CVAA	10/19/21 13:32 10		1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: SM 2320 B	Analyst: J	AG						
Alkalinity, Total as CaCO3	10/15/21 10:30 10		1	406	mg/L		0.1	
Analytical Method: SM 2540C	Analyst: (•		ŭ			
* Solids, Dissolved	10/14/21 10:52 10		1	536	mg/L		50	

MDL's and RL's are adjusted for sample dilution, as applicable

Laboratory ID Number: BB18999

Certificate Of Analysis

Description: Gadsden Ash Pond - MW-2VB

Location Code:

WMWGADAP

10/13/21 09:46

Collected:

Customer ID:

10/12/21 09:28

Submittal Date:

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM 4500CO2 D	An	alyst: JAG							
Bicarbonate Alkalinity, (calc.)	10/15/21 10:	30 10/15/21	11:41 1		394	mg/L			
Carbonate Alkalinity, (calc.)	10/15/21 10:	30 10/15/21	11:41 1		12.3	mg/L			
Analytical Method: SM4500Cl E	An	alyst: JCC							
* Chloride	10/14/21 11:	26 10/14/21	11:26 4		38.0	mg/L	2.00	4	
Analytical Method: SM4500F G 2017	An	alyst: JCC							
* Fluoride	10/13/21 13:	50 10/13/21	13:50 2		5.97	mg/L	0.12	0.2	
Analytical Method: SM4500SO4 E 2011	An	alyst: JCC							
* Sulfate	10/20/21 13:	04 10/20/21	13:04 1		15.2	mg/L	0.50	1	
Analytical Method: Field Measurements	An	alyst: DKG							
Conductivity	10/12/21 09:	25 10/12/21 (09:25		901.38	uS/cm			FA
рН	10/12/21 09:	25 10/12/21 (09:25		8.62	SU			FA
Temperature	10/12/21 09:	25 10/12/21 (09:25		19.31	С			FA
Turbidity	10/12/21 09:	25 10/12/21 (09:25		4.01	NTU			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWGADAP **Sample Date:** 10/12/21 09:28

Customer ID:

Delivery Date: 10/13/21 09:46

Description: Gadsden Ash Pond - MW-2VB

Laboratory ID Number: BB18999

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BB19004	Potassium, Total	mg/L	-0.00835	0.367	10.0	13.1	13.3	10.4	8.50 to 11.5	101	70.0 to 130	1.52	20.0
3B19004	Cadmium, Total	mg/L	0.0000114	0.000147	0.100	0.0998	0.102	0.102	0.0850 to 0.115	99.8	70.0 to 130	2.18	20.0
3B19004	Lithium, Total	mg/L	-3.720E-05	0.0154	0.200	0.219	0.220	0.200	0.170 to 0.230	110	70.0 to 130	0.456	20.0
3B19004	Boron, Total	mg/L	0.00185	0.0650	1.00	1.52	1.53	1.01	0.850 to 1.15	102	70.0 to 130	0.656	20.0
BB19004	Molybdenum, Total	mg/L	0.0000340	0.000147	0.100	0.0978	0.0964	0.0973	0.0850 to 0.115	97.5	70.0 to 130	1.44	20.0
BB19004	Selenium, Total	mg/L	0.0000000	0.00100	0.100	0.0995	0.102	0.102	0.0850 to 0.115	99.5	70.0 to 130	2.48	20.0
BB19005	Iron, Dissolved	mg/L	3.760E-05	0.0176	0.2	21.3	21.0	0.202	0.170 to 0.230	50.0	70.0 to 130	1.42	20.0
3B19004	Mercury, Total by CVAA	mg/L	6.000E-05	0.000500	0.004	0.0041	0.00411	0.00406	0.00340 to 0.00460	102	70.0 to 130	0.244	20.0
3B19004	Arsenic, Total	mg/L	-0.0000440	0.000147	0.100	0.103	0.101	0.103	0.0850 to 0.115	101	70.0 to 130	1.96	20.0
3B19004	Manganese, Total	mg/L	-0.0000042	0.000147	0.100	30.6	31.2	0.0985	0.0850 to 0.115	-1300	70.0 to 130	1.94	20.0
3B19004	Antimony, Total	mg/L	0.000138	0.00100	0.100	0.0999	0.100	0.0965	0.0850 to 0.115	99.9	70.0 to 130	0.100	20.0
3B19004	Cobalt, Total	mg/L	0.0000042	0.000147	0.100	0.107	0.108	0.101	0.0850 to 0.115	97.0	70.0 to 130	0.930	20.0
3B19004	Calcium, Total	mg/L	0.00219	0.152	5.00	69.3	67.7	5.05	4.25 to 5.75	118	70.0 to 130	2.34	20.0
3B19004	Thallium, Total	mg/L	-0.0000007	0.000147	0.100	0.0949	0.0935	0.0987	0.0850 to 0.115	94.8	70.0 to 130	1.49	20.0
3B19004	Sodium, Total	mg/L	0.000246	0.0660	5.00	23.0	23.1	5.04	4.25 to 5.75	112	70.0 to 130	0.434	20.0
3B19004	Barium, Total	mg/L	0.0000000	0.000200	0.100	0.236	0.236	0.0970	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
3B19004	Lead, Total	mg/L	0.0000123	0.000147	0.100	0.101	0.100	0.105	0.0850 to 0.115	101	70.0 to 130	0.995	20.0
3B19004	Iron, Total	mg/L	0.00115	0.0176	0.2	3.06	3.04	0.203	0.170 to 0.230	95.0	70.0 to 130	0.656	20.0
BB19005	Manganese, Dissolved	mg/L	-0.0000354	0.000147	0.100	0.790	0.786	0.102	0.0850 to 0.115	98.0	70.0 to 130	0.508	20.0
BB19004	Chromium, Total	mg/L	-0.0000467	0.000440	0.100	0.0974	0.0981	0.0993	0.0850 to 0.115	97.2	70.0 to 130	0.716	20.0
3B19004	Beryllium, Total	mg/L	0.0000297	0.000880	0.100	0.103	0.102	0.105	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
3B19004	Magnesium, Total	mg/L	0.00137	0.0462	5.00	23.3	23.3	5.13	4.25 to 5.75	100	70.0 to 130	0.00	20.0

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified.

Batch QC Summary

Customer Account: WMWGADAP

Sample Date:

10/12/21 09:28

Customer ID:

Delivery Date:

10/13/21 09:46

Description: Gadsden Ash Pond - MW-2VB

Laboratory ID Number: BB18999

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	l Limit	Rec	Limit	Prec	<u>Li</u> mit
BB19004	Fluoride	mg/L	0.0194	0.100	2.50	2.78	0.128	2.61	2.25 to 2.75	106	80.0 to 120	0.784	20.0
BB19000	Alkalinity, Total as CaCO3	mg/L					4.20	50.9	45.0 to 55.0			4.88	10.0
BB19004	Sulfate	mg/L	-0.00907	1.00	320	533	175	19.7	18.0 to 22.0	112	80.0 to 120	0.573	20.0
BB19004	Chloride	mg/L	0.000283	1.00	10.0	16.4	6.36	9.96	9.00 to 11.0	100	80.0 to 120	0.157	20.0
BB18997	Solids, Dissolved	mg/L	0.0000	25.0			342	50.0	40.0 to 60.0			0.736	10.0

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified.

Certificate Of Analysis

Description: Gadsden Ash Pond - MW-18HLocation Code:WMWGADAPCollected:10/12/21 11:17

Customer ID:

Submittal Date: 10/13/21 09:46

Laboratory ID Number: BB19000

Name	Prepared A	nalyzed Vio S	pec DF	Results	Units	MDL	RL	C
Analytical Method: EPA 200.7	Analyst	: RDA		Preparati	on Method: L	EPA 1638		
* Boron, Total	10/21/21 12:00	10/22/21 10:15	1.015	0.0717	mg/L	0.030000	0.1015	J
* Calcium, Total	10/21/21 12:00	10/22/21 10:15	1.015	10.3	mg/L	0.070035	0.406	
* Iron, Total	10/21/21 12:00	10/22/21 10:15	1.015	Not Detected	mg/L	0.008120	0.0406	U
* Lithium, Total	10/21/21 12:00	10/22/21 10:15	1.015	Not Detected	mg/L	0.007105	0.01999956	S U
* Magnesium, Total	10/21/21 12:00	10/22/21 10:15	1.015	4.15	mg/L	0.021315	0.406	
* Sodium, Total	10/21/21 12:00	10/22/21 10:15	1.015	4.44	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Analysi	: RDA						
* Iron, Dissolved	10/20/21 14:00	10/21/21 10:08	1.015	Not Detected	mg/L	0.008120	0.0406	U
Analytical Method: EPA 200.8	Analyst	: DLJ		Preparati	on Method: L	EPA 1638		
* Antimony, Total	10/13/21 14:45	10/14/21 17:58	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Arsenic, Total	10/13/21 14:45	10/14/21 17:58	1.015	0.000190	mg/L	0.000068	0.000203	J
* Barium, Total	10/13/21 14:45	10/14/21 17:58	1.015	0.0298	mg/L	0.000102	0.000203	
* Beryllium, Total	10/13/21 14:45	10/14/21 17:58	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	10/13/21 14:45	10/14/21 17:58	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	10/13/21 14:45	10/14/21 17:58	1.015	0.000209	mg/L	0.000203	0.001015	J
* Cobalt, Total	10/13/21 14:45	10/14/21 17:58	1.015	0.000615	mg/L	0.000068	0.000203	
* Lead, Total	10/13/21 14:45	10/14/21 17:58	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Molybdenum, Total	10/13/21 14:45	10/14/21 17:58	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Potassium, Total	10/13/21 14:45	10/14/21 17:58	1.015	0.921	mg/L	0.169505	0.5075	
* Manganese, Total	10/13/21 14:45	10/14/21 17:58	1.015	0.0254	mg/L	0.000068	0.000203	
* Selenium, Total	10/13/21 14:45	10/14/21 17:58	1.015	0.000679	mg/L	0.000508	0.001015	J
* Thallium, Total	10/13/21 14:45	10/14/21 17:58	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Analyst	: DLJ						
* Manganese, Dissolved	10/13/21 14:19 ·	10/14/21 10:48	1.015	0.0258	mg/L	0.000068	0.000203	
Analytical Method: EPA 245.1	Analyst	: CRB						
* Mercury, Total by CVAA	10/19/21 13:32	10/19/21 17:49	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: SM 2320 B	Analys	: JAG						
Alkalinity, Total as CaCO3	10/15/21 10:30	10/15/21 11:41	1	4.00	mg/L		0.1	
Analytical Method: SM 2540C	Analys				-			
* Solids, Dissolved	10/14/21 10:52		1	78.7	mg/L		25	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Gadsden Ash Pond - MW-18H

Location Code:

WMWGADAP

Collected:

Customer ID:

10/12/21 11:17

Laboratory ID Number: BB19000

Submittal Date:	10/13/21 09:46
Subilillai Dale.	10/13/21 09.40

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM 4500CO2 D	An	alyst: JAG							
Bicarbonate Alkalinity, (calc.)	10/15/21 10:	30 10/15/21	11:41	1	4.00	mg/L			
Carbonate Alkalinity, (calc.)	10/15/21 10:	30 10/15/21	11:41	1	0.00	mg/L			
Analytical Method: SM4500Cl E	An	alyst: JCC							
* Chloride	10/14/21 11:	18 10/14/21	11:18	1	4.59	mg/L	0.50	1	
Analytical Method: SM4500F G 2017	An	alyst: JCC							
* Fluoride	10/13/21 13:	51 10/13/21	13:51	1	Not Detected	mg/L	0.06	0.1	U
Analytical Method: SM4500SO4 E 2011	An	alyst: JCC							
* Sulfate	10/20/21 13:	06 10/20/21	13:06	1	36.7	mg/L	0.50	1	
Analytical Method: Field Measurements	An	alyst: DKG							
Conductivity	10/12/21 11:	14 10/12/21	11:14		115.05	uS/cm			FA
рН	10/12/21 11:	14 10/12/21	11:14		5.12	SU			FA
Temperature	10/12/21 11:	14 10/12/21	11:14		17.56	С			FA
Turbidity	10/12/21 11:	14 10/12/21	11:14		1.54	NTU			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWGADAP **Sample Date:** 10/12/21 11:17

Customer ID:

Delivery Date: 10/13/21 09:46

Description: Gadsden Ash Pond - MW-18H

Laboratory ID Number: BB19000

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BB19004	Potassium, Total	mg/L	-0.00835	0.367	10.0	13.1	13.3	10.4	8.50 to 11.5	101	70.0 to 130	1.52	20.0
3B19004	Boron, Total	mg/L	0.00185	0.0650	1.00	1.52	1.53	1.01	0.850 to 1.15	102	70.0 to 130	0.656	20.0
3B19004	Molybdenum, Total	mg/L	0.0000340	0.000147	0.100	0.0978	0.0964	0.0973	0.0850 to 0.115	97.5	70.0 to 130	1.44	20.0
3B19004	Selenium, Total	mg/L	0.0000000	0.00100	0.100	0.0995	0.102	0.102	0.0850 to 0.115	99.5	70.0 to 130	2.48	20.0
3B19005	Iron, Dissolved	mg/L	3.760E-05	0.0176	0.2	21.3	21.0	0.202	0.170 to 0.230	50.0	70.0 to 130	1.42	20.0
3B19004	Mercury, Total by CVAA	mg/L	6.000E-05	0.000500	0.004	0.0041	0.00411	0.00406	0.00340 to 0.00460	102	70.0 to 130	0.244	20.0
BB19004	Arsenic, Total	mg/L	-0.0000440	0.000147	0.100	0.103	0.101	0.103	0.0850 to 0.115	101	70.0 to 130	1.96	20.0
BB19004	Cadmium, Total	mg/L	0.0000114	0.000147	0.100	0.0998	0.102	0.102	0.0850 to 0.115	99.8	70.0 to 130	2.18	20.0
BB19004	Lithium, Total	mg/L	-3.720E-05	0.0154	0.200	0.219	0.220	0.200	0.170 to 0.230	110	70.0 to 130	0.456	20.0
BB19004	Lead, Total	mg/L	0.0000123	0.000147	0.100	0.101	0.100	0.105	0.0850 to 0.115	101	70.0 to 130	0.995	20.0
BB19004	Iron, Total	mg/L	0.00115	0.0176	0.2	3.06	3.04	0.203	0.170 to 0.230	95.0	70.0 to 130	0.656	20.0
BB19005	Manganese, Dissolved	mg/L	-0.0000354	0.000147	0.100	0.790	0.786	0.102	0.0850 to 0.115	98.0	70.0 to 130	0.508	20.0
BB19004	Chromium, Total	mg/L	-0.0000467	0.000440	0.100	0.0974	0.0981	0.0993	0.0850 to 0.115	97.2	70.0 to 130	0.716	20.0
BB19004	Beryllium, Total	mg/L	0.0000297	0.000880	0.100	0.103	0.102	0.105	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
BB19004	Magnesium, Total	mg/L	0.00137	0.0462	5.00	23.3	23.3	5.13	4.25 to 5.75	100	70.0 to 130	0.00	20.0
BB19004	Calcium, Total	mg/L	0.00219	0.152	5.00	69.3	67.7	5.05	4.25 to 5.75	118	70.0 to 130	2.34	20.0
BB19004	Thallium, Total	mg/L	-0.0000007	0.000147	0.100	0.0949	0.0935	0.0987	0.0850 to 0.115	94.8	70.0 to 130	1.49	20.0
3B19004	Sodium, Total	mg/L	0.000246	0.0660	5.00	23.0	23.1	5.04	4.25 to 5.75	112	70.0 to 130	0.434	20.0
BB19004	Barium, Total	mg/L	0.0000000	0.000200	0.100	0.236	0.236	0.0970	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
3B19004	Manganese, Total	mg/L	-0.0000042	0.000147	0.100	30.6	31.2	0.0985	0.0850 to 0.115	-1300	70.0 to 130	1.94	20.0
3B19004	Antimony, Total	mg/L	0.000138	0.00100	0.100	0.0999	0.100	0.0965	0.0850 to 0.115	99.9	70.0 to 130	0.100	20.0
3B19004	Cobalt, Total	mg/L	0.0000042	0.000147	0.100	0.107	0.108	0.101	0.0850 to 0.115	97.0	70.0 to 130	0.930	20.0

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified.

Batch QC Summary

Customer Account: WMWGADAP

Sample Date: 10/1

10/12/21 11:17

Customer ID:

Delivery Date:

10/13/21 09:46

Description: Gadsden Ash Pond - MW-18H

Laboratory ID Number: BB19000

					МВ			Sample		Standard		Rec		Prec
	Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	Limit
Е	3B19004	Sulfate	mg/L	-0.00907	1.00	320	533	175	19.7	18.0 to 22.0	112	80.0 to 120	0.573	20.0
Е	3B19004	Chloride	mg/L	0.000283	1.00	10.0	16.4	6.36	9.96	9.00 to 11.0	100	80.0 to 120	0.157	20.0
Е	3B19004	Fluoride	mg/L	0.0194	0.100	2.50	2.78	0.128	2.61	2.25 to 2.75	106	80.0 to 120	0.784	20.0
Е	3B19000	Alkalinity, Total as CaCO3	mg/L					4.20	50.9	45.0 to 55.0			4.88	10.0
Е	3B18997	Solids, Dissolved	mg/L	0.0000	25.0			342	50.0	40.0 to 60.0			0.736	10.0

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified.

Certificate Of Analysis

Description: Gadsden Ash Pond - PZ-5Location Code:WMWGADAPCollected:10/12/21 12:16

Customer ID:

Submittal Date: 10/13/21 09:46

Laboratory ID Number: BB19001

Name	Prepared Analyzed Vi	Spec DF	Results	Units	MDL	RL	C
Analytical Method: EPA 200.7	Analyst: RDA		Preparati	on Method: E	PA 1638		
* Boron, Total	10/21/21 12:00 10/22/21 10:18	1.015	Not Detected	mg/L	0.030000	0.1015	U
* Calcium, Total	10/21/21 12:00 10/22/21 10:18	1.015	2.94	mg/L	0.070035	0.406	
* Iron, Total	10/21/21 12:00 10/22/21 10:18	1.015	0.0164	mg/L	0.008120	0.0406	J
* Lithium, Total	10/21/21 12:00 10/22/21 10:18	1.015	Not Detected	mg/L	0.007105	0.01999956	S U
* Magnesium, Total	10/21/21 12:00 10/22/21 10:18	1.015	1.10	mg/L	0.021315	0.406	
* Sodium, Total	10/21/21 12:00 10/22/21 10:18	1.015	3.68	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Analyst: RDA						
* Iron, Dissolved	10/20/21 14:00 10/21/21 10:11	1.015	Not Detected	mg/L	0.008120	0.0406	U
Analytical Method: EPA 200.8	Analyst: DLJ		Preparati	on Method: E	PA 1638		
* Antimony, Total	10/13/21 14:45 10/14/21 18:02	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Arsenic, Total	10/13/21 14:45 10/14/21 18:02	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Barium, Total	10/13/21 14:45 10/14/21 18:02	1.015	0.0494	mg/L	0.000102	0.000203	
* Beryllium, Total	10/13/21 14:45 10/14/21 18:02	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	10/13/21 14:45 10/14/21 18:02	1.015	0.0000842	mg/L	0.000068	0.000203	J
* Chromium, Total	10/13/21 14:45 10/14/21 18:02	1.015	0.000337	mg/L	0.000203	0.001015	J
* Cobalt, Total	10/13/21 14:45 10/14/21 18:02	1.015	0.0000808	mg/L	0.000068	0.000203	J
* Lead, Total	10/13/21 14:45 10/14/21 18:02	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Molybdenum, Total	10/13/21 14:45 10/14/21 18:02	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Potassium, Total	10/13/21 14:45 10/14/21 18:02	1.015	0.549	mg/L	0.169505	0.5075	
* Manganese, Total	10/13/21 14:45 10/14/21 18:02	1.015	0.0125	mg/L	0.000068	0.000203	
* Selenium, Total	10/13/21 14:45 10/14/21 18:02	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	10/13/21 14:45 10/14/21 18:02	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Analyst: DLJ						
* Manganese, Dissolved	10/13/21 14:19 10/14/21 10:51	1.015	0.00663	mg/L	0.000068	0.000203	
Analytical Method: EPA 245.1	Analyst: CRB						
* Mercury, Total by CVAA	10/19/21 13:32 10/19/21 17:53	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: SM 2320 B	Analyst: JAG						
Alkalinity, Total as CaCO3	10/20/21 09:45 10/20/21 10:40	1	23.7	mg/L		0.1	
Analytical Method: SM 2540C	Analyst: CNJ			-			
* Solids, Dissolved	10/14/21 10:52 10/15/21 13:04	1	38.7	mg/L		25	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

FΑ

FΑ

FΑ

Description: Gadsden Ash Pond - PZ-5

Location Code:

WMWGADAP

10/13/21 09:46

Collected:

5.33

17.84

2.08

Customer ID:

10/12/21 12:16

Laboratory ID Number: BB19001

рΗ

Temperature

Turbidity

Submittal Date:

SU

С

NTU

MDL Q Results Units RL Name Prepared Analyzed Vio Spec DF Analytical Method: SM 4500CO2 D Analyst: JAG Bicarbonate Alkalinity, (calc.) 10/20/21 09:45 10/20/21 10:40 23.7 mg/L 1 Carbonate Alkalinity, (calc.) 10/20/21 09:45 10/20/21 10:40 1 0.00 mg/L Analyst: JCC Analytical Method: SM4500CI E * Chloride 10/14/21 11:19 10/14/21 11:19 4.07 mg/L 0.50 1 Analyst: JCC Analytical Method: SM4500F G 2017 U Not Detected mg/L 0.1 * Fluoride 10/13/21 13:52 10/13/21 13:52 0.06 Analytical Method: SM4500SO4 E 2011 Analyst: JCC mg/L 0.50 1 * Sulfate 10/20/21 13:07 10/20/21 13:07 0.895 1 Analytical Method: Field Measurements Analyst: DKG FΑ Conductivity 10/12/21 12:13 10/12/21 12:13 41.42 uS/cm

10/12/21 12:13 10/12/21 12:13

10/12/21 12:13 10/12/21 12:13

10/12/21 12:13 10/12/21 12:13

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWGADAP **Sample Date:** 10/12/21 12:16

Customer ID:

Delivery Date: 10/13/21 09:46

Description: Gadsden Ash Pond - PZ-5

Laboratory ID Number: BB19001

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BB19004	Potassium, Total	mg/L	-0.00835	0.367	10.0	13.1	13.3	10.4	8.50 to 11.5	101	70.0 to 130	1.52	20.0
BB19004	Selenium, Total	mg/L	0.0000000	0.00100	0.100	0.0995	0.102	0.102	0.0850 to 0.115	99.5	70.0 to 130	2.48	20.0
BB19005	Iron, Dissolved	mg/L	3.760E-05	0.0176	0.2	21.3	21.0	0.202	0.170 to 0.230	50.0	70.0 to 130	1.42	20.0
BB19004	Mercury, Total by CVAA	mg/L	6.000E-05	0.000500	0.004	0.0041	0.00411	0.00406	0.00340 to 0.00460	102	70.0 to 130	0.244	20.0
BB19004	Arsenic, Total	mg/L	-0.0000440	0.000147	0.100	0.103	0.101	0.103	0.0850 to 0.115	101	70.0 to 130	1.96	20.0
BB19004	Lead, Total	mg/L	0.0000123	0.000147	0.100	0.101	0.100	0.105	0.0850 to 0.115	101	70.0 to 130	0.995	20.0
BB19004	Iron, Total	mg/L	0.00115	0.0176	0.2	3.06	3.04	0.203	0.170 to 0.230	95.0	70.0 to 130	0.656	20.0
BB19005	Manganese, Dissolved	mg/L	-0.0000354	0.000147	0.100	0.790	0.786	0.102	0.0850 to 0.115	98.0	70.0 to 130	0.508	20.0
BB19004	Chromium, Total	mg/L	-0.0000467	0.000440	0.100	0.0974	0.0981	0.0993	0.0850 to 0.115	97.2	70.0 to 130	0.716	20.0
BB19004	Boron, Total	mg/L	0.00185	0.0650	1.00	1.52	1.53	1.01	0.850 to 1.15	102	70.0 to 130	0.656	20.0
BB19004	Molybdenum, Total	mg/L	0.0000340	0.000147	0.100	0.0978	0.0964	0.0973	0.0850 to 0.115	97.5	70.0 to 130	1.44	20.0
BB19004	Cadmium, Total	mg/L	0.0000114	0.000147	0.100	0.0998	0.102	0.102	0.0850 to 0.115	99.8	70.0 to 130	2.18	20.0
BB19004	Lithium, Total	mg/L	-3.720E-05	0.0154	0.200	0.219	0.220	0.200	0.170 to 0.230	110	70.0 to 130	0.456	20.0
BB19004	Calcium, Total	mg/L	0.00219	0.152	5.00	69.3	67.7	5.05	4.25 to 5.75	118	70.0 to 130	2.34	20.0
BB19004	Thallium, Total	mg/L	-0.0000007	0.000147	0.100	0.0949	0.0935	0.0987	0.0850 to 0.115	94.8	70.0 to 130	1.49	20.0
BB19004	Sodium, Total	mg/L	0.000246	0.0660	5.00	23.0	23.1	5.04	4.25 to 5.75	112	70.0 to 130	0.434	20.0
BB19004	Barium, Total	mg/L	0.0000000	0.000200	0.100	0.236	0.236	0.0970	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BB19004	Manganese, Total	mg/L	-0.0000042	0.000147	0.100	30.6	31.2	0.0985	0.0850 to 0.115	-1300	70.0 to 130	1.94	20.0
BB19004	Antimony, Total	mg/L	0.000138	0.00100	0.100	0.0999	0.100	0.0965	0.0850 to 0.115	99.9	70.0 to 130	0.100	20.0
BB19004	Cobalt, Total	mg/L	0.0000042	0.000147	0.100	0.107	0.108	0.101	0.0850 to 0.115	97.0	70.0 to 130	0.930	20.0
BB19004	Beryllium, Total	mg/L	0.0000297	0.000880	0.100	0.103	0.102	0.105	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
BB19004	Magnesium, Total	mg/L	0.00137	0.0462	5.00	23.3	23.3	5.13	4.25 to 5.75	100	70.0 to 130	0.00	20.0

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified.

Batch QC Summary

Customer Account: WMWGADAP

Sample Date: 1

10/12/21 12:16

Customer ID:

Delivery Date:

10/13/21 09:46

Description: Gadsden Ash Pond - PZ-5

Laboratory ID Number: BB19001

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	l Limit	Rec	Limit	Prec	<u>Li</u> mit
BB19004	Fluoride	mg/L	0.0194	0.100	2.50	2.78	0.128	2.61	2.25 to 2.75	106	80.0 to 120	0.784	20.0
BB19004	Sulfate	mg/L	-0.00907	1.00	320	533	175	19.7	18.0 to 22.0	112	80.0 to 120	0.573	20.0
BB19004	Chloride	mg/L	0.000283	1.00	10.0	16.4	6.36	9.96	9.00 to 11.0	100	80.0 to 120	0.157	20.0
BB19010	Alkalinity, Total as CaCO3	mg/L					153	50.9	45.0 to 55.0			0.651	10.0
BB18997	Solids, Dissolved	mg/L	0.0000	25.0			342	50.0	40.0 to 60.0			0.736	10.0

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified.

Certificate Of Analysis

Description: Gadsden Ash Pond - PZ-6Location Code:WMWGADAPCollected:10/12/21 13:40

Customer ID:

Laboratory ID Number: BB19002 Submittal Date: 10/13/21 09:46

Name	Prepared Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Analyst: RDA			Preparati	on Method: EF	PA 1638		
* Boron, Total	10/21/21 12:00 10/22/2	1 10:21	1.015	Not Detected	mg/L	0.030000	0.1015	U
* Calcium, Total	10/21/21 12:00 10/22/2	1 10:21	1.015	3.29	mg/L	0.070035	0.406	
* Iron, Total	10/21/21 12:00 10/22/2	1 10:21	1.015	0.0571	mg/L	0.008120	0.0406	
* Lithium, Total	10/21/21 12:00 10/22/2	1 10:21	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	10/21/21 12:00 10/22/2	1 10:21	1.015	1.07	mg/L	0.021315	0.406	
* Sodium, Total	10/21/21 12:00 10/22/2	1 10:21	1.015	3.74	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Analyst: RDA							
* Iron, Dissolved	10/20/21 14:00 10/21/2	1 10:15	1.015	Not Detected	mg/L	0.008120	0.0406	U
Analytical Method: EPA 200.8	Analyst: DLJ			Preparati	on Method: EF	PA 1638		
* Antimony, Total	10/13/21 14:45 10/14/2	1 18:06	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Arsenic, Total	10/13/21 14:45 10/14/2	1 18:06	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Barium, Total	10/13/21 14:45 10/14/2	1 18:06	1.015	0.0303	mg/L	0.000102	0.000203	
* Beryllium, Total	10/13/21 14:45 10/14/2	1 18:06	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	10/13/21 14:45 10/14/2	1 18:06	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	10/13/21 14:45 10/14/2	1 18:06	1.015	0.000307	mg/L	0.000203	0.001015	J
* Cobalt, Total	10/13/21 14:45 10/14/2	1 18:06	1.015	0.000142	mg/L	0.000068	0.000203	J
* Lead, Total	10/13/21 14:45 10/14/2	1 18:06	1.015	0.000119	mg/L	0.000068	0.000203	J
* Molybdenum, Total	10/13/21 14:45 10/14/2	1 18:06	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Potassium, Total	10/13/21 14:45 10/14/2	1 18:06	1.015	0.507	mg/L	0.169505	0.5075	J
* Manganese, Total	10/13/21 14:45 10/14/2	1 18:06	1.015	0.00422	mg/L	0.000068	0.000203	
* Selenium, Total	10/13/21 14:45 10/14/2	1 18:06	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	10/13/21 14:45 10/14/2	1 18:06	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Analyst: DLJ							
* Manganese, Dissolved	10/13/21 14:19 10/14/2	1 10:55	1.015	0.00377	mg/L	0.000068	0.000203	
Analytical Method: EPA 245.1	Analyst: CRB							
* Mercury, Total by CVAA	10/19/21 13:32 10/19/2	1 17:57	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: SM 2320 B	Analyst: JAG							
Alkalinity, Total as CaCO3	10/20/21 09:45 10/20/2	1 10:40	1	23.6	mg/L		0.1	
Analytical Method: SM 2540C	Analyst: CNJ							
* Solids, Dissolved	10/14/21 10:52 10/15/2	1 13:04	1	35.3	mg/L		25	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Gadsden Ash Pond - PZ-6

Location Code:

WMWGADAP

Collected:

Customer ID:

10/12/21 13:40

Laboratory ID Number: BB19002

Submittal Date: 10/13/21 09:46

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM 4500CO2 D	An	alyst: JAG							
Bicarbonate Alkalinity, (calc.)	10/20/21 09:	45 10/20/21	10:40	1	23.6	mg/L			
Carbonate Alkalinity, (calc.)	10/20/21 09:	45 10/20/21	10:40	1	0.00	mg/L			
Analytical Method: SM4500Cl E	An	alyst: JCC							
* Chloride	10/14/21 11:	20 10/14/21	11:20	1	3.68	mg/L	0.50	1	
Analytical Method: SM4500F G 2017	An	alyst: JCC							
* Fluoride	10/13/21 13:	53 10/13/21	13:53	1	Not Detected	mg/L	0.06	0.1	U
Analytical Method: SM4500SO4 E 2011	An	alyst: JCC							
* Sulfate	10/20/21 13:	08 10/20/21	13:08	1	1.34	mg/L	0.50	1	
Analytical Method: Field Measurements	An	alyst: DKG							
Conductivity	10/12/21 13:	37 10/12/21	13:37		42.98	uS/cm			FA
рН	10/12/21 13:	37 10/12/21	13:37		5.41	SU			FA
Temperature	10/12/21 13:	37 10/12/21	13:37		19.58	С			FA
Turbidity	10/12/21 13:	37 10/12/21	13:37		6.06	NTU			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWGADAP **Sample Date:** 10/12/21 13:40

Customer ID:

Delivery Date: 10/13/21 09:46

Description: Gadsden Ash Pond - PZ-6

Laboratory ID Number: BB19002

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BB19004	Potassium, Total	mg/L	-0.00835	0.367	10.0	13.1	13.3	10.4	8.50 to 11.5	101	70.0 to 130	1.52	20.0
BB19004	Selenium, Total	mg/L	0.0000000	0.00100	0.100	0.0995	0.102	0.102	0.0850 to 0.115	99.5	70.0 to 130	2.48	20.0
BB19005	Iron, Dissolved	mg/L	3.760E-05	0.0176	0.2	21.3	21.0	0.202	0.170 to 0.230	50.0	70.0 to 130	1.42	20.0
BB19004	Mercury, Total by CVAA	mg/L	6.000E-05	0.000500	0.004	0.0041	0.00411	0.00406	0.00340 to 0.00460	102	70.0 to 130	0.244	20.0
BB19004	Arsenic, Total	mg/L	-0.0000440	0.000147	0.100	0.103	0.101	0.103	0.0850 to 0.115	101	70.0 to 130	1.96	20.0
BB19004	Cadmium, Total	mg/L	0.0000114	0.000147	0.100	0.0998	0.102	0.102	0.0850 to 0.115	99.8	70.0 to 130	2.18	20.0
BB19004	Lithium, Total	mg/L	-3.720E-05	0.0154	0.200	0.219	0.220	0.200	0.170 to 0.230	110	70.0 to 130	0.456	20.0
BB19004	Lead, Total	mg/L	0.0000123	0.000147	0.100	0.101	0.100	0.105	0.0850 to 0.115	101	70.0 to 130	0.995	20.0
BB19004	Iron, Total	mg/L	0.00115	0.0176	0.2	3.06	3.04	0.203	0.170 to 0.230	95.0	70.0 to 130	0.656	20.0
BB19005	Manganese, Dissolved	mg/L	-0.0000354	0.000147	0.100	0.790	0.786	0.102	0.0850 to 0.115	98.0	70.0 to 130	0.508	20.0
BB19004	Chromium, Total	mg/L	-0.0000467	0.000440	0.100	0.0974	0.0981	0.0993	0.0850 to 0.115	97.2	70.0 to 130	0.716	20.0
BB19004	Calcium, Total	mg/L	0.00219	0.152	5.00	69.3	67.7	5.05	4.25 to 5.75	118	70.0 to 130	2.34	20.0
BB19004	Thallium, Total	mg/L	-0.0000007	0.000147	0.100	0.0949	0.0935	0.0987	0.0850 to 0.115	94.8	70.0 to 130	1.49	20.0
BB19004	Sodium, Total	mg/L	0.000246	0.0660	5.00	23.0	23.1	5.04	4.25 to 5.75	112	70.0 to 130	0.434	20.0
BB19004	Barium, Total	mg/L	0.0000000	0.000200	0.100	0.236	0.236	0.0970	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BB19004	Manganese, Total	mg/L	-0.0000042	0.000147	0.100	30.6	31.2	0.0985	0.0850 to 0.115	-1300	70.0 to 130	1.94	20.0
BB19004	Antimony, Total	mg/L	0.000138	0.00100	0.100	0.0999	0.100	0.0965	0.0850 to 0.115	99.9	70.0 to 130	0.100	20.0
BB19004	Cobalt, Total	mg/L	0.0000042	0.000147	0.100	0.107	0.108	0.101	0.0850 to 0.115	97.0	70.0 to 130	0.930	20.0
BB19004	Boron, Total	mg/L	0.00185	0.0650	1.00	1.52	1.53	1.01	0.850 to 1.15	102	70.0 to 130	0.656	20.0
BB19004	Molybdenum, Total	mg/L	0.0000340	0.000147	0.100	0.0978	0.0964	0.0973	0.0850 to 0.115	97.5	70.0 to 130	1.44	20.0
BB19004	Beryllium, Total	mg/L	0.0000297	0.000880	0.100	0.103	0.102	0.105	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
BB19004	Magnesium, Total	mg/L	0.00137	0.0462	5.00	23.3	23.3	5.13	4.25 to 5.75	100	70.0 to 130	0.00	20.0

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified.

Batch QC Summary

Customer Account: WMWGADAP

Sample Date: 10/

10/12/21 13:40

Customer ID:

Delivery Date:

10/13/21 09:46

Description: Gadsden Ash Pond - PZ-6

Laboratory ID Number: BB19002

					MB			Sample		Standard		Rec		Prec
	Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
E	3B19004	Sulfate	mg/L	-0.00907	1.00	320	533	175	19.7	18.0 to 22.0	112	80.0 to 120	0.573	20.0
E	3B19004	Chloride	mg/L	0.000283	1.00	10.0	16.4	6.36	9.96	9.00 to 11.0	100	80.0 to 120	0.157	20.0
E	3B19010	Alkalinity, Total as CaCO3	mg/L					153	50.9	45.0 to 55.0			0.651	10.0
E	3B19004	Fluoride	mg/L	0.0194	0.100	2.50	2.78	0.128	2.61	2.25 to 2.75	106	80.0 to 120	0.784	20.0
E	3B19010	Solids, Dissolved	mg/L	0.0000	25.0			351	50.0	40.0 to 60.0			0.142	10.0

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified.

Certificate Of Analysis

Description: Gadsden Ash Pond - MW-4V

Location Code:

WMWGADAP 10/11/21 12:40

Collected: Customer ID:

Submittal Date:

10/13/21 09:46

Laboratory ID Number: BB19003

Name	Prepared Analyzed	l Vio Spe	c DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Analyst: RDA			Preparati	on Method: L	EPA 1638		
* Boron, Total	10/21/21 12:00 10/22/2	1 10:25	1.015	0.0596	mg/L	0.030000	0.1015	J
* Calcium, Total	10/21/21 12:00 10/22/2	1 10:25	1.015	23.0	mg/L	0.070035	0.406	
* Iron, Total	10/21/21 12:00 10/22/2	1 10:25	1.015	0.452	mg/L	0.008120	0.0406	
* Lithium, Total	10/21/21 12:00 10/22/2	1 10:25	1.015	0.0198	mg/L	0.007105	0.01999956	J
* Magnesium, Total	10/21/21 12:00 10/22/2	1 10:25	1.015	5.50	mg/L	0.021315	0.406	
* Sodium, Total	10/21/21 12:00 10/22/2	1 13:49	10.15	58.5	mg/L	0.3045	4.06	
Analytical Method: EPA 200.7	Analyst: RDA							
* Iron, Dissolved	10/20/21 14:00 10/21/2	1 10:18	1.015	0.425	mg/L	0.008120	0.0406	
Analytical Method: EPA 200.8	Analyst: DLJ			Preparati	on Method: L	EPA 1638		
* Antimony, Total	10/13/21 14:45 10/14/2	1 18:09	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Arsenic, Total	10/13/21 14:45 10/14/2	1 18:09	1.015	0.000366	mg/L	0.000068	0.000203	
* Barium, Total	10/13/21 14:45 10/14/2	1 18:09	1.015	0.483	mg/L	0.000102	0.000203	
* Beryllium, Total	10/13/21 14:45 10/14/2	1 18:09	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	10/13/21 14:45 10/14/2	1 18:09	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	10/13/21 14:45 10/14/2	1 18:09	1.015	0.000314	mg/L	0.000203	0.001015	J
* Cobalt, Total	10/13/21 14:45 10/14/2	1 18:09	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Lead, Total	10/13/21 14:45 10/14/2	1 18:09	1.015	Not Detected	mg/L	0.000068	0.000203	U
 Molybdenum, Total 	10/13/21 14:45 10/14/2	1 18:09	1.015	0.00173	mg/L	0.000068	0.000203	
* Potassium, Total	10/13/21 14:45 10/14/2	1 18:09	1.015	0.865	mg/L	0.169505	0.5075	
* Manganese, Total	10/13/21 14:45 10/14/2	1 18:09	1.015	0.0485	mg/L	0.000068	0.000203	
* Selenium, Total	10/13/21 14:45 10/14/2	1 18:09	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	10/13/21 14:45 10/14/2	1 18:09	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Analyst: DLJ							
* Manganese, Dissolved	10/13/21 14:19 10/14/2	1 10:58	1.015	0.0480	mg/L	0.000068	0.000203	
Analytical Method: EPA 245.1	Analyst: CRB							
* Mercury, Total by CVAA	10/19/21 13:32 10/19/2	1 18:01	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: SM 2320 B	Analyst: JAG							
Alkalinity, Total as CaCO3	10/20/21 09:45 10/20/2	1 10:40	1	236	mg/L		0.1	
Analytical Method: SM 2540C	Analyst: CNJ							
* Solids, Dissolved	10/14/21 10:52 10/15/2	1 13:04	1	220	mg/L		25	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Gadsden Ash Pond - MW-4V

Location Code:

WMWGADAP

Collected:

Customer ID:

10/11/21 12:40

Laboratory ID Number: BB19003

Submittal Date: 10/13/21 09:46

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM 4500CO2 D	An	alyst: JAG			•			•	
Bicarbonate Alkalinity, (calc.)	10/20/21 09	45 10/20/21	10:40 1		234	mg/L			
Carbonate Alkalinity, (calc.)	10/20/21 09	45 10/20/21	10:40 1		2.10	mg/L			
Analytical Method: SM4500Cl E	An	alyst: JCC							
* Chloride	10/14/21 11:	21 10/14/21	11:21 1		5.65	mg/L	0.50	1	
Analytical Method: SM4500F G 2017	An	alyst: JCC							
* Fluoride	10/13/21 13:	55 10/13/21	13:55 1		0.230	mg/L	0.06	0.1	
Analytical Method: SM4500SO4 E 2011	An	alyst: JCC							
* Sulfate	10/20/21 13	09 10/20/21	13:09 1		1.70	mg/L	0.50	1	
Analytical Method: Field Measurements	An	alyst: TJD							
Conductivity	10/11/21 12	34 10/11/21	12:34		439.07	uS/cm			FA
рН	10/11/21 12	34 10/11/21	12:34		7.82	SU			FA
Temperature	10/11/21 12	34 10/11/21	12:34		19.61	С			FA
Turbidity	10/11/21 12	34 10/11/21	12:34		1.17	NTU			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWGADAP **Sample Date:** 10/11/21 12:40

Customer ID:

Delivery Date: 10/13/21 09:46

Description: Gadsden Ash Pond - MW-4V

Laboratory ID Number: BB19003

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BB19004	Cadmium, Total	mg/L	0.0000114	0.000147	0.100	0.0998	0.102	0.102	0.0850 to 0.115	99.8	70.0 to 130	2.18	20.0
BB19004	Lithium, Total	mg/L	-3.720E-05	0.0154	0.200	0.219	0.220	0.200	0.170 to 0.230	110	70.0 to 130	0.456	20.0
BB19004	Potassium, Total	mg/L	-0.00835	0.367	10.0	13.1	13.3	10.4	8.50 to 11.5	101	70.0 to 130	1.52	20.0
BB19004	Beryllium, Total	mg/L	0.0000297	0.000880	0.100	0.103	0.102	0.105	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
BB19004	Magnesium, Total	mg/L	0.00137	0.0462	5.00	23.3	23.3	5.13	4.25 to 5.75	100	70.0 to 130	0.00	20.0
BB19004	Lead, Total	mg/L	0.0000123	0.000147	0.100	0.101	0.100	0.105	0.0850 to 0.115	101	70.0 to 130	0.995	20.0
BB19004	Iron, Total	mg/L	0.00115	0.0176	0.2	3.06	3.04	0.203	0.170 to 0.230	95.0	70.0 to 130	0.656	20.0
BB19005	Manganese, Dissolved	mg/L	-0.0000354	0.000147	0.100	0.790	0.786	0.102	0.0850 to 0.115	98.0	70.0 to 130	0.508	20.0
BB19004	Chromium, Total	mg/L	-0.0000467	0.000440	0.100	0.0974	0.0981	0.0993	0.0850 to 0.115	97.2	70.0 to 130	0.716	20.0
BB19004	Calcium, Total	mg/L	0.00219	0.152	5.00	69.3	67.7	5.05	4.25 to 5.75	118	70.0 to 130	2.34	20.0
BB19004	Thallium, Total	mg/L	-0.0000007	0.000147	0.100	0.0949	0.0935	0.0987	0.0850 to 0.115	94.8	70.0 to 130	1.49	20.0
BB19004	Sodium, Total	mg/L	0.000246	0.0660	5.00	23.0	23.1	5.04	4.25 to 5.75	112	70.0 to 130	0.434	20.0
BB19004	Barium, Total	mg/L	0.0000000	0.000200	0.100	0.236	0.236	0.0970	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BB19004	Boron, Total	mg/L	0.00185	0.0650	1.00	1.52	1.53	1.01	0.850 to 1.15	102	70.0 to 130	0.656	20.0
BB19004	Molybdenum, Total	mg/L	0.0000340	0.000147	0.100	0.0978	0.0964	0.0973	0.0850 to 0.115	97.5	70.0 to 130	1.44	20.0
BB19004	Selenium, Total	mg/L	0.0000000	0.00100	0.100	0.0995	0.102	0.102	0.0850 to 0.115	99.5	70.0 to 130	2.48	20.0
BB19005	Iron, Dissolved	mg/L	3.760E-05	0.0176	0.2	21.3	21.0	0.202	0.170 to 0.230	50.0	70.0 to 130	1.42	20.0
BB19004	Mercury, Total by CVAA	mg/L	6.000E-05	0.000500	0.004	0.0041	0.00411	0.00406	0.00340 to 0.00460	102	70.0 to 130	0.244	20.0
BB19004	Arsenic, Total	mg/L	-0.0000440	0.000147	0.100	0.103	0.101	0.103	0.0850 to 0.115	101	70.0 to 130	1.96	20.0
BB19004	Manganese, Total	mg/L	-0.0000042	0.000147	0.100	30.6	31.2	0.0985	0.0850 to 0.115	-1300	70.0 to 130	1.94	20.0
BB19004	Antimony, Total	mg/L	0.000138	0.00100	0.100	0.0999	0.100	0.0965	0.0850 to 0.115	99.9	70.0 to 130	0.100	20.0
BB19004	Cobalt, Total	mg/L	0.0000042	0.000147	0.100	0.107	0.108	0.101	0.0850 to 0.115	97.0	70.0 to 130	0.930	20.0

Batch QC Summary

Customer Account: WMWGADAP

Sample Date:

10/11/21 12:40

Customer ID:

Delivery Date:

10/13/21 09:46

Description: Gadsden Ash Pond - MW-4V

Laboratory ID Number: BB19003

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	l Limit	Rec	Limit	Prec	<u>Li</u> mit
BB19010	Alkalinity, Total as CaCO3	mg/L					153	50.9	45.0 to 55.0			0.651	10.0
BB19004	Sulfate	mg/L	-0.00907	1.00	320	533	175	19.7	18.0 to 22.0	112	80.0 to 120	0.573	20.0
BB19004	Chloride	mg/L	0.000283	1.00	10.0	16.4	6.36	9.96	9.00 to 11.0	100	80.0 to 120	0.157	20.0
BB19004	Fluoride	mg/L	0.0194	0.100	2.50	2.78	0.128	2.61	2.25 to 2.75	106	80.0 to 120	0.784	20.0
BB19010	Solids, Dissolved	mg/L	0.0000	25.0			351	50.0	40.0 to 60.0			0.142	10.0

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified.

Certificate Of Analysis

Description: Gadsden Ash Pond - MW-20HLocation Code:WMWGADAPCollected:10/11/21 13:30

Customer ID:

Submittal Date: 10/13/21 09:46

Laboratory ID Number: BB19004					Submitt	al Date:	10/13/21 09:	46	
Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Ana	alyst: RDA			Preparati	on Method: L	EPA 1638		
* Boron, Total	10/21/21 12:0	00 10/22/21	10:28	1.015	0.504	mg/L	0.030000	0.1015	
* Calcium, Total	10/21/21 12:0	00 10/22/21	13:53	10.15	63.4	mg/L	0.70035	4.06	
* Iron, Total	10/21/21 12:0	00 10/22/21	10:28	1.015	2.87	mg/L	0.008120	0.0406	
* Lithium, Total	10/21/21 12:0	00 10/22/21	10:28	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	10/21/21 12:0	00 10/22/21	10:28	1.015	18.3	mg/L	0.021315	0.406	
* Sodium, Total	10/21/21 12:0	00 10/22/21	10:28	1.015	17.4	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Ana	alyst: RDA							
* Iron, Dissolved	10/20/21 14:0	00 10/21/21	10:21	1.015	2.40	mg/L	0.008120	0.0406	
Analytical Method: EPA 200.8	Ana	alyst: DLJ			Preparati	on Method: L	EPA 1638		
* Antimony, Total	10/13/21 14:4	45 10/14/21	18:13	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Arsenic, Total	10/13/21 14:4	45 10/14/21	18:13	1.015	0.00191	mg/L	0.000068	0.000203	
* Barium, Total	10/13/21 14:4	45 10/14/21	18:13	1.015	0.134	mg/L	0.000102	0.000203	
* Beryllium, Total	10/13/21 14:4	45 10/14/21	18:13	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	10/13/21 14:4	45 10/14/21	18:13	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	10/13/21 14:4	45 10/14/21	18:13	1.015	0.000246	mg/L	0.000203	0.001015	J
* Cobalt, Total	10/13/21 14:4	45 10/14/21	18:13	1.015	0.00995	mg/L	0.000068	0.000203	
* Lead, Total	10/13/21 14:4	45 10/14/21	18:13	1.015	0.0000819	mg/L	0.000068	0.000203	J
* Molybdenum, Total	10/13/21 14:4	45 10/14/21	18:13	1.015	0.000312	mg/L	0.000068	0.000203	
* Potassium, Total	10/13/21 14:4	45 10/14/21	18:13	1.015	3.00	mg/L	0.169505	0.5075	
* Manganese, Total	10/13/21 14:4	45 10/14/21	19:21	92.365	31.9	mg/L	0.006188	0.018473	R/
* Selenium, Total	10/13/21 14:4	45 10/14/21	18:13	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	10/13/21 14:4	45 10/14/21	18:13	1.015	0.000130	mg/L	0.000068	0.000203	J
Analytical Method: EPA 200.8	Ana	alyst: DLJ							
* Manganese, Dissolved	10/13/21 14:	19 10/14/21	11:56	92.365	32.1	mg/L	0.006188	0.018473	
Analytical Method: EPA 245.1	Ana	alyst: CRB							
Mercury, Total by CVAA	10/19/21 13:	32 10/19/21	18:05	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: SM 2320 B	Ana	alyst: JAG							
Alkalinity, Total as CaCO3	10/20/21 09:4	•	10:40	1	140	mg/L		0.1	
Analytical Method: SM 2540C	Ana	alyst: CNJ				-			
* Solids, Dissolved	10/14/21 10:	•	13:04	1	384	mg/L		25	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Gadsden Ash Pond - MW-20H

Location Code:

WMWGADAP

Collected:

Customer ID:

10/11/21 13:30

Laboratory ID Number: BB19004

Submittal Date: 10/13/21 09:46

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM 4500CO2 D	An	alyst: JAG							
Bicarbonate Alkalinity, (calc.)	10/20/21 09:	45 10/20/21	10:40	1	140	mg/L			
Carbonate Alkalinity, (calc.)	10/20/21 09:	45 10/20/21	10:40	1	0.05	mg/L			
Analytical Method: SM4500Cl E	An	alyst: JCC							
Chloride	10/14/21 11:	23 10/14/21	11:23	1	6.37	mg/L	0.50	1	
Analytical Method: SM4500F G 2017	An	alyst: JCC							
Fluoride	10/13/21 13:	56 10/13/21	13:56	1	0.127	mg/L	0.06	0.1	
Analytical Method: SM4500SO4 E 2011	An	alyst: JCC							
Sulfate	10/20/21 13:	10 10/20/21	13:10	16	174	mg/L	8.00	16	
Analytical Method: Field Measurements	An	alyst: TJD							
Conductivity	10/11/21 13:	25 10/11/21	13:25		672.64	uS/cm			FA
рН	10/11/21 13:	25 10/11/21	13:25		6.36	SU			FA
Temperature	10/11/21 13:	25 10/11/21	13:25		19.78	С			FA
Turbidity	10/11/21 13:	25 10/11/21	13:25		8.97	NTU			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWGADAP **Sample Date:** 10/11/21 13:30

Customer ID:

Delivery Date: 10/13/21 09:46

Description: Gadsden Ash Pond - MW-20H

Laboratory ID Number: BB19004

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BB19004	Potassium, Total	mg/L	-0.00835	0.367	10.0	13.1	13.3	10.4	8.50 to 11.5	101	70.0 to 130	1.52	20.0
BB19004	Selenium, Total	mg/L	0.0000000	0.00100	0.100	0.0995	0.102	0.102	0.0850 to 0.115	99.5	70.0 to 130	2.48	20.0
BB19005	Iron, Dissolved	mg/L	3.760E-05	0.0176	0.2	21.3	21.0	0.202	0.170 to 0.230	50.0	70.0 to 130	1.42	20.0
BB19004	Mercury, Total by CVAA	mg/L	6.000E-05	0.000500	0.004	0.0041	0.00411	0.00406	0.00340 to 0.00460	102	70.0 to 130	0.244	20.0
BB19004	Arsenic, Total	mg/L	-0.0000440	0.000147	0.100	0.103	0.101	0.103	0.0850 to 0.115	101	70.0 to 130	1.96	20.0
BB19004	Boron, Total	mg/L	0.00185	0.0650	1.00	1.52	1.53	1.01	0.850 to 1.15	102	70.0 to 130	0.656	20.0
BB19004	Molybdenum, Total	mg/L	0.0000340	0.000147	0.100	0.0978	0.0964	0.0973	0.0850 to 0.115	97.5	70.0 to 130	1.44	20.0
BB19004	Lead, Total	mg/L	0.0000123	0.000147	0.100	0.101	0.100	0.105	0.0850 to 0.115	101	70.0 to 130	0.995	20.0
BB19004	Iron, Total	mg/L	0.00115	0.0176	0.2	3.06	3.04	0.203	0.170 to 0.230	95.0	70.0 to 130	0.656	20.0
BB19005	Manganese, Dissolved	mg/L	-0.0000354	0.000147	0.100	0.790	0.786	0.102	0.0850 to 0.115	98.0	70.0 to 130	0.508	20.0
BB19004	Chromium, Total	mg/L	-0.0000467	0.000440	0.100	0.0974	0.0981	0.0993	0.0850 to 0.115	97.2	70.0 to 130	0.716	20.0
BB19004	Beryllium, Total	mg/L	0.0000297	0.000880	0.100	0.103	0.102	0.105	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
BB19004	Magnesium, Total	mg/L	0.00137	0.0462	5.00	23.3	23.3	5.13	4.25 to 5.75	100	70.0 to 130	0.00	20.0
BB19004	Cadmium, Total	mg/L	0.0000114	0.000147	0.100	0.0998	0.102	0.102	0.0850 to 0.115	99.8	70.0 to 130	2.18	20.0
BB19004	Lithium, Total	mg/L	-3.720E-05	0.0154	0.200	0.219	0.220	0.200	0.170 to 0.230	110	70.0 to 130	0.456	20.0
BB19004	Calcium, Total	mg/L	0.00219	0.152	5.00	69.3	67.7	5.05	4.25 to 5.75	118	70.0 to 130	2.34	20.0
BB19004	Thallium, Total	mg/L	-0.0000007	0.000147	0.100	0.0949	0.0935	0.0987	0.0850 to 0.115	94.8	70.0 to 130	1.49	20.0
BB19004	Sodium, Total	mg/L	0.000246	0.0660	5.00	23.0	23.1	5.04	4.25 to 5.75	112	70.0 to 130	0.434	20.0
BB19004	Barium, Total	mg/L	0.0000000	0.000200	0.100	0.236	0.236	0.0970	0.0850 to 0.115	102	70.0 to 130	0.00	20.0
BB19004	Manganese, Total	mg/L	-0.0000042	0.000147	0.100	30.6	31.2	0.0985	0.0850 to 0.115	-1300	70.0 to 130	1.94	20.0
BB19004	Antimony, Total	mg/L	0.000138	0.00100	0.100	0.0999	0.100	0.0965	0.0850 to 0.115	99.9	70.0 to 130	0.100	20.0
BB19004	Cobalt, Total	mg/L	0.0000042	0.000147	0.100	0.107	0.108	0.101	0.0850 to 0.115	97.0	70.0 to 130	0.930	20.0

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified.

Batch QC Summary

Customer Account: WMWGADAP

Sample Date:

10/11/21 13:30

Customer ID:

Delivery Date:

10/13/21 09:46

Description: Gadsden Ash Pond - MW-20H

Laboratory ID Number: BB19004

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	l Limit	Rec	Limit	Prec	<u>Li</u> mit
BB19004	Sulfate	mg/L	-0.00907	1.00	320	533	175	19.7	18.0 to 22.0	112	80.0 to 120	0.573	20.0
BB19004	Chloride	mg/L	0.000283	1.00	10.0	16.4	6.36	9.96	9.00 to 11.0	100	80.0 to 120	0.157	20.0
BB19010	Alkalinity, Total as CaCO3	mg/L					153	50.9	45.0 to 55.0			0.651	10.0
BB19010	Solids, Dissolved	mg/L	0.0000	25.0			351	50.0	40.0 to 60.0			0.142	10.0
BB19004	Fluoride	mg/L	0.0194	0.100	2.50	2.78	0.128	2.61	2.25 to 2.75	106	80.0 to 120	0.784	20.0

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified.

Certificate Of Analysis

Description: Gadsden Ash Pond - MW-10Location Code:WMWGADAPCollected:10/11/21 14:40

Customer ID:

Laboratory ID Number: BB19005 Submittal Date: 10/13/21 09:46

Name	Prepared Analyzed Vio	Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Analyst: RDA		Preparati	ion Method: E	PA 1638		_
* Boron, Total	10/21/21 12:00 10/22/21 10:45	1.015	0.0900	mg/L	0.030000	0.1015	J
* Calcium, Total	10/21/21 12:00 10/22/21 10:45	1.015	38.2	mg/L	0.070035	0.406	
* Iron, Total	10/21/21 12:00 10/22/21 14:03	10.15	21.6	mg/L	0.08120	0.406	
* Lithium, Total	10/21/21 12:00 10/22/21 10:45	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	10/21/21 12:00 10/22/21 10:45	1.015	6.18	mg/L	0.021315	0.406	
* Sodium, Total	10/21/21 12:00 10/22/21 10:45	1.015	12.6	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Analyst: RDA						
* Iron, Dissolved	10/20/21 14:00 10/21/21 13:09	10.15	21.2	mg/L	0.08120	0.406	R.A
Analytical Method: EPA 200.8	Analyst: DLJ		Preparati	ion Method: E	PA 1638		
* Antimony, Total	10/13/21 14:45 10/14/21 18:34	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Arsenic, Total	10/13/21 14:45 10/14/21 18:34	1.015	0.00370	mg/L	0.000068	0.000203	
* Barium, Total	10/13/21 14:45 10/14/21 18:34	1.015	0.292	mg/L	0.000102	0.000203	
* Beryllium, Total	10/13/21 14:45 10/14/21 18:34	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	10/13/21 14:45 10/14/21 18:34	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	10/13/21 14:45 10/14/21 18:34	1.015	0.000285	mg/L	0.000203	0.001015	J
* Cobalt, Total	10/13/21 14:45 10/14/21 18:34	1.015	0.000886	mg/L	0.000068	0.000203	
* Lead, Total	10/13/21 14:45 10/14/21 18:34	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Molybdenum, Total	10/13/21 14:45 10/14/21 18:34	1.015	0.000451	mg/L	0.000068	0.000203	
* Potassium, Total	10/13/21 14:45 10/14/21 18:34	1.015	0.585	mg/L	0.169505	0.5075	
* Manganese, Total	10/13/21 14:45 10/14/21 18:34	1.015	0.689	mg/L	0.000068	0.000203	
* Selenium, Total	10/13/21 14:45 10/14/21 18:34	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	10/13/21 14:45 10/14/21 18:34	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Analyst: DLJ						
* Manganese, Dissolved	10/13/21 14:19 10/14/21 11:05	1.015	0.692	mg/L	0.000068	0.000203	
Analytical Method: EPA 245.1	Analyst: CRB						
* Mercury, Total by CVAA	10/19/21 13:32 10/19/21 18:32	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: SM 2320 B	Analyst: JAG			-			
Alkalinity, Total as CaCO3	10/20/21 09:45 10/20/21 10:40	1	151	mg/L		0.1	
Analytical Method: SM 2540C	Analyst: CNJ			-			
* Solids, Dissolved	10/14/21 10:52 10/15/21 13:04	1	190	mg/L		25	

MDL's and RL's are adjusted for sample dilution, as applicable

Certificate Of Analysis

Description: Gadsden Ash Pond - MW-10

Location Code:

WMWGADAP 10/11/21 14:40

Collected:

Customer ID: Submittal Date:

10/13/21 09:46

Laboratory ID Number: BB19005

Laboratory ID Number: BB19005									
Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM 4500CO2 D	An	alyst: JAG							
Bicarbonate Alkalinity, (calc.)	10/20/21 09:	45 10/20/21	10:40	1	151	mg/L			
Carbonate Alkalinity, (calc.)	10/20/21 09:	45 10/20/21	10:40	1	0.11	mg/L			
Analytical Method: SM4500Cl E	An	alyst: JCC							
* Chloride	10/14/21 11:	36 10/14/21	11:36	1	5.72	mg/L	0.50	1	
Analytical Method: SM4500F G 2017	An	alyst: JCC							
* Fluoride	10/13/21 14:	08 10/13/21 1	14:08	1	0.201	mg/L	0.06	0.1	
Analytical Method: SM4500SO4 E 2011	An	alyst: JCC							
* Sulfate	10/20/21 13:	28 10/20/21 1	13:28	1	7.75	mg/L	0.50	1	
Analytical Method: Field Measurements	An	alyst: TJD							
Conductivity	10/11/21 14:	37 10/11/21 1	14:37		371.08	uS/cm			FA
рН	10/11/21 14:	37 10/11/21 1	14:37		6.72	SU			FA
Temperature	10/11/21 14:	37 10/11/21 1	14:37		20.11	С			FA
Turbidity	10/11/21 14:	37 10/11/21	14:37		2.95	NTU			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Batch QC Summary

Customer Account: WMWGADAP **Sample Date:** 10/11/21 14:40

Customer ID: Delivery Date:

Customer ID:

10/13/21 09:46

Description: Gadsden Ash Pond - MW-10

Laboratory ID Number: BB19005

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BB19011	Iron, Total	mg/L	0.00115	0.0176	0.2	0.205	0.248	0.203	0.170 to 0.230	102	70.0 to 130	19.0	20.0
BB19011	Barium, Total	mg/L	0.0000000	0.000200	0.100	0.102	0.0996	0.0970	0.0850 to 0.115	102	70.0 to 130	2.38	20.0
BB19005	Manganese, Dissolved	mg/L	-0.0000354	0.000147	0.100	0.790	0.786	0.102	0.0850 to 0.115	98.0	70.0 to 130	0.508	20.0
BB19011	Magnesium, Total	mg/L	0.00137	0.0462	5.00	5.16	5.12	5.13	4.25 to 5.75	103	70.0 to 130	0.778	20.0
BB19011	Lead, Total	mg/L	0.0000123	0.000147	0.100	0.103	0.102	0.105	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
BB19011	Manganese, Total	mg/L	-0.0000042	0.000147	0.100	0.0985	0.0960	0.0985	0.0850 to 0.115	98.4	70.0 to 130	2.57	20.0
BB19011	Cadmium, Total	mg/L	0.0000114	0.000147	0.100	0.101	0.0999	0.102	0.0850 to 0.115	101	70.0 to 130	1.10	20.0
BB19005	Iron, Dissolved	mg/L	3.760E-05	0.0176	0.2	21.3	21.0	0.202	0.170 to 0.230	50.0	70.0 to 130	1.42	20.0
BB19011	Lithium, Total	mg/L	-3.720E-05	0.0154	0.200	0.201	0.201	0.200	0.170 to 0.230	100	70.0 to 130	0.00	20.0
BB19011	Arsenic, Total	mg/L	-0.0000440	0.000147	0.100	0.0973	0.0991	0.103	0.0850 to 0.115	97.3	70.0 to 130	1.83	20.0
BB19011	Cobalt, Total	mg/L	0.0000042	0.000147	0.100	0.100	0.0982	0.101	0.0850 to 0.115	100	70.0 to 130	1.82	20.0
BB19011	Calcium, Total	mg/L	0.00219	0.152	5.00	5.09	5.10	5.05	4.25 to 5.75	102	70.0 to 130	0.196	20.0
BB19011	Potassium, Total	mg/L	-0.00835	0.367	10.0	10.4	10.1	10.4	8.50 to 11.5	104	70.0 to 130	2.93	20.0
BB19011	Mercury, Total by CVAA	mg/L	6.000E-05	0.000500	0.004	0.00405	0.00414	0.00399	0.00340 to 0.00460	101	70.0 to 130	2.20	20.0
BB19011	Molybdenum, Total	mg/L	0.0000340	0.000147	0.100	0.0985	0.0983	0.0973	0.0850 to 0.115	98.5	70.0 to 130	0.203	20.0
BB19011	Chromium, Total	mg/L	-0.0000467	0.000440	0.100	0.0984	0.0963	0.0993	0.0850 to 0.115	98.4	70.0 to 130	2.16	20.0
BB19011	Selenium, Total	mg/L	0.0000000	0.00100	0.100	0.0997	0.102	0.102	0.0850 to 0.115	99.7	70.0 to 130	2.28	20.0
BB19011	Beryllium, Total	mg/L	0.0000297	0.000880	0.100	0.103	0.102	0.105	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
BB19011	Thallium, Total	mg/L	-0.0000007	0.000147	0.100	0.0969	0.0956	0.0987	0.0850 to 0.115	96.9	70.0 to 130	1.35	20.0
BB19011	Sodium, Total	mg/L	0.000246	0.0660	5.00	5.05	5.03	5.04	4.25 to 5.75	101	70.0 to 130	0.397	20.0
BB19011	Boron, Total	mg/L	0.00185	0.0650	1.00	1.01	1.01	1.01	0.850 to 1.15	101	70.0 to 130	0.00	20.0
BB19011	Antimony, Total	mg/L	0.000138	0.00100	0.100	0.0988	0.0967	0.0965	0.0850 to 0.115	98.8	70.0 to 130	2.15	20.0

Batch QC Summary

Customer Account: WMWGADAP

Sample Date: 10

10/11/21 14:40

Customer ID:

Delivery Date:

10/13/21 09:46

Description: Gadsden Ash Pond - MW-10

Laboratory ID Number: BB19005

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	l Limit	Rec	Limit	Prec	<u>Li</u> mit
BB19011	Fluoride	mg/L	0.0275	0.100	2.50	2.61	0.0253	2.28	2.25 to 2.75	104	80.0 to 120	0.00	20.0
BB19011	Sulfate	mg/L	-0.210	1.00	20.0	18.9	-0.732	19.2	18.0 to 22.0	91.3	80.0 to 120	3160	20.0
BB19010	Alkalinity, Total as CaCO3	mg/L					153	50.9	45.0 to 55.0			0.651	10.0
BB19011	Chloride	mg/L	-0.00836	1.00	10.0	10.0	0.0829	10.0	9.00 to 11.0	100	80.0 to 120	0.00	20.0
BB19010	Solids, Dissolved	mg/L	0.0000	25.0			351	50.0	40.0 to 60.0			0.142	10.0

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified.

Certificate Of Analysis

Description: Gadsden Ash Pond - MW-14 Collected:

Location Code: WMWGADAP 10/12/21 08:30

Customer ID:

Submittel Date: 10/12/21 00:46

Laboratory ID Number: BB19006					Submitt	al Date:	10/13/21 09:	46	
Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Ana	lyst: RDA			Preparati	on Method: E	EPA 1638		
* Boron, Total	10/21/21 12:0	00 10/22/21 10	0:48	1.015	Not Detected	mg/L	0.030000	0.1015	U
Calcium, Total	10/21/21 12:0	00 10/22/21 1	0:48	1.015	11.8	mg/L	0.070035	0.406	
* Iron, Total	10/21/21 12:0	00 10/22/21 1	0:48	1.015	0.0140	mg/L	0.008120	0.0406	J
* Lithium, Total	10/21/21 12:0	00 10/22/21 10	0:48	1.015	Not Detected	mg/L	0.007105	0.01999956	U
 Magnesium, Total 	10/21/21 12:0	00 10/22/21 10	0:48	1.015	4.39	mg/L	0.021315	0.406	
* Sodium, Total	10/21/21 12:0	00 10/22/21 10	0:48	1.015	2.29	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Ana	lyst: RDA							
* Iron, Dissolved	10/20/21 14:0	00 10/21/21 1	0:42	1.015	Not Detected	mg/L	0.008120	0.0406	U
Analytical Method: EPA 200.8	Ana	lyst: DLJ			Preparati	on Method: E	EPA 1638		
* Antimony, Total	10/13/21 14:4	15 10/14/21 1	8:38	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Arsenic, Total	10/13/21 14:4	15 10/14/21 1	8:38	1.015	0.00131	mg/L	0.000068	0.000203	
* Barium, Total	10/13/21 14:4	15 10/14/21 1	8:38	1.015	0.0268	mg/L	0.000102	0.000203	
* Beryllium, Total	10/13/21 14:4	15 10/14/21 1	8:38	1.015	0.00115	mg/L	0.000406	0.001015	
Cadmium, Total	10/13/21 14:4	15 10/14/21 1	8:38	1.015	0.000587	mg/L	0.000068	0.000203	
* Chromium, Total	10/13/21 14:4	15 10/14/21 1	8:38	1.015	0.000593	mg/L	0.000203	0.001015	J
* Cobalt, Total	10/13/21 14:4	15 10/14/21 1	8:38	1.015	0.0291	mg/L	0.000068	0.000203	
* Lead, Total	10/13/21 14:4	15 10/14/21 1	8:38	1.015	0.00156	mg/L	0.000068	0.000203	
* Molybdenum, Total	10/13/21 14:4	15 10/14/21 1	8:38	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Potassium, Total	10/13/21 14:4	15 10/14/21 1	8:38	1.015	0.383	mg/L	0.169505	0.5075	J
* Manganese, Total	10/13/21 14:4	15 10/14/21 1	8:38	1.015	0.393	mg/L	0.000068	0.000203	
* Selenium, Total	10/13/21 14:4	15 10/14/21 1	8:38	1.015	0.00287	mg/L	0.000508	0.001015	
* Thallium, Total	10/13/21 14:4	15 10/14/21 1	8:38	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Ana	lyst: DLJ							
 Manganese, Dissolved 	10/13/21 14:1	19 10/14/21 1	1:27	1.015	0.394	mg/L	0.000068	0.000203	
Analytical Method: EPA 245.1	Ana	lyst: CRB							
* Mercury, Total by CVAA	10/19/21 13:3	32 10/19/21 18	8:36	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: SM 2540C	Ana	lyst: CNJ							
* Solids, Dissolved	10/14/21 10:5	52 10/15/21 1	3:04	1	142	mg/L		25	
Analytical Method: SM4500Cl E	Ana	lyst: JCC							
* Chloride	10/14/21 11:3	37 10/14/21 1	1:37	1	2.87	mg/L	0.50	1	

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. Sample BB19006 was not analyzed for Alkalinity due to the initial sample pH reading was below the Alkalinity titration end point of 4.5 SU. Fluoride result is qualified due to potential matrix interference.

Certificate Of Analysis

Description: Gadsden Ash Pond - MW-14

Location Code:

WMWGADAP

Collected:

Customer ID:

10/12/21 08:30

Laboratory ID Number: BB19006

Submittal Date:

10/13/21 09:46

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM4500F G 2017	An	alyst: JCC							
* Fluoride	10/13/21 14:	:09 10/13/21 1	4:09	1	Not Detected	mg/L	0.06	0.1	U
Analytical Method: SM4500SO4 E 2011	An	alyst: JCC							
* Sulfate	10/20/21 13:	:39 10/20/21 1	3:39	5	95.7	mg/L	2.50	5	
Analytical Method: Field Measurements	An	alyst: TJD							
Conductivity	10/12/21 08:	:28 10/12/21 0	08:28		276.99	uS/cm			FA
рН	10/12/21 08:	:28 10/12/21 (8:28		4.04	SU			FA
Temperature	10/12/21 08:	:28 10/12/21 (8:28		19.12	С			FA
Turbidity	10/12/21 08:	:28 10/12/21 (08:28		2.99	NTU			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. Sample BB19006 was not analyzed for Alkalinity due to the initial sample pH reading was below the Alkalinity titration end point of 4.5 SU. Fluoride result is qualified due to potential matrix interference.

Batch QC Summary

Customer Account: WMWGADAP **Sample Date:** 10/12/21 08:30

Customer ID:

Delivery Date: 10/13/21 09:46

Description: Gadsden Ash Pond - MW-14

Laboratory ID Number: BB19006

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BB19010	Manganese, Dissolved	mg/L	-0.0000354	0.000147	0.100	1.13	1.13	0.102	0.0850 to 0.115	100	70.0 to 130	0.00	20.0
BB19011	Manganese, Total	mg/L	-0.0000042	0.000147	0.100	0.0985	0.0960	0.0985	0.0850 to 0.115	98.4	70.0 to 130	2.57	20.0
BB19011	Cadmium, Total	mg/L	0.0000114	0.000147	0.100	0.101	0.0999	0.102	0.0850 to 0.115	101	70.0 to 130	1.10	20.0
BB19011	Iron, Total	mg/L	0.00115	0.0176	0.2	0.205	0.248	0.203	0.170 to 0.230	102	70.0 to 130	19.0	20.0
BB19011	Barium, Total	mg/L	0.0000000	0.000200	0.100	0.102	0.0996	0.0970	0.0850 to 0.115	102	70.0 to 130	2.38	20.0
BB19010	Iron, Dissolved	mg/L	3.760E-05	0.0176	0.2	13.2	13.7	0.202	0.170 to 0.230	-150	70.0 to 130	3.72	20.0
BB19011	Lithium, Total	mg/L	-3.720E-05	0.0154	0.200	0.201	0.201	0.200	0.170 to 0.230	100	70.0 to 130	0.00	20.0
BB19011	Magnesium, Total	mg/L	0.00137	0.0462	5.00	5.16	5.12	5.13	4.25 to 5.75	103	70.0 to 130	0.778	20.0
BB19011	Lead, Total	mg/L	0.0000123	0.000147	0.100	0.103	0.102	0.105	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
BB19011	Arsenic, Total	mg/L	-0.0000440	0.000147	0.100	0.0973	0.0991	0.103	0.0850 to 0.115	97.3	70.0 to 130	1.83	20.0
BB19011	Cobalt, Total	mg/L	0.0000042	0.000147	0.100	0.100	0.0982	0.101	0.0850 to 0.115	100	70.0 to 130	1.82	20.0
BB19011	Calcium, Total	mg/L	0.00219	0.152	5.00	5.09	5.10	5.05	4.25 to 5.75	102	70.0 to 130	0.196	20.0
BB19011	Potassium, Total	mg/L	-0.00835	0.367	10.0	10.4	10.1	10.4	8.50 to 11.5	104	70.0 to 130	2.93	20.0
BB19011	Mercury, Total by CVAA	mg/L	6.000E-05	0.000500	0.004	0.00405	0.00414	0.00399	0.00340 to 0.00460	101	70.0 to 130	2.20	20.0
BB19011	Molybdenum, Total	mg/L	0.0000340	0.000147	0.100	0.0985	0.0983	0.0973	0.0850 to 0.115	98.5	70.0 to 130	0.203	20.0
BB19011	Chromium, Total	mg/L	-0.0000467	0.000440	0.100	0.0984	0.0963	0.0993	0.0850 to 0.115	98.4	70.0 to 130	2.16	20.0
BB19011	Selenium, Total	mg/L	0.0000000	0.00100	0.100	0.0997	0.102	0.102	0.0850 to 0.115	99.7	70.0 to 130	2.28	20.0
BB19011	Beryllium, Total	mg/L	0.0000297	0.000880	0.100	0.103	0.102	0.105	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
BB19011	Thallium, Total	mg/L	-0.0000007	0.000147	0.100	0.0969	0.0956	0.0987	0.0850 to 0.115	96.9	70.0 to 130	1.35	20.0
BB19011	Sodium, Total	mg/L	0.000246	0.0660	5.00	5.05	5.03	5.04	4.25 to 5.75	101	70.0 to 130	0.397	20.0
BB19011	Boron, Total	mg/L	0.00185	0.0650	1.00	1.01	1.01	1.01	0.850 to 1.15	101	70.0 to 130	0.00	20.0
BB19011	Antimony, Total	mg/L	0.000138	0.00100	0.100	0.0988	0.0967	0.0965	0.0850 to 0.115	98.8	70.0 to 130	2.15	20.0

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. Sample BB19006 was not analyzed for Alkalinity due to the initial sample pH reading was below the Alkalinity titration end point of 4.5 SU. Fluoride result is qualified due to potential matrix interference.

Batch QC Summary

Customer Account: WMWGADAP

Sample Date:

10/12/21 08:30

Customer ID:

Delivery Date:

10/13/21 09:46

Description: Gadsden Ash Pond - MW-14

Laboratory ID Number: BB19006

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BB19011	Fluoride	mg/L	0.0275	0.100	2.50	2.61	0.0253	2.28	2.25 to 2.75	104	80.0 to 120	0.00	20.0
BB19011	Sulfate	mg/L	-0.210	1.00	20.0	18.9	-0.732	19.2	18.0 to 22.0	91.3	80.0 to 120	3160	20.0
BB19011	Chloride	mg/L	-0.00836	1.00	10.0	10.0	0.0829	10.0	9.00 to 11.0	100	80.0 to 120	0.00	20.0
BB19010	Solids, Dissolved	mg/L	0.0000	25.0			351	50.0	40.0 to 60.0			0.142	10.0

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. Sample BB19006 was not analyzed for Alkalinity due to the initial sample pH reading was below the Alkalinity titration end point of 4.5 SU. Fluoride result is qualified due to potential matrix interference.

Certificate Of Analysis

Location Code: WMWGADAP Description: Gadsden Ash Pond - MW-14 DUP Collected:

10/12/21 08:30

Customer ID:

Submittal Date: 10/13/21 09:46

Laboratory ID Number: BB19007					Submitt	tal Date:	10/13/21 09:	46	
Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Ana	alyst: RDA			Preparati	on Method: L	EPA 1638		
* Boron, Total	10/21/21 12:0	00 10/22/21	10:52	1.015	Not Detected	mg/L	0.030000	0.1015	U
* Calcium, Total	10/21/21 12:0	00 10/22/21	10:52	1.015	11.8	mg/L	0.070035	0.406	
* Iron, Total	10/21/21 12:0	00 10/22/21	10:52	1.015	0.0149	mg/L	0.008120	0.0406	J
* Lithium, Total	10/21/21 12:0	00 10/22/21	10:52	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	10/21/21 12:0	00 10/22/21	10:52	1.015	4.38	mg/L	0.021315	0.406	
* Sodium, Total	10/21/21 12:0	00 10/22/21	10:52	1.015	2.28	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Ana	alyst: RDA							
* Iron, Dissolved	10/20/21 14:0	00 10/21/21	10:45	1.015	Not Detected	mg/L	0.008120	0.0406	U
Analytical Method: EPA 200.8	Ana	alyst: DLJ			Preparati	on Method: L	EPA 1638		
* Antimony, Total	10/13/21 14:4	45 10/14/21	18:41	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Arsenic, Total	10/13/21 14:4	45 10/14/21	18:41	1.015	0.00137	mg/L	0.000068	0.000203	
* Barium, Total	10/13/21 14:4	45 10/14/21	18:41	1.015	0.0286	mg/L	0.000102	0.000203	
* Beryllium, Total	10/13/21 14:4	45 10/14/21	18:41	1.015	0.00117	mg/L	0.000406	0.001015	
* Cadmium, Total	10/13/21 14:4	45 10/14/21	18:41	1.015	0.000505	mg/L	0.000068	0.000203	
* Chromium, Total	10/13/21 14:4	45 10/14/21	18:41	1.015	0.000610	mg/L	0.000203	0.001015	J
* Cobalt, Total	10/13/21 14:4	45 10/14/21	18:41	1.015	0.0288	mg/L	0.000068	0.000203	
* Lead, Total	10/13/21 14:4	45 10/14/21	18:41	1.015	0.00151	mg/L	0.000068	0.000203	
* Molybdenum, Total	10/13/21 14:4	45 10/14/21	18:41	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Potassium, Total	10/13/21 14:4	45 10/14/21	18:41	1.015	0.355	mg/L	0.169505	0.5075	J
* Manganese, Total	10/13/21 14:4	45 10/14/21	18:41	1.015	0.393	mg/L	0.000068	0.000203	
* Selenium, Total	10/13/21 14:4	45 10/14/21	18:41	1.015	0.00291	mg/L	0.000508	0.001015	
* Thallium, Total	10/13/21 14:4	45 10/14/21	18:41	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Ana	alyst: DLJ							
* Manganese, Dissolved	10/13/21 14:	19 10/14/21	11:30	1.015	0.409	mg/L	0.000068	0.000203	
Analytical Method: EPA 245.1	Ana	alyst: CRB							
* Mercury, Total by CVAA	10/19/21 13:	32 10/19/21	18:40	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: SM 2540C	Ana	alyst: CNJ							
* Solids, Dissolved	10/14/21 10:5	52 10/15/21	13:04	1	132	mg/L		25	
Analytical Method: SM4500Cl E	Ana	alyst: JCC							
* Chloride	10/14/21 11:	38 10/14/21	11:38	1	2.89	mg/L	0.50	1	

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. Sample BB19007 was not analyzed for Alkalinity due to the initial sample pH reading was below the Alkalinity titration end point of 4.5 SU. Fluoride result is qualified due to potential matrix interference.

Certificate Of Analysis

Description: Gadsden Ash Pond - MW-14 DUP

Location Code:

WMWGADAP

Collected:

Customer ID:

10/12/21 08:30

Laboratory ID Number: BB19007

Submittal Date:

al Date: 10/13/21 09:46

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM4500F G 2017	An	alyst: JCC							
* Fluoride	10/13/21 14:	10 10/13/21 1	4:10	1	Not Detected	mg/L	0.06	0.1	U
Analytical Method: SM4500SO4 E 2011	An	alyst: JCC							
* Sulfate	10/20/21 13:	40 10/20/21 1	3:40	5	88.9	mg/L	2.50	5	
Analytical Method: Field Measurements	An	alyst: TJD							
Conductivity	10/12/21 08:	28 10/12/21 0	8:28		276.99	uS/cm			FA
рН	10/12/21 08:	28 10/12/21 0	8:28		4.04	SU			FA
Temperature	10/12/21 08:	28 10/12/21 0	8:28		19.12	С			FA
Turbidity	10/12/21 08:	28 10/12/21 0	8:28		2.99	NTU			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified.

Sample BB19007 was not analyzed for Alkalinity due to the initial sample pH reading was below the Alkalinity titration end point of 4.5 SU. Fluoride result is qualified due to potential matrix interference.

Batch QC Summary

Customer Account: WMWGADAP **Sample Date:** 10/12/21 08:30

Customer ID:

Delivery Date: 10/13/21 09:46

Description: Gadsden Ash Pond - MW-14 DUP

Laboratory ID Number: BB19007

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BB19011	Iron, Total	mg/L	0.00115	0.0176	0.2	0.205	0.248	0.203	0.170 to 0.230	102	70.0 to 130	19.0	20.0
BB19011	Barium, Total	mg/L	0.0000000	0.000200	0.100	0.102	0.0996	0.0970	0.0850 to 0.115	102	70.0 to 130	2.38	20.0
BB19010	Manganese, Dissolved	mg/L	-0.0000354	0.000147	0.100	1.13	1.13	0.102	0.0850 to 0.115	100	70.0 to 130	0.00	20.0
BB19011	Magnesium, Total	mg/L	0.00137	0.0462	5.00	5.16	5.12	5.13	4.25 to 5.75	103	70.0 to 130	0.778	20.0
BB19011	Lead, Total	mg/L	0.0000123	0.000147	0.100	0.103	0.102	0.105	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
BB19011	Manganese, Total	mg/L	-0.0000042	0.000147	0.100	0.0985	0.0960	0.0985	0.0850 to 0.115	98.4	70.0 to 130	2.57	20.0
BB19011	Cadmium, Total	mg/L	0.0000114	0.000147	0.100	0.101	0.0999	0.102	0.0850 to 0.115	101	70.0 to 130	1.10	20.0
BB19011	Arsenic, Total	mg/L	-0.0000440	0.000147	0.100	0.0973	0.0991	0.103	0.0850 to 0.115	97.3	70.0 to 130	1.83	20.0
BB19011	Cobalt, Total	mg/L	0.0000042	0.000147	0.100	0.100	0.0982	0.101	0.0850 to 0.115	100	70.0 to 130	1.82	20.0
BB19011	Calcium, Total	mg/L	0.00219	0.152	5.00	5.09	5.10	5.05	4.25 to 5.75	102	70.0 to 130	0.196	20.0
BB19010	Iron, Dissolved	mg/L	3.760E-05	0.0176	0.2	13.2	13.7	0.202	0.170 to 0.230	-150	70.0 to 130	3.72	20.0
BB19011	Lithium, Total	mg/L	-3.720E-05	0.0154	0.200	0.201	0.201	0.200	0.170 to 0.230	100	70.0 to 130	0.00	20.0
BB19011	Potassium, Total	mg/L	-0.00835	0.367	10.0	10.4	10.1	10.4	8.50 to 11.5	104	70.0 to 130	2.93	20.0
BB19011	Mercury, Total by CVAA	mg/L	6.000E-05	0.000500	0.004	0.00405	0.00414	0.00399	0.00340 to 0.00460	101	70.0 to 130	2.20	20.0
BB19011	Molybdenum, Total	mg/L	0.0000340	0.000147	0.100	0.0985	0.0983	0.0973	0.0850 to 0.115	98.5	70.0 to 130	0.203	20.0
BB19011	Chromium, Total	mg/L	-0.0000467	0.000440	0.100	0.0984	0.0963	0.0993	0.0850 to 0.115	98.4	70.0 to 130	2.16	20.0
BB19011	Selenium, Total	mg/L	0.0000000	0.00100	0.100	0.0997	0.102	0.102	0.0850 to 0.115	99.7	70.0 to 130	2.28	20.0
BB19011	Beryllium, Total	mg/L	0.0000297	0.000880	0.100	0.103	0.102	0.105	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
BB19011	Thallium, Total	mg/L	-0.0000007	0.000147	0.100	0.0969	0.0956	0.0987	0.0850 to 0.115	96.9	70.0 to 130	1.35	20.0
BB19011	Sodium, Total	mg/L	0.000246	0.0660	5.00	5.05	5.03	5.04	4.25 to 5.75	101	70.0 to 130	0.397	20.0
BB19011	Boron, Total	mg/L	0.00185	0.0650	1.00	1.01	1.01	1.01	0.850 to 1.15	101	70.0 to 130	0.00	20.0
BB19011	Antimony, Total	mg/L	0.000138	0.00100	0.100	0.0988	0.0967	0.0965	0.0850 to 0.115	98.8	70.0 to 130	2.15	20.0

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. Sample BB19007 was not analyzed for Alkalinity due to the initial sample pH reading was below the Alkalinity titration end point of 4.5 SU. Fluoride result is qualified due to potential matrix interference.

Batch QC Summary

Customer Account: WMWGADAP

Sample Date: 10/12

10/12/21 08:30

Customer ID:

Delivery Date:

10/13/21 09:46

Description: Gadsden Ash Pond - MW-14 DUP

Laboratory ID Number: BB19007

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BB19011	Fluoride	mg/L	0.0275	0.100	2.50	2.61	0.0253	2.28	2.25 to 2.75	104	80.0 to 120	0.00	20.0
BB19011	Sulfate	mg/L	-0.210	1.00	20.0	18.9	-0.732	19.2	18.0 to 22.0	91.3	80.0 to 120	3160	20.0
BB19011	Chloride	mg/L	-0.00836	1.00	10.0	10.0	0.0829	10.0	9.00 to 11.0	100	80.0 to 120	0.00	20.0
BB19010	Solids, Dissolved	mg/L	0.0000	25.0			351	50.0	40.0 to 60.0			0.142	10.0

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. Sample BB19007 was not analyzed for Alkalinity due to the initial sample pH reading was below the Alkalinity titration end point of 4.5 SU. Fluoride result is qualified due to potential matrix interference.

Certificate Of Analysis

Description: Gadsden Ash Pond - MW-8 Location Code Collected:

Location Code: WMWGADAP **Collected:** 10/12/21 10:48

Customer ID:

Submittal Date: 10/13/21 09:46

Laboratory ID Number: BB19008			Submitt	al Date:	10/13/21 09:	46	
Name	Prepared Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Analyst: RDA		Preparati	on Method: I	EPA 1638		
* Boron, Total	10/21/21 12:00 10/22/21 10	:55 1.015	0.0462	mg/L	0.030000	0.1015	J
* Calcium, Total	10/21/21 12:00 10/22/21 14	:06 10.15	66.3	mg/L	0.70035	4.06	
* Iron, Total	10/21/21 12:00 10/22/21 14	:06 10.15	8.84	mg/L	0.08120	0.406	
* Lithium, Total	10/21/21 12:00 10/22/21 10	:55 1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	10/21/21 12:00 10/22/21 10	:55 1.015	6.51	mg/L	0.021315	0.406	
* Sodium, Total	10/21/21 12:00 10/22/21 10	:55 1.015	9.59	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Analyst: RDA						
* Iron, Dissolved	10/20/21 14:00 10/21/21 13	:19 10.15	8.40	mg/L	0.08120	0.406	
Analytical Method: EPA 200.8	Analyst: DLJ		Preparati	on Method: I	EPA 1638		
* Antimony, Total	10/13/21 14:45 10/14/21 18	:45 1.015	Not Detected	mg/L	0.000508	0.001015	U
* Arsenic, Total	10/13/21 14:45 10/14/21 18	:45 1.015	0.00287	mg/L	0.000068	0.000203	
* Barium, Total	10/13/21 14:45 10/14/21 18	:45 1.015	0.203	mg/L	0.000102	0.000203	
* Beryllium, Total	10/13/21 14:45 10/14/21 18	:45 1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	10/13/21 14:45 10/14/21 18	:45 1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	10/13/21 14:45 10/14/21 18	:45 1.015	Not Detected	mg/L	0.000203	0.001015	U
* Cobalt, Total	10/13/21 14:45 10/14/21 18	:45 1.015	0.00298	mg/L	0.000068	0.000203	
* Lead, Total	10/13/21 14:45 10/14/21 18	:45 1.015	Not Detected	mg/L	0.000068	0.000203	U
* Molybdenum, Total	10/13/21 14:45 10/14/21 18	:45 1.015	0.000319	mg/L	0.000068	0.000203	
* Potassium, Total	10/13/21 14:45 10/14/21 18	:45 1.015	0.446	mg/L	0.169505	0.5075	J
* Manganese, Total	10/13/21 14:45 10/14/21 19	:35 5.075	2.00	mg/L	0.000340	0.001015	
* Selenium, Total	10/13/21 14:45 10/14/21 18	:45 1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	10/13/21 14:45 10/14/21 18	:45 1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Analyst: DLJ						
* Manganese, Dissolved	10/13/21 14:19 10/14/21 11	:59 5.075	1.96	mg/L	0.000340	0.001015	
Analytical Method: EPA 245.1	Analyst: CRB						
* Mercury, Total by CVAA	10/19/21 13:32 10/19/21 18	:44 1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: SM 2320 B	Analyst: JAG						
Alkalinity, Total as CaCO3	10/20/21 09:45 10/20/21 10	:40 1	202	mg/L		0.1	
Analytical Method: SM 2540C	Analyst: CNJ						
* Solids, Dissolved	10/14/21 10:52 10/15/21 13	:04 1	245	mg/L		25	

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified.

Certificate Of Analysis

Description: Gadsden Ash Pond - MW-8

Location Code:

WMWGADAP

Collected:

Customer ID:

10/12/21 10:48

Laboratory ID Number: BB19008

Submittal Date:

10/13/21 09:46

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM 4500CO2 D	Ana	lyst: JAG							
Bicarbonate Alkalinity, (calc.)	10/20/21 09:4	5 10/20/21 10	0:40 1		202	mg/L			
Carbonate Alkalinity, (calc.)	10/20/21 09:4	5 10/20/21 10	0:40 1		0.12	mg/L			
Analytical Method: SM4500Cl E	Ana	lyst: JCC							
* Chloride	10/14/21 11:4	0 10/14/21 1	1:40 1		5.60	mg/L	0.50	1	
Analytical Method: SM4500F G 2017	Ana	lyst: JCC							
* Fluoride	10/13/21 14:1	2 10/13/21 14	1:12 1		0.123	mg/L	0.06	0.1	
Analytical Method: SM4500SO4 E 2011	Ana	lyst: JCC							
* Sulfate	10/20/21 13:3	2 10/20/21 13	3:32 1		16.0	mg/L	0.50	1	
Analytical Method: Field Measurements	Ana	lyst: TJD							
Conductivity	10/12/21 10:4	5 10/12/21 10	0:45		441.79	uS/cm			FA
рН	10/12/21 10:4	5 10/12/21 10	0:45		6.61	SU			FA
Temperature	10/12/21 10:4	5 10/12/21 10	0:45		18.42	С			FA
Turbidity	10/12/21 10:4	5 10/12/21 10	0:45		5.89	NTU			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified.

Batch QC Summary

Customer Account: WMWGADAP **Sample Date:** 10/12/21 10:48

Customer ID:

Delivery Date: 10/13/21 09:46

Description: Gadsden Ash Pond - MW-8

Laboratory ID Number: BB19008

•				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BB19010	Manganese, Dissolved	mg/L	-0.0000354	0.000147	0.100	1.13	1.13	0.102	0.0850 to 0.115	100	70.0 to 130	0.00	20.0
BB19011	Manganese, Total	mg/L	-0.0000042	0.000147	0.100	0.0985	0.0960	0.0985	0.0850 to 0.115	98.4	70.0 to 130	2.57	20.0
BB19011	Cadmium, Total	mg/L	0.0000114	0.000147	0.100	0.101	0.0999	0.102	0.0850 to 0.115	101	70.0 to 130	1.10	20.0
BB19011	Iron, Total	mg/L	0.00115	0.0176	0.2	0.205	0.248	0.203	0.170 to 0.230	102	70.0 to 130	19.0	20.0
BB19011	Barium, Total	mg/L	0.0000000	0.000200	0.100	0.102	0.0996	0.0970	0.0850 to 0.115	102	70.0 to 130	2.38	20.0
BB19011	Arsenic, Total	mg/L	-0.0000440	0.000147	0.100	0.0973	0.0991	0.103	0.0850 to 0.115	97.3	70.0 to 130	1.83	20.0
BB19011	Cobalt, Total	mg/L	0.0000042	0.000147	0.100	0.100	0.0982	0.101	0.0850 to 0.115	100	70.0 to 130	1.82	20.0
BB19011	Calcium, Total	mg/L	0.00219	0.152	5.00	5.09	5.10	5.05	4.25 to 5.75	102	70.0 to 130	0.196	20.0
BB19011	Magnesium, Total	mg/L	0.00137	0.0462	5.00	5.16	5.12	5.13	4.25 to 5.75	103	70.0 to 130	0.778	20.0
BB19011	Lead, Total	mg/L	0.0000123	0.000147	0.100	0.103	0.102	0.105	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
BB19010	Iron, Dissolved	mg/L	3.760E-05	0.0176	0.2	13.2	13.7	0.202	0.170 to 0.230	-150	70.0 to 130	3.72	20.0
BB19011	Lithium, Total	mg/L	-3.720E-05	0.0154	0.200	0.201	0.201	0.200	0.170 to 0.230	100	70.0 to 130	0.00	20.0
BB19011	Potassium, Total	mg/L	-0.00835	0.367	10.0	10.4	10.1	10.4	8.50 to 11.5	104	70.0 to 130	2.93	20.0
BB19011	Mercury, Total by CVAA	mg/L	6.000E-05	0.000500	0.004	0.00405	0.00414	0.00399	0.00340 to 0.00460	101	70.0 to 130	2.20	20.0
BB19011	Molybdenum, Total	mg/L	0.0000340	0.000147	0.100	0.0985	0.0983	0.0973	0.0850 to 0.115	98.5	70.0 to 130	0.203	20.0
BB19011	Chromium, Total	mg/L	-0.0000467	0.000440	0.100	0.0984	0.0963	0.0993	0.0850 to 0.115	98.4	70.0 to 130	2.16	20.0
BB19011	Selenium, Total	mg/L	0.0000000	0.00100	0.100	0.0997	0.102	0.102	0.0850 to 0.115	99.7	70.0 to 130	2.28	20.0
BB19011	Beryllium, Total	mg/L	0.0000297	0.000880	0.100	0.103	0.102	0.105	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
BB19011	Thallium, Total	mg/L	-0.0000007	0.000147	0.100	0.0969	0.0956	0.0987	0.0850 to 0.115	96.9	70.0 to 130	1.35	20.0
BB19011	Sodium, Total	mg/L	0.000246	0.0660	5.00	5.05	5.03	5.04	4.25 to 5.75	101	70.0 to 130	0.397	20.0
BB19011	Boron, Total	mg/L	0.00185	0.0650	1.00	1.01	1.01	1.01	0.850 to 1.15	101	70.0 to 130	0.00	20.0
BB19011	Antimony, Total	mg/L	0.000138	0.00100	0.100	0.0988	0.0967	0.0965	0.0850 to 0.115	98.8	70.0 to 130	2.15	20.0

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified.

Batch QC Summary

Customer Account: WMWGADAP

Sample Date:

10/12/21 10:48

Customer ID:

Delivery Date:

10/13/21 09:46

Description: Gadsden Ash Pond - MW-8

Laboratory ID Number: BB19008

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	l Limit	Rec	Limit	Prec	<u>Li</u> mit
BB19011	Fluoride	mg/L	0.0275	0.100	2.50	2.61	0.0253	2.28	2.25 to 2.75	104	80.0 to 120	0.00	20.0
BB19011	Sulfate	mg/L	-0.210	1.00	20.0	18.9	-0.732	19.2	18.0 to 22.0	91.3	80.0 to 120	3160	20.0
BB19010	Alkalinity, Total as CaCO3	mg/L					153	50.9	45.0 to 55.0			0.651	10.0
BB19011	Chloride	mg/L	-0.00836	1.00	10.0	10.0	0.0829	10.0	9.00 to 11.0	100	80.0 to 120	0.00	20.0
BB19010	Solids, Dissolved	mg/L	0.0000	25.0			351	50.0	40.0 to 60.0			0.142	10.0

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified.

Certificate Of Analysis

Description: Gadsden Ash Pond - MW-9

Location Code: Collected:

WMWGADAP 10/12/21 11:55

Customer ID:

Submittal Date:

10/13/21 09:46

Laboratory	ID	Number:	BB19009

Name	Prepared Analyzed	Vio Spec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Analyst: RDA		Preparati	on Method: EPA	1638		
* Boron, Total	10/21/21 12:00 10/22/21 10	0:59 1.015	0.0632	mg/L	0.030000	0.1015	J
* Calcium, Total	10/21/21 12:00 10/22/21 10	0:59 1.015	35.4	mg/L	0.070035	0.406	
* Iron, Total	10/21/21 12:00 10/22/21 10	0:59 1.015	1.33	mg/L	0.008120	0.0406	
* Lithium, Total	10/21/21 12:00 10/22/21 10	0:59 1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	10/21/21 12:00 10/22/21 10	0:59 1.015	6.76	mg/L	0.021315	0.406	
* Sodium, Total	10/21/21 12:00 10/22/21 1	0:59 1.015	13.9	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Analyst: RDA						
* Iron, Dissolved	10/20/21 14:00 10/21/21 1	0:52 1.015	1.27	mg/L	0.008120	0.0406	
Analytical Method: EPA 200.8	Analyst: DLJ		Preparati	on Method: EPA	1638		
* Antimony, Total	10/13/21 14:45 10/14/21 1	8:49 1.015	Not Detected	mg/L	0.000508	0.001015	U
* Arsenic, Total	10/13/21 14:45 10/14/21 1	8:49 1.015	0.000635	mg/L	0.000068	0.000203	
* Barium, Total	10/13/21 14:45 10/14/21 1	8:49 1.015	0.147	mg/L	0.000102	0.000203	
* Beryllium, Total	10/13/21 14:45 10/14/21 1	8:49 1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	10/13/21 14:45 10/14/21 1	8:49 1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	10/13/21 14:45 10/14/21 1	8:49 1.015	0.000310	mg/L	0.000203	0.001015	J
* Cobalt, Total	10/13/21 14:45 10/14/21 1	8:49 1.015	0.00113	mg/L	0.000068	0.000203	
* Lead, Total	10/13/21 14:45 10/14/21 1	8:49 1.015	Not Detected	mg/L	0.000068	0.000203	U
* Molybdenum, Total	10/13/21 14:45 10/14/21 1	8:49 1.015	0.000177	mg/L	0.000068	0.000203	J
* Potassium, Total	10/13/21 14:45 10/14/21 1	8:49 1.015	1.80	mg/L	0.169505	0.5075	
* Manganese, Total	10/13/21 14:45 10/14/21 1	9:39 5.075	1.50	mg/L	0.000340	0.001015	
* Selenium, Total	10/13/21 14:45 10/14/21 1	8:49 1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	10/13/21 14:45 10/14/21 1	8:49 1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Analyst: DLJ						
* Manganese, Dissolved	10/13/21 14:19 10/14/21 1	2:03 5.075	1.49	mg/L	0.000340	0.001015	
Analytical Method: EPA 245.1	Analyst: CRB						
* Mercury, Total by CVAA	10/19/21 13:32 10/19/21 1	8:48 1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: SM 2320 B	Analyst: JAG						
Alkalinity, Total as CaCO3	10/20/21 09:45 10/20/21 10	0:40 1	117	mg/L		0.1	
Analytical Method: SM 2540C	Analyst: CNJ						
* Solids, Dissolved	10/14/21 10:52 10/15/21 1	3:04 1	169	mg/L		25	

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified.

Certificate Of Analysis

Description: Gadsden Ash Pond - MW-9

Location Code:

WMWGADAP

Collected:

Customer ID:

10/12/21 11:55

10/13/21 09:46

Laboratory ID Number: BB19009

Submittal Date:

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM 4500CO2 D	An	alyst: JAG							
Bicarbonate Alkalinity, (calc.)	10/20/21 09:	45 10/20/21 1	10:40	1	117	mg/L			
Carbonate Alkalinity, (calc.)	10/20/21 09:	45 10/20/21 1	10:40	1	0.13	mg/L			
Analytical Method: SM4500Cl E	An	alyst: JCC							
* Chloride	10/14/21 11:	41 10/14/21 1	11:41	1	7.78	mg/L	0.50	1	
Analytical Method: SM4500F G 2017	An	alyst: JCC							
* Fluoride	10/13/21 14:	13 10/13/21 1	14:13	1	0.147	mg/L	0.06	0.1	
Analytical Method: SM4500SO4 E 2011	An	alyst: JCC							
* Sulfate	10/20/21 13:	33 10/20/21 1	13:33	1	18.0	mg/L	0.50	1	
Analytical Method: Field Measurements	An	alyst: TJD							
Conductivity	10/12/21 11:	51 10/12/21 1	11:51		313.11	uS/cm			FA
рН	10/12/21 11:	51 10/12/21 1	11:51		6.90	SU			FA
Temperature	10/12/21 11:	51 10/12/21 1	11:51		18.97	С			FA
Turbidity	10/12/21 11:	:51 10/12/21 1	11:51		2.25	NTU			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified.

Batch QC Summary

Customer Account: WMWGADAP **Sample Date:** 10/12/21 11:55

Customer ID:

Delivery Date: 10/13/21 09:46

Description: Gadsden Ash Pond - MW-9

Laboratory ID Number: BB19009

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BB19011	Manganese, Total	mg/L	-0.0000042	0.000147	0.100	0.0985	0.0960	0.0985	0.0850 to 0.115	98.4	70.0 to 130	2.57	20.0
BB19011	Cadmium, Total	mg/L	0.0000114	0.000147	0.100	0.101	0.0999	0.102	0.0850 to 0.115	101	70.0 to 130	1.10	20.0
BB19010	Manganese, Dissolved	mg/L	-0.0000354	0.000147	0.100	1.13	1.13	0.102	0.0850 to 0.115	100	70.0 to 130	0.00	20.0
BB19011	Iron, Total	mg/L	0.00115	0.0176	0.2	0.205	0.248	0.203	0.170 to 0.230	102	70.0 to 130	19.0	20.0
BB19011	Barium, Total	mg/L	0.0000000	0.000200	0.100	0.102	0.0996	0.0970	0.0850 to 0.115	102	70.0 to 130	2.38	20.0
BB19011	Magnesium, Total	mg/L	0.00137	0.0462	5.00	5.16	5.12	5.13	4.25 to 5.75	103	70.0 to 130	0.778	20.0
BB19011	Lead, Total	mg/L	0.0000123	0.000147	0.100	0.103	0.102	0.105	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
BB19010	Iron, Dissolved	mg/L	3.760E-05	0.0176	0.2	13.2	13.7	0.202	0.170 to 0.230	-150	70.0 to 130	3.72	20.0
BB19011	Lithium, Total	mg/L	-3.720E-05	0.0154	0.200	0.201	0.201	0.200	0.170 to 0.230	100	70.0 to 130	0.00	20.0
BB19011	Potassium, Total	mg/L	-0.00835	0.367	10.0	10.4	10.1	10.4	8.50 to 11.5	104	70.0 to 130	2.93	20.0
BB19011	Mercury, Total by CVAA	mg/L	6.000E-05	0.000500	0.004	0.00405	0.00414	0.00399	0.00340 to 0.00460	101	70.0 to 130	2.20	20.0
BB19011	Molybdenum, Total	mg/L	0.0000340	0.000147	0.100	0.0985	0.0983	0.0973	0.0850 to 0.115	98.5	70.0 to 130	0.203	20.0
BB19011	Chromium, Total	mg/L	-0.0000467	0.000440	0.100	0.0984	0.0963	0.0993	0.0850 to 0.115	98.4	70.0 to 130	2.16	20.0
BB19011	Arsenic, Total	mg/L	-0.0000440	0.000147	0.100	0.0973	0.0991	0.103	0.0850 to 0.115	97.3	70.0 to 130	1.83	20.0
BB19011	Cobalt, Total	mg/L	0.0000042	0.000147	0.100	0.100	0.0982	0.101	0.0850 to 0.115	100	70.0 to 130	1.82	20.0
BB19011	Calcium, Total	mg/L	0.00219	0.152	5.00	5.09	5.10	5.05	4.25 to 5.75	102	70.0 to 130	0.196	20.0
BB19011	Selenium, Total	mg/L	0.0000000	0.00100	0.100	0.0997	0.102	0.102	0.0850 to 0.115	99.7	70.0 to 130	2.28	20.0
BB19011	Beryllium, Total	mg/L	0.0000297	0.000880	0.100	0.103	0.102	0.105	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
BB19011	Thallium, Total	mg/L	-0.0000007	0.000147	0.100	0.0969	0.0956	0.0987	0.0850 to 0.115	96.9	70.0 to 130	1.35	20.0
BB19011	Sodium, Total	mg/L	0.000246	0.0660	5.00	5.05	5.03	5.04	4.25 to 5.75	101	70.0 to 130	0.397	20.0
BB19011	Boron, Total	mg/L	0.00185	0.0650	1.00	1.01	1.01	1.01	0.850 to 1.15	101	70.0 to 130	0.00	20.0
BB19011	Antimony, Total	mg/L	0.000138	0.00100	0.100	0.0988	0.0967	0.0965	0.0850 to 0.115	98.8	70.0 to 130	2.15	20.0

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified.

Batch QC Summary

Customer Account: WMWGADAP

Sample Date: 10/12/21 11:55

Customer ID:

Delivery Date: 10/13/21 09:46

Description: Gadsden Ash Pond - MW-9

Laboratory ID Number: BB19009

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	l Limit	Rec	Limit	Prec	<u>Li</u> mit
BB19011	Chloride	mg/L	-0.00836	1.00	10.0	10.0	0.0829	10.0	9.00 to 11.0	100	80.0 to 120	0.00	20.0
BB19010	Solids, Dissolved	mg/L	0.0000	25.0			351	50.0	40.0 to 60.0			0.142	10.0
BB19011	Fluoride	mg/L	0.0275	0.100	2.50	2.61	0.0253	2.28	2.25 to 2.75	104	80.0 to 120	0.00	20.0
BB19011	Sulfate	mg/L	-0.210	1.00	20.0	18.9	-0.732	19.2	18.0 to 22.0	91.3	80.0 to 120	3160	20.0
BB19010	Alkalinity, Total as CaCO3	mg/L					153	50.9	45.0 to 55.0			0.651	10.0

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified.

Certificate Of Analysis

Description: Gadsden Ash Pond - MW-11

Location Code: WMWGADAP **Collected:** 10/12/21 12:55

Customer ID:

Submittal Date: 10/13/21 09:46

Laboratory ID Number: BB19010

Name	Prepared Analyzed Vio S	ec DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Analyst: RDA		Preparati	on Method: E	PA 1638		
* Boron, Total	10/21/21 12:00 10/22/21 11:02	1.015	0.125	mg/L	0.030000	0.1015	
* Calcium, Total	10/21/21 12:00 10/22/21 14:09	10.15	78.6	mg/L	0.70035	4.06	
* Iron, Total	10/21/21 12:00 10/22/21 14:09	10.15	13.6	mg/L	0.08120	0.406	
* Lithium, Total	10/21/21 12:00 10/22/21 11:02	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	10/21/21 12:00 10/22/21 11:02	1.015	11.4	mg/L	0.021315	0.406	
* Sodium, Total	10/21/21 12:00 10/22/21 11:02	1.015	13.0	mg/L	0.03045	0.406	
Analytical Method: EPA 200.7	Analyst: RDA						
* Iron, Dissolved	10/20/21 14:00 10/21/21 13:23	10.15	13.5	mg/L	0.08120	0.406	RA
Analytical Method: EPA 200.8	Analyst: DLJ		Preparati	on Method: E	PA 1638		
* Antimony, Total	10/13/21 14:45 10/14/21 18:52	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Arsenic, Total	10/13/21 14:45 10/14/21 18:52	1.015	0.00272	mg/L	0.000068	0.000203	
* Barium, Total	10/13/21 14:45 10/14/21 18:52	1.015	0.170	mg/L	0.000102	0.000203	
* Beryllium, Total	10/13/21 14:45 10/14/21 18:52	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	10/13/21 14:45 10/14/21 18:52	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	10/13/21 14:45 10/14/21 18:52	1.015	0.000267	mg/L	0.000203	0.001015	J
* Cobalt, Total	10/13/21 14:45 10/14/21 18:52	1.015	0.000275	mg/L	0.000068	0.000203	
* Lead, Total	10/13/21 14:45 10/14/21 18:52	1.015	Not Detected	mg/L	0.000068	0.000203	U
 Molybdenum, Total 	10/13/21 14:45 10/14/21 18:52	1.015	0.000152	mg/L	0.000068	0.000203	J
* Potassium, Total	10/13/21 14:45 10/14/21 18:52	1.015	1.30	mg/L	0.169505	0.5075	
* Manganese, Total	10/13/21 14:45 10/14/21 18:52	1.015	0.983	mg/L	0.000068	0.000203	
* Selenium, Total	10/13/21 14:45 10/14/21 18:52	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	10/13/21 14:45 10/14/21 18:52	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 200.8	Analyst: DLJ						
* Manganese, Dissolved	10/13/21 14:19 10/14/21 11:41	1.015	1.03	mg/L	0.000068	0.000203	
Analytical Method: EPA 245.1	Analyst: CRB						
* Mercury, Total by CVAA	10/19/21 13:32 10/19/21 18:52	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: SM 2320 B	Analyst: JAG						
Alkalinity, Total as CaCO3	10/20/21 09:45 10/20/21 10:40	1	154	mg/L		0.1	
Analytical Method: SM 2540C	Analyst: CNJ						
* Solids, Dissolved	10/14/21 10:52 10/15/21 13:04	1	352	mg/L		25	

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified.

Certificate Of Analysis

Description: Gadsden Ash Pond - MW-11

Location Code:

WMWGADAP 10/12/21 12:55

Collected: Customer ID:

Submittal Date:

10/13/21 09:46

Laboratory ID Number: BB19010

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: SM 4500CO2 D	An	alyst: JAG							
Bicarbonate Alkalinity, (calc.)	10/20/21 09:	45 10/20/21 1	10:40	1	154	mg/L			
Carbonate Alkalinity, (calc.)	10/20/21 09:	45 10/20/21 1	10:40	1	0.08	mg/L			
Analytical Method: SM4500Cl E	An	alyst: JCC							
* Chloride	10/14/21 11:	42 10/14/21 1	11:42	1	5.80	mg/L	0.50	1	
Analytical Method: SM4500F G 2017	An	alyst: JCC							
* Fluoride	10/13/21 14:	14 10/13/21 1	14:14	1	0.134	mg/L	0.06	0.1	
Analytical Method: SM4500SO4 E 2011	An	alyst: JCC							
* Sulfate	10/20/21 13:	41 10/20/21 1	13:41	8	142	mg/L	4.00	8	
Analytical Method: Field Measurements	An	alyst: TJD							
Conductivity	10/12/21 12:	52 10/12/21 1	12:52		577.54	uS/cm			FA
рН	10/12/21 12:	52 10/12/21 1	12:52		6.66	SU			FA
Temperature	10/12/21 12:	52 10/12/21 1	12:52		19.95	С			FA
Turbidity	10/12/21 12:	52 10/12/21 1	12:52		7.01	NTU			FA

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified.

Batch QC Summary

Customer Account: WMWGADAP **Sample Date:** 10/12/21 12:55

Customer ID:

Delivery Date: 10/13/21 09:46

Description: Gadsden Ash Pond - MW-11

Laboratory ID Number: BB19010

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BB19011	Manganese, Total	mg/L	-0.0000042	0.000147	0.100	0.0985	0.0960	0.0985	0.0850 to 0.115	98.4	70.0 to 130	2.57	20.0
BB19011	Cadmium, Total	mg/L	0.0000114	0.000147	0.100	0.101	0.0999	0.102	0.0850 to 0.115	101	70.0 to 130	1.10	20.0
BB19010	Manganese, Dissolved	mg/L	-0.0000354	0.000147	0.100	1.13	1.13	0.102	0.0850 to 0.115	100	70.0 to 130	0.00	20.0
BB19011	Magnesium, Total	mg/L	0.00137	0.0462	5.00	5.16	5.12	5.13	4.25 to 5.75	103	70.0 to 130	0.778	20.0
BB19011	Lead, Total	mg/L	0.0000123	0.000147	0.100	0.103	0.102	0.105	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
BB19011	Potassium, Total	mg/L	-0.00835	0.367	10.0	10.4	10.1	10.4	8.50 to 11.5	104	70.0 to 130	2.93	20.0
BB19011	Mercury, Total by CVAA	mg/L	6.000E-05	0.000500	0.004	0.00405	0.00414	0.00399	0.00340 to 0.00460	101	70.0 to 130	2.20	20.0
BB19011	Molybdenum, Total	mg/L	0.0000340	0.000147	0.100	0.0985	0.0983	0.0973	0.0850 to 0.115	98.5	70.0 to 130	0.203	20.0
BB19011	Chromium, Total	mg/L	-0.0000467	0.000440	0.100	0.0984	0.0963	0.0993	0.0850 to 0.115	98.4	70.0 to 130	2.16	20.0
BB19011	Selenium, Total	mg/L	0.0000000	0.00100	0.100	0.0997	0.102	0.102	0.0850 to 0.115	99.7	70.0 to 130	2.28	20.0
BB19011	Beryllium, Total	mg/L	0.0000297	0.000880	0.100	0.103	0.102	0.105	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
BB19011	Thallium, Total	mg/L	-0.0000007	0.000147	0.100	0.0969	0.0956	0.0987	0.0850 to 0.115	96.9	70.0 to 130	1.35	20.0
BB19011	Sodium, Total	mg/L	0.000246	0.0660	5.00	5.05	5.03	5.04	4.25 to 5.75	101	70.0 to 130	0.397	20.0
BB19011	Boron, Total	mg/L	0.00185	0.0650	1.00	1.01	1.01	1.01	0.850 to 1.15	101	70.0 to 130	0.00	20.0
BB19011	Antimony, Total	mg/L	0.000138	0.00100	0.100	0.0988	0.0967	0.0965	0.0850 to 0.115	98.8	70.0 to 130	2.15	20.0
BB19011	Iron, Total	mg/L	0.00115	0.0176	0.2	0.205	0.248	0.203	0.170 to 0.230	102	70.0 to 130	19.0	20.0
BB19011	Barium, Total	mg/L	0.0000000	0.000200	0.100	0.102	0.0996	0.0970	0.0850 to 0.115	102	70.0 to 130	2.38	20.0
BB19010	Iron, Dissolved	mg/L	3.760E-05	0.0176	0.2	13.2	13.7	0.202	0.170 to 0.230	-150	70.0 to 130	3.72	20.0
BB19011	Lithium, Total	mg/L	-3.720E-05	0.0154	0.200	0.201	0.201	0.200	0.170 to 0.230	100	70.0 to 130	0.00	20.0
BB19011	Arsenic, Total	mg/L	-0.0000440	0.000147	0.100	0.0973	0.0991	0.103	0.0850 to 0.115	97.3	70.0 to 130	1.83	20.0
BB19011	Cobalt, Total	mg/L	0.0000042	0.000147	0.100	0.100	0.0982	0.101	0.0850 to 0.115	100	70.0 to 130	1.82	20.0
BB19011	Calcium, Total	mg/L	0.00219	0.152	5.00	5.09	5.10	5.05	4.25 to 5.75	102	70.0 to 130	0.196	20.0

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified.

Batch QC Summary

Customer Account: WMWGADAP

Sample Date: 10/12/21 12:55

Customer ID:

Delivery Date: 10/13/21 09:46

Description: Gadsden Ash Pond - MW-11

Laboratory ID Number: BB19010

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BB19011	Chloride	mg/L	-0.00836	1.00	10.0	10.0	0.0829	10.0	9.00 to 11.0	100	80.0 to 120	0.00	20.0
BB19010	Solids, Dissolved	mg/L	0.0000	25.0			351	50.0	40.0 to 60.0			0.142	10.0
BB19011	Fluoride	mg/L	0.0275	0.100	2.50	2.61	0.0253	2.28	2.25 to 2.75	104	80.0 to 120	0.00	20.0
BB19011	Sulfate	mg/L	-0.210	1.00	20.0	18.9	-0.732	19.2	18.0 to 22.0	91.3	80.0 to 120	3160	20.0
BB19010	Alkalinity, Total as CaCO3	mg/L					153	50.9	45.0 to 55.0			0.651	10.0

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified.

Certificate Of Analysis

Description: Gadsden Ash Pond Equipment Blank-1Location Code:WMWGADAPEBCollected:10/12/21 13:30

Customer ID:

Submittal Date: 10/13/21 09:46

Laboratory ID Number: BB19011

Name	Prepared	Analyzed	Vio Spec	DF	Results	Units	MDL	RL	Q
Analytical Method: EPA 200.7	Ana	lyst: RDA			Preparati	on Method: EPA	1638		_
* Boron, Total	10/21/21 12:0	0 10/22/21	11:05	1.015	Not Detected	mg/L	0.030000	0.1015	U
* Calcium, Total	10/21/21 12:0	0 10/22/21	11:05	1.015	Not Detected	mg/L	0.070035	0.406	U
* Iron, Total	10/21/21 12:0	0 10/22/21	11:05	1.015	Not Detected	mg/L	0.008120	0.0406	U
* Lithium, Total	10/21/21 12:0	0 10/22/21	11:05	1.015	Not Detected	mg/L	0.007105	0.01999956	U
* Magnesium, Total	10/21/21 12:0	0 10/22/21	11:05	1.015	Not Detected	mg/L	0.021315	0.406	U
* Sodium, Total	10/21/21 12:0	0 10/22/21	11:05	1.015	Not Detected	mg/L	0.03045	0.406	U
Analytical Method: EPA 200.8	Ana	lyst: DLJ			Preparati	on Method: EPA	1638		
* Antimony, Total	10/13/21 14:4	5 10/14/21	18:56	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Arsenic, Total	10/13/21 14:4	5 10/14/21	18:56	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Barium, Total	10/13/21 14:4	5 10/14/21	18:56	1.015	Not Detected	mg/L	0.000102	0.000203	U
* Beryllium, Total	10/13/21 14:4	5 10/14/21	18:56	1.015	Not Detected	mg/L	0.000406	0.001015	U
* Cadmium, Total	10/13/21 14:4	5 10/14/21	18:56	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Chromium, Total	10/13/21 14:4	5 10/14/21	18:56	1.015	Not Detected	mg/L	0.000203	0.001015	U
* Cobalt, Total	10/13/21 14:4	5 10/14/21	18:56	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Lead, Total	10/13/21 14:4	5 10/14/21	18:56	1.015	Not Detected	mg/L	0.000068	0.000203	U
 Molybdenum, Total 	10/13/21 14:4	5 10/14/21	18:56	1.015	Not Detected	mg/L	0.000068	0.000203	U
* Manganese, Total	10/13/21 14:4	5 10/14/21	18:56	1.015	0.0000783	mg/L	0.000068	0.000203	J
* Potassium, Total	10/13/21 14:4	5 10/14/21	18:56	1.015	Not Detected	mg/L	0.169505	0.5075	U
* Selenium, Total	10/13/21 14:4	5 10/14/21	18:56	1.015	Not Detected	mg/L	0.000508	0.001015	U
* Thallium, Total	10/13/21 14:4	5 10/14/21	18:56	1.015	Not Detected	mg/L	0.000068	0.000203	U
Analytical Method: EPA 245.1	Ana	lyst: CRB							
* Mercury, Total by CVAA	10/19/21 13:3	2 10/19/21	18:56	1	Not Detected	mg/L	0.0003	0.0005	U
Analytical Method: SM 2540C	Ana	lyst: CNJ							
* Solids, Dissolved	10/14/21 10:5	2 10/15/21	13:04	1	Not Detected	mg/L		25	U
Analytical Method: SM4500Cl E	Ana	lyst: JCC							
* Chloride	10/14/21 11:4	3 10/14/21	11:43	1	Not Detected	mg/L	0.50	1	U
Analytical Method: SM4500F G 2017	Ana	lyst: JCC							
* Fluoride	10/13/21 14:1	5 10/13/21	14:15	1	Not Detected	mg/L	0.06	0.1	U
Analytical Method: SM4500SO4 E 2011	Ana	lyst: JCC							
* Sulfate	10/20/21 13:3	s 10/20/21	13:35	1	0.645	mg/L	0.50	1	J

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: Sulfate precision is invalid due to sample concentration.

Batch QC Summary

Customer Account: WMWGADAPEB

Sample Date: 10/12/21 13:30

Customer ID:

Delivery Date: 10/13/21 09:46

Description: Gadsden Ash Pond Equipment Blank-1

Laboratory ID Number: BB19011

				MB					Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BB19011	Iron, Total	mg/L	0.00115	0.0176	0.2	0.205	0.248	0.203	0.170 to 0.230	102	70.0 to 130	19.0	20.0
BB19011	Barium, Total	mg/L	0.0000000	0.000200	0.100	0.102	0.0996	0.0970	0.0850 to 0.115	102	70.0 to 130	2.38	20.0
BB19011	Manganese, Total	mg/L	-0.0000042	0.000147	0.100	0.0985	0.0960	0.0985	0.0850 to 0.115	98.4	70.0 to 130	2.57	20.0
BB19011	Cadmium, Total	mg/L	0.0000114	0.000147	0.100	0.101	0.0999	0.102	0.0850 to 0.115	101	70.0 to 130	1.10	20.0
BB19011	Lithium, Total	mg/L	-3.720E-05	0.0154	0.200	0.201	0.201	0.200	0.170 to 0.230	100	70.0 to 130	0.00	20.0
BB19011	Magnesium, Total	mg/L	0.00137	0.0462	5.00	5.16	5.12	5.13	4.25 to 5.75	103	70.0 to 130	0.778	20.0
BB19011	Lead, Total	mg/L	0.0000123	0.000147	0.100	0.103	0.102	0.105	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
BB19011	Potassium, Total	mg/L	-0.00835	0.367	10.0	10.4	10.1	10.4	8.50 to 11.5	104	70.0 to 130	2.93	20.0
BB19011	Mercury, Total by CVAA	mg/L	6.000E-05	0.000500	0.004	0.00405	0.00414	0.00399	0.00340 to 0.00460	101	70.0 to 130	2.20	20.0
BB19011	Molybdenum, Total	mg/L	0.0000340	0.000147	0.100	0.0985	0.0983	0.0973	0.0850 to 0.115	98.5	70.0 to 130	0.203	20.0
BB19011	Chromium, Total	mg/L	-0.0000467	0.000440	0.100	0.0984	0.0963	0.0993	0.0850 to 0.115	98.4	70.0 to 130	2.16	20.0
BB19011	Arsenic, Total	mg/L	-0.0000440	0.000147	0.100	0.0973	0.0991	0.103	0.0850 to 0.115	97.3	70.0 to 130	1.83	20.0
BB19011	Cobalt, Total	mg/L	0.0000042	0.000147	0.100	0.100	0.0982	0.101	0.0850 to 0.115	100	70.0 to 130	1.82	20.0
BB19011	Calcium, Total	mg/L	0.00219	0.152	5.00	5.09	5.10	5.05	4.25 to 5.75	102	70.0 to 130	0.196	20.0
BB19011	Selenium, Total	mg/L	0.0000000	0.00100	0.100	0.0997	0.102	0.102	0.0850 to 0.115	99.7	70.0 to 130	2.28	20.0
BB19011	Beryllium, Total	mg/L	0.0000297	0.000880	0.100	0.103	0.102	0.105	0.0850 to 0.115	103	70.0 to 130	0.976	20.0
BB19011	Thallium, Total	mg/L	-0.0000007	0.000147	0.100	0.0969	0.0956	0.0987	0.0850 to 0.115	96.9	70.0 to 130	1.35	20.0
BB19011	Sodium, Total	mg/L	0.000246	0.0660	5.00	5.05	5.03	5.04	4.25 to 5.75	101	70.0 to 130	0.397	20.0
BB19011	Boron, Total	mg/L	0.00185	0.0650	1.00	1.01	1.01	1.01	0.850 to 1.15	101	70.0 to 130	0.00	20.0
BB19011	Antimony, Total	mg/L	0.000138	0.00100	0.100	0.0988	0.0967	0.0965	0.0850 to 0.115	98.8	70.0 to 130	2.15	20.0

Comments: Sulfate precision is invalid due to sample concentration.

Batch QC Summary

Customer Account: WMWGADAPEB

Sample Date: 10/12/21 13:30

Customer ID:

Delivery Date: 10/13/21 09:46

Description: Gadsden Ash Pond Equipment Blank-1

Laboratory ID Number: BB19011

				MB			Sample		Standard		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	Duplicate	Standard	Limit	Rec	Limit	Prec	<u>Li</u> mit
BB19011	Fluoride	mg/L	0.0275	0.100	2.50	2.61	0.0253	2.28	2.25 to 2.75	104	80.0 to 120	0.00	20.0
BB19011	Sulfate	mg/L	-0.210	1.00	20.0	18.9	-0.732	19.2	18.0 to 22.0	91.3	80.0 to 120	3160	20.0
BB19011	Chloride	mg/L	-0.00836	1.00	10.0	10.0	0.0829	10.0	9.00 to 11.0	100	80.0 to 120	0.00	20.0
BB19010	Solids, Dissolved	mg/L	0.0000	25.0			351	50.0	40.0 to 60.0			0.142	10.0

Comments: Sulfate precision is invalid due to sample concentration.

Definitions

Project Number: WMWGADAP_1341

(205) 664-6001

U

Compound was analyzed, but not detected.

Abbreviation	Description
DF	Dilution Factor
LCS	Lab Control Sample
LFM	Lab Fortified Matrix
MB	Method Blank
MDL	Method Detection Limit; minimum concentration of an analyte that can be determined with 99% confidence that the
	concentration is greater than zero.
MS	Matrix Spike
MSD	Matrix Spike Duplicate
Prec	Precision (% RPD)
Q	Qualifier; comment used to note deviations or additional information associated with analytical results.
QC	Quality Control
Rec	Recovery of Matrix Spike
RL	Reporting Limit; lowest concentration at which an analyte can be quantitatively measured.
Vio Spec	Violation Specification; regulatory limit which has been exceeded by the sample analyzed.
Qualifier	Description
FA	Field results were reviewed by the Water Field Group. Refer to APC Field Case Narrative.
J	Reported value is an estimate because concentration is less than reporting limit.
RA	Matrix spike is invalid due to sample concentration.

Eab Sield	Groundy APC General			eld Com ab Comp	1	Lab Lab ETA	. [
D			orator y		D 1(. T			_
Reque	ested Complete	ector TJ Daug	horty			Oustin Brooks, Gre	g Dyer	
	Colle	ector 13 Daug	Jileity			Greg Dyer) a .a d	
			,			Gadsden Ash F	1	
Bottles		500 mL 3	Hg	250		50 mL 7 N/		
	2 Dissolved Metals	500 mL 4	TDS	500	mL 6 Alkalinity 25	50 mL 8 N/A	N/A	
	Comments							
	<u> </u>							
				Bottle		Lab		
	Sample #	Date	Time	Count	Description	Filter	Lab Id	
F	PZ-2	10/05/2021	11:00	6	Groundwater		BB18668	
N	MW-6	10/05/2021	12:10	6	Groundwater		BB18669	
N	MW-3	10/05/2021	13:25	6	Groundwater		BB18670	
N	ЛW-4	10/05/2021	14:35	6	Groundwater		BB18671	
N	иW-4 Dup	10/05/2021	14:35	6	Sample Duplicate		BB18672	
F	FB-1	10/05/2021	15:30	4	Field Blank		BB18673	
N	ИW-17	10/06/2021	08:45	6	Groundwater		BB18674	
N	лW-16	10/06/2021	10:10	6	Groundwater		BB18675	
L								
L								
L								
L								
L								
	Relinqu	ished By			Received By		Date/Time	e e
	N	<u> </u>			Raura Maly		10/06/2021 14	1:14
								\dashv
				, <u> </u>				
		86-41443-5-2		4	All metals and radiolo		have pH < 2 🔽	
	urbidity ID 46			4	Cooler Temp 0.			
Sa	imple Event 134	41				408-27568-2-2		
Bottles/	Pre-Preserved Bottles a	re provided by the C	GTL	_	pH Strip ID 84	440-536/9-10-5		

Page 160 of 167

Alabama Pow	Chain of	Custody	F i	eld Com	plete	Outsi	ide Lab			
Field	Groundw APC General			ıb Comp	lete		L	ab ETA		
Regues	sted Complete		rator y			Results To				
Reques	_	ector Dallas G	Gentry			Requested B			g Dyei	
	Conc		,			Location	' 		ond	
D. (1	1 Metals	500 ml 3	Па	250	ml			7 N/A		N/A
Bottles	2 Dissolved Metals	500 mL 3 500 mL 4	Hg TDS	500		5 Anions6 Alkalinity	250 mL	8 N/A	-	N/A N/A
		SOO THE	1100	1000		Alkalinity	250 IIIL	J O IN/A		19/7
	Comments									
				Bottle				Lab		
	Sample #	Date	Time	Count		Description	1	Filter	Lab Id	ı
E	B-2	10/05/2021	10:20	4	Equip	oment Blank			BB1873	57
P	Z-1	10/05/2021	11:00	6	Grou	ndwater			BB1873	8
М	IW-5	10/05/2021	11:53	6	Grou	ndwater			BB1873	9
М	IW-5 dup	10/05/2021	11:53	6	Sam	ple Duplicate			BB1874	0
М	IW-12	10/05/2021	12:58	6	Grou	ndwater			BB1874	
⊢	IW-1	10/05/2021	14:18	6	 	ndwater			BB1874	
М	IW-7	10/05/2021	15:11	6		ndwater			BB1874	
_	IW-2VA	10/06/2021	10:25	6	 	ndwater			BB1874	
_	IW-21VC	10/06/2021	12:46	6		ndwater			BB1874	
FI	B-2	10/06/2021	13:15	4	Field	Blank			BB1874	6
					<u> </u>					
					<u> </u>					
					<u> </u>					
-										
					<u> </u>					
	Dolingui	ichad Py			l	Docaived Pr			Data	Time
	Relinqu					Received By	у			
	Palso	Saty				Naby .			10/07/20	21 08:24
				<u> </u>						
		36-41444-5-3		4	Al	l metals and rad			nave pH <	2 🗸
	urbidity ID 390			4		Cooler Temp	_			
Sai	mple Event 134	11			Τ	hermometer ID				
Bottles/P	re-Preserved Bottles ar	e provided by the C	TL	_		pH Strip ID	8440-536	79-10-5		

Page 161 of 167

Alabama Pov	Chain of	Custody	Fi 🗸 Fi	eld Con	plete		Outsic	le Lab				
Field	Groundy	water	La	ab Comp	olete							
	APC Genera	l Testing Labo	oratory					L	ab 1	ETA		
Reque	sted Complete	Date Routine					Results To	Dustin Br	ooks	oks, Greg Dyer		
	Coll	ector Dallas C	Gentry			Red	quested By	Greg Dy	er			
							Location Gadsde			n Ash Pond		
Bottles	1 Metals	500 mL 3	Hg	250	mL	5 Ar	nions	250 mL	7	N/A		N/A
	2 Dissolved Metals	500 mL 4	TDS	500	mL	6 AI	kalinity	250 mL	8	N/A		N/A
	Comments	amples relinquished orrecting bottle cou	I to secure loca int for MW-19F	ntion. GSC Bi	uilding 8 : M 10/13/2	shipping 21	g lab on 10/13/	21 @ 07:31.				
				Bottle					L	ab		
	Sample #	Date	Time	Count		D	escription			lter	Lab I	d
N	/IW-22VB	10/11/2021	11:37	6	Groundwater						BB189	95
N	ЛW-19H	10/11/2021	12:57	6	Groundwater					\Box	BB189	96
N	1W-2	10/11/2021	14:49	6	Groundwater]	BB189	
F	B-3	10/11/2021	15:15	4	Field	Blank					BB189	98
M	/IW-2VB	10/12/2021	09:28	6	Grour	ndwate	er				BB189	
-	1W-18H	10/12/2021	11:17	6	Groundwater						BB190	
—	PZ-5	10/12/2021	12:16	6	Groundwater						BB190	
P	PZ-6	10/12/2021	13:40	6	Groundwater					\dashv	BB190	02
-										\dashv		
F										_		
-					 					\dashv		
H					<u> </u>					\dashv		
-										\dashv		
					<u> </u>					\dashv		
										\dashv		
										\neg		
					1			_		T		
		iished By		1 [eceived By				Date	e/Time
	Valla	d Daty		Laur	a Mi	dkif	Digitally Date: 202	signed by Lau 21.10.13 08:52:			10/13/2	021 08:52
		<u>.</u>					-					
				<u> </u>								
C	narTroll ID 75	06 41444 5 0		7	д 11	mata	المصام معادة	ological I	2041	·loc 1	112 212	
	<u> </u>	01 20010 2 2		\dashv	All metals and radiological bottles have pH < 2 🗾 Cooler Temp 0.1 degrees C							
	urbidity ID 39 mple Event 13	001-20010-2-2		\dashv	т		ometer ID	5408-275				
Sa	mpic Event 110	· · · ·		_	11			8440-536				
				pH Strip ID 8440-53679-10-5								

Bottles/Pre-Preserved Bottles are provided by the GTL

Page 162 of 167

Alabama Pov Lab S Field SERVICES	Chain of	Custody vater		eld Com	•	Outsi	de Lab			
	11	l Testing Labo		•			L	ab ETA		
Reque	sted Complete	Date Routine				Results To	O Dustin Br	ooks, Gre	g Dyer	
	Colle	ector TJ Daug	herty			Requested B	y Greg Dy	er		
						Location	n Gadsde	n Ash P	ond	
Bottles	1 Metals	500 mL 3	Hg	250	mL	5 Anions	250 mL	7 N/A		N/A
	2 Dissolved Metals	500 mL 4	TDS	500	mL	6 Alkalinity	250 mL	8 N/A		N/A
	Comments									
				Bottle				Lab		
	Sample #	Date	Time	Count		Description	1	Filter	Lab Id	
<u> </u>	/IW-4V	10/11/2021	12:40	6	<u> </u>	ndwater			BB1900	
	/IW-20H	10/11/2021	13:30	6	<u> </u>	ndwater			BB1900	
-	1W-10	10/11/2021	14:40	6		ndwater			BB1900	
-	1W-14	10/12/2021	08:30	6	<u> </u>	ndwater			BB1900	
_	1W-14 Dup 1W-8	10/12/2021	08:30	6	<u> </u>	ole Duplicate			BB1900 BB1900	
⊢	1W-9	10/12/2021	10:48	6	 	ndwater ndwater			BB1900	
-	1W-11	10/12/2021	11:55 12:55	6 6		ndwater ndwater			BB1901	
	:B-1	10/12/2021	13:30	4		ment Blank			BB1901	
	.5 1		10.00		1 - 90.1					
_										
	Dalingu	ichad Py				Dagaiyad Pr	7		Data	Time
		ished By				Received By Launfley	<u>/</u>			
	<u> </u>	M							10/13/20	21 08:40
Sn	narTroll ID 75	86-41443-5-2		7	All	metals and rad	liological ł	oottles l	nave pH <	2 🗸
T	urbidity ID 46	77-23342-4-1				Cooler Temp	0.0 degre	es C		
Sa	mple Event 13	41			T	hermometer ID	5408-275	68-2-2		
D - 441 /F	Pre-Preserved Rottles a	ro provided by the C	TTI			pH Strip ID	8440-536	79-10-5		

Page 163 of 167

Alabama Po	_	of Custoo	lv	✓ Fi	eld (Com	plete		Ou	ıtsid	e Lab					
Field					sh C	omp	loto									
SERVICE		eral Testing La	abora		10 C	omp	icie				L	ab	ЕТА			
Reque	ested Comple	ete Date Routi	ne	· ·				1	Results	s To	Dustin Br	ool	ks, Gre	a Dver		
rioqui	_	ollector TJ Da		erty				$\frac{1}{R}$	equested				10, 0.0	9 -)		
									-	•	Gadsde		Ash P	ond		
D 441	1 Dadium	4.1	3 1	N/A		NI/A		5				7.			1,,,,	
Bottles	1 Radium 2 N/A	1 L N/A	\blacksquare	N/A N/A		N/A N/A		\vdash	N/A N/A	_	N/A	┦┝	7 N/A8 N/A		N/A	
	2 IN/A	IN/A	4	IN/A		IN/A		0 1	N/A		V/A	<u> </u>	∘ N/A		N/A	
	Comments	MS/MSD collected	d at M\	N-6												
					D	1							. 1			<u> </u>
	Sample #	Date		Time		ttle unt			Descripti	ion			Lab ilter	Lab I	a	
	PZ-2	10/05/202	21	11:00		u 1	Grour			1011		Γ.	mer	BB186		
H	MW-6	10/05/202	_	12:10		3	Groun						_	BB186		
-	MW-3	10/05/202	-	13:25		1	Grour					╁		BB186		
	VIVV-3 VIW-4	10/05/202		14:35		1	Groun				_	┢		BB186		
-	MW-4 Dup	10/05/202	_	14:35		1			uplicate					BB186		
	-B-1	10/05/202	_	15:30		1	Field		-			t		BB186		
-	 MW-17	10/06/202	_	08:45		1	Grour					H		BB186		
-	MW-16	10/06/202	_	10:10		1	Grour				-			BB186		
Ė		10/00/202		10.10		•										
			\top													
F			\top													
											_					
												<u> </u>				
Ī																
r												Т				
			\top													
	Delir	nquished By						1	Received	By				Date	 e/Tim	Δ
	ICIII	ALAL							Raura MM							
		7 PV							V (south and					10/06/2	021 1	4:14
Sı	marTroll ID	7586-41443-5	-2				All	me	tals and 1	radio	ological l	bot	ttles l	nave pH	< 2	2
Т		4677-23342-4							ooler Tei	г					_	
	ample Event				7		П		nometer	^ F	N/A					
	•	<u> </u>			_				nH Strip		8440-536	579	-10-5			

Page 164 of 167

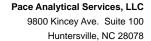
Bottles/Pre-Preserved Bottles are provided by the GTL

Lab	Chain of Grounds	Custo	ly	Fi	eld Co	omj	plete		Outsid	e Lab					
Fiel	Groundy APC Genera	water l Testing La	abor	La catory	ıb Coı	mpl	lete			L	ab	ЕТА			
Regi	iested Complete			7				1	Results To						
ræqe	_	ector Dalla		entry				$\frac{1}{1}$ Re	equested By				9 - 7		
				-					Location			sh P	ond		
Bottle	s 1 Radium	1 L	3	N/A	l NI	/A		5 N		\/A	7.	7 N/A		N/A	
bottie	2 N/A	N/A	\square	N/A		I/A		_		N/A	┩┝	N/A		N/A	
		adium MS/MSE							1 // [1	14/7 (11477			\dashv
					Bottl	le					I	ab			
	Sample #	Date		Time	Cou	nt		Ι	Description		Fi	lter	Lab 1	Id	
	EB-2	10/05/202	21	10:20	1		Equip	men	t Blank				BB187	747	
	PZ-1	10/05/202	21	11:00	3	_	Grour	ndwa	ter				BB187	748	
	MW-5	10/05/202	21	11:53	1	_	Groun	idwa	ter				BB187	'49	
	MW-5 dup	10/05/202	21	11:53	1	\bot	Samp	le Di	uplicate				BB187	'50	
	MW-12	10/05/202	21	12:58	1	\dashv	Groun	idwa	ter				BB187	'51	
	MW-1	10/05/202	21	14:18	1	$ \bot $	Groun	idwa	ter				BB187	'52	
	MW-7	10/05/202	21	15:11	1	\dashv	Groun	idwa	ter	_			BB187	'53	
	MW-2VA	10/06/202	21	10:25	1	\perp	Groun	idwa	ter				BB187	'54	
	MW-21VC	10/06/202	21	12:46	1	-	Groun						BB187	'55	
	FB-2	10/06/202	21	13:15	1	\perp	Field I	Blanl	K				BB187	'56	
						\perp				_					
			\perp			\perp									
						_									
						_									
			_			4									
			_			_					_				
			_			\dashv									
			_			\dashv									
			_			_									
			_			4									
		uished By			. —				Received By				Date	e/Tim	e
	Palla	ed Saty						ò	Laura Mly				10/07/2	2021 0	8:24
Ç	SmarTroll ID 75	586-41444-5	-3		٦		A11	met	als and radio	ological l	hot	tles l	nave nH	- ح 2. آم	7
	Turbidity ID 39				1				ooler Temp	N/A			PII		
	Sample Event 13				1		Tł		nometer ID	N/A					
					_		-11				579-	10-5			
	(n n in i	. 1 . 1 . 1	1 07	CT.				r	T [

Page 165 of 167

Bottles/Pre-Preserved Bottles are provided by the GTL

8.0


Alabama		Custody	Fi Fi	eld Com	plete	V O	utside Lab					
Fiel		•		ab Comp	olete							
		l Testing Labo		1				Lab ETA				
Requ	ested Complete	Date Routine				Result	s To Dustin E	Brooks, Gre	g Dyer			
	Coll	ector Dallas G	entry			Requested	d By Greg D	yer				
						Loca	tion Gadsd	en Ash P	ond			
Bottle	S 1 Radium	1 L 3	N/A	N/A		5 N/A	N/A	7 N/A	N/A			
	2 N/A	N/A 4	N/A	N/A		6 N/A	N/A	8 N/A	N/A	$\neg \neg$		
	Comments	ndium MS/MSD colle	ected at MW-2	2VB. Sample	es relinau	ished to secure lo	ocation, GSC Build	dina 8 shippi	ng lab on 10/13/21	@		
		7:30.		<u>'</u>	<u>'</u>							
				Bottle				Lab				
	Sample #	Date	Time	Count		Descript	tion	Filter	Lab Id			
	MW-22VB	10/11/2021	11:37	3	<u> </u>	ndwater			BB19012	1		
	MW-19H	10/11/2021	12:57	1		ndwater			BB19013	1		
ł	MW-2	10/11/2021	14:49	1	 	ndwater		-	BB19014	4		
}	FB-3	10/11/2021	15:15	1	Field			<u> </u>	BB19015	4		
ł	MW-2VB	10/12/2021	09:28	1		ndwater			BB19016	4		
}	MW-18H 10/12/2021 11:17 1 Groundwater BB19017 PZ-5 10/12/2021 12:16 1 Groundwater BB19018											
- 1	PZ-5	10/12/2021	12:16	1	+			-	BB19018	1		
	PZ-6	10/12/2021	13:40	1	Grour	ndwater		+ -	BB19019	1		
										1		
l					_							
										1		
										1		
										1		
										1		
Ì										1		
										1		
ļ										1		
	Relingu	iished By				Received	l Bv		Date/Tin	ne		
	Pilla	3 Agtn		Laur	a Mi	dkiff Dig	gitally signed by La ste: 2021.10.13 08:5		10/13/2021 0	8:52		
						J	10.13 00.3	2.57 -03 00		-		
							4					
	-	86-41444-5-3		_	All			bottles l	nave pH < 2	<u>~</u>		
	· ⊢	01-20010-2-2		\dashv	т	Cooler Te	1					
S	ample Event 13	41			11	nermometer		679-10-5				
						pH Strip	ככ-1 0-4 0 עדי	07 2-10-3				

Page 166 of 167

Bottles/Pre-Preserved Bottles are provided by the GTL

Alabama Po	🖫 Chain of		' —	eld Com	-	v 0	utside Lab			
	APC General	l Testing La	boratory]	Lab ETA		
Reque	ested Complete	Date Routin	ne			Resul	ts To Dustin B	rooks, Gre	g Dyer	
	Coll	ector TJ Da	ugherty			Requeste	ed By Greg D	yer		
						Loca	ation Gadsd	en Ash P	ond	
Bottles	1 Radium	1 L	3 N/A	N/A		5 N/A	N/A	7 N/A	A N/A	4
	2 N/A	N/A	4 N/A	N/A		6 N/A	N/A	8 N/A	N/A	١
	Comments									
				Bottle				Lab		
	Sample #	Date	Time	Count		Descrip	tion	Filter	Lab Id	
N	лW-4V	10/11/202	1 12:40	1	Groun	dwater			BB19020	
N	лW-20H	10/11/202	1 13:30	1	Groun	dwater		<u> </u>	BB19021	
N	/IW-10	10/11/202	1 14:40	1	Groun	dwater			BB19022	
N	/W-14	10/12/202	1 08:30	1	Groun	dwater			BB19023	
N	/W-14 Dup	10/12/202	1 08:30	1	Sampl	e Duplicate			BB19024	
N	/IW-8	10/12/202	1 10:48	1	Groun	dwater			BB19025	
N	/W-9	10/12/202	1 11:55	1	Groun	dwater			BB19026	
N	/W-11	10/12/202	12.00	1	-	dwater			BB19027	
E	EB-1	10/12/202	1 13:30	1	Equipr	ment Blank			BB19028	
-										
-					<u> </u> 			-		
-										
-		<u> </u>			<u> </u>			 		
-					 					
-					<u> </u>					
-					<u> </u> 			 		
ŀ		<u> </u>								-
-					<u> </u>			\vdash		
-										
	Relinqu	iished By	'			Receive	d By		Date/Ti	me
	M	- Ma				Lower Ma	ly .		10/13/2021	08:40
				\parallel			<i>//</i>			
Sı	narTroll ID 75	86-41443-5-	-2	 7	All	metals and	radiological	bottles l	have pH < 2	<u> </u>
	urbidity ID 46			7		Cooler To			1	
	mple Event 13			7	Th	ermomete	1			
				_		pH Strip	o ID 8440-53	679-10-5		
Bottles/	Pre-Preserved Bottles a	re provided by th	ne GTL	_						

Page 167 of 167

(704)875-9092

December 13, 2021

Laura Midkiff Alabama Power 744 Highway 87 GSC #8 Calera, AL 35040

RE: Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

Dear Laura Midkiff:

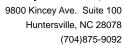
Enclosed are the analytical results for sample(s) received by the laboratory on October 19, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,


Micole D'oles

Nicole D'Oleo nicole.d'oleo@pacelabs.com (704)875-9092 Project Manager

Enclosures

cc: Brooke Caton, Alabama Power Renee Jernigan, Alabama Power

CERTIFICATIONS

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235
Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14
Nevada Certification #: PA014572018-1

New Hampshire/TNI Certification #: 297617

New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

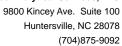
South Dakota Certification
Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143

West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

(704)875-9092



SAMPLE SUMMARY

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

92567366002 BB18677 MW-6 Water 10/05/21 12:10 10/19/21 00:00 92567366003 BB18677 MW-6 MS Water 10/05/21 12:10 10/19/21 00:00 92567366004 BB18677 MW-6 MSD Water 10/05/21 12:10 10/19/21 00:00 92567366005 BB18678 MW-3 Water 10/05/21 13:25 10/19/21 00:00 92567366006 BB18679 MW-4 Water 10/05/21 14:35 10/19/21 00:00 92567366007 BB18680 MW-4 DUP Water 10/05/21 14:35 10/19/21 00:00 92567366008 BB18681 FB-1 Water 10/05/21 15:30 10/19/21 00:00 92567366009 BB18682 MW-17 Water 10/06/21 08:45 10/19/21 00:00 92567366010 BB18683 MW-16 Water 10/05/21 10:20 10/19/21 00:00 92567366011 BB18747 EB-2 Water 10/05/21 10:20 10/19/21 00:00	Lab ID	Sample ID	Matrix	Date Collected	Date Received
92567366003 BB18677 MW-6 MS Water 10/05/21 12:10 10/19/21 00:00 92567366004 BB18677 MW-6 MSD Water 10/05/21 12:10 10/19/21 00:00 92567366005 BB18678 MW-3 Water 10/05/21 13:25 10/19/21 00:00 92567366006 BB18679 MW-4 DUP Water 10/05/21 14:35 10/19/21 00:00 92567366007 BB18680 MW-4 DUP Water 10/05/21 15:30 10/19/21 00:00 92567366008 BB18682 MW-17 Water 10/05/21 15:30 10/19/21 00:00 92567366009 BB18682 MW-17 Water 10/06/21 00:00 10/19/21 00:00 92567366001 BB18683 MW-16 Water 10/06/21 10:10 10/19/21 00:00 92567366001 BB18683 MW-16 Water 10/06/21 10:10 10/19/21 00:00 92567366012 BB18747 EB-2 Water 10/05/21 11:00 10/19/21 00:00 92567366013 BB18748 PZ-1 Water 10/05/21 11:00 10/19/21 00:00 92567366014 BB18748 PZ-1 Water 10/05/21 11:00 10/19/21 00:00 92567366014 BB18748 PZ-1 MS Water 10/05/21 11:00 10/19/21 00:00 92567366015 BB18749 MW-5 Water 10/05/21 11:00 10/19/21 00:00 92567366016 BB18750 MW-5 DUP Water 10/05/21 11:53 10/19/21 00:00 92567366016 BB18750 MW-5 DUP Water 10/05/21 11:53 10/19/21 00:00 92567366016 BB18750 MW-5 WATER 10/05/21 11:53 10/19/21 00:00 92567366016 BB18750 MW-2 Water 10/05/21 11:53 10/19/21 00:00 92567366016 BB18750 MW-7 Water 10/05/21 11:53 10/19/21 00:00 92567366019 BB18755 MW-2 Water 10/05/21 11:53 10/19/21 00:00 92567366019 BB18755 MW-2 Water 10/05/21 11:53 10/19/21 00:00 92567366019 BB18755 MW-2 Water 10/05/21 11:31 10/19/21 00:00 92567366019 BB18756 MW-2VB Water 10/05/21 11:31 10/19/21 00:00 92567366020 BB18756 MW-2VB Water 10/05/21 11:37 10/19/21 00:00 92567366020 BB18756 MW-2VB Water 10/11/21 11:37 10/19/21 00:00 92567366020 BB18756 MW-2VB Water 10/11/21 11:37 10/19/21 00:00 92567366020 BB19012 MW-22VB MS Water 10/11/21 11:37 10/19/21 00:00 92567366020 BB19012 MW-22VB MS Water 10/11/21 11:44 10/19/21 00:00 92567366020 BB19013 MW-19H Water 10/11/21 11:44 10/19/21 00:00 92567366030 BB19013 MW-19H Water 10/11/21 11:44 10/19/21 00:00 92567366030 BB19013 MW-2VB Water 10/11/21 13:40 10/19/21 00:00 92567366030 BB19016 MW-2VB Water 10/11/21 13:40 10/19/21 00:00 92567366030 BB19018 MW-2 WATER 10/19	92567366001	BB18676 PZ-2	Water	10/05/21 11:00	10/19/21 00:00
92567366004 BB18677 MW-6 MSD Water 10/05/21 12:10 10/19/21 00:00 92567366005 BB18678 MW-3 Water 10/05/21 13:25 10/19/21 00:00 92567366006 BB18679 MW-4 Water 10/05/21 14:35 10/19/21 00:00 92567366006 BB18680 MW-4 DUP Water 10/05/21 14:35 10/19/21 00:00 92567366007 BB18680 MW-4 DUP Water 10/05/21 14:35 10/19/21 00:00 92567366008 BB18681 FB-1 Water 10/05/21 14:35 10/19/21 00:00 92567366009 BB18682 MW-17 Water 10/06/21 00:45 10/19/21 00:00 92567366010 BB18683 MW-16 Water 10/06/21 10:10 10/19/21 00:00 92567366011 BB18747 EB-2 Water 10/05/21 11:00 10/19/21 00:00 92567366012 BB18748 PZ-1 Water 10/05/21 11:00 10/19/21 00:00 92567366013 BB18748 PZ-1 MS Water 10/05/21 11:00 10/19/21 00:00 92567366014 BB18748 PZ-1 MS Water 10/05/21 11:00 10/19/21 00:00 92567366014 BB18748 PZ-1 MS Water 10/05/21 11:00 10/19/21 00:00 92567366015 BB18748 PZ-1 MS Water 10/05/21 11:00 10/19/21 00:00 92567366015 BB18749 MW-5 Water 10/05/21 11:53 10/19/21 00:00 92567366016 BB18750 MW-5 DUP Water 10/05/21 11:53 10/19/21 00:00 92567366016 BB18750 MW-10 Water 10/05/21 11:53 10/19/21 00:00 92567366018 BB18751 MW-12 Water 10/05/21 11:51 10/19/21 00:00 92567366019 BB18753 MW-7 Water 10/05/21 15:11 10/19/21 00:00 92567366019 BB18753 MW-2VA Water 10/06/21 12:46 10/19/21 00:00 92567366020 BB18754 MW-2VA Water 10/06/21 12:46 10/19/21 00:00 92567366020 BB18754 MW-2VA Water 10/06/21 12:46 10/19/21 00:00 92567366024 BB19012 MW-22VB MS Water 10/11/21 11:37 10/19/21 00:00 92567366024 BB19012 MW-22VB MS Water 10/11/21 11:37 10/19/21 00:00 92567366025 BB19012 MW-22VB MS Water 10/11/21 11:37 10/19/21 00:00 92567366020 BB19014 MW-2 Water 10/11/21 11:37 10/19/21 00:00 92567366020 BB19014 MW-2 Water 10/11/21 11:37 10/19/21 00:00 92567366020 BB19014 MW-2 Water 10/11/21 11:37 10/19/21 00:00 92567366024 BB19012 MW-22VB MS Water 10/11/21 11:37 10/19/21 00:00 92567366023 BB19014 MW-2 Water 10/11/21 11:44 10/19/21 00:00 92567366030 BB19014 MW-2 Water 10/11/21 11:40 10/19/21 00:00 92567366030 BB19014 MW-2 Water 10/12/11 13:40 10/19/21 00:00 92567366030 BB19019 MW-4V Water	92567366002	BB18677 MW-6	Water	10/05/21 12:10	10/19/21 00:00
92567366005 BB18678 MW-3 Water 10/05/21 13:25 10/19/21 00:00 92567366006 BB18679 MW-4 Water 10/05/21 14:35 10/19/21 00:00 92567366007 BB18680 MW-4 DUP Water 10/05/21 14:35 10/19/21 00:00 92567366008 BB18681 FB-1 Water 10/05/21 15:30 10/19/21 00:00 92567366009 BB18682 MW-17 Water 10/06/21 16:30 10/19/21 00:00 92567366001 BB18683 MW-16 Water 10/05/21 10:10 10/19/21 00:00 92567366010 BB18683 MW-16 Water 10/05/21 10:10 10/19/21 00:00 92567366011 BB18747 EB-2 Water 10/05/21 11:00 10/19/21 00:00 92567366013 BB18748 PZ-1 Water 10/05/21 11:00 10/19/21 00:00 92567366014 BB18748 PZ-1 MS Water 10/05/21 11:00 10/19/21 00:00 92567366014 BB18748 PZ-1 MS Water 10/05/21 11:00 10/19/21 00:00 92567366014 BB18748 PZ-1 MSD Water 10/05/21 11:00 10/19/21 00:00 92567366014 BB18748 PZ-1 MSD Water 10/05/21 11:53 10/19/21 00:00 92567366016 BB18749 MW-5 Water 10/05/21 11:53 10/19/21 00:00 92567366016 BB18749 MW-5 Water 10/05/21 11:53 10/19/21 00:00 92567366018 BB18750 MW-1 Water 10/05/21 12:58 10/19/21 00:00 92567366018 BB18750 MW-1 Water 10/05/21 12:58 10/19/21 00:00 92567366019 BB18751 MW-12 Water 10/05/21 11:13 10/19/21 00:00 92567366020 BB18754 MW-2VA Water 10/06/21 10:25 10/19/21 00:00 92567366020 BB18755 MW-2VA Water 10/06/21 13:15 10/19/21 00:00 92567366020 BB18755 MW-2VW Water 10/06/21 11:37 10/19/21 00:00 92567366020 BB18755 MW-2VB Water 10/11/21 11:37 10/19/21 00:00 92567366020 BB18755 MW-2VB Water 10/11/21 11:37 10/19/21 00:00 92567366020 BB19012 MW-22VB MS Water 10/11/21 11:37 10/19/21 00:00 92567366025 BB19012 MW-22VB MS Water 10/11/21 11:49 10/19/21 00:00 92567366026 BB19013 MW-19H Water 10/11/21 11:49 10/19/21 00:00 92567366020 BB19014 MW-2 Water 10/11/21 11:49 10/19/21 00:00 92567366023 BB19015 MW-2VB Water 10/11/21 11:40 10/19/21 00:00 92567366030 BB19018 MW-2VB Water 10/11/21 11:40 10/19/21 00:00 92567366030 BB19018 MW-2VB Water 10/11/21 11:40 10/19/21 00:00 92567366031 BB19018 PZ-5 Water 10/11/21 11:40 10/19/21 00:00 92567366033 BB19018 MW-4 Water 10/11/21 11:40 10/19/21 00:00 92567366036 BB19028 MW-4 Water 10/11/21 11	92567366003	BB18677 MW-6 MS	Water	10/05/21 12:10	10/19/21 00:00
92567366006 BB18679 MW-4 92567366007 BB18680 MW-4 DUP Water 10/05/21 14:35 10/19/21 00:00 92567366008 BB18681 FB-1 Water 10/05/21 15:30 10/19/21 00:00 92567366009 BB18682 MW-17 Water 10/05/21 10:33 10/19/21 00:00 92567366010 BB18683 MW-16 Water 10/05/21 10:10 10/19/21 00:00 92567366011 BB18747 EB-2 Water 10/05/21 11:00 10/19/21 00:00 92567366012 BB18748 PZ-1 MS Water 10/05/21 11:00 10/19/21 00:00 92567366013 BB18748 PZ-1 MS Water 10/05/21 11:00 10/19/21 00:00 92567366014 BB18748 PZ-1 MS Water 10/05/21 11:00 10/19/21 00:00 92567366015 BB18749 MW-5 Water 10/05/21 11:00 10/19/21 00:00 92567366016 BB18749 MW-5 Water 10/05/21 11:00 10/19/21 00:00 92567366017 BB18750 MW-5 DUP Water 10/05/21 11:53 10/19/21 00:00 92567366018 BB18751 MW-12 Water 10/05/21 11:53 10/19/21 00:00 92567366019 BB18753 MW-7 Water 10/05/21 11:18 10/19/21 00:00 92567366020 BB18754 MW-2VA Water 10/05/21 11:18 10/19/21 00:00 92567366021 BB18755 MW-2VA Water 10/06/21 10:25 10/19/21 00:00 92567366022 BB18756 FB-2 Water 10/06/21 11:37 10/19/21 00:00 92567366024 BB19012 MW-22VB MSD Water 10/11/21 11:37 10/19/21 00:00 92567366025 BB19012 MW-22VB MSD Water 10/11/21 11:37 10/19/21 00:00 92567366026 BB19013 MW-19H Water 10/11/21 11:37 10/19/21 00:00 92567366030 BB19018 MW-2VB Water 10/11/21 11:44 10/19/21 00:00 92567366031 BB19018 MW-2VB Water 10/11/21 11:37 10/19/21 00:00 92567366033 BB19018 MW-40 Water 10/11/21 11:30 10/19/21 00:00 92567366034 BB19019 MW-4V Water 10/11/21 11:40 10/19/21 00:00 92567366035 BB19020 MW-4V Water 10/11/21 11:40 10/19/21 00:00 92567366036 BB19020 MW-4V Water 10/11/21 11:40 10/19/21 00:00 92567366036 BB19020 MW-40 Water 10/11/21 11:40 10/19/21 00:00 92567366036 BB19020 MW-40 Water 10/11/21 11:40 10/19/21 00:00 92567366037 BB19020 MW-40 Water 10/11/21 11:40 10/19/21 00:00 92567366038 BB19020 MW-40 Water 10/11/21 11:40 10/19/21 00:00 92567366030 BB19020 MW-40 Water 10/11/21 11:40 10/19/21 00:00	92567366004	BB18677 MW-6 MSD	Water	10/05/21 12:10	10/19/21 00:00
92567366007 BB18680 MW-4 DUP Water 10/05/21 14:35 10/19/21 00:00 92567366008 BB18681 FB-1 Water 10/05/21 15:30 10/19/21 00:00 92567366009 BB18682 MW-17 Water 10/06/21 08:45 10/19/21 00:00 92567366010 BB18683 MW-16 Water 10/06/21 10:10 10/19/21 00:00 92567366011 BB18748 FZ-1 Water 10/05/21 11:00 10/19/21 00:00 92567366011 BB18748 FZ-1 Water 10/05/21 11:00 10/19/21 00:00 92567366013 BB18748 FZ-1 MSD Water 10/05/21 11:00 10/19/21 00:00 92567366014 BB18749 FZ-1 MSD Water 10/05/21 11:00 10/19/21 00:00 92567366015 BB18749 FZ-1 MSD Water 10/05/21 11:53 10/19/21 00:00 92567366016 BB18750 MW-5 DUP Water 10/05/21 11:53 10/19/21 00:00 92567366017 BB18751 MW-12 Water 10/05/21 11:53 10/19/21 00:00 92567366018 BB18753 MW-7 Water 10/05/21 12:58 10/19/21 00:00 92567366019 BB18753 MW-7 Water 10/05/21 12:58 10/19/21 00:00 92567366019 BB18755 MW-2VA Water 10/06/21 10:25 10/19/21 00:00 92567366020 BB18755 MW-2VA Water 10/06/21 10:25 10/19/21 00:00 92567366022 BB18756 FB-2 Water 10/06/21 13:15 10/19/21 00:00 92567366023 BB19012 MW-22VB MS Water 10/11/21 11:37 10/19/21 00:00 92567366025 BB19012 MW-22VB MS Water 10/11/21 11:37 10/19/21 00:00 92567366029 BB19012 MW-22VB MS Water 10/11/21 11:37 10/19/21 00:00 92567366029 BB19013 MW-19H Water 10/11/21 11:37 10/19/21 00:00 92567366029 BB19015 FB-3 Water 10/11/21 11:37 10/19/21 00:00 92567366029 BB19016 MW-2VB Water 10/11/21 11:37 10/19/21 00:00 92567366029 BB19016 MW-2VB Water 10/11/21 11:17 10/19/21 00:00 92567366030 BB19018 PZ-5 Water 10/12/21 12:16 10/19/21 00:00 92567366031 BB19018 PZ-5 Water 10/12/21 12:16 10/19/21 00:00 92567366033 BB19019 PZ-6 Water 10/12/21 12:16 10/19/21 00:00 92567366034 BB19018 PZ-5 Water 10/12/21 12:16 10/19/21 00:00 92567366034 BB19018 PZ-5 Water 10/12/21 12:16 10/19/21 00:00 92567366035 BB19020 MW-4V Water 10/11/21 12:40 10/19/21 00:00 92567366035 BB19019 PZ-6 Water 10/12/21 12:40 10/19/21 00:00 92567366035 BB19020 MW-4V Water 10/11/21 12:40 10/19/21 00:00 92567366036 BB19020 MW-4V Water 10/11/21 12:40 10/19/21 00:00 92567366036 BB19023 MW-14 Water 10/19/21	92567366005	BB18678 MW-3	Water	10/05/21 13:25	10/19/21 00:00
92567366008 BB18681 FB-1 Water 10/05/21 15:30 10/19/21 00:00 92567366009 BB18682 MW-17 Water 10/06/21 08:45 10/19/21 00:00 92567366010 BB18683 MW-16 Water 10/06/21 10:10 10/19/21 00:00 92567366011 BB18747 EB-2 Water 10/05/21 11:00 10/19/21 00:00 92567366012 BB18748 PZ-1 Water 10/05/21 11:00 10/19/21 00:00 92567366013 BB18748 PZ-1 MSD Water 10/05/21 11:00 10/19/21 00:00 92567366014 BB18749 PZ-1 MSD Water 10/05/21 11:00 10/19/21 00:00 92567366015 BB18749 MW-5 Water 10/05/21 11:03 10/19/21 00:00 92567366016 BB18750 MW-5 DUP Water 10/05/21 11:53 10/19/21 00:00 92567366017 BB18751 MW-12 Water 10/05/21 11:53 10/19/21 00:00 92567366018 BB18752 MW-1 Water 10/05/21 12:58 10/19/21 00:00 92567366019 BB18753 MW-7 Water 10/05/21 15:11 10/19/21 00:00 92567366020 BB18754 MW-2VA Water 10/06/21 10:25 10/19/21 00:00 92567366020 BB18755 MW-21VC Water 10/06/21 10:25 10/19/21 00:00 92567366022 BB18756 FB-2 Water 10/06/21 11:37 10/19/21 00:00 92567366023 BB19012 MW-22VB Water 10/10/21 11:37 10/19/21 00:00 92567366024 BB19012 MW-22VB MSD Water 10/11/21 11:37 10/19/21 00:00 92567366025 BB19012 MW-22VB MSD Water 10/11/21 11:37 10/19/21 00:00 92567366026 BB19013 MW-19H Water 10/11/21 11:57 10/19/21 00:00 92567366030 BB19015 FB-3 Water 10/11/21 11:51 10/19/21 00:00 92567366030 BB19016 MW-2VB Water 10/11/21 11:51 10/19/21 00:00 92567366030 BB19018 MW-19H Water 10/11/21 11:37 10/19/21 00:00 92567366030 BB19018 DF-3 Water 10/11/21 11:17 10/19/21 00:00 92567366030 BB19018 BB19018 DF-6 Water 10/12/21 13:40 10/19/21 00:00 92567366031 BB19018 PZ-5 Water 10/12/21 13:40 10/19/21 00:00 92567366033 BB19019 PZ-6 Water 10/12/21 13:40 10/19/21 00:00 92567366034 BB19020 MW-4V Water 10/11/21 11:30 10/19/21 00:00 92567366035 BB19020 MW-4V Water 10/11/21 11:40 10/19/21 00:00 92567366036 BB19023 MW-14 Water 10/11/21 11:40 10/19/21 00:00	92567366006	BB18679 MW-4	Water	10/05/21 14:35	10/19/21 00:00
92567366009 BB18682 MW-17 Water 10/06/21 08:45 10/19/21 00:00 92567366010 BB18683 MW-16 Water 10/06/21 10:10 10/19/21 00:00 92567366011 BB18747 EB-2 Water 10/05/21 11:00 10/19/21 00:00 92567366012 BB18748 PZ-1 Water 10/05/21 11:00 10/19/21 00:00 92567366013 BB18748 PZ-1 MS Water 10/05/21 11:00 10/19/21 00:00 92567366014 BB18748 PZ-1 MSD Water 10/05/21 11:00 10/19/21 00:00 92567366015 BB18749 MW-5 Water 10/05/21 11:53 10/19/21 00:00 92567366016 BB18750 MW-5 DUP Water 10/05/21 11:53 10/19/21 00:00 92567366017 BB18751 MW-12 Water 10/05/21 11:53 10/19/21 00:00 92567366018 BB18752 MW-1 Water 10/05/21 11:51 10/19/21 00:00 92567366019 BB18753 MW-7 Water 10/05/21 10:25 10/19/21 00:00 92567366020 BB18754 MW-2VA Water 10/06/21 10:25 10/19/21 00:00 92567366020 BB18756 FB-2 Water 10/06/21 11:37 10/19/21 00:00 92567366020 BB18756 FB-2 Water 10/06/21 11:37 10/19/21 00:00 92567366020 BB18756 FB-2 Water 10/06/21 11:37 10/19/21 00:00 92567366020 BB19012 MW-22VB Water 10/10/21 11:37 10/19/21 00:00 92567366020 BB19012 MW-22VB Water 10/11/21 11:37 10/19/21 00:00 92567366020 BB19012 MW-22VB MS Water 10/11/21 11:37 10/19/21 00:00 92567366020 BB19015 FB-3 Water 10/11/21 11:37 10/19/21 00:00 92567366020 BB19013 MW-19H Water 10/11/21 11:31 10/19/21 00:00 92567366020 BB19013 MW-19H Water 10/11/21 11:4:49 10/19/21 00:00 92567366020 BB19013 MW-19H Water 10/11/21 11:4:49 10/19/21 00:00 92567366020 BB19013 MW-19H Water 10/11/21 11:4:49 10/19/21 00:00 92567366030 BB19016 MW-2VB Water 10/11/21 11:4:40 10/19/21 00:00 92567366031 BB19018 PZ-5 Water 10/11/21 11:40 10/19/21 00:00 92567366031 BB19018 MW-20H Water 10/11/21 11:30 10/19/21 00:00 92567366031 BB19018 MW-20H Water 10/11/21 11:40 10/19/21 00:00 92567366033 BB19020 MW-4V Water 10/11/21 11:40 10/19/21 00:00 92567366036 BB19023 MW-14 Water 10/11/21 10:30 10/19/21 00:00	92567366007	BB18680 MW-4 DUP	Water	10/05/21 14:35	10/19/21 00:00
92567366010 BB18683 MW-16 Water 10/06/21 10:10 10/19/21 00:00 92567366011 BB18747 EB-2 Water 10/05/21 10:20 10/19/21 00:00 92567366012 BB18748 PZ-1 Water 10/05/21 11:00 10/19/21 00:00 92567366013 BB18748 PZ-1 MS Water 10/05/21 11:00 10/19/21 00:00 92567366014 BB18748 PZ-1 MSD Water 10/05/21 11:00 10/19/21 00:00 92567366015 BB18749 MW-5 Water 10/05/21 11:53 10/19/21 00:00 92567366016 BB18750 MW-5 DUP Water 10/05/21 11:53 10/19/21 00:00 92567366017 BB18751 MW-12 Water 10/05/21 11:53 10/19/21 00:00 92567366018 BB18752 MW-1 Water 10/05/21 14:18 10/19/21 00:00 92567366019 BB18753 MW-7 Water 10/05/21 15:11 10/19/21 00:00 92567366020 BB18755 MW-2VA Water 10/06/21 10:25 10/19/21 00:00 92567366021 BB18755 MW-21VC Water 10/06/21 12:46 10/19/21 00:00 92567366022 BB18756 FB-2 Water 10/06/21 13:15 10/19/21 00:00 92567366024 BB19012 MW-22VB WATER 10/11/21 11:37 10/19/21 00:00 92567366025 BB19012 MW-22VB MS Water 10/11/21 11:37 10/19/21 00:00 92567366026 BB19012 MW-22VB MS Water 10/11/21 11:37 10/19/21 00:00 92567366026 BB19013 MW-19H Water 10/11/21 11:49 10/19/21 00:00 92567366027 BB19014 MW-2 92567366028 BB19015 FB-3 Water 10/11/21 11:49 10/19/21 00:00 92567366029 BB19016 MW-2VB Water 10/11/21 11:40 10/19/21 00:00 92567366020 BB19017 MW-18H Water 10/12/21 12:16 10/19/21 00:00 92567366030 BB19018 PZ-5 Water 10/11/21 11:40 10/19/21 00:00 92567366030 BB19019 PZ-6 Water 10/11/21 11:40 10/19/21 00:00 92567366030 BB19019 PZ-6 Water 10/11/21 11:40 10/19/21 00:00 92567366030 BB19019 PZ-6 Water 10/11/21 11:30 10/19/21 00:00 92567366030 BB19019 MW-20H Water 10/11/21 11:40 10/19/21 00:00 92567366030 BB19019 PZ-6 Water 10/11/21 11:40 10/19/21 00:00 92567366030 BB19019 PZ-6 Water 10/11/21 11:30 10/19/21 00:00 92567366030 BB19019 PZ-6 Water 10/11/21 11:40 10/19/21 00:00 92567366030 BB19020 MW-4V Water 10/11/21 11:40 10/19/21 00:00 92567366030 BB19030 MW-4V Water 10/11/21 11:40 10/19/21 00:00 92567366030 BB19020 MW-4V Water 10/11/21 13:30 10/19/21 00:00	92567366008	BB18681 FB-1	Water	10/05/21 15:30	10/19/21 00:00
92567366011 BB18747 EB-2 Water 10/05/21 10:20 10/19/21 00:00 92567366012 BB18748 PZ-1 MS Water 10/05/21 11:00 10/19/21 00:00 92567366013 BB18748 PZ-1 MS Water 10/05/21 11:00 10/19/21 00:00 92567366014 BB18748 PZ-1 MSD Water 10/05/21 11:00 10/19/21 00:00 92567366015 BB18749 MW-5 Water 10/05/21 11:53 10/19/21 00:00 92567366016 BB18750 MW-5 DUP Water 10/05/21 11:53 10/19/21 00:00 92567366017 BB18751 MW-12 Water 10/05/21 11:53 10/19/21 00:00 92567366018 BB18752 MW-1 Water 10/05/21 11:11 10/19/21 00:00 92567366019 BB18753 MW-7 Water 10/05/21 15:11 10/19/21 00:00 92567366020 BB18755 MW-21VC Water 10/06/21 12:56 10/19/21 00:00 92567366021 BB18755 FB-2 Water 10/06/21 13:15 10/19/21 00:00 92567366022 BB19012 MW-22VB MS Water 10/11/21 11:37 10/19/21 00:00 92567366025 BB19012 MW-22VB MS Water 10/11/21 11:37 10/19/21 00:00 92567366026 BB19013 MW-19H Water 10/11/21 11:49 10/19/21 00:00 92567366029 BB19015 FB-3 Water 10/11/21 11:49 10/19/21 00:00 92567366028 BB19019 PZ-6 Water 10/12/21 11:17 10/19/21 00:00 92567366030 BB19019 PZ-6 Water 10/12/21 11:40 10/19/21 00:00 92567366030 BB19019 PZ-6 Water 10/11/21 11:30 10/19/21 00:00 92567366030 BB19019 PZ-6 Water 10/11/21 11:30 10/19/21 00:00 92567366030 BB19019 PZ-6 Water 10/11/21 11:30 10/19/21 00:00 92567366030 BB19019 PZ-6 Water 10/11/21 11:40 10/19/21 00:00 92567366030 BB19019 PZ-6 Water 10/11/21 11:40 10/19/21 00:00 92567366030 BB19019 PZ-6 Water 10/11/21 11:30 10/19/21 00:00 92567366030 BB19019 PZ-6 Water 10/11/21 11:30 10/19/21 00:00 92567366030 BB19019 PZ-6 Water 10/11/21 11:40 10/19/21 00:00 92567366030 BB19020 MW-4V Water 10/11/21 11:30 10/19/21 00:00 92567366030 BB19020 MW-4V Water 10/11/21 11:40 10/19/21 00:00	92567366009	BB18682 MW-17	Water	10/06/21 08:45	10/19/21 00:00
92567366012 BB18748 PZ-1 Water 10/05/21 11:00 10/19/21 00:00 92567366013 BB18748 PZ-1 MS Water 10/05/21 11:00 10/19/21 00:00 92567366014 BB18748 PZ-1 MSD Water 10/05/21 11:00 10/19/21 00:00 92567366015 BB18749 MW-5 Water 10/05/21 11:53 10/19/21 00:00 92567366016 BB18750 MW-5 DUP Water 10/05/21 12:58 10/19/21 00:00 92567366017 BB18751 MW-12 Water 10/05/21 14:18 10/19/21 00:00 92567366018 BB18752 MW-1 Water 10/05/21 15:11 10/19/21 00:00 92567366020 BB18753 MW-7 Water 10/06/21 10:25 10/19/21 00:00 92567366021 BB18755 MW-21VC Water 10/06/21 13:15 10/19/21 00:00 92567366022 BB18756 FB-2 Water 10/10/21 11:37 10/19/21 00:00 92567366023 BB19012 MW-22VB MS Water 10/11/21 11:37 10/19/21 00:00 92567366024 BB19012 MW-22VB MSD Water 10/11/21 11:37 10/19/21 00:00 92567366025 <td>92567366010</td> <td>BB18683 MW-16</td> <td>Water</td> <td>10/06/21 10:10</td> <td>10/19/21 00:00</td>	92567366010	BB18683 MW-16	Water	10/06/21 10:10	10/19/21 00:00
92567366013 BB18748 PZ-1 MS Water 10/05/21 11:00 10/19/21 00:00 92567366014 BB18748 PZ-1 MSD Water 10/05/21 11:00 10/19/21 00:00 92567366015 BB18749 MW-5 Water 10/05/21 11:53 10/19/21 00:00 92567366016 BB18750 MW-5 DUP Water 10/05/21 12:58 10/19/21 00:00 92567366017 BB18751 MW-12 Water 10/05/21 14:18 10/19/21 00:00 92567366018 BB18752 MW-1 Water 10/05/21 15:11 10/19/21 00:00 92567366020 BB18753 MW-7 Water 10/05/21 15:11 10/19/21 00:00 92567366021 BB18755 MW-21VC Water 10/06/21 10:25 10/19/21 00:00 92567366022 BB18756 FB-2 Water 10/06/21 13:15 10/19/21 00:00 92567366023 BB19012 MW-22VB MS Water 10/11/21 11:37 10/19/21 00:00 92567366024 BB19012 MW-22VB MS Water 10/11/21 11:37 10/19/21 00:00 92567366025 BB19018 MW-19H Water 10/11/21 11:37 10/19/21 00:00 92567366028 <td>92567366011</td> <td>BB18747 EB-2</td> <td>Water</td> <td>10/05/21 10:20</td> <td>10/19/21 00:00</td>	92567366011	BB18747 EB-2	Water	10/05/21 10:20	10/19/21 00:00
92567366014 BB18748 PZ-1 MSD Water 10/05/21 11:00 10/19/21 00:00 92567366015 BB18749 MW-5 Water 10/05/21 11:53 10/19/21 00:00 92567366016 BB18750 MW-5 DUP Water 10/05/21 11:53 10/19/21 00:00 92567366017 BB18751 MW-12 Water 10/05/21 12:58 10/19/21 00:00 92567366018 BB18752 MW-1 Water 10/05/21 15:11 10/19/21 00:00 92567366019 BB18753 MW-7 Water 10/05/21 15:11 10/19/21 00:00 92567366020 BB18755 MW-2VA Water 10/06/21 10:25 10/19/21 00:00 92567366021 BB18755 MW-21VC Water 10/06/21 13:15 10/19/21 00:00 92567366022 BB18756 FB-2 Water 10/06/21 13:15 10/19/21 00:00 92567366023 BB19012 MW-22VB MS Water 10/11/21 11:37 10/19/21 00:00 92567366024 BB19012 MW-22VB MSD Water 10/11/21 11:37 10/19/21 00:00 92567366025 BB19013 MW-19H Water 10/11/21 11:37 10/19/21 00:00 92567366026 <td>92567366012</td> <td>BB18748 PZ-1</td> <td>Water</td> <td>10/05/21 11:00</td> <td>10/19/21 00:00</td>	92567366012	BB18748 PZ-1	Water	10/05/21 11:00	10/19/21 00:00
92567366015 BB18749 MW-5 DUP Water 10/05/21 11:53 10/19/21 00:00 92567366016 BB18750 MW-5 DUP Water 10/05/21 11:53 10/19/21 00:00 92567366017 BB18751 MW-12 Water 10/05/21 12:58 10/19/21 00:00 92567366018 BB18752 MW-1 Water 10/05/21 14:18 10/19/21 00:00 92567366019 BB18753 MW-7 Water 10/05/21 15:11 10/19/21 00:00 92567366020 BB18754 MW-2VA Water 10/06/21 10:25 10/19/21 00:00 92567366021 BB18755 MW-21VC Water 10/06/21 12:46 10/19/21 00:00 92567366022 BB18756 FB-2 Water 10/06/21 13:15 10/19/21 00:00 92567366023 BB19012 MW-22VB Water 10/11/21 11:37 10/19/21 00:00 92567366024 BB19012 MW-22VB MS Water 10/11/21 11:37 10/19/21 00:00 92567366025 BB19012 MW-22VB MSD Water 10/11/21 11:37 10/19/21 00:00 92567366026 BB19013 MW-19H Water 10/11/21 11:37 10/19/21 00:00 92567366027 BB19014 MW-2 Water 10/11/21 14:49 10/19/21 00:00 92567366028 BB19015 FB-3 Water 10/11/21 15:15 10/19/21 00:00 92567366028 BB19016 MW-2VB Water 10/12/21 19:28 10/19/21 00:00 92567366003 BB19017 MW-18H Water 10/12/21 12:16 10/19/21 00:00 92567366031 BB19018 PZ-5 Water 10/12/21 13:40 10/19/21 00:00 92567366032 BB19019 PZ-6 Water 10/11/21 11:30 10/19/21 00:00 92567366034 BB19021 MW-20H Water 10/11/21 11:30 10/19/21 00:00 92567366035 BB19022 MW-10 Water 10/11/21 11:30 10/19/21 00:00 92567366036 BB19021 MW-20H Water 10/11/21 11:40 10/19/21 00:00 92567366035 BB19022 MW-10 Water 10/11/21 11:40 10/19/21 00:00 92567366036 BB19023 MW-10 Water 10/11/21 11:40 10/19/21 00:00 92567366036 BB19023 MW-10 Water 10/11/21 11:40 10/19/21 00:00 92567366036 BB19022 MW-10 Water 10/11/21 11:40 10/19/21 00:00 92567366036 BB19023 MW-14	92567366013	BB18748 PZ-1 MS	Water	10/05/21 11:00	10/19/21 00:00
92567366016 BB18750 MW-5 DUP Water 10/05/21 11:53 10/19/21 00:00 92567366017 BB18751 MW-12 Water 10/05/21 12:58 10/19/21 00:00 92567366018 BB18752 MW-1 Water 10/05/21 14:18 10/19/21 00:00 92567366019 BB18753 MW-7 Water 10/05/21 15:11 10/19/21 00:00 92567366020 BB18754 MW-2VA Water 10/06/21 10:25 10/19/21 00:00 92567366021 BB18755 MW-21VC Water 10/06/21 13:15 10/19/21 00:00 92567366022 BB18756 FB-2 Water 10/06/21 13:15 10/19/21 00:00 92567366023 BB19012 MW-22VB MS Water 10/11/21 11:37 10/19/21 00:00 92567366024 BB19012 MW-22VB MSD Water 10/11/21 11:37 10/19/21 00:00 92567366025 BB19018 MW-22VB MSD Water 10/11/21 11:37 10/19/21 00:00 92567366026 BB19018 MW-22VB Water 10/11/21 11:37 10/19/21 00:00 92567366027 BB19016 MW-2VB Water 10/11/21 11:17 10/19/21 00:00 92567366	92567366014	BB18748 PZ-1 MSD	Water	10/05/21 11:00	10/19/21 00:00
92567366017 BB18751 MW-12 Water 10/05/21 12:58 10/19/21 00:00 92567366018 BB18752 MW-1 Water 10/05/21 14:18 10/19/21 00:00 92567366019 BB18753 MW-7 Water 10/05/21 15:11 10/19/21 00:00 92567366020 BB18754 MW-2VA Water 10/06/21 12:46 10/19/21 00:00 92567366021 BB18755 MW-21VC Water 10/06/21 13:15 10/19/21 00:00 92567366022 BB18756 FB-2 Water 10/10/6/21 13:15 10/19/21 00:00 92567366023 BB19012 MW-22VB MS Water 10/11/21 11:37 10/19/21 00:00 92567366024 BB19012 MW-22VB MSD Water 10/11/21 11:37 10/19/21 00:00 92567366025 BB19013 MW-19H Water 10/11/21 12:57 10/19/21 00:00 92567366026 BB19014 MW-2 Water 10/11/21 15:15 10/19/21 00:00 92567366027 BB19016 MW-2VB Water 10/12/21 11:17 10/19/21 00:00 92567366028 BB19016 MW-2VB Water 10/12/21 12:16 10/19/21 00:00 92567366031	92567366015	BB18749 MW-5	Water	10/05/21 11:53	10/19/21 00:00
92567366018 BB18752 MW-1 Water 10/05/21 14:18 10/19/21 00:00 92567366019 BB18753 MW-7 Water 10/05/21 15:11 10/19/21 00:00 92567366020 BB18754 MW-2VA Water 10/06/21 10:25 10/19/21 00:00 92567366021 BB18755 MW-21VC Water 10/06/21 13:15 10/19/21 00:00 92567366022 BB18756 FB-2 Water 10/06/21 13:15 10/19/21 00:00 92567366023 BB19012 MW-22VB Water 10/11/21 11:37 10/19/21 00:00 92567366024 BB19012 MW-22VB MS Water 10/11/21 11:37 10/19/21 00:00 92567366025 BB19012 MW-22VB MSD Water 10/11/21 11:37 10/19/21 00:00 92567366026 BB19013 MW-19H Water 10/11/21 12:57 10/19/21 00:00 92567366027 BB19014 MW-2 Water 10/11/21 14:49 10/19/21 00:00 92567366028 BB19015 FB-3 Water 10/11/21 15:15 10/19/21 00:00 92567366029 BB19016 MW-2VB Water 10/12/21 10:28 10/19/21 00:00 92567366030 BB19017 MW-18H Water 10/12/21 11:17 10/19/21 00:00 92567366031 BB19018 PZ-5 Water 10/12/21 13:40 10/19/21 00:00 92567366032 BB19019 PZ-6 Water 10/12/21 13:40 10/19/21 00:00 92567366033 BB19020 MW-4V Water 10/11/21 13:30 10/19/21 00:00 92567366034 BB19021 MW-20H Water 10/11/21 13:30 10/19/21 00:00 92567366035 BB19022 MW-10 Water 10/11/21 14:40 10/19/21 00:00 92567366036 BB19022 MW-10 Water 10/11/21 14:40 10/19/21 00:00 92567366036 BB19023 MW-14 Water 10/11/2/1 14:40 10/19/21 00:00 92567366036 BB19023 MW-14 Water 10/11/2/1 08:30 10/19/21 00:00	92567366016	BB18750 MW-5 DUP	Water	10/05/21 11:53	10/19/21 00:00
92567366019 BB18753 MW-7 Water 10/05/21 15:11 10/19/21 00:00 92567366020 BB18754 MW-2VA Water 10/06/21 10:25 10/19/21 00:00 92567366021 BB18755 MW-21VC Water 10/06/21 12:46 10/19/21 00:00 92567366022 BB18756 FB-2 Water 10/06/21 13:15 10/19/21 00:00 92567366023 BB19012 MW-22VB MS Water 10/11/21 11:37 10/19/21 00:00 92567366024 BB19012 MW-22VB MSD Water 10/11/21 11:37 10/19/21 00:00 92567366025 BB19012 MW-22VB MSD Water 10/11/21 12:57 10/19/21 00:00 92567366026 BB19013 MW-19H Water 10/11/21 12:57 10/19/21 00:00 92567366027 BB19014 MW-2 Water 10/11/21 15:15 10/19/21 00:00 92567366029 BB19016 MW-2VB Water 10/12/21 09:28 10/19/21 00:00 92567366030 BB19017 MW-18H Water 10/12/21 13:40 10/19/21 00:00 92567366031 BB19019 PZ-6 Water 10/11/21 13:40 10/19/21 00:00 92567366033<	92567366017	BB18751 MW-12	Water	10/05/21 12:58	10/19/21 00:00
92567366020 BB18754 MW-2VA Water 10/06/21 10:25 10/19/21 00:00 92567366021 BB18755 MW-21VC Water 10/06/21 12:46 10/19/21 00:00 92567366022 BB18756 FB-2 Water 10/06/21 13:15 10/19/21 00:00 92567366023 BB19012 MW-22VB MS Water 10/11/21 11:37 10/19/21 00:00 92567366024 BB19012 MW-22VB MSD Water 10/11/21 11:37 10/19/21 00:00 92567366025 BB19013 MW-19H Water 10/11/21 12:57 10/19/21 00:00 92567366026 BB19014 MW-2 Water 10/11/21 13:15 10/19/21 00:00 92567366027 BB19016 MW-2VB Water 10/11/21 15:15 10/19/21 00:00 92567366028 BB19016 MW-2VB Water 10/12/21 09:28 10/19/21 00:00 92567366030 BB19017 MW-18H Water 10/12/21 11:17 10/19/21 00:00 92567366031 BB19018 PZ-5 Water 10/12/21 13:40 10/19/21 00:00 92567366033 BB19020 MW-4V Water 10/11/21 13:30 10/19/21 00:00 92567366034	92567366018	BB18752 MW-1	Water	10/05/21 14:18	10/19/21 00:00
92567366021 BB18755 MW-21VC Water 10/06/21 12:46 10/19/21 00:00 92567366022 BB18756 FB-2 Water 10/06/21 13:15 10/19/21 00:00 92567366023 BB19012 MW-22VB Water 10/11/21 11:37 10/19/21 00:00 92567366024 BB19012 MW-22VB MS Water 10/11/21 11:37 10/19/21 00:00 92567366025 BB19012 MW-22VB MSD Water 10/11/21 11:37 10/19/21 00:00 92567366026 BB19013 MW-19H Water 10/11/21 12:57 10/19/21 00:00 92567366027 BB19014 MW-2 Water 10/11/21 15:15 10/19/21 00:00 92567366028 BB19015 FB-3 Water 10/12/21 09:28 10/19/21 00:00 92567366039 BB19016 MW-2VB Water 10/12/21 10:22 10/19/21 00:00 92567366030 BB19017 MW-18H Water 10/12/21 12:16 10/19/21 00:00 92567366031 BB19018 PZ-5 Water 10/12/21 13:40 10/19/21 00:00 92567366032 BB19019 PZ-6 Water 10/11/21 12:40 10/19/21 00:00 92567366033	92567366019	BB18753 MW-7	Water	10/05/21 15:11	10/19/21 00:00
92567366022 BB18756 FB-2 Water 10/06/21 13:15 10/19/21 00:00 92567366023 BB19012 MW-22VB Water 10/11/21 11:37 10/19/21 00:00 92567366024 BB19012 MW-22VB MS Water 10/11/21 11:37 10/19/21 00:00 92567366025 BB19012 MW-22VB MSD Water 10/11/21 12:57 10/19/21 00:00 92567366026 BB19013 MW-19H Water 10/11/21 14:49 10/19/21 00:00 92567366027 BB19014 MW-2 Water 10/11/21 15:15 10/19/21 00:00 92567366028 BB19015 FB-3 Water 10/12/21 09:28 10/19/21 00:00 92567366039 BB19016 MW-2VB Water 10/12/21 11:17 10/19/21 00:00 92567366031 BB19018 PZ-5 Water 10/12/21 12:16 10/19/21 00:00 92567366032 BB19019 PZ-6 Water 10/12/21 13:40 10/19/21 00:00 92567366033 BB19020 MW-4V Water 10/11/21 13:30 10/19/21 00:00 92567366034 BB19021 MW-20H Water 10/11/21 14:40 10/19/21 00:00 92567366036	92567366020	BB18754 MW-2VA	Water	10/06/21 10:25	10/19/21 00:00
92567366023 BB19012 MW-22VB MS Water 10/11/21 11:37 10/19/21 00:00 92567366024 BB19012 MW-22VB MS Water 10/11/21 11:37 10/19/21 00:00 92567366025 BB19012 MW-22VB MSD Water 10/11/21 11:37 10/19/21 00:00 92567366026 BB19013 MW-19H Water 10/11/21 12:57 10/19/21 00:00 92567366027 BB19014 MW-2 Water 10/11/21 14:49 10/19/21 00:00 92567366028 BB19015 FB-3 Water 10/11/21 15:15 10/19/21 00:00 92567366029 BB19016 MW-2VB Water 10/12/21 09:28 10/19/21 00:00 92567366030 BB19017 MW-18H Water 10/12/21 11:17 10/19/21 00:00 92567366031 BB19018 PZ-5 Water 10/12/21 13:40 10/19/21 00:00 92567366032 BB19019 PZ-6 Water 10/12/21 13:40 10/19/21 00:00 92567366033 BB19020 MW-4V Water 10/11/21 13:30 10/19/21 00:00 92567366035 BB19021 MW-20H Water 10/11/21 14:40 10/19/21 00:00 92567366036 BB19023 MW-14 Water 10/12/21 08:30 10/19/21 00:00	92567366021	BB18755 MW-21VC	Water	10/06/21 12:46	10/19/21 00:00
92567366024 BB19012 MW-22VB MSD Water 10/11/21 11:37 10/19/21 00:00 92567366025 BB19012 MW-22VB MSD Water 10/11/21 11:37 10/19/21 00:00 92567366026 BB19013 MW-19H Water 10/11/21 12:57 10/19/21 00:00 92567366027 BB19014 MW-2 Water 10/11/21 15:15 10/19/21 00:00 92567366028 BB19015 FB-3 Water 10/12/21 09:28 10/19/21 00:00 92567366029 BB19016 MW-2VB Water 10/12/21 09:28 10/19/21 00:00 92567366030 BB19017 MW-18H Water 10/12/21 11:17 10/19/21 00:00 92567366031 BB19018 PZ-5 Water 10/12/21 13:40 10/19/21 00:00 92567366032 BB19019 PZ-6 Water 10/11/21 13:40 10/19/21 00:00 92567366034 BB19021 MW-20H Water 10/11/21 13:30 10/19/21 00:00 92567366035 BB19022 MW-10 Water 10/11/21 14:40 10/19/21 00:00 92567366036 BB19023 MW-14 Water 10/11/21 08:30 10/19/21 00:00	92567366022	BB18756 FB-2	Water	10/06/21 13:15	10/19/21 00:00
92567366025 BB19012 MW-22VB MSD Water 10/11/21 11:37 10/19/21 00:00 92567366026 BB19013 MW-19H Water 10/11/21 12:57 10/19/21 00:00 92567366027 BB19014 MW-2 Water 10/11/21 14:49 10/19/21 00:00 92567366028 BB19015 FB-3 Water 10/11/21 15:15 10/19/21 00:00 92567366029 BB19016 MW-2VB Water 10/12/21 09:28 10/19/21 00:00 92567366030 BB19017 MW-18H Water 10/12/21 11:17 10/19/21 00:00 92567366031 BB19018 PZ-5 Water 10/12/21 12:16 10/19/21 00:00 92567366032 BB19019 PZ-6 Water 10/12/21 13:40 10/19/21 00:00 92567366033 BB19020 MW-4V Water 10/11/21 12:40 10/19/21 00:00 92567366034 BB19021 MW-20H Water 10/11/21 13:30 10/19/21 00:00 92567366035 BB19022 MW-10 Water 10/11/21 14:40 10/19/21 00:00 92567366036 BB19023 MW-14 Water 10/12/21 08:30 10/19/21 00:00	92567366023	BB19012 MW-22VB	Water	10/11/21 11:37	10/19/21 00:00
92567366026 BB19013 MW-19H Water 10/11/21 12:57 10/19/21 00:00 92567366027 BB19014 MW-2 Water 10/11/21 14:49 10/19/21 00:00 92567366028 BB19015 FB-3 Water 10/11/21 15:15 10/19/21 00:00 92567366029 BB19016 MW-2VB Water 10/12/21 09:28 10/19/21 00:00 92567366030 BB19017 MW-18H Water 10/12/21 11:17 10/19/21 00:00 92567366031 BB19018 PZ-5 Water 10/12/21 12:16 10/19/21 00:00 92567366032 BB19019 PZ-6 Water 10/12/21 13:40 10/19/21 00:00 92567366033 BB19020 MW-4V Water 10/11/21 12:40 10/19/21 00:00 92567366034 BB19021 MW-20H Water 10/11/21 13:30 10/19/21 00:00 92567366035 BB19022 MW-10 Water 10/11/21 14:40 10/19/21 00:00 92567366036 BB19023 MW-14 Water 10/12/21 08:30 10/19/21 00:00	92567366024	BB19012 MW-22VB MS	Water	10/11/21 11:37	10/19/21 00:00
92567366027 BB19014 MW-2 Water 10/11/21 14:49 10/19/21 00:00 92567366028 BB19015 FB-3 Water 10/11/21 15:15 10/19/21 00:00 92567366029 BB19016 MW-2VB Water 10/12/21 09:28 10/19/21 00:00 92567366030 BB19017 MW-18H Water 10/12/21 11:17 10/19/21 00:00 92567366031 BB19018 PZ-5 Water 10/12/21 12:16 10/19/21 00:00 92567366032 BB19019 PZ-6 Water 10/12/21 13:40 10/19/21 00:00 92567366033 BB19020 MW-4V Water 10/11/21 12:40 10/19/21 00:00 92567366034 BB19021 MW-20H Water 10/11/21 13:30 10/19/21 00:00 92567366035 BB19022 MW-10 Water 10/11/21 14:40 10/19/21 00:00 92567366036 BB19023 MW-14 Water 10/12/21 08:30 10/19/21 00:00	92567366025	BB19012 MW-22VB MSD	Water	10/11/21 11:37	10/19/21 00:00
92567366028 BB19015 FB-3 Water 10/11/21 15:15 10/19/21 00:00 92567366029 BB19016 MW-2VB Water 10/12/21 09:28 10/19/21 00:00 92567366030 BB19017 MW-18H Water 10/12/21 11:17 10/19/21 00:00 92567366031 BB19018 PZ-5 Water 10/12/21 12:16 10/19/21 00:00 92567366032 BB19019 PZ-6 Water 10/12/21 13:40 10/19/21 00:00 92567366033 BB19020 MW-4V Water 10/11/21 12:40 10/19/21 00:00 92567366034 BB19021 MW-20H Water 10/11/21 13:30 10/19/21 00:00 92567366035 BB19022 MW-10 Water 10/11/21 14:40 10/19/21 00:00 92567366036 BB19023 MW-14 Water 10/12/21 08:30 10/19/21 00:00	92567366026	BB19013 MW-19H	Water	10/11/21 12:57	10/19/21 00:00
92567366029 BB19016 MW-2VB Water 10/12/21 09:28 10/19/21 00:00 92567366030 BB19017 MW-18H Water 10/12/21 11:17 10/19/21 00:00 92567366031 BB19018 PZ-5 Water 10/12/21 12:16 10/19/21 00:00 92567366032 BB19019 PZ-6 Water 10/12/21 13:40 10/19/21 00:00 92567366033 BB19020 MW-4V Water 10/11/21 12:40 10/19/21 00:00 92567366034 BB19021 MW-20H Water 10/11/21 13:30 10/19/21 00:00 92567366035 BB19022 MW-10 Water 10/11/21 14:40 10/19/21 00:00 92567366036 BB19023 MW-14 Water 10/12/21 08:30 10/19/21 00:00	92567366027	BB19014 MW-2	Water	10/11/21 14:49	10/19/21 00:00
92567366030 BB19017 MW-18H Water 10/12/21 11:17 10/19/21 00:00 92567366031 BB19018 PZ-5 Water 10/12/21 12:16 10/19/21 00:00 92567366032 BB19019 PZ-6 Water 10/12/21 13:40 10/19/21 00:00 92567366033 BB19020 MW-4V Water 10/11/21 12:40 10/19/21 00:00 92567366034 BB19021 MW-20H Water 10/11/21 13:30 10/19/21 00:00 92567366035 BB19022 MW-10 Water 10/11/21 14:40 10/19/21 00:00 92567366036 BB19023 MW-14 Water 10/12/21 08:30 10/19/21 00:00	92567366028	BB19015 FB-3	Water	10/11/21 15:15	10/19/21 00:00
92567366031 BB19018 PZ-5 Water 10/12/21 12:16 10/19/21 00:00 92567366032 BB19019 PZ-6 Water 10/12/21 13:40 10/19/21 00:00 92567366033 BB19020 MW-4V Water 10/11/21 12:40 10/19/21 00:00 92567366034 BB19021 MW-20H Water 10/11/21 13:30 10/19/21 00:00 92567366035 BB19022 MW-10 Water 10/11/21 14:40 10/19/21 00:00 92567366036 BB19023 MW-14 Water 10/12/21 08:30 10/19/21 00:00	92567366029	BB19016 MW-2VB	Water	10/12/21 09:28	10/19/21 00:00
92567366032 BB19019 PZ-6 Water 10/12/21 13:40 10/19/21 00:00 92567366033 BB19020 MW-4V Water 10/11/21 12:40 10/19/21 00:00 92567366034 BB19021 MW-20H Water 10/11/21 13:30 10/19/21 00:00 92567366035 BB19022 MW-10 Water 10/11/21 14:40 10/19/21 00:00 92567366036 BB19023 MW-14 Water 10/12/21 08:30 10/19/21 00:00	92567366030	BB19017 MW-18H	Water	10/12/21 11:17	10/19/21 00:00
92567366033 BB19020 MW-4V Water 10/11/21 12:40 10/19/21 00:00 92567366034 BB19021 MW-20H Water 10/11/21 13:30 10/19/21 00:00 92567366035 BB19022 MW-10 Water 10/11/21 14:40 10/19/21 00:00 92567366036 BB19023 MW-14 Water 10/12/21 08:30 10/19/21 00:00	92567366031	BB19018 PZ-5	Water	10/12/21 12:16	10/19/21 00:00
92567366034 BB19021 MW-20H Water 10/11/21 13:30 10/19/21 00:00 92567366035 BB19022 MW-10 Water 10/11/21 14:40 10/19/21 00:00 92567366036 BB19023 MW-14 Water 10/12/21 08:30 10/19/21 00:00	92567366032	BB19019 PZ-6	Water	10/12/21 13:40	10/19/21 00:00
92567366035 BB19022 MW-10 Water 10/11/21 14:40 10/19/21 00:00 92567366036 BB19023 MW-14 Water 10/12/21 08:30 10/19/21 00:00	92567366033	BB19020 MW-4V	Water	10/11/21 12:40	10/19/21 00:00
92567366036 BB19023 MW-14 Water 10/12/21 08:30 10/19/21 00:00	92567366034	BB19021 MW-20H	Water	10/11/21 13:30	10/19/21 00:00
	92567366035	BB19022 MW-10	Water	10/11/21 14:40	10/19/21 00:00
92567366037 BB19024 MW-14 DUP Water 10/12/21 08:30 10/19/21 00:00	92567366036	BB19023 MW-14	Water	10/12/21 08:30	10/19/21 00:00
	92567366037	BB19024 MW-14 DUP	Water	10/12/21 08:30	10/19/21 00:00

SAMPLE SUMMARY

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

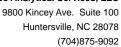
Lab ID	Sample ID	Matrix	Date Collected	Date Received
92567366038	BB19025 MW-8	Water	10/12/21 10:48	10/19/21 00:00
92567366039	BB19026 MW-9	Water	10/12/21 11:55	10/19/21 00:00
92567366040	BB19027 MW-11	Water	10/12/21 12:55	10/19/21 00:00
92567366041	BB19028 EB-1	Water	10/12/21 13:30	10/19/21 00:00

SAMPLE ANALYTE COUNT

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92567366001	BB18676 PZ-2	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366002	BB18677 MW-6	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366003	BB18677 MW-6 MS	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
92567366004	BB18677 MW-6 MSD	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
92567366005	BB18678 MW-3	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366006	BB18679 MW-4	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366007	BB18680 MW-4 DUP	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366008	BB18681 FB-1	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366009	BB18682 MW-17	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366010	BB18683 MW-16	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366011	BB18747 EB-2	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366012	BB18748 PZ-1	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366013	BB18748 PZ-1 MS	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
92567366014	BB18748 PZ-1 MSD	EPA 9315	LAL	1	PASI-PA



SAMPLE ANALYTE COUNT

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

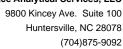
Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 9320	VAL	1	PASI-PA
92567366015	BB18749 MW-5	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366016	BB18750 MW-5 DUP	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366017	BB18751 MW-12	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366018	BB18752 MW-1	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366019	BB18753 MW-7	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366020	BB18754 MW-2VA	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366021	BB18755 MW-21VC	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366022	BB18756 FB-2	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366023	BB19012 MW-22VB	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366024	BB19012 MW-22VB MS	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
92567366025	BB19012 MW-22VB MSD	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
92567366026	BB19013 MW-19H	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366027	BB19014 MW-2	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA

SAMPLE ANALYTE COUNT

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		Total Radium Calculation	JAL	1	PASI-PA
92567366028	BB19015 FB-3	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366029	BB19016 MW-2VB	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366030	BB19017 MW-18H	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366031	BB19018 PZ-5	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366032	BB19019 PZ-6	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366033	BB19020 MW-4V	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366034	BB19021 MW-20H	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366035	BB19022 MW-10	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366036	BB19023 MW-14	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366037	BB19024 MW-14 DUP	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366038	BB19025 MW-8	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366039	BB19026 MW-9	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA


SAMPLE ANALYTE COUNT

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92567366040	BB19027 MW-11	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366041	BB19028 EB-1	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA

PASI-PA = Pace Analytical Services - Greensburg

PROJECT NARRATIVE

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

Method: EPA 9315

Description:9315 Total RadiumClient:Alabama PowerDate:December 13, 2021

General Information:

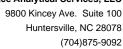
41 samples were analyzed for EPA 9315 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.


Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

Method: EPA 9320

Description: 9320 Radium 228 **Client:** Alabama Power **Date:** December 13, 2021

General Information:

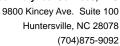
41 samples were analyzed for EPA 9320 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.


Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

Method:Total Radium CalculationDescription:Total Radium 228+226Client:Alabama PowerDate:December 13, 2021

General Information:

35 samples were analyzed for Total Radium Calculation by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

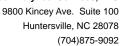
All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: GADSEDN ASH POND WMWGADAP_1341

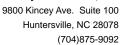
Pace Project No.: 92567366


Sample: BB18676 PZ-2 PWS:	Lab ID: 92567366 Site ID:	6001 Collected: 10/05/21 11:00 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	vices - Greensburg				
Radium-226	EPA 9315	0.184U ± 0.173 (0.315) C:93% T:NA	pCi/L	12/03/21 08:48	8 13982-63-3	
	Pace Analytical Serv	vices - Greensburg				
Radium-228	EPA 9320	0.941 ± 0.426 (0.713) C:82% T:83%	pCi/L	11/08/21 11:15	5 15262-20-1	
	Pace Analytical Serv	vices - Greensburg				
Total Radium	Total Radium Calculation	1.13 ± 0.599 (1.03)	pCi/L	12/03/21 16:58	8 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

Sample: BB18677 MW-6 PWS:	Lab ID: 9256736 Site ID:	66002 Collected: 10/05/21 12:10 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	rvices - Greensburg				
Radium-226	EPA 9315	0.107U ± 0.155 (0.335) C:93% T:NA	pCi/L	12/03/21 08:48	3 13982-63-3	
	Pace Analytical Se	rvices - Greensburg				
Radium-228	EPA 9320	1.25 ± 0.527 (0.863) C:78% T:81%	pCi/L	11/08/21 14:35	5 15262-20-1	
	Pace Analytical Se	rvices - Greensburg				
Total Radium	Total Radium Calculation	1.36 ± 0.682 (1.20)	pCi/L	12/03/21 16:58	3 7440-14-4	


Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

Sample: BB18677 MW-6 MS Lab ID: 92567366003 Collected: 10/05/21 12:10 Received: 10/19/21 00:00 Matrix: Water

C:NA T:NA

PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac Units CAS No. **Parameters** Method Analyzed Qual Pace Analytical Services - Greensburg 98.32 %REC ± NA (NA) EPA 9315 Radium-226 pCi/L 12/03/21 08:48 13982-63-3 C:NA T:NA Pace Analytical Services - Greensburg 130.33 %REC ± NA (NA) EPA 9320 Radium-228 pCi/L 11/08/21 14:35 15262-20-1

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

Sample: BB18677 MW-6 MSD Lab ID: 92567366004 Collected: 10/05/21 12:10 Received: 10/19/21 00:00 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac **Parameters** Method Units Analyzed CAS No. Qual Pace Analytical Services - Greensburg EPA 9315 106.30 %REC 7.80 RPD ± Radium-226 pCi/L 12/03/21 08:48 13982-63-3 NA (NA) C:NA T:NA

Pace Analytical Services - Greensburg

Radium-228 EPA 9320 **145.98 %REC 11.33 RPD ±** pCi/L 11/08/21 14:35 15262-20-1

NA (NA) C:NA T:NA

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

Sample: BB18678 MW-3 PWS:	Lab ID: 9256 Site ID:	7366005 Collected: 10/05/21 13:25 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.231U ± 0.176 (0.310) C:97% T:NA	pCi/L	12/03/21 08:48	8 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	2.98 ± 0.812 (0.891) C:74% T:80%	pCi/L	11/08/21 14:35	5 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	3.21 ± 0.988 (1.20)	pCi/L	12/03/21 16:58	8 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

Sample: BB18679 MW-4 PWS:	Lab ID: 9256736 Site ID:	Collected: 10/05/21 14:35 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Ser	rvices - Greensburg				
Radium-226	EPA 9315	0.804 ± 0.308 (0.341) C:97% T:NA	pCi/L	12/03/21 08:48	3 13982-63-3	
	Pace Analytical Ser	rvices - Greensburg				
Radium-228	EPA 9320	0.950 ± 0.474 (0.839) C:74% T:88%	pCi/L	11/08/21 14:35	15262-20-1	
	Pace Analytical Ser	rvices - Greensburg				
Total Radium	Total Radium Calculation	1.75 ± 0.782 (1.18)	pCi/L	12/03/21 16:58	3 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

Sample: BB18680 MW-4 DUP PWS:	Lab ID: 9256 Site ID:	7366007 Collected: 10/05/21 14:35 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.366 ± 0.205 (0.300) C:99% T:NA	pCi/L	12/03/21 08:48	3 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.943 ± 0.429 (0.705) C:72% T:93%	pCi/L	11/08/21 14:36	5 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.31 ± 0.634 (1.01)	pCi/L	12/03/21 16:58	3 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

Sample: BB18681 FB-1 PWS:	Lab ID: 92567360 Site ID:	6008 Collected: 10/05/21 15:30 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	vices - Greensburg				
Radium-226	EPA 9315	-0.0744U ± 0.0619 (0.273) C:99% T:NA	pCi/L	12/03/21 08:48	3 13982-63-3	
	Pace Analytical Serv	vices - Greensburg				
Radium-228	EPA 9320	1.16 ± 0.489 (0.798) C:75% T:91%	pCi/L	11/08/21 14:35	5 15262-20-1	
	Pace Analytical Serv	vices - Greensburg				
Total Radium	Total Radium Calculation	1.16 ± 0.551 (1.07)	pCi/L	12/03/21 16:58	3 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

Sample: BB18682 MW-17 PWS:	Lab ID: 9256736 Site ID:	66009 Collected: 10/06/21 08:45 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	rvices - Greensburg				
Radium-226	EPA 9315	0.319U ± 0.217 (0.394) C:99% T:NA	pCi/L	12/03/21 08:28	8 13982-63-3	
	Pace Analytical Se	rvices - Greensburg				
Radium-228	EPA 9320	1.69 ± 0.600 (0.871) C:71% T:83%	pCi/L	11/08/21 14:36	5 15262-20-1	
	Pace Analytical Se	rvices - Greensburg				
Total Radium	Total Radium Calculation	2.01 ± 0.817 (1.27)	pCi/L	12/03/21 16:58	8 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

Sample: BB18683 MW-16 PWS:	Lab ID: 925673 Site ID:	666010 Collected: 10/06/21 10:10 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	ervices - Greensburg				
Radium-226	EPA 9315	0.193U ± 0.270 (0.597) C:91% T:NA	pCi/L	12/03/21 08:10	13982-63-3	
	Pace Analytical Se	ervices - Greensburg				
Radium-228	EPA 9320	0.962 ± 0.486 (0.852) C:73% T:82%	pCi/L	11/08/21 14:36	5 15262-20-1	
	Pace Analytical Se	ervices - Greensburg				
Total Radium	Total Radium Calculation	1.16U ± 0.756 (1.45)	pCi/L	12/03/21 16:58	3 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

Sample: BB18747 EB-2 PWS:	Lab ID: 92567 Site ID:	7366011 Collected: 10/05/21 10:20 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	Services - Greensburg				
Radium-226	EPA 9315	-0.145U ± 0.196 (0.564) C:91% T:NA	pCi/L	12/03/21 08:1	1 13982-63-3	
	Pace Analytical S	Services - Greensburg				
Radium-228	EPA 9320	2.87 ± 0.757 (0.795) C:78% T:88%	pCi/L	11/08/21 14:3	5 15262-20-1	
	Pace Analytical S	Services - Greensburg				
Total Radium	Total Radium Calculation	2.87 ± 0.953 (1.36)	pCi/L	12/03/21 16:5	8 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

Sample: BB18748 PZ-1 PWS:	Lab ID: 9256 Site ID:	7366012 Collected: 10/05/21 11:00 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.0760U ± 0.174 (0.406) C:92% T:NA	pCi/L	12/03/21 08:13	3 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	1.99 ± 0.628 (0.844) C:71% T:86%	pCi/L	11/15/21 11:02	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	2.07 ± 0.802 (1.25)	pCi/L	12/03/21 17:05	7440-14-4	

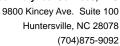
Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

Radium-228

Sample: BB18748 PZ-1 MS Lab ID: 92567366013 Collected: 10/05/21 11:00 Received: 10/19/21 00:00 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac Units CAS No. **Parameters** Method Analyzed Qual Pace Analytical Services - Greensburg EPA 9315 105.98 %REC ± NA (NA) Radium-226 pCi/L 12/03/21 08:13 13982-63-3 C:NA T:NA

63.31 %REC ± NA (NA)


C:NA T:NA

pCi/L

11/15/21 11:01 15262-20-1

Pace Analytical Services - Greensburg

EPA 9320

Project: GADSEDN ASH POND WMWGADAP_1341

EPA 9320

Pace Project No.: 92567366

Radium-228

Sample: BB18748 PZ-1 MSD Lab ID: 92567366014 Collected: 10/05/21 11:00 Received: 10/19/21 00:00 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac CAS No. **Parameters** Method Units Analyzed Qual Pace Analytical Services - Greensburg EPA 9315 94.82 %REC 11.11 RPD ± Radium-226 pCi/L 12/03/21 08:32 13982-63-3 NA (NA) C:NA T:NA Pace Analytical Services - Greensburg

70.69 %REC 11.03 RPD ±

pCi/L

11/15/21 11:01 15262-20-1

NA (NA) C:NA T:NA

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

Sample: BB18749 MW-5 PWS:	Lab ID: 9256736 Site ID:	66015 Collected: 10/05/21 11:53 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Ser	rvices - Greensburg				
Radium-226	EPA 9315	0.332U ± 0.225 (0.408) C:95% T:NA	pCi/L	12/03/21 14:09	13982-63-3	
	Pace Analytical Ser	rvices - Greensburg				
Radium-228	EPA 9320	1.11 ± 0.465 (0.750) C:73% T:94%	pCi/L	11/08/21 14:36	5 15262-20-1	
	Pace Analytical Ser	rvices - Greensburg				
Total Radium	Total Radium Calculation	1.44 ± 0.690 (1.16)	pCi/L	12/03/21 16:58	3 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

Sample: BB18750 MW-5 DUP PWS:	Lab ID: 9256 Site ID:	7366016 Collected: 10/05/21 11:53 Sample Type:	Received:	10/19/21 00:00 I	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg			_	
Radium-226	EPA 9315	0.231U ± 0.182 (0.329) C:95% T:NA	pCi/L	12/03/21 14:10	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	1.28 ± 0.510 (0.787) C:75% T:83%	pCi/L	11/08/21 14:36	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.51 ± 0.692 (1.12)	pCi/L	12/03/21 16:58	7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

Sample: BB18751 MW-12 PWS:	Lab ID: 92567 Site ID:	366017 Collected: 10/05/21 12:58 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	Services - Greensburg				
Radium-226	EPA 9315	0.214U ± 0.194 (0.383) C:95% T:NA	pCi/L	12/03/21 08:12	2 13982-63-3	
	Pace Analytical S	Services - Greensburg				
Radium-228	EPA 9320	1.27 ± 0.493 (0.760) C:77% T:88%	pCi/L	11/08/21 14:36	5 15262-20-1	
	Pace Analytical S	Services - Greensburg				
Total Radium	Total Radium Calculation	1.48 ± 0.687 (1.14)	pCi/L	12/03/21 16:58	3 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

Sample: BB18752 MW-1 PWS:	Lab ID: 9256736 Site ID:	G6018 Collected: 10/05/21 14:18 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Ser	rvices - Greensburg				
Radium-226	EPA 9315	0.812 ± 0.281 (0.218) C:95% T:NA	pCi/L	12/03/21 08:12	2 13982-63-3	
	Pace Analytical Ser	rvices - Greensburg				
Radium-228	EPA 9320	0.395U ± 0.408 (0.845) C:75% T:83%	pCi/L	11/08/21 14:36	5 15262-20-1	
	Pace Analytical Ser	rvices - Greensburg				
Total Radium	Total Radium Calculation	1.21 ± 0.689 (1.06)	pCi/L	12/03/21 16:58	3 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

Sample: BB18753 MW-7 PWS:	Lab ID: 9256736 Site ID:	6019 Collected: 10/05/21 15:11 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Ser	vices - Greensburg				
Radium-226	EPA 9315	0.402 ± 0.215 (0.318) C:96% T:NA	pCi/L	12/03/21 08:12	2 13982-63-3	
	Pace Analytical Ser	vices - Greensburg				
Radium-228	EPA 9320	0.869 ± 0.441 (0.783) C:80% T:89%	pCi/L	11/08/21 14:36	15262-20-1	
	Pace Analytical Ser	vices - Greensburg				
Total Radium	Total Radium Calculation	1.27 ± 0.656 (1.10)	pCi/L	12/03/21 16:58	3 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

Sample: BB18754 MW-2VA PWS:	Lab ID: 9256736 Site ID:	66020 Collected: 10/06/21 10:25 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Ser	rvices - Greensburg				
Radium-226	EPA 9315	0.458 ± 0.242 (0.356) C:89% T:NA	pCi/L	12/03/21 08:12	2 13982-63-3	
	Pace Analytical Ser	rvices - Greensburg				
Radium-228	EPA 9320	0.288U ± 0.313 (0.651) C:85% T:89%	pCi/L	11/08/21 11:15	5 15262-20-1	
	Pace Analytical Ser	rvices - Greensburg				
Total Radium	Total Radium Calculation	0.746U ± 0.555 (1.01)	pCi/L	12/03/21 16:58	3 7440-14-4	

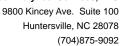
Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

Sample: BB18755 MW-21VC PWS:	Lab ID: 92567 Site ID:	7366021 Collected: 10/06/21 12:46 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.243U ± 0.261 (0.554) C:96% T:NA	pCi/L	12/03/21 08:13	3 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	1.54 ± 0.558 (0.847) C:74% T:88%	pCi/L	11/15/21 11:01	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.78 ± 0.819 (1.40)	pCi/L	12/03/21 17:05	5 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

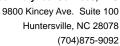

Sample: BB18756 FB-2 PWS:	Lab ID: 9256736 Site ID:	Collected: 10/06/21 13:15 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Ser	rvices - Greensburg				
Radium-226	EPA 9315	0.246U ± 0.221 (0.433) C:97% T:NA	pCi/L	12/03/21 08:32	2 13982-63-3	
	Pace Analytical Ser	rvices - Greensburg				
Radium-228	EPA 9320	0.412U ± 0.393 (0.806) C:71% T:85%	pCi/L	11/15/21 11:01	15262-20-1	
	Pace Analytical Ser	rvices - Greensburg				
Total Radium	Total Radium Calculation	0.658U ± 0.614 (1.24)	pCi/L	12/03/21 17:05	5 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

Sample: BB19012 MW-22VB PWS:	Lab ID: 925673 Site ID:	366023 Collected: 10/11/21 11:37 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	ervices - Greensburg				
Radium-226	EPA 9315	1.18 ± 0.378 (0.361) C:80% T:NA	pCi/L	12/03/21 08:39	13982-63-3	
	Pace Analytical S	ervices - Greensburg				
Radium-228	EPA 9320	0.113U ± 0.360 (0.812) C:70% T:85%	pCi/L	11/17/21 11:24	15262-20-1	
	Pace Analytical S	ervices - Greensburg				
Total Radium	Total Radium Calculation	1.29 ± 0.738 (1.17)	pCi/L	12/03/21 17:11	7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341


Pace Project No.: 92567366

Sample: BB19012 MW-22VB MS Lab ID: 92567366024 Collected: 10/11/21 11:37 Received: 10/19/21 00:00 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac Units CAS No. **Parameters** Method Analyzed Qual Pace Analytical Services - Greensburg 87.64 %REC ± NA (NA) EPA 9315 Radium-226 pCi/L 12/03/21 08:20 13982-63-3 C:NA T:NA

Pace Analytical Services - Greensburg

Radium-228 EPA 9320 **88.82 %REC ± NA (NA)** pCi/L 11/17/21 11:24 15262-20-1

C:NA T:NA

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

Sample: BB19012 MW-22VB MSD Lab ID: 92567366025 Collected: 10/11/21 11:37 Received: 10/19/21 00:00 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac CAS No. **Parameters** Method Units Analyzed Qual Pace Analytical Services - Greensburg EPA 9315 95.89 %REC 9.00 RPD ± Radium-226 pCi/L 12/03/21 08:20 13982-63-3 NA (NA)

C:NA T:NA
Pace Analytical Services - Greensburg

Radium-228 EPA 9320 **91.27 %REC 2.72 RPD ±** pCi/L 11/17/21 11:24 15262-20-1

NA (NA) C:NA T:NA

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

Sample: BB19013 MW-19H PWS:	Lab ID: 9256736 Site ID:	66026 Collected: 10/11/21 12:57 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Ser	vices - Greensburg				
Radium-226	EPA 9315	0.202U ± 0.185 (0.364) C:96% T:NA	pCi/L	12/03/21 08:37	7 13982-63-3	
	Pace Analytical Ser	vices - Greensburg				
Radium-228	EPA 9320	-0.0132U ± 0.345 (0.813) C:68% T:84%	pCi/L	11/15/21 11:01	15262-20-1	
	Pace Analytical Ser	vices - Greensburg				
Total Radium	Total Radium Calculation	0.202U ± 0.530 (1.18)	pCi/L	12/03/21 17:05	7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

Sample: BB19014 MW-2 PWS:	Lab ID: 92567 Site ID:	366027 Collected: 10/11/21 14:49 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	Services - Greensburg		•		
Radium-226	EPA 9315	0.569 ± 0.264 (0.390) C:101% T:NA	pCi/L	12/03/21 08:38	3 13982-63-3	
	Pace Analytical S	Services - Greensburg				
Radium-228	EPA 9320	1.81 ± 0.567 (0.728) C:70% T:89%	pCi/L	11/15/21 11:01	15262-20-1	
	Pace Analytical S	Services - Greensburg				
Total Radium	Total Radium Calculation	2.38 ± 0.831 (1.12)	pCi/L	12/03/21 17:05	7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

Sample: BB19015 FB-3 PWS:	Lab ID: 9256 Site ID:	7366028 Collected: 10/11/21 15:15 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.109U ± 0.225 (0.520) C:87% T:NA	pCi/L	12/03/21 08:38	8 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.898 ± 0.440 (0.760) C:69% T:88%	pCi/L	11/15/21 11:02	2 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.01U ± 0.665 (1.28)	pCi/L	12/03/21 17:0	5 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

Sample: BB19016 MW-2VB PWS:	Lab ID: 9256 Site ID:	7366029 Collected: 10/12/21 09:28 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.0902U ± 0.202 (0.471) C:97% T:NA	pCi/L	12/03/21 08:38	3 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.233U ± 0.374 (0.812) C:70% T:82%	pCi/L	11/15/21 11:00	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.323U ± 0.576 (1.28)	pCi/L	12/03/21 17:05	7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

Sample: BB19017 MW-18H PWS:	Lab ID: 9256736 Site ID:	66030 Collected: 10/12/21 11:17 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	rvices - Greensburg				
Radium-226	EPA 9315	0.0898U ± 0.136 (0.299) C:91% T:NA	pCi/L	12/03/21 08:38	3 13982-63-3	
	Pace Analytical Se	rvices - Greensburg				
Radium-228	EPA 9320	0.293U ± 0.376 (0.800) C:70% T:84%	pCi/L	11/15/21 11:02	2 15262-20-1	
	Pace Analytical Se	rvices - Greensburg				
Total Radium	Total Radium Calculation	0.383U ± 0.512 (1.10)	pCi/L	12/03/21 17:0	5 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

Sample: BB19018 PZ-5 PWS:	Lab ID: 9256 Site ID:	7366031 Collected: 10/12/21 12:16 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.114U ± 0.167 (0.368) C:89% T:NA	pCi/L	12/03/21 08:38	8 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.849 ± 0.420 (0.741) C:72% T:96%	pCi/L	11/15/21 11:02	2 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.963U ± 0.587 (1.11)	pCi/L	12/03/21 17:0	5 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

Sample: BB19019 PZ-6 PWS:	Lab ID: 925673 Site ID:	666032 Collected: 10/12/21 13:40 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	ervices - Greensburg				
Radium-226	EPA 9315	0.823 ± 0.312 (0.397) C:97% T:NA	pCi/L	12/03/21 08:38	3 13982-63-3	
	Pace Analytical Se	ervices - Greensburg				
Radium-228	EPA 9320	0.743U ± 0.445 (0.832) C:71% T:85%	pCi/L	11/15/21 11:02	2 15262-20-1	
	Pace Analytical Se	ervices - Greensburg				
Total Radium	Total Radium Calculation	1.57 ± 0.757 (1.23)	pCi/L	12/03/21 17:05	5 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

Sample: BB19020 MW-4V PWS:	Lab ID: 92567 3 Site ID:	366033 Collected: 10/11/21 12:40 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	ervices - Greensburg				
Radium-226	EPA 9315	0.410U ± 0.254 (0.425) C:95% T:NA	pCi/L	12/03/21 08:38	3 13982-63-3	
	Pace Analytical S	ervices - Greensburg				
Radium-228	EPA 9320	1.17 ± 0.511 (0.850) C:68% T:85%	pCi/L	11/15/21 11:02	15262-20-1	
	Pace Analytical S	ervices - Greensburg				
Total Radium	Total Radium Calculation	1.58 ± 0.765 (1.28)	pCi/L	12/03/21 17:05	7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

Sample: BB19021 MW-20H PWS:	Lab ID: 9256736 Site ID:	6034 Collected: 10/11/21 13:30 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Ser	vices - Greensburg				
Radium-226	EPA 9315	0.506 ± 0.236 (0.289) C:94% T:NA	pCi/L	12/03/21 08:39	9 13982-63-3	
	Pace Analytical Ser	vices - Greensburg				
Radium-228	EPA 9320	0.585U ± 0.455 (0.906) C:70% T:82%	pCi/L	11/15/21 11:02	2 15262-20-1	
	Pace Analytical Ser	vices - Greensburg				
Total Radium	Total Radium Calculation	1.09U ± 0.691 (1.20)	pCi/L	12/03/21 17:05	5 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

Sample: BB19022 MW-10 PWS:	Lab ID: 9256 Site ID:	7366035 Collected: 10/11/21 14:40 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	6.07 ± 1.13 (0.520) C:94% T:NA	pCi/L	12/03/21 08:39	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.448U ± 0.397 (0.810) C:71% T:93%	pCi/L	11/15/21 11:02	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	6.52 ± 1.53 (1.33)	pCi/L	12/03/21 17:05	7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

Sample: BB19023 MW-14 PWS:	Lab ID: 9256 Site ID:	7366036 Collected: 10/12/21 08:30 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	1.14 ± 0.388 (0.450) C:94% T:NA	pCi/L	12/03/21 08:39	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.468U ± 0.365 (0.724) C:74% T:87%	pCi/L	11/15/21 11:03	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.61 ± 0.753 (1.17)	pCi/L	12/03/21 17:05	7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

Sample: BB19024 MW-14 DUP PWS:	Lab ID: 925673 Site ID:	666037 Collected: 10/12/21 08:30 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	ervices - Greensburg				
Radium-226	EPA 9315	0.526 ± 0.280 (0.415) C:94% T:NA	pCi/L	12/03/21 10:16	13982-63-3	
	Pace Analytical Se	ervices - Greensburg				
Radium-228	EPA 9320	1.08 ± 0.493 (0.837) C:73% T:82%	pCi/L	11/15/21 11:03	15262-20-1	
	Pace Analytical Se	ervices - Greensburg				
Total Radium	Total Radium Calculation	1.61 ± 0.773 (1.25)	pCi/L	12/03/21 17:05	5 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

Sample: BB19025 MW-8 PWS:	Lab ID: 9256736 Site ID:	66038 Collected: 10/12/21 10:48 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Ser	rvices - Greensburg				
Radium-226	EPA 9315	0.291U ± 0.209 (0.346) C:95% T:NA	pCi/L	12/03/21 08:2	1 13982-63-3	
	Pace Analytical Ser	rvices - Greensburg				
Radium-228	EPA 9320	-0.0878U ± 0.347 (0.820) C:76% T:85%	pCi/L	11/15/21 11:03	3 15262-20-1	
	Pace Analytical Ser	rvices - Greensburg				
Total Radium	Total Radium Calculation	0.291U ± 0.556 (1.17)	pCi/L	12/03/21 17:11	1 7440-14-4	

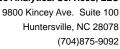
Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

Sample: BB19026 MW-9 PWS:	Lab ID: 9256736 Site ID:	66039 Collected: 10/12/21 11:55 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	rvices - Greensburg				
Radium-226	EPA 9315	0.311U ± 0.242 (0.454) C:95% T:NA	pCi/L	12/03/21 08:2	1 13982-63-3	
	Pace Analytical Se	rvices - Greensburg				
Radium-228	EPA 9320	-0.0569U ± 0.341 (0.797) C:76% T:91%	pCi/L	11/15/21 11:03	3 15262-20-1	
	Pace Analytical Se	rvices - Greensburg				
Total Radium	Total Radium Calculation	0.311U ± 0.583 (1.25)	pCi/L	12/03/21 17:11	1 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366


Sample: BB19027 MW-11 PWS:	Lab ID: 9256 Site ID:	7366040 Collected: 10/12/21 12:55 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.641 ± 0.322 (0.528) C:102% T:NA	pCi/L	12/03/21 08:2	1 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.374U ± 0.383 (0.796) C:70% T:89%	pCi/L	11/15/21 11:03	3 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.02U ± 0.705 (1.32)	pCi/L	12/03/21 17:1	1 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

Sample: BB19028 EB-1 PWS:	Lab ID: 9256736 Site ID:	66041 Collected: 10/12/21 13:30 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	rvices - Greensburg				
Radium-226	EPA 9315	0.338U ± 0.217 (0.350) C:85% T:NA	pCi/L	12/03/21 08:2	1 13982-63-3	
	Pace Analytical Se	rvices - Greensburg				
Radium-228	EPA 9320	0.0413U ± 0.298 (0.692) C:68% T:85%	pCi/L	11/17/21 11:24	1 15262-20-1	
	Pace Analytical Se	rvices - Greensburg				
Total Radium	Total Radium Calculation	0.379U ± 0.515 (1.04)	pCi/L	12/03/21 17:1	1 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341

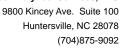
Pace Project No.: 92567366

QC Batch: 470012 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92567366023, 92567366024, 92567366025, 92567366038, 92567366039, 92567366040, 92567366041


METHOD BLANK: 2269081 Matrix: Water

Associated Lab Samples: 92567366023, 92567366024, 92567366025, 92567366038, 92567366039, 92567366040, 92567366041

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.522 ± 0.345 (0.615) C:92% T:NA
 pCi/L
 12/03/21 08:39

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

QC Batch: 470011 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Laboratory: Pace Analytical Services - Greensburg

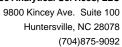
Associated Lab Samples: 92567366012, 92567366013, 92567366014, 92567366021, 92567366022, 92567366026, 92567366027,

92567366028, 92567366029, 92567366030, 92567366031, 92567366032, 92567366033, 92567366034,

92567366035, 92567366036, 92567366037

METHOD BLANK: 2269079 Matrix: Water

Associated Lab Samples: 92567366012, 92567366013, 92567366014, 92567366021, 92567366022, 92567366026, 92567366027,


92567366028, 92567366029, 92567366030, 92567366031, 92567366032, 92567366033, 92567366034,

92567366035, 92567366036, 92567366037

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.276 ± 0.303 (0.633) C:96% T:NA
 pCi/L
 12/03/21 08:13

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

QC Batch: 470829 Analysis Method: EPA 9320

QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92567366023, 92567366024, 92567366025, 92567366041

METHOD BLANK: 2272897 Matrix: Water
Associated Lab Samples: 92567366023, 92567366024, 92567366025, 92567366041

Parameter Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers

Radium-228 -0.00736 ± 0.282 (0.665) C:71% T:86% pCi/L 11/17/21 14:28

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

QC Batch: 470828 Analysis Method: EPA 9320

QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

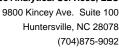
Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92567366012, 92567366013, 92567366014, 92567366021, 92567366022, 92567366026, 92567366027, 92567366028, 92567366029, 92567366030, 92567366031, 92567366032, 92567366033, 92567366034,

92567366035, 92567366036, 92567366037, 92567366038, 92567366039, 92567366040

METHOD BLANK: 2272896 Matrix: Water

Associated Lab Samples: 92567366012, 92567366013, 92567366014, 92567366021, 92567366022, 92567366026, 92567366027,


92567366028, 92567366029, 92567366030, 92567366031, 92567366032, 92567366033, 92567366034,

92567366035, 92567366036, 92567366037, 92567366038, 92567366039, 92567366040

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.309 ± 0.352 (0.742) C:77% T:92%
 pCi/L
 11/15/21 11:01

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

QC Batch: 470009 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Laboratory: Pace Analytical Services - Greensburg

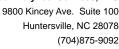
Associated Lab Samples: 92567366001, 92567366002, 92567366003, 92567366004, 92567366005, 92567366006, 92567366007,

92567366008, 92567366009, 92567366010, 92567366011, 92567366015, 92567366016, 92567366017,

92567366018, 92567366019, 92567366020

METHOD BLANK: 2269074 Matrix: Water

Associated Lab Samples: 92567366001, 92567366002, 92567366003, 92567366004, 92567366005, 92567366006, 92567366007,


92567366008, 92567366009, 92567366010, 92567366011, 92567366015, 92567366016, 92567366017,

92567366018, 92567366019, 92567366020

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 -0.0230 ± 0.117 (0.365) C:97% T:NA
 pCi/L
 12/03/21 08:48

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

QC Batch: 470827 Analysis Method: EPA 9320
QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92567366001, 92567366002, 92567366003, 92567366004, 92567366005, 92567366006, 92567366007,

92567366008, 92567366009, 92567366010, 92567366011, 92567366015, 92567366016, 92567366017,

92567366018, 92567366019, 92567366020

METHOD BLANK: 2272895 Matrix: Water

Associated Lab Samples: 92567366001, 92567366002, 92567366003, 92567366004, 92567366005, 92567366006, 92567366007,

92567366008, 92567366009, 92567366010, 92567366011, 92567366015, 92567366016, 92567366017,

92567366018, 92567366019, 92567366020

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.897 ± 0.395 (0.647) C:80% T:87%
 pCi/L
 11/08/21 11:14

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Date: 12/13/2021 11:41 AM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval).

Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

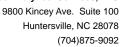
(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.


QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

Date: 12/13/2021 11:41 AM

₋ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
2567366001	BB18676 PZ-2	EPA 9315	470009	_	
2567366002	BB18677 MW-6	EPA 9315	470009		
2567366003	BB18677 MW-6 MS	EPA 9315	470009		
2567366004	BB18677 MW-6 MSD	EPA 9315	470009		
2567366005	BB18678 MW-3	EPA 9315	470009		
2567366006	BB18679 MW-4	EPA 9315	470009		
2567366007	BB18680 MW-4 DUP	EPA 9315	470009		
2567366008	BB18681 FB-1	EPA 9315	470009		
2567366009	BB18682 MW-17	EPA 9315	470009		
2567366010	BB18683 MW-16	EPA 9315	470009		
2567366011	BB18747 EB-2	EPA 9315	470009		
2567366012	BB18748 PZ-1	EPA 9315	470011		
2567366013	BB18748 PZ-1 MS	EPA 9315	470011		
2567366014	BB18748 PZ-1 MSD	EPA 9315	470011		
2567366015	BB18749 MW-5	EPA 9315	470009		
2567366016	BB18750 MW-5 DUP	EPA 9315	470009		
2567366017	BB18751 MW-12	EPA 9315	470009		
2567366018	BB18752 MW-1	EPA 9315	470009		
2567366019	BB18753 MW-7	EPA 9315	470009		
2567366020	BB18754 MW-2VA	EPA 9315	470009		
2567366021	BB18755 MW-21VC	EPA 9315	470011		
2567366022	BB18756 FB-2	EPA 9315	470011		
2567366023	BB19012 MW-22VB	EPA 9315	470012		
2567366024	BB19012 MW-22VB MS	EPA 9315	470012		
2567366025	BB19012 MW-22VB MSD	EPA 9315	470012		
2567366026	BB19013 MW-19H	EPA 9315	470011		
2567366027	BB19014 MW-2	EPA 9315	470011		
2567366028	BB19015 FB-3		470011		
		EPA 9315	470011		
2567366029 2567366030	BB19016 MW-2VB BB19017 MW-18H	EPA 9315			
		EPA 9315	470011		
2567366031	BB19018 PZ-5	EPA 9315	470011		
2567366032	BB19019 PZ-6	EPA 9315	470011		
2567366033	BB19020 MW-4V	EPA 9315	470011		
2567366034	BB19021 MW-20H	EPA 9315	470011		
2567366035	BB19022 MW-10	EPA 9315	470011		
2567366036	BB19023 MW-14	EPA 9315	470011		
2567366037	BB19024 MW-14 DUP	EPA 9315	470011		
2567366038	BB19025 MW-8	EPA 9315	470012		
2567366039	BB19026 MW-9	EPA 9315	470012		
2567366040	BB19027 MW-11	EPA 9315	470012		
2567366041	BB19028 EB-1	EPA 9315	470012		
2567366001	BB18676 PZ-2	EPA 9320	470827		
2567366002	BB18677 MW-6	EPA 9320	470827		
2567366003	BB18677 MW-6 MS	EPA 9320	470827		
	BB18677 MW-6 MSD	EPA 9320	470827		

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

Date: 12/13/2021 11:41 AM

_ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92567366005	BB18678 MW-3	EPA 9320	470827	_	
92567366006	BB18679 MW-4	EPA 9320	470827		
2567366007	BB18680 MW-4 DUP	EPA 9320	470827		
2567366008	BB18681 FB-1	EPA 9320	470827		
2567366009	BB18682 MW-17	EPA 9320	470827		
2567366010	BB18683 MW-16	EPA 9320	470827		
2567366011	BB18747 EB-2	EPA 9320	470827		
2567366012	BB18748 PZ-1	EPA 9320	470828		
2567366013	BB18748 PZ-1 MS	EPA 9320	470828		
2567366014	BB18748 PZ-1 MSD	EPA 9320	470828		
2567366015	BB18749 MW-5	EPA 9320	470827		
2567366016	BB18750 MW-5 DUP	EPA 9320	470827		
2567366017	BB18751 MW-12	EPA 9320	470827		
2567366018	BB18752 MW-1	EPA 9320	470827		
2567366019	BB18753 MW-7	EPA 9320	470827		
2567366020	BB18754 MW-2VA	EPA 9320	470827		
2567366021	BB18755 MW-21VC	EPA 9320	470828		
2567366022	BB18756 FB-2	EPA 9320	470828		
2567366023	BB19012 MW-22VB	EPA 9320	470829		
2567366024	BB19012 MW-22VB MS	EPA 9320	470829		
2567366025	BB19012 MW-22VB MSD	EPA 9320	470829		
2567366026	BB19013 MW-19H	EPA 9320	470828		
2567366027	BB19014 MW-2	EPA 9320	470828		
2567366028	BB19015 FB-3	EPA 9320	470828		
2567366029	BB19016 MW-2VB	EPA 9320	470828		
2567366030	BB19017 MW-18H	EPA 9320	470828		
2567366031	BB19018 PZ-5	EPA 9320	470828		
2567366032	BB19019 PZ-6	EPA 9320	470828		
2567366033	BB19020 MW-4V	EPA 9320	470828		
2567366034	BB19021 MW-20H	EPA 9320	470828		
2567366035	BB19022 MW-10	EPA 9320	470828		
2567366036	BB19023 MW-14	EPA 9320	470828		
2567366037	BB19024 MW-14 DUP	EPA 9320	470828		
2567366038	BB19025 MW-8	EPA 9320	470828		
2567366039	BB19026 MW-9	EPA 9320	470828		
2567366040	BB19027 MW-11	EPA 9320	470828		
2567366041	BB19028 EB-1	EPA 9320	470829		
2567366001	BB18676 PZ-2	Total Radium Calculation	474984		
2567366002	BB18677 MW-6	Total Radium Calculation	474984		
2567366005	BB18678 MW-3	Total Radium Calculation	474984		
2567366006	BB18679 MW-4	Total Radium Calculation	474984		
2567366007	BB18680 MW-4 DUP	Total Radium Calculation	474984		
2567366008	BB18681 FB-1	Total Radium Calculation	474984		
2567366009	BB18682 MW-17	Total Radium Calculation	474984		
2567366010	BB18683 MW-16	Total Radium Calculation	474984		

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: GADSEDN ASH POND WMWGADAP_1341

Pace Project No.: 92567366

Date: 12/13/2021 11:41 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92567366011	BB18747 EB-2	Total Radium Calculation	474984		•
92567366012	BB18748 PZ-1	Total Radium Calculation	474985		
92567366015	BB18749 MW-5	Total Radium Calculation	474984		
92567366016	BB18750 MW-5 DUP	Total Radium Calculation	474984		
92567366017	BB18751 MW-12	Total Radium Calculation	474984		
92567366018	BB18752 MW-1	Total Radium Calculation	474984		
92567366019	BB18753 MW-7	Total Radium Calculation	474984		
92567366020	BB18754 MW-2VA	Total Radium Calculation	474984		
92567366021	BB18755 MW-21VC	Total Radium Calculation	474985		
92567366022	BB18756 FB-2	Total Radium Calculation	474985		
92567366023	BB19012 MW-22VB	Total Radium Calculation	474986		
92567366026	BB19013 MW-19H	Total Radium Calculation	474985		
92567366027	BB19014 MW-2	Total Radium Calculation	474985		
92567366028	BB19015 FB-3	Total Radium Calculation	474985		
92567366029	BB19016 MW-2VB	Total Radium Calculation	474985		
92567366030	BB19017 MW-18H	Total Radium Calculation	474985		
92567366031	BB19018 PZ-5	Total Radium Calculation	474985		
92567366032	BB19019 PZ-6	Total Radium Calculation	474985		
92567366033	BB19020 MW-4V	Total Radium Calculation	474985		
92567366034	BB19021 MW-20H	Total Radium Calculation	474985		
92567366035	BB19022 MW-10	Total Radium Calculation	474985		
92567366036	BB19023 MW-14	Total Radium Calculation	474985		
92567366037	BB19024 MW-14 DUP	Total Radium Calculation	474985		
92567366038	BB19025 MW-8	Total Radium Calculation	474986		
92567366039	BB19026 MW-9	Total Radium Calculation	474986		
92567366040	BB19027 MW-11	Total Radium Calculation	474986		
92567366041	BB19028 EB-1	Total Radium Calculation	474986		

0#:92567366 Pittsburgh Lab Sample Condition Upon Receipt Pace NC Client Name: Courier: ☐ Fed Ex ☐ UPS ☐ USPS ☐ Client ☐ Commercial ☐ Pace Other Label LIMS Login Custody Seal on Cooler/Box Present: ☐ no no Seals intact: Thermometer Used Type of Ice: Wet Blue Correction Factor: Final Temp **Cooler Temperature** Observed Temp Temp should be above freezing to 6°C Date and Initials contents: pH paper Lot# 10000411 Comments: Yes No N/A Chain of Custody Present: Chain of Custody Filled Out: Chain of Custody Relinquished: 3. Sampler Name & Signature on COC: 5. Sample Labels match COC: Matrix:_WT -Includes date/time/ID Samples Arrived within Hold Time: Short Hold Time Analysis (<72hr remaining): 7. Rush Turn Around Time Requested: 8. Sufficient Volume: 9. Correct Containers Used: 10. -Pace Containers Used: Containers Intact: 11. Orthophosphate field filtered 12. Hex Cr Aqueous sample field filtered 13. Organic Samples checked for dechlorination: 14. Filtered volume received for Dissolved tests 15. All containers have been checked for preservation. 16. exceptions: VOA, coliform, TOC, O&G, Phenolics, Radon, Non-aqueous matrix Initial when All containers meet method preservation Date/time of requirements. completed preservation Lot # of added preservative Headspace in VOA Vials (>6mm): Trip Blank Present: 18.

Client Notification/ Resolution:

Trip Blank Custody Seals Present

Rad Samples Screened < 0.5 mrem/hr

Person Contacted:	Date/Time;	Contacted By:
Comments/ Resolution:		

Initial when

completed:

A check in this box indicates that additional information has been stored in ereports.

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

PACE_92_HUNC

					12	1	10	9	8	元	6	51	4	3	N	4	ITEM#	7	Requested Due Date:	Phone:	Email To:	1001000	Address.	Company.
おもついまりは	10# · 00//ccc			ADDITIONAL COMMENTS					BB18683	BB18682	BB18681	BB18680	BB18679	BB18678	8818677	BB18676	SAMPLE ID One Character per box. (A-Z, 0-9 /, -) Sample lds must be unique		Due Date: 28 days	205-664-6197 Fax	lbmidkif@southernco.com	Calera, AL 35040	Alabama Fower Company	Company: Alabama Bawas Camana
362						0.00		No. or other	MW-16	MW-17	FB-1	MW-4 DUP	MW-4	MW-3	MW-6	PZ-2	MATRIX Dirinking Water D Water Water Water Water Water Water P Product Spilot Oil Oil Oil Othor Tissue Tissue		Projec	Projec	Purch	Copy In		I Door
			Laura Midkiff/ APC GTL	REL	_		-		Gν	GV	Gγ	GV	GV	GV	GV	GV	경 오 옷 등 은 우 [™] 돛 독 및 S G MATRIX CODE (see valid codes to let		Project Number:	Project Name:	Purchase Order #:			1
			ff APC	SINDIN					GW G 1	GW G 1	GW G 1	GW G	GW G 1	GW G 1	GW G 1	GW G 1	SAMPLE TYPE (G=GRAB C=COMP	-		Plan	*	ooke	Laura MICKIT	
				AED BA					10/6/2021 10:10	10/6/2021 8:45	10/5/2021 15:30	10/5/2021 14:35	10/5/2021 14:35	10/5/2021 13:25	10/5/2021 12:10	10/5/2021	ST			t Gads	APC1	Caton	IDKIT	771 11 4
(0		SAMP		RELINQUISHED BY I AFFILIATION		-			10:10	1 8:45	1 15:30	1 14:35	1 14:35	1 13:25	1 12:10	111:00	START		WMV	den As	070066	& Kene		
SIGNATURE of SAMPLER	PRINT Name of SAMPLER:	SAMPLER NAME AND SIGNATURE		ATION													LECTED		WMWGADAP	Plant Gadsden Ash Pond	8	Brooke Caton & Renee Jernigan		
of SAM	e of SAM	AND SIG	10/13/2021	D													TIME		1341			5		
LER:	PLER:	NATUR		DATE						2							SAMPLE TEMP AT COLLECTION	1						
			12:45	2					1	1	1	1	1	1	3	1	# OF CONTAINERS	-	Pace Profile #:	Pace Project Manager:	Pace Quote:	Address: 744 High Total 97	Attention:	
	l			TIME	Н						-		-	-	-	_	H2SO4		rofile	roject	Quote:	any Na	on:	
									×	×	×	×	×	×	×	×	HNO3 Pres	l	11	Manag	ŧ	me: /	Laur	
			114					-			-		-				HN03 Preservative NaOH Preservative NaOH Preservative NaOH Preservative NaCS2O3	1 10	13805	œ.	NI IDILI	laba	Laura Midkiff	
	l		1	ACCEP													Na2S2O3			Kevir	CCR	na Po	Kiff	
					Н	_	_	_						_	Н		Methanol Other			n.He	200	OSC BIA #8		
				ED BY / AFFILIATION						_							Analyses Test Y/N	3838		n.Herring@pacelabs.cor	DIO	000		
ē				FILIAT					×	×	×	×	×	×	×	×	EPA 9315 EPA 9320			pac	9#0	10		
DATE Signed:				NOL					×	×	×	×	×	×	×	×	Total Radium Sum	Requ		elabs				
gned:							-22.5								×		Matrix Spike/Matrix Spike Dv	ested	Ц	con	\downarrow			
	ı		101		Н													Requested Analysis						
			0/19	DATE														Sis Fill						
			124		Н													Filtered (Y/N		0.04				
			03100	TIME											_	_		(N/A		25	76			
ТЕМ	P in C	2	7														Residual Chlorine (Y/N)	T CARTON	ΑL	State / Location	Regulatory Agency			
(Y/N) Custo Seale	ody ed	on		SAMPLE CONDITIONS													Nesdudi Gildille (TN)			ation	Agency			
Cool- (Y/N) Sam Intact (Y/N)) ples			TIONS						7														

		z			TOTAL PROPERTY.		12	11	10	9	8	7	6	5	4	3	2		ITEM#	Kequested	Phone:	Email To:		Address:	Company:	Required
とのは、公口とうので						ADDITIONAL COMMENTS		100000000000000000000000000000000000000	BB18756	BB18755	BB18754	6818753	8818752	8818751	BB18750	BB18749	BB16748	8818747	SAMPLE ID One Character per box. (A-Z, 0-9 /, -) Sample ids must be unique	Requested Due Date: 28 days	205-664-6197 Fax	lbmidkif@southernco.com	Calera, AL 35040	744 Highway 87 GSC Bldg #8	Alabama Power Company	Required Client Information:
うりつ									FB-2	MW-21VC	MW-2VA	MW-7	MW-1	MW-12	MW-5 DUP	MW-S	PZ-1	EB-2	MATRIX Driving Water Water Water Water Water Water Water Off Off Other Tissuo	Proje	Proje	Purci				Required
				Ladia Midkili AFC G	an Ma	22 .			_										CCODE OWW WT WWW WWW WWW WWW WWW WWW WWW WWW	Project Number:	Project Name:	Purchase Order #:		ΙI	Report To:	aired Proj
				2	1 M	LING	\dashv	_	e Me	ew e	GW G	GW G	GW G	GW G	GW G	в ма	ew e	в мэ	MATRIX CODE (see valid codes to left) SAMPLE TYPE (G=GRAB C=COMP)	Ä	1	#		Brook	aura	ect Inf
				6	O GT	RELINQUISHED BY / AFFILIATION		_			10/6/2021 10:25				10/5/2021 11:53			10/5/2021 10:20	DAI		Plant Gadsden Ash Pond	APC10		Brooke Caton & Renee Jernigan	Laura Midkiff	Required Project Information:
S	P	SAMPL				/ AFFILIA			1 13:15	1 12:46	1 10:25	15:11	1 14:18	12:58	111:53	111:53	11:00	10:20	START	WWW	den Ash	APC10700668		& Renee		
SIGNATURE of SAMPLER:	PRINT Name of SAMPLER:	SAMPLER NAME AND SIGNATURE				TION													COLLECTED	WMWGADAP	Pond			Jernigar		
of SAMPL	of SAMPL	ND SIGN		10/13/2021	in and and a	DATE													TIME	1341						
ES:	ER:	TURE			12	m			_				1	1	_		3		SAMPLE TEMP AT COLLECTION	70	_	70	A		F	_
				12.45	0.45	TIME	+	\dashv											# OF CONTAINERS Unpreserved	ace P	ace P	Pace Quote:	Address:	ompa	Attention:	Invoice In
						m		1											H2SO4	Pace Profile #:	Pace Project Manager:	uote:	S:	Company Name: Alabama Po	ž	Invoice Information:
					100		\Box	\Box	×	×	×	×	×	×	×	×	×	×	HNO3 Pre		Manag		744	ne: /	Laur	matio
					1		+	\dashv	-	-			_		-	_	_	-	HN03 Press HCI See NaOH NaOH Na2S2O3	13805	er:		744 Highway 87	Naba	Laura Midkiff	
				1 6	3	ACCEP	-	\dashv											Na2S2O3		Kevir	CCR	way	ma	윩	
				1															Methanol			Ŕ	87 G	owe		
					1	TED BY / AFFILIATION													Olher	-	errir		GSC Bldg #8	00		
\dashv				1 1		AFFI		_	×	×	×	×	×	×	×	×	×	×	Analyses Test Y/N EPA 9315		1@p		ldg #			
DAT					1	ATIO	\exists		×	×	×	×	×	×	×	×	×	×	EPA 9320		acel		8		١	
DATE Signed:						ž	\Box		×	×	×	×	×	×	×	×	×	×	Total Radium Sum		.Herring@pacelabs.com					
ned:					100		-	-									×		Matrix Spike/Matrix Spike Di	H	on.	Н			┙	
			+	1	_		\dashv	\dashv						_	\vdash				Total Radium Sum Matrix Spike/Matrix Spike Di Applysis		5846		1144			
					10/14	DATE		\exists													WEST S		THE SE			
				1 1	1	33													Filtered		Hillian		ACCUSED IN			
-				1		TIME	\dashv	+					_		-		-		(XXX)		SER. 15					
				Į,	242	m	\dashv	1										Н			Sta		Regu		Ţ.	_
TEM	P in (TT																AL	State / Location		Regulatory Agency		į	Page
Poss	lund	00		++		ş	\neg								_			-	Residual Chlorine (Y/N)	ľ	catio		Ager		ľ	••
Rece lce (Y/N)		Off				SAMPLE CONDITIONS									1						0		ই		1	N
Custo	ody		_	++	-	CON									No.						1100		(4-5-g)(42)			
Seale Coole (Y/N)	er					DITIO															10,135		W. Collect		1	ç
Samp	ples			11		SN															11(1914)		1000			
Intact)		1	1																١	1		100		1	4

CLIENT: PACE_92_HUNC

Due Date: 11/17/21

Received Ice (Y/N) Custody Sealed Cooler (Y/N)	TEMP in (DATE Signed:						!!	of SAMPL	PRINT Name of SAMPLER:	П							
on	C								สบคะ	AND SIGNA	SAMPLER NAME AND SIGNATURE	SAM							
	0930	Polista		R	17			12:45		10/13/2021			APC GTI	Laura Midkiff/ APC GTL					
SAMPLE CONDITIONS	TIME	DATE	ATION	AFFILL	ACCEPTED BY / AFFILIATION	ACC		TIME		DATE	NOLLY	RELINQUISHED BY / AFFILIATION	DUISHE	RELIN		ADDITIONAL COMMENTS	ADDITION		
																		12	T
																		11	P.
												-						10	100
												_						9	
			×	×			×		-1			10/12/2021 13:40		GW G	PZ-6	9	8819019	8	100
			×	×			×		1			10/12/2021 12:16		GW G	PZ-5	8	8819018	147	-
			×	×			×		-			10/12/2021 11:17		GW G	MW-18H	7	8819017	6	-
			×	×			×		-			10/12/2021 9:28		GW G	MW-2VB	o	8819016	5	745
			××	×			×		1			10/11/2021 15:15		GW G	FB-3	(h	8819015	4	
			×	×			×		4			10/11/2021 14:49		gw g	MW-2	4	8819014	ယ	1,200
			×	×			×		1			10/11/2021 12:57		GW G	MW-19H	ω	8819013	2	1
			×	×			×		မ			10/11/2021 11:37		GW G	MW-22VB	2	8819012	1	T-
Residual Chlorine (Y/N)	Baddad Alder		EPA 9320 Total Radium Sum Matrix Spike/Matrix Spike	Analyses Test EPA 9315	Methanol Other	NaOH Na2S2O3	HNO3	Unpreserved H2SO4	SAMPLE TEMP AT COLLE # OF CONTAINERS	TIME	DATE	START TIME	SAMPLE TYPE (G=GRAI	코덕충돛유유미됩 MATRIX CODE (see valid	Waste Water Product SolfSolid Oil Wipe Air Cithar Tissue	LE ID er per box. 97) ust be unique	SAMPLE ID One Character per box. (A-Z, 0-9 / , -) Sample lds must be unique	ITEM#	
			D D	F		1 6361 4011463			CTIO		COLLEGICA	9	3 C=C		Drinking Water D				
	2,41,4			Y/N		nyativos	Droce		٧		N ECTED	3	COMP)						
	(N)	Requested Analysis Filtered (Y/N)	Requested Arra	100000000000000000000000000000000000000					7					2				-	_
	AL					8	# 13	Pace Profile #:	Pa	1341	Ó	MM			Proje	28 days		Requested Due Date:	77
cation	State / Location	1,6654H5554W127AW	Herring@pacelabs.con	ng@pa	-		Manage	Pace Project Manager:	Pa		sh Pond	Plant Gadsden Ash Pond	lant G		Proje	7 Fax	205-664-6197	Phone:	m
Agency	Regulatory Agency	THE PROPERTY OF THE PARTY OF TH	905375	Bldg #c	CCR	gnway		Pace Quote:	Pa		20	APC10700668	Ą	Purchase Order #:	Purch	ithernco.com	lbmidkif@southernco.com	Email To:	mi
			100000	I C	Alabama Power Co	abama	ame: Al	Company Name:	200		Blooke Caloll & Kellee Jernigan	מון מ תפווני	NE Ca	Į.	Copy to.	Calera Al 35040	Calera		- 12
)	Laura Midkiff	Laura	Attention:	Att		o lossinos	Ciff On	Laura Midkiff	1,5913		wer Company	Alabama Power Company	Address:	DIC
: 3 Of	Page :						rmation:	Invoice Information:	lnv			ion:	iformat	ž	Requ		Required Client Information:	Required C	7 7
								Section C	Se					on B	Section B			Section A	00

Due Date: 11/17/21 PM: AES CLIENT: PACE_92_HUNC

						12	11	10	9	8	7	6	5	4	3	2	4	ITEM#		Requested	Phone:	Email To:	Contras.	Address:
DM. DEC	MO#: 30446367				ADDITIONAL COMMENTS				BB19028	8819027	8819026	8819025	BB19024	8819023	BB19022	8819021	8819020	SAMPLE ID One Character per box. (A-Z, 0-9 /, -) Sample lids must be unique		Requested Due Date: 28 days	64-6	lbmidkif@southernco.com	Calera, AL 35040	Address of Company
Due Date: 11/17/21	4030	2000		Lau					EB-1	MW-11	e-ww	MW-8	MW-14 DUP	MW-14	MW-10	MW-20H	MW-4V	MATRIX Diribing Waler DW Water WT Water WW Product SoluSolid St. Oil Wipo AR Other OT Tissue Ts		Project Number:	Project Name:	Purchas	Copy 10:	report to.
1/17	1,	۷		Laura Midkiff/ APC GTL	REL	_	_		GW G	GW G	GW G	gw g	GW G	GW G	gw G	gw g	GW G	MATRIX CODE (see valid codes to le	ft)	lumber:	vame:	Purchase Order #:		
/21				/ APC G	NOUISI							_	_					SAMPLE TYPE (G=GRAB C=COM	")		Plant		oke C	Laura Midkill
				אַדר	RELINQUISHED BY / AFFILIATION				10/12/2021 13:30	10/12/2021 12:55	10/12/2021 11:55	10/12/2021 10:48	10/12/2021 8:30	10/12/2021 8:30	10/11/2021 14:40	10/11/2021 13:30	10/11/2021 12:40	ST			Gadsc	APC10700668	aton &	UKIII
		SAMP			/ AFFILI				13:30	1 12:55	1 11:55	1 10:48	1 8:30	1 8:30	1 14:40	1 13:30	1 12:40	START		VMV	len As	700668	Kene)
SIGNATURE of SAMPLER:	PRINT Name of SAMPLER:	SAMPLER NAME AND SIGNATURE			ATION												-5	COLLECTED E		WMWGADAP	Plant Gadsden Ash Pond		Brooke Caton & Renee Jemigan	
RE of SA	ne of SA	E AND S		10/				-				_	_	_		-				1341			ä	
MPLER	MPLE	IGNAT		10/13/2021	DATE													TIME					-	
	'n	URE	+			-	-	-			-2		-	-	_		-3	SAMPLE TEMP AT COLLECTION # OF CONTAINERS	+	Pa	Pa	Pa	2 6	1
				12:45	TIME													Unpreserved	1	Pace Profile #:	Pace Project Manager:	Pace Quote:	dress	Augi morr.
					IA											Ų,	-	H2SO4		ofile #:	yect N	ote:	y Nan	
						H	_		×	×	×	×	×	×	×	×	×	HNO3 Presse			Aanage	1	744 F	Lauis
											-	-		-	+		H	HN03 Preservatives HCI servatives NaOH stives		13805	977	3	labar	radia Midvill
				13	ACCEPTED BY I AFFILIATION													Na2S2O3			Kev	CCR	Address: 744 Highway 87 GSC Ridg #8	NII.
				1	OBL		_	_										Methanol			in.He	70	ower	
				0	BY/A	_				_							Н	Other Analyses Test Y/N			n.Herring@pacelabs	Ç	C P	
				1	FFILL				×	×	×	×	×	×	×		×	EPA 9315	100 mg		@ра	A III	##	
DATE					ATION				×	×	×	×	×	×	×		×	EPA 9320	Re		celat			
DATE Signed:				ľ		\vdash					Ľ		Ĺ				H	Total Radium Sum Matrix Spike/Matrix Spike Du	quest		os.cor			
ü																			Pa Asia	П				1
				101	Ū														alysis		SPECIAL SECTION OF SEC	100		
				101	DATE	H	-		_	_	_	-	-			-			Filtere		10.00	100000		
				12/											_				Requested Analysis Filtered (Y/N)			1770/019	100	
				2,00	TIME								H						SERVE S		Sta	Barr	R	
TEM	P in C	С	\top																	AL	State / Location	and the	latory	
lce	eived	on			SAMPL													Residual Chlorine (Y/N)			cation	Seguiater) regards	Agency	
Cust Seale Cool	ody ed ler				SAMPLE CONDITIONS																海温温	1911		
(Y/N Sam Intaci (Y/N	ples				SNS																			

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Ra-228 JC2 11/4/2021 63440 WT Analyst: Date: Worklist: Matrix:

2272895 0.897 0.395 0.647 4.45 Fail* MB concentration: M/B 2 Sigma CSU: MB MDC: MB Numerical Performance Indicator: MB Status vs Numerical Indicator: MB Sample ID Method Blank Assessmen

LCSD63440	LCSD (Y or N)? LCS63440 11/8/2021 21-029	nple Assessment Count Date: Snike I D
N	LCSD (Y or N)?	nple Assessment
	See Comment*	MB Status vs. MDC: See Comment*

1 MS/MSD 2		02	 	70																-					/	_	<u> </u>	***		-
MS/MSD 1	10/5/2021	n, ili		92567366004	21-029	37.961	0.20		0.803	9.460	0.812	9.345	0.464	0.458	1.252		13.581	2.628	14.894	2.862	2.068				Warning	Warning	Pass	MSD High****	135%	%U9
Sample Matrix Spike Control Assessment	Sample Collection Date:	Sample I.D.	Sample MS I.D.	Sample MSD I.D.	Spike I.D.:	MS/MSD Decay Corrected Spike Concentration (pCi/mL):	Spike Volume Used in MS (mL):	Spike Volume Used in MSD (mL):	MS Aliquot (L, g, F):	MS Target Conc.(pCi/L, g, F):	MSD Aliquot (L, g, F):	MSD Target Conc. (pCi/L, g, F):	MS Spike Uncertainty (calculated):	MSD Spike Uncertainty (calculated):	Sample Result:	Sample Result 2 Sigma CSU (pCi/L, g, F):	Sample Matrix Spike Result:	Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):	Sample Matrix Spike Duplicate Result:	Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):	MS Numerical Performance Indicator:	MSD Numerical Performance Indicator:	MS Percent Recovery:	MSD Percent Recovery:	MS Status vs Numerical Indicator;	MSD Status vs Numerical Indicator;	MS Status vs Recovery:	MSD Status vs Recovery:	MS/MSD Upper % Recovery Limits:	MS/MSD I ower % Recovery I imits:

ľ
Count Date: 11/8/2021 LCSD63440
Spike I.D.: 21-029
Decay Corrected Spike Concentration (pCI/mL): 37.538
Volume Used (mL):
Aliquot Volume (L, g, F): 0.817
Target Conc. (pCi/L, g, F): 4.597
Uncertainty (Calculated): 0.225
Result (pCi/L, g, F): 4.495
LCS/LCSD 2 Sigma CSU (pCi/L, g, F): 1.001
Numerical Performance Indicator: -0.19
Percent Recovery: 97.78%
Status vs Numerical Indicator: N/A
Status vs Recovery: Pass
Upper % Recovery Limits: 135%
ower % Recovery Limits: 60%

See Below ##

Sample Duplicate Result 2 Sigma CSU (pCi/L, g, F):

Are sample and/or duplicate results below RL?

Duplicate Numerical Performance Indicator:

Duplicate RPD:

Sample I.D.:

Duplicate Sample I.D.:

Sample Result (pCi/L, g, F):

Sample Result 2 Sigma CSU (pCi/L, g, F):

Sample Duplicate Result (pCi/L, g, F):

Duplicate Sample Assessment

Decrees NI enteria

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Duplicate Status vs Numerical Indicator:
Duplicate Status vs RPD:
% RPD Limit:

Comments: **The method blank result is below the reporting limit for this analysis and is acceptable.

6 of 10

Ra-228_63440_W.xls Ra-228_63440_W (version 1).xls

VAL 11/8/2021 Ra-228 Analyst: Date: Test:

MS/MSD 2

MS/MSD 10/5/2021

Sample Collection Date:

Sample Matrix Spike Control Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

92567366012 92567366013 92567366014

Sample I.D. Sample MS I.D. Sample MSD I.D.

21-029 37.961

Spike I.D.

MS/MSD Decay Corrected Spike Concentration (pCi/mL):

Spike Volume Used in MS (mL):

Spike Volume Used in MSD (mL) MS Aliquot (L, g, F):

MS Target Conc.(pCi/L, g, F):

MSD Aliquot (L, g, F): MSD Target Conc. (pCi/L, g, F): MS Spike Uncertainty (calculated): MSD Spike Uncertainty (calculated):

0.20 0.20 0.809 9.390 0.809 0.460 1.992 70.69% Fail****

MS Status vs Numerical Indicator, MSD Status vs Numerical Indicator;

MS Status vs Recovery

MSD Status vs Recovery:
MS/MSD Upper % Recovery Limits
MS/MSD Lower % Recovery Limits:

63441 WT Worklist: Matrix:

0.352 0.742 1.72 Pass Pass MB concentration: M/B 2 Sigma CSU: MB MDC: MB Sample ID MB Numerical Performance Indicator: MB Status vs Numerical Indicator: MB Status vs. MDC: Method Blank Assessmen

Laboratory Contro

ol Sample Assessment	LCSD (Y or N)?	z
	LCS63441	LCSD63441
Count Date:	11/15/2021	
Spike I.D.:	21-029	
Decay Corrected Spike Concentration (pCi/mL):	37.451	
Volume Used (mL):	0.10	
Aliquot Volume (L, g, F):	0.820	
Target Conc. (pCi/L, g, F):	4.566	
Uncertainty (Calculated):	0.224	
Result (pCi/L, g, F):	4.701	
LCS/LCSD 2 Sigma CSU (pCi/L, g, F):	1.062	
Numerical Performance Indicator:	0.24	
Percent Recovery:	102.96%	
Status vs Numerical Indicator:	N/A	*****
Status vs Recovery:	Pass	
Upper % Recovery Limits:	135%	
Lower % Recovery Limits:	%09	

Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F): MS Numerical Performance Indicator:

MSD Numerical Performance Indicator:

MS Percent Recovery MSD Percent Recovery

Matrix Spike Result 2 Sigma CSU (pCi/L, g, F)

Sample Matrix Spike Duplicate Result

Sample Matrix Spike Result

Sample Result Sigma CSU (pCi/L, g, F)

Duplicate Status vs Numerical Indicator:

	92567366012	92567366013	92567366014	7.936	1.635	8.626	1.744	-0.566	11.03%	Pass	Pass	/000
Matrix Spike/Matrix Spike Duplicate Sample Assessment	Sample I.D.	Sample MS I.D.	Sample MSD I.D.	Sample Matrix Spike Result:	Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):	Sample Matrix Spike Duplicate Result:	Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):	Duplicate Numerical Performance Indicator:	(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	MS/ MSD Duplicate Status vs Numerical Indicator:	MS/ MSD Duplicate Status vs RPD:	% DDD 1 imit-

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Willalla MS passes 20 Recovery criteria

other samples in this analytical batch. $(M_{
m M}/27/2)$

Ra-228_63441_W.xls Ra-228 (R086-8 04Sep2019).xls

***" fall other QC criteria pass, this batch is acceptable.

The matrix spike duplicate result indicates a possible blas for this same

6 of 10

Comments:

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Ra-228	JC2 11/8/2021	63442 WT
Test	Analyst: Date:	Worklist: Matrix:

Face Analytical"

Ra-228	JC2 11/8/2021	03442 WT
Test	Analyst: Date:	Matrix

	Analyst. Date:	11/8/2021	
	Worklist: Matrix:	63442 WT	
Method Blank Assessment			
	MB Sample ID	2272897	
	MB concentration:	-0.007	
	M/B 2 Sigma CSU:	0.282	
	MB MDC:	0.665	
	MB Numerical Performance Indicator:	-0.05	
w.\.	MB Status vs Numerical Indicator:	Pass	11 (11)
	MB Status vs. MDC:	Pass	3000 T

MS/MSD 2	10/18/2021	92569905001	92569905003	21-029	37.886	0.20	0.20	0.818	9.265	0.814	9.305	0.454	0.456	0.982	0.443	10.705	2.130	8.905	1.832	0.404	-1.397	104.94%	85.15%	Pass	Pass	Pass	Pass	135%	%09
MS/MSD 1	10/11/2021	92567366023	92567366025	21-029	37.886	0.20	0.20	0.804	9.426	0.801	9.465	0.462	0.464	0.113	0.360	8.485	1.737	8.752	1.778	-1.127	-0.865	88.82%	91.27%	Pass	Pass	Pass	Pass	135%	%09
Sample Matrix Spike Control Assessment	Sample Collection Date:	Sample I.D.	Sample MSD I.D.	Spike I.D.:	MS/MSD Decay Corrected Spike Concentration (pCi/mL):	Spike Volume Used in MS (mL):	Spike Volume Used in MSD (mL):	MS Aliquot (L, g, F):	MS Target Conc.(pCi/L, g, F):	MSD Aliquot (L, g, F):	MSD Target Conc. (pCi/L, g, F):	MS Spike Uncertainty (calculated):	MSD Spike Uncertainty (calculated):	Sample Result:	Sample Result 2 Sigma CSU (pCi/L, g, F):	Sample Matrix Spike Result:	Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):	Sample Matrix Spike Duplicate Result:	Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):	MS Numerical Performance Indicator:	MSD Numerical Performance Indicator:	MS Percent Recovery:	MSD Percent Recovery:	MS Status vs Numerical Indicator:	MSD Status vs Numerical Indicator:	MS Status vs Recovery:	MSD Status vs Recovery:	MS/MSD Upper % Recovery Limits:	MS/MSD Lower % Recovery Limits:

11/17/2021 21-029 37,425 0.10 0.819 4.571 0.224 5.057 1.123 0.83 110.62% N/A Pass 135% 60%

Aliquot Volume (L. g, F):
Target Conc. (pCi/L, g, F):
Uncertainty (Calculaed):
Result (pCi/L, g, F):
LCS/LCSD 2 Sigma CSU (pCi/L, g, F):
Numerical Performance Indicator:

Count Date: Spike I.D.: Decay Corrected Spike Concentration (pCl/mL):

Laboratory Control Sample Assessment

Volume Used (mL):

Status vs Recovery: Upper % Recovery Limits: Lower % Recovery Limits:

Percent Recovery Status vs Numerical Indicator

Duplicate Sample Assessment		
		Matrix Spike/Ma
Sample I.D.:	Enter Duplicate	
Duplicate Sample I.D.	sample iDs if	
Sample Result (pCi/L, g, F):	other than	
Sample Result 2 Sigma CSU (pCi/L, g, F):	LCS/LCSD in	
Sample Duplicate Result (pCi/L, g, F):	the space below.	
Sample Duplicate Result 2 Sigma CSU (pCi/L, g, F):		
Are sample and/or duplicate results below RL? See Below ##		Matrix
Duplicate Numerical Performance Indicator:	a and advance beautiful.	
Duplicate RPD:	A Section of the sect	(Based on
Duplicate Status vs Numerical Indicator:		
Duplicate Status vs RPD:		
% RPD Limit:		

	92569905001	92569905002	92569905003	10.705	2.130	8.905	1.832	1.256	20.83%	Pass	Pass	%98
	92567366023	92567366024	92567366025	8.485	1.737	8.752	1.778	-0.210	2.72%	Pass	Pass	36%
Matrix Spike/Matrix Spike Duplicate Sample Assessment	Sample I.D.	Sample MS I.D.	Sample MSD I.D.	Sample Matrix Spike Result:	Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):	Sample Matrix Spike Duplicate Result:	Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):	Duplicate Numerical Performance Indicator:	(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	MS/ MSD Duplicate Status vs Numerical Indicator:	MS/ MSD Duplicate Status vs RPD:	% RPD Limit:

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

200/12

Ra-228_63442_W.xls Ra-228_63442_W (version 1).xls

Ra-228 NELAC DW2 Printed: 11/18/2021 8:14 AM

Analyst Must Manually Enter All Fields Highlighted in Yellow.

LAL 1/13/2021 Ra-226 Test: Date: Analyst:

MS/MSD 2

Sample I.D. Sample MS I.D.

Sample Collection Date:

Sample Matrix Spike Control Assessment

Sample MSD I.D. Spike I.D.: MS/MSD Decay Corrected Spike Concentration (pCi/mL):

Spike Volume Used in MS (mL.): Spike Volume Used in MSD (mL):

19-033 24.033

Worklist: Matrix:

Method Blank Assessment

MB Sample ID MB concentration: M/B Counting Uncertainty

0.300 0.633 1.80 N/A Pass MB Status vs Numerical Indicator: MB Status vs. MDC

Laboratory Control Sample Assessment

MB Numerical Performance Indicator:

MB MDC:

-1.465 105.98% 94.82% 0.292 16.471 0.188 0.076 0.076 0.173 16.708 1.130 1.110 0.20 0.20 0.306 15.694 ₹ ₹ MS Aliquot (L, g, F): MS Target Conc.(pCi/L, g, F): MSD Aliquot (L, g, F): MSD Target Conc. (pCi/L, g, F): MS Spike Uncertainty (calculated): MSD Spike Uncertainty (calculated): Sample Result: Sample Result Counting Uncertainty (pCi/L, g, F): Sample Matrix Spike Result. Matrix Spike Result Counting Uncertainty (pCi/L, g, F): Sample Matrix Spike Duplicate Result: Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): MSD Numerical Performance Indicator. MS Percent Recovery: MSD Percent Recovery. MSD Status vs Numerical Indicator. MS Status vs Recovery MSD Status vs Recovery MS/MSD Upper % Recovery Limits: MS/MSD Lower % Recovery Limits: MS Status vs Numerical Indicator MS Numerical Performance Indicator 1.30 106.73% 0.10 0.207 11.615 0.139 12.397 1.174 19-033 24.032 N/A Pass 125% 75%

CS63366 Sample I.D.: Duplicate Sample I.D. Upper % Recovery Limits: -ower % Recovery Limits

Duplicate Sample Assessment

0.143 14.114 1.284 3.32 118.37%

Result (pCi/L, g, F): LCS/LCSD Counting Uncertainty (pCi/L, g, F):

Numerical Performance Indicator:

Percent Recovery Status vs Numerical Indicator

ΑX

Status vs Recovery:

19-033 24.032 0.10 0.202 11.923

Volume Used (mL):

Decay Corrected Spike Concentration (pCi/mL):

Spike I.D.

Aliquot Volume (L, g, F): Target Conc. (pCi/L, g, F):

Uncertainty (Calculated):

LCSD63366 14.114 1.2.84 12.397 1.174 NO 1.935 10.34% N/A Pass 25% Sample Result (pCi/L, g, F):
Sample Result Counting Uncertainty (pCi/L, g, F):
Sample Duplicate Result (pCi/L, g, F): Sample Duplicate Result Counting Uncertainty (pCI/L, g, F): Are sample and/or duplicate results below RL? Duplicate Numerical Performance Indicator: (Based on the LCS/LCSD Percent Recoveries) Duplicate RPD: Duplicate Status vs RPD: Duplicate Status vs Numerical Indicator

92567366012 92567366013 92567366014 16.708 1.130 15.694 1.110 1.254 11.11% N/A Pass 25% Sample I.D. Sample MS I.D. Matrix Spike Result Counting Uncertainty (pCl/I, g, F): Sample Matrix Spike Duplicate Result: Sample MSD I.D. Sample Matrix Spike Result: MS/ MSD Duplicate Status vs RPD: % RPD Limit: Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): Duplicate Numerical Performance Indicator: (Based on the Percent Recoveries) MS/ MSD Duplicate RPD: MS/ MSD Duplicate Status vs Numerical Indicator Matrix Spike/Matrix Spike Duplicate Sample Assessment

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

Pace Analytical"

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

MS/MSD 2

92567366002 92567366003 92567366004

Sample I.D. Sample MS I.D. Sample MSD I.D.

19-033 24.033

Spike I.D.:

MS/MSD Decay Corrected Spike Concentration (pCi/mL):

Spike Volume Used in MS (mL): Spike Volume Used in MSD (mL): MS Aliquot (L, g, F):

MS Target Conc.(pCi/L, g, F): MSD Target Conc. (pCi/L, g, F):

10/5/2021

Sample Collection Date:

0.20 0.20 0.260 18.506 16.727 0.227 0.201 0.107 1.237 1.237 1.181

Sample Result:

MS Spike Uncertainty (calculated): MSD Spike Uncertainty (calculated): Sample Result Counting Uncertainty (pCi/L, g, F): Matrix Spike Result Counting Uncertainty (pCi/L, g, F):

Sample Matrix Spike Result

Sample Matrix Spike Duplicate Result: Matrix Spike Duplicate Result: Matrix Spike Duplicate Result Counting Uncertainty (pC/I/, g, F): MS Numerical Performance Indicator:

MSD Numerical Performance Indicator:

MS Percent Recovery

MSD Percent Recovery

MSD Status vs Numerical Indicator MS Status vs Recovery MS Status vs Numerical Indicator

MS/MSD Upper % Recovery Limits: MS/MSD Lower % Recovery Limits:

MSD Status vs Recovery

Sample Matrix Spike Control Assessment LAL 11/13/2021 63365 DW Analyst: Date: Worklist: Matrix:

MB Sample ID MB concentration: M/B Counting Uncertainty: MB MDC: MB Numerical Performance Indicator:	2269074 -0.023 0.117 0.365 -0.39
MB Status vs Numerical Indicator:	ΑN N
MB Status vs. MDC:	Pass

Laboratory Control Sample Assessment	LCSD (Y or N)?	Y
	LCS63365	LCSD63365
Count Date:	12/3/2021	12/3/2021
Spike I.D.:	19-033	19-033
Decay Corrected Spike Concentration (pCi/mL):	24.032	24.032
Volume Used (ml.):	0.10	0.10
Aliquot Volume (L, g, F):	0.212	0.205
Target Conc. (pCi/L, g, F):	11.315	11.715
Uncertainty (Calculated):	0.136	0.141
Result (pCi/L, g, F):	11.063	14.724
LCS/LCSD Counting Uncertainty (pCi/L, g, F):	1.142	1.298
Numerical Performance Indicator:	-0.43	4.52
Percent Recovery:	97.77%	125.69%
Status vs Numerical Indicator:	N/A	A/N
Status vs Recovery:	Pass	Fail High****
Upper % Recovery Limits:	125%	125%
Lower % Recovery Limits:	75%	75%

	92567366002	92567366003	92567366004	18.302	1.237	17.888	1.181	0.474	7.80%	N/A	Pass	25%
Matrix Spike/Matrix Spike Duplicate Sample Assessment	Sample I.D.	Sample MS I.D.	Sample MSD I.D.	Sample Matrix Spike Result:	Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	Sample Matrix Spike Duplicate Result:	Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):	Duplicate Numerical Performance Indicator:	(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	MS/ MSD Duplicate Status vs Numerical Indicator:	MS/ MSD Duplicate Status vs RPD:	% RPD Limit:
										_		

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Duplicate Status vs RPD: % RPD Limit:

1.142 14.724 1.298 NO -4.151 24.99% N/A Pass 25%

Duplicate Numerical Performance Indicator: (Based on the LCS/LCSD Percent Recoveries) Duplicate RPD: Duplicate Status vs Numerical Indicator:

Are sample and/or duplicate results below RL?

Sample I.D..

Duplicate Sample I.D..

Sample Result (DCIL, g, F):

Sample Result (DCIL, g, F):

Sample Duplicate Result (DCIL, g, F):

Sample Duplicate Result (DCIL, g, F):

Duplicate Sample Assessment

comments: LCSD fail righ oth, and sawfle saveltes - RL B 1.0 pall

TAR_63365_W.xls Total Alpha Radium (ENV-FRM-GBUR-0142 R0).xls

Pace Analytical"

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample Matrix Spike Control Assessment

LAL 11/13/2021 63367 DW Analyst: Date: Worklist:

MS/MSD 2

10/11/2021 MS/MSD 1

> Sample I.D. Sample MS I.D. Sample MSD I.D. Sample Collection Date:

Spike I.D.:

MS/MSD Decay Corrected Spike Concentration (pCi/mL):

Spike Volume Used in MS (mL): Spike Volume Used in MSD (mL): MS Aliquot (L, g, F): MS Target Conc.(pCi/L, g, F): MSD Aliquot (L, g, F): MSD Target Conc. (pCi/L, g, F): MS Spike Uncertainty (calculated): MSD Spike Uncertainty (calculated):

Method Blank Assessment	
MB Sample ID	2269081
MB concentration:	0.522
M/B Counting Uncertainty:	0.337
MB MDC:	0.615
MB Numerical Performance Indicator:	3.04
MB Status vs Numerical Indicator:	N/A
MB Status vs. MDC:	Pass

	_	L			ź.											
2	LCSD63367									, "						
LCSD (Y or N)?	LCS63367	12/3/2021	19-033	24.032	0.10	0.201	11.954	0.143	12.295	1.198	0.55	102.85%	N/A	Pass	125%	75%
ol Sample Assessment		Count Date:	Spike I.D.:	Decay Corrected Spike Concentration (pCi/mL):	Volume Used (mL):	Aliquot Volume (L, g, F):	Target Conc. (pCi/L, g, F):	Uncertainty (Calculated):	Result (pCI/L, g, F):	LCS/LCSD Counting Uncertainty (pCi/L, g, F):	Numerical Performance Indicator:	Percent Recovery:	Status vs Numerical Indicator:	Status vs Recovery:	Upper % Recovery Limits:	Lower % Recovery Limits:

92567366023 92567366024 92677866024 19-033 24.033 0.20 0.20 0.27 17.614 0.297 16.202 0.211 0.194 1.179 0.338 16.615 1.118 1.11

Sample Result:

-aboratory Contri

Sample Result Counting Uncertainty (pCi/L, g, F): Sample Matrix Spike Result:

Matrix Spike Result Counting Uncertainty (pCi/L, g, F):

Sample Matrix Spike Duplicate Result:

Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):

MS Numerical Performance Indicator MSD Numerical Performance Indicator

MS Percent Recovery MSD Percent Recovery MS Status vs Numerical Indicator MSD Status vs Numerical Indicator

Duplicate Sample Assessment		Matrix Spike/Matrix Spike Duplicate Sample Assessment	cate Sample Assessment
Sample I.D.: Duplicate Sample I.D.			Sample MS
Sample Result (p.Cl/L, g, F):			Sample MSD
Sample Duplicate Result (pCi/L, g, r).		 Matrix Spike Result (Sample Matrix Spike Result Counting Uncertainty (PCM)
Sample Duplicate Result Counting Uncertainty (pCi/L, g, F):		 Sam	Sample Matrix Spike Duplicate Re
Are sample and/or duplicate results below RL?	See Below ##	Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, o	Counting Uncertainty (pCi/L. c
Duplicate Numerical Performance Indicator:		Duplicate	Duplicate Numerical Performance Indic
Duplicate RPD:		 (Based on the Percent Reco	(Based on the Percent Recoveries) MS/ MSD Duplicate F
Duplicate Status vs Numerical Indicator:		 MS/ MSD Duplic	MS/ MSD Duplicate Status vs Numerical Indic
Duplicate Status vs RPD:		 Ž	MS/ MSD Duplicate Status vs F
% RPD Limit:			% RPD L

92567366023 92567366025 92567366024

Sample I.D. Sample MS I.D. Sample MSD I.D. Sample Matrix Spike Result:

MS/MSD Upper % Recovery Limits: MS/MSD Lower % Recovery Limits

MS Status vs Recovery

MSD Status vs Recovery

1.188 16.716 1.118 -0.120 9.00%

N/A Pass 25%

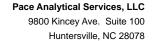
MS/ MSD Duplicate Status vs RPD: % RPD Limit:

16.615

Matrix Spike Result Counting Uncertainty (pCi/L, g, F): Sample Matrix Spike Duplicate Result:

Matrix Spike Duplicate Result Counting Uncertainty (pC/I/L, g, F): Duplicate Numerical Performance Indicator:

(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:


MS/ MSD Duplicate Status vs Numerical Indicator.

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

Printed: 12/3/2021 5:04 PM

TAR DW QC

(704)875-9092

January 21, 2022

Laura Midkiff Alabama Power 744 Highway 87 GSC #8 Calera, AL 35040

RE: Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Dear Laura Midkiff:

Enclosed are the analytical results for sample(s) received by the laboratory on October 19, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

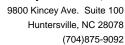
Pace Analytical Services - Greensburg

(Greensburg, PA) - Revision 1 - This report replaces the January, 13, 2022 report. This project was revised on January, 20, 2022 to update 92567366035 results.

(Greensburg, PA) - Revision 2 - This report replaces the January, 20, 2022 report. This project was revised on January, 21, 2022 to correct the revision 1 note. Revision 1 replaces the December, 13, 2022 report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,


Micole D'oles

Nicole D'Oleo nicole.d'oleo@pacelabs.com (704)875-9092 Project Manager

Enclosures

cc: Brooke Caton, Alabama Power Renee Jernigan, Alabama Power

CERTIFICATIONS

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617

New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

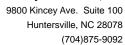
Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

(704)875-9092



SAMPLE SUMMARY

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92567366001	BB18676 PZ-2	Water	10/05/21 11:00	10/19/21 00:00
92567366002	BB18677 MW-6	Water	10/05/21 12:10	10/19/21 00:00
92567366003	BB18677 MW-6 MS	Water	10/05/21 12:10	10/19/21 00:00
92567366004	BB18677 MW-6 MSD	Water	10/05/21 12:10	10/19/21 00:00
92567366005	BB18678 MW-3	Water	10/05/21 13:25	10/19/21 00:00
92567366006	BB18679 MW-4	Water	10/05/21 14:35	10/19/21 00:00
92567366007	BB18680 MW-4 DUP	Water	10/05/21 14:35	10/19/21 00:00
92567366008	BB18681 FB-1	Water	10/05/21 15:30	10/19/21 00:00
92567366009	BB18682 MW-17	Water	10/06/21 08:45	10/19/21 00:00
92567366010	BB18683 MW-16	Water	10/06/21 10:10	10/19/21 00:00
92567366011	BB18747 EB-2	Water	10/05/21 10:20	10/19/21 00:00
92567366012	BB18748 PZ-1	Water	10/05/21 11:00	10/19/21 00:00
92567366013	BB18748 PZ-1 MS	Water	10/05/21 11:00	10/19/21 00:00
92567366014	BB18748 PZ-1 MSD	Water	10/05/21 11:00	10/19/21 00:00
92567366015	BB18749 MW-5	Water	10/05/21 11:53	10/19/21 00:00
92567366016	BB18750 MW-5 DUP	Water	10/05/21 11:53	10/19/21 00:00
92567366017	BB18751 MW-12	Water	10/05/21 12:58	10/19/21 00:00
92567366018	BB18752 MW-1	Water	10/05/21 14:18	10/19/21 00:00
92567366019	BB18753 MW-7	Water	10/05/21 15:11	10/19/21 00:00
92567366020	BB18754 MW-2VA	Water	10/06/21 10:25	10/19/21 00:00
92567366021	BB18755 MW-21VC	Water	10/06/21 12:46	10/19/21 00:00
92567366022	BB18756 FB-2	Water	10/06/21 13:15	10/19/21 00:00
92567366023	BB19012 MW-22VB	Water	10/11/21 11:37	10/19/21 00:00
92567366024	BB19012 MW-22VB MS	Water	10/11/21 11:37	10/19/21 00:00
92567366025	BB19012 MW-22VB MSD	Water	10/11/21 11:37	10/19/21 00:00
92567366026	BB19013 MW-19H	Water	10/11/21 12:57	10/19/21 00:00
92567366027	BB19014 MW-2	Water	10/11/21 14:49	10/19/21 00:00
92567366028	BB19015 FB-3	Water	10/11/21 15:15	10/19/21 00:00
92567366029	BB19016 MW-2VB	Water	10/12/21 09:28	10/19/21 00:00
92567366030	BB19017 MW-18H	Water	10/12/21 11:17	10/19/21 00:00
92567366031	BB19018 PZ-5	Water	10/12/21 12:16	10/19/21 00:00
92567366032	BB19019 PZ-6	Water	10/12/21 13:40	10/19/21 00:00
92567366033	BB19020 MW-4V	Water	10/11/21 12:40	10/19/21 00:00
92567366034	BB19021 MW-20H	Water	10/11/21 13:30	10/19/21 00:00
92567366035	BB19022 MW-10	Water	10/11/21 14:40	10/19/21 00:00
92567366036	BB19023 MW-14	Water	10/12/21 08:30	10/19/21 00:00

SAMPLE SUMMARY

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92567366038	BB19025 MW-8	Water	10/12/21 10:48	10/19/21 00:00
92567366039	BB19026 MW-9	Water	10/12/21 11:55	10/19/21 00:00
92567366040	BB19027 MW-11	Water	10/12/21 12:55	10/19/21 00:00
92567366041	BB19028 EB-1	Water	10/12/21 13:30	10/19/21 00:00

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92567366001	BB18676 PZ-2	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366002	BB18677 MW-6	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366003	BB18677 MW-6 MS	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
92567366004	BB18677 MW-6 MSD	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
92567366005	BB18678 MW-3	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366006	BB18679 MW-4	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366007	BB18680 MW-4 DUP	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366008	BB18681 FB-1	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366009	BB18682 MW-17	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366010	BB18683 MW-16	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366011	BB18747 EB-2	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366012	BB18748 PZ-1	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366013	BB18748 PZ-1 MS	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
92567366014	BB18748 PZ-1 MSD	EPA 9315	LAL	1	PASI-PA

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

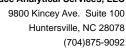
Pace Project No.: 92567366

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 9320	VAL	1	PASI-PA
92567366015	BB18749 MW-5	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366016	BB18750 MW-5 DUP	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366017	BB18751 MW-12	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366018	BB18752 MW-1	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366019	BB18753 MW-7	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366020	BB18754 MW-2VA	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366021	BB18755 MW-21VC	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366022	BB18756 FB-2	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366023	BB19012 MW-22VB	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366024	BB19012 MW-22VB MS	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
92567366025	BB19012 MW-22VB MSD	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
92567366026	BB19013 MW-19H	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366027	BB19014 MW-2	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		Total Radium Calculation	JAL	1	PASI-PA
92567366028	BB19015 FB-3	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366029	BB19016 MW-2VB	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366030	BB19017 MW-18H	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366031	BB19018 PZ-5	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA PASI-PA PASI-PA PASI-PA PASI-PA PASI-PA PASI-PA PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366032	BB19019 PZ-6	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366033	BB19020 MW-4V	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366034	BB19021 MW-20H	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366035	BB19022 MW-10	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366036	BB19023 MW-14	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366037	BB19024 MW-14 DUP	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366038	BB19025 MW-8	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366039	BB19026 MW-9	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA

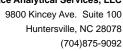


Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92567366040	BB19027 MW-11	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92567366041	BB19028 EB-1	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA

PASI-PA = Pace Analytical Services - Greensburg


Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Date: January 21, 2022

BB19022 MW-10 (Lab ID: 92567366035)

• CLient requested investigation on results for sample 92567366035. Sample was recounted. Detector originally used appears to have been the issue. Recount results have been reported, and original results cancelled.

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Method: EPA 9315

Description: 9315 Total Radium **Client:** Alabama Power **Date:** January 21, 2022

General Information:

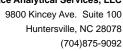
41 samples were analyzed for EPA 9315 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.


Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Method: EPA 9320

Description: 9320 Radium 228 **Client:** Alabama Power **Date:** January 21, 2022

General Information:

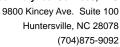
41 samples were analyzed for EPA 9320 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.


Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Method:Total Radium CalculationDescription:Total Radium 228+226Client:Alabama PowerDate:January 21, 2022

General Information:

35 samples were analyzed for Total Radium Calculation by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

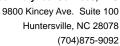
Sample: BB18676 PZ-2 PWS:	Lab ID: 92567 Site ID:	7366001 Collected: 10/05/21 11:00 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.184U ± 0.173 (0.315) C:93% T:NA	pCi/L	12/03/21 08:4	8 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.941 ± 0.426 (0.713) C:82% T:83%	pCi/L	11/08/21 11:15	5 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.13 ± 0.599 (1.03)	pCi/L	12/03/21 16:58	8 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Sample: BB18677 MW-6 PWS:	Lab ID: 9256736 Site ID:	66002 Collected: 10/05/21 12:10 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	rvices - Greensburg				
Radium-226	EPA 9315	0.107U ± 0.155 (0.335) C:93% T:NA	pCi/L	12/03/21 08:48	3 13982-63-3	
	Pace Analytical Se	rvices - Greensburg				
Radium-228	EPA 9320	1.25 ± 0.527 (0.863) C:78% T:81%	pCi/L	11/08/21 14:35	5 15262-20-1	
	Pace Analytical Se	rvices - Greensburg				
Total Radium	Total Radium Calculation	1.36 ± 0.682 (1.20)	pCi/L	12/03/21 16:58	3 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report


Pace Project No.: 92567366

 Sample:
 BB18677 MW-6 MS
 Lab ID:
 92567366003
 Collected:
 10/05/21 12:10
 Received:
 10/19/21 00:00
 Matrix: Water

 PW/S:
 Site ID:
 Sample Type:

C:NA T:NA

PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac Units CAS No. **Parameters** Method Analyzed Qual Pace Analytical Services - Greensburg 98.32 %REC ± NA (NA) EPA 9315 Radium-226 pCi/L 12/03/21 08:48 13982-63-3 C:NA T:NA Pace Analytical Services - Greensburg 130.33 %REC ± NA (NA) EPA 9320 Radium-228 pCi/L 11/08/21 14:35 15262-20-1

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Sample: BB18677 MW-6 MSD Lab ID: 92567366004 Collected: 10/05/21 12:10 Received: 10/19/21 00:00 Matrix: Water

Site ID: Sample Type:

PWS: Act ± Unc (MDC) Carr Trac **Parameters** Method Units Analyzed CAS No. Qual Pace Analytical Services - Greensburg 106.30 %REC 7.80 RPD ± Radium-226 EPA 9315 pCi/L 12/03/21 08:48 13982-63-3 NA (NA) C:NA T:NA Pace Analytical Services - Greensburg EPA 9320 145.98 %REC 11.33 RPD ± Radium-228 pCi/L 11/08/21 14:35 15262-20-1

NA (NA) C:NA T:NA

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Sample: BB18678 MW-3 PWS:	Lab ID: 9256 Site ID:	7366005 Collected: 10/05/21 13:25 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.231U ± 0.176 (0.310) C:97% T:NA	pCi/L	12/03/21 08:4	8 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	2.98 ± 0.812 (0.891) C:74% T:80%	pCi/L	11/08/21 14:3	5 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	3.21 ± 0.988 (1.20)	pCi/L	12/03/21 16:5	8 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Sample: BB18679 MW-4 PWS:	Lab ID: 9256736 Site ID:	6006 Collected: 10/05/21 14:35 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Ser	vices - Greensburg				
Radium-226	EPA 9315	0.804 ± 0.308 (0.341) C:97% T:NA	pCi/L	12/03/21 08:4	8 13982-63-3	
	Pace Analytical Ser	vices - Greensburg				
Radium-228	EPA 9320	0.950 ± 0.474 (0.839) C:74% T:88%	pCi/L	11/08/21 14:3	5 15262-20-1	
	Pace Analytical Ser	vices - Greensburg				
Total Radium	Total Radium Calculation	1.75 ± 0.782 (1.18)	pCi/L	12/03/21 16:58	8 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Sample: BB18680 MW-4 DUP PWS:	Lab ID: 925673 Site ID:	666007 Collected: 10/05/21 14:35 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	ervices - Greensburg		•		
Radium-226	EPA 9315	0.366 ± 0.205 (0.300) C:99% T:NA	pCi/L	12/03/21 08:48	3 13982-63-3	
	Pace Analytical So	ervices - Greensburg				
Radium-228	EPA 9320	0.943 ± 0.429 (0.705) C:72% T:93%	pCi/L	11/08/21 14:36	5 15262-20-1	
	Pace Analytical So	ervices - Greensburg				
Total Radium	Total Radium Calculation	1.31 ± 0.634 (1.01)	pCi/L	12/03/21 16:58	3 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Sample: BB18681 FB-1 PWS:	Lab ID: 9256736 Site ID:	Collected: 10/05/21 15:30 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Ser	rvices - Greensburg				
Radium-226	EPA 9315	-0.0744U ± 0.0619 (0.273) C:99% T:NA	pCi/L	12/03/21 08:48	3 13982-63-3	
	Pace Analytical Ser	rvices - Greensburg				
Radium-228	EPA 9320	1.16 ± 0.489 (0.798) C:75% T:91%	pCi/L	11/08/21 14:35	5 15262-20-1	
	Pace Analytical Ser	rvices - Greensburg				
Total Radium	Total Radium Calculation	1.16 ± 0.551 (1.07)	pCi/L	12/03/21 16:58	3 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Sample: BB18682 MW-17 PWS:	Lab ID: 9256 Site ID:	7366009 Collected: 10/06/21 08:45 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.319U ± 0.217 (0.394) C:99% T:NA	pCi/L	12/03/21 08:28	3 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	1.69 ± 0.600 (0.871) C:71% T:83%	pCi/L	11/08/21 14:36	5 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	2.01 ± 0.817 (1.27)	pCi/L	12/03/21 16:58	3 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Sample: BB18683 MW-16 PWS:	Lab ID: 9256 Site ID:	Collected: 10/06/21 10:10 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.193U ± 0.270 (0.597) C:91% T:NA	pCi/L	12/03/21 08:10	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.962 ± 0.486 (0.852) C:73% T:82%	pCi/L	11/08/21 14:36	5 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.16U ± 0.756 (1.45)	pCi/L	12/03/21 16:58	3 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Sample: BB18747 EB-2 PWS:	Lab ID: 9256 Site ID:	7366011 Collected: 10/05/21 10:20 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	-0.145U ± 0.196 (0.564) C:91% T:NA	pCi/L	12/03/21 08:1	1 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	2.87 ± 0.757 (0.795) C:78% T:88%	pCi/L	11/08/21 14:3	5 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	2.87 ± 0.953 (1.36)	pCi/L	12/03/21 16:5	8 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Sample: BB18748 PZ-1 PWS:	Lab ID: 9256 Site ID:	7366012 Collected: 10/05/21 11:00 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.0760U ± 0.174 (0.406) C:92% T:NA	pCi/L	12/03/21 08:13	3 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	1.99 ± 0.628 (0.844) C:71% T:86%	pCi/L	11/15/21 11:02	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	2.07 ± 0.802 (1.25)	pCi/L	12/03/21 17:05	7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Sample: BB18748 PZ-1 MS Lab ID: 92567366013 Collected: 10/05/21 11:00 Received: 10/19/21 00:00 Matrix: Water

C:NA T:NA

PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac Units CAS No. **Parameters** Method Analyzed Qual Pace Analytical Services - Greensburg 105.98 %REC ± NA (NA) EPA 9315 Radium-226 pCi/L 12/03/21 08:13 13982-63-3 C:NA T:NA Pace Analytical Services - Greensburg 63.31 %REC ± NA (NA) EPA 9320 Radium-228 pCi/L 11/15/21 11:01 15262-20-1

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

- 400 : 10,000 : 1011						
Sample: BB18748 PZ-1 MSD PWS:	Lab ID: 92567 Site ID:	366014 Collected: 10/05/21 11:00 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	Services - Greensburg				
Radium-226	EPA 9315	94.82 %REC 11.11 RPD ± NA (NA) C:NA T:NA	pCi/L	12/03/21 08:3	2 13982-63-3	
	Pace Analytical S	Services - Greensburg				
Radium-228	EPA 9320	70.69 %REC 11.03 RPD ± NA (NA) C:NA T:NA	pCi/L	11/15/21 11:01	1 15262-20-1	

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Sample: BB18749 MW-5 PWS:	Lab ID: 9256736 Site ID:	66015 Collected: 10/05/21 11:53 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Ser	rvices - Greensburg				
Radium-226	EPA 9315	0.332U ± 0.225 (0.408) C:95% T:NA	pCi/L	12/03/21 14:09	13982-63-3	
	Pace Analytical Ser	rvices - Greensburg				
Radium-228	EPA 9320	1.11 ± 0.465 (0.750) C:73% T:94%	pCi/L	11/08/21 14:36	5 15262-20-1	
	Pace Analytical Ser	rvices - Greensburg				
Total Radium	Total Radium Calculation	1.44 ± 0.690 (1.16)	pCi/L	12/03/21 16:58	3 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Sample: BB18750 MW-5 DUP PWS:	Lab ID: 925673 Site ID:	66016 Collected: 10/05/21 11:53 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	ervices - Greensburg				
Radium-226	EPA 9315	0.231U ± 0.182 (0.329) C:95% T:NA	pCi/L	12/03/21 14:10	13982-63-3	
	Pace Analytical Se	ervices - Greensburg				
Radium-228	EPA 9320	1.28 ± 0.510 (0.787) C:75% T:83%	pCi/L	11/08/21 14:36	5 15262-20-1	
	Pace Analytical Se	ervices - Greensburg				
Total Radium	Total Radium Calculation	1.51 ± 0.692 (1.12)	pCi/L	12/03/21 16:58	3 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Sample: BB18751 MW-12 PWS:	Lab ID: 9256 Site ID:	7366017 Collected: 10/05/21 12:58 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.214U ± 0.194 (0.383) C:95% T:NA	pCi/L	12/03/21 08:1	2 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	1.27 ± 0.493 (0.760) C:77% T:88%	pCi/L	11/08/21 14:36	6 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.48 ± 0.687 (1.14)	pCi/L	12/03/21 16:5	8 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Sample: BB18752 MW-1 PWS:	Lab ID: 92567366 Site ID:	O18 Collected: 10/05/21 14:18 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	ices - Greensburg				
Radium-226		0.812 ± 0.281 (0.218) C:95% T:NA	pCi/L	12/03/21 08:12	2 13982-63-3	
	Pace Analytical Serv	ices - Greensburg				
Radium-228		0.395U ± 0.408 (0.845) C:75% T:83%	pCi/L	11/08/21 14:36	5 15262-20-1	
	Pace Analytical Serv	ices - Greensburg				
Total Radium	Total Radium Calculation	1.21 ± 0.689 (1.06)	pCi/L	12/03/21 16:58	3 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Sample: BB18753 MW-7 PWS:	Lab ID: 9256 Site ID:	7366019 Collected: 10/05/21 15:11 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.402 ± 0.215 (0.318) C:96% T:NA	pCi/L	12/03/21 08:12	2 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.869 ± 0.441 (0.783) C:80% T:89%	pCi/L	11/08/21 14:36	5 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.27 ± 0.656 (1.10)	pCi/L	12/03/21 16:58	8 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Sample: BB18754 MW-2VA PWS:	Lab ID: 9256 Site ID:	7366020 Collected: 10/06/21 10:25 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.458 ± 0.242 (0.356) C:89% T:NA	pCi/L	12/03/21 08:12	2 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.288U ± 0.313 (0.651) C:85% T:89%	pCi/L	11/08/21 11:15	5 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.746U ± 0.555 (1.01)	pCi/L	12/03/21 16:58	3 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Sample: BB18755 MW-21VC PWS:	Lab ID: 9256736 Site ID:	66021 Collected: 10/06/21 12:46 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	rvices - Greensburg				
Radium-226	EPA 9315	0.243U ± 0.261 (0.554) C:96% T:NA	pCi/L	12/03/21 08:13	3 13982-63-3	
	Pace Analytical Se	rvices - Greensburg				
Radium-228	EPA 9320	1.54 ± 0.558 (0.847) C:74% T:88%	pCi/L	11/15/21 11:01	15262-20-1	
	Pace Analytical Se	rvices - Greensburg				
Total Radium	Total Radium Calculation	1.78 ± 0.819 (1.40)	pCi/L	12/03/21 17:05	7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

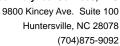
Pace Project No.: 92567366

Sample: BB18756 FB-2 PWS:	Lab ID: 9256 Site ID:	7366022 Collected: 10/06/21 13:15 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.246U ± 0.221 (0.433) C:97% T:NA	pCi/L	12/03/21 08:3	2 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.412U ± 0.393 (0.806) C:71% T:85%	pCi/L	11/15/21 11:01	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.658U ± 0.614 (1.24)	pCi/L	12/03/21 17:0	5 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Sample: BB19012 MW-22VB PWS:	Lab ID: 9256 Site ID:	7366023 Collected: 10/11/21 11:37 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	1.18 ± 0.378 (0.361) C:80% T:NA	pCi/L	12/03/21 08:39	9 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.113U ± 0.360 (0.812) C:70% T:85%	pCi/L	11/17/21 11:24	1 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.29 ± 0.738 (1.17)	pCi/L	12/03/21 17:1	1 7440-14-4	



Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Sample: BB19012 MW-22VB MS Lab ID: 92567366024 Collected: 10/11/21 11:37 Received: 10/19/21 00:00 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac Units CAS No. **Parameters** Method Analyzed Qual Pace Analytical Services - Greensburg 87.64 %REC ± NA (NA) EPA 9315 Radium-226 pCi/L 12/03/21 08:20 13982-63-3 C:NA T:NA Pace Analytical Services - Greensburg 88.82 %REC ± NA (NA) EPA 9320 Radium-228 pCi/L 11/17/21 11:24 15262-20-1

C:NA T:NA

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Sample: BB19012 MW-22VB MSD Lab ID: 92567366025 Collected: 10/11/21 11:37 Received: 10/19/21 00:00 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac CAS No. **Parameters** Method Units Analyzed Qual Pace Analytical Services - Greensburg EPA 9315 95.89 %REC 9.00 RPD ± Radium-226 pCi/L 12/03/21 08:20 13982-63-3 NA (NA) C:NA T:NA Pace Analytical Services - Greensburg EPA 9320 91.27 %REC 2.72 RPD ± Radium-228 pCi/L 11/17/21 11:24 15262-20-1 NA (NA)

C:NA T:NA

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Sample: BB19013 MW-19H PWS:	Lab ID: 9256736 Site ID:	66026 Collected: 10/11/21 12:57 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Ser	vices - Greensburg				
Radium-226	EPA 9315	0.202U ± 0.185 (0.364) C:96% T:NA	pCi/L	12/03/21 08:37	7 13982-63-3	
	Pace Analytical Ser	vices - Greensburg				
Radium-228	EPA 9320	-0.0132U ± 0.345 (0.813) C:68% T:84%	pCi/L	11/15/21 11:01	15262-20-1	
	Pace Analytical Ser	vices - Greensburg				
Total Radium	Total Radium Calculation	0.202U ± 0.530 (1.18)	pCi/L	12/03/21 17:05	5 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Sample: BB19014 MW-2 PWS:	Lab ID: 9256730 Site ID:	66027 Collected: 10/11/21 14:49 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	rvices - Greensburg				
Radium-226	EPA 9315	0.569 ± 0.264 (0.390) C:101% T:NA	pCi/L	12/03/21 08:38	3 13982-63-3	
	Pace Analytical Se	rvices - Greensburg				
Radium-228	EPA 9320	1.81 ± 0.567 (0.728) C:70% T:89%	pCi/L	11/15/21 11:01	15262-20-1	
	Pace Analytical Se	rvices - Greensburg				
Total Radium	Total Radium Calculation	2.38 ± 0.831 (1.12)	pCi/L	12/03/21 17:05	5 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Sample: BB19015 FB-3 PWS:	Lab ID: 9256736 Site ID:	G6028 Collected: 10/11/21 15:15 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Ser	rvices - Greensburg				
Radium-226	EPA 9315	0.109U ± 0.225 (0.520) C:87% T:NA	pCi/L	12/03/21 08:38	8 13982-63-3	
	Pace Analytical Ser	rvices - Greensburg				
Radium-228	EPA 9320	0.898 ± 0.440 (0.760) C:69% T:88%	pCi/L	11/15/21 11:02	2 15262-20-1	
	Pace Analytical Ser	rvices - Greensburg				
Total Radium	Total Radium Calculation	1.01U ± 0.665 (1.28)	pCi/L	12/03/21 17:0	5 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Sample: BB19016 MW-2VB PWS:	Lab ID: 92567 Site ID:	7366029 Collected: 10/12/21 09:28 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.0902U ± 0.202 (0.471) C:97% T:NA	pCi/L	12/03/21 08:38	8 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.233U ± 0.374 (0.812) C:70% T:82%	pCi/L	11/15/21 11:00	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.323U ± 0.576 (1.28)	pCi/L	12/03/21 17:0	5 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Sample: BB19017 MW-18H PWS:	Lab ID: 9256 Site ID:	7366030 Collected: 10/12/21 11:17 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.0898U ± 0.136 (0.299) C:91% T:NA	pCi/L	12/03/21 08:38	8 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.293U ± 0.376 (0.800) C:70% T:84%	pCi/L	11/15/21 11:02	2 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.383U ± 0.512 (1.10)	pCi/L	12/03/21 17:0	5 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Sample: BB19018 PZ-5 PWS:	Lab ID: 9256 Site ID:	7366031 Collected: 10/12/21 12:16 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.114U ± 0.167 (0.368) C:89% T:NA	pCi/L	12/03/21 08:38	8 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.849 ± 0.420 (0.741) C:72% T:96%	pCi/L	11/15/21 11:02	2 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.963U ± 0.587 (1.11)	pCi/L	12/03/21 17:0	5 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Sample: BB19019 PZ-6 PWS:	Lab ID: 9256 Site ID:	7366032 Collected: 10/12/21 13:40 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.823 ± 0.312 (0.397) C:97% T:NA	pCi/L	12/03/21 08:38	8 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.743U ± 0.445 (0.832) C:71% T:85%	pCi/L	11/15/21 11:02	2 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.57 ± 0.757 (1.23)	pCi/L	12/03/21 17:0	5 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Sample: BB19020 MW-4V PWS:	Lab ID: 92567 3 Site ID:	366033 Collected: 10/11/21 12:40 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	ervices - Greensburg				
Radium-226	EPA 9315	0.410U ± 0.254 (0.425) C:95% T:NA	pCi/L	12/03/21 08:38	3 13982-63-3	
	Pace Analytical S	ervices - Greensburg				
Radium-228	EPA 9320	1.17 ± 0.511 (0.850) C:68% T:85%	pCi/L	11/15/21 11:02	15262-20-1	
	Pace Analytical S	ervices - Greensburg				
Total Radium	Total Radium Calculation	1.58 ± 0.765 (1.28)	pCi/L	12/03/21 17:05	7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Sample: BB19021 MW-20H PWS:	Lab ID: 92567366 Site ID:	Collected: 10/11/21 13:30 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	vices - Greensburg				
Radium-226	EPA 9315	0.506 ± 0.236 (0.289) C:94% T:NA	pCi/L	12/03/21 08:39	9 13982-63-3	
	Pace Analytical Serv	vices - Greensburg				
Radium-228	EPA 9320	0.585U ± 0.455 (0.906) C:70% T:82%	pCi/L	11/15/21 11:02	2 15262-20-1	
	Pace Analytical Serv	vices - Greensburg				
Total Radium	Total Radium Calculation	1.09U ± 0.691 (1.20)	pCi/L	12/03/21 17:0	5 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Sample: BB19022 MW-10 PWS:	Lab ID: 9256736 Site ID:	66035 Collected: 10/11/21 14:40 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Ser	vices - Greensburg				
Radium-226	EPA 9315	0.330 ± 0.189 (0.269) C:94% T:NA	pCi/L	01/18/22 13:44	4 13982-63-3	
	Pace Analytical Ser	vices - Greensburg				
Radium-228	EPA 9320	0.448U ± 0.397 (0.810) C:71% T:93%	pCi/L	11/15/21 11:02	2 15262-20-1	
	Pace Analytical Ser	vices - Greensburg				
Total Radium	Total Radium Calculation	0.778U ± 0.586 (1.08)	pCi/L	01/19/22 18:25	5 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Sample: BB19023 MW-14 PWS:	Lab ID: 925673 Site ID:	366036 Collected: 10/12/21 08:30 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	ervices - Greensburg				
Radium-226	EPA 9315	1.14 ± 0.388 (0.450) C:94% T:NA	pCi/L	12/03/21 08:39	9 13982-63-3	
	Pace Analytical S	ervices - Greensburg				
Radium-228	EPA 9320	0.468U ± 0.365 (0.724) C:74% T:87%	pCi/L	11/15/21 11:03	15262-20-1	
	Pace Analytical S	ervices - Greensburg				
Total Radium	Total Radium Calculation	1.61 ± 0.753 (1.17)	pCi/L	12/03/21 17:05	5 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Sample: BB19024 MW-14 DUP PWS:	Lab ID: 925673 Site ID:	666037 Collected: 10/12/21 08:30 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	ervices - Greensburg				
Radium-226	EPA 9315	0.526 ± 0.280 (0.415) C:94% T:NA	pCi/L	12/03/21 10:16	13982-63-3	
	Pace Analytical Se	ervices - Greensburg				
Radium-228	EPA 9320	1.08 ± 0.493 (0.837) C:73% T:82%	pCi/L	11/15/21 11:03	15262-20-1	
	Pace Analytical Se	ervices - Greensburg				
Total Radium	Total Radium Calculation	1.61 ± 0.773 (1.25)	pCi/L	12/03/21 17:05	5 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Sample: BB19025 MW-8 PWS:	Lab ID: 9256 Site ID:	7366038 Collected: 10/12/21 10:48 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.291U ± 0.209 (0.346) C:95% T:NA	pCi/L	12/03/21 08:2	1 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	-0.0878U ± 0.347 (0.820) C:76% T:85%	pCi/L	11/15/21 11:03	3 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.291U ± 0.556 (1.17)	pCi/L	12/03/21 17:1	1 7440-14-4	

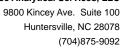
Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Sample: BB19026 MW-9 PWS:	Lab ID: 9256 Site ID:	7366039 Collected: 10/12/21 11:55 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.311U ± 0.242 (0.454) C:95% T:NA	pCi/L	12/03/21 08:2	1 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	-0.0569U ± 0.341 (0.797) C:76% T:91%	pCi/L	11/15/21 11:03	3 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.311U ± 0.583 (1.25)	pCi/L	12/03/21 17:1	1 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366


Sample: BB19027 MW-11 PWS:	Lab ID: 9256 Site ID:	7366040 Collected: 10/12/21 12:55 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.641 ± 0.322 (0.528) C:102% T:NA	pCi/L	12/03/21 08:2	1 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.374U ± 0.383 (0.796) C:70% T:89%	pCi/L	11/15/21 11:03	3 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.02U ± 0.705 (1.32)	pCi/L	12/03/21 17:1	1 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Sample: BB19028 EB-1 PWS:	Lab ID: 92567 Site ID:	7366041 Collected: 10/12/21 13:30 Sample Type:	Received:	10/19/21 00:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg		,		
Radium-226	EPA 9315	0.338U ± 0.217 (0.350) C:85% T:NA	pCi/L	12/03/21 08:2	1 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.0413U ± 0.298 (0.692) C:68% T:85%	pCi/L	11/17/21 11:24	4 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.379U ± 0.515 (1.04)	pCi/L	12/03/21 17:1	1 7440-14-4	

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

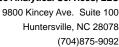
Pace Project No.: 92567366

QC Batch: 470012 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92567366023, 92567366024, 92567366025, 92567366038, 92567366039, 92567366040, 92567366041


METHOD BLANK: 2269081 Matrix: Water

Associated Lab Samples: 92567366023, 92567366024, 92567366025, 92567366038, 92567366039, 92567366040, 92567366041

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.522 ± 0.345 (0.615) C:92% T:NA
 pCi/L
 12/03/21 08:39

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

QC Batch: 470011 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Laboratory: Pace Analytical Services - Greensburg

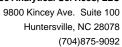
Associated Lab Samples: 92567366012, 92567366013, 92567366014, 92567366021, 92567366022, 92567366026, 92567366027,

92567366028, 92567366029, 92567366030, 92567366031, 92567366032, 92567366033, 92567366034,

92567366035, 92567366036, 92567366037

METHOD BLANK: 2269079 Matrix: Water

Associated Lab Samples: 92567366012, 92567366013, 92567366014, 92567366021, 92567366022, 92567366026, 92567366027,


92567366028, 92567366029, 92567366030, 92567366031, 92567366032, 92567366033, 92567366034,

92567366035, 92567366036, 92567366037

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.276 ± 0.303 (0.633) C:96% T:NA
 pCi/L
 12/03/21 08:13

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

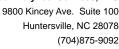
Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

QC Batch: 470829 Analysis Method: EPA 9320

QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Laboratory: Pace Analytical Services - Greensburg


Associated Lab Samples: 92567366023, 92567366024, 92567366025, 92567366041

METHOD BLANK: 2272897 Matrix: Water
Associated Lab Samples: 92567366023, 92567366024, 92567366025, 92567366041

Parameter Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers

Radium-228 -0.00736 ± 0.282 (0.665) C:71% T:86% pCi/L 11/17/21 14:28

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

QC Batch: 470828 Analysis Method: EPA 9320
QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92567366012, 92567366013, 92567366014, 92567366021, 92567366022, 92567366026, 92567366027, 92567366028, 92567366029, 92567366030, 92567366031, 92567366032, 92567366033, 92567366034,

92567366035, 92567366036, 92567366037, 92567366038, 92567366039, 92567366040

METHOD BLANK: 2272896 Matrix: Water

Associated Lab Samples: 92567366012, 92567366013, 92567366014, 92567366021, 92567366022, 92567366026, 92567366027,

92567366028, 92567366029, 92567366030, 92567366031, 92567366032, 92567366033, 92567366034,

92567366035, 92567366036, 92567366037, 92567366038, 92567366039, 92567366040

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.309 ± 0.352 (0.742) C:77% T:92%
 pCi/L
 11/15/21 11:01

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

QC Batch: 470009 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Laboratory: Pace Analytical Services - Greensburg

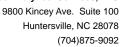
Associated Lab Samples: 92567366001, 92567366002, 92567366003, 92567366004, 92567366005, 92567366006, 92567366007,

92567366008, 92567366009, 92567366010, 92567366011, 92567366015, 92567366016, 92567366017,

92567366018, 92567366019, 92567366020

METHOD BLANK: 2269074 Matrix: Water

Associated Lab Samples: 92567366001, 92567366002, 92567366003, 92567366004, 92567366005, 92567366006, 92567366007,


92567366008, 92567366009, 92567366010, 92567366011, 92567366015, 92567366016, 92567366017,

92567366018, 92567366019, 92567366020

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 -0.0230 ± 0.117 (0.365) C:97% T:NA
 pCi/L
 12/03/21 08:48

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

QC Batch: 470827 Analysis Method: EPA 9320
QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92567366001, 92567366002, 92567366003, 92567366004, 92567366005, 92567366006, 92567366007,

 $92567366008, \, 92567366009, \, 92567366010, \, 92567366011, \, 92567366015, \, 92567366016, \, 92567366017, \, 92567366017, \, 92567366018, \, 9256$

92567366018, 92567366019, 92567366020

METHOD BLANK: 2272895 Matrix: Water

Associated Lab Samples: 92567366001, 92567366002, 92567366003, 92567366004, 92567366005, 92567366006, 92567366007,

92567366008, 92567366009, 92567366010, 92567366011, 92567366015, 92567366016, 92567366017,

92567366018, 92567366019, 92567366020

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.897 ± 0.395 (0.647) C:80% T:87%
 pCi/L
 11/08/21 11:14

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALIFIERS

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval).

Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

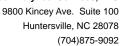
TNI - The NELAC Institute.

SAMPLE QUALIFIERS

Date: 01/21/2022 11:42 AM

Sample: 92567366035

[1] CLient requested investigation on results for sample 92567366035. Sample was recounted. Detector originally used appears to have been the issue. Recount results have been reported, and original results cancelled.


QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Date: 01/21/2022 11:42 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92567366001	BB18676 PZ-2	EPA 9315	470009	_	
2567366002	BB18677 MW-6	EPA 9315	470009		
2567366003	BB18677 MW-6 MS	EPA 9315	470009		
2567366004	BB18677 MW-6 MSD	EPA 9315	470009		
2567366005	BB18678 MW-3	EPA 9315	470009		
2567366006	BB18679 MW-4	EPA 9315	470009		
2567366007	BB18680 MW-4 DUP	EPA 9315	470009		
2567366008	BB18681 FB-1	EPA 9315	470009		
2567366009	BB18682 MW-17	EPA 9315	470009		
2567366010	BB18683 MW-16	EPA 9315	470009		
2567366011	BB18747 EB-2	EPA 9315	470009		
2567366012	BB18748 PZ-1	EPA 9315	470011		
2567366013	BB18748 PZ-1 MS	EPA 9315	470011		
2567366014	BB18748 PZ-1 MSD	EPA 9315	470011		
2567366015	BB18749 MW-5	EPA 9315	470009		
2567366016	BB18750 MW-5 DUP	EPA 9315	470009		
2567366017	BB18751 MW-12	EPA 9315	470009		
2567366018	BB18752 MW-1	EPA 9315	470009		
2567366019	BB18753 MW-7	EPA 9315	470009		
2567366020	BB18754 MW-2VA	EPA 9315	470009		
2567366021	BB18755 MW-21VC	EPA 9315	470011		
2567366022	BB18756 FB-2	EPA 9315	470011		
2567366023	BB19012 MW-22VB	EPA 9315	470012		
2567366024	BB19012 MW-22VB MS	EPA 9315	470012		
2567366025	BB19012 MW-22VB MSD	EPA 9315	470012		
2567366026	BB19013 MW-19H	EPA 9315	470011		
2567366027	BB19014 MW-2	EPA 9315	470011		
2567366028	BB19015 FB-3	EPA 9315	470011		
2567366029	BB19016 MW-2VB	EPA 9315	470011		
2567366030	BB19017 MW-18H	EPA 9315	470011		
2567366031	BB19018 PZ-5	EPA 9315	470011		
2567366032	BB19019 PZ-6	EPA 9315	470011		
2567366033	BB19020 MW-4V	EPA 9315	470011		
2567366034	BB19021 MW-20H	EPA 9315	470011		
2567366035	BB19022 MW-10	EPA 9315	470011		
2567366036	BB19023 MW-14	EPA 9315	470011		
2567366037	BB19024 MW-14 DUP	EPA 9315	470011		
2567366038	BB19025 MW-8	EPA 9315	470012		
2567366039	BB19025 MW-9	EPA 9315	470012		
2567366039 2567366040	BB19027 MW-11				
2567366040 2567366041	BB19027 MW-11 BB19028 EB-1	EPA 9315 EPA 9315	470012 470012		
2567366001	BB18676 PZ-2	EPA 9320	470827		
2567366002	BB18677 MW-6	EPA 9320	470827		
2567366003	BB18677 MW-6 MS	EPA 9320	470827		
92567366004	BB18677 MW-6 MSD	EPA 9320	470827		

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Date: 01/21/2022 11:42 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92567366005	BB18678 MW-3	EPA 9320	470827	_	
2567366006	BB18679 MW-4	EPA 9320	470827		
2567366007	BB18680 MW-4 DUP	EPA 9320	470827		
2567366008	BB18681 FB-1	EPA 9320	470827		
2567366009	BB18682 MW-17	EPA 9320	470827		
2567366010	BB18683 MW-16	EPA 9320	470827		
2567366011	BB18747 EB-2	EPA 9320	470827		
2567366012	BB18748 PZ-1	EPA 9320	470828		
2567366013	BB18748 PZ-1 MS	EPA 9320	470828		
2567366014	BB18748 PZ-1 MSD	EPA 9320	470828		
2567366015	BB18749 MW-5	EPA 9320	470827		
2567366016	BB18750 MW-5 DUP	EPA 9320	470827		
2567366017	BB18751 MW-12	EPA 9320	470827		
2567366018	BB18752 MW-1	EPA 9320	470827		
2567366019	BB18753 MW-7	EPA 9320	470827		
2567366020	BB18754 MW-2VA	EPA 9320	470827		
2567366021	BB18755 MW-21VC	EPA 9320	470828		
2567366022	BB18756 FB-2	EPA 9320	470828		
2567366023	BB19012 MW-22VB	EPA 9320	470829		
2567366024	BB19012 MW-22VB MS	EPA 9320	470829		
2567366025	BB19012 MW-22VB MSD	EPA 9320	470829		
2567366026	BB19013 MW-19H	EPA 9320	470828		
2567366027	BB19014 MW-2	EPA 9320	470828		
2567366028	BB19015 FB-3	EPA 9320	470828		
2567366029	BB19016 MW-2VB	EPA 9320	470828		
2567366030	BB19017 MW-18H	EPA 9320	470828		
2567366031	BB19018 PZ-5	EPA 9320	470828		
2567366032	BB19019 PZ-6	EPA 9320	470828		
2567366033	BB19020 MW-4V	EPA 9320	470828		
2567366034	BB19021 MW-20H	EPA 9320	470828		
2567366035	BB19022 MW-10	EPA 9320	470828		
2567366036	BB19023 MW-14	EPA 9320	470828		
2567366037	BB19024 MW-14 DUP	EPA 9320	470828		
2567366038	BB19025 MW-8	EPA 9320	470828		
2567366039	BB19026 MW-9	EPA 9320	470828		
2567366040	BB19027 MW-11	EPA 9320	470828		
2567366041	BB19028 EB-1	EPA 9320	470829		
2567366001	BB18676 PZ-2	Total Radium Calculation	474984		
2567366002	BB18677 MW-6	Total Radium Calculation	474984		
2567366005	BB18678 MW-3	Total Radium Calculation	474984		
2567366006	BB18679 MW-4	Total Radium Calculation	474984		
2567366007	BB18680 MW-4 DUP	Total Radium Calculation	474984		
2567366008	BB18681 FB-1	Total Radium Calculation	474984		
2567366009	BB18682 MW-17	Total Radium Calculation	474984		
2567366010	BB18683 MW-16	Total Radium Calculation	474984		

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: GADSEDN ASH POND WMWGADAP_1341-Revised Report

Pace Project No.: 92567366

Date: 01/21/2022 11:42 AM

_ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
2567366011	BB18747 EB-2	Total Radium Calculation	474984		
2567366012	BB18748 PZ-1	Total Radium Calculation	474985		
2567366015	BB18749 MW-5	Total Radium Calculation	474984		
2567366016	BB18750 MW-5 DUP	Total Radium Calculation	474984		
2567366017	BB18751 MW-12	Total Radium Calculation	474984		
2567366018	BB18752 MW-1	Total Radium Calculation	474984		
2567366019	BB18753 MW-7	Total Radium Calculation	474984		
2567366020	BB18754 MW-2VA	Total Radium Calculation	474984		
2567366021	BB18755 MW-21VC	Total Radium Calculation	474985		
2567366022	BB18756 FB-2	Total Radium Calculation	474985		
2567366023	BB19012 MW-22VB	Total Radium Calculation	474986		
2567366026	BB19013 MW-19H	Total Radium Calculation	474985		
2567366027	BB19014 MW-2	Total Radium Calculation	474985		
2567366028	BB19015 FB-3	Total Radium Calculation	474985		
2567366029	BB19016 MW-2VB	Total Radium Calculation	474985		
2567366030	BB19017 MW-18H	Total Radium Calculation	474985		
2567366031	BB19018 PZ-5	Total Radium Calculation	474985		
2567366032	BB19019 PZ-6	Total Radium Calculation	474985		
2567366033	BB19020 MW-4V	Total Radium Calculation	474985		
2567366034	BB19021 MW-20H	Total Radium Calculation	474985		
2567366035	BB19022 MW-10	Total Radium Calculation	480068		
2567366036	BB19023 MW-14	Total Radium Calculation	474985		
2567366037	BB19024 MW-14 DUP	Total Radium Calculation	474985		
2567366038	BB19025 MW-8	Total Radium Calculation	474986		
2567366039	BB19026 MW-9	Total Radium Calculation	474986		
2567366040	BB19027 MW-11	Total Radium Calculation	474986		
2567366041	BB19028 EB-1	Total Radium Calculation	474986		

0#:92567366 Pittsburgh Lab Sample Condition Upon Receipt Pace NC Client Name: Courier: ☐ Fed Ex ☐ UPS ☐ USPS ☐ Client ☐ Commercial ☐ Pace Other Label LIMS Login Custody Seal on Cooler/Box Present: ☐ no no Seals intact: Thermometer Used Type of Ice: Wet Blue Correction Factor: Final Temp **Cooler Temperature** Observed Temp Temp should be above freezing to 6°C Date and Initials contents: pH paper Lot# 10000411 Comments: Yes No N/A Chain of Custody Present: Chain of Custody Filled Out: Chain of Custody Relinquished: 3. Sampler Name & Signature on COC: 4. 5. Sample Labels match COC: Matrix:_WT -Includes date/time/ID Samples Arrived within Hold Time: Short Hold Time Analysis (<72hr remaining): 7. Rush Turn Around Time Requested: 8. Sufficient Volume: 9. Correct Containers Used: 10. -Pace Containers Used: Containers Intact: 11. Orthophosphate field filtered 12. Hex Cr Aqueous sample field filtered 13. Organic Samples checked for dechlorination: 14. Filtered volume received for Dissolved tests 15. All containers have been checked for preservation. 16. exceptions: VOA, coliform, TOC, O&G, Phenolics, Radon, Non-aqueous matrix Initial when All containers meet method preservation Date/time of requirements. completed preservation Lot # of added preservative Headspace in VOA Vials (>6mm): Trip Blank Present: 18.

Client Notification/ Resolution:

Trip Blank Custody Seals Present

Rad Samples Screened < 0.5 mrem/hr

Person Contacted:	Date/Time;	Contacted By:	
Comments/ Resolution:			

Initial when

completed:

A check in this box indicates that additional information has been stored in ereports.

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

PACE_92_HUNC

					12	1	10	9	8	元	6	51	4	3	N	4	ITEM#	7	Requested Due Date:	Phone:	Email To:	1001000	Address.	Company.
おもので、そのは	10# · 00/ / coo			ADDITIONAL COMMENTS					BB18683	BB18682	BB18681	BB18680	BB18679	BB18678	8818677	BB18676	SAMPLE ID One Character per box. (A-Z, 0-9 /, -) Sample lds must be unique		Due Date: 28 days	205-664-6197 Fax	lbmidkif@southernco.com	Calera, AL 35040	Alabama Fower Company	Company: Alabama Bawas Camana
362						0.00		No. or other	MW-16	MW-17	FB-1	MW-4 DUP	MW-4	MW-3	MW-6	PZ-2	MATRIX Dirinking Water D Water Water Water Water Water Water P Product Spilot Oil Oil Oil Othor Tissue Tissue		Projec	Projec	Purch	Copy In		I Door
			Laura Midkiff/ APC GTL	REL	_		-		Gν	GV	Gγ	GV	GV	GV	GV	GV	경 오 옷 등 은 우 [™] 를 될 않 MATRIX CODE (see valid codes to let		Project Number:	Project Name:	Purchase Order #:			1
			ff APC	SINDIN					GW G 1	GW G 1	GW G 1	GW G	GW G 1	GW G 1	GW G 1	GW G 1	SAMPLE TYPE (G=GRAB C=COMP	-		Plan	*	ooke	Laura MICKIT	
				AED BA					10/6/2021 10:10	10/6/2021 8:45	10/5/2021 15:30	10/5/2021 14:35	10/5/2021 14:35	10/5/2021 13:25	10/5/2021 12:10	10/5/2021	ST			t Gads	APC1	Caton	IDKIT	771 11 41
(0		SAMP		RELINQUISHED BY I AFFILIATION		-			10:10	1 8:45	1 15:30	1 14:35	1 14:35	1 13:25	1 12:10	111:00	START		WMV	den As	070066	& Kene		
SIGNATURE of SAMPLER	PRINT Name of SAMPLER:	SAMPLER NAME AND SIGNATURE		ATION													LECTED		WMWGADAP	Plant Gadsden Ash Pond	8	Brooke Caton & Renee Jernigan		
of SAM	e of SAM	AND SIG	10/13/2021	D													TIME		1341			5		
LER:	PLER:	NATUR		DATE						2							SAMPLE TEMP AT COLLECTION	1						
			12:45	2					1	1	1	1	1	1	3	1	# OF CONTAINERS	-	Pace Profile #:	Pace Project Manager:	Pace Quote:	Address: 744 High Total 97	Attention:	
	l			TIME	Н						-		-	-	-	_	H2SO4		rofile	roject	Quote:	any Na	on:	
									×	×	×	×	×	×	×	×	HNO3 Pres	l	11	Manag	ŧ	me: /	Laur	
			114					-			-		-				HN03 Preservative NaOH Preservative NaOH Preservative NaOH Preservative NaCS2O3	1 10	13805	œ.	NI IDILI	laba	Laura Midkiff	
	l		1	ACCEP													Na2S2O3			Kevir	CCR	na Po	Kiff	
					H	_	_	_						_	Н	Н	Methanol Other			n.He	200	OSC BIA #8		
				ED BY / AFFILIATION						_							Analyses Test Y/N	3838		n.Herring@pacelabs.cor	DIO	000		
ē				FILIAT					×	×	×	×	×	×	×	×	EPA 9315 EPA 9320			pac	9#0	10		
DATE Signed:				NOL					×	×	×	×	×	×	×	×	Total Radium Sum	Requ		elabs				
gned:							-22.5								×		Matrix Spike/Matrix Spike De	ested	Ц	con	\downarrow			
	ı		101		Н													Requested Analysis						
			0/19	DATE														Sis Fill						
			124		Н													Filtered (Y/N		0.04				
			02100	TIME											_	_		(N/A		25	76			
ТЕМ	P in C	2	7														Residual Chlorine (Y/N)	ST CONTRACTOR	ΑL	State / Location	Regulatory Agency			
(Y/N) Custo Seale	ody ed	on		SAMPLE CONDITIONS													Nesdudi Gildille (TN)			ation	Agency			
Cool- (Y/N) Sam Intact (Y/N)) ples			TIONS						7														

		z				12	7	10	9	8	7	6	5	4	3	2		ITEM#			Requested	Phone:	Email To:	Tuesday.	Company:	Required
としているという。					ADDITIONAL COMMENTS			BB18756	BB18755	BB18754	8818753	8818752	8818751	BB18750	8818749	BB18748	8818747	SAMPLE ID One Character per box. (A-Z, 0-9 /, .) Sample ids must be unique			Requested Due Date: 28 days	205-664-6197 Fax	lbmidkif@southernco.com	Calera, AL 35040	Alabama Power Company	Clie
								FB-2	MW-21VC	MW-2VA	MW-7	MW-1	MW-12	MW-5 DUP	MW-S	PZ-1	EB-2	Water Water Water Water Water Schizold Schizold Ol Wins Air Other Tissue			Proje	Proje	Purch	Copy 10.		
ć.				Laura Midkiff/ APC GTL	RE			G		0	0	0	0	0	0	0	0	3 4 8 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1001		Project Number:	Project Name:	Purchase Order #:		120	Required Project Information:
				(iff/ APC	LINQUI			GW G	- 1	GW G	GW G	GW G	GW G	GW G	GW G	GW G	GW G	MATRIX CODE (see valid coor SAMPLE TYPE (G=GRAB C			1	Pla	#	STOOKE	aura	ct Info
				CGTL	RELINQUISHED BY / AFFILIATION			10/6/2021	10/6/2021 12:46	10/6/2021	10/5/2021 15:11	10/5/2021 14:18	10/5/2021 12:58	10/5/2021 11:53	10/5/2021 11:53	10/5/2021 11:00	10/5/2021 10:20	START			_	Plant Gadsden Ash Pond	APC10700668	Brooke Caton & Renee Jernigan	Laura Midkiff	rmation:
SIC	PR	SAMPLE			AFFILIA.			13:15	12:46	10:25	15:11	14:18	12:58	11:53	11:53	11:00	10:20	TIME	COLL		WMWC	en Ash	89900	Kenee		
SIGNATURE of SAMPLER:	PRINT Name of SAMPLER:	SAMPLER NAME AND SIGNATURE			TION													END	COLLECTED		0	Pond		Jernigan		
SAMPLE	of SAMPLE	ND SIGNA		10/13/2021	DATE													TIME			1341					
R	P	URE	++					1	1	1	1	1	1	-1	1	3	-	SAMPLE TEMP AT COLLECTI # OF CONTAINERS	ON		P	P	Pa	A C	2	ln:
				12:45	TIME	Н					Н					Н		Unpreserved			Pace Profile #:	Pace Project Manager:	Pace Quote:	Address: 744 Highway 87	Attention:	Invoice Information:
			11					×		×	×	×	×	×	×	×		H2SO4	_		ofile #:	oject N		y Nam		Inform
-						Н		_	×	^		_	_	_	_	_	×	HCI	rese			anage	#	6. A	aura	ation:
				1	•						-							NaOH	Preservatives		13805	ä	CCR	aban	Laura Midkiff	2000
				A	ACCEP.													Na2S2O3	ves			Kevi	CCR CCR	na Po	Î	
		(0.0 (0.0)		3	TED E	H	- 1		_									Methanol Other				n.He	G	Ner C		
				6	TED BY / AFFILIATION						_							Analyses Test	Y/N			ring(DIC	osc pids #8		
9				1	FILIA	Ц		×	×	×	×	×	×	×	×	×	×	EPA 9315		1984		pac	7	\$		
ATE S				1	NOL	H	H	×	×	×	×	×	×	×	×	×	×	EPA 9320 Total Radium Sum		Requ		Kevin.Herring@pacelabs.con				
DATE Signed:																×		Matrix Spike/Matrix Spike D		ested		.con				
			$\perp \downarrow$	1																Requested Analysis		11.5	1111			
				1)cı	DATE	Н	Н													sis Fi	Ш	SALVE AND	40004			
	-			12/21	Ë															Filtered (Y/N)		10271199	11 0 2 0	100		
					T											_				(V/N)		Service Servic	of Tollow			
				0432	TIME					Reserved										0.20(5.00		Star	Vegu		1	ס
TEM	P in C			0														Residual Chlorine (Y/N)	(A)		ĄĻ	State / Location	regulatory Agency			Page:
	ived o	on	++		SAN				, vi								П	residual Officiale (TIN)				ation	Ageiro			
ce (Y/N)					IPLE (Ш		ľ			2
Custo	d				SAMPLE CONDITIONS																		300000000			of
Coo!e (Y/N)					TIONS													э								- ħ
	ples				3	l															ı					

CLIENT: PACE_92_HUNC

Due Date: 11/17/21

PM: AES

				15 To		12	3	10	9	8		6	5	4	3	2		ITEM#	requested Due Date:	Phone:	Email To:		Address:	Company:	Required
					ADDITIONAL COMMENTS		1000000			BB19019	8819018	BB19017	8819016	BB19015	BB19014	8819013	8819012	SAMPLE ID One Character per box. (A-Z, 0-9 / , -) Sample ids must be unique	Due Date: 28 days	04-67	lbmidkif@southernco.com	Calera, AL 35040	744 Highway 87 GSC Bldg #8	Alabama Power Company	Required Client Information:
			Laur							PZ-6	PZ-5	MW-18H	MW-2VB	FB-3	MW-2	MW-19H	MW-22VB	MATRIX Dentiking Walter DW Walter Water Air Air Ar	Project Number:	Project Name:	Purchase Order #:			Report To:	Required Project Information:
			Laura Midkitt/ APC GTL		e .					gw g	GW G	GW G	GW G	GW G	GW G	GW G	GW G	MATRIX CODE (see valid codes to left)	umber:	ame:	Order #		H	o: Lau	Project
			AFC G		HSIUDISH									1				SAMPLE TYPE (G=GRAB C=COMP)		Plant	A		oke C	Laura Midkiff	Informa
					RELINQUISHED BY / AFFILIATION				20074	10/12/2021	10/12/2021	10/12/2021	10/12/2021 9:28	10/11/2021 15:15	10/11/2021 14:49	10/11/2021 12:57	10/11/2021 11:37	START		Plant Gadsden Ash Pond	APC10700668		aton &	X.	tion:
S	2	JAMPE			AFFILM					13:40	12:16	11:17	9:28	15:15	14:49	12:57	11:37	COLL	WWW	en Ash	00668		Renee		
SIGNATURE of SAMPLER	PRINT Name of SAMPLER:	SAMPLER NAME AND SIGNATURE			ÖN													COLLECTED	WMWGADAP	Pond			Brooke Caton & Renee Jernigan		
of SAMP	of SAME	AND SIGN	10/13/2021		DATE		-										_	TIME MAD	1341				7		
0	ĽĘŖ:	ATUR		13	1											_		SAMPLE TEMP AT COLLECTION		L					
		- /!!	12:45		TIME		-			1	1	1	1	1	1	1	3	# OF CONTAINERS Unpreserved	Pace Profile #:	Pace Project Manager:	Pace Quote:	Address:	Company Name:	Attention:	invoice information:
				i	m	1								_				H2SO4	rofile	roject	luote:	55	ıny Na	on:	e intor
				200			\Box			×	×	×	×	×	×	×	×	HNO3 Pres	1	Manag		744	me: /	laur	mation
						-	-											HNO3 Preservatives HCI RaOH atives	13805	er.		744 Highway 87 GSC Bldg #8	Vabai	Laura Midkiff	
1					60													Na2S2O3			CCF	vay 8	ma P	K.#	
			1	7	ACCEPTED BY / AFFILIATION	-											_	Methanol		in.Herring@pacelabs.con	D	7 GS	ower		
			1		BY/A						Ē	_					Н	Analyses Test Y/N		rring		C Blo	00	1	
			0	N		\Box				×	×	×	×	×	×	×	×	EPA 9315	200	@pag		lg #8		1	
ATES				į.	NO.	-	\dashv			×	×	×	×	×	×	×	×	EPA 9320 Total Radium Sum		elab				١	
DATE Signed:							1						-	_			×	Total Radium Sum Matrix Spike/Matrix Spike Di	0000	s.con					
							4											Ž.		THE STATE OF	П				
			110	- 5	DATE	-	-			H			-		-	-	-		0 0	MARKS					
			11400	- 1	7															SHIRE					
١			c		1	_	4					_							2	11000		5,4114,75			
			750		TIME															Sta		Regu		Γ	_
EMF	o in C																	Residual Chlorine (Y/N)	₽	State / Location		Regulatory Agency			age .
ecei (/N) usto alecoole (/N)	ody d	on		Contract Contract	SAMPLE CONDITIONS				The second secon											ation		gency			Ç
amp act (N)					S																				Δ

PM: AES

Due Date: 11/17/21

CLIENT: PACE_92_HUNC

						12	11	10	9	8	7	6	5	4	3	2		ITEM#		Requested	Phone:	Email To:	Contras.	Address:
DM. DEC	MO#: 30446367				ADDITIONAL COMMENTS				BB19028	8819027	8819026	8819025	BB19024	8819023	BB19022	8819021	8819020	SAMPLE ID One Character per box. (A-Z, 0-9 /, -) Sample lids must be unique		Requested Due Date: 28 days	64-6	lbmidkif@southernco.com	Calera, AL 35040	Address of Company
Due Date: 11/17/21	4030	2000		Lau					EB-1	MW-11	e-ww	MW-8	MW-14 DUP	MW-14	MW-10	MW-20H	MW-4V	MATRIX Diribing Waler DW Water WT Water WW Product SoluSolid St. Oil Wipo AR Other OT Tissue Ts		Project Number:	Project Name:	Purchas	Copy 10:	report to.
1/17	1,	9		Laura Midkiff/ APC GTL	REL	_	_		GW G	GW G	GW G	gw g	GW G	GW G	gw G	gw g	GW G	MATRIX CODE (see valid codes to le	ft)	lumber:	vame:	Purchase Order #:		
/21				/ APC G	NOUISI							_	_					SAMPLE TYPE (G=GRAB C=COM	")		Plant		oke C	Laura Midkill
				אַדר	RELINQUISHED BY / AFFILIATION				10/12/2021 13:30	10/12/2021 12:55	10/12/2021 11:55	10/12/2021 10:48	10/12/2021 8:30	10/12/2021 8:30	10/11/2021 14:40	10/11/2021 13:30	10/11/2021 12:40	ST			Gadsc	APC10700668	aton &	UKIII
		SAMP			/ AFFILI				13:30	1 12:55	1 11:55	1 10:48	1 8:30	1 8:30	1 14:40	1 13:30	1 12:40	START		VMV	len As	700668	Kene)
SIGNATURE of SAMPLER:	PRINT Name of SAMPLER:	SAMPLER NAME AND SIGNATURE			ATION												-5	COLLECTED E		WMWGADAP	Plant Gadsden Ash Pond		Brooke Caton & Renee Jemigan	
RE of SA	ne of SA	E AND S		10/				-				_	_	_		-				1341			ä	
MPLER	MPLE	IGNAT		10/13/2021	DATE													TIME					-	
	'n	URE	+			-	-	-			-2		-	-	_		-3	SAMPLE TEMP AT COLLECTION # OF CONTAINERS	+	Pa	Pa	Pa	2 6	1
				12:45	TIME													Unpreserved	1	Pace Profile #:	Pace Project Manager:	Pace Quote:	dress	Augi morr.
					IA											Ų,	-	H2SO4		ofile #:	yect N	ote:	y Nan	
						H	_		×	×	×	×	×	×	×	×	×	HNO3 Presse			Aanage	-	744 F	Lauis
											-	-		-	+		H	HN03 Preservatives HCI servatives NaOH stives		13805	977	3	labar	radia Midvill
				13	ACCEPTED BY I AFFILIATION													Na2S2O3			Kev	CCR	Address: 744 Highway 87 GSC Ridg #8	NII.
				1	OBL		_	_										Methanol			in.He	70	ower	
				0	BY/A	_				_							Н	Other Analyses Test Y/N			n.Herring@pacelabs	Ç	C P	
				1	FFILL				×	×	×	×	×	×	×		×	EPA 9315	100 mg		@ра	A III	##	
DATE					ATION				×	×	×	×	×	×	×		×	EPA 9320	Re		celat			
DATE Signed:				ľ		\vdash					Ľ		Ĺ				H	Total Radium Sum Matrix Spike/Matrix Spike Du	quest		os.cor			
ü																			Pa Asia	П				1
				101	Ū														alysis		SPECIAL SECTION OF SEC	100		
				101	DATE	H	-		_	_	_	-	-			-			Filtere		10.00	10000		
				12/											_				Requested Analysis Filtered (Y/N)			1700010	100	
				260	TIME								H						SERVE S		Sta	Barr	R	
TEM	P in C	С	\top																	AL	State / Location	and the	latory	
lce	eived	on			SAMPL													Residual Chlorine (Y/N)			cation	Seguiater) regards	Agency	
Cust Seale Cool	ody ed ler				SAMPLE CONDITIONS																海温温	1911		
(Y/N Sam Intaci (Y/N	ples				SNS																			

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

11/4/2021 63440 WT Worklist: Matrix: Date: **Analyst**:

MS/MSD 2

MS/MSD 1 10/5/2021

Sample Collection Date

Sample Matrix Spike Control Assessment

92567366002 92567366003 92567366004

Sample I.D. Sample MS I.D. Sample MSD I.D.

21-029 37.961

Spike I.D.

MS/MSD Decay Corrected Spike Concentration (pCi/mL)

Spike Volume Used in MS (mL): Spike Volume Used in MSD (mL) MS Aliquot (L, g, F) MS Target Conc.(pCi/L, g, F) MSD Aliquot (L, g, F)

9.345 0.464 0.458

MSD Target Conc. (pCi/L, g, F):

MS Spike Uncertainty (calculated): ASD Spike Uncertainty (calculated) Sample Result

Sample Result 2 Sigma CSU (pCi/L, g, F): Sample Matrix Spike Result

9.460

1.252 0.527 13.581 2.628 14.894

Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):

Sample Matrix Spike Duplicate Result:

Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):

MS Numerical Performance Indicator MSD Numerical Performance Indicator

2272895 0.897 0.395 0.647 4.45 Fail MB Numerical Performance Indicator: MB Sample ID MB concentration: M/B 2 Sigma CSU: MB MDC: MB Status vs Numerical Indicator. Method Blank Assessmen

 N	TCSD63440					-					
LCSD (Y or N)?	LCS63440	11/8/2021	21-029	37.538	0.10	0.817	4.597	0.225	4,495	1.001	-0.19
trol Sample Assessment		Count Date:	Spike I.D.:	Decay Corrected Spike Concentration (pCi/mL):	Volume Used (mL):	Aliquot Volume (L, g, F):	Target Conc. (pCi/L, g, F):	Uncertainty (Calculated):	Result (pCi/L, g, F):	LCS/LCSD 2 Sigma CSU (pCi/L, g, F):	Numerical Performance Indicator:

Laboratory Cont

		Matrix Spike/Matrix Spike Duplicate Sample Assessment	Г
			1 1
	60%	MS/MSD Lower % Recovery Limits:	
	135%	MS/MSD Upper % Recovery Limits:	
	MSD High****	MSD Status vs Recovery:	
	Pass	MS Status vs Recovery:	
_	Warning	MSD Status vs Numerical Indicator:	
	Warning	MS Status vs Numerical Indicator;	
		•	

97.78% N/A Pass 135% 60%

Percent Recovery: Status vs Numerical Indicator; Status vs Recovery: Upper % Recovery Limits: Lower % Recovery Limits:

Duplicate Sample Assessment

130.33%, 145.98%

MS Percent Recovery MSD Percent Recovery

2.859

=======================================

92567366003 92567366004 13.581 2.628 14.894 2.862 -0.662 11.33%

92567366002

Sample I.D. Sample MS I.D.

Sample MSD I.D.

Sample Matrix Spike Result: Matrix Spike Result: Matrix Spike Result 2 Sigma CSU (pCi/L, g, F): Sample Matrix Spike Duplicate Result:

Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):

Duplicate Numerical Performance Indicator:

(Based on the Percent Recoveries) MS/ MSD Duplicate RPD: MS/ MSD Duplicate Status vs Numerical Indicator

X Durves NT entria Da Now - DW Pass Pass 36% MS/ MSD Duplicate Status vs RPD: % RPD Limit:

Ra-228_63440_W.xls Ra-228_63440_W (version 1).xls

6 of 10

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

*The method blank result is below the reporting limit for this analysis and is acceptable.

Pace Analytical

Quality Control Sample Performance Assessment

1/8/2021 Ra-228 ΧF Test: **Analyst**: Date: Worklist:

63441 WT Matrix:

MS/MSD 2

MS/MSD 10/5/2021

<u>Analyst Must Manually Enter All Fields Highlighted in Yellow.</u>

Sample Matrix Spike Control Assessment

92567366013 92567366014 92567366012

Sample I.D. Sample MS I.D. Sample Collection Date:

Sample MSD I.D.

Spike I.D.

21-029 37.961

0.20 9.390 0.809 9.384 0.460 0.460 1.992 0.628. 1.635 8.626

0.20

Spike Volume Used in MS (mL):

Spike Volume Used in MSD (mL). MS Aliquot (L, g, F): MSD Aliquot (L, g, F):

MS/MSD Decay Corrected Spike Concentration (pCi/mL)

MS Target Conc.(pCi/L, g, F): MSD Target Conc. (pCi/L, g, F): MSD Spike Uncertainty (calculated):

MS Spike Uncertainty (calculated):

Sample Result

Sample Result 2 Sigma CSU (pCi/L, g, F) Sample Matrix Spike Result

Matrix Spike Result 2 Sigma CSU (pCi/L, g, F)

Sample Matrix Spike Duplicate Result MS Numerical Performance Indicator

0.742 1.72 0.352 Pass Pass MB concentration: M/B 2 Sigma CSU: MB Sample ID MB Numerical Performance Indicator: MB MDC: MB Status vs Numerical Indicator: MB Status vs. MDC Method Blank Assessmen

Laboratory Control

ol Sample Assessment	LCSD (Y or N)?	z
	LCS63441	LCSD63441
Count Date:	11/15/2021	
Spike I.D.:	21-029	
Decay Corrected Spike Concentration (pCi/mL):	37.451	
Volume Used (mL):	0.10	
Aliquot Volume (L, g, F):	0.820	
Target Conc. (pCi/L, g, F):	4.566	
Uncertainty (Calculated):	0.224	
Result (pCi/L, g, F):	4.701	
LCS/LCSD 2 Sigma CSU (pCi/L, g, F):	1.062	
Numerical Performance Indicator:	0.24	
Percent Recovery:	102.96%	
Status vs Numerical Indicator:	N/A	
Status vs Recovery:	Pass	
Upper % Recovery Limits:	135%	
Lower % Recovery Limits:	%09	

63.31% %69.0

MSD Status vs Recovery:

MS Status vs Recover

MS/MSD Upper % Recovery Limits: MS/MSD Lower % Recovery Limits:

Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):

MSD Numerical Performance Indicator

MS Percent Recovery MSD Percent Recovery:

MS Status vs Numerical Indicator MSD Status vs Numerical Indicator

Sample I.D. Sample MS I.D. Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F): Sample MSD I.D. Sample Matrix Spike Result: Matrix Spike Result 2 Sigma CSU (pCi/L, g, F). Sample Matrix Spike Duplicate Result: Duplicate Numerical Performance Indicator: (Based on the Percent Recoveries) MS/ MSD Duplicate RPD; Matrix Spike/Matrix Spike Duplicate Sample Assessment Enter Duplicate he space below LCS/LCSD in sample IDs if other than

See Below ##

Are sample and/or duplicate results below RL? Duplicate Numerical Performance Indicator: Duplicate RPD:

Duplicate Status vs Numerical Indicator:

Duplicate Status vs RPD:

Sample Result (pCi/l., g, F):
Sample Result 2 Sigma CSU (pCi/l., g, F):
Sample Duplicate Result (pCi/l., g, F):
Sample Duplicate Result 2 Sigma CSU (pCi/l., g, F):

Sample I.D.: Duplicate Sample I.D.

Duplicate Sample Assessment

92567366012 92567366013 92567366014 1.635 8.626 1.744 -0.566 11.03% 7.936 Pass MS/ MSD Duplicate Status vs Numerical Indicator:
MS/ MSD Duplicate Status vs RPD;
% RPD Limit:

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

de MANA MS passes 2 Parevey criticio

****If all otbar-QC criteria pass, this Darch is acceptable. The matrix spike deplicate result indicates a possible bias for this sample only and may not be applicable to any other samples in this analytical batch. Ra-228 NELAC DW2 Printed: 11/18/2021 8:10 AM

Ra-228 (R086-8 04Sep2019).xls

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Pace Analytical"

Ra-228	JC2 11/8/2021	63442 WT
Test:	Analyst: Date:	Worklist: Matrix:

92569905001 92569905002 92569905003

92567366023 92567366024 92567366025

Sample I.D. Sample MS I.D.

Sample MSD I.D. Spike I.D.

Sample Collection Date:

Sample Matrix Spike Control Assessment

21-029 37.886 0.20 0.20 0.818

9.265 0.814 9.305 0.454 0.982 0.982 0.443 10.705 2.130

21-029 37.886 0.20 0.20 0.804 9.426 0.801 9.465 0.462 0.464 0.113 8.485 1.737 1.737 1.737 1.737

MS Target Conc.(pCi/L, g, F):

MSD Target Conc. (pCi/L, g, F):

MS Spike Uncertainty (calculated) MSD Spike Uncertainty (calculated)

MS/MSD Decay Corrected Spike Concentration (pCi/mL):

Method Blank Assessmen

Spike Volume Used in MS (mL): Spike Volume Used in MSD (mL) 8.905 1.832 -1.397

Sample Matrix Spike Duplicate Result: Matrix Spike Duplicate Result 2 Sigma CSU (pC/I/, g, F): MS Numerical Performance Indicator:

MSD Numerical Performance Indicator.

Sample Result 2 Sigma CSU (pCi/L, g, F): Sample Matrix Spike Result: Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):

Sample Result

0.404

MS/MSD 2 10/18/2027

MS/MSD 1 10/11/2021

2272897	-0.007	0.282	0.665	-0.05	Pass	Pass	
MB Sample ID	MB concentration:	M/B 2 Sigma CSU:	MB MDC:	MB Numerical Performance Indicator:	MB Status vs Numerical Indicator:	MB Status vs. MDC:	

											_					
Z	LCSD63442															
LCSD (Y or N)?	LCS63442	11/17/2021	21-029	37.425	0.10	0.819	4.571	0.224	5.057	1.123	0.83	110.62%	N/A	Pass	135%	%09
Laboratory Control Sample Assessment	•	Count Date:	Spike I.D.:	Decay Corrected Spike Concentration (pCi/mL):	Volume Used (mL):	Aliquot Volume (L, g, F):	Target Conc. (pCi/L, g, F):	Uncertainty (Calculated):	Result (pCi/L, g, F):	LCS/LCSD 2 Sigma CSU (pCi/L, g, F):	Numerical Performance Indicator:	Percent Recovery:	Status vs Numerical Indicator:	Status vs Recovery:	Upper % Recovery Limits:	Lower % Recovery Limits:

		Matrix Snike/Matrix Spike Duplicate Sample Assessment
%09	%09	MS/MSD Lower % Recovery Limits:
135%	135%	MS/MSD Upper % Recovery Limits:
Pass	Pass	MSD Status vs Recovery:
Pass	Pass	MS Status vs Recovery:
Pass	Pass	MSD Status vs Numerical Indicator:
Pass	Pass	MS Status vs Numerical Indicator:
85.15%	91.27%	MSD Percent Recovery:
104.94%	88.82%	MS Percent Recovery:
		The state of the s

92569905001

92567366023 92567366024

Sample I.D. Sample MS I.D. Sample MSD I.D.

essment		and the second	Matrix Spike/Matrix Spi
Sample I.D.:		Enter Duplicate	
Duplicate Sample I.D.		sample IDs if	
Sample Result (pCi/L, g, F):		other than	
Sample Result 2 Sigma CSU (pCi/L, g, F):		LCS/LCSD in	
Sample Duplicate Result (pCi/L, g, F):		the space below.	Mati
Duplicate Result 2 Sigma CSU (pCI/L, g, F):			-
e sample and/or duplicate results below RL?	See Below ##		Matrix Spike D
Duplicate Numerical Performance Indicator:		agent interference beganning	_
Duplicate RPD:			Based on the Perc
Duplicate Status vs Numerical Indicator.			MS/ WS
Duplicate Status vs RPD:			
% RPD Limit:			

Are sample and/or duplicate resul Duplicate Numerical Performal Sample Duplicate Result 2 Sigma CSL

Duplicate Sample Assessment

36%	36%	% RPD Limit:
Pass	Pass	MS/ MSD Duplicate Status vs RPD:
Pass	Pass	MS/ MSD Duplicate Status vs Numerical Indicator:
20.83%	2.72%	the Percent Recoveries) MS/ MSD Duplicate RPD:
1.256	-0.210	Duplicate Numerical Performance Indicator:
1.832	1.778	x Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):
8.905	8.752	Sample Matrix Spike Duplicate Result:
2.130	1.737	Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):
10.705	8.485	Sample Matrix Spike Result:
92569905003	92567366025	Sample MSD I.D.
92569905002	92567366024	Sample MS I.D.
	25000000000	Callipia I.D.

Ra-228_63442_W.xls Ra-228_63442_W (version 1).xls

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

6 of 10

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Ra-226

MS/MSD 2

Sample I.D. Sample MS I.D.

Sample Collection Date:

Sample Matrix Spike Control Assessment

Sample MSD I.D. Spike I.D.: MS/MSD Decay Corrected Spike Concentration (pCi/mL):

Spike Volume Used in MS (mL.): Spike Volume Used in MSD (mL): MS Aliquot (L, g, F): MS Target Conc.(pCi/L, g, F): MSD Aliquot (L, g, F): MSD Target Conc. (pCi/L, g, F):

19-033 24.033 0.20 0.20 0.306 15.694

LAL 1/13/2021 Test: Date: Worklist: Matrix: Analyst:

Method Blank Assessment

MB Sample ID MB concentration: M/B Counting Uncertainty

MB MDC:

0.300 0.633 1.80 N/A Pass MB Numerical Performance Indicator: MB Status vs Numerical Indicator:

MB Status vs. MDC

Laboratory Control Sample Assessment

-1.465 105.98% 94.82% 0.292 16.471 0.188 0.076 0.076 0.173 16.708 1.130 1.110 ₹ ₹ MS Spike Uncertainty (calculated): MSD Spike Uncertainty (calculated): Sample Result: Sample Result Counting Uncertainty (pCi/L, g, F): Sample Matrix Spike Result. Matrix Spike Result Counting Uncertainty (pCi/L, g, F): Sample Matrix Spike Duplicate Result: Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): MSD Numerical Performance Indicator. MS Percent Recovery: MSD Percent Recovery. MSD Status vs Numerical Indicator. MS Status vs Recovery MSD Status vs Recovery MS/MSD Upper % Recovery Limits: MS/MSD Lower % Recovery Limits: MS Status vs Numerical Indicator MS Numerical Performance Indicator 1.30 106.73% 0.10 0.207 11.615 0.139 12.397 1.174 19-033 24.032 N/A Pass 125% 75%

0.143 14.114 1.284 3.32 118.37%

Result (pCi/L, g, F): LCS/LCSD Counting Uncertainty (pCi/L, g, F):

Numerical Performance Indicator:

Percent Recovery Status vs Numerical Indicator

ΑN

Status vs Recovery: Upper % Recovery Limits:

-ower % Recovery Limits

Duplicate Sample Assessment

19-033 24.032 0.10 0.202 11.923

Volume Used (mL):

Decay Corrected Spike Concentration (pCi/mL):

Spike I.D.

Aliquot Volume (L, g, F): Target Conc. (pCi/L, g, F):

Uncertainty (Calculated):

Sample I.D. Sample MS I.D. Matrix Spike Result Counting Uncertainty (pCl/I, g, F): Sample Matrix Spike Duplicate Result: Sample MSD I.D. Sample Matrix Spike Result: Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): Matrix Spike/Matrix Spike Duplicate Sample Assessment

CS63366

Sample I.D.: Duplicate Sample I.D.

92567366012 92567366013 92567366014 16.708 1.130 15.694 1.110 1.254 11.11%

N/A Pass 25%

MS/ MSD Duplicate Status vs RPD: % RPD Limit:

Duplicate Numerical Performance Indicator:

(Based on the Percent Recoveries) MS/ MSD Duplicate RPD: MS/ MSD Duplicate Status vs Numerical Indicator

LCSD63366 14.114 1.2.84 12.397 1.174 NO 1.935 10.34% N/A Pass 25% Sample Result (pCi/L, g, F):
Sample Result Counting Uncertainty (pCi/L, g, F):
Sample Duplicate Result (pCi/L, g, F): Sample Duplicate Result Counting Uncertainty (pCI/L, g, F): Are sample and/or duplicate results below RL? Duplicate Numerical Performance Indicator: (Based on the LCS/LCSD Percent Recoveries) Duplicate RPD: Duplicate Status vs RPD: Duplicate Status vs Numerical Indicator

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

6 of 13

Face Analytical"

Method Blank Assessment

Quality Control Sample Performance Assessment

Š
ē
2
7te0
פונ
ΒĦ
S
븬
₹
ile I
una
Ma
Nus
S
luai
الم

ar 	000		Analyst Must Manually Enter All Fields Highlighted in Yellow.	Yellow.	
lest	Ka-220				
Analyst	LAL		Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
Date:	11/13/2021		Sample Collection Date:	10/5/2021	
Worklist:	63365		Sample I.D.	92567366002	
Matrix:	≧		Sample MS I.D.	92567366003	
			Sample MSD I.D.	92567366004	
ıt			Spike I.D.:	19-033	
MB Sample ID	2269074		MS/MSD Decay Corrected Spike Concentration (pCi/mL):	24.033	
MB concentration:	-0.023		Spike Volume Used in MS (mL):	0.20	
M/B Counting Uncertainty:	0.117		Spike Volume Used in MSD (mL):	0.20	
MB MDC:	0.365		MS Aliquot (L, g, F):	0.260	
MB Numerical Performance Indicator:	-0.39		MS Target Conc.(pCi/L, g, F):	18.506	
MB Status vs Numerical Indicator:	A/N		MSD Aliquot (L, g, F):	0.287	
MB Status vs. MDC:	Pass		MSD Target Conc. (pCi/L, g, F):	16.727	
			MS Spike Uncertainty (calculated):	0.222	
le Assessment	LCSD (Y or N)?	Y	MSD Spike Uncertainty (calculated):	0.201	
•	LCS63365	LCSD63365	Sample Result:	0.107	
Count Date:	12/3/2021	12/3/2021	Sample Result Counting Uncertainty (pCi/L, g, F):	0.155	
Spike I.D.:	19-033	19-033	Sample Matrix Spike Result:	18.302	
Corrected Spike Concentration (pCi/mL):	24.032	24.032	Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	1.237	
Volume Used (mL.):	0.10	0.10	Sample Matrix Spike Duplicate Result:	17.888	
Aliquot Volume (L, g, F):	0.212	0.205	Matrix Spike Duplicate Result Counting Uncertainty (pCi/l, g, F):	1.181	
Target Conc. (pCi/L, g, F):	11.315	11.715	MS Numerical Performance Indicator:	-0.482	
Uncertainty (Calculated):	0.136	0.141	MSD Numerical Performance Indicator:	1.709	
Result (pCi/L, g, F):	11.063	14.724	MS Percent Recovery:	98.32%	
.CSD Counting Uncertainty (pCl/L, g, F):	1.142	1.298	MSD Percent Recovery:	106.30%	
Numerical Performance Indicator:	-0.43	4.52	MS Status vs Numerical Indicator:	N/A	
Percent Recovery:	97.77%	125.69%	MSD Status vs Numerical Indicator:	N/A	
Status vs Numerical Indicator:	A/A	N/A	MS Status vs Recovery:	Pass	
Status vs Recovery:	Pass	Fail High ****	MSD Status vs Recovery:	Pass	
Upper % Recovery Limits:	125%	125%	MS/MSD Upper % Recovery Limits:	125%	
Lower % Recovery Limits:	75%	75%	MS/MSD Lower % Recovery Limits:	75%	
		_			

Laboratory Control Sample Assessment

LCS63365 LCSD633645 LCSD63365 LCSD63365 LCSD633621 LCSD632021 LCSD6322021 LCSD63222021 LCSD63222021 LCSD63222021 LCSD6322021 LCSD63222021 LCSD63222021 LCSD63222021 LCSD63222021 LCSD63222021 LCSD63222021 LCSD63222021 LCSD63222021 LCSD63222021 LCSD6322221 LCSD6322221 LCSD6322221 LCSD63222221 LCSD6322222 LCSD6322222 LCSD6322222 LCSD6322222 LCSD632222 LCSD6322222 LCSD632222 LCSD6322222 LCSD6322222 LCSD6322222 LCSD6322222 LCSD6322222 LCSD6322222 LCSD632222 LCSD6322222 LCSD6322222 LCSD6322222 LCSD6322222 LCSD632222 LCSD6322222 LCSD6322222 LCSD632222 LCSD632222 LCSD632222 LCSD6322222 LCSD6322222 LCSD6322222 LCSD6322222 LCSD6322222 LCSD6322222 LCSD6322222 LCSD6322222 LCSD632222 LCSD6322222 LCSD6322222 LCSD6322222 LCSD632222222 LCSD6322222 LCSD6322222 LCSD6322222 LCSD632222 LCSD632222 LCSD632222 LCSD632222 LCSD632222 LCSD632222 LCSD63222 LCSD63222 LCSD63222 LCSD63222 LCSD63222 LCSD632222 LCSD632222 LCSD632222 LCSD632222 LCSD63222 LCS	cted Spik Countin Numeri	LCS63365 12/3/2021 12/3/2021 24/033 24/033 24/032 0.10 0.10 0.136 11.142 -0.43 97.77%	LCSD63365 12/3/2021 12/3/2021 24/033 0.10 0.205 11.715 0.141 14.724 1.298 4.52 125.69% N/A Fail High****	Sample Result Counting Uncertainty (pC/IL, g, F): Sample Matrix Spike Result Counting Uncertainty (pC/IL, g, F): Sample Matrix Spike Duplicate Result: Matrix Spike Duplicate Result Counting Uncertainty (pC/IL, g, F): MS Numerica Performance Indicator: MSD Numerica Performance Indicator: MSD Numerical Performance Indicator: MSD Numerical Performance Indicator: MSD Status ye Numerical Indicator: MS Status ye Numerical Indicator: MS Status ye Numerical Indicator: MS Status ye Numerical Indicator:	
Count Date: 12/3/2021 12/3/2021 Sample Resul Spike LD: 19-033 19-033 19-033 19-033 19-033 19-033 19-033 19-033 19-033 19-033 19-033 19-033 19-033 19-033 19-033 19-033 19-033 19-033 19-033 19-032 24.032 2	cted Spik Counting Numeric	12/3/2021 19-033 24.032 0.10 0.212 11.315 11.1063 1.142 -0.43 97.77%	12/3/2021 19-033 24/032 0.10 0.205 11.715 0.141 14.724 1.298 4.52 125.69% N/A Fail High****	Sample Result Counting Uncertainty (pC/I/., g. F). Sample Matrix Spike Result. Sample Matrix Spike Result. Matrix Spike Duplicate Result. Matrix Spike Duplicate Result. MSD Numerical Performance Indicator: MSD Numerical Necovery: MSD Numerical Indicator: MSD Nu	
Counting Uncertainty (pC/L, g, F)	cted Spik Counting Numeri	19-033 24.032 0.10 0.212 11.315 11.063 1.142 -0.43 97.77%	19-033 24.032 0.10 0.205 11.715 0.141 14.724 1.298 4.52 125.69% N/A	Sample Matrix Spike Result Counting Uncertainty (pCl/L. g. F): Sample Matrix Spike Duplicate Result Matrix Spike Duplicate Result Counting Uncertainty (pCl/L. g. F): MS Numerical Performance Indicator: MSD Numerical Performance Indicator: MSD Numerical Performance Indicator: MSD Numerical Performance Indicator: MSD Numerical Recovery: MSD Strains ys Numerical Recovery: MS Strains ys Numerical Indicator: MS Strains ys Numerical Indicator:	
cted Spike Concentration (pCl/mL): 24.032 24.032 Matrix Spike Resul State Notwell (III): 0.10 0.10 0.10 Sa Matrix Spike Duplicate Resul (III): Matrix Spike Duplicate Resul (III): Matrix Spike Duplicate Result (III): Matrix Spike Matrix Spike Duplicate Duplicate Result (III): Matrix Spike Matrix Spike Duplicate Duplicate Duplicate Result (III): Matrix Spike Duplicate Duplicate Duplicate Duplicate Duplicate Result (III): Matrix Spike Duplicate Duplic	cted Spik	24.032 0.10 0.212 11.315 0.136 11.063 1.142 -0.43 97.77%	24.032 0.10 0.205 11.715 0.141 14.724 1.298 4.52 125.69% N/A Fail High****	Matrix Spike Result Counting Uncertainty (pCl/L, g, F). Sample Matrix Spike Duplicate Result: Matrix Spike Duplicate Result Counting Uncertainty (pCl/L, g, F): MS Numerical Performance Indicator: MSD Numerical Performance Indicator: MSD Numerical Performance Indicator: MSD Status WS Percent Recovery: MS Status ye Numerical Indicator- Indicator- MS Status ye Numerical Indicator- MS Status ye Numerical Indicator- MS Status ye Numerical Indicator-	
Volume Used (mL); 0.10 0.10 0.10 Sa Aliquot Volume (L. g. F); 0.212 0.205 Matrix Spike Duplicate Resul (2.025 11.315 11.715 0.141 MSi (2.014 1.063 14.724 1.208 1.208 Volumerical (pCiVL, g. F); 1.142 1.208 1.208 Volumerical (pCiVL, g. F); 1.142	Counting	0.10 0.212 11.315 0.136 11.063 1.142 -0.43 97.77%	0.10 0.205 11.715 0.141 14.724 1.298 4.52 125.69% N/A Fail High****	Sample Matrix Spike Duplicate Result. Matrix Spike Duplicate Result Counting Uncertainty (pCl/L.g. F): MS Numerical Performance Indicator: MSD Numerical Performance Indicator: MS Percent Recovery: MS Staris ye Numerical Indicator: MS Staris ye Numerical Indicator:	
Aliquot Volume (L. g. F): 0.212 0.205 Matrix Spike Duplicate Resul Target Conc. (pCML, g. F): 11.315 11.715 M Uncertainty (Calculated): 0.136 0.141 MS) Result (pCML, g. F): 1.1063 14.724 MS) Counting Uncertainty (pCML, g. F): 1.142 1.298 Numerical Performance Indicator: 0.43 4.52 1.298 Percent Recovery: N/A NIA Status vs Numerical Indicator: Pass Fail High**** I.25% 1.25% 1.25% 1.25% 1.25% 1.25% I.25% 1.25% I.25% II.25% III.25% III	Counting	0.212 11.315 0.136 11.063 1.142 -0.43 97.77%	0.205 11.715 0.141 14.724 1.298 4.52 125.69% N/A Fail High*****	Matrix Spike Duplicate Result Counting Uncertainty (pCl/I., g, F): MS Numerical Performance Indicator: MSD Numerical Performance Indicator: MS Percent Recovery: MS Status ys Numerical Indicator-	
Target Conc. (pCi/L, g, F): 11.315 11.715 M Uncertainty (calculated): 0.136 0.141 MS Result (pCi/L, g, F): 1.1063 14.724 1.298 Counting Uncertainty (pCi/L, g, F): 1.142 1.298 1.298 Numerical Performance Indicator: 0.043 4.52 1.298 Status va Numerical Indicator: 0.177 125.69% Status va Recovery: 125% 1.25% 1.25% 1.25% 1.25% Lower % Recovery Limits: 1.25% 7.5% 7.5% Counting Units: 1.25% 1.25%	Counting	11.315 0.136 11.063 1.142 -0.43 97.77% N/A	11.715 0.141 14.724 1.298 4.52 125.69% N/A Fail High****	MS Numerical Performance Indicator: MSD Numerical Performance Indicator: MS Percent Recovery: MS Status ys Numerical Indicator-	
Uncertainty (Calculated): 0.136	Unce Counting Unce Numerical Per Status vs I Upper Lower	0.136 11.063 1.142 -0.43 97.77% N/A	0.141 14.724 1.298 4.52 125.69% N/A Fail High*****	MSD Numerical Performance Indicator. MS Percent Recovery: MS Status vs Numerical Indicator.	
Result (pCi/L, g, F): 11.063 14.724	Counting Unce Numerical Per Status vs I Upper Lower	11.063 1.142 -0.43 97.77% N/A	14.724 1.298 4.52 125.69% N/A Fail High****	MS Percent Recovery. MSD Percent Recovery. MS Status vs Numerical Indicator.	
Counting Uncertainty (pC)/L, g, F): 1.142 1.298 Numerical Performance Indicator: -0.43 4.52 Status vs Numerical Indicator: N/A 125.69% Status vs Recovery: Pass Fail High**** Upper % Recovery Limits: 75% 75% Lower % Recovery Limits: 75% 75% Matrix Spike/Matrix Spike Dur	Counting Unce Numerical Per Status vs I Upper Lower	1.142 -0.43 97.77% N/A	1.298 4.52 125.69% N/A Fail High****	MS Status vs Numerical Indicator:	
Numerical Performance Indicator	Numerical Perf Status vs N S Upper 9 Lower 9	-0.43 97.77% N/A	4.52 125.69% N/A Fail High****	MS Status vs Numerical Indicator:	
Status vs Numerical Indicator: N/A N/A Status vs Recovery: 97.77% 125.69% N/A Status vs Recovery: 125% 125% 125% 125% 125% 125% 125% 125%	Status vs N S Upper 9 Lower 9	97.77% N/A	125.69% N/A Fail High****	1. CONTROL OF THE PARTY OF THE	
Status vs Numerical Indicator: NI/A NI/A Status vs Recovery: Pass Fail High*** Upper % Recovery Limits: 125% 125% 155% Lower % Recovery Limits: 75% 75% Matrix Spike/Matrix Spike Dup		A/N	N/A Fail High****	MSD Status vs Numerical Indicator:	
Status vs Recovery: Pass Fail High**** Upper % Recovery Limits: 125% 75% 75% Lower % Recovery Limits: 75% 75% Matrix Spike/Matrix Spike Dur		-	Fail High****	MS Status vs Recovery:	
Upper % Recovery Limits: 125% 125% 125% Lower % Recovery Limits: 75% 75% Matrix Spike/Matrix Spike Dur		Lass		MSD Status vs Recovery:	
Lower % Recovery Limits: 75% 75% Matrix Spike/Matrix Spike Dur		125%	125%	MS/MSD Upper % Recovery Limits:	
Committee	Ouplicate Sample Assessment	75%	75%	MS/MSD Lower % Recovery Limits:	
Committee	Suplicate Sample Assessment				
3				Matrix Spike/Matrix Spike Duplicate Sample Assessment	
	Sample I.D.:	LCS63365		Sample I.D.	
Duplicate Sample I.D. LCSD63365	Duplicate Sample I.D.	LCSD63365		Sample MS I.D.	-
Sample Result (pCi/L, g, F): 11.063	Sample Result (pCi/L, g, F):	11.063		Sample MSD I.D.	
	Sample Result Counting Uncertainty (pCi/L, g, F):	1.142		Sample Matrix Spike Result:	
14.724	Sample Duplicate Result (pCi/L, g, F):	14.724		Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	
1.298	Sample Duplicate Result Counting Uncertainty (pCi/l., g, F):	1.298		Sample Matrix Spike Duplicate Result:	
	Are sample and/or duplicate results below RL?	ON ON		Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):	
Duplicate Numerical Performance Indicator: -4.151 Duplicate N	Duplicate Numerical Performance Indicator:	-4.151		Duplicate Numerical Performance Indicator:	
(Based on the LCS/LCSD Percent Recoveries) Duplicate RPD: 24.99% (Based on the Percent Recoveries)	(Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:	24.99%		(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	
Duplicate Status vs Numerical Indicator: N/A MSD Duplica	Duplicate Status vs Numerical Indicator:	N/A		MS/ MSD Duplicate Status vs Numerical Indicator:	
Duplicate Status vs RPD: Pass MS	Duplicate Status vs RPD:	Pass	-	MS/ MSD Duplicate Status vs RPD:	
% RPD Limit; 25%	% RPD Limit:	25%		% RPD Limit:	

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

92567366002 92567366003 92567366004 18.302 1.237 17.888 1.181 0.474 7.80% N/A Pass 25%

comments: LCSD faul high oth, all sawyle searly of LL of 1.0 plil (Ju rd 3/4

TAR_63365_W.xls Total Alpha Radium (ENV-FRM-GBUR-0142 R0).xls

Pace Analytical"

Quality Control Sample Performance Assessment

LAL 11/13/2021 Ra-226 63367 Analyst: Date: Worklist

MS/MSD 2

MS/MSD 1 10/11/2021

Sample I.D. Sample MS I.D. Sample MSD I.D.

Spike I.D.:

MS/MSD Decay Corrected Spike Concentration (pCi/mL):

Spike Volume Used in MS (mL): Spike Volume Used in MSD (mL): MS Aliquot (L, g, F): MS Target Conc.(pCi/L, g, F): MSD Aliquot (L, g, F): MSD Target Conc. (pCi/L, g, F): MS Spike Uncertainty (calculated): MSD Spike Uncertainty (calculated):

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample Matrix Spike Control Assessment Sample Collection Date:

Matrix	DW
Method Blank Assessment	
MB Sample ID	2269081
MB concentration:	0.522
M/B Counting Uncertainty:	0.337
MB MDC:	0.615
MB Numerical Performance Indicator:	3.04
MB Status vs Numerical Indicator:	A/N
MB Status vs. MDC:	Pass

Laboratory Control Sample Assessment	LCSD (Y or N)?	Z
	LCS63367	LCSD63367
Count Date:	12/3/2021	
Spike I.D.:	19-033	
Decay Corrected Spike Concentration (pCi/mL):	24.032	
Volume Used (mL):	0.10	
Aliquot Volume (L, g, F):	0.201	
Target Conc. (pCi/L, g, F):	11.954	
Uncertainty (Calculated):	0.143	
Result (pCl/l., g, F):	12.295	
LCS/LCSD Counting Uncertainty (pCi/L, g, F):	1.198	-
Numerical Performance Indicator:	0.55	
Percent Recovery:	102.85%	
Status vs Numerical Indicator;	N/A	
Status vs Recovery:	Pass	
Upper % Recovery Limits:	125%	
Lower % Recovery I imits:	75%	****

92567366023 92567366024 92677866025 19-033 24.033 22.03 0.20 0.27 17.614 0.297 16.202 0.211 0.194 1.179 0.194 1.179 0.194 1.178 1.18 1.118

Sample Result:

Sample Result Counting Uncertainty (pCi/L, g, F): Sample Matrix Spike Result.

Matrix Spike Result Counting Uncertainty (pCi/L, g, F):

Sample Matrix Spike Duplicate Result:

Matrix Spike Duplicate Result Counting Uncertainty (pCt/L, g, F):
MS Numerical Performance Indicator:

MSD Numerical Performance Indicator

MS Percent Recovery MSD Percent Recovery MS Status vs Numerical Indicator

1376								See Below ##				•	
LOWER 10 INCOVERY LIMIES.	Duplicate Sample Assessment	Sample I.D.:	Duplicate Sample I.D.	Sample Result (pCi/L, g, F):	Sample Result Counting Uncertainty (pCi/L, g, F):	Sample Duplicate Result (pCi/L, g, F):	Sample Duplicate Result Counting Uncertainty (pCi/L, g, F):	Are sample and/or duplicate results below RL?	Duplicate Numerical Performance Indicator:	Duplicate RPD:	Duplicate Status vs Numerical Indicator:	Duplicate Status vs RPD:	% RPD Limit:

	92567366023	92567366024	92567366025	16.615	1.188	16.716	1.118	-0.120	800.6	ΑN	Pass	25%
Matrix Spike/Matrix Spike Duplicate Sample Assessment	Sample I.D.	Sample MS I.D.	Sample MSD I.D.	Sample Matrix Spike Result:	Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	Sample Matrix Spike Duplicate Result:	Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):	Duplicate Numerical Performance Indicator:	(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	MS/ MSD Duplicate Status vs Numerical Indicator:	MS/ MSD Duplicate Status vs RPD:	% BPD Limit
				_		_						

MSD Status vs Recovery: MS/MSD Upper % Recovery Limits: MS/MSD Lower % Recovery Limits:

MSD Status vs Numerical Indicator MS Status vs Recovery

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

6 of 13

Date	Weather	
Location		
Collector		

	Coll	ector						
				In Go	od Co	ndition		
		Water				Protective	Name	
Well	Time	Level (ft)	Locks	Bollards	Pad	Casing	Plate	Comment
	<u> </u>							
	<u> </u>							
	<u> </u>							
	<u> </u>							
	<u> </u>							
	<u> </u>							
	<u> </u>							

Alabama Power Company Plant Gadsden Ash Pond										
WELL ID	TIME OF READING	DESCRIPTION	VALUE	UNIT						
APCO-GSD-AP-MW-3	10/5/2021 13:06	Conductivity	625.28	uS/cm						
APCO-GSD-AP-MW-3	10/5/2021 13:06	DO	0.09	mg/L						
APCO-GSD-AP-MW-3		Depth to Water Detail	13.2	ft						
APCO-GSD-AP-MW-3	10/5/2021 13:06	Oxidation Reduction Potention	106	mv						
APCO-GSD-AP-MW-3	10/5/2021 13:06	рН	5.79	SU						
APCO-GSD-AP-MW-3	10/5/2021 13:06	Temperature	21.3	С						
APCO-GSD-AP-MW-3	10/5/2021 13:06	Turbidity	0.83	NTU						
APCO-GSD-AP-MW-3	10/5/2021 13:11	Conductivity	624.32	uS/cm						
APCO-GSD-AP-MW-3	10/5/2021 13:11	DO	0.08	mg/L						
APCO-GSD-AP-MW-3	10/5/2021 13:11	Depth to Water Detail	13.2	ft						
APCO-GSD-AP-MW-3	10/5/2021 13:11	Oxidation Reduction Potention	103.83	mv						
APCO-GSD-AP-MW-3	10/5/2021 13:11	рН	5.81	SU						
APCO-GSD-AP-MW-3	10/5/2021 13:11	Temperature	21.26	С						
APCO-GSD-AP-MW-3	10/5/2021 13:11	Turbidity	0.42	NTU						
APCO-GSD-AP-MW-3	10/5/2021 13:16	Conductivity	622.8	uS/cm						
APCO-GSD-AP-MW-3	10/5/2021 13:16	DO	0.07	mg/L						
APCO-GSD-AP-MW-3	10/5/2021 13:16	Depth to Water Detail	13.2	ft						
APCO-GSD-AP-MW-3	10/5/2021 13:16	Oxidation Reduction Potention	102.03	mv						
APCO-GSD-AP-MW-3	10/5/2021 13:16		5.82	SU						
APCO-GSD-AP-MW-3	10/5/2021 13:16	Temperature	21.27	С						
APCO-GSD-AP-MW-3	10/5/2021 13:16	Turbidity	0.68	NTU						
APCO-GSD-AP-MW-3	10/5/2021 13:21	Conductivity	622.14	uS/cm						
APCO-GSD-AP-MW-3	10/5/2021 13:21	DO		mg/L						
APCO-GSD-AP-MW-3	10/5/2021 13:21	Depth to Water Detail	13.2	ft						
APCO-GSD-AP-MW-3	10/5/2021 13:21	Oxidation Reduction Potention	103.16	mv						
APCO-GSD-AP-MW-3	10/5/2021 13:21	рН	5.76	SU						
APCO-GSD-AP-MW-3	10/5/2021 13:21	Temperature	21.28	С						
APCO-GSD-AP-MW-3	10/5/2021 13:21	Turbidity	0.41	NTU						

	Plant G	adsden Ash Pond		
WELL ID	TIME OF READING	DESCRIPTION	VALUE	UNIT
APCO-GSD-AP-MW-4	10/5/2021 14:04	Conductivity	435.02	uS/cm
APCO-GSD-AP-MW-4	10/5/2021 14:04	DO	0.81	mg/L
APCO-GSD-AP-MW-4	10/5/2021 14:04	Depth to Water Detail	7.02	ft
APCO-GSD-AP-MW-4		Oxidation Reduction Potention	-47.11	mv
APCO-GSD-AP-MW-4	10/5/2021 14:04	рН	6.53	SU
APCO-GSD-AP-MW-4	10/5/2021 14:04	Temperature	20.75	С
APCO-GSD-AP-MW-4	10/5/2021 14:04		9.21	NTU
APCO-GSD-AP-MW-4	10/5/2021 14:09		436.22	uS/cm
APCO-GSD-AP-MW-4	10/5/2021 14:09	DO	0.68	mg/L
APCO-GSD-AP-MW-4		Depth to Water Detail	7.05	
APCO-GSD-AP-MW-4		Oxidation Reduction Potention	-55.98	
APCO-GSD-AP-MW-4	10/5/2021 14:09		6.58	
APCO-GSD-AP-MW-4	10/5/2021 14:09		20.74	
APCO-GSD-AP-MW-4	10/5/2021 14:09			NTU
APCO-GSD-AP-MW-4	10/5/2021 14:14			uS/cm
APCO-GSD-AP-MW-4	10/5/2021 14:14			mg/L
APCO-GSD-AP-MW-4		Depth to Water Detail	7.06	
APCO-GSD-AP-MW-4		Oxidation Reduction Potention	-61.76	
APCO-GSD-AP-MW-4	10/5/2021 14:14		6.61	
APCO-GSD-AP-MW-4	10/5/2021 14:14		20.91	
APCO-GSD-AP-MW-4	10/5/2021 14:14			NTU
APCO-GSD-AP-MW-4	10/5/2021 14:19			uS/cm
APCO-GSD-AP-MW-4	10/5/2021 14:19			mg/L
APCO-GSD-AP-MW-4		Depth to Water Detail	7.06	
APCO-GSD-AP-MW-4		Oxidation Reduction Potention	-65.31	
APCO-GSD-AP-MW-4	10/5/2021 14:19		6.62	
APCO-GSD-AP-MW-4	10/5/2021 14:19	*	20.98	
APCO-GSD-AP-MW-4	10/5/2021 14:19			NTU
APCO-GSD-AP-MW-4	10/5/2021 14:24	·		uS/cm
APCO-GSD-AP-MW-4	10/5/2021 14:24	·		mg/L
APCO-GSD-AP-MW-4		Depth to Water Detail	7.06	
APCO-GSD-AP-MW-4		Oxidation Reduction Potention	-68.5	
APCO-GSD-AP-MW-4	10/5/2021 14:24		6.62	
APCO-GSD-AP-MW-4	10/5/2021 14:24		20.95	
APCO-GSD-AP-MW-4	10/5/2021 14:24			NTU
APCO-GSD-AP-MW-4	10/5/2021 14:29			uS/cm
APCO-GSD-AP-MW-4	10/5/2021 14:29		_	mg/L
APCO-GSD-AP-MW-4		Depth to Water Detail	7.06	
APCO-GSD-AP-MW-4		Oxidation Reduction Potention	-68.02	
APCO-GSD-AP-MW-4	10/5/2021 14:29		6.56	
APCO-GSD-AP-MW-4	10/5/2021 14:29	i A	20.82	
APCO-GSD-AP-MW-4	10/5/2021 14:29			NTU
APCO-GSD-AP-MW-4	10/5/2021 14:34	•		uS/cm
APCO-GSD-AP-MW-4	10/5/2021 14:34		_	mg/L
APCO-GSD-AP-MW-4		Depth to Water Detail	7.06	
APCO-GSD-AP-MW-4		Oxidation Reduction Potention	-70.59	
APCO-GSD-AP-MW-4	10/5/2021 14:34		6.58	
APCO-GSD-AP-MW-4	10/5/2021 14:34	*	20.73	
APCO-GSD-AP-MW-4	10/5/2021 14:34			NTU
AFCU-USD-AF-MW-4	10/3/2021 14:34	1 arolarty	2.08	NIO

Alabama Power Company Plant Gadsden Ash Pond					
WELL ID	TIME OF READING	DESCRIPTION	VALUE	UNIT	
APCO-GSD-AP-MW-6	10/5/2021 11:50	Conductivity	166.94	uS/cm	
APCO-GSD-AP-MW-6	10/5/2021 11:50	DO	0.13	mg/L	
APCO-GSD-AP-MW-6	10/5/2021 11:50	Depth to Water Detail	5.16	ft	
APCO-GSD-AP-MW-6	10/5/2021 11:50	Oxidation Reduction Potention	101.57	mv	
APCO-GSD-AP-MW-6	10/5/2021 11:50	pН	5.74	SU	
APCO-GSD-AP-MW-6	10/5/2021 11:50	Temperature	20.14	С	
APCO-GSD-AP-MW-6	10/5/2021 11:50		1.28	NTU	
APCO-GSD-AP-MW-6	10/5/2021 11:55	Conductivity	167.39	uS/cm	
APCO-GSD-AP-MW-6	10/5/2021 11:55	DO	0.12	mg/L	
APCO-GSD-AP-MW-6	10/5/2021 11:55	Depth to Water Detail	5.16	ft	
APCO-GSD-AP-MW-6	10/5/2021 11:55	Oxidation Reduction Potention	102.37	mv	
APCO-GSD-AP-MW-6	10/5/2021 11:55	pН	5.66	SU	
APCO-GSD-AP-MW-6	10/5/2021 11:55	Temperature	20.04	С	
APCO-GSD-AP-MW-6	10/5/2021 11:55	Turbidity	1.24	NTU	
APCO-GSD-AP-MW-6	10/5/2021 12:00	Conductivity	167	uS/cm	
APCO-GSD-AP-MW-6	10/5/2021 12:00	DO	0.11	mg/L	
APCO-GSD-AP-MW-6	10/5/2021 12:00	Depth to Water Detail	5.16	ft	
APCO-GSD-AP-MW-6	10/5/2021 12:00	Oxidation Reduction Potention	101.7	mv	
APCO-GSD-AP-MW-6	10/5/2021 12:00	pН	5.64	SU	
APCO-GSD-AP-MW-6	10/5/2021 12:00	Temperature	20.04	С	
APCO-GSD-AP-MW-6	10/5/2021 12:00	Turbidity	0.65	NTU	
APCO-GSD-AP-MW-6	10/5/2021 12:05	Conductivity	166.61	uS/cm	
APCO-GSD-AP-MW-6	10/5/2021 12:05	DO	0.11	mg/L	
APCO-GSD-AP-MW-6	10/5/2021 12:05	Depth to Water Detail	5.16	ft	
APCO-GSD-AP-MW-6	10/5/2021 12:05	Oxidation Reduction Potention	94.86	mv	

5.74 SU

0.56 NTU

20.04 C

10/5/2021 12:05 pH

10/5/2021 12:05 Temperature

10/5/2021 12:05 Turbidity

APCO-GSD-AP-MW-6

APCO-GSD-AP-MW-6

APCO-GSD-AP-MW-6

	Power Company adsden Ash Pond		
TIME OF READING	DESCRIPTION	VALUE	UNIT
10/6/2021 9:53	Conductivity	289.46	uS/cm
10/6/2021 9:53	DO	4.05	mg/L
10/6/2021 9:53	Depth to Water Detail	26.02	ft
10/6/2021 9:53	Oxidation Reduction Potention	169.41	mv
10/6/2021 9:53	рН	4.14	SU
10/6/2021 9:53	Temperature	19.68	С
10/6/2021 9:53	Turbidity	9.08	NTU
10/6/2021 9:58	Conductivity	281.31	uS/cm
10/6/2021 0 50	DO	4.07	/ T

APCO-GSD-AP-MW-16	10/6/2021 9:53	Conductivity	289.46	
APCO-GSD-AP-MW-16	10/6/2021 9:53		4.05	mg/L
APCO-GSD-AP-MW-16	10/6/2021 9:53	Depth to Water Detail	26.02	ft
APCO-GSD-AP-MW-16	10/6/2021 9:53	Oxidation Reduction Potention	169.41	mv
APCO-GSD-AP-MW-16	10/6/2021 9:53	pН	4.14	SU
APCO-GSD-AP-MW-16	10/6/2021 9:53	Temperature	19.68	C
APCO-GSD-AP-MW-16	10/6/2021 9:53	Turbidity	9.08	NTU
APCO-GSD-AP-MW-16	10/6/2021 9:58		281.31	uS/cm
APCO-GSD-AP-MW-16	10/6/2021 9:58	DO	4.07	mg/L
APCO-GSD-AP-MW-16		Depth to Water Detail	26.02	ft
APCO-GSD-AP-MW-16	10/6/2021 9:58	Oxidation Reduction Potention	167.94	mv
APCO-GSD-AP-MW-16	10/6/2021 9:58	рН	4.13	
APCO-GSD-AP-MW-16	10/6/2021 9:58		19.7	
APCO-GSD-AP-MW-16	10/6/2021 9:58	Turbidity	4.54	NTU
APCO-GSD-AP-MW-16	10/6/2021 10:03		275.83	uS/cm
APCO-GSD-AP-MW-16	10/6/2021 10:03			mg/L
APCO-GSD-AP-MW-16	10/6/2021 10:03	Depth to Water Detail	26.02	ft
APCO-GSD-AP-MW-16	10/6/2021 10:03	Oxidation Reduction Potention	166.43	
APCO-GSD-AP-MW-16	10/6/2021 10:03	рН	4.14	
APCO-GSD-AP-MW-16	10/6/2021 10:03		19.58	C
APCO-GSD-AP-MW-16	10/6/2021 10:03	Turbidity	3.63	NTU
APCO-GSD-AP-MW-16	10/6/2021 10:08	Conductivity	272.73	uS/cm
APCO-GSD-AP-MW-16	10/6/2021 10:08	DO		mg/L
APCO-GSD-AP-MW-16		Depth to Water Detail	26.02	ft
APCO-GSD-AP-MW-16	10/6/2021 10:08	Oxidation Reduction Potention	164.32	
APCO-GSD-AP-MW-16	10/6/2021 10:08	рН	4.16	SU
APCO-GSD-AP-MW-16	10/6/2021 10:08	Temperature	19.55	С
APCO-GSD-AP-MW-16	10/6/2021 10:08	Turbidity	3.19	NTU

WELL ID

Plant Gadsden Ash Pond						
WELL ID	TIME OF READING	DESCRIPTION	VALUE	UNIT		
APCO-GSD-AP-MW-17	10/6/2021 8:17	Conductivity	322.05	uS/cm		
APCO-GSD-AP-MW-17	10/6/2021 8:17	DO	0.82	mg/L		
APCO-GSD-AP-MW-17	10/6/2021 8:17	Depth to Water Detail	20.98	ft		
APCO-GSD-AP-MW-17	10/6/2021 8:17	Oxidation Reduction Potention	103.34	mv		
APCO-GSD-AP-MW-17	10/6/2021 8:17	pН	7.9	SU		
APCO-GSD-AP-MW-17	10/6/2021 8:17	Temperature	20.52	С		
APCO-GSD-AP-MW-17	10/6/2021 8:17	Turbidity	21.8	NTU		
APCO-GSD-AP-MW-17	10/6/2021 8:22	Conductivity		uS/cm		
APCO-GSD-AP-MW-17	10/6/2021 8:22	DO	0.72	mg/L		
APCO-GSD-AP-MW-17	10/6/2021 8:22	Depth to Water Detail	21.52	ft		
APCO-GSD-AP-MW-17	10/6/2021 8:22	Oxidation Reduction Potention	101.1	mv		
APCO-GSD-AP-MW-17	10/6/2021 8:22	pН	7.85	SU		
APCO-GSD-AP-MW-17	10/6/2021 8:22	Temperature	20.51	С		
APCO-GSD-AP-MW-17	10/6/2021 8:22	Turbidity	17.2	NTU		
APCO-GSD-AP-MW-17	10/6/2021 8:27	Conductivity	319.35	uS/cm		
APCO-GSD-AP-MW-17	10/6/2021 8:27	DO	0.66	mg/L		
APCO-GSD-AP-MW-17		Depth to Water Detail	21.96			
APCO-GSD-AP-MW-17		Oxidation Reduction Potention	93.71	mv		
APCO-GSD-AP-MW-17	10/6/2021 8:27	pН	7.89	SU		
APCO-GSD-AP-MW-17	10/6/2021 8:27	Temperature	20.49	С		
APCO-GSD-AP-MW-17	10/6/2021 8:27		13.5	NTU		
APCO-GSD-AP-MW-17	10/6/2021 8:32	Conductivity	318.52	uS/cm		
APCO-GSD-AP-MW-17	10/6/2021 8:32	DO	0.66	mg/L		
APCO-GSD-AP-MW-17	10/6/2021 8:32	Depth to Water Detail	22.03	ft		
APCO-GSD-AP-MW-17	10/6/2021 8:32	Oxidation Reduction Potention	88.51	mv		
APCO-GSD-AP-MW-17	10/6/2021 8:32	pН	7.9	SU		
APCO-GSD-AP-MW-17	10/6/2021 8:32	Temperature	20.48	С		
APCO-GSD-AP-MW-17	10/6/2021 8:32	Turbidity	12	NTU		
APCO-GSD-AP-MW-17	10/6/2021 8:37	Conductivity	318.41	uS/cm		
APCO-GSD-AP-MW-17	10/6/2021 8:37	DO	0.65	mg/L		
APCO-GSD-AP-MW-17	10/6/2021 8:37	Depth to Water Detail	22.14	ft		
APCO-GSD-AP-MW-17	10/6/2021 8:37	Oxidation Reduction Potention	82.63	mv		
APCO-GSD-AP-MW-17	10/6/2021 8:37	pН	7.91	SU		
APCO-GSD-AP-MW-17	10/6/2021 8:37	Temperature	20.48	С		
APCO-GSD-AP-MW-17	10/6/2021 8:37	Turbidity	10.31	NTU		
APCO-GSD-AP-MW-17	10/6/2021 8:42		317.65	uS/cm		
APCO-GSD-AP-MW-17	10/6/2021 8:42			mg/L		
APCO-GSD-AP-MW-17		Depth to Water Detail	22.27			
APCO-GSD-AP-MW-17		Oxidation Reduction Potention	79.35			
APCO-GSD-AP-MW-17	10/6/2021 8:42		7.92			
APCO-GSD-AP-MW-17	10/6/2021 8:42	•	20.5			
APCO-GSD-AP-MW-17	10/6/2021 8:42			NTU		

Plant Gadsden Ash Pond					
WELL ID	TIME OF READING	DESCRIPTION	VALUE	UNIT	
APCO-GSD-AP-PZ-2	10/5/2021 10:20	Conductivity	88.61	uS/cm	
APCO-GSD-AP-PZ-2	10/5/2021 10:20			mg/L	
APCO-GSD-AP-PZ-2	10/5/2021 10:20	Depth to Water Detail	8.96	ft	
APCO-GSD-AP-PZ-2	10/5/2021 10:20	Oxidation Reduction Potention	110.45	mv	
APCO-GSD-AP-PZ-2	10/5/2021 10:20	рН	5.24	SU	
APCO-GSD-AP-PZ-2	10/5/2021 10:20	Temperature	21.08	С	
APCO-GSD-AP-PZ-2	10/5/2021 10:20	Turbidity	7.4	NTU	
APCO-GSD-AP-PZ-2	10/5/2021 10:25	Conductivity	89.81	uS/cm	
APCO-GSD-AP-PZ-2	10/5/2021 10:25	DO	0.53	mg/L	
APCO-GSD-AP-PZ-2		Depth to Water Detail	9.03		
APCO-GSD-AP-PZ-2	10/5/2021 10:25	Oxidation Reduction Potention	114.73	mv	
APCO-GSD-AP-PZ-2	10/5/2021 10:25		5.27	SU	
APCO-GSD-AP-PZ-2	10/5/2021 10:25	Temperature	21.04	C	
APCO-GSD-AP-PZ-2	10/5/2021 10:25	Turbidity	5.79	NTU	
APCO-GSD-AP-PZ-2	10/5/2021 10:30	Conductivity	90.87	uS/cm	
APCO-GSD-AP-PZ-2	10/5/2021 10:30		0.49	mg/L	
APCO-GSD-AP-PZ-2	10/5/2021 10:30	Depth to Water Detail	9.11	ft	
APCO-GSD-AP-PZ-2	10/5/2021 10:30	Oxidation Reduction Potention	123.59	mv	
APCO-GSD-AP-PZ-2	10/5/2021 10:30	рН	5.13	SU	
APCO-GSD-AP-PZ-2	10/5/2021 10:30		21	С	
APCO-GSD-AP-PZ-2	10/5/2021 10:30	Turbidity	6.91	NTU	
APCO-GSD-AP-PZ-2	10/5/2021 10:35	Conductivity	98.58	uS/cm	
APCO-GSD-AP-PZ-2	10/5/2021 10:35	DO	0.48	mg/L	
APCO-GSD-AP-PZ-2	10/5/2021 10:35	Depth to Water Detail	9.11	ft	
APCO-GSD-AP-PZ-2	10/5/2021 10:35	Oxidation Reduction Potention	124.04	mv	
APCO-GSD-AP-PZ-2	10/5/2021 10:35	рН	5.17	SU	
APCO-GSD-AP-PZ-2	10/5/2021 10:35		20.97		
APCO-GSD-AP-PZ-2	10/5/2021 10:35		7.15	NTU	
APCO-GSD-AP-PZ-2	10/5/2021 10:40	Conductivity	140.99	uS/cm	
APCO-GSD-AP-PZ-2	10/5/2021 10:40			mg/L	
APCO-GSD-AP-PZ-2		Depth to Water Detail	9.11		
APCO-GSD-AP-PZ-2		Oxidation Reduction Potention	112.61		
APCO-GSD-AP-PZ-2	10/5/2021 10:40			SU	
APCO-GSD-AP-PZ-2	10/5/2021 10:40	-	21.02		
APCO-GSD-AP-PZ-2	10/5/2021 10:40			NTU	
APCO-GSD-AP-PZ-2	10/5/2021 10:45		161.33		
APCO-GSD-AP-PZ-2	10/5/2021 10:45			mg/L	
APCO-GSD-AP-PZ-2		Depth to Water Detail	9.11		
APCO-GSD-AP-PZ-2		Oxidation Reduction Potention	107.55		
APCO-GSD-AP-PZ-2	10/5/2021 10:45		5.66		
APCO-GSD-AP-PZ-2	10/5/2021 10:45		21.05		
APCO-GSD-AP-PZ-2	10/5/2021 10:45			NTU	
APCO-GSD-AP-PZ-2	10/5/2021 10:50			uS/cm	
APCO-GSD-AP-PZ-2	10/5/2021 10:50			mg/L	
APCO-GSD-AP-PZ-2		Depth to Water Detail	9.11		
APCO-GSD-AP-PZ-2		Oxidation Reduction Potention	105.05		
APCO-GSD-AP-PZ-2	10/5/2021 10:50			SU	
APCO-GSD-AP-PZ-2	10/5/2021 10:50	-	21.08		
APCO-GSD-AP-PZ-2	10/5/2021 10:50			NTU	
APCO-GSD-AP-PZ-2	10/5/2021 10:55	·		uS/cm	
APCO-GSD-AP-PZ-2	10/5/2021 10:55			mg/L	
APCO-GSD-AP-PZ-2	l .	Depth to Water Detail	9.11		
APCO-GSD-AP-PZ-2	10/5/2021 10:55	Oxidation Reduction Potention	104.67	mv	

Alabama Power Company Plant Gadsden Ash Pond					
WELL ID	TIME OF READING	DESCRIPTION	VALUE	UNIT	
APCO-GSD-AP-PZ-2	10/5/2021 10:55	рН	5.72	SU	
APCO-GSD-AP-PZ-2	10/5/2021 10:55	Temperature	21.06	С	
APCO-GSD-AP-PZ-2	10/5/2021 10:55	Turbidity	4.86	NTU	

Alabama Power Company Plant Gadsden Ash Pond					
WELL ID	TIME OF READING	DESCRIPTION	VALUE	UNIT	
APCO-GSD-AP-MW-1	10/5/2021 14:00	Conductivity	1210.63	uS/cm	
APCO-GSD-AP-MW-1	10/5/2021 14:00	DO	0.23	mg/L	
APCO-GSD-AP-MW-1	10/5/2021 14:00	Depth to Water Detail	12.66	ft	
APCO-GSD-AP-MW-1	10/5/2021 14:00	Oxidation Reduction Potention	110.69	mv	
APCO-GSD-AP-MW-1	10/5/2021 14:00	рН	5.75	SU	
APCO-GSD-AP-MW-1	10/5/2021 14:00	Temperature	18.55	C	
APCO-GSD-AP-MW-1	10/5/2021 14:00		4.89	NTU	
APCO-GSD-AP-MW-1	10/5/2021 14:05	Conductivity	1205.99	uS/cm	
APCO-GSD-AP-MW-1	10/5/2021 14:05	DO	0.19	mg/L	
APCO-GSD-AP-MW-1	10/5/2021 14:05	Depth to Water Detail	12.66	ft	
APCO-GSD-AP-MW-1	10/5/2021 14:05	Oxidation Reduction Potention	108.83	mv	
APCO-GSD-AP-MW-1	10/5/2021 14:05	рН	5.76	SU	
APCO-GSD-AP-MW-1	10/5/2021 14:05	Temperature	18.57	C	
APCO-GSD-AP-MW-1	10/5/2021 14:05	Turbidity	3.06	NTU	
APCO-GSD-AP-MW-1	10/5/2021 14:10	Conductivity	1202.77	uS/cm	
APCO-GSD-AP-MW-1	10/5/2021 14:10	DO	0.18	mg/L	
APCO-GSD-AP-MW-1	10/5/2021 14:10	Depth to Water Detail	12.66	ft	
APCO-GSD-AP-MW-1	10/5/2021 14:10	Oxidation Reduction Potention	106.88	mv	
APCO-GSD-AP-MW-1	10/5/2021 14:10	рН	5.72	SU	
APCO-GSD-AP-MW-1	10/5/2021 14:10	Temperature	18.62	С	
APCO-GSD-AP-MW-1	10/5/2021 14:10	Turbidity	2.3	NTU	
APCO-GSD-AP-MW-1	10/5/2021 14:15	Conductivity	1200.42	uS/cm	

0.16 mg/L

12.66 ft

104.55 mv

5.79 SU

18.8 C

2.76 NTU

10/5/2021 14:15 DO

10/5/2021 14:15 pH

10/5/2021 14:15 Temperature

10/5/2021 14:15 Turbidity

10/5/2021 14:15 Depth to Water Detail

10/5/2021 14:15 Oxidation Reduction Potention

APCO-GSD-AP-MW-1

APCO-GSD-AP-MW-1

APCO-GSD-AP-MW-1

APCO-GSD-AP-MW-1

APCO-GSD-AP-MW-1

APCO-GSD-AP-MW-1

WELL ID	Plant Gadsden Ash Pond					
APCO-GSD-AP-MW-2VA	WELL ID	TIME OF READING	DESCRIPTION	VALUE	UNIT	
APCO-GSD-AP-MW-2VA	APCO-GSD-AP-MW-2VA	10/6/2021 8:57	Conductivity	522.29	uS/cm	
APCO-GSD-AP-MW-2VA	APCO-GSD-AP-MW-2VA					
APCO-GSD-AP-MW-2VA APCO-GSD-AP-M	APCO-GSD-AP-MW-2VA			16.07	ft	
APCO-GSD-AP-MW-2VA APCO-GSD-AP-M	APCO-GSD-AP-MW-2VA	10/6/2021 8:57	Oxidation Reduction Potention	-150.49	mv	
APCO-GSD-AP-MW-2VA	APCO-GSD-AP-MW-2VA	10/6/2021 8:57	рН	8.08	SU	
APCO-GSD-AP-MW-2VA APCO-GSD-AP-M	APCO-GSD-AP-MW-2VA	10/6/2021 8:57	Temperature	19.49	C	
APCO-GSD-AP-MW-2VA 10/6/2021 9:02 DO 182.4 ft RAPCO-GSD-AP-MW-2VA 10/6/2021 9:02 Depth to Water Detail 18.24 ft RAPCO-GSD-AP-MW-2VA 10/6/2021 9:02 Depth to Water Detail 18.24 ft RAPCO-GSD-AP-MW-2VA 10/6/2021 9:02 Depth to Water Detail 18.24 ft RAPCO-GSD-AP-MW-2VA 10/6/2021 9:02 Depth to Water Detail 19.47 C RAPCO-GSD-AP-MW-2VA 10/6/2021 9:02 Depth to Water Detail 19.47 C RAPCO-GSD-AP-MW-2VA 10/6/2021 9:02 Turbidity 1.04 NTU 19.47 C RAPCO-GSD-AP-MW-2VA 10/6/2021 9:07 Do 0.02.5 mg/L RAPCO-GSD-AP-MW-2VA 10/6/2021 9:07 Do 0.02.5 mg/L RAPCO-GSD-AP-MW-2VA 10/6/2021 9:07 Depth to Water Detail 20.33 ft RAPCO-GSD-AP-MW-2VA 10/6/2021 9:07 Depth to Water Detail 20.33 ft RAPCO-GSD-AP-MW-2VA 10/6/2021 9:07 Depth to Water Detail 20.33 ft RAPCO-GSD-AP-MW-2VA 10/6/2021 9:07 Depth to Water Detail 20.33 ft RAPCO-GSD-AP-MW-2VA 10/6/2021 9:07 Turbidity 19.5 C RAPCO-GSD-AP-MW-2VA 10/6/2021 9:12 DO 0.06 mg/L RAPCO-GSD-AP-MW-2VA 10/6/2021 9:12 Drapto Water Detail 20.78 ft RAPCO-GSD-AP-MW-2VA 10/6/2021 9:12 Temperature 20.91 C RAPCO-GSD-AP-MW-2VA 10/6/2021 9:12 Temperature 20.91 C RAPCO-GSD-AP-MW-2VA 10/6/2021 9:12 Temperature 20.91 C RAPCO-GSD-AP-MW-2VA 10/6/2021 9:17 Turbidity 0.84 NTU RAPCO-GSD-AP-MW-2VA 10/6/2021 9:17 Draptorid Published Published RAPCO-GSD-AP-MW-2VA 10/6/2021 9:17 Draptorid Published RAPCO-GSD-AP-MW-2VA 10/6/2021 9:27 Draptorid Published RAPCO-GSD-AP-MW-2VA 10/6/2021 9:27 Draptorid Published RAPCO-GSD-AP-MW-2VA 10/6/2021 9:27 Draptorid Published RAPCO-GSD-AP-MW-2	APCO-GSD-AP-MW-2VA		·			
APCO-GSD-AP-MW-2VA	APCO-GSD-AP-MW-2VA					
APCO-GSD-AP-MW-2VA	APCO-GSD-AP-MW-2VA					
APCO-GSD-AP-MW-2VA						
APCO-GSD-AP-MW-2VA	APCO-GSD-AP-MW-2VA					
APCO-GSD-AP-MW-2VA 10/6/2021 9:07 Conductivity 522.44 uS/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:07 Donuctivity 522.44 uS/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:07 Doph to Water Detail 20.33 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:07 Depth to Water Detail 20.33 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:07 Depth to Water Detail 20.33 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:07 Depth to Water Detail 20.33 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:07 Depth to Water Detail 20.33 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:07 Depth to Water Detail 20.33 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:07 Temperature 19.5 C APCO-GSD-AP-MW-2VA 10/6/2021 9:07 Turbidity 0.92 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:12 Conductivity 524.13 uS/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:12 DO 0.66 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:12 DO 0.66 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:12 Doph to Water Detail 20.78 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:12 Dipth to Water Detail 20.78 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:12 DF R. 21 US/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:12 DF R. 21 US/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:12 DF R. 21 US/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:12 Temperature 20.91 C APCO-GSD-AP-MW-2VA 10/6/2021 9:17 Conductivity 522.7 uS/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:17 Conductivity 522.7 uS/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:17 Depth to Water Detail 21.04 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:17 Depth to Water Detail 21.04 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:17 Depth to Water Detail 21.04 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:17 Depth to Water Detail 21.04 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:17 Temperature 20.96 C APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Depth to Water Detail 21.33 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Depth to Water Detail 21.33 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Depth to Water Detail 21.34 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Depth to Water Detail 21.34 ft APCO-GSD-AP-MW-2VA 10/6/	APCO-GSD-AP-MW-2VA					
APCO-GSD-AP-MW-2VA APCO-GSD-AP-M	APCO-GSD-AP-MW-2VA					
APCO-GSD-AP-MW-2VA 10/6/2021 9:07 DO 1.25 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:07 Depth to Water Detail 20.33 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:07 Oxidation Reduction Potention -159.72 mv APCO-GSD-AP-MW-2VA 10/6/2021 9:07 Temperature 19.5 C APCO-GSD-AP-MW-2VA 10/6/2021 9:07 Turbidity 0.92 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:07 Turbidity 0.92 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:12 Conductivity 524.13 uS/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:12 DO 0.666 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:12 DO 0.666 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:12 Depth to Water Detail 20.78 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:12 Depth to Water Detail 20.78 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:12 Depth to Water Detail 20.78 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:12 Depth to Water Detail 20.78 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:12 Turbidity 3.84 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:12 Turbidity 3.84 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:12 Turbidity 3.84 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:17 Conductivity 3.84 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:17 DO 0.88 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:17 DO 0.88 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:17 Depth to Water Detail 21.04 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:17 Depth to Water Detail 21.04 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:17 Depth to Water Detail 21.04 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:17 Depth to Water Detail 21.04 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:17 Temperature 20.96 C APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Doo 0.83 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Temperature 21.10 C APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Doo 0.82 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Doo 0.82 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Doo 0.82 mg/L A	APCO-GSD-AP-MW-2VA			1.04	NTU	
APCO-GSD-AP-MW-2VA APCO-GSD-AP-M	APCO-GSD-AP-MW-2VA			522.44	uS/cm	
APCO-GSD-AP-MW-2VA 10/6/2021 9:07 Did attion Reduction Potention	APCO-GSD-AP-MW-2VA					
APCO-GSD-AP-MW-2VA	APCO-GSD-AP-MW-2VA	10/6/2021 9:07	Depth to Water Detail	20.33	ft	
APCO-GSD-AP-MW-2VA	APCO-GSD-AP-MW-2VA	10/6/2021 9:07	Oxidation Reduction Potention			
APCO-GSD-AP-MW-2VA	APCO-GSD-AP-MW-2VA	10/6/2021 9:07	рН	8.18	SU	
APCO-GSD-AP-MW-2VA	APCO-GSD-AP-MW-2VA	10/6/2021 9:07	Temperature	19.5	С	
APCO-GSD-AP-MW-2VA 10/6/2021 9:12 DO 0.66 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:12 Depth to Water Detail 20.78 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:12 Oxidation Reduction Potention -15.25 g mv APCO-GSD-AP-MW-2VA 10/6/2021 9:12 pH 8.21 SU APCO-GSD-AP-MW-2VA 10/6/2021 9:12 Temperature 20.91 C APCO-GSD-AP-MW-2VA 10/6/2021 9:12 Turbidity 0.84 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:17 Conductivity 52.7 uS/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:17 DO 0.8 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:17 Temperature 20.96 C APCO-GSD-AP-MW-2VA 10/6/2021 9:17 Turbidity 1.23 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Conductivity 520.95 uS/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Do 0.83 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Do 0.83 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Dopth to Water Detail 21.23 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Dopth to Water Detail 21.23 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Turbidity 1.18 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Turbidity 1.18 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Turbidity 1.18 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Do 0.82 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Do 0.83 mg/L APCO-GSD-AP-MW-2VA 10/6/2021	APCO-GSD-AP-MW-2VA	10/6/2021 9:07	Turbidity	0.92	NTU	
APCO-GSD-AP-MW-2VA 10/6/2021 9:12 Depth to Water Detail 20.78 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:12 Oxidation Reduction Potention -152.59 mv APCO-GSD-AP-MW-2VA 10/6/2021 9:12 pH 8.21 SU APCO-GSD-AP-MW-2VA 10/6/2021 9:12 Temperature 20.91 C APCO-GSD-AP-MW-2VA 10/6/2021 9:17 Temperature 20.91 C APCO-GSD-AP-MW-2VA 10/6/2021 9:17 Conductivity 522.7 us/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:17 DO 0.8 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:17 DO 0.8 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:17 Doxidation Reduction Potention -149.55 mv APCO-GSD-AP-MW-2VA 10/6/2021 9:17 pth to Water Detail 21.04 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:17 pth to Water Detail 21.04 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:17 pth APCO-GSD-AP-MW-2VA 10/6/2021 9:17 Temperature 20.96 C APCO-GSD-AP-MW-2VA 10/6/2021 9:17 Temperature 20.96 C APCO-GSD-AP-MW-2VA 10/6/2021 9:17 Turbidity 1.23 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:22 DO 0.83 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Conductivity 0.98 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Do 0.82 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Do 0.83 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Do 0.83 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Do 0.83 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:23 Do 0.83 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:32 Do 0.83 mg/L	APCO-GSD-AP-MW-2VA	10/6/2021 9:12	Conductivity	524.13	uS/cm	
APCO-GSD-AP-MW-2VA	APCO-GSD-AP-MW-2VA	10/6/2021 9:12	DO	0.66	mg/L	
APCO-GSD-AP-MW-2VA 10/6/2021 9:12 pH 8.21 SU APCO-GSD-AP-MW-2VA 10/6/2021 9:12 Temperature 20.91 C APCO-GSD-AP-MW-2VA 10/6/2021 9:12 Turbidity 0.84 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:17 DO 0.88 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:17 Depth to Water Detail 21.04 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:17 Depth to Water Detail 21.04 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:17 DF 10/6/2021 9:22 DF 10/6/	APCO-GSD-AP-MW-2VA	10/6/2021 9:12	Depth to Water Detail	20.78	ft	
APCO-GSD-AP-MW-2VA 10/6/2021 9:12 Temperature 20.91 C APCO-GSD-AP-MW-2VA 10/6/2021 9:12 Turbidity 0.84 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:17 Conductivity 522.7 uS/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:17 DO 0.88 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:17 Dopth to Water Detail 21.04 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:17 Oxidation Reduction Potention -149.55 mv APCO-GSD-AP-MW-2VA 10/6/2021 9:17 pH 8.23 SU APCO-GSD-AP-MW-2VA 10/6/2021 9:17 Temperature 20.96 C APCO-GSD-AP-MW-2VA 10/6/2021 9:17 Turbidity 1.23 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Conductivity 520.95 uS/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Do 0.83 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Do 0.83 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Depth to Water Detail 21.23 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Depth to Water Detail 21.23 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Depth to Water Detail 21.23 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Depth to Water Detail 21.23 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Depth to Water Detail 21.23 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Depth to Water Detail 21.23 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Depth to Water Detail 21.23 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Depth to Water Detail 21.10 C APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Temperature 21.11 C APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Temperature 21.11 C APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Do 0.82 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Do 0.83 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Do 0.83 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:32 Do 0.83 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:32 Do 0.83 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:32 Do 0.83 mg/L	APCO-GSD-AP-MW-2VA	10/6/2021 9:12	Oxidation Reduction Potention	-152.59	mv	
APCO-GSD-AP-MW-2VA 10/6/2021 9:12 Turbidity 522.7 uS/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:17 DO 0.8 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:17 DO 0.8 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:17 Depth to Water Detail 21.04 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:17 pH 8.23 SU APCO-GSD-AP-MW-2VA 10/6/2021 9:17 pH 8.23 SU APCO-GSD-AP-MW-2VA 10/6/2021 9:17 pH 8.23 SU APCO-GSD-AP-MW-2VA 10/6/2021 9:17 Temperature 20.96 C APCO-GSD-AP-MW-2VA 10/6/2021 9:17 Turbidity 1.23 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Conductivity 520.95 uS/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:22 DO 0.83 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Doph to Water Detail 21.23 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Diaph to Water Detail 21.23 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Diaph to Water Detail 21.23 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Temperature 21.1 C APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Temperature 21.1 C APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Temperature 21.1 C APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Tonductivity 518.65 uS/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Doph to Water Detail 21.64 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Doph to Water Detail 21.64 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Depth to Water Detail 21.64 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Depth to Water Detail 21.64 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Depth to Water Detail 21.64 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Turbidity 0.98 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:32 Doph to Water Detail 1.81 ft	APCO-GSD-AP-MW-2VA	10/6/2021 9:12	рН	8.21	SU	
APCO-GSD-AP-MW-2VA	APCO-GSD-AP-MW-2VA	10/6/2021 9:12	Temperature	20.91	C	
APCO-GSD-AP-MW-2VA 10/6/2021 9:17 DO 0.8 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:17 Depth to Water Detail 21.04 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:17 Depth to Water Detail 21.04 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:17 Depth to Water Detail 21.04 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:17 Depth to Water Detail 21.04 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:17 Temperature 20.96 C APCO-GSD-AP-MW-2VA 10/6/2021 9:17 Turbidity 1.23 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Conductivity 520.95 uS/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:22 DO 0.83 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Do 0.83 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Depth to Water Detail 21.23 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Depth to Water Detail 21.23 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Depth to Water Detail 21.23 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Depth to Water Detail 21.23 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Temperature 21.1 C APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Temperature 21.1 C APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Tonductivity 1.18 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Conductivity 518.65 uS/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Do 0.82 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Depth to Water Detail 21.64 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Depth to Water Detail 21.64 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Depth to Water Detail 21.64 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Temperature 21.55 C APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Temperature 21.55 C APCO-GSD-AP-MW-2VA 10/6/2021 9:32 Conductivity 515.35 uS/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:32 Conductivity 515.35 uS/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:32 DO 0.83 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:32 DO 0.88 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:32 DO 0.88 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:32 DO 0.88 mg/L	APCO-GSD-AP-MW-2VA	10/6/2021 9:12	Turbidity	0.84	NTU	
APCO-GSD-AP-MW-2VA 10/6/2021 9:17 Depth to Water Detail 21.04 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:17 Oxidation Reduction Potention -149.55 mv APCO-GSD-AP-MW-2VA 10/6/2021 9:17 PH 8.23 SU APCO-GSD-AP-MW-2VA 10/6/2021 9:17 Temperature 20.96 C APCO-GSD-AP-MW-2VA 10/6/2021 9:17 Turbidity 1.23 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Conductivity 520.95 uS/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:22 DO 0.83 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Do 0.83 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Depth to Water Detail 21.23 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Depth to Water Detail 21.23 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Depth to Water Detail 21.23 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Temperature 21.1 C APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Temperature 21.1 C APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Turbidity 1.18 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Conductivity 518.65 uS/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Turbidity 1.18 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:27 DO 0.82 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Do 0.82 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Do 0.82 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Depth to Water Detail 21.64 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Turbidity 1.152.34 mw APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Temperature 21.55 C APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Temperature 21.55 C APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Temperature 21.55 C APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Turbidity 0.98 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Turbidity 0.98 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:32 Conductivity 515.33 uS/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:32 Conductivity 515.33 uS/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:32 Do 0.83 mg/L APCO-GSD-AP-M	APCO-GSD-AP-MW-2VA			522.7	uS/cm	
APCO-GSD-AP-MW-2VA 10/6/2021 9:17 Oxidation Reduction Potention -149.55 mv APCO-GSD-AP-MW-2VA 10/6/2021 9:17 pH 8.23 SU APCO-GSD-AP-MW-2VA 10/6/2021 9:17 Temperature 20.96 C APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Turbidity 1.23 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Conductivity 520.95 uS/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:22 DO 0.83 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:22 DO 0.84 mw APCO-GSD-AP-MW-2VA 10/6/2021 9:22 DO 0.84 mw APCO-GSD-AP-MW-2VA 10/6/2021 9:22 DO 0.84 mw APCO-GSD-AP-MW-2VA 10/6/2021 9:22 DO 0.82 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:22 DO 0.82 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:27 DO 0.82 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:27 DO 0.82 mg/L	APCO-GSD-AP-MW-2VA	10/6/2021 9:17	DO	0.8	mg/L	
APCO-GSD-AP-MW-2VA	APCO-GSD-AP-MW-2VA	10/6/2021 9:17	Depth to Water Detail	21.04	ft	
APCO-GSD-AP-MW-2VA 10/6/2021 9:17 Temperature 20.96 C APCO-GSD-AP-MW-2VA 10/6/2021 9:17 Turbidity 1.23 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Conductivity 520.95 uS/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:22 DO 0.83 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Depth to Water Detail 21.23 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Depth to Water Detail 21.23 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:22 pH 8.26 SU APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Temperature 21.1 C APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Turbidity 1.18 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Conductivity 518.65 uS/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:27 DO 0.82 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Depth to Water Detail 21.64 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Temperature 21.55	APCO-GSD-AP-MW-2VA	10/6/2021 9:17	Oxidation Reduction Potention	-149.55	mv	
APCO-GSD-AP-MW-2VA 10/6/2021 9:17 Turbidity 1.23 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Conductivity 520.95 us/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:22 DO 0.83 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Depth to Water Detail 21.23 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Oxidation Reduction Potention -150.64 mv APCO-GSD-AP-MW-2VA 10/6/2021 9:22 pH 8.26 SU APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Temperature 21.1 C APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Turbidity 1.18 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Conductivity 518.65 us/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:27 DO 0.82 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Depth to Water Detail 21.64 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Dividition Reduction Potention -152.34 mv APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Temperat	APCO-GSD-AP-MW-2VA	10/6/2021 9:17	рН	8.23	SU	
APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Conductivity 520.95 us/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:22 DO 0.83 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Depth to Water Detail 21.23 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:22 pH -150.64 mv APCO-GSD-AP-MW-2VA 10/6/2021 9:22 pH 8.26 SU APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Temperature 21.1 C APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Turbidity 1.18 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Conductivity 518.65 us/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Do 0.82 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Dopth to Water Detail 21.64 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Oxidation Reduction Potention -152.34 mv APCO-GSD-AP-MW-2VA 10/6/2021 9:27 pH 8.34 SU APCO-GSD-AP-MW-2VA 10/6/2021 9:27 pH 8.34 SU APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Turbidity 0.98 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Turbidity 0.98 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:32 Conductivity 515.35 us/	APCO-GSD-AP-MW-2VA	10/6/2021 9:17	Temperature	20.96	С	
APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Do 0.83 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Depth to Water Detail 21.23 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Depth to Water Detail -150.64 mv APCO-GSD-AP-MW-2VA 10/6/2021 9:22 PH 8.26 SU APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Temperature 21.1 C APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Turbidity 1.18 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Conductivity 518.65 uS/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:27 DoO 0.82 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Depth to Water Detail 21.64 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Oxidation Reduction Potention -152.34 mv APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Depth to Water Detail 21.55 C APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Turbidity 0.98 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:32 Conductivity 515.35 uS/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:32 Do 0.83 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:32 Do 0.83 mg/L	APCO-GSD-AP-MW-2VA					
APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Depth to Water Detail 21.23 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Depth to Water Detail -150.64 mv APCO-GSD-AP-MW-2VA 10/6/2021 9:22 DH 8.26 SU APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Temperature 21.1 C APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Turbidity 1.18 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Conductivity 518.65 us/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:27 DO 0.82 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Depth to Water Detail 21.64 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Depth to Water Detail 21.54 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Depth to Water Detail 21.55 C APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Temperature 21.55 C APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Turbidity 0.98 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:32 Conductivity 515.35 us/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:32 Do 0.83 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:32 Depth to Water Detail 21.81 ft	APCO-GSD-AP-MW-2VA	10/6/2021 9:22	Conductivity	520.95	uS/cm	
APCO-GSD-AP-MW-2VA 10/6/2021 9:22 pH Position of the	APCO-GSD-AP-MW-2VA	10/6/2021 9:22	DO	0.83	mg/L	
APCO-GSD-AP-MW-2VA 10/6/2021 9:22 pH 8.26 SU APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Temperature 21.1 C APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Turbidity 1.18 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Conductivity 518.65 uS/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:27 DO 0.82 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Depth to Water Detail 21.64 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Oxidation Reduction Potention -152.34 mv APCO-GSD-AP-MW-2VA 10/6/2021 9:27 pH 8.34 SU APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Temperature 21.55 C APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Turbidity 0.98 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:32 Conductivity 515.35 uS/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:32 DO 0.83 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:32 Depth to Water Detail 21.81 ft	APCO-GSD-AP-MW-2VA	10/6/2021 9:22	Depth to Water Detail	21.23	ft	
APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Temperature 21.1 C APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Turbidity 1.18 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Conductivity 518.65 uS/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:27 DO 0.82 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Depth to Water Detail 21.64 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Oxidation Reduction Potention -152.34 mv APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Temperature 21.55 C APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Turbidity 0.98 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Turbidity 515.35 uS/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:32 Conductivity 515.35 uS/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:32 DO 0.83 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:32 Depth to Water Detail 21.81 ft	APCO-GSD-AP-MW-2VA	10/6/2021 9:22	Oxidation Reduction Potention	-150.64	mv	
APCO-GSD-AP-MW-2VA 10/6/2021 9:22 Turbidity 1.18 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Conductivity 518.65 uS/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:27 DO 0.82 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Depth to Water Detail 21.64 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Oxidation Reduction Potention -152.34 mv APCO-GSD-AP-MW-2VA 10/6/2021 9:27 pH 8.34 SU APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Temperature 21.55 C APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Turbidity 0.98 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:32 Conductivity 515.35 uS/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:32 DO 0.83 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:32 Depth to Water Detail 21.81 ft	APCO-GSD-AP-MW-2VA	10/6/2021 9:22	рН			
APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Conductivity 518.65 uS/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:27 DO 0.82 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Depth to Water Detail 21.64 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Oxidation Reduction Potention -152.34 mv APCO-GSD-AP-MW-2VA 10/6/2021 9:27 pH 8.34 SU APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Temperature 21.55 C APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Turbidity 0.98 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:32 Conductivity 515.35 uS/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:32 DO 0.83 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:32 Depth to Water Detail 21.81 ft	APCO-GSD-AP-MW-2VA	10/6/2021 9:22	Temperature	21.1	C	
APCO-GSD-AP-MW-2VA 10/6/2021 9:27 DO 0.82 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Depth to Water Detail 21.64 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Oxidation Reduction Potention -152.34 mv APCO-GSD-AP-MW-2VA 10/6/2021 9:27 pH 8.34 SU APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Temperature 21.55 C APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Turbidity 0.98 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:32 Conductivity 515.35 uS/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:32 DO 0.83 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:32 Depth to Water Detail 21.81 ft	APCO-GSD-AP-MW-2VA	10/6/2021 9:22	Turbidity	1.18	NTU	
APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Depth to Water Detail 21.64 ft APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Oxidation Reduction Potention -152.34 mv APCO-GSD-AP-MW-2VA 10/6/2021 9:27 pH 8.34 SU APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Temperature 21.55 C APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Turbidity 0.98 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:32 Conductivity 515.35 uS/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:32 DO 0.83 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:32 Depth to Water Detail 21.81 ft	APCO-GSD-AP-MW-2VA	10/6/2021 9:27	Conductivity			
APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Oxidation Reduction Potention -152.34 mv APCO-GSD-AP-MW-2VA 10/6/2021 9:27 pH 8.34 SU APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Temperature 21.55 C APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Turbidity 0.98 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:32 Conductivity 515.35 uS/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:32 DO 0.83 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:32 Depth to Water Detail 21.81 ft	APCO-GSD-AP-MW-2VA	10/6/2021 9:27	DO	0.82	mg/L	
APCO-GSD-AP-MW-2VA 10/6/2021 9:27 pH 8.34 SU APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Temperature 21.55 C APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Turbidity 0.98 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:32 Conductivity 515.35 uS/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:32 DO 0.83 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:32 Depth to Water Detail 21.81 ft	APCO-GSD-AP-MW-2VA	10/6/2021 9:27	Depth to Water Detail	21.64	ft	
APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Temperature 21.55 C APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Turbidity 0.98 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:32 Conductivity 515.35 uS/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:32 DO 0.83 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:32 Depth to Water Detail 21.81 ft	APCO-GSD-AP-MW-2VA	10/6/2021 9:27	Oxidation Reduction Potention			
APCO-GSD-AP-MW-2VA 10/6/2021 9:27 Turbidity 0.98 NTU APCO-GSD-AP-MW-2VA 10/6/2021 9:32 Conductivity 515.35 uS/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:32 DO 0.83 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:32 Depth to Water Detail 21.81 ft		10/6/2021 9:27	pН	8.34	SU	
APCO-GSD-AP-MW-2VA 10/6/2021 9:32 Conductivity 515.35 uS/cm APCO-GSD-AP-MW-2VA 10/6/2021 9:32 DO 0.83 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:32 Depth to Water Detail 21.81 ft	APCO-GSD-AP-MW-2VA			21.55	С	
APCO-GSD-AP-MW-2VA 10/6/2021 9:32 DO 0.83 mg/L APCO-GSD-AP-MW-2VA 10/6/2021 9:32 Depth to Water Detail 21.81 ft	APCO-GSD-AP-MW-2VA			0.98	NTU	
APCO-GSD-AP-MW-2VA 10/6/2021 9:32 Depth to Water Detail 21.81 ft	APCO-GSD-AP-MW-2VA	10/6/2021 9:32	Conductivity	515.35	uS/cm	
*	APCO-GSD-AP-MW-2VA			0.83	mg/L	
APCO-GSD-AP-MW-2VA 10/6/2021 9:32 Oxidation Reduction Potention -153.68 mv	APCO-GSD-AP-MW-2VA	10/6/2021 9:32	Depth to Water Detail	21.81	ft	
	APCO-GSD-AP-MW-2VA	10/6/2021 9:32	Oxidation Reduction Potention	-153.68	mv	

Plant Gadsden Ash Pond					
WELL ID	TIME OF READING	DESCRIPTION	VALUE	UNIT	
APCO-GSD-AP-MW-2VA	10/6/2021 9:32	рН	8.36	SU	
APCO-GSD-AP-MW-2VA	10/6/2021 9:32	Temperature	21.73	С	
APCO-GSD-AP-MW-2VA	10/6/2021 9:32	Turbidity	0.62	NTU	
APCO-GSD-AP-MW-2VA	10/6/2021 9:37	Conductivity	510.02	uS/cm	
APCO-GSD-AP-MW-2VA	10/6/2021 9:37	DO	0.84	mg/L	
APCO-GSD-AP-MW-2VA	10/6/2021 9:37	Depth to Water Detail	22.08	ft	
APCO-GSD-AP-MW-2VA	10/6/2021 9:37	Oxidation Reduction Potention	-153.65	mv	
APCO-GSD-AP-MW-2VA	10/6/2021 9:37	рН	8.35	1	
APCO-GSD-AP-MW-2VA	10/6/2021 9:37		21.62		
APCO-GSD-AP-MW-2VA	10/6/2021 9:37			NTU	
APCO-GSD-AP-MW-2VA	10/6/2021 9:42			uS/cm	
APCO-GSD-AP-MW-2VA	10/6/2021 9:42			mg/L	
APCO-GSD-AP-MW-2VA		Depth to Water Detail	22.33		
APCO-GSD-AP-MW-2VA		Oxidation Reduction Potention	-154.25		
APCO-GSD-AP-MW-2VA	10/6/2021 9:42		8.35		
APCO-GSD-AP-MW-2VA	10/6/2021 9:42		21.61	1	
APCO-GSD-AP-MW-2VA	10/6/2021 9:42			NTU	
APCO-GSD-AP-MW-2VA	10/6/2021 9:47	· · · · · · · · · · · · · · · · · · ·		uS/cm	
APCO-GSD-AP-MW-2VA	10/6/2021 9:47			mg/L	
APCO-GSD-AP-MW-2VA		Depth to Water Detail	22.58	1	
APCO-GSD-AP-MW-2VA		Oxidation Reduction Potention	-155.72		
APCO-GSD-AP-MW-2VA	10/6/2021 9:47	*	8.36		
APCO-GSD-AP-MW-2VA	10/6/2021 9:47		21.64		
APCO-GSD-AP-MW-2VA	10/6/2021 9:47	•		NTU	
APCO-GSD-AP-MW-2VA	10/6/2021 9:52			uS/cm	
APCO-GSD-AP-MW-2VA	10/6/2021 9:52			mg/L	
APCO-GSD-AP-MW-2VA		Depth to Water Detail	22.81	1	
APCO-GSD-AP-MW-2VA		Oxidation Reduction Potention	-156.95		
APCO-GSD-AP-MW-2VA	10/6/2021 9:52		8.38		
APCO-GSD-AP-MW-2VA	10/6/2021 9:52	_	22.34		
APCO-GSD-AP-MW-2VA	10/6/2021 9:52	Ţ		NTU	
APCO-GSD-AP-MW-2VA	10/6/2021 9:57			uS/cm	
APCO-GSD-AP-MW-2VA	10/6/2021 9:57			mg/L	
APCO-GSD-AP-MW-2VA		Depth to Water Detail	23.04		
APCO-GSD-AP-MW-2VA		Oxidation Reduction Potention	-157.45	mv SU	
APCO-GSD-AP-MW-2VA	10/6/2021 9:57				
APCO-GSD-AP-MW-2VA	10/6/2021 9:57 10/6/2021 9:57		22.71	NTU	
APCO-GSD-AP-MW-2VA APCO-GSD-AP-MW-2VA	10/6/2021 9:37	•		uS/cm	
APCO-GSD-AP-MW-2VA APCO-GSD-AP-MW-2VA	10/6/2021 10:02	,		mg/L	
APCO-GSD-AP-MW-2VA		Depth to Water Detail	23.22		
APCO-GSD-AP-MW-2VA		Oxidation Reduction Potention	-156.68		
APCO-GSD-AP-MW-2VA	10/6/2021 10:02		8.37		
APCO-GSD-AP-MW-2VA	10/6/2021 10:02		22.74		
APCO-GSD-AP-MW-2VA	10/6/2021 10:02			NTU	
APCO-GSD-AP-MW-2VA	10/6/2021 10:02	·		uS/cm	
APCO-GSD-AP-MW-2VA	10/6/2021 10:07	·		mg/L	
APCO-GSD-AP-MW-2VA		Depth to Water Detail	23.4		
APCO-GSD-AP-MW-2VA		Oxidation Reduction Potention	-157.6		
APCO-GSD-AP-MW-2VA	10/6/2021 10:07		8.37		
APCO-GSD-AP-MW-2VA	10/6/2021 10:07	*	21.81		
APCO-GSD-AP-MW-2VA	10/6/2021 10:07	•		NTU	
APCO-GSD-AP-MW-2VA	10/6/2021 10:12	-		uS/cm	
55 555 III 1111 Z / II	10.0/2021 10.12		102.23		

Alabama Power Company Plant Gadsden Ash Pond					
WELL ID	TIME OF READING	DESCRIPTION	VALUE	UNIT	
APCO-GSD-AP-MW-2VA	10/6/2021 10:12	DO	0.82	mg/L	
APCO-GSD-AP-MW-2VA	10/6/2021 10:12	Depth to Water Detail	23.58	ft	
APCO-GSD-AP-MW-2VA	10/6/2021 10:12	Oxidation Reduction Potention	-157.78	mv	
APCO-GSD-AP-MW-2VA	10/6/2021 10:12	рН	8.43	SU	
APCO-GSD-AP-MW-2VA	10/6/2021 10:12	Temperature	22.71	C	
APCO-GSD-AP-MW-2VA	10/6/2021 10:12	Turbidity	0.52	NTU	
APCO-GSD-AP-MW-2VA	10/6/2021 10:17	Conductivity	476.49	uS/cm	
APCO-GSD-AP-MW-2VA	10/6/2021 10:17	DO	0.82	mg/L	
APCO-GSD-AP-MW-2VA	10/6/2021 10:17	Depth to Water Detail	23.72		
APCO-GSD-AP-MW-2VA	10/6/2021 10:17	Oxidation Reduction Potention	-159.56	mv	
APCO-GSD-AP-MW-2VA	10/6/2021 10:17	рН	8.4	SU	
APCO-GSD-AP-MW-2VA	10/6/2021 10:17	Temperature	22.6	С	
APCO-GSD-AP-MW-2VA	10/6/2021 10:17	Turbidity	0.56	NTU	
APCO-GSD-AP-MW-2VA	10/6/2021 10:22	Conductivity	470.65	uS/cm	
APCO-GSD-AP-MW-2VA	10/6/2021 10:22	DO	0.82	mg/L	
APCO-GSD-AP-MW-2VA	10/6/2021 10:22	Depth to Water Detail	23.86		
APCO-GSD-AP-MW-2VA	10/6/2021 10:22	Oxidation Reduction Potention	-157.17	mv	
APCO-GSD-AP-MW-2VA	10/6/2021 10:22	рН	8.36	SU	
APCO-GSD-AP-MW-2VA	10/6/2021 10:22	Temperature	22.4	С	
APCO-GSD-AP-MW-2VA	10/6/2021 10:22		0.62	NTU	

Alabama Power Company Plant Gadsden Ash Pond					
WELL ID	TIME OF READING	DESCRIPTION	VALUE	UNIT	
APCO-GSD-AP-MW-5	10/5/2021 11:35	Conductivity	274.31	uS/cm	
APCO-GSD-AP-MW-5	10/5/2021 11:35	DO	0.36	mg/L	
APCO-GSD-AP-MW-5	10/5/2021 11:35	Depth to Water Detail	5.28	ft	
APCO-GSD-AP-MW-5	10/5/2021 11:35	Oxidation Reduction Potention	45	mv	
APCO-GSD-AP-MW-5	10/5/2021 11:35	pН	6.34	SU	
APCO-GSD-AP-MW-5	10/5/2021 11:35	Temperature	20.93	С	
APCO-GSD-AP-MW-5	10/5/2021 11:35	Turbidity	5.52	NTU	
APCO-GSD-AP-MW-5	10/5/2021 11:40	Conductivity	266.49	uS/cm	
APCO-GSD-AP-MW-5	10/5/2021 11:40	DO	0.3	mg/L	
APCO-GSD-AP-MW-5	10/5/2021 11:40	Depth to Water Detail	5.28	ft	
APCO-GSD-AP-MW-5	10/5/2021 11:40	Oxidation Reduction Potention	64.8	mv	
APCO-GSD-AP-MW-5	10/5/2021 11:40	pН	6.29	SU	
APCO-GSD-AP-MW-5	10/5/2021 11:40	Temperature	21.02	С	
APCO-GSD-AP-MW-5	10/5/2021 11:40	Turbidity	3.38	NTU	
APCO-GSD-AP-MW-5	10/5/2021 11:45	Conductivity	266.24	uS/cm	
APCO-GSD-AP-MW-5	10/5/2021 11:45		0.24	mg/L	
APCO-GSD-AP-MW-5	10/5/2021 11:45	Depth to Water Detail	5.28	ft	
APCO-GSD-AP-MW-5	10/5/2021 11:45	Oxidation Reduction Potention	68.78	mv	
APCO-GSD-AP-MW-5	10/5/2021 11:45		6.27	SU	
APCO-GSD-AP-MW-5	10/5/2021 11:45	Temperature	21.07	С	
APCO-GSD-AP-MW-5	10/5/2021 11:45	Turbidity	2.93	NTU	
APCO-GSD-AP-MW-5	10/5/2021 11:50			uS/cm	
APCO-GSD-AP-MW-5	10/5/2021 11:50	DO		mg/L	
APCO-GSD-AP-MW-5		Depth to Water Detail	5.28	ft	
APCO-GSD-AP-MW-5	10/5/2021 11:50	Oxidation Reduction Potention	69.13	mv	
APCO-GSD-AP-MW-5	10/5/2021 11:50	рН	6.24	SU	
APCO-GSD-AP-MW-5	10/5/2021 11:50		21.08		
APCO-GSD-AP-MW-5	10/5/2021 11:50	Turbidity	2.81	NTU	

Alabama Power Company Plant Gadsden Ash Pond					
WELL ID	TIME OF READING	DESCRIPTION	VALUE	UNIT	
APCO-GSD-AP-MW-7	10/5/2021 14:53	Conductivity	174.57	uS/cm	
APCO-GSD-AP-MW-7	10/5/2021 14:53	DO	0.3	mg/L	
APCO-GSD-AP-MW-7	10/5/2021 14:53	Depth to Water Detail	11.66	ft	
APCO-GSD-AP-MW-7	10/5/2021 14:53	Oxidation Reduction Potention	113.13	mv	
APCO-GSD-AP-MW-7	10/5/2021 14:53		6.02	SU	
APCO-GSD-AP-MW-7	10/5/2021 14:53	Temperature	19.15	С	
APCO-GSD-AP-MW-7	10/5/2021 14:53	Turbidity	1.33	NTU	
APCO-GSD-AP-MW-7	10/5/2021 14:58	Conductivity	168.43	uS/cm	
APCO-GSD-AP-MW-7	10/5/2021 14:58	DO	0.26	mg/L	
APCO-GSD-AP-MW-7	10/5/2021 14:58	Depth to Water Detail	11.66	ft	
APCO-GSD-AP-MW-7	10/5/2021 14:58	Oxidation Reduction Potention	119.06	mv	
APCO-GSD-AP-MW-7	10/5/2021 14:58	pН	6.02	SU	
APCO-GSD-AP-MW-7	10/5/2021 14:58	Temperature	19.15	С	
APCO-GSD-AP-MW-7	10/5/2021 14:58	Turbidity	1.09	NTU	
APCO-GSD-AP-MW-7	10/5/2021 15:03	Conductivity	164.36	uS/cm	
APCO-GSD-AP-MW-7	10/5/2021 15:03	DO	0.24	mg/L	
APCO-GSD-AP-MW-7	10/5/2021 15:03	Depth to Water Detail	11.66	ft	
APCO-GSD-AP-MW-7	10/5/2021 15:03	Oxidation Reduction Potention	120.15	mv	
APCO-GSD-AP-MW-7	10/5/2021 15:03	pН	6.02	SU	
APCO-GSD-AP-MW-7	10/5/2021 15:03		19.08	С	
APCO-GSD-AP-MW-7	10/5/2021 15:03	Turbidity	1.05	NTU	
APCO-GSD-AP-MW-7	10/5/2021 15:08		162.09	uS/cm	
APCO-GSD-AP-MW-7	10/5/2021 15:08	DO		mg/L	
APCO-GSD-AP-MW-7		Depth to Water Detail	11.66		
APCO-GSD-AP-MW-7	10/5/2021 15:08	Oxidation Reduction Potention	120.03		
APCO-GSD-AP-MW-7	10/5/2021 15:08	рН	6.06		
APCO-GSD-AP-MW-7	10/5/2021 15:08		19.14	С	
APCO-GSD-AP-MW-7	10/5/2021 15:08	Turbidity	0.99	NTU	

	Plant G	adsden Ash Pond		
WELL ID	TIME OF READING	DESCRIPTION	VALUE	UNIT
APCO-GSD-AP-MW-12	10/5/2021 12:35	Conductivity	211.47	uS/cm
APCO-GSD-AP-MW-12	10/5/2021 12:35	DO	0.25	mg/L
APCO-GSD-AP-MW-12	10/5/2021 12:35	Depth to Water Detail	10.88	ft
APCO-GSD-AP-MW-12	10/5/2021 12:35	Oxidation Reduction Potention	150.09	mv
APCO-GSD-AP-MW-12	10/5/2021 12:35	рН	5.19	SU
APCO-GSD-AP-MW-12	10/5/2021 12:35	Temperature	18.63	С
APCO-GSD-AP-MW-12	10/5/2021 12:35	Turbidity	0.65	NTU
APCO-GSD-AP-MW-12	10/5/2021 12:40		482.94	uS/cm
APCO-GSD-AP-MW-12	10/5/2021 12:40	DO	0.18	mg/L
APCO-GSD-AP-MW-12	10/5/2021 12:40	Depth to Water Detail	10.88	ft
APCO-GSD-AP-MW-12	10/5/2021 12:40	Oxidation Reduction Potention	154.38	mv
APCO-GSD-AP-MW-12	10/5/2021 12:40	рН	5.19	SU
APCO-GSD-AP-MW-12	10/5/2021 12:40	Temperature	18.48	С
APCO-GSD-AP-MW-12	10/5/2021 12:40	Turbidity	0.55	NTU
APCO-GSD-AP-MW-12	10/5/2021 12:45	Conductivity	508.62	uS/cm
APCO-GSD-AP-MW-12	10/5/2021 12:45	DO	0.16	mg/L
APCO-GSD-AP-MW-12		Depth to Water Detail	10.88	
APCO-GSD-AP-MW-12	10/5/2021 12:45	Oxidation Reduction Potention	163.63	
APCO-GSD-AP-MW-12	10/5/2021 12:45		5.15	
APCO-GSD-AP-MW-12	10/5/2021 12:45		18.46	C
APCO-GSD-AP-MW-12	10/5/2021 12:45			NTU
APCO-GSD-AP-MW-12	10/5/2021 12:50		509.13	uS/cm
APCO-GSD-AP-MW-12	10/5/2021 12:50			mg/L
APCO-GSD-AP-MW-12		Depth to Water Detail	10.88	
APCO-GSD-AP-MW-12		Oxidation Reduction Potention	165.65	
APCO-GSD-AP-MW-12	10/5/2021 12:50		5.16	
APCO-GSD-AP-MW-12	10/5/2021 12:50		18.45	
APCO-GSD-AP-MW-12	10/5/2021 12:50			NTU
APCO-GSD-AP-MW-12	10/5/2021 12:55			uS/cm
APCO-GSD-AP-MW-12	10/5/2021 12:55			mg/L
APCO-GSD-AP-MW-12		Depth to Water Detail	10.88	
APCO-GSD-AP-MW-12		Oxidation Reduction Potention	164.29	
APCO-GSD-AP-MW-12	10/5/2021 12:55		5.19	
APCO-GSD-AP-MW-12	10/5/2021 12:55		18.44	
APCO-GSD-AP-MW-12	10/5/2021 12:55	Turbidity	0.39	NTU

	Plant Ga	adsden Ash Pond		
WELL ID	TIME OF READING	DESCRIPTION	VALUE	UNIT
APCO-GSD-AP-MW-21VC	10/6/2021 11:23		1572.76	uS/cm
APCO-GSD-AP-MW-21VC	10/6/2021 11:23			mg/L
APCO-GSD-AP-MW-21VC	10/6/2021 11:23	Depth to Water Detail	10.61	ft
APCO-GSD-AP-MW-21VC	10/6/2021 11:23	Oxidation Reduction Potention	-98.88	mv
APCO-GSD-AP-MW-21VC	10/6/2021 11:23	рН	8.19	SU
APCO-GSD-AP-MW-21VC	10/6/2021 11:23	Temperature	19.06	C
APCO-GSD-AP-MW-21VC	10/6/2021 11:23		31	NTU
APCO-GSD-AP-MW-21VC	10/6/2021 11:28		1559.46	uS/cm
APCO-GSD-AP-MW-21VC	10/6/2021 11:28	DO	0.16	mg/L
APCO-GSD-AP-MW-21VC	10/6/2021 11:28	Depth to Water Detail	12.36	ft
APCO-GSD-AP-MW-21VC	10/6/2021 11:28	Oxidation Reduction Potention	-126.52	mv
APCO-GSD-AP-MW-21VC	10/6/2021 11:28	рН	8.3	SU
APCO-GSD-AP-MW-21VC	10/6/2021 11:28	Temperature	18.83	С
APCO-GSD-AP-MW-21VC	10/6/2021 11:28		23.9	NTU
APCO-GSD-AP-MW-21VC	10/6/2021 11:33	Conductivity	1558.24	uS/cm
APCO-GSD-AP-MW-21VC	10/6/2021 11:33	DO	0.15	mg/L
APCO-GSD-AP-MW-21VC	10/6/2021 11:33	Depth to Water Detail	13.38	ft
APCO-GSD-AP-MW-21VC	10/6/2021 11:33	Oxidation Reduction Potention	-138.54	mv
APCO-GSD-AP-MW-21VC	10/6/2021 11:33		8.32	SU
APCO-GSD-AP-MW-21VC	10/6/2021 11:33		18.69	С
APCO-GSD-AP-MW-21VC	10/6/2021 11:33		19.6	NTU
APCO-GSD-AP-MW-21VC	10/6/2021 11:38		1517.66	uS/cm
APCO-GSD-AP-MW-21VC	10/6/2021 11:38	DO	0.13	mg/L
APCO-GSD-AP-MW-21VC	10/6/2021 11:38	Depth to Water Detail	14.13	
APCO-GSD-AP-MW-21VC		Oxidation Reduction Potention	-143.93	mv
APCO-GSD-AP-MW-21VC	10/6/2021 11:38		8.3	SU
APCO-GSD-AP-MW-21VC	10/6/2021 11:38		18.72	
APCO-GSD-AP-MW-21VC	10/6/2021 11:38			NTU
APCO-GSD-AP-MW-21VC	10/6/2021 11:43		1465.41	uS/cm
APCO-GSD-AP-MW-21VC	10/6/2021 11:43	•	0.13	mg/L
APCO-GSD-AP-MW-21VC	10/6/2021 11:43	Depth to Water Detail	14.96	
APCO-GSD-AP-MW-21VC		Oxidation Reduction Potention	-147.29	mv
APCO-GSD-AP-MW-21VC	10/6/2021 11:43	рН	8.3	SU
APCO-GSD-AP-MW-21VC	10/6/2021 11:43	Temperature	18.71	С
APCO-GSD-AP-MW-21VC	10/6/2021 11:43	•	14.6	NTU
APCO-GSD-AP-MW-21VC	10/6/2021 11:48		1535.45	
APCO-GSD-AP-MW-21VC	10/6/2021 11:48	•		mg/L
APCO-GSD-AP-MW-21VC	10/6/2021 11:48	Depth to Water Detail	15.62	_
APCO-GSD-AP-MW-21VC		Oxidation Reduction Potention	-150.41	mv
APCO-GSD-AP-MW-21VC	10/6/2021 11:48		8.4	SU
APCO-GSD-AP-MW-21VC	10/6/2021 11:48	1	18.66	
APCO-GSD-AP-MW-21VC	10/6/2021 11:48			NTU
APCO-GSD-AP-MW-21VC	10/6/2021 11:53		1516.55	
APCO-GSD-AP-MW-21VC	10/6/2021 11:53			mg/L
APCO-GSD-AP-MW-21VC		Depth to Water Detail	16.3	
APCO-GSD-AP-MW-21VC		Oxidation Reduction Potention	-151.84	
APCO-GSD-AP-MW-21VC	10/6/2021 11:53		8.42	
APCO-GSD-AP-MW-21VC	10/6/2021 11:53	•	18.66	
APCO-GSD-AP-MW-21VC	10/6/2021 11:53	•		NTU
APCO-GSD-AP-MW-21VC	10/6/2021 11:58	•	1415.78	
APCO-GSD-AP-MW-21VC	10/6/2021 11:58	-		mg/L
APCO-GSD-AP-MW-21VC		Depth to Water Detail	16.13	
APCO-GSD-AP-MW-21VC		Oxidation Reduction Potention	-151.97	
	10.0.2021 11.30		131.77	1

	Plant G	adsden Ash Pond		
WELL ID	TIME OF READING	DESCRIPTION	VALUE	UNIT
APCO-GSD-AP-MW-21VC	10/6/2021 11:58	рН	8.46	SU
APCO-GSD-AP-MW-21VC	10/6/2021 11:58		19.21	
APCO-GSD-AP-MW-21VC	10/6/2021 11:58	,	15.9	NTU
APCO-GSD-AP-MW-21VC	10/6/2021 12:03	Conductivity	1479.28	uS/cm
APCO-GSD-AP-MW-21VC	10/6/2021 12:03	DO	0.18	mg/L
APCO-GSD-AP-MW-21VC	10/6/2021 12:03	Depth to Water Detail	16	ft
APCO-GSD-AP-MW-21VC	10/6/2021 12:03	Oxidation Reduction Potention	-152.75	mv
APCO-GSD-AP-MW-21VC	10/6/2021 12:03	рН	8.47	
APCO-GSD-AP-MW-21VC	10/6/2021 12:03		19.2	
APCO-GSD-AP-MW-21VC	10/6/2021 12:03			NTU
APCO-GSD-AP-MW-21VC	10/6/2021 12:08		1427.23	
APCO-GSD-AP-MW-21VC	10/6/2021 12:08			mg/L
APCO-GSD-AP-MW-21VC		Depth to Water Detail	15.94	
APCO-GSD-AP-MW-21VC		Oxidation Reduction Potention	-153.23	
APCO-GSD-AP-MW-21VC	10/6/2021 12:08		8.45	
APCO-GSD-AP-MW-21VC	10/6/2021 12:08		19.08	
APCO-GSD-AP-MW-21VC	10/6/2021 12:08			NTU
APCO-GSD-AP-MW-21VC	10/6/2021 12:13		1455.36	
APCO-GSD-AP-MW-21VC	10/6/2021 12:13			mg/L
APCO-GSD-AP-MW-21VC		Depth to Water Detail	15.92	ft
APCO-GSD-AP-MW-21VC		Oxidation Reduction Potention	-153.38	
APCO-GSD-AP-MW-21VC	10/6/2021 12:13	*		SU
APCO-GSD-AP-MW-21VC	10/6/2021 12:13		19.14	C
APCO-GSD-AP-MW-21VC	10/6/2021 12:13			NTU
APCO-GSD-AP-MW-21VC	10/6/2021 12:18		1404.59	uS/cm
APCO-GSD-AP-MW-21VC	10/6/2021 12:18		0.17	mg/L
APCO-GSD-AP-MW-21VC		Depth to Water Detail	15.96	
APCO-GSD-AP-MW-21VC		Oxidation Reduction Potention	-153.8	
APCO-GSD-AP-MW-21VC	10/6/2021 12:18		8.46	
APCO-GSD-AP-MW-21VC	10/6/2021 12:18	_	19.08	
APCO-GSD-AP-MW-21VC	10/6/2021 12:18	-		NTU
APCO-GSD-AP-MW-21VC	10/6/2021 12:23		1367.86	
APCO-GSD-AP-MW-21VC	10/6/2021 12:23			mg/L
APCO-GSD-AP-MW-21VC		Depth to Water Detail	16.1	
APCO-GSD-AP-MW-21VC		Oxidation Reduction Potention	-154.33	
APCO-GSD-AP-MW-21VC	10/6/2021 12:23		8.49	
APCO-GSD-AP-MW-21VC	10/6/2021 12:23		19.08	
APCO-GSD-AP-MW-21VC	10/6/2021 12:23	•		NTU
APCO-GSD-AP-MW-21VC	10/6/2021 12:28		1338.86	
APCO-GSD-AP-MW-21VC	10/6/2021 12:28			mg/L
APCO-GSD-AP-MW-21VC		Depth to Water Detail	16.23	
APCO-GSD-AP-MW-21VC		Oxidation Reduction Potention	-154.63	
APCO-GSD-AP-MW-21VC	10/6/2021 12:28		8.46	
APCO-GSD-AP-MW-21VC	10/6/2021 12:28	_	19.09	
APCO-GSD-AP-MW-21VC	10/6/2021 12:28	•	10.32	
APCO-GSD-AP-MW-21VC	10/6/2021 12:33		1491.09	
APCO-GSD-AP-MW-21VC	10/6/2021 12:33			mg/L
APCO-GSD-AP-MW-21VC		Depth to Water Detail	16.31	
APCO-GSD-AP-MW-21VC		Oxidation Reduction Potention	-154.94	
APCO-GSD-AP-MW-21VC	10/6/2021 12:33		8.51	
APCO-GSD-AP-MW-21VC	10/6/2021 12:33	*	19.16	
APCO-GSD-AP-MW-21VC	10/6/2021 12:33	•		NTU
APCO-GSD-AP-MW-21VC	10/6/2021 12:38	Conductivity	1429.16	uS/cm

Alabama Power Company Plant Gadsden Ash Pond					
WELL ID	TIME OF READING	DESCRIPTION	VALUE	UNIT	
APCO-GSD-AP-MW-21VC	10/6/2021 12:38	DO	0.18	mg/L	
APCO-GSD-AP-MW-21VC	10/6/2021 12:38	Depth to Water Detail	16.39	ft	
APCO-GSD-AP-MW-21VC	10/6/2021 12:38	Oxidation Reduction Potention	-155.01	mv	
APCO-GSD-AP-MW-21VC	10/6/2021 12:38	рН	8.52	SU	
APCO-GSD-AP-MW-21VC	10/6/2021 12:38	Temperature	19.07	С	
APCO-GSD-AP-MW-21VC	10/6/2021 12:38	Turbidity	10.08	NTU	
APCO-GSD-AP-MW-21VC	10/6/2021 12:43	Conductivity	1478.62	uS/cm	
APCO-GSD-AP-MW-21VC	10/6/2021 12:43	DO	0.16	mg/L	
APCO-GSD-AP-MW-21VC	10/6/2021 12:43	Depth to Water Detail	16.43	ft	
APCO-GSD-AP-MW-21VC	10/6/2021 12:43	Oxidation Reduction Potention	-155.17	mv	
APCO-GSD-AP-MW-21VC	10/6/2021 12:43	рН	8.53	SU	
APCO-GSD-AP-MW-21VC	10/6/2021 12:43	Temperature	19.22	С	
APCO-GSD-AP-MW-21VC	10/6/2021 12:43	Turbidity	9.3	NTU	

	Plant G	adsden Asn Pond		Plant Gadsden Ash Pond					
WELL ID	TIME OF READING	DESCRIPTION	VALUE	UNIT					
APCO-GSD-AP-PZ-1	10/5/2021 10:32	Conductivity	82.64	uS/cm					
APCO-GSD-AP-PZ-1	10/5/2021 10:32		0.85	mg/L					
APCO-GSD-AP-PZ-1	10/5/2021 10:32	Depth to Water Detail	8.73	ft					
APCO-GSD-AP-PZ-1	10/5/2021 10:32	Oxidation Reduction Potention	103.3	mv					
APCO-GSD-AP-PZ-1	10/5/2021 10:32		5.8	SU					
APCO-GSD-AP-PZ-1	10/5/2021 10:32	Temperature	19.84	С					
APCO-GSD-AP-PZ-1	10/5/2021 10:32	Turbidity	1.31	NTU					
APCO-GSD-AP-PZ-1	10/5/2021 10:37			uS/cm					
APCO-GSD-AP-PZ-1	10/5/2021 10:37	DO		mg/L					
APCO-GSD-AP-PZ-1	10/5/2021 10:37	Depth to Water Detail	8.73	ft					
APCO-GSD-AP-PZ-1	10/5/2021 10:37	Oxidation Reduction Potention	109.07	mv					
APCO-GSD-AP-PZ-1	10/5/2021 10:37	pН	6.04	SU					
APCO-GSD-AP-PZ-1	10/5/2021 10:37	Temperature	19.93	С					
APCO-GSD-AP-PZ-1	10/5/2021 10:37	Turbidity	1.38	NTU					
APCO-GSD-AP-PZ-1	10/5/2021 10:42	Conductivity	157.59	uS/cm					
APCO-GSD-AP-PZ-1	10/5/2021 10:42	DO	0.64	mg/L					
APCO-GSD-AP-PZ-1	10/5/2021 10:42	Depth to Water Detail	8.73	ft					
APCO-GSD-AP-PZ-1	10/5/2021 10:42	Oxidation Reduction Potention	110.19	mv					
APCO-GSD-AP-PZ-1	10/5/2021 10:42	pН	6.23	SU					
APCO-GSD-AP-PZ-1	10/5/2021 10:42	Temperature	19.86	С					
APCO-GSD-AP-PZ-1	10/5/2021 10:42	Turbidity	1.16	NTU					
APCO-GSD-AP-PZ-1	10/5/2021 10:47	Conductivity	167.58	uS/cm					
APCO-GSD-AP-PZ-1	10/5/2021 10:47	DO	0.63	mg/L					
APCO-GSD-AP-PZ-1	10/5/2021 10:47	Depth to Water Detail	8.73						
APCO-GSD-AP-PZ-1	10/5/2021 10:47	Oxidation Reduction Potention	105.94	mv					
APCO-GSD-AP-PZ-1	10/5/2021 10:47	pН	6.36	SU					
APCO-GSD-AP-PZ-1	10/5/2021 10:47	Temperature	19.8	C					
APCO-GSD-AP-PZ-1	10/5/2021 10:47	Turbidity	1.04	NTU					
APCO-GSD-AP-PZ-1	10/5/2021 10:52		171.58	uS/cm					
APCO-GSD-AP-PZ-1	10/5/2021 10:52		0.64	mg/L					
APCO-GSD-AP-PZ-1	10/5/2021 10:52	Depth to Water Detail	8.73	ft					
APCO-GSD-AP-PZ-1		Oxidation Reduction Potention	106.16	mv					
APCO-GSD-AP-PZ-1	10/5/2021 10:52		6.41						
APCO-GSD-AP-PZ-1	10/5/2021 10:52		19.8						
APCO-GSD-AP-PZ-1	10/5/2021 10:52			NTU					
APCO-GSD-AP-PZ-1	10/5/2021 10:57	Conductivity	168.13	uS/cm					
APCO-GSD-AP-PZ-1	10/5/2021 10:57			mg/L					
APCO-GSD-AP-PZ-1		Depth to Water Detail	8.73						
APCO-GSD-AP-PZ-1		Oxidation Reduction Potention	101.9						
APCO-GSD-AP-PZ-1	10/5/2021 10:57	1	6.46						
APCO-GSD-AP-PZ-1	10/5/2021 10:57		19.85						
APCO-GSD-AP-PZ-1	10/5/2021 10:57	Turbidity	0.96	NTU					

	Plant G	adsden Ash Pond	1	T
WELL ID	TIME OF READING	DESCRIPTION	VALUE	UNIT
APCO-GSD-AP-MW-4V	10/11/2021 11:54	Conductivity	445.8	uS/cm
APCO-GSD-AP-MW-4V	10/11/2021 11:54	DO	0.17	mg/L
APCO-GSD-AP-MW-4V	10/11/2021 11:54	Depth to Water Detail	11.93	ft
APCO-GSD-AP-MW-4V	10/11/2021 11:54	Oxidation Reduction Potention	70.71	mv
APCO-GSD-AP-MW-4V	10/11/2021 11:54	рН	7.74	SU
APCO-GSD-AP-MW-4V	10/11/2021 11:54	Temperature	20.13	С
APCO-GSD-AP-MW-4V	10/11/2021 11:54	Turbidity	2.11	NTU
APCO-GSD-AP-MW-4V	10/11/2021 11:59			uS/cm
APCO-GSD-AP-MW-4V	10/11/2021 11:59	DO	0.16	mg/L
APCO-GSD-AP-MW-4V		Depth to Water Detail	13.56	ft
APCO-GSD-AP-MW-4V	10/11/2021 11:59	Oxidation Reduction Potention	46.49	mv
APCO-GSD-AP-MW-4V	10/11/2021 11:59	рН	7.78	SU
APCO-GSD-AP-MW-4V	10/11/2021 11:59	Temperature	19.87	С
APCO-GSD-AP-MW-4V	10/11/2021 11:59	Turbidity	2.24	NTU
APCO-GSD-AP-MW-4V	10/11/2021 12:04	Conductivity	444.34	uS/cm
APCO-GSD-AP-MW-4V	10/11/2021 12:04	DO	0.16	mg/L
APCO-GSD-AP-MW-4V	10/11/2021 12:04	Depth to Water Detail	16.02	ft
APCO-GSD-AP-MW-4V	10/11/2021 12:04	Oxidation Reduction Potention	27.57	mv
APCO-GSD-AP-MW-4V	10/11/2021 12:04	рН	7.78	SU
APCO-GSD-AP-MW-4V	10/11/2021 12:04	Temperature	19.99	С
APCO-GSD-AP-MW-4V	10/11/2021 12:04	Turbidity	1.4	NTU
APCO-GSD-AP-MW-4V	10/11/2021 12:09	Conductivity	444.2	uS/cm
APCO-GSD-AP-MW-4V	10/11/2021 12:09	DO	0.16	mg/L
APCO-GSD-AP-MW-4V	10/11/2021 12:09	Depth to Water Detail	17.04	ft
APCO-GSD-AP-MW-4V	10/11/2021 12:09	Oxidation Reduction Potention	9.39	mv
APCO-GSD-AP-MW-4V	10/11/2021 12:09	рН	7.79	SU
APCO-GSD-AP-MW-4V	10/11/2021 12:09		19.64	C
APCO-GSD-AP-MW-4V	10/11/2021 12:09		1.15	NTU
APCO-GSD-AP-MW-4V	10/11/2021 12:14			uS/cm
APCO-GSD-AP-MW-4V	10/11/2021 12:14			mg/L
APCO-GSD-AP-MW-4V		Depth to Water Detail	17.84	
APCO-GSD-AP-MW-4V		Oxidation Reduction Potention	-7.48	
APCO-GSD-AP-MW-4V	10/11/2021 12:14		7.82	
APCO-GSD-AP-MW-4V	10/11/2021 12:14		19.56	
APCO-GSD-AP-MW-4V	10/11/2021 12:14			NTU
APCO-GSD-AP-MW-4V	10/11/2021 12:19	Conductivity		uS/cm
APCO-GSD-AP-MW-4V	10/11/2021 12:19			mg/L
APCO-GSD-AP-MW-4V		Depth to Water Detail	18.71	
APCO-GSD-AP-MW-4V		Oxidation Reduction Potention	-21.33	
APCO-GSD-AP-MW-4V	10/11/2021 12:19		7.84	
APCO-GSD-AP-MW-4V	10/11/2021 12:19		19.67	
APCO-GSD-AP-MW-4V	10/11/2021 12:19			NTU
APCO-GSD-AP-MW-4V	10/11/2021 12:24			uS/cm
APCO-GSD-AP-MW-4V	10/11/2021 12:24			mg/L
APCO-GSD-AP-MW-4V		Depth to Water Detail	19.21	
APCO-GSD-AP-MW-4V		Oxidation Reduction Potention	-33.56	
APCO-GSD-AP-MW-4V	10/11/2021 12:24	*	7.86	
APCO-GSD-AP-MW-4V	10/11/2021 12:24		19.78	
APCO-GSD-AP-MW-4V	10/11/2021 12:24	•		NTU
APCO-GSD-AP-MW-4V	10/11/2021 12:29	·		uS/cm
APCO-GSD-AP-MW-4V	10/11/2021 12:29			mg/L
APCO-GSD-AP-MW-4V	II.	Depth to Water Detail	19.39	
APCO-GSD-AP-MW-4V	10/11/2021 12:29	Oxidation Reduction Potention	-43.97	mv

Alabama Power Company Plant Gadsden Ash Pond					
WELL ID	TIME OF READING	DESCRIPTION	VALUE	UNIT	
APCO-GSD-AP-MW-4V	10/11/2021 12:29	рН	7.87	SU	
APCO-GSD-AP-MW-4V	10/11/2021 12:29	Temperature	19.56	С	
APCO-GSD-AP-MW-4V	10/11/2021 12:29	Turbidity	1.3	NTU	
APCO-GSD-AP-MW-4V	10/11/2021 12:34	Conductivity	439.07	uS/cm	
APCO-GSD-AP-MW-4V	10/11/2021 12:34	DO	0.17	mg/L	
APCO-GSD-AP-MW-4V	10/11/2021 12:34	Depth to Water Detail	19.45	ft	
APCO-GSD-AP-MW-4V	10/11/2021 12:34	Oxidation Reduction Potention	-49.91	mv	
APCO-GSD-AP-MW-4V	10/11/2021 12:34	pH	7.82	SU	
APCO-GSD-AP-MW-4V	10/11/2021 12:34	Temperature	19.61	С	
APCO-GSD-AP-MW-4V	10/11/2021 12:34	Turbidity	1.17	NTU	

Alabama Power Company Plant Gadsden Ash Pond					
WELL ID	TIME OF READING	DESCRIPTION	VALUE	UNIT	
APCO-GSD-AP-MW-20H	10/11/2021 13:10	Conductivity	683.36	uS/cm	
APCO-GSD-AP-MW-20H	10/11/2021 13:10	DO	0.26	mg/L	
APCO-GSD-AP-MW-20H	10/11/2021 13:10	Depth to Water Detail	3.15		
APCO-GSD-AP-MW-20H	10/11/2021 13:10	Oxidation Reduction Potention	4.13	mv	
APCO-GSD-AP-MW-20H	10/11/2021 13:10	рН	6.27	SU	
APCO-GSD-AP-MW-20H	10/11/2021 13:10	Temperature	19.58	С	
APCO-GSD-AP-MW-20H	10/11/2021 13:10	Turbidity	47.5	NTU	
APCO-GSD-AP-MW-20H	10/11/2021 13:15	Conductivity	677.32	uS/cm	
APCO-GSD-AP-MW-20H	10/11/2021 13:15	DO	0.23	mg/L	
APCO-GSD-AP-MW-20H	10/11/2021 13:15	Depth to Water Detail	3.15	ft	
APCO-GSD-AP-MW-20H	10/11/2021 13:15	Oxidation Reduction Potention	8.12	mv	
APCO-GSD-AP-MW-20H	10/11/2021 13:15	рН	6.29		
APCO-GSD-AP-MW-20H	10/11/2021 13:15	Temperature	19.61	C	
APCO-GSD-AP-MW-20H	10/11/2021 13:15	Turbidity	16.7	NTU	
APCO-GSD-AP-MW-20H	10/11/2021 13:20		674.28	uS/cm	
APCO-GSD-AP-MW-20H	10/11/2021 13:20			mg/L	
APCO-GSD-AP-MW-20H	10/11/2021 13:20	Depth to Water Detail	3.15	ft	
APCO-GSD-AP-MW-20H	10/11/2021 13:20	Oxidation Reduction Potention	9.18		
APCO-GSD-AP-MW-20H	10/11/2021 13:20		6.32		
APCO-GSD-AP-MW-20H	10/11/2021 13:20		19.7		
APCO-GSD-AP-MW-20H	10/11/2021 13:20	•	13.3	NTU	
APCO-GSD-AP-MW-20H	10/11/2021 13:25	•	672.64		
APCO-GSD-AP-MW-20H	10/11/2021 13:25			mg/L	
APCO-GSD-AP-MW-20H		Depth to Water Detail	3.15		
APCO-GSD-AP-MW-20H	10/11/2021 13:25	Oxidation Reduction Potention	8.59		

6.36 SU

8.97 NTU

19.78 C

10/11/2021 13:25 pH

10/11/2021 13:25 Temperature

10/11/2021 13:25 Turbidity

APCO-GSD-AP-MW-20H

APCO-GSD-AP-MW-20H

APCO-GSD-AP-MW-20H

APCO-GSD-AP-MW-10 10/11/2021 14:12 Depth to Water Detail 21.83 ft APCO-GSD-AP-MW-10 10/11/2021 14:12 Depth to Water Detail 21.83 ft APCO-GSD-AP-MW-10 10/11/2021 14:12 pH APCO-GSD-AP-MW-10 10/11/2021 14:12 pH APCO-GSD-AP-MW-10 10/11/2021 14:12 pH APCO-GSD-AP-MW-10 10/11/2021 14:12 Temperature 20.02 C APCO-GSD-AP-MW-10 10/11/2021 14:17 Conductivity 12.58 NTU APCO-GSD-AP-MW-10 10/11/2021 14:17 Do APCO-GSD-AP-MW-10 10/11/2021 14:17 Do APCO-GSD-AP-MW-10 10/11/2021 14:17 Do APCO-GSD-AP-MW-10 10/11/2021 14:17 Depth to Water Detail APCO-GSD-AP-MW-10 10/11/2021 14:17 Depth to Water Detail APCO-GSD-AP-MW-10 10/11/2021 14:17 pH APCO-GSD-AP-MW-10 10/11/2021 14:17 pH APCO-GSD-AP-MW-10 10/11/2021 14:17 pH APCO-GSD-AP-MW-10 10/11/2021 14:17 Temperature 20.28 C APCO-GSD-AP-MW-10 10/11/2021 14:17 Temperature 20.28 C APCO-GSD-AP-MW-10 10/11/2021 14:17 Temperature 20.28 C APCO-GSD-AP-MW-10 10/11/2021 14:22 Do APCO-GSD-AP-MW-10 10/11/2021 14:23 Do APCO-GSD-AP-MW-10 10/11/2021 14:23 Do APCO-GSD-AP-MW-10 10/11/2021 14:23 Do APCO-GSD-AP-MW-10		Plant G	adsden Ash Pond		
APCO-GSD-AP-MW-10 10/11/2021 14:12 Depth to Water Detail 21.83 ft APCO-GSD-AP-MW-10 10/11/2021 14:12 Depth to Water Detail 21.83 ft APCO-GSD-AP-MW-10 10/11/2021 14:12 pH 6.57 SU APCO-GSD-AP-MW-10 10/11/2021 14:12 pH 6.57 SU APCO-GSD-AP-MW-10 10/11/2021 14:12 pH 6.57 SU APCO-GSD-AP-MW-10 10/11/2021 14:12 Temperature 20.02 C APCO-GSD-AP-MW-10 10/11/2021 14:17 Conductivity 372.53 uS/cm APCO-GSD-AP-MW-10 10/11/2021 14:17 Do 0.87 mg/L APCO-GSD-AP-MW-10 10/11/2021 14:17 Depth to Water Detail 21.89 ft APCO-GSD-AP-MW-10 10/11/2021 14:17 Oxidation Reduction Potention 40.47 mv APCO-GSD-AP-MW-10 10/11/2021 14:17 Depth to Water Detail 21.89 ft 6.62 SU APCO-GSD-AP-MW-10 10/11/2021 14:17 Depth to Water Detail 22.80 C APCO-GSD-AP-MW-10 10/11/2021 14:17 Temperature 20.28 C APCO-GSD-AP-MW-10 10/11/2021 14:17 Temperature 20.28 C APCO-GSD-AP-MW-10 10/11/2021 14:17 Turbidity 7.74 NTU APCO-GSD-AP-MW-10 APCO-GSD-AP-MW-10 10/11/2021 14:22 Do 0.75 mg/L APCO-GSD-AP-MW-10 10/11/2021 14:22 Do 0.75 mg/L APCO-GSD-AP-MW-10 10/11/2021 14:22 Depth to Water Detail 22.94 ft APCO-GSD-AP-MW-10 APCO-GSD-AP-MW-10 10/11/2021 14:22 Depth to Water Detail 22.94 ft APCO-GSD-AP-MW-10 10/11/2021 14:22 Depth to Water Detail 22.98 ft APCO-GSD-AP-MW-10 10/11/2021 14:22 Depth to Water Detail 22.98 ft APCO-GSD-AP-MW-10 10/11/2021 14:22 Depth to Water Detail 22.98 ft APCO-GSD-AP-MW-10 10/11/2021 14:22 Depth to Water Detail 22.98 ft APCO-GSD-AP-MW-10 10/11/2021 14:27 Depth to Water Detail 22.98 ft APCO-GSD-AP-MW-10 10/11/2021 14:27 Depth to Water Detail 22.98 ft APCO-GSD-AP-MW-10 10/11/2021 14:27 Depth to Water Detail 22.98 ft APCO-GSD-AP-MW-10 10/11/2021 14:27 Depth to Water Detail 22.98 ft APCO-GSD-AP-MW-10 10/11/2021 14:27 Depth to Water Detail 22.98 ft APCO-GSD-AP-MW-10 10/11/2021 14:32 Depth to Water Detail 22.98 ft APCO-GSD-AP-MW-10 10/11/2021 14:32 Depth to Water Detail 22.98 ft APCO-GSD-AP-MW-10 10/11/2021 14:32 Depth to Water Det	WELL ID	TIME OF READING	DESCRIPTION	VALUE	UNIT
APCO-GSD-AP-MW-10 APCO-GSD-AP-MW-10 10/11/2021 14:12 Depth to Water Detail 21.83 R APCO-GSD-AP-MW-10 10/11/2021 14:12 Dividation Reduction Potention -30.94 mw APCO-GSD-AP-MW-10 10/11/2021 14:12 Temberature 20.02 C APCO-GSD-AP-MW-10 APCO-GSD-AP-MW-10 10/11/2021 14:12 Turbidity 12.58 NTU APCO-GSD-AP-MW-10 10/11/2021 14:17 Conductivity 372.53 uS/cm APCO-GSD-AP-MW-10 10/11/2021 14:17 Do 0.87 mg/L APCO-GSD-AP-MW-10 10/11/2021 14:17 Depth to Water Detail 21.89 ft APCO-GSD-AP-MW-10 10/11/2021 14:17 Depth to Water Detail 21.89 ft APCO-GSD-AP-MW-10 10/11/2021 14:17 Depth to Water Detail 21.89 ft APCO-GSD-AP-MW-10 10/11/2021 14:17 Temperature 20.28 C APCO-GSD-AP-MW-10 10/11/2021 14:17 Turbidity APCO-GSD-AP-MW-10 APCO-GSD-AP-MW-10 10/11/2021 14:17 Turbidity APCO-GSD-AP-MW-10 APCO-GSD-AP-MW-10 10/11/2021 14:22 Depth to Water Detail APCO-GSD-AP-MW-10 APCO-GSD-AP-MW-10 10/11/2021 14:22 Depth to Water Detail APCO-GSD-AP-MW-10 10/11/2021 14:22 Depth to Water Detail 22.94 ft APCO-GSD-AP-MW-10 10/11/2021 14:22 Depth to Water Detail 22.94 ft APCO-GSD-AP-MW-10 10/11/2021 14:22 Depth to Water Detail 22.94 ft APCO-GSD-AP-MW-10 10/11/2021 14:22 Depth to Water Detail 22.94 ft APCO-GSD-AP-MW-10 10/11/2021 14:22 Depth to Water Detail 22.94 ft APCO-GSD-AP-MW-10 10/11/2021 14:22 Turbidity 371.31 uS/cm APCO-GSD-AP-MW-10 10/11/2021 14:27 Turbidity 371.31 uS/cm APCO-GSD-AP-MW-10 10/11/2021 14:27 Do 0.63 mg/L APCO-GSD-AP-MW-10 10/11/2021 14:27 Depth to Water Detail 22.98 ft APCO-GSD-AP-MW-10 10/11/2021 14:27 Depth to Water Detail 22.98 ft APCO-GSD-AP-MW-10 10/11/2021 14:27 Depth to Water Detail 22.98 ft APCO-GSD-AP-MW-10 10/11/2021 14:27 Depth to Water Detail 22.98 ft APCO-GSD-AP-MW-10 10/11/2021 14:27 Depth to Water Detail 22.98 ft APCO-GSD-AP-MW-10 10/11/2021 14:27 Depth to Water Detail 22.98 ft APCO-GSD-AP-MW-10 10/11/2021 14:32 Depth to Water Detail	APCO-GSD-AP-MW-10	10/11/2021 14:12	Conductivity	372.52	uS/cm
APCO-GSD-AP-MW-10 APCO-GSD-AP-MW-10 10/11/2021 14:12 pH 6.57 SU APCO-GSD-AP-MW-10 10/11/2021 14:12 pH 6.57 SU APCO-GSD-AP-MW-10 10/11/2021 14:12 Temperature 2.0.02 C APCO-GSD-AP-MW-10 10/11/2021 14:12 Turbidity 12.58 NTU APCO-GSD-AP-MW-10 10/11/2021 14:17 DO 0.87 mg/L APCO-GSD-AP-MW-10 10/11/2021 14:17 DO APCO-GSD-AP-MW-10 APCO-GSD-AP-MW-10 10/11/2021 14:17 Do APCO-GSD-AP-MW-10 10/11/2021 14:17 Do APCO-GSD-AP-MW-10 10/11/2021 14:17 Do APCO-GSD-AP-MW-10 10/11/2021 14:17 Do APCO-GSD-AP-MW-10 10/11/2021 14:17 PH 6.62 SU APCO-GSD-AP-MW-10 10/11/2021 14:17 Turbidity 7.74 NTU APCO-GSD-AP-MW-10 10/11/2021 14:17 Turbidity 7.74 NTU APCO-GSD-AP-MW-10 10/11/2021 14:17 Turbidity 7.74 NTU APCO-GSD-AP-MW-10 10/11/2021 14:22 DO 0.75 mg/L APCO-GSD-AP-MW-10 10/11/2021 14:22 Do 0.75 mg/L APCO-GSD-AP-MW-10 10/11/2021 14:22 Depth to Water Detail 22.94 ft APCO-GSD-AP-MW-10 10/11/2021 14:22 Depth to Water Detail 22.94 ft APCO-GSD-AP-MW-10 10/11/2021 14:22 Depth to Water Detail 22.94 ft APCO-GSD-AP-MW-10 10/11/2021 14:22 Depth to Water Detail 22.94 ft APCO-GSD-AP-MW-10 10/11/2021 14:22 Depth to Water Detail 22.94 ft APCO-GSD-AP-MW-10 10/11/2021 14:22 Depth to Water Detail 22.94 ft APCO-GSD-AP-MW-10 10/11/2021 14:22 Depth to Water Detail 22.94 ft APCO-GSD-AP-MW-10 10/11/2021 14:22 Temperature 20.16 C APCO-GSD-AP-MW-10 10/11/2021 14:27 Conductivity 371.31 lus/sem APCO-GSD-AP-MW-10 10/11/2021 14:27 DO 0.63 mg/L APCO-GSD-AP-MW-10 10/11/2021 14:27 Temperature 20.16 C APCO-GSD-AP-MW-10 10/11/2021 14:27 Temperature 20.17 Temperature 20.10 C APCO-GSD-AP-MW-10 10/11/2021 14:23 Do 0.52 mg/L APCO-GSD-AP-MW-10 10/11/2021 14:32 Do 0.52 mg/L APCO-GSD-AP-MW-10 10/11/2021 14:32 Do 0.52 mg/L APCO-GSD-AP-MW-10 10/11/2021 14:32 Do 0.52 mg/L APCO-GSD-AP-MW-10 10/11/2021 14:33 Do 0.52 mg/L APCO-GSD-AP-MW-10	APCO-GSD-AP-MW-10			1.02	mg/L
APCO-GSD-AP-MW-10 APCO-GSD-AP-MW-10 10/11/2021 14:12 Temperature 20.02 C APCO-GSD-AP-MW-10 10/11/2021 14:12 Turbidity 12.58 NTU APCO-GSD-AP-MW-10 10/11/2021 14:17 Conductivity 372.53 uS/cm APCO-GSD-AP-MW-10 10/11/2021 14:17 Depth to Water Detail 21.89 the APCO-GSD-AP-MW-10 10/11/2021 14:17 Depth to Water Detail 21.89 the APCO-GSD-AP-MW-10 10/11/2021 14:17 Depth to Water Detail 21.89 the APCO-GSD-AP-MW-10 10/11/2021 14:17 Depth to Water Detail 21.89 the APCO-GSD-AP-MW-10 10/11/2021 14:17 Temperature 20.28 C APCO-GSD-AP-MW-10 10/11/2021 14:17 Temperature 20.28 C APCO-GSD-AP-MW-10 10/11/2021 14:17 Turbidity 21.80 APCO-GSD-AP-MW-10 APCO-GSD-AP-MW-10 10/11/2021 14:22 Conductivity 371.68 uS/cm APCO-GSD-AP-MW-10 10/11/2021 14:22 Depth to Water Detail 22.94 the APCO-GSD-AP-MW-10 APCO-GSD-AP-MW-10 10/11/2021 14:22 Depth to Water Detail 22.94 the APCO-GSD-AP-MW-10 APCO-GSD-AP-MW-10 10/11/2021 14:22 Depth to Water Detail 22.94 the APCO-GSD-AP-MW-10 10/11/2021 14:22 Depth to Water Detail 22.94 the APCO-GSD-AP-MW-10 10/11/2021 14:22 Temperature 20.16 C APCO-GSD-AP-MW-10 10/11/2021 14:22 Temperature 20.16 C APCO-GSD-AP-MW-10 10/11/2021 14:27 Turbidity 371.31 uS/cm APCO-GSD-AP-MW-10 10/11/2021 14:27 Do	APCO-GSD-AP-MW-10	10/11/2021 14:12	Depth to Water Detail	21.83	ft
APCO-GSD-AP-MW-10 APCO-GSD-AP-M	APCO-GSD-AP-MW-10	10/11/2021 14:12	Oxidation Reduction Potention	-30.94	mv
APCO-GSD-AP-MW-10 APCO-GSD-AP-M	APCO-GSD-AP-MW-10	10/11/2021 14:12	pН	6.57	SU
APCO-GSD-AP-MW-10 APCO-GSD-AP-MW-10 10/11/2021 14:17 DO 0.87 mg/L APCO-GSD-AP-MW-10 10/11/2021 14:17 DO 0.87 mg/L APCO-GSD-AP-MW-10 10/11/2021 14:17 Dop to Water Detail 21.89 ft APCO-GSD-AP-MW-10 10/11/2021 14:17 Dop to Water Detail APCO-GSD-AP-MW-10 10/11/2021 14:17 Dop to Water Detail APCO-GSD-AP-MW-10 10/11/2021 14:17 pH 6.62 SU APCO-GSD-AP-MW-10 10/11/2021 14:17 Temperature 20.28 C APCO-GSD-AP-MW-10 10/11/2021 14:17 Timbidity APCO-GSD-AP-MW-10 10/11/2021 14:12 Conductivity 371.68 uS/cm APCO-GSD-AP-MW-10 10/11/2021 14:22 DO 0.75 mg/L APCO-GSD-AP-MW-10 10/11/2021 14:22 Do 0.75 mg/L APCO-GSD-AP-MW-10 10/11/2021 14:22 Do 0.75 mg/L APCO-GSD-AP-MW-10 10/11/2021 14:22 Dop to Water Detail 22.94 ft APCO-GSD-AP-MW-10 10/11/2021 14:22 pH 6.67 SU APCO-GSD-AP-MW-10 10/11/2021 14:22 pH 6.67 SU APCO-GSD-AP-MW-10 10/11/2021 14:22 Timbidity 371.31 uS/cm APCO-GSD-AP-MW-10 10/11/2021 14:27 Too douctivity 371.31 uS/cm APCO-GSD-AP-MW-10 10/11/2021 14:27 Do 0.63 mg/L APCO-GSD-AP-MW-10 10/11/2021 14:27 Timbidity 3.32 NTU APCO-GSD-AP-MW-10 10/11/2021 14:32 Do 0.52 mg/L APCO-GSD-AP-MW-10 10/11/2021 14:32 Do 0.52 mg/L APCO-GSD-AP-MW-10 10/11/2021 14:32 Do 0.52 mg/L APCO-GSD-AP-MW-10 10/11/2021 14:32 Do 0.63 mg/L APCO-GSD-AP-MW-10 10/11/2021 14:37 Do 0.63 mg/L APCO-GSD-AP-MW-10 10/11/2021 14:37 Do 0.63 mg/L APCO	APCO-GSD-AP-MW-10	10/11/2021 14:12	Temperature	20.02	С
APCO-GSD-AP-MW-10 APCO-GSD-AP-MW-10 APCO-GSD-AP-MW-10 APCO-GSD-AP-MW-10 10/11/2021 14:17 Depth to Water Detail 21.89 ft APCO-GSD-AP-MW-10 APCO-GSD-AP-MW-10 10/11/2021 14:17 ppt 6.62 SU APCO-GSD-AP-MW-10 APCO-GSD-AP-MW-10 10/11/2021 14:17 Temperature 20.28 C APCO-GSD-AP-MW-10 APCO-GSD-AP-MW-10 10/11/2021 14:17 Temperature 20.28 C APCO-GSD-AP-MW-10 10/11/2021 14:17 Turbidity 7.74 NTU APCO-GSD-AP-MW-10 10/11/2021 14:22 Do 0.75 mg/L APCO-GSD-AP-MW-10 APCO-GSD-AP-MW-10 APCO-GSD-AP-MW-10 APCO-GSD-AP-MW-10 10/11/2021 14:22 Depth to Water Detail 22.94 ft APCO-GSD-AP-MW-10 APCO-GSD-AP-MW-10 10/11/2021 14:22 Temperature 20.16 C APCO-GSD-AP-MW-10 APCO-GSD-AP-MW-10 10/11/2021 14:22 Temperature 20.16 C APCO-GSD-AP-MW-10 APCO-GSD-AP-MW-10 10/11/2021 14:22 Temperature 20.16 C APCO-GSD-AP-MW-10 APCO-GSD-AP-MW-10 10/11/2021 14:27 Temperature 20.16 C APCO-GSD-AP-MW-10 10/11/2021 14:27 Temperature 20.16 C APCO-GSD-AP-MW-10 10/11/2021 14:27 Do 0.63 mg/L APCO-GSD-AP-MW-10 10/11/2021 14:27 Do 0.63 mg/L APCO-GSD-AP-MW-10 10/11/2021 14:27 Depth to Water Detail 22.98 ft APCO-GSD-AP-MW-10 10/11/2021 14:27 Depth to Water Detail 22.98 ft APCO-GSD-AP-MW-10 10/11/2021 14:27 Temperature 20.07 C APCO-GSD-AP-MW-10 10/11/2021 14:32 Depth to Water Detail 22.98 ft APCO-GSD-AP-MW-10 10/11/2021 14:32 Depth to Water Detail 22.98 ft APCO-GSD-AP-MW-10 10/11/2021 14:32 Depth to Water Detail 22.98 ft APCO-GSD-AP-MW-10 10/11/2021 14:32 Depth to Water Detail 22.98 ft APCO-GSD-AP-MW-10 10/11/2021 14:32 Depth to Water Detail 22.98 ft APCO-GSD-AP-MW-10 10/11/2021 14:37 Temperature 20.1 C APCO-GSD-AP-MW-10 10/11/2021 14:37 Depth to Water Detail 22.98	APCO-GSD-AP-MW-10	10/11/2021 14:12	Turbidity	12.58	NTU
APCO-GSD-AP-MW-10 APCO-GSD-AP-	APCO-GSD-AP-MW-10	10/11/2021 14:17	Conductivity	372.53	uS/cm
APCO-GSD-AP-MW-10 APCO-GSD-AP-	APCO-GSD-AP-MW-10	10/11/2021 14:17	DO	0.87	mg/L
APCO-GSD-AP-MW-10 APCO-GSD-AP-M	APCO-GSD-AP-MW-10	10/11/2021 14:17	Depth to Water Detail	21.89	ft
APCO-GSD-AP-MW-10 APCO-GSD-AP-M	APCO-GSD-AP-MW-10	10/11/2021 14:17	Oxidation Reduction Potention	-40.47	mv
APCO-GSD-AP-MW-10 APCO-GSD-AP-M	APCO-GSD-AP-MW-10	10/11/2021 14:17	рН	6.62	SU
APCO-GSD-AP-MW-10 APCO-GSD-AP-MW-10 APCO-GSD-AP-WW-10 APCO-GSD-AP-WW-10 APCO-GSD-AP-MW-10 APCO-GSD-AP-MW-10 APCO-GSD-AP-MW-10 APCO-GSD-AP-MW-10 10/11/2021 14:22 Doph to Water Detail APCO-GSD-AP-MW-10 APCO-GSD-AP-	APCO-GSD-AP-MW-10	10/11/2021 14:17	Temperature	20.28	С
APCO-GSD-AP-MW-10 APCO-GSD-AP-MW-10 APCO-GSD-AP-WW-10 APCO-GSD-AP-WW-10 APCO-GSD-AP-MW-10 APCO-GSD-AP-MW-10 APCO-GSD-AP-MW-10 10/11/2021 14:22 Doy Depth to Water Detail 22.94 ft 29.94 f	APCO-GSD-AP-MW-10			7.74	NTU
APCO-GSD-AP-MW-10 APCO-GSD-AP-M	APCO-GSD-AP-MW-10		-	371.68	uS/cm
APCO-GSD-AP-MW-10 APCO-GSD-AP-M	APCO-GSD-AP-MW-10			0.75	mg/L
APCO-GSD-AP-MW-10 APCO-GSD-AP-	APCO-GSD-AP-MW-10				
APCO-GSD-AP-MW-10 APCO-GSD-AP-M		I .		-46.9	mv
APCO-GSD-AP-MW-10 APCO-GSD-AP-M	APCO-GSD-AP-MW-10	10/11/2021 14:22	рН	6.67	SU
APCO-GSD-AP-MW-10 APCO-GSD-AP-M	APCO-GSD-AP-MW-10	10/11/2021 14:22	Temperature	20.16	С
APCO-GSD-AP-MW-10 APCO-GSD-AP-M	APCO-GSD-AP-MW-10				
APCO-GSD-AP-MW-10	APCO-GSD-AP-MW-10	10/11/2021 14:27	Conductivity	371.31	uS/cm
APCO-GSD-AP-MW-10	APCO-GSD-AP-MW-10	10/11/2021 14:27	DO	0.63	mg/L
APCO-GSD-AP-MW-10	APCO-GSD-AP-MW-10	10/11/2021 14:27	Depth to Water Detail	22.98	ft
APCO-GSD-AP-MW-10 APCO-GSD-AP-	APCO-GSD-AP-MW-10			-51.41	mv
APCO-GSD-AP-MW-10	APCO-GSD-AP-MW-10	10/11/2021 14:27	рН		
APCO-GSD-AP-MW-10	APCO-GSD-AP-MW-10		*	20.07	С
APCO-GSD-AP-MW-10	APCO-GSD-AP-MW-10			3.82	NTU
APCO-GSD-AP-MW-10	APCO-GSD-AP-MW-10	10/11/2021 14:32	Conductivity	371.22	uS/cm
APCO-GSD-AP-MW-10	APCO-GSD-AP-MW-10	10/11/2021 14:32	DO	0.52	mg/L
APCO-GSD-AP-MW-10	APCO-GSD-AP-MW-10	10/11/2021 14:32	Depth to Water Detail	22.98	ft
APCO-GSD-AP-MW-10	APCO-GSD-AP-MW-10	10/11/2021 14:32	Oxidation Reduction Potention	-54.5	mv
APCO-GSD-AP-MW-10 10/11/2021 14:32 Turbidity 2.96 NTU APCO-GSD-AP-MW-10 10/11/2021 14:37 Conductivity 371.08 uS/cm APCO-GSD-AP-MW-10 10/11/2021 14:37 DO 0.43 mg/L APCO-GSD-AP-MW-10 10/11/2021 14:37 Depth to Water Detail 22.98 ft APCO-GSD-AP-MW-10 10/11/2021 14:37 Oxidation Reduction Potention -56.1 mv APCO-GSD-AP-MW-10 10/11/2021 14:37 pH 6.72 SU APCO-GSD-AP-MW-10 10/11/2021 14:37 Temperature 20.11 C	APCO-GSD-AP-MW-10	10/11/2021 14:32	рН	6.72	SU
APCO-GSD-AP-MW-10 10/11/2021 14:32 Turbidity 2.96 NTU APCO-GSD-AP-MW-10 10/11/2021 14:37 Conductivity 371.08 uS/cm APCO-GSD-AP-MW-10 10/11/2021 14:37 DO 0.43 mg/L APCO-GSD-AP-MW-10 10/11/2021 14:37 Depth to Water Detail 22.98 ft APCO-GSD-AP-MW-10 10/11/2021 14:37 Oxidation Reduction Potention -56.1 mv APCO-GSD-AP-MW-10 10/11/2021 14:37 pH 6.72 SU APCO-GSD-AP-MW-10 10/11/2021 14:37 Temperature 20.11 C	APCO-GSD-AP-MW-10	I .			
APCO-GSD-AP-MW-10 10/11/2021 14:37 Conductivity 371.08 uS/cm APCO-GSD-AP-MW-10 10/11/2021 14:37 DO 0.43 mg/L APCO-GSD-AP-MW-10 10/11/2021 14:37 Depth to Water Detail 22.98 ft APCO-GSD-AP-MW-10 10/11/2021 14:37 Oxidation Reduction Potention -56.1 mv APCO-GSD-AP-MW-10 10/11/2021 14:37 pH 6.72 SU APCO-GSD-AP-MW-10 10/11/2021 14:37 Temperature 20.11 C	APCO-GSD-AP-MW-10			2.96	NTU
APCO-GSD-AP-MW-10 10/11/2021 14:37 DO 0.43 mg/L APCO-GSD-AP-MW-10 10/11/2021 14:37 Depth to Water Detail 22.98 ft APCO-GSD-AP-MW-10 10/11/2021 14:37 Oxidation Reduction Potention -56.1 mv APCO-GSD-AP-MW-10 10/11/2021 14:37 pH 6.72 SU APCO-GSD-AP-MW-10 10/11/2021 14:37 Temperature 20.11 C	APCO-GSD-AP-MW-10			371.08	uS/cm
APCO-GSD-AP-MW-10 10/11/2021 14:37 Depth to Water Detail 22.98 ft APCO-GSD-AP-MW-10 10/11/2021 14:37 Oxidation Reduction Potention -56.1 mv APCO-GSD-AP-MW-10 10/11/2021 14:37 pH 6.72 SU APCO-GSD-AP-MW-10 10/11/2021 14:37 Temperature 20.11 C	APCO-GSD-AP-MW-10		•		
APCO-GSD-AP-MW-10 10/11/2021 14:37 Oxidation Reduction Potention -56.1 mv APCO-GSD-AP-MW-10 10/11/2021 14:37 pH 6.72 SU APCO-GSD-AP-MW-10 10/11/2021 14:37 Temperature 20.11 C	APCO-GSD-AP-MW-10				
APCO-GSD-AP-MW-10 10/11/2021 14:37 pH 6.72 SU APCO-GSD-AP-MW-10 10/11/2021 14:37 Temperature 20.11 C	APCO-GSD-AP-MW-10		_	-56.1	mv
APCO-GSD-AP-MW-10 10/11/2021 14:37 Temperature 20.11 C	APCO-GSD-AP-MW-10	10/11/2021 14:37	pН		
	APCO-GSD-AP-MW-10				
	APCO-GSD-AP-MW-10			2.95	NTU

Alabama Power Company Plant Gadsden Ash Pond					
WELL ID	TIME OF READING	DESCRIPTION	VALUE	UNIT	
APCO-GSD-AP-MW-14	10/12/2021 8:13	Conductivity	275.89	uS/cm	
APCO-GSD-AP-MW-14	10/12/2021 8:13	DO	4.58	mg/L	
APCO-GSD-AP-MW-14	10/12/2021 8:13	Depth to Water Detail	22.06	ft	
APCO-GSD-AP-MW-14	10/12/2021 8:13	Oxidation Reduction Potention	170.76	mv	
APCO-GSD-AP-MW-14	10/12/2021 8:13	рН	4.01	SU	
APCO-GSD-AP-MW-14	10/12/2021 8:13	Temperature	19.16	С	
APCO-GSD-AP-MW-14	10/12/2021 8:13	Turbidity	8.86	NTU	
APCO-GSD-AP-MW-14	10/12/2021 8:18	Conductivity	277.26	uS/cm	
APCO-GSD-AP-MW-14	10/12/2021 8:18	DO	4.54	mg/L	
APCO-GSD-AP-MW-14	10/12/2021 8:18	Depth to Water Detail	22.09	ft	
APCO-GSD-AP-MW-14	10/12/2021 8:18	Oxidation Reduction Potention	169.7	mv	
APCO-GSD-AP-MW-14	10/12/2021 8:18	рН	4.02	SU	
APCO-GSD-AP-MW-14	10/12/2021 8:18	Temperature	19.14	С	
APCO-GSD-AP-MW-14	10/12/2021 8:18	Turbidity	5.18	NTU	
APCO-GSD-AP-MW-14	10/12/2021 8:23	Conductivity	277.35	uS/cm	
APCO-GSD-AP-MW-14	10/12/2021 8:23	DO	4.56	mg/L	
APCO-GSD-AP-MW-14	10/12/2021 8:23	Depth to Water Detail	22.09	ft	
APCO-GSD-AP-MW-14	10/12/2021 8:23	Oxidation Reduction Potention	169	mv	

10/12/2021 8:28 Oxidation Reduction Potention

4.03 SU

5.04 NTU

276.99 uS/cm

4.54 mg/L

19.11 C

22.09 ft

167.2 mv

4.04 SU

19.12 C 2.99 NTU

10/12/2021 8:23 pH

10/12/2021 8:28 DO

10/12/2021 8:28 pH

10/12/2021 8:23 Temperature

10/12/2021 8:28 Conductivity

10/12/2021 8:28 Temperature

10/12/2021 8:28 Turbidity

10/12/2021 8:28 Depth to Water Detail

10/12/2021 8:23 Turbidity

APCO-GSD-AP-MW-14

APCO-GSD-AP-MW-14

APCO-GSD-AP-MW-14

APCO-GSD-AP-MW-14

APCO-GSD-AP-MW-14

APCO-GSD-AP-MW-14 APCO-GSD-AP-MW-14

APCO-GSD-AP-MW-14

APCO-GSD-AP-MW-14

APCO-GSD-AP-MW-14

APCO-GSD-AP-MW-8 10/12/2021 10:20 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:20 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:20 pH 6.47 SU APCO-GSD-AP-MW-8 10/12/2021 10:20 Temperature 18.45 C APCO-GSD-AP-MW-8 10/12/2021 10:25 Conductivity 398.41 uS/cm APCO-GSD-AP-MW-8 10/12/2021 10:25 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:25 Depth to Water Detail 11.82 APCO-GSD-AP-MW-8 10/12/2021 10:30 Depth to Water Detail 11.82 APCO-GSD-AP-MW-8 10/12/2021 10:35 D		Plant G	adsden Ash Pond		
APCO-GSD-AP-MW-8 10/12/2021 10:20 Depth to Water Detail 11.82 R APCO-GSD-AP-MW-8 10/12/2021 10:20 Depth to Water Detail 11.82 R APCO-GSD-AP-MW-8 10/12/2021 10:20 Depth to Water Detail APCO-GSD-AP-MW-8 10/12/2021 10:20 PH 6.47 SU APCO-GSD-AP-MW-8 10/12/2021 10:20 Temperature 18.45 C APCO-GSD-AP-MW-8 10/12/2021 10:20 Turbidity 14.1 NTU APCO-GSD-AP-MW-8 10/12/2021 10:25 Conductivity 398.41 uS/cm APCO-GSD-AP-MW-8 10/12/2021 10:25 Depth to Water Detail 11.82 R APCO-GSD-AP-MW-8 10/12/2021 10:25 Depth to Water Detail 11.82 R APCO-GSD-AP-MW-8 10/12/2021 10:25 Depth to Water Detail 11.82 R APCO-GSD-AP-MW-8 10/12/2021 10:25 Depth to Water Detail 11.82 R APCO-GSD-AP-MW-8 10/12/2021 10:25 Depth to Water Detail 11.82 R APCO-GSD-AP-MW-8 10/12/2021 10:25 Temperature 18.44 C APCO-GSD-AP-MW-8 10/12/2021 10:25 Temperature 18.44 C APCO-GSD-AP-MW-8 10/12/2021 10:25 Temperature 18.44 C APCO-GSD-AP-MW-8 10/12/2021 10:30 Conductivity 411.62 uS/cm APCO-GSD-AP-MW-8 10/12/2021 10:30 Depth to Water Detail 11.82 R APCO-GSD-AP-MW-8 10/12/2021 10:30 Depth to Water Detail 11.82 R APCO-GSD-AP-MW-8 10/12/2021 10:30 Depth to Water Detail 11.82 R APCO-GSD-AP-MW-8 10/12/2021 10:30 Depth to Water Detail 11.82 R APCO-GSD-AP-MW-8 10/12/2021 10:30 Depth to Water Detail 11.82 R APCO-GSD-AP-MW-8 10/12/2021 10:30 Depth to Water Detail 11.82 R APCO-GSD-AP-MW-8 10/12/2021 10:30 Depth to Water Detail 11.82 R APCO-GSD-AP-MW-8 10/12/2021 10:30 Depth to Water Detail 11.82 R APCO-GSD-AP-MW-8 10/12/2021 10:30 Depth to Water Detail 11.82 R APCO-GSD-AP-MW-8 10/12/2021 10:30 Depth to Water Detail 11.82 R APCO-GSD-AP-MW-8 10/12/2021 10:35 Depth to Water Detail 11.82 R APCO-GSD-AP-MW-8 10/12/2021 10:35 Depth to Water Detail 11.82 R APCO-GSD-AP-MW-8 10/12/2021 10:35 Depth to Water Detail 11.82 R APCO-GSD-AP-MW-8 10/12/2021 10:35 Depth	WELL ID	TIME OF READING	DESCRIPTION	VALUE	UNIT
APCO-GSD-AP-MW-8 10/12/2021 10:20 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:20 Depth to Water Detail 79:72 mv APCO-GSD-AP-MW-8 10/12/2021 10:20 Depth to Water Detail 79:72 mv APCO-GSD-AP-MW-8 10/12/2021 10:20 Temperature 18.45 C APCO-GSD-AP-MW-8 10/12/2021 10:25 Do Turbidity 14.1 NTU APCO-GSD-AP-MW-8 10/12/2021 10:25 Do 0 0.4 mg/L APCO-GSD-AP-MW-8 10/12/2021 10:25 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:25 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:25 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:25 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:25 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:25 Temperature 18.44 C APCO-GSD-AP-MW-8 10/12/2021 10:25 Turbidity 11.5 NTU APCO-GSD-AP-MW-8 10/12/2021 10:30 Conductivity 11.5 NTU APCO-GSD-AP-MW-8 10/12/2021 10:30 Do 0 0.36 mg/L APCO-GSD-AP-MW-8 10/12/2021 10:30 Do 0 0.36 mg/L APCO-GSD-AP-MW-8 10/12/2021 10:30 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:30 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:30 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:30 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:30 Temperature 18.45 C APCO-GSD-AP-MW-8 10/12/2021 10:35 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:35 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:35 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:35 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:35 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:35 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:35 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:35 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:35 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021	APCO-GSD-AP-MW-8	10/12/2021 10:20	Conductivity	392.31	uS/cm
APCO-GSD-AP-MW-8 10/12/2021 10:20 pH APCO-GSD-AP-MW-8 10/12/2021 10:20 pH APCO-GSD-AP-MW-8 10/12/2021 10:20 pH APCO-GSD-AP-MW-8 10/12/2021 10:20 Temperature 118.45 C APCO-GSD-AP-MW-8 10/12/2021 10:25 Conductivity 398.41 luS/cm APCO-GSD-AP-MW-8 10/12/2021 10:25 DO APCO-GSD-AP-MW-8 10/12/2021 10:25 DO APCO-GSD-AP-MW-8 10/12/2021 10:25 Depth to Water Detail 11.82 R APCO-GSD-AP-MW-8 10/12/2021 10:25 pH APCO-GSD-AP-MW-8 10/12/2021 10:30 DO 0.36 mg/L APCO-GSD-AP-MW-8 10/12/2021 10:30 DO 0.36 mg/L APCO-GSD-AP-MW-8 10/12/2021 10:30 DPh to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:30 DPh to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:30 DPh to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:30 DPh to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:30 DPh to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:30 DPh to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:30 DPh to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:35 DPh APCO-GSD-AP-MW-8 10/12/2021 10	APCO-GSD-AP-MW-8			0.49	mg/L
APCO-GSD-AP-MW-8 10/12/2021 10:20 pH APCO-GSD-AP-MW-8 10/12/2021 10:20 Temperature 18.45 C APCO-GSD-AP-MW-8 10/12/2021 10:25 Temperature APCO-GSD-AP-MW-8 10/12/2021 10:25 Conductivity 398.41 uS/cm APCO-GSD-AP-MW-8 10/12/2021 10:25 DO 0.4 mg/L APCO-GSD-AP-MW-8 10/12/2021 10:25 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:25 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:25 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:25 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:25 Temperature 18.44 C APCO-GSD-AP-MW-8 10/12/2021 10:25 Temperature 18.44 C APCO-GSD-AP-MW-8 10/12/2021 10:25 Turbidity 11.5 NTU APCO-GSD-AP-MW-8 10/12/2021 10:30 Conductivity 411.62 uS/cm APCO-GSD-AP-MW-8 10/12/2021 10:30 DO 0.36 mg/L APCO-GSD-AP-MW-8 10/12/2021 10:30 Do 0.36 mg/L APCO-GSD-AP-MW-8 10/12/2021 10:30 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:30 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:30 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:30 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:30 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:30 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:30 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:35 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:35 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:35 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:35 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:35 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:35 Temperature 18.41 C APCO-GSD-AP-MW-8 10/12/2021 10:35 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:45 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:45 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:45 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:45 Depth	APCO-GSD-AP-MW-8	10/12/2021 10:20	Depth to Water Detail	11.82	ft
APCO-GSD-AP-MW-8 10/12/2021 10:20 Temperature 18.45 C APCO-GSD-AP-MW-8 10/12/2021 10:25 Tempidity 14.1 NTU APCO-GSD-AP-MW-8 10/12/2021 10:25 DO 04 mg/L APCO-GSD-AP-MW-8 10/12/2021 10:25 DO 04 mg/L APCO-GSD-AP-MW-8 10/12/2021 10:25 DO 04 mg/L APCO-GSD-AP-MW-8 10/12/2021 10:25 Do 05 Oxidation Reduction Potention 71.01 mv APCO-GSD-AP-MW-8 10/12/2021 10:25 DF APCO-GSD-AP-MW-8 10/12/2021 10:30 DF APCO-GSD-AP-MW-8 10/12/2021 10:35 DF APCO-GSD-AP-MW-8 10/12/2021 10:40 DF APCO-GSD-AP-MW-8 10/12/2021 10:40 DF APCO-GSD-AP-MW-8 10/12/2021 1	APCO-GSD-AP-MW-8	10/12/2021 10:20	Oxidation Reduction Potention	79.72	mv
APCO-GSD-AP-MW-8 10/12/2021 10:25 Conductivity 398.41 uS/cm APCO-GSD-AP-MW-8 10/12/2021 10:25 Doc 0.4 mg/L APCO-GSD-AP-MW-8 10/12/2021 10:25 Doc 0.4 mg/L APCO-GSD-AP-MW-8 10/12/2021 10:25 Depth to Water Detail 11:82 ft APCO-GSD-AP-MW-8 10/12/2021 10:25 Depth to Water Detail 11:82 ft APCO-GSD-AP-MW-8 10/12/2021 10:25 Depth to Water Detail 11:82 ft APCO-GSD-AP-MW-8 10/12/2021 10:25 Depth to Water Detail 11:82 ft APCO-GSD-AP-MW-8 10/12/2021 10:25 Temperature 18:44 C APCO-GSD-AP-MW-8 10/12/2021 10:25 Turbidity 11:5 NTU APCO-GSD-AP-MW-8 10/12/2021 10:30 Doc 0.36 mg/L APCO-GSD-AP-MW-8 10/12/2021 10:30 Depth to Water Detail 11:82 ft APCO-GSD-AP-MW-8 10/12/2021 10:30 PH 6.55 SU APCO-GSD-AP-MW-8 10/12/2021 10:30 Temperature 18:45 C APCO-GSD-AP-MW-8 10/12/2021 10:30 Temperature 18:45 C APCO-GSD-AP-MW-8 10/12/2021 10:35 Turbidity 11:75 NTU APCO-GSD-AP-MW-8 10/12/2021 10:35 Depth to Water Detail 11:82 ft APCO-GSD-AP-MW-8 10/12/2021 10:35 Depth to Water Detail 11:82 ft APCO-GSD-AP-MW-8 10/12/2021 10:35 Depth to Water Detail 11:82 ft APCO-GSD-AP-MW-8 10/12/2021 10:35 Depth to Water Detail 11:82 ft APCO-GSD-AP-MW-8 10/12/2021 10:35 Depth to Water Detail 11:82 ft APCO-GSD-AP-MW-8 10/12/2021 10:35 Depth to Water Detail 11:82 ft APCO-GSD-AP-MW-8 10/12/2021 10:35 Depth to Water Detail 11:82 ft APCO-GSD-AP-MW-8 10/12/2021 10:35 Depth to Water Detail 11:82 ft APCO-GSD-AP-MW-8 10/12/2021 10:35 Depth to Water Detail 11:82 ft APCO-GSD-AP-MW-8 10/12/2021 10:35 Depth to Water Detail 11:82 ft APCO-GSD-AP-MW-8 10/12/2021 10:40 Depth to Water Detail 11:82 ft APCO-GSD-AP-MW-8 10/12/2021 10:40 Depth to Water Detail 11:82 ft APCO-GSD-AP-MW-8 10/12/2	APCO-GSD-AP-MW-8	10/12/2021 10:20	pН	6.47	SU
APCO-GSD-AP-MW-8 10/12/2021 10:25 DoO 0.4 mg/L APCO-GSD-AP-MW-8 10/12/2021 10:25 DoO 0.4 mg/L APCO-GSD-AP-MW-8 10/12/2021 10:25 DoO 0.4 mg/L APCO-GSD-AP-MW-8 10/12/2021 10:25 DoO 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:25 Dopth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:25 Displation Reduction Potention 71.01 mv APCO-GSD-AP-MW-8 10/12/2021 10:25 pH 6.51 SU APCO-GSD-AP-MW-8 10/12/2021 10:25 Temperature 18.44 C APCO-GSD-AP-MW-8 10/12/2021 10:30 Conductivity 11.5 NTU APCO-GSD-AP-MW-8 10/12/2021 10:30 Do 0.36 mg/L APCO-GSD-AP-MW-8 10/12/2021 10:30 Do 0.36 mg/L APCO-GSD-AP-MW-8 10/12/2021 10:30 Do 0.36 mg/L APCO-GSD-AP-MW-8 10/12/2021 10:30 Dopht to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:30 pH 6.55 SU APCO-GSD-AP-MW-8 10/12/2021 10:30 pH 6.55 SU APCO-GSD-AP-MW-8 10/12/2021 10:30 Temperature 18.45 C APCO-GSD-AP-MW-8 10/12/2021 10:30 Temperature 18.45 C APCO-GSD-AP-MW-8 10/12/2021 10:35 Conductivity 11.75 NTU APCO-GSD-AP-MW-8 10/12/2021 10:35 Do 0.32 mg/L APCO-GSD-AP-MW-8 10/12/2021 10:40 Do 0.22 mg/L APCO-GSD-AP-MW-8 10/12/2021 10:45 Do 0.28 mg/L APCO-GSD-AP-MW-8 10/12/2021 10:45 Do	APCO-GSD-AP-MW-8	10/12/2021 10:20	Temperature	18.45	С
APCO-GSD-AP-MW-8	APCO-GSD-AP-MW-8	10/12/2021 10:20	Turbidity	14.1	NTU
APCO-GSD-AP-MW-8	APCO-GSD-AP-MW-8	10/12/2021 10:25	Conductivity	398.41	uS/cm
APCO-GSD-AP-MW-8 APCO-G	APCO-GSD-AP-MW-8	10/12/2021 10:25	DO	0.4	mg/L
APCO-GSD-AP-MW-8 10/12/2021 10:25 Did G.51 SU APCO-GSD-AP-MW-8 10/12/2021 10:25 Did G.51 SU APCO-GSD-AP-MW-8 10/12/2021 10:25 Did G.51 SU APCO-GSD-AP-MW-8 10/12/2021 10:25 Temperature 18.44 C APCO-GSD-AP-MW-8 10/12/2021 10:30 Conductivity 11.5 NTU APCO-GSD-AP-MW-8 10/12/2021 10:30 DO 0.36 mg/L APCO-GSD-AP-MW-8 10/12/2021 10:30 DO 0.36 mg/L APCO-GSD-AP-MW-8 10/12/2021 10:30 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:30 Depth to Water Detail 18.45 C APCO-GSD-AP-MW-8 10/12/2021 10:30 Did Turbidity 11.75 NTU APCO-GSD-AP-MW-8 10/12/2021 10:30 Did Turbidity 11.75 NTU APCO-GSD-AP-MW-8 10/12/2021 10:30 Turbidity 11.75 NTU APCO-GSD-AP-MW-8 10/12/2021 10:35 Conductivity 421.59 uS/cm APCO-GSD-AP-MW-8 10/12/2021 10:35 DO 0.32 mg/L APCO-GSD-AP-MW-8 10/12/2021 10:35 Do 0.32 mg/L APCO-GSD-AP-MW-8 10/12/2021 10:35 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:35 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:35 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:35 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:35 Turbidity 9.11 NTU APCO-GSD-AP-MW-8 10/12/2021 10:35 Turbidity 9.11 NTU APCO-GSD-AP-MW-8 10/12/2021 10:35 Turbidity 9.11 NTU APCO-GSD-AP-MW-8 10/12/2021 10:40 Do 0.29 mg/L APCO-GSD-AP-MW-8 10/12/2021 10:40 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:40 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:40 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:40 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:40 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:40 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:45 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:45 Depth to Water Deta	APCO-GSD-AP-MW-8	10/12/2021 10:25	Depth to Water Detail	11.82	ft
APCO-GSD-AP-MW-8 10/12/2021 10:25 Temperature 18.44 C APCO-GSD-AP-MW-8 10/12/2021 10:25 Turbidity 11.5 NTU APCO-GSD-AP-MW-8 10/12/2021 10:30 DO 0.36 mg/L APCO-GSD-AP-MW-8 10/12/2021 10:30 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:30 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:30 Depth to Water Detail APCO-GSD-AP-MW-8 10/12/2021 10:30 Temperature 18.45 C APCO-GSD-AP-MW-8 10/12/2021 10:35 Conductivity 11.75 NTU APCO-GSD-AP-MW-8 10/12/2021 10:35 Do 0.32 mg/L APCO-GSD-AP-MW-8 10/12/2021 10:35 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:35 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:35 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:35 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:35 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:35 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:35 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:35 Temperature 18.41 C APCO-GSD-AP-MW-8 10/12/2021 10:35 Temperature 18.41 C APCO-GSD-AP-MW-8 10/12/2021 10:35 Temperature 18.41 C APCO-GSD-AP-MW-8 10/12/2021 10:40 Conductivity 432.5 uS/cm APCO-GSD-AP-MW-8 10/12/2021 10:40 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:40 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:40 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:40 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:40 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:40 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:40 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:45 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:45 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/202	APCO-GSD-AP-MW-8	10/12/2021 10:25	Oxidation Reduction Potention	71.01	mv
APCO-GSD-AP-MW-8 10/12/2021 10:25 Turbidity APCO-GSD-AP-MW-8 10/12/2021 10:30 Conductivity 411.62 uS/cm APCO-GSD-AP-MW-8 10/12/2021 10:30 DO 0.36 mg/L APCO-GSD-AP-MW-8 10/12/2021 10:30 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:30 PH 6.55 SU APCO-GSD-AP-MW-8 10/12/2021 10:30 PH 6.55 SU APCO-GSD-AP-MW-8 10/12/2021 10:30 PH 6.55 SU APCO-GSD-AP-MW-8 10/12/2021 10:30 Temperature 18.45 C APCO-GSD-AP-MW-8 10/12/2021 10:30 Turbidity 11.75 NTU APCO-GSD-AP-MW-8 10/12/2021 10:35 Do 0.32 mg/L APCO-GSD-AP-MW-8 10/12/2021 10:35 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:35 DFI 6.52 SU APCO-GSD-AP-MW-8 10/12/2021 10:35 DFI 6.52 SU APCO-GSD-AP-MW-8 10/12/2021 10:35 Turbidity 9.11 NTU APCO-GSD-AP-MW-8 10/12/2021 10:35 Turbidity 9.11 NTU APCO-GSD-AP-MW-8 10/12/2021 10:35 Turbidity 9.11 NTU APCO-GSD-AP-MW-8 10/12/2021 10:36 Turbidity 432.5 uS/cm APCO-GSD-AP-MW-8 10/12/2021 10:40 DO 0.29 mg/L APCO-GSD-AP-MW-8 10/12/2021 10:40 DFPH to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:40 DFPH to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:40 DFPH to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:40 DFPH to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:40 DFPH to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:40 DFPH to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:40 DFPH to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:40 DFPH to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:45 DPPH to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:45 DPPH to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:45 DPPH to Water	APCO-GSD-AP-MW-8	10/12/2021 10:25	рН	6.51	SU
APCO-GSD-AP-MW-8 10/12/2021 10:25 Turbidity APCO-GSD-AP-MW-8 10/12/2021 10:30 Conductivity 411.62 uS/cm APCO-GSD-AP-MW-8 10/12/2021 10:30 DO 0.36 mg/L APCO-GSD-AP-MW-8 10/12/2021 10:30 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:30 PH 6.55 SU APCO-GSD-AP-MW-8 10/12/2021 10:30 PH 6.55 SU APCO-GSD-AP-MW-8 10/12/2021 10:30 PH 6.55 SU APCO-GSD-AP-MW-8 10/12/2021 10:30 Temperature 18.45 C APCO-GSD-AP-MW-8 10/12/2021 10:30 Turbidity 11.75 NTU APCO-GSD-AP-MW-8 10/12/2021 10:35 Do 0.32 mg/L APCO-GSD-AP-MW-8 10/12/2021 10:35 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:35 DFI 6.52 SU APCO-GSD-AP-MW-8 10/12/2021 10:35 DFI 6.52 SU APCO-GSD-AP-MW-8 10/12/2021 10:35 Turbidity 9.11 NTU APCO-GSD-AP-MW-8 10/12/2021 10:35 Turbidity 9.11 NTU APCO-GSD-AP-MW-8 10/12/2021 10:35 Turbidity 9.11 NTU APCO-GSD-AP-MW-8 10/12/2021 10:36 Turbidity 432.5 uS/cm APCO-GSD-AP-MW-8 10/12/2021 10:40 DO 0.29 mg/L APCO-GSD-AP-MW-8 10/12/2021 10:40 DFPH to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:40 DFPH to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:40 DFPH to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:40 DFPH to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:40 DFPH to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:40 DFPH to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:40 DFPH to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:40 DFPH to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:45 DPPH to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:45 DPPH to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:45 DPPH to Water	APCO-GSD-AP-MW-8	10/12/2021 10:25	Temperature	18.44	С
APCO-GSD-AP-MW-8 APCO-G	APCO-GSD-AP-MW-8				
APCO-GSD-AP-MW-8 APCO-GSD-AP-			-		
APCO-GSD-AP-MW-8 APCO-GSD-AP-	APCO-GSD-AP-MW-8			0.36	mg/L
APCO-GSD-AP-MW-8 APCO-G	APCO-GSD-AP-MW-8				
APCO-GSD-AP-MW-8 APCO-GSD-AP-					
APCO-GSD-AP-MW-8 APCO-GSD-AP-	APCO-GSD-AP-MW-8				
APCO-GSD-AP-MW-8 APCO-GSD-AP-	APCO-GSD-AP-MW-8	10/12/2021 10:30	Temperature	18.45	С
APCO-GSD-AP-MW-8 APCO-G	APCO-GSD-AP-MW-8	10/12/2021 10:30	Turbidity		
APCO-GSD-AP-MW-8 APCO-G	APCO-GSD-AP-MW-8			421.59	uS/cm
APCO-GSD-AP-MW-8 APCO-GSD-AP-	APCO-GSD-AP-MW-8			0.32	mg/L
APCO-GSD-AP-MW-8 APCO-G	APCO-GSD-AP-MW-8	10/12/2021 10:35	Depth to Water Detail		
APCO-GSD-AP-MW-8 APCO-G	APCO-GSD-AP-MW-8			62.27	mv
APCO-GSD-AP-MW-8 APCO-G	APCO-GSD-AP-MW-8	10/12/2021 10:35	рН	6.52	SU
APCO-GSD-AP-MW-8 APCO-G	APCO-GSD-AP-MW-8				
APCO-GSD-AP-MW-8 APCO-G	APCO-GSD-AP-MW-8	10/12/2021 10:35	Turbidity	9.11	NTU
APCO-GSD-AP-MW-8 APCO-GSD-AP-	APCO-GSD-AP-MW-8	10/12/2021 10:40	Conductivity	432.5	uS/cm
APCO-GSD-AP-MW-8	APCO-GSD-AP-MW-8	10/12/2021 10:40	DO	0.29	mg/L
APCO-GSD-AP-MW-8 APCO-G	APCO-GSD-AP-MW-8	10/12/2021 10:40	Depth to Water Detail		
APCO-GSD-AP-MW-8	APCO-GSD-AP-MW-8	10/12/2021 10:40	Oxidation Reduction Potention	55.66	mv
APCO-GSD-AP-MW-8	APCO-GSD-AP-MW-8	10/12/2021 10:40	рН	6.57	SU
APCO-GSD-AP-MW-8	APCO-GSD-AP-MW-8	10/12/2021 10:40	Temperature	18.4	С
APCO-GSD-AP-MW-8	APCO-GSD-AP-MW-8			7.28	NTU
APCO-GSD-AP-MW-8 10/12/2021 10:45 DO 0.28 mg/L APCO-GSD-AP-MW-8 10/12/2021 10:45 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:45 Oxidation Reduction Potention 50.05 mv APCO-GSD-AP-MW-8 10/12/2021 10:45 pH 6.61 SU APCO-GSD-AP-MW-8 10/12/2021 10:45 Temperature 18.42 C	APCO-GSD-AP-MW-8	10/12/2021 10:45	Conductivity		
APCO-GSD-AP-MW-8 10/12/2021 10:45 Depth to Water Detail 11.82 ft APCO-GSD-AP-MW-8 10/12/2021 10:45 Oxidation Reduction Potention 50.05 mv APCO-GSD-AP-MW-8 10/12/2021 10:45 pH 6.61 SU APCO-GSD-AP-MW-8 10/12/2021 10:45 Temperature 18.42 C	APCO-GSD-AP-MW-8		-		
APCO-GSD-AP-MW-8 10/12/2021 10:45 Oxidation Reduction Potention 50.05 mv APCO-GSD-AP-MW-8 10/12/2021 10:45 pH 6.61 SU APCO-GSD-AP-MW-8 10/12/2021 10:45 Temperature 18.42 C	APCO-GSD-AP-MW-8	10/12/2021 10:45	Depth to Water Detail		
APCO-GSD-AP-MW-8 10/12/2021 10:45 pH 6.61 SU APCO-GSD-AP-MW-8 10/12/2021 10:45 Temperature 18.42 C	APCO-GSD-AP-MW-8				
APCO-GSD-AP-MW-8 10/12/2021 10:45 Temperature 18.42 C	APCO-GSD-AP-MW-8				
	APCO-GSD-AP-MW-8	10/12/2021 10:45	Temperature	18.42	С
	APCO-GSD-AP-MW-8	10/12/2021 10:45	Turbidity		

	Plant G	adsden Ash Pond		
WELL ID	TIME OF READING	DESCRIPTION	VALUE	UNIT
APCO-GSD-AP-MW-9	10/12/2021 11:21	Conductivity	232.51	uS/cm
APCO-GSD-AP-MW-9	10/12/2021 11:21		0.27	mg/L
APCO-GSD-AP-MW-9	10/12/2021 11:21	Depth to Water Detail	12.98	ft
APCO-GSD-AP-MW-9		Oxidation Reduction Potention	63.3	mv
APCO-GSD-AP-MW-9	10/12/2021 11:21	рН	6.48	SU
APCO-GSD-AP-MW-9	10/12/2021 11:21	Temperature	18.96	С
APCO-GSD-AP-MW-9	10/12/2021 11:21		11.21	NTU
APCO-GSD-AP-MW-9	10/12/2021 11:26		249.84	
APCO-GSD-AP-MW-9	10/12/2021 11:26	DO	0.24	mg/L
APCO-GSD-AP-MW-9	10/12/2021 11:26	Depth to Water Detail	12.98	
APCO-GSD-AP-MW-9		Oxidation Reduction Potention	60.95	
APCO-GSD-AP-MW-9	10/12/2021 11:26	рН	6.57	SU
APCO-GSD-AP-MW-9	10/12/2021 11:26		18.98	
APCO-GSD-AP-MW-9	10/12/2021 11:26		4.77	NTU
APCO-GSD-AP-MW-9	10/12/2021 11:31		276.62	
APCO-GSD-AP-MW-9	10/12/2021 11:31	·		mg/L
APCO-GSD-AP-MW-9		Depth to Water Detail	12.98	
APCO-GSD-AP-MW-9		Oxidation Reduction Potention	62.83	
APCO-GSD-AP-MW-9	10/12/2021 11:31	I .	6.61	
APCO-GSD-AP-MW-9	10/12/2021 11:31		18.97	
APCO-GSD-AP-MW-9	10/12/2021 11:31			NTU
APCO-GSD-AP-MW-9	10/12/2021 11:36			uS/cm
APCO-GSD-AP-MW-9	10/12/2021 11:36			mg/L
APCO-GSD-AP-MW-9		Depth to Water Detail	12.98	
APCO-GSD-AP-MW-9		Oxidation Reduction Potention	58.08	
APCO-GSD-AP-MW-9	10/12/2021 11:36		6.73	
APCO-GSD-AP-MW-9	10/12/2021 11:36	*	18.91	
APCO-GSD-AP-MW-9	10/12/2021 11:36			NTU
APCO-GSD-AP-MW-9	10/12/2021 11:41	-		uS/cm
APCO-GSD-AP-MW-9	10/12/2021 11:41			mg/L
APCO-GSD-AP-MW-9		Depth to Water Detail	12.98	
APCO-GSD-AP-MW-9		Oxidation Reduction Potention	53.68	
APCO-GSD-AP-MW-9	10/12/2021 11:41	I .	6.81	
APCO-GSD-AP-MW-9	10/12/2021 11:41		18.95	
APCO-GSD-AP-MW-9	10/12/2021 11:41	-		NTU
APCO-GSD-AP-MW-9	10/12/2021 11:46		307.64	
APCO-GSD-AP-MW-9	10/12/2021 11:46		_	mg/L
APCO-GSD-AP-MW-9		Depth to Water Detail	12.98	
APCO-GSD-AP-MW-9		Oxidation Reduction Potention	51.26	
APCO-GSD-AP-MW-9	10/12/2021 11:46		6.86	
APCO-GSD-AP-MW-9	10/12/2021 11:46	*	18.96	
APCO-GSD-AP-MW-9	10/12/2021 11:46			NTU
APCO-GSD-AP-MW-9	10/12/2021 11:40	· · · · · · · · · · · · · · · · · · ·		uS/cm
APCO-GSD-AP-MW-9	10/12/2021 11:51			mg/L
APCO-GSD-AP-MW-9		Depth to Water Detail	12.98	
APCO-GSD-AP-MW-9		Oxidation Reduction Potention	49.19	
APCO-GSD-AP-MW-9	10/12/2021 11:51			SU
APCO-GSD-AP-MW-9	10/12/2021 11:51	1	18.97	
APCO-GSD-AP-MW-9	10/12/2021 11:51	•		NTU
AFCU-USD-AP-MW-9	10/12/2021 11:31	1 urbiarty	2.23	INIU

Alabama Power Company Plant Gadsden Ash Pond					
WELL ID	TIME OF READING	DESCRIPTION	VALUE	UNIT	
APCO-GSD-AP-MW-11	10/12/2021 12:37	Conductivity	583.42	uS/cm	
APCO-GSD-AP-MW-11	10/12/2021 12:37	DO	0.34	mg/L	
APCO-GSD-AP-MW-11	10/12/2021 12:37	Depth to Water Detail	9.74	ft	
APCO-GSD-AP-MW-11	10/12/2021 12:37	Oxidation Reduction Potention	45	mv	
APCO-GSD-AP-MW-11	10/12/2021 12:37	рН	6.58	SU	
APCO-GSD-AP-MW-11	10/12/2021 12:37	Temperature	19.99	С	
APCO-GSD-AP-MW-11	10/12/2021 12:37	Turbidity	14.2	NTU	
APCO-GSD-AP-MW-11	10/12/2021 12:42	Conductivity	576.48	uS/cm	
APCO-GSD-AP-MW-11	10/12/2021 12:42	DO	0.29	mg/L	
APCO-GSD-AP-MW-11	10/12/2021 12:42	Depth to Water Detail	9.79	ft	
APCO-GSD-AP-MW-11	10/12/2021 12:42	Oxidation Reduction Potention	32.88	mv	
APCO-GSD-AP-MW-11	10/12/2021 12:42	pH	6.65	SU	
APCO-GSD-AP-MW-11	10/12/2021 12:42	Temperature	19.98	С	
APCO-GSD-AP-MW-11	10/12/2021 12:42	Turbidity	10.99	NTU	
APCO-GSD-AP-MW-11	10/12/2021 12:47	Conductivity	577.63	uS/cm	
APCO-GSD-AP-MW-11	10/12/2021 12:47	DO	0.24	mg/L	
APCO-GSD-AP-MW-11	10/12/2021 12:47	Depth to Water Detail	9.79	ft	
APCO-GSD-AP-MW-11	10/12/2021 12:47	Oxidation Reduction Potention	24.77	mv	
APCO-GSD-AP-MW-11	10/12/2021 12:47	рН	6.65	SU	
APCO-GSD-AP-MW-11	10/12/2021 12:47	Temperature	19.97	С	
APCO-GSD-AP-MW-11	10/12/2021 12:47	Turbidity	7.04	NTU	
APCO-GSD-AP-MW-11	10/12/2021 12:52		577.54	uS/cm	
APCO-GSD-AP-MW-11	10/12/2021 12:52	DO	0.21	mg/L	
APCO-GSD-AP-MW-11	10/12/2021 12:52	Depth to Water Detail	9.79		
APCO-GSD-AP-MW-11	10/12/2021 12:52	Oxidation Reduction Potention	18.62	mv	

6.66 SU

7.01 NTU

19.95 C

10/12/2021 12:52 pH

10/12/2021 12:52 Temperature 10/12/2021 12:52 Turbidity

APCO-GSD-AP-MW-11

APCO-GSD-AP-MW-11 APCO-GSD-AP-MW-11

	Plant G	adsden Ash Pond		
WELL ID	TIME OF READING	DESCRIPTION	VALUE	UNIT
APCO-GSD-AP-MW-2	10/11/2021 13:46	Conductivity	506.85	uS/cm
APCO-GSD-AP-MW-2	10/11/2021 13:46			mg/L
APCO-GSD-AP-MW-2		Depth to Water Detail	12.57	ft
APCO-GSD-AP-MW-2	10/11/2021 13:46	Oxidation Reduction Potention	-40.48	mv
APCO-GSD-AP-MW-2	10/11/2021 13:46		6.56	SU
APCO-GSD-AP-MW-2	10/11/2021 13:46	Temperature	21.23	C
APCO-GSD-AP-MW-2	10/11/2021 13:46			NTU
APCO-GSD-AP-MW-2	10/11/2021 13:51			uS/cm
APCO-GSD-AP-MW-2	10/11/2021 13:51			mg/L
APCO-GSD-AP-MW-2		Depth to Water Detail	12.57	
APCO-GSD-AP-MW-2		Oxidation Reduction Potention	-39.98	
APCO-GSD-AP-MW-2	10/11/2021 13:51		6.56	
APCO-GSD-AP-MW-2	10/11/2021 13:51		21.2	
APCO-GSD-AP-MW-2	10/11/2021 13:51			NTU
APCO-GSD-AP-MW-2	10/11/2021 13:56			uS/cm
APCO-GSD-AP-MW-2	10/11/2021 13:56			mg/L
APCO-GSD-AP-MW-2		Depth to Water Detail	12.57	
APCO-GSD-AP-MW-2		Oxidation Reduction Potention	-40.02	
APCO-GSD-AP-MW-2	10/11/2021 13:56		6.54	
APCO-GSD-AP-MW-2	10/11/2021 13:56		21.19	
APCO-GSD-AP-MW-2	10/11/2021 13:56	,		NTU
APCO-GSD-AP-MW-2	10/11/2021 14:01		531.05	
APCO-GSD-AP-MW-2	10/11/2021 14:01			mg/L
APCO-GSD-AP-MW-2		Depth to Water Detail	12.57	
APCO-GSD-AP-MW-2	10/11/2021 14:01	Oxidation Reduction Potention	-40.01	mv
APCO-GSD-AP-MW-2	10/11/2021 14:01	*	6.54	
APCO-GSD-AP-MW-2	10/11/2021 14:01		21.37	
APCO-GSD-AP-MW-2	10/11/2021 14:01			NTU
APCO-GSD-AP-MW-2	10/11/2021 14:06	•		uS/cm
APCO-GSD-AP-MW-2	10/11/2021 14:06			mg/L
APCO-GSD-AP-MW-2		Depth to Water Detail	12.57	
APCO-GSD-AP-MW-2		Oxidation Reduction Potention	-41.18	
APCO-GSD-AP-MW-2	10/11/2021 14:06		6.41	
APCO-GSD-AP-MW-2	10/11/2021 14:06	-	20.96	
APCO-GSD-AP-MW-2	10/11/2021 14:06			NTU
APCO-GSD-AP-MW-2	10/11/2021 14:11		528.59	
APCO-GSD-AP-MW-2	10/11/2021 14:11			mg/L
APCO-GSD-AP-MW-2		Depth to Water Detail	12.57	
APCO-GSD-AP-MW-2		Oxidation Reduction Potention	-42.41	
APCO-GSD-AP-MW-2	10/11/2021 14:11	1	6.47	
APCO-GSD-AP-MW-2	10/11/2021 14:11	^	21.11	
APCO-GSD-AP-MW-2	10/11/2021 14:11			NTU
APCO-GSD-AP-MW-2	10/11/2021 14:16			uS/cm
APCO-GSD-AP-MW-2	10/11/2021 14:16			mg/L
APCO-GSD-AP-MW-2		Depth to Water Detail	12.57	
APCO-GSD-AP-MW-2		Oxidation Reduction Potention	-43.23	
APCO-GSD-AP-MW-2	10/11/2021 14:16	Ā	6.51	
APCO-GSD-AP-MW-2	10/11/2021 14:16	-	21.18	
APCO-GSD-AP-MW-2	10/11/2021 14:16			NTU
APCO-GSD-AP-MW-2	10/11/2021 14:21	*		uS/cm
APCO-GSD-AP-MW-2	10/11/2021 14:21			mg/L
APCO-GSD-AP-MW-2		Depth to Water Detail	12.57	
APCO-GSD-AP-MW-2	10/11/2021 14:21	Oxidation Reduction Potention	-43.9	mv

	Plant G	adsden Ash Pond		
WELL ID	TIME OF READING	DESCRIPTION	VALUE	UNIT
APCO-GSD-AP-MW-2	10/11/2021 14:21		6.49	SU
APCO-GSD-AP-MW-2	10/11/2021 14:21		21.15	C
APCO-GSD-AP-MW-2	10/11/2021 14:21	Turbidity	23.7	NTU
APCO-GSD-AP-MW-2	10/11/2021 14:26	Conductivity	527.88	uS/cm
APCO-GSD-AP-MW-2	10/11/2021 14:26		0.16	mg/L
APCO-GSD-AP-MW-2		Depth to Water Detail	12.57	ft
APCO-GSD-AP-MW-2		Oxidation Reduction Potention	-44.53	mv
APCO-GSD-AP-MW-2	10/11/2021 14:26	pH	6.52	
APCO-GSD-AP-MW-2	10/11/2021 14:26	Temperature	21.11	С
APCO-GSD-AP-MW-2	10/11/2021 14:26	Turbidity	14.5	NTU
APCO-GSD-AP-MW-2	10/11/2021 14:31		526.89	uS/cm
APCO-GSD-AP-MW-2	10/11/2021 14:31		0.16	mg/L
APCO-GSD-AP-MW-2		Depth to Water Detail	12.57	
APCO-GSD-AP-MW-2	10/11/2021 14:31	Oxidation Reduction Potention	-44.99	mv
APCO-GSD-AP-MW-2	10/11/2021 14:31		6.63	SU
APCO-GSD-AP-MW-2	10/11/2021 14:31	Temperature	21.05	
APCO-GSD-AP-MW-2	10/11/2021 14:31	Turbidity	12.49	NTU
APCO-GSD-AP-MW-2	10/11/2021 14:36		525.47	uS/cm
APCO-GSD-AP-MW-2	10/11/2021 14:36			mg/L
APCO-GSD-AP-MW-2		Depth to Water Detail	12.57	
APCO-GSD-AP-MW-2	10/11/2021 14:36	Oxidation Reduction Potention	-45.69	mv
APCO-GSD-AP-MW-2	10/11/2021 14:36		6.56	
APCO-GSD-AP-MW-2	10/11/2021 14:36		21.26	
APCO-GSD-AP-MW-2	10/11/2021 14:36		10.34	
APCO-GSD-AP-MW-2	10/11/2021 14:41		526.78	uS/cm
APCO-GSD-AP-MW-2	10/11/2021 14:41		0.16	mg/L
APCO-GSD-AP-MW-2		Depth to Water Detail	12.57	
APCO-GSD-AP-MW-2	10/11/2021 14:41	Oxidation Reduction Potention	-45.95	
APCO-GSD-AP-MW-2	10/11/2021 14:41			SU
APCO-GSD-AP-MW-2	10/11/2021 14:41		21.25	
APCO-GSD-AP-MW-2	10/11/2021 14:41			NTU
APCO-GSD-AP-MW-2	10/11/2021 14:46		524.27	
APCO-GSD-AP-MW-2	10/11/2021 14:46			mg/L
APCO-GSD-AP-MW-2		Depth to Water Detail	12.57	ft
APCO-GSD-AP-MW-2		Oxidation Reduction Potention	-46.1	
APCO-GSD-AP-MW-2	10/11/2021 14:46		6.59	
APCO-GSD-AP-MW-2	10/11/2021 14:46		21.2	
APCO-GSD-AP-MW-2	10/11/2021 14:46	Turbidity	6.7	NTU

	Plant G	adsden Ash Pond		
WELL ID	TIME OF READING	DESCRIPTION	VALUE	UNIT
APCO-GSD-AP-MW-2VB	10/12/2021 8:15	Conductivity	1155.14	uS/cm
APCO-GSD-AP-MW-2VB	10/12/2021 8:15			mg/L
APCO-GSD-AP-MW-2VB	10/12/2021 8:15	Depth to Water Detail	13.5	ft
APCO-GSD-AP-MW-2VB	10/12/2021 8:15	Oxidation Reduction Potention	-185.58	mv
APCO-GSD-AP-MW-2VB	10/12/2021 8:15	рН	8.24	SU
APCO-GSD-AP-MW-2VB	10/12/2021 8:15	Temperature	19.02	С
APCO-GSD-AP-MW-2VB	10/12/2021 8:15	Turbidity	12.5	NTU
APCO-GSD-AP-MW-2VB	10/12/2021 8:20		1132.78	uS/cm
APCO-GSD-AP-MW-2VB	10/12/2021 8:20	DO	0.12	mg/L
APCO-GSD-AP-MW-2VB		Depth to Water Detail	15.88	
APCO-GSD-AP-MW-2VB	10/12/2021 8:20	Oxidation Reduction Potention	-192.35	mv
APCO-GSD-AP-MW-2VB	10/12/2021 8:20	рН	8.28	
APCO-GSD-AP-MW-2VB	10/12/2021 8:20		19	C
APCO-GSD-AP-MW-2VB	10/12/2021 8:20	Turbidity	13.35	NTU
APCO-GSD-AP-MW-2VB	10/12/2021 8:25	Conductivity	1124.18	uS/cm
APCO-GSD-AP-MW-2VB	10/12/2021 8:25	DO	0.16	mg/L
APCO-GSD-AP-MW-2VB	10/12/2021 8:25	Depth to Water Detail	18.76	ft
APCO-GSD-AP-MW-2VB	10/12/2021 8:25	Oxidation Reduction Potention	-193.29	mv
APCO-GSD-AP-MW-2VB	10/12/2021 8:25	рН	8.29	SU
APCO-GSD-AP-MW-2VB	10/12/2021 8:25	Temperature	18.99	С
APCO-GSD-AP-MW-2VB	10/12/2021 8:25	Turbidity	12.7	NTU
APCO-GSD-AP-MW-2VB	10/12/2021 8:30	Conductivity	1119.02	uS/cm
APCO-GSD-AP-MW-2VB	10/12/2021 8:30		0.19	mg/L
APCO-GSD-AP-MW-2VB	10/12/2021 8:30	Depth to Water Detail	20.92	
APCO-GSD-AP-MW-2VB		Oxidation Reduction Potention	-194.97	mv
APCO-GSD-AP-MW-2VB	10/12/2021 8:30	рН	8.32	SU
APCO-GSD-AP-MW-2VB	10/12/2021 8:30		18.97	С
APCO-GSD-AP-MW-2VB	10/12/2021 8:30		10.96	NTU
APCO-GSD-AP-MW-2VB	10/12/2021 8:35	Conductivity	1098.7	uS/cm
APCO-GSD-AP-MW-2VB	10/12/2021 8:35	DO	0.22	mg/L
APCO-GSD-AP-MW-2VB	10/12/2021 8:35	Depth to Water Detail	23.7	
APCO-GSD-AP-MW-2VB		Oxidation Reduction Potention	-196.6	mv
APCO-GSD-AP-MW-2VB	10/12/2021 8:35	рН	8.33	SU
APCO-GSD-AP-MW-2VB	10/12/2021 8:35		18.88	С
APCO-GSD-AP-MW-2VB	10/12/2021 8:35		8.39	NTU
APCO-GSD-AP-MW-2VB	10/12/2021 8:40		1070.89	uS/cm
APCO-GSD-AP-MW-2VB	10/12/2021 8:40	DO	0.24	mg/L
APCO-GSD-AP-MW-2VB		Depth to Water Detail	26.13	
APCO-GSD-AP-MW-2VB	10/12/2021 8:40	Oxidation Reduction Potention	-197.01	mv
APCO-GSD-AP-MW-2VB	10/12/2021 8:40	рН	8.37	SU
APCO-GSD-AP-MW-2VB	10/12/2021 8:40	Temperature	18.79	С
APCO-GSD-AP-MW-2VB	10/12/2021 8:40			NTU
APCO-GSD-AP-MW-2VB	10/12/2021 8:45	·	1055.88	uS/cm
APCO-GSD-AP-MW-2VB	10/12/2021 8:45			mg/L
APCO-GSD-AP-MW-2VB		Depth to Water Detail	28.3	
APCO-GSD-AP-MW-2VB		Oxidation Reduction Potention	-197.85	
APCO-GSD-AP-MW-2VB	10/12/2021 8:45		8.37	
APCO-GSD-AP-MW-2VB	10/12/2021 8:45	-	18.74	
APCO-GSD-AP-MW-2VB	10/12/2021 8:45	-		NTU
APCO-GSD-AP-MW-2VB	10/12/2021 8:50	-	1042.84	
APCO-GSD-AP-MW-2VB	10/12/2021 8:50	·		mg/L
APCO-GSD-AP-MW-2VB		Depth to Water Detail	30.75	
APCO-GSD-AP-MW-2VB		Oxidation Reduction Potention	-198.47	

	Plant Ga	adsden Ash Pond		
WELL ID	TIME OF READING	DESCRIPTION	VALUE	UNIT
APCO-GSD-AP-MW-2VB	10/12/2021 8:50	рН	8.4	SU
APCO-GSD-AP-MW-2VB	10/12/2021 8:50	Temperature	18.69	C
APCO-GSD-AP-MW-2VB	10/12/2021 8:50	Turbidity	5.44	NTU
APCO-GSD-AP-MW-2VB	10/12/2021 8:55	Conductivity	1025.1	uS/cm
APCO-GSD-AP-MW-2VB	10/12/2021 8:55	DO	0.28	mg/L
APCO-GSD-AP-MW-2VB	10/12/2021 8:55	Depth to Water Detail	32.58	
APCO-GSD-AP-MW-2VB		Oxidation Reduction Potention	-198.86	mv
APCO-GSD-AP-MW-2VB	10/12/2021 8:55	рН	8.43	SU
APCO-GSD-AP-MW-2VB	10/12/2021 8:55	Temperature	18.69	С
APCO-GSD-AP-MW-2VB	10/12/2021 8:55	•	5.38	NTU
PCO-GSD-AP-MW-2VB	10/12/2021 9:00		963.46	
PCO-GSD-AP-MW-2VB	10/12/2021 9:00		0.27	mg/L
PCO-GSD-AP-MW-2VB		Depth to Water Detail	34.7	
APCO-GSD-AP-MW-2VB		Oxidation Reduction Potention	-196.8	
APCO-GSD-AP-MW-2VB	10/12/2021 9:00		8.44	
APCO-GSD-AP-MW-2VB	10/12/2021 9:00		18.58	
APCO-GSD-AP-MW-2VB	10/12/2021 9:00			NTU
APCO-GSD-AP-MW-2VB	10/12/2021 9:05		936.54	
PCO-GSD-AP-MW-2VB	10/12/2021 9:05			mg/L
PCO-GSD-AP-MW-2VB		Depth to Water Detail	36.89	
PCO-GSD-AP-MW-2VB		Oxidation Reduction Potention	-194.29	
PCO-GSD-AP-MW-2VB	10/12/2021 9:05		8.44	
PCO-GSD-AP-MW-2VB	10/12/2021 9:05	*	18.58	
PCO-GSD-AP-MW-2VB	10/12/2021 9:05			NTU
PCO-GSD-AP-MW-2VB	10/12/2021 9:10	•	925.16	
PCO-GSD-AP-MW-2VB	10/12/2021 9:10	· · · · · · · · · · · · · · · · · · ·		mg/L
PCO-GSD-AP-MW-2VB		Depth to Water Detail	38.82	
APCO-GSD-AP-MW-2VB		Oxidation Reduction Potention	-192.84	
PCO-GSD-AP-MW-2VB	10/12/2021 9:10		8.46	
APCO-GSD-AP-MW-2VB	10/12/2021 9:10		18.59	
APCO-GSD-AP-MW-2VB	10/12/2021 9:10	•		NTU
	10/12/2021 9:15		924.51	
APCO-GSD-AP-MW-2VB APCO-GSD-AP-MW-2VB	10/12/2021 9:15			
PCO-GSD-AP-MW-2VB		Depth to Water Detail	38.91	mg/L
APCO-GSD-AP-MW-2VB		Oxidation Reduction Potention	-185.9	
PCO-GSD-AP-MW-2VB	10/12/2021 9:13		8.51	
		*	19.59	
PCO-GSD-AP-MW-2VB	10/12/2021 9:15			NTU
PCO-GSD-AP-MW-2VB	10/12/2021 9:15 10/12/2021 9:20		927.15	
PCO-GSD-AP-MW-2VB	10/12/2021 9:20	•		
PCO-GSD-AP-MW-2VB				mg/L
PCO-GSD-AP-MW-2VB		Depth to Water Detail	38.94	
PCO-GSD-AP-MW-2VB		Oxidation Reduction Potention	-186.2	
PCO-GSD-AP-MW-2VB	10/12/2021 9:20			SU
PCO-GSD-AP-MW-2VB	10/12/2021 9:20		19.73	
PCO-GSD-AP-MW-2VB	10/12/2021 9:20			NTU
PCO-GSD-AP-MW-2VB	10/12/2021 9:25		901.38	
APCO-GSD-AP-MW-2VB	10/12/2021 9:25			mg/L
APCO-GSD-AP-MW-2VB		Depth to Water Detail	38.95	
APCO-GSD-AP-MW-2VB		Oxidation Reduction Potention	-195.47	
APCO-GSD-AP-MW-2VB	10/12/2021 9:25	*	8.62	
APCO-GSD-AP-MW-2VB	10/12/2021 9:25		19.31	
APCO-GSD-AP-MW-2VB	10/12/2021 9:25	Turbidity	4.01	NTU

	Plant G	adsden Ash Pond		
WELL ID	TIME OF READING	DESCRIPTION	VALUE	UNIT
APCO-GSD-AP-MW-18H	10/12/2021 10:29	Conductivity	49.03	uS/cm
APCO-GSD-AP-MW-18H	10/12/2021 10:29		8.02	mg/L
APCO-GSD-AP-MW-18H		Depth to Water Detail	10.51	ft
APCO-GSD-AP-MW-18H	10/12/2021 10:29	Oxidation Reduction Potention	133.6	mv
APCO-GSD-AP-MW-18H	10/12/2021 10:29	рН	4.89	SU
APCO-GSD-AP-MW-18H	10/12/2021 10:29	Temperature	17.6	C
APCO-GSD-AP-MW-18H	10/12/2021 10:29	·		NTU
APCO-GSD-AP-MW-18H	10/12/2021 10:34			uS/cm
APCO-GSD-AP-MW-18H	10/12/2021 10:34			mg/L
APCO-GSD-AP-MW-18H		Depth to Water Detail	10.51	
APCO-GSD-AP-MW-18H		Oxidation Reduction Potention	152.44	
APCO-GSD-AP-MW-18H	10/12/2021 10:34		4.77	
APCO-GSD-AP-MW-18H	10/12/2021 10:34		17.56	
APCO-GSD-AP-MW-18H	10/12/2021 10:34	•		NTU
APCO-GSD-AP-MW-18H	10/12/2021 10:39			uS/cm
APCO-GSD-AP-MW-18H	10/12/2021 10:39			mg/L
APCO-GSD-AP-MW-18H		Depth to Water Detail	10.51	
APCO-GSD-AP-MW-18H		Oxidation Reduction Potention	156.21	
APCO-GSD-AP-MW-18H	10/12/2021 10:39		4.79	
APCO-GSD-AP-MW-18H	10/12/2021 10:39		17.5	
APCO-GSD-AP-MW-18H	10/12/2021 10:39		2.59	NTU
APCO-GSD-AP-MW-18H	10/12/2021 10:44	•		uS/cm
APCO-GSD-AP-MW-18H	10/12/2021 10:44		7.62	mg/L
APCO-GSD-AP-MW-18H		Depth to Water Detail	10.51	
APCO-GSD-AP-MW-18H		Oxidation Reduction Potention	159.31	
APCO-GSD-AP-MW-18H	10/12/2021 10:44		4.93	SU
APCO-GSD-AP-MW-18H	10/12/2021 10:44		17.54	
APCO-GSD-AP-MW-18H	10/12/2021 10:44	-		NTU
APCO-GSD-AP-MW-18H	10/12/2021 10:49	•		uS/cm
APCO-GSD-AP-MW-18H	10/12/2021 10:49			mg/L
APCO-GSD-AP-MW-18H		Depth to Water Detail	10.51	
APCO-GSD-AP-MW-18H		Oxidation Reduction Potention	159.72	
APCO-GSD-AP-MW-18H	10/12/2021 10:49	*	4.99	
APCO-GSD-AP-MW-18H	10/12/2021 10:49	_	17.54	
APCO-GSD-AP-MW-18H	10/12/2021 10:49			NTU
APCO-GSD-AP-MW-18H	10/12/2021 10:54		104.04	
APCO-GSD-AP-MW-18H	10/12/2021 10:54			mg/L
APCO-GSD-AP-MW-18H		Depth to Water Detail	10.51	
APCO-GSD-AP-MW-18H		Oxidation Reduction Potention	161.52	
APCO-GSD-AP-MW-18H	10/12/2021 10:54			SU
APCO-GSD-AP-MW-18H	10/12/2021 10:54	1	17.55	
APCO-GSD-AP-MW-18H	10/12/2021 10:54			NTU
APCO-GSD-AP-MW-18H	10/12/2021 10:59			uS/cm
APCO-GSD-AP-MW-18H	10/12/2021 10:59			mg/L
APCO-GSD-AP-MW-18H		Depth to Water Detail	10.51	
APCO-GSD-AP-MW-18H		Oxidation Reduction Potention	162.34	
APCO-GSD-AP-MW-18H	10/12/2021 10:59		5.05	
APCO-GSD-AP-MW-18H	10/12/2021 10:59		17.56	
APCO-GSD-AP-MW-18H	10/12/2021 10:59	·		NTU
APCO-GSD-AP-MW-18H	10/12/2021 11:04			uS/cm
APCO-GSD-AP-MW-18H	10/12/2021 11:04			mg/L
APCO-GSD-AP-MW-18H		Depth to Water Detail	10.51	
APCO-GSD-AP-MW-18H	10/12/2021 11:04	Oxidation Reduction Potention	161.49	mv

Alabama Power Company Plant Gadsden Ash Pond				
WELL ID	TIME OF READING	DESCRIPTION	VALUE	UNIT
APCO-GSD-AP-MW-18H	10/12/2021 11:04	рН	5.08	SU
APCO-GSD-AP-MW-18H	10/12/2021 11:04	Temperature	17.52	С
APCO-GSD-AP-MW-18H	10/12/2021 11:04	Turbidity	1.61	NTU
APCO-GSD-AP-MW-18H	10/12/2021 11:09	Conductivity	112.89	uS/cm
APCO-GSD-AP-MW-18H	10/12/2021 11:09	DO	7.3	mg/L
APCO-GSD-AP-MW-18H	10/12/2021 11:09	Depth to Water Detail	10.51	ft
APCO-GSD-AP-MW-18H	10/12/2021 11:09	Oxidation Reduction Potention	160.22	mv
APCO-GSD-AP-MW-18H	10/12/2021 11:09	рН	5.14	SU
APCO-GSD-AP-MW-18H	10/12/2021 11:09	Temperature	17.53	С
APCO-GSD-AP-MW-18H	10/12/2021 11:09	Turbidity	1.6	NTU
APCO-GSD-AP-MW-18H	10/12/2021 11:14	Conductivity	115.05	uS/cm
APCO-GSD-AP-MW-18H	10/12/2021 11:14	DO	7.35	mg/L
APCO-GSD-AP-MW-18H	10/12/2021 11:14	Depth to Water Detail	10.51	ft
APCO-GSD-AP-MW-18H	10/12/2021 11:14	Oxidation Reduction Potention	162.28	mv
APCO-GSD-AP-MW-18H	10/12/2021 11:14	рН	5.12	SU
APCO-GSD-AP-MW-18H	10/12/2021 11:14	Temperature	17.56	С
APCO-GSD-AP-MW-18H	10/12/2021 11:14	Turbidity	1.54	NTU

Alabama Power Company Plant Gadsden Ash Pond					
WELL ID	TIME OF READING	DESCRIPTION	VALUE	UNIT	
APCO-GSD-AP-MW-19H	10/11/2021 12:39	Conductivity	338.14	uS/cm	
APCO-GSD-AP-MW-19H	10/11/2021 12:39		0.45	mg/L	
APCO-GSD-AP-MW-19H	10/11/2021 12:39	Depth to Water Detail	4.23	ft	
APCO-GSD-AP-MW-19H		Oxidation Reduction Potention	-4.52	mv	
APCO-GSD-AP-MW-19H	10/11/2021 12:39	pН	6.39	SU	
APCO-GSD-AP-MW-19H	10/11/2021 12:39	Temperature	25.7	С	
APCO-GSD-AP-MW-19H	10/11/2021 12:39	Turbidity	15.4	NTU	
APCO-GSD-AP-MW-19H	10/11/2021 12:44	Conductivity	328.36	uS/cm	
APCO-GSD-AP-MW-19H	10/11/2021 12:44	DO	0.3	mg/L	
APCO-GSD-AP-MW-19H	10/11/2021 12:44	Depth to Water Detail	4.23	ft	
APCO-GSD-AP-MW-19H	10/11/2021 12:44	Oxidation Reduction Potention	8.93	mv	
APCO-GSD-AP-MW-19H	10/11/2021 12:44	pН	6.22	SU	
APCO-GSD-AP-MW-19H	10/11/2021 12:44	Temperature	22.96	С	
APCO-GSD-AP-MW-19H	10/11/2021 12:44	Turbidity	9.85	NTU	
APCO-GSD-AP-MW-19H	10/11/2021 12:49	Conductivity	321.32	uS/cm	
APCO-GSD-AP-MW-19H	10/11/2021 12:49	DO	0.28	mg/L	
APCO-GSD-AP-MW-19H	10/11/2021 12:49	Depth to Water Detail	4.23	ft	
APCO-GSD-AP-MW-19H	10/11/2021 12:49	Oxidation Reduction Potention	16.93	mv	
APCO-GSD-AP-MW-19H	10/11/2021 12:49	pН	6.11	SU	
APCO-GSD-AP-MW-19H	10/11/2021 12:49		24.12	С	
APCO-GSD-AP-MW-19H	10/11/2021 12:49	Turbidity	6.98	NTU	
APCO-GSD-AP-MW-19H	10/11/2021 12:54	Conductivity	315.23	uS/cm	
APCO-GSD-AP-MW-19H	10/11/2021 12:54	1	0.27	mg/L	
APCO-GSD-AP-MW-19H		Depth to Water Detail	4.23	ft	
APCO-GSD-AP-MW-19H	10/11/2021 12:54	Oxidation Reduction Potention	22	mv	
A DOOL OOD A DIAMETER	10/11/2021 12 54	**	6.00	CTT	

6.08 SU 24.19 C

7.48 NTU

10/11/2021 12:54 pH

10/11/2021 12:54 Temperature 10/11/2021 12:54 Turbidity

APCO-GSD-AP-MW-19H APCO-GSD-AP-MW-19H

APCO-GSD-AP-MW-19H

APCO-GSD-AP-MW-19H

Plant Gadsden Ash Pond						
WELL ID	TIME OF READING	DESCRIPTION	VALUE	UNIT		
APCO-GSD-AP-MW-22VB	10/11/2021 11:09		359.33	uS/cm		
APCO-GSD-AP-MW-22VB	10/11/2021 11:09		0.19	mg/L		
APCO-GSD-AP-MW-22VB		Depth to Water Detail	6.08	ft		
APCO-GSD-AP-MW-22VB	10/11/2021 11:09	Oxidation Reduction Potention	-137.27	mv		
APCO-GSD-AP-MW-22VB	10/11/2021 11:09	рН	7.87	SU		
APCO-GSD-AP-MW-22VB	10/11/2021 11:09	Temperature	18.37	С		
APCO-GSD-AP-MW-22VB	10/11/2021 11:09	Turbidity	10.5	NTU		
APCO-GSD-AP-MW-22VB	10/11/2021 11:14	Conductivity	366.81	uS/cm		
APCO-GSD-AP-MW-22VB	10/11/2021 11:14	DO	0.14	mg/L		
APCO-GSD-AP-MW-22VB	10/11/2021 11:14	Depth to Water Detail	6.56	ft		
APCO-GSD-AP-MW-22VB	10/11/2021 11:14	Oxidation Reduction Potention	-159.55	mv		
APCO-GSD-AP-MW-22VB	10/11/2021 11:14	рН	8.01	SU		
APCO-GSD-AP-MW-22VB	10/11/2021 11:14	Temperature	18.2	С		
APCO-GSD-AP-MW-22VB	10/11/2021 11:14		9.89	NTU		
APCO-GSD-AP-MW-22VB	10/11/2021 11:19	Conductivity	370.37	uS/cm		
APCO-GSD-AP-MW-22VB	10/11/2021 11:19		0.12	mg/L		
APCO-GSD-AP-MW-22VB		Depth to Water Detail	6.84	_		
APCO-GSD-AP-MW-22VB		Oxidation Reduction Potention	-167.37	mv		
APCO-GSD-AP-MW-22VB	10/11/2021 11:19		8.11			
APCO-GSD-AP-MW-22VB	10/11/2021 11:19	Temperature	18.14	С		
APCO-GSD-AP-MW-22VB	10/11/2021 11:19		4.65	NTU		
APCO-GSD-AP-MW-22VB	10/11/2021 11:24		371.8	uS/cm		
APCO-GSD-AP-MW-22VB	10/11/2021 11:24		0.11	mg/L		
APCO-GSD-AP-MW-22VB		Depth to Water Detail	7.08	_		
APCO-GSD-AP-MW-22VB		Oxidation Reduction Potention	-174.3			
APCO-GSD-AP-MW-22VB	10/11/2021 11:24	рН	8.06	SU		
APCO-GSD-AP-MW-22VB	10/11/2021 11:24		18.21			
APCO-GSD-AP-MW-22VB	10/11/2021 11:24			NTU		
APCO-GSD-AP-MW-22VB	10/11/2021 11:29			uS/cm		
APCO-GSD-AP-MW-22VB	10/11/2021 11:29			mg/L		
APCO-GSD-AP-MW-22VB		Depth to Water Detail	7.18			
APCO-GSD-AP-MW-22VB		Oxidation Reduction Potention	-170.32			
APCO-GSD-AP-MW-22VB	10/11/2021 11:29		8.12			
APCO-GSD-AP-MW-22VB	10/11/2021 11:29	*	18.03			
APCO-GSD-AP-MW-22VB	10/11/2021 11:29			NTU		
APCO-GSD-AP-MW-22VB	10/11/2021 11:34	· ·		uS/cm		
APCO-GSD-AP-MW-22VB	10/11/2021 11:34	*		mg/L		
APCO-GSD-AP-MW-22VB		Depth to Water Detail	7.3			
APCO-GSD-AP-MW-22VB		Oxidation Reduction Potention	-164.26			
APCO-GSD-AP-MW-22VB	10/11/2021 11:34		8.13			
APCO-GSD-AP-MW-22VB	10/11/2021 11:34		18.07			
APCO-GSD-AP-MW-22VB	10/11/2021 11:34	*		NTU		

Alabama Power Company Plant Gadsden Ash Pond					
WELL ID	TIME OF READING	DESCRIPTION	VALUE	UNIT	
APCO-GSD-AP-PZ-5	10/12/2021 11:58	Conductivity	41.42	uS/cm	
APCO-GSD-AP-PZ-5	10/12/2021 11:58	DO	3.74	mg/L	
APCO-GSD-AP-PZ-5		Depth to Water Detail	11.33	ft	
APCO-GSD-AP-PZ-5	10/12/2021 11:58	Oxidation Reduction Potention	149.05	mv	
APCO-GSD-AP-PZ-5	10/12/2021 11:58	pН	5.29	SU	
APCO-GSD-AP-PZ-5	10/12/2021 11:58	Temperature	17.9	С	
APCO-GSD-AP-PZ-5	10/12/2021 11:58	Turbidity	5.2	NTU	
APCO-GSD-AP-PZ-5	10/12/2021 12:03	Conductivity	41.47	uS/cm	
APCO-GSD-AP-PZ-5	10/12/2021 12:03	DO	3.84	mg/L	
APCO-GSD-AP-PZ-5	10/12/2021 12:03	Depth to Water Detail	11.33	ft	
APCO-GSD-AP-PZ-5	10/12/2021 12:03	Oxidation Reduction Potention	148.34	mv	
APCO-GSD-AP-PZ-5	10/12/2021 12:03	pН	5.3	SU	
APCO-GSD-AP-PZ-5	10/12/2021 12:03	Temperature	18.01	С	
APCO-GSD-AP-PZ-5	10/12/2021 12:03	Turbidity	2.38	NTU	
APCO-GSD-AP-PZ-5	10/12/2021 12:08		41.47	uS/cm	
APCO-GSD-AP-PZ-5	10/12/2021 12:08	DO	3.87	mg/L	
APCO-GSD-AP-PZ-5	10/12/2021 12:08	Depth to Water Detail	11.33	ft	
APCO-GSD-AP-PZ-5	10/12/2021 12:08	Oxidation Reduction Potention	145.75	mv	
APCO-GSD-AP-PZ-5	10/12/2021 12:08		5.33	SU	
APCO-GSD-AP-PZ-5	10/12/2021 12:08	Temperature	17.86	С	
APCO-GSD-AP-PZ-5	10/12/2021 12:08	Turbidity	2.13	NTU	
APCO-GSD-AP-PZ-5	10/12/2021 12:13	Conductivity		uS/cm	
APCO-GSD-AP-PZ-5	10/12/2021 12:13	DO		mg/L	
APCO-GSD-AP-PZ-5		Depth to Water Detail	11.33	ft	
APCO-GSD-AP-PZ-5	10/12/2021 12:13	Oxidation Reduction Potention	143.52	mv	
APCO-GSD-AP-PZ-5	10/12/2021 12:13		5.33	SU	
APCO-GSD-AP-PZ-5	10/12/2021 12:13		17.84		
APCO-GSD-AP-PZ-5	10/12/2021 12:13	Turbidity	2.08	NTU	

	Plant G	adsden Ash Pond		1
WELL ID	TIME OF READING	DESCRIPTION	VALUE	UNIT
APCO-GSD-AP-PZ-6	10/12/2021 13:02	Conductivity	42.65	uS/cm
APCO-GSD-AP-PZ-6	10/12/2021 13:02	DO	4.74	mg/L
APCO-GSD-AP-PZ-6		Depth to Water Detail	6.62	ft
APCO-GSD-AP-PZ-6	10/12/2021 13:02	Oxidation Reduction Potention	146.9	mv
APCO-GSD-AP-PZ-6	10/12/2021 13:02	pН	5.43	SU
APCO-GSD-AP-PZ-6	10/12/2021 13:02	Temperature	19.58	С
APCO-GSD-AP-PZ-6	10/12/2021 13:02		79.9	NTU
APCO-GSD-AP-PZ-6	10/12/2021 13:07			uS/cm
APCO-GSD-AP-PZ-6	10/12/2021 13:07		4.78	mg/L
APCO-GSD-AP-PZ-6	10/12/2021 13:07	Depth to Water Detail	6.62	ft
APCO-GSD-AP-PZ-6	10/12/2021 13:07	Oxidation Reduction Potention	142.01	mv
APCO-GSD-AP-PZ-6	10/12/2021 13:07	pН	5.48	SU
APCO-GSD-AP-PZ-6	10/12/2021 13:07	Temperature	19.64	С
APCO-GSD-AP-PZ-6	10/12/2021 13:07	Turbidity	46.2	NTU
APCO-GSD-AP-PZ-6	10/12/2021 13:12	Conductivity	43.11	uS/cm
APCO-GSD-AP-PZ-6	10/12/2021 13:12	DO	4.78	mg/L
APCO-GSD-AP-PZ-6	10/12/2021 13:12	Depth to Water Detail	6.62	ft
APCO-GSD-AP-PZ-6	10/12/2021 13:12	Oxidation Reduction Potention	137.58	mv
APCO-GSD-AP-PZ-6	10/12/2021 13:12	pН	5.56	SU
APCO-GSD-AP-PZ-6	10/12/2021 13:12	Temperature	19.62	С
APCO-GSD-AP-PZ-6	10/12/2021 13:12	Turbidity	23	NTU
APCO-GSD-AP-PZ-6	10/12/2021 13:17	Conductivity	43.05	uS/cm
APCO-GSD-AP-PZ-6	10/12/2021 13:17	DO	4.9	mg/L
APCO-GSD-AP-PZ-6	10/12/2021 13:17	Depth to Water Detail	6.62	ft
APCO-GSD-AP-PZ-6	10/12/2021 13:17	Oxidation Reduction Potention	147.16	mv
APCO-GSD-AP-PZ-6	10/12/2021 13:17	pH	5.39	SU
APCO-GSD-AP-PZ-6	10/12/2021 13:17		19.6	
APCO-GSD-AP-PZ-6	10/12/2021 13:17		16.5	NTU
APCO-GSD-AP-PZ-6	10/12/2021 13:22			uS/cm
APCO-GSD-AP-PZ-6	10/12/2021 13:22			mg/L
APCO-GSD-AP-PZ-6		Depth to Water Detail	6.62	
APCO-GSD-AP-PZ-6		Oxidation Reduction Potention	139.56	
APCO-GSD-AP-PZ-6	10/12/2021 13:22		5.51	
APCO-GSD-AP-PZ-6	10/12/2021 13:22		19.48	
APCO-GSD-AP-PZ-6	10/12/2021 13:22			NTU
APCO-GSD-AP-PZ-6	10/12/2021 13:27	Conductivity		uS/cm
APCO-GSD-AP-PZ-6	10/12/2021 13:27			mg/L
APCO-GSD-AP-PZ-6		Depth to Water Detail	6.62	
APCO-GSD-AP-PZ-6		Oxidation Reduction Potention	137.04	
APCO-GSD-AP-PZ-6	10/12/2021 13:27		5.57	
APCO-GSD-AP-PZ-6	10/12/2021 13:27		19.48	
APCO-GSD-AP-PZ-6	10/12/2021 13:27			NTU
APCO-GSD-AP-PZ-6	10/12/2021 13:32			uS/cm
APCO-GSD-AP-PZ-6	10/12/2021 13:32			mg/L
APCO-GSD-AP-PZ-6		Depth to Water Detail	6.62	
APCO-GSD-AP-PZ-6		Oxidation Reduction Potention	135.52	
APCO-GSD-AP-PZ-6	10/12/2021 13:32		5.59	
APCO-GSD-AP-PZ-6	10/12/2021 13:32	-	19.52	
APCO-GSD-AP-PZ-6	10/12/2021 13:32	· · · · · · · · · · · · · · · · · · ·		NTU
APCO-GSD-AP-PZ-6	10/12/2021 13:37	· · · · · · · · · · · · · · · · · · ·		uS/cm
APCO-GSD-AP-PZ-6	10/12/2021 13:37			mg/L
APCO-GSD-AP-PZ-6		Depth to Water Detail	6.62	
APCO-GSD-AP-PZ-6	10/12/2021 13:37	Oxidation Reduction Potention	145.69	mv

Alabama Power Company Plant Gadsden Ash Pond				
WELL ID	TIME OF READING	DESCRIPTION	VALUE	UNIT
APCO-GSD-AP-PZ-6	10/12/2021 13:37	рН	5.41	SU
APCO-GSD-AP-PZ-6	10/12/2021 13:37	Temperature	19.58	С
APCO-GSD-AP-PZ-6	10/12/2021 13:37	Turbidity	6.06	NTU

Appendix E

Appendix E. Horiztonal Groundwater Flow Velocity Calculations Plant Gadsden Ash Storage Pond

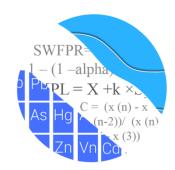
2021 1st Semi-Annual Monitoring Event													
Date	PZ-6	MW-10	Distance	Hydraulic Gradient	Hydraulic Conductivity	Effective Porosity	Calculated Groundwater Flow Velocity	Calculated Groundwater Flow Velocity					
	h ₁ (ft)	h ₂ (ft)	Δl (ft)	Δh/Δl (ft/ft)	K	n	(ft/d)	(ft/yr)					
10/4/2021	513.18	509.19	1455.00	0.00274	12.33	0.20	0.169	61.7					

Notes:

ft=feet

ft/d = feet/day

ft/ft = feet per foot


ft/yr = feet per year

Appendix F

GROUNDWATER STATS CONSULTING

January 14, 2022

Southern Company Services Attn: Mr. Greg Dyer 3535 Colonnade Parkway Birmingham, AL 35243

Re: Plant Gadsden Ash Pond

Background Update & 1st 2021 Semi-Annual Analysis – October 2021

Dear Mr. Dyer,

Groundwater Stats Consulting, formerly the statistical consulting division of Sanitas Technologies, is pleased to provide the background update and statistical analysis of groundwater data for the October 2021 1st 2021 semi-annual sample event for Alabama Power Company's Plant Gadsden Ash Pond. The analysis complies with the federal rule for the Disposal of Coal Combustion Residuals from Electric Utilities (CCR Rule, 2015) and follows the United States Environmental Protection Agency (USEPA) Unified Guidance (2009).

Sampling began for the CCR program in December 2017, and at least 8 background samples have been collected at each of the groundwater monitoring wells.

The monitoring well network, as provided by Southern Company Services, consists of the following:

- Upgradient wells: GSD-AP-MW-14, GSD-AP-MW-16, and GSD-AP-MW-17
- Downgradient wells: GSD-AP-MW-1, GSD-AP-MW-2, GSD-AP-MW-3, GSD-AP-MW-4, GSD-AP-MW-5, GSD-AP-MW-6, GSD-AP-MW-7, GSD-AP-MW-8, GSD-AP-MW-9, GSD-AP-MW-10, GSD-AP-MW-11, GSD-AP-MW-12, GSD-AP-PZ-1, GSD-AP-PZ-2, GSD-AP-PZ-5, and GSD-AP-PZ-6
- Delineation wells: GSD-AP-MW-2VA, GSD-AP-MW-2VB, GSD-AP-MW-4V, GSD-AP-MW-18H, GSD-AP-MW-19H, GSD-AP-MW-20H, GSD-AP-MW-21VC, and GSD-AP-MW-22VB
- Piezometers: GSD-AP-MW-2V

Note that delineation wells did not require statistics; therefore, data for these wells were plotted only on time series and box plots. Downgradient well GSD-AP-PZ-2 has recently been converted from a piezometer to a downgradient well. Since this well has been sampled at least 4 times, data from this well are evaluated with confidence intervals for Appendix IV constituents. Prediction limits will be used to evaluate Appendix III constituents when a minimum of 8 samples are available.

Data were sent electronically to Groundwater Stats Consulting, and the statistical analysis was reviewed by Andrew Collins, Project Manager of Groundwater Stats Consulting.

The CCR program consists of the following constituents:

Appendix III (Detection Monitoring) - boron, calcium, chloride, fluoride, pH, sulfate, and TDS

Appendix IV (Assessment Monitoring) - antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, combined radium 226 + 228, fluoride, lead, lithium, mercury, molybdenum, selenium, and thallium

Note that when there are no detections present in downgradient wells for a given constituent, statistical analyses are not required. A list of Appendix IV downgradient well/constituent pairs containing 100% non-detects follows this letter.

Time series plots for Appendix III and IV parameters at all wells are provided for the purpose of screening data at these wells (Figure A). A substitution of the most recent reporting limit is used for non-detect data. Additionally, a separate section of box plots is included for all constituents at upgradient and downgradient wells (Figure B). The time series plots are used to initially screen for suspected outliers and trends, while the box plots provide visual representation of variation within individual wells and between all wells.

In earlier analyses, data at all wells were evaluated for the following: 1) outliers; 2) trends; 3) most appropriate statistical method for Appendix III parameters based on analysis of the spatial variability of groundwater quality data among wells upgradient of the facility; and 4) eligibility of downgradient wells when intrawell statistical methods are recommended. Power curves are provided in this report to demonstrate that the selected statistical methods for Appendix III parameters comply with the USEPA Unified Guidance. The EPA suggests that the selected statistical method should provide at least 55% power at 3 standard deviations or at least 80% power at 4 standard deviations. Power curves are based on the following statistical methods and site/data characteristics:

- Semi-Annual Sampling
- Intrawell Prediction Limits with 1-of-2 resample plan
- Interwell Prediction Limits with 1-of-2 resample plan
- # Background Samples (Intrawell): 13
- # Background Samples (Interwell): 43
- # Constituents: 7
- # Downgradient wells: 15

Note that previous analyses utilized a 1-of-3 resample plan for parameters that use intrawell statistical methods; however, during this analysis, power curves demonstrate that the increased number of samples in background provide sufficient power using the 1-of-2 resample plan.

Summary of Statistical Methods – Appendix III Parameters

Based on the earlier evaluation described above, the following statistical methods were selected:

- Intrawell prediction limits, combined with a 1-of-2 resample plan for fluoride and pH
- Interwell prediction limits, combined with a 1-of-2 resample plan for boron, calcium, chloride, sulfate, and TDS

Parametric prediction limits are utilized when the screened historical data follow a normal or transformed-normal distribution. When data cannot be normalized or the majority of data are non-detects, a nonparametric test is utilized. While the annual false positive rate associated with parametric limits is fixed at 10% as recommended by the EPA Unified Guidance (2009), the false positive rate associated with nonparametric limits is not fixed and depends upon the available background sample size, number of future comparisons, and verification resample plan. The distribution of data is tested using the Shapiro-Wilk/Shapiro-Francia test for normality. After testing for normality and performing any adjustments as discussed below (USEPA, 2009), data are analyzed using either parametric or non-parametric prediction limits as appropriate.

- No statistical analyses are required on wells and analytes containing 100% nondetects (USEPA Unified Guidance, 2009, Chapter 6).
- When data contain <15% non-detects in background, simple substitution of one-half the reporting limit is utilized in the statistical analysis. The reporting limit utilized for non-detects is the most recent practical quantification limit (PQL) as reported by the laboratory.

- When data contain between 15-50% non-detects, the Kaplan-Meier non-detect adjustment is applied to the background data. This technique adjusts the mean and standard deviation of the historical concentrations to account for concentrations below the reporting limit.
- Nonparametric prediction limits are used on data containing greater than 50% non-detects.

Natural systems continuously evolve due to physical changes made to the environment. Examples include capping a landfill, paving areas near a well, or lining a drainage channel to prevent erosion. Periodic updating of background statistical limits is necessary to accommodate these types of changes. In the intrawell case, data for all wells and constituents may be re-evaluated when a minimum of 4 new samples are available to determine whether earlier concentrations are representative of present-day groundwater quality. In the interwell case, prediction limits are updated with upgradient well data following each sampling event after careful screening for any new outliers. While not required for this report, in some cases, deselecting the earlier portion of data may be necessary prior to construction of limits so that resulting statistical limits are conservative (lower) from a regulatory perspective and capable of rapidly detecting changes in groundwater quality. Even though the data are excluded from the calculation, the values will continue to be reported and shown in tables and graphs.

Summary of Background Screening – Conducted in April 2019

Outlier Analysis

Time series plots were used to identify suspected outliers, or extreme values that would result in limits that are not representative of the current background data population. Suspected outliers at all wells for Appendix III and Appendix IV parameters were formally tested using Tukey's box plot method and, when identified, flagged in the computer database with "o" and deselected prior to construction of statistical limits.

Using the Tukey box plot method, two outliers were identified. A summary of those findings was included with the 2019 background screening. While this is not the case in the present data set, when the most recent value is identified as an outlier, values are not flagged in the database at this time as they may represent a possible trend. If future values do not remain at similar concentrations, these values will be flagged as outliers and deselected. Several low values exist in the data sets and appear on the graphs as possible low outliers relative to the laboratory's Practical Quantitation Limit. However, these values are observed trace values (i.e. measurements reported by the laboratory between the

Method Detection Limit and the Practical Quantitation Limit) and, therefore, were not flagged as outliers.

Of the outliers identified by Tukey's method, only one value was flagged as an outlier in the database since the other value was similar to remaining measurements within the same well and neighboring wells. When any values are flagged in the database as outliers, they are plotted in a disconnected and lighter symbol on the time series graph. The accompanying data pages display the flagged value in a lighter font as well. A substitution of the most recent reporting limit was applied when varying detection limits existed in data.

Seasonality

No obvious seasonal patterns were observed on the time series plots for any of the detected data; therefore, no deseasonalizing adjustments were made to the data. When seasonal patterns are observed, data may be deseasonalized so that the resulting limits will correctly account for the seasonality as a predictable pattern rather than random variation or a release.

<u>Trend Testing</u>

While trends may be identified by visual inspection, a quantification of the trend and its significance is needed. The Sen's Slope/Mann Kendall trend test was used to evaluate all data at each well to identify statistically significant increasing or decreasing trends. In the absence of suspected contamination, significant trending data are typically not included as part of the background data used for construction of prediction limits. This step serves to eliminate the trend and, thus, reduce variation in background. When statistically significant decreasing trends are present, all available data are evaluated to determine whether earlier concentration levels are significantly different than current reported concentrations and will be deselected as necessary. When any records of data are truncated for the reasons above, a summary report will be provided to show the date ranges used in construction of the statistical limits.

The results of the trend analyses showed several statistically significant decreasing and increasing trends for the Appendix III parameters and were included with the 2019 background screening. Most of the trends noted were relatively low in magnitude when compared to average concentrations, and the background time period is short with less than two years of record, making it difficult to separate trends from normal year-to-year variation; therefore, no adjustments were made to the data sets. If the observed

decreasing or increasing trends persist over a longer time frame, some records may need to be truncated.

<u>Appendix III – Evaluation of Statistical Approaches</u>

The Analysis of Variance (ANOVA) was used to statistically evaluate differences in average concentrations among upgradient wells, which assists in identifying the most appropriate statistical approach. Interwell tests, which compare downgradient well data to statistical limits constructed from pooled upgradient well data, are appropriate when average concentrations are similar across upgradient wells. Intrawell tests, which compare compliance data from a single well to screened historical data within the same well, are appropriate when upgradient wells exhibit spatial variation; when statistical limits constructed from upgradient wells are not representative of the current background data population; and when downgradient water quality is unimpacted compared to upgradient water quality for the same parameter.

Based on the results of the 2019 background screening for Appendix III parameters, intrawell methods were recommended for fluoride and pH, and interwell methods were recommended for boron, calcium, chloride, sulfate, and TDS. If further evaluation confirms natural variation in groundwater, intrawell methods will be considered for parameters currently recommended for interwell methods.

Background Update – Conducted in Fall 2021

Outlier Analysis

Prior to performing prediction limits, proposed background data through March 2021 were reviewed through visual screening to identify any newly suspected outliers at all wells for fluoride and pH and at upgradient wells for boron, calcium, chloride, sulfate, and TDS. When identified as outliers, values were flagged with "o" and excluded to reduce variation, better represent background conditions, and provide limits that are conservative from a regulatory perspective. No suspected outliers were identified for Appendix III parameters. As mentioned above, flagged data are displayed in a lighter font and as a disconnected symbol on the time series reports, as well as in a lighter font on the accompanying data pages.

Mann-Whitney Test of Medians

For constituents requiring intrawell prediction limits, the Mann-Whitney (Wilcoxon Rank Sum) test was used to compare the medians of historical data through February 7, 2019,

to compliance data through March 2021. When the medians of the two groups are not statistically significantly different at the 99% confidence level, background data sets are updated to include the newer compliance data. Statistically significant differences (either an increase or decrease in median concentrations) were found between the two groups for the following well/constituent pairs:

Increase:

Fluoride: GSD-AP-MW-1

Decrease:

• pH: GSD-AP-MW-1, GSD-AP-MW-3, GSD-AP-PZ-5, GSD-AP-MW-7,

GSD-AP-MW-8, and GSD-AP-MW-11

Typically, when the test concludes that the medians of the two groups are statistically significantly different, particularly in the downgradient wells, the background data are not updated to include the newer data unless it can be reasonably justified that the change in concentrations reflects a naturally occurring shift unrelated to practices at the site. In studies such as the current one, in which at least one of the segments being compared is of short duration, the comparison is complicated by the fact that normal short-term variation may be mistaken for long-term change in medians.

While a statistically significant increase in median concentrations was identified for fluoride in well GSD-AP-MW-1, this record was updated with more recent data because the compliance data contained 100% non-detects. Although statistically significant decreases in median concentrations were identified for pH in wells GSD-AP-MW-1, GSD-AP-MW-3, GSD-AP-PZ-5, GSD-AP-MW-7, GSD-AP-MW-8, and GSD-AP-MW-11, the magnitude of the decreases were marginal compared to the historical concentrations. Therefore, in this analysis, all of the records with statistically significant Mann-Whitney results for CCR Appendix III constituents that use intrawell methods were updated.

All records will be re-evaluated during the next background update and if future concentrations are similar to those observed currently, the earlier portion of the records may require deselection so only more recent data are used to construct statistical limits which are reflective of present-day water quality conditions. If, however, concentrations return to historical lower levels, more recent higher measurements may be flagged as outliers and deselected prior to construction of statistical limits.

<u>Trend Tests – Upgradient Wells</u>

The Sen's Slope/Mann Kendall trend test was used to evaluate the entire record of data from upgradient wells for parameters utilizing interwell prediction limits (Figure E). When

statistically significant increasing trends are identified in upgradient wells, the earlier portion of data may require deselection prior to construction of interwell statistical limits if the trending data would result in statistical limits that are not conservative from a regulatory perspective. The following upgradient well/constituent pairs were found to have statistically significant trends:

Increasing

None

Decreasing

Chloride: GSD-AP-MW-17

The slope for chloride at well GSD-AP-MW-17 is influenced by several similar and slightly higher values earlier in the record, but the median slope for the overall record was small relative to average concentrations at these wells and reported measurements were similar across all upgradient wells. Therefore, no adjustments were required at this time.

Evaluation of Appendix III Parameters – October 2021

Intrawell limits constructed from carefully screened background data from within each well serve to provide statistical limits that are representative of the background data population, and that will rapidly identify a change in more recent compliance data from within a given well. The most recent sample from the same well is compared to its respective background. This statistical method removes the element of variation from across wells and eliminates the chance of mistaking natural spatial variation for a release from the facility. Background data are re-evaluated when a minimum of 4 compliance samples are available.

Interwell prediction limits pool upgradient well data to establish a background limit for an individual constituent. The most recent sample from each downgradient well is compared to the background limit to determine whether initial exceedances are present.

Prediction Limits

Intrawell prediction limits, combined with a 1-of-2 resample plan, were constructed for fluoride and pH using screened background data through March 2021 at each well (Figure F). The October 2021 sample at each well was compared to its respective intrawell prediction limit. Values in background which have been flagged as outliers may be seen in a lighter font and as a disconnected symbol on the graphs, and a summary of all flagged outliers follows this report (Figure C).

Interwell prediction limits combined with a 1-of-2 verification strategy were constructed for boron, calcium, chloride, sulfate, and TDS (Figure G).

In the event of an initial exceedance of compliance well data, the 1-of-2 resample plan allows for collection of one additional sample to determine whether the initial exceedance is confirmed. When the resample confirms the initial exceedance, a statistically significant increase (SSI) is identified, and further research is required to identify the cause of the exceedance (i.e., impact from the site, natural variation, or an off-site source). If a resample falls within the statistical limit, the initial exceedance is considered to be a false positive result; therefore, no further action is necessary. A summary of the prediction limits results may be found in the Prediction Limit Summary tables following this letter. The following exceedances were noted for the intrawell and interwell prediction limits:

Intrawell

Fluoride: GSD-AP-MW-5, GSD-AP-MW-10, and GSD-AP-MW-11

• pH: GSD-AP-MW-12

Interwell

Boron: GSD-AP-MW-1, GSD-AP-MW-2, GSD-AP-MW-3,

GSD-AP-MW-4, GSD-AP-MW-5, and GSD-AP-MW-11

Calcium: GSD-AP-MW-1, GSD-AP-MW-2, GSD-AP-MW-3,

GSD-AP-MW-5, GSD-AP-MW-8, GSD-AP-MW-9,

GSD-AP-MW-10, GSD-AP-MW-11, and GSD-AP-MW-12

• Chloride: GSD-AP-MW-1, GSD-AP-MW-3, GSD-AP-MW-4,

GSD-AP-MW-5, GSD-AP-MW-6, GSD-AP-MW-7, GSD-AP-MW-8, GSD-AP-MW-9, GSD-AP-MW-10,

GSD-AP-MW-11, and GSD-AP-MW-12

Sulfate: GSD-AP-MW-1 and GSD-AP-MW-3

• TDS: GSD-AP-MW-1, GSD-AP-MW-2, GSD-AP-MW-3,

GSD-AP-MW-11, and GSD-AP-MW-12

Trend Tests

When prediction limit exceedances are identified in downgradient wells, data are further evaluated using the Sen's Slope/Mann Kendall trend test to determine whether concentrations are statistically increasing, decreasing, or stable (Figure F). Upgradient wells are included in the trend analyses for all parameters found to exceed their prediction limit in downgradient wells to identify whether similar patterns exist upgradient of the site. The existence of similar trends in both upgradient and downgradient wells is an

indication of natural variability in groundwater that is unrelated to practices at the site. A summary of the trend test results follows this letter. Statistically significant trends were identified for the following well/constituent pairs:

Increasing:

Boron: GSD-AP-MW-3
 Calcium: GSD-AP-MW-11
 Fluoride: GSD-AP-MW-11
 TDS: GSD-AP-MW-11

Decreasing:

Boron: GSD-AP-MW-1, GSD-AP-MW-2, GSD-AP-MW-4,

and GSD-AP-MW-5

Calcium: GSD-AP-MW-1, GSD-AP-MW-2, and GSD-AP-MW-3
 Chloride: GSD-AP-MW-17 (upgradient) and GSD-AP-MW-3

pH: GSD-AP-MW-16 (upgradient),

• TDS: GSD-AP-MW-1, GSD-AP-MW-2, and GSD-AP-MW-3

Evaluation of Appendix IV Parameters – October 2021

Data from all wells for Appendix IV parameters are reassessed for outliers during each analysis and no new values were flagged as outliers. A summary of previously flagged outliers follows this report (Figure C).

In accordance with Alabama Department of Environmental Management (ADEM), the Groundwater Protections Standards (GWPS) were updated during this 2021 1st semi-annual statistical analysis. The GWPS will be updated again during the 2023 1st semi-annual statistical analysis. The methodology used to create these GWPS is described below.

Interwell Upper Tolerance Limits

First, background limits were determined using tolerance limits constructed from pooled upgradient well data through October 2021 (Figure I). The tolerance limits contain a known fraction (coverage) of the background population with a known level of confidence. The confidence and coverage levels for nonparametric tolerance limits are dependent upon the number of background samples. As requested by ADEM to eliminate variation among upgradient well data, nonparametric tolerance limits, which use the highest value in background as the statistical limit, were constructed.

Groundwater Protection Standards

These background limits were then compared to the Maximum Contaminant Levels (MCLs) for each parameter, and the higher of the two was used as the GWPS (Figure J) in the confidence interval comparisons described below.

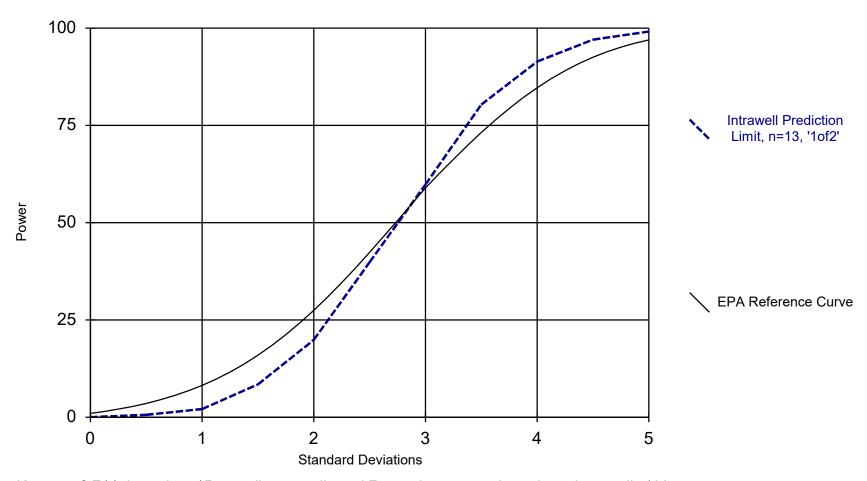
Confidence Intervals

Confidence intervals were then constructed on downgradient wells using a maximum of the most recent 8 samples through October 2021 for each of the Appendix IV parameters (Figure K). These intervals were constructed as either parametric or nonparametric confidence intervals depending on the data distribution and percentage of non-detects. When data followed a normal or transformed-normal distribution, parametric confidence intervals were used for Appendix IV parameters. Nonparametric confidence intervals, which use the highest and lowest values in background as interval limits, were constructed when data did not follow a normal or transformed-normal distribution or when there were greater than 50% non-detects.

As mentioned above, well/constituent pairs containing 100% non-detects did not require statistics and were, therefore, deselected prior to construction confidence intervals. A list of deselected well/constituent pairs also follows this report. Each confidence interval was compared with the corresponding GWPS. Only when the entire confidence interval is above the GWPS is the well/constituent pair considered to exceed its respective standard. Both a tabular summary and graphical presentation of the confidence interval results follow this letter. No exceedances were noted for any of the well/constituent pairs.

Arsenic: GSD-AP-MW-2 and GSD-AP-MW-4

Thank you for the opportunity to assist you in the statistical analysis of groundwater quality for Plant Gadsden Ash Pond. If you have any questions or comments, please feel free to contact us.

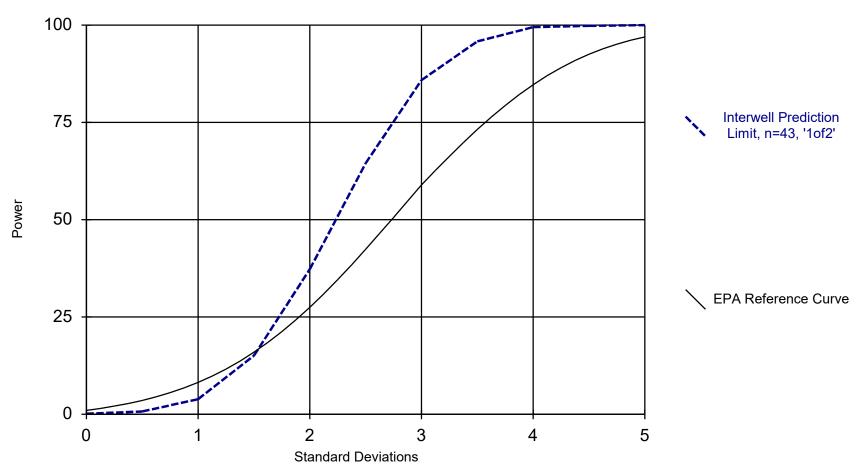

For Groundwater Stats Consulting,

Abdul Diane

Groundwater Analyst

Andrew T. Collins
Project Manager

Intrawell Power Curve



Kappa = 2.711, based on 15 compliance wells and 7 constituents, evaluated semi-annually (this report reflects annual total).

Analysis Run 1/13/2022 3:29 PM View: UTL

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Interwell Power Curve

Kappa = 2.163, based on 15 compliance wells and 7 constituents, evaluated semi-annually (this report reflects annual total).

Analysis Run 1/13/2022 8:24 PM View: UTL

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

100% Non-Detects

Analysis Run 1/11/2022 3:47 PM View: Confidence Intervals
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Antimony (mg/L)

GSD-AP-MW-1, GSD-AP-MW-10, GSD-AP-MW-11, GSD-AP-MW-12, GSD-AP-MW-2, GSD-AP-MW-3, GSD-AP-MW-4, GSD-AP-MW-5, GSD-AP-MW-6, GSD-AP-MW-7, GSD-AP-MW-8, GSD-AP-MW-9, GSD-AP-PZ-1, GSD-AP-PZ-2

Arsenic (mg/L)

GSD-AP-MW-12, GSD-AP-MW-6, GSD-AP-PZ-1, GSD-AP-PZ-6

Bervllium (ma/L)

GSD-AP-MW-1, GSD-AP-MW-10, GSD-AP-MW-11, GSD-AP-MW-12, GSD-AP-MW-2, GSD-AP-MW-3, GSD-AP-MW-4, GSD-AP-MW-5, GSD-AP-MW-6, GSD-AP-MW-7, GSD-AP-MW-8, GSD-AP-MW-9, GSD-AP-PZ-1, GSD-AP-PZ-2, GSD-AP-PZ-5, GSD-AP-PZ-6

Cadmium (mg/L)

GSD-AP-MW-10, GSD-AP-MW-11, GSD-AP-MW-4, GSD-AP-MW-5, GSD-AP-MW-6, GSD-AP-MW-9, GSD-AP-PZ-1, GSD-AP-PZ-2, GSD-AP-PZ-6

Fluoride (mg/L)

GSD-AP-PZ-2

Lead (mg/L)

GSD-AP-MW-1, GSD-AP-MW-10, GSD-AP-MW-11, GSD-AP-MW-12, GSD-AP-MW-3, GSD-AP-MW-4, GSD-AP-MW-5, GSD-AP-MW-6, GSD-AP-MW-7, GSD-AP-MW-8, GSD-AP-MW-9, GSD-AP-PZ-1

Lithium (mg/L)

GSD-AP-MW-1, GSD-AP-MW-10, GSD-AP-MW-11, GSD-AP-MW-12, GSD-AP-MW-3, GSD-AP-MW-4, GSD-AP-MW-5, GSD-AP-MW-6, GSD-AP-MW-7, GSD-AP-MW-8, GSD-AP-MW-9, GSD-AP-PZ-1, GSD-AP-PZ-5, GSD-AP-PZ-6

Mercury (ma/L)

GSD-AP-MW-1, GSD-AP-MW-11, GSD-AP-MW-2, GSD-AP-MW-3, GSD-AP-MW-4, GSD-AP-MW-5, GSD-AP-MW-6, GSD-AP-MW-9, GSD-AP-PZ-1, GSD-AP-PZ-2, GSD-AP-PZ-5, GSD-AP-PZ-6

Molybdenum (mg/L)

GSD-AP-MW-1, GSD-AP-MW-12, GSD-AP-MW-3, GSD-AP-MW-6, GSD-AP-PZ-5, GSD-AP-PZ-6

Selenium (mg/L)

GSD-AP-MW-1, GSD-AP-MW-10, GSD-AP-MW-11, GSD-AP-MW-12, GSD-AP-MW-2, GSD-AP-MW-3, GSD-AP-MW-4, GSD-AP-MW-5, GSD-AP-MW-6, GSD-AP-MW-7, GSD-AP-MW-8, GSD-AP-MW-9, GSD-AP-PZ-1, GSD-AP-PZ-5, GSD-AP-PZ-6

Thallium (mg/L)

GSD-AP-MW-10, GSD-AP-MW-11, GSD-AP-MW-12, GSD-AP-MW-4, GSD-AP-MW-5, GSD-AP-MW-6, GSD-AP-MW-7, GSD-AP-MW-8, GSD-AP-MW-9, GSD-AP-PZ-1, GSD-AP-PZ-2, GSD-AP-PZ-5, GSD-AP-PZ-6

Appendix III Welch's t-test/Mann-Whitney - Significant Results

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR Printed 7/16/2021, 2:09 PM

Constituent	Well	Calc.	0.01	Method
Fluoride (mg/L)	GSD-AP-MW-1	2.958	Yes	Mann-W
pH (pH)	GSD-AP-MW-1	-2.858	Yes	Mann-W
pH (pH)	GSD-AP-MW-11	-2.642	Yes	Mann-W
pH (pH)	GSD-AP-MW-3	-2.639	Yes	Mann-W
pH (pH)	GSD-AP-MW-7	-2.855	Yes	Mann-W
pH (pH)	GSD-AP-MW-8	-3.001	Yes	Mann-W
pH (pH)	GSD-AP-PZ-5	-2.708	Yes	Mann-W

Appendix III Welch's t-test/Mann-Whitney - All Results

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR Printed 7/16/2021, 2:09 PM

	Plant Gaustien	Client. Southern Company	Data. Plant Gaustien CCR	Fillited	7/16/2021, 2.09 PI	VI	
Constituent		We	ell		Calc.	<u>0.01</u>	Method
Fluoride (mg/L)		GS	D-AP-MW-1		2.958	Yes	Mann-W
Fluoride (mg/L)		GS	D-AP-MW-10		1.248	No	Mann-W
Fluoride (mg/L)		GS	D-AP-MW-11		2.317	No	Mann-W
Fluoride (mg/L)		GS	D-AP-MW-12		0.6325	No	Mann-W
Fluoride (mg/L)		GS	D-AP-MW-14 (bg)		-2.005	No	Mann-W
Fluoride (mg/L)		GS	D-AP-MW-16 (bg)		-1.313	No	Mann-W
Fluoride (mg/L)		GS	D-AP-MW-17 (bg)		-1.84	No	Mann-W
Fluoride (mg/L)		GS	D-AP-MW-2		0.07329	No	Mann-W
Fluoride (mg/L)		GS	D-AP-MW-3		0.3267	No	Mann-W
Fluoride (mg/L)		GS	D-AP-MW-4		0.0737	No	Mann-W
Fluoride (mg/L)		GS	D-AP-MW-5		0.6633	No	Mann-W
Fluoride (mg/L)		GS	D-AP-MW-6		2.495	No	Mann-W
Fluoride (mg/L)		GS	D-AP-MW-7		0.2217	No	Mann-W
Fluoride (mg/L)		GS	D-AP-MW-8		-1.982	No	Mann-W
Fluoride (mg/L)		GS	D-AP-MW-9		1.702	No	Mann-W
Fluoride (mg/L)		GS	D-AP-PZ-1		-1.709	No	Mann-W
Fluoride (mg/L)		GS	D-AP-PZ-5		2.386	No	Mann-W
Fluoride (mg/L)		GS	D-AP-PZ-6		2.451	No	Mann-W
pH (pH)		GS	D-AP-MW-1		-2.858	Yes	Mann-W
pH (pH)		GS	D-AP-MW-10		0.6615	No	Mann-W
pH (pH)		GS	D-AP-MW-11		-2.642	Yes	Mann-W
pH (pH)		GS	D-AP-MW-12		-0.3665	No	Mann-W
pH (pH)		GS	D-AP-MW-14 (bg)		-2.436	No	Mann-W
pH (pH)		GS	D-AP-MW-16 (bg)		-2.052	No	Mann-W
pH (pH)		GS	D-AP-MW-17 (bg)		-1.391	No	Mann-W
pH (pH)		GS	D-AP-MW-2		-1.466	No	Mann-W
pH (pH)		GS	D-AP-MW-3		-2.639	Yes	Mann-W
pH (pH)		GS	D-AP-MW-4		0.5872	No	Mann-W
pH (pH)		GS	D-AP-MW-5		-0.8894	No	Mann-W
pH (pH)		GS	D-AP-MW-6		-2.126	No	Mann-W
pH (pH)		GS	D-AP-MW-7		-2.855	Yes	Mann-W
pH (pH)		GS	D-AP-MW-8		-3.001	Yes	Mann-W
pH (pH)		GS	D-AP-MW-9		-2.014	No	Mann-W
pH (pH)		GS	D-AP-PZ-1		-2.569	No	Mann-W
рН (рН)		GS	D-AP-PZ-5		-2.708	Yes	Mann-W
pH (pH)		GS	D-AP-PZ-6		-1.69	No	Mann-W

Appendix III - Upgradient Well Trend Tests - Significant Results

Constituent

Chloride (mg/L)

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR Printed 1/13/2022, 2:29 PM

Well Slope Calc. Critical Sig. N %NDs Normality Xform Alpha Method

GSD-AP-MW-17 (bg) -0.412 -67 -48 Yes 14 0 n/a n/a 0.01 NP

Appendix III - Upgradient Well Trend Tests - All Results

	Plant Gadsden	Client: Southern Company		Data: Plant Gadsden CCR			R Printed 1/13/2022, 2:29 PM				
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron (mg/L)	GSD-AP-MW-14 (bg)	0	0	48	No	14	100	n/a	n/a	0.01	NP
Boron (mg/L)	GSD-AP-MW-16 (bg)	0.02049	44	53	No	15	60	n/a	n/a	0.01	NP
Boron (mg/L)	GSD-AP-MW-17 (bg)	-0.001687	-35	-48	No	14	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GSD-AP-MW-14 (bg)	-1.044	-16	-48	No	14	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GSD-AP-MW-16 (bg)	-0.5887	-13	-53	No	15	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GSD-AP-MW-17 (bg)	1.622	25	48	No	14	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GSD-AP-MW-14 (bg)	0.02255	13	48	No	14	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GSD-AP-MW-16 (bg)	-0.04562	-7	-53	No	15	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GSD-AP-MW-17 (bg)	-0.412	-67	-48	Yes	14	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GSD-AP-MW-14 (bg)	-4.795	-10	-48	No	14	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GSD-AP-MW-16 (bg)	29.67	42	53	No	15	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GSD-AP-MW-17 (bg)	-1.162	-42	-48	No	14	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	GSD-AP-MW-14 (bg)	-10.61	-11	-48	No	14	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	GSD-AP-MW-16 (bg)	26.27	37	53	No	15	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	GSD-AP-MW-17 (bg)	-3.097	-18	-48	No	14	0	n/a	n/a	0.01	NP

Appendix III - Intrawell Prediction Limits - Significant Results

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR Printed 1/13/2022, 2:23 PM

Constituent	<u>Well</u>	Upper Lin	n. Lower Lim	n. Date	Observ.	Sig.	Bg N	N Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	Alpha	Method
Fluoride (mg/L)	GSD-AP-MW-10	0.1381	n/a	10/11/2021	0.201	Yes	13	0.08731	0.01872	0	None	No	0.0005016	Param Intra 1 of 2
Fluoride (mg/L)	GSD-AP-MW-11	0.1122	n/a	10/12/2021	0.134	Yes	13	0.0646	0.01756	23.08	Kaplan-Meier	No	0.0005016	Param Intra 1 of 2
Fluoride (mg/L)	GSD-AP-MW-5	0.08126	n/a	10/5/2021	0.122	Yes	13	0.05878	0.008293	0	None	No	0.0005016	Param Intra 1 of 2
pH (pH)	GSD-AP-MW-12	5.692	5.209	10/5/2021	5.19	Yes	13	5.451	0.08911	0	None	No	0.0002508	Param Intra 1 of 2

Appendix III - Intrawell Prediction Limits - All Results

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR Printed 1/13/2022, 2:23 PM

Constituent	<u>Well</u>	Upper Lin	n. Lower Lin	n. <u>Date</u>	Observ.	Sig.	Bg 1	N Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Fluoride (mg/L)	GSD-AP-MW-1	0.1151	n/a	10/5/2021	0.0601J	No	13	0.06075	0.02003	38.46	Kaplan-Meier	No	0.0005016	Param Intra 1 of 2
Fluoride (mg/L)	GSD-AP-MW-10	0.1381	n/a	10/11/2021	0.201	Yes	13	0.08731	0.01872	0	None	No	0.0005016	Param Intra 1 of 2
Fluoride (mg/L)	GSD-AP-MW-11	0.1122	n/a	10/12/2021	0.134	Yes	13	0.0646	0.01756	23.08	Kaplan-Meier	No	0.0005016	Param Intra 1 of 2
Fluoride (mg/L)	GSD-AP-MW-12	0.1	n/a	10/5/2021	0.1ND	No	13	n/a	n/a	92.31	n/a	n/a	0.009692	NP Intra (NDs) 1 of 2
Fluoride (mg/L)	GSD-AP-MW-14	0.2947	n/a	10/12/2021	0.1ND	No	13	0.1209	0.06411	46.15	Kaplan-Meier	No	0.0005016	Param Intra 1 of 2
Fluoride (mg/L)	GSD-AP-MW-16	0.16	n/a	10/6/2021	0.1ND	No	14	n/a	n/a	50	n/a	n/a	0.008612	NP Intra (normality) 1 of 2
Fluoride (mg/L)	GSD-AP-MW-17	0.2376	n/a	10/6/2021	0.175	No	13	0.1837	0.01989	0	None	No	0.0005016	Param Intra 1 of 2
Fluoride (mg/L)	GSD-AP-MW-2	0.3534	n/a	10/11/2021	0.283	No	13	0.2362	0.04323	0	None	No	0.0005016	Param Intra 1 of 2
Fluoride (mg/L)	GSD-AP-MW-3	0.1327	n/a	10/5/2021	0.1ND	No	14	0.07516	0.0217	28.57	Kaplan-Meier	No	0.0005016	Param Intra 1 of 2
Fluoride (mg/L)	GSD-AP-MW-4	0.2837	n/a	10/5/2021	0.214	No	13	0.2314	0.01931	0	None	No	0.0005016	Param Intra 1 of 2
Fluoride (mg/L)	GSD-AP-MW-5	0.08126	n/a	10/5/2021	0.122	Yes	13	0.05878	0.008293	0	None	No	0.0005016	Param Intra 1 of 2
Fluoride (mg/L)	GSD-AP-MW-6	0.08914	n/a	10/5/2021	0.1ND	No	13	0.05192	0.01373	38.46	Kaplan-Meier	No	0.0005016	Param Intra 1 of 2
Fluoride (mg/L)	GSD-AP-MW-7	0.109	n/a	10/5/2021	0.0933J	No	13	0.0755	0.01236	23.08	Kaplan-Meier	No	0.0005016	Param Intra 1 of 2
Fluoride (mg/L)	GSD-AP-MW-8	0.149	n/a	10/12/2021	0.123	No	13	0.09544	0.01975	7.692	None	No	0.0005016	Param Intra 1 of 2
Fluoride (mg/L)	GSD-AP-MW-9	0.1665	n/a	10/12/2021	0.147	No	13	0.01415	0.005005	7.692	None	x^2	0.0005016	Param Intra 1 of 2
Fluoride (mg/L)	GSD-AP-PZ-1	0.1606	n/a	10/5/2021	0.1ND	No	13	0.1071	0.01975	7.692	None	No	0.0005016	Param Intra 1 of 2
Fluoride (mg/L)	GSD-AP-PZ-5	0.1	n/a	10/12/2021	0.1ND	No	13	n/a	n/a	53.85	n/a	n/a	0.009692	NP Intra (NDs) 1 of 2
Fluoride (mg/L)	GSD-AP-PZ-6	0.1	n/a	10/12/2021	0.1ND	No	13	n/a	n/a	53.85	n/a	n/a	0.009692	NP Intra (NDs) 1 of 2
pH (pH)	GSD-AP-MW-1	6.84	5.503	10/5/2021	5.79	No	13	6.172	0.2466	0	None	No	0.0002508	Param Intra 1 of 2
pH (pH)	GSD-AP-MW-10	7.042	6.384	10/11/2021	6.72	No	13	2060	147.3	0	None	x^4	0.0002508	Param Intra 1 of 2
pH (pH)	GSD-AP-MW-11	7.012	6.206	10/12/2021	6.66	No	13	6.609	0.1486	0	None	No	0.0002508	Param Intra 1 of 2
pH (pH)	GSD-AP-MW-12	5.692	5.209	10/5/2021	5.19	Yes	13	5.451	0.08911	0	None	No	0.0002508	Param Intra 1 of 2
pH (pH)	GSD-AP-MW-14	4.1	3.25	10/12/2021	4.04	No	13	n/a	n/a	0	n/a	n/a	0.01938	NP Intra (normality) 1 of 2
pH (pH)	GSD-AP-MW-16	5.683	3.348	10/6/2021	4.16	No	13	4.515	0.4307	0	None	No	0.0002508	Param Intra 1 of 2
pH (pH)	GSD-AP-MW-17	10.35	6.943	10/6/2021	7.92	No	13	8.645	0.6277	0	None	No	0.0002508	Param Intra 1 of 2
pH (pH)	GSD-AP-MW-2	6.801	6.273	10/11/2021	6.59	No	13	6.537	0.09742	0	None	No	0.0002508	Param Intra 1 of 2
pH (pH)	GSD-AP-MW-3	6.88	5.224	10/5/2021	5.76	No	13	6.052	0.3053	0	None	No	0.0002508	Param Intra 1 of 2
pH (pH)	GSD-AP-MW-4	6.998	6.332	10/5/2021	6.58	No	13	6.665	0.1229	0	None	No	0.0002508	Param Intra 1 of 2
pH (pH)	GSD-AP-MW-5	6.352	5.982	10/5/2021	6.24	No	13	6.167	0.06836	0	None	No	0.0002508	Param Intra 1 of 2
pH (pH)	GSD-AP-MW-6	6.703	5.385	10/5/2021	5.74	No	13	6.044	0.243	0	None	No	0.0002508	Param Intra 1 of 2
pH (pH)	GSD-AP-MW-7	6.847	5.694	10/5/2021	6.06	No	13	6.271	0.2126	0	None	No	0.0002508	Param Intra 1 of 2
pH (pH)	GSD-AP-MW-8	7.032	6.084	10/12/2021	6.61	No	13	6.558	0.1748	0	None	No	0.0002508	Param Intra 1 of 2
pH (pH)	GSD-AP-MW-9	7.152	6.581	10/12/2021	6.9	No	14	6.866	0.1077	0	None	No	0.0002508	Param Intra 1 of 2
pH (pH)	GSD-AP-PZ-1	6.83	5.85	10/5/2021	6.46	No	13	n/a	n/a	0	n/a	n/a	0.01938	NP Intra (normality) 1 of 2
pH (pH)	GSD-AP-PZ-5	6.328	4.632	10/12/2021	5.33	No	13	5.48	0.3127	0	None	No	0.0002508	Param Intra 1 of 2
pH (pH)	GSD-AP-PZ-6	5.699	5.348	10/12/2021	5.41	No	13	5.523	0.06473	0	None	No	0.0002508	Param Intra 1 of 2

Appendix III - Prediction Limit Exceedances Trend Test - Significant Results

	Plant Gadsden	Client: Southern Company		y Data: Plant Gadsden CCR F		R Printed 1/13/2022, 3:06 PM					
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	Alpha	Method
Boron (mg/L)	GSD-AP-MW-1	-0.06242	-61	-48	Yes	14	0	n/a	n/a	0.01	NP
Boron (mg/L)	GSD-AP-MW-2	-0.08037	-64	-48	Yes	14	0	n/a	n/a	0.01	NP
Boron (mg/L)	GSD-AP-MW-3	0.05252	59	53	Yes	15	0	n/a	n/a	0.01	NP
Boron (mg/L)	GSD-AP-MW-4	-0.056	-68	-48	Yes	14	0	n/a	n/a	0.01	NP
Boron (mg/L)	GSD-AP-MW-5	-0.069	-67	-48	Yes	14	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GSD-AP-MW-1	-18.36	-55	-48	Yes	14	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GSD-AP-MW-11	4.022	52	48	Yes	14	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GSD-AP-MW-2	-14.19	-52	-48	Yes	14	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GSD-AP-MW-3	-11.11	-67	-53	Yes	15	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GSD-AP-MW-17 (bg)	-0.412	-67	-48	Yes	14	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GSD-AP-MW-3	-0.7197	-92	-53	Yes	15	0	n/a	n/a	0.01	NP
Fluoride (mg/L)	GSD-AP-MW-11	0.01846	57	48	Yes	14	21.43	n/a	n/a	0.01	NP
pH (pH)	GSD-AP-MW-16 (bg)	-0.5008	-70	-48	Yes	14	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	GSD-AP-MW-1	-81.47	-68	-48	Yes	14	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	GSD-AP-MW-11	22.44	49	48	Yes	14	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	GSD-AP-MW-2	-63.87	-63	-48	Yes	14	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	GSD-AP-MW-3	-43.33	-73	-53	Yes	15	0	n/a	n/a	0.01	NP

Appendix III - Prediction Limit Exceedances Trend Test - All Results

	Plant Gadsden	Client: Southern C	Company	Data: Plant	Gadsden CO	R Pri	nted 1/13/2022	2, 3:06 PM			
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron (mg/L)	GSD-AP-MW-1	-0.06242	-61	-48	Yes	14	0	n/a	n/a	0.01	NP
Boron (mg/L)	GSD-AP-MW-11	0.01128	44	48	No	14	0	n/a	n/a	0.01	NP
Boron (mg/L)	GSD-AP-MW-14 (bg)	0	0	48	No	14	100	n/a	n/a	0.01	NP
Boron (mg/L)	GSD-AP-MW-16 (bg)	0.02049	44	53	No	15	60	n/a	n/a	0.01	NP
Boron (mg/L)	GSD-AP-MW-17 (bg)	-0.001687	-35	-48	No	14	0	n/a	n/a	0.01	NP
Boron (mg/L)	GSD-AP-MW-2	-0.08037	-64	-48	Yes	14	0	n/a	n/a	0.01	NP
Boron (mg/L)	GSD-AP-MW-3	0.05252	59	53	Yes	15	0	n/a	n/a	0.01	NP
Boron (mg/L)	GSD-AP-MW-4	-0.056	-68	-48	Yes	14	0	n/a	n/a	0.01	NP
Boron (mg/L)	GSD-AP-MW-5	-0.069	-67	-48	Yes	14	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GSD-AP-MW-1	-18.36	-55	-48	Yes	14	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GSD-AP-MW-10	0.3552	11	48	No	14	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GSD-AP-MW-11	4.022	52	48	Yes	14	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GSD-AP-MW-12	2.155	15	48	No	14	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GSD-AP-MW-14 (bg)	-1.044	-16	-48	No	14	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GSD-AP-MW-16 (bg)	-0.5887	-13	-53	No	15	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GSD-AP-MW-17 (bg)	1.622	25	48	No	14	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GSD-AP-MW-2	-14.19	-52	-48	Yes	14	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GSD-AP-MW-3	-11.11	-67	-53	Yes	15	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GSD-AP-MW-5	-2.198	-33	-48	No	14	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GSD-AP-MW-8	-0.8321	-11	-48	No	14	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GSD-AP-MW-9	0.7715	11	48	No	14	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GSD-AP-MW-1	-0.02609	-6	-48	No	14	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GSD-AP-MW-10	0.02804	3	48	No	14	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GSD-AP-MW-11	-0.05489	-6	-48	No	14	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GSD-AP-MW-12	0.06337	13	48	No	14	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GSD-AP-MW-14 (bg)	0.02255	13	48	No	14	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GSD-AP-MW-16 (bg)	-0.04562	-7	-53	No	15	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GSD-AP-MW-17 (bg)	-0.412	-67	-48	Yes	14	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GSD-AP-MW-3	-0.7197	-92	-53	Yes	15	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GSD-AP-MW-4	0.183	23	48	No	14	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GSD-AP-MW-5	-0.3869	-44	-48	No	14	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GSD-AP-MW-6	-0.2376	-40	-48	No	14	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GSD-AP-MW-7	-0.5316	-44	-48	No	14	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GSD-AP-MW-8	0.1905	26	48	No	14	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GSD-AP-MW-9	0.2026	27	48	No	14	0	n/a	n/a	0.01	NP
Fluoride (mg/L)	GSD-AP-MW-10	0.01072	41	48	No	14	0	n/a	n/a	0.01	NP
Fluoride (mg/L)	GSD-AP-MW-11	0.01846	57	48	Yes	14	21.43	n/a	n/a	0.01	NP
Fluoride (mg/L)	GSD-AP-MW-14 (bg)	-0.04431	-47	-48	No	14	50	n/a	n/a	0.01	NP
Fluoride (mg/L)	GSD-AP-MW-16 (bg)	0	-33	-53	No	15	53.33	n/a	n/a	0.01	NP
Fluoride (mg/L)	GSD-AP-MW-17 (bg)	-0.009217	-44	-48	No	14	0	n/a	n/a	0.01	NP
Fluoride (mg/L)	GSD-AP-MW-5	0.004584	33	48	No	14	0	n/a	n/a	0.01	NP
pH (pH)	GSD-AP-MW-12	-0.04154	-18	-48	No	14	0	n/a	n/a	0.01	NP
pH (pH)	GSD-AP-MW-14 (bg)	-0.01834	-18	-48	No	14	0	n/a	n/a	0.01	NP
pH (pH)	GSD-AP-MW-16 (bg)	-0.5008	-70	-48	Yes	14	0	n/a	n/a	0.01	NP
pH (pH)	GSD-AP-MW-17 (bg)	-0.09143	-10	-48	No	14	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GSD-AP-MW-1	-1.272	-2	-48	No	14	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GSD-AP-MW-14 (bg)	-4.795	-10	-48	No	14	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GSD-AP-MW-16 (bg)	29.67	42	53	No	15	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GSD-AP-MW-17 (bg)	-1.162	-42	-48	No	14	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GSD-AP-MW-3	0.8391	4	53	No	15	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	GSD-AP-MW-1	-81.47	-68	-48	Yes	14	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	GSD-AP-MW-11	22.44	49	48	Yes	14	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	GSD-AP-MW-12	0	0	48	No	14	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	GSD-AP-MW-14 (bg)	-10.61	-11	-48	No	14	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	GSD-AP-MW-16 (bg)	26.27	37	53	No	15	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	GSD-AP-MW-17 (bg)	-3.097	-18	-48	No	14	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	GSD-AP-MW-2	-63.87	-63	-48	Yes	14	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	GSD-AP-MW-3	-43.33	-73	-53	Yes	15	0	n/a	n/a	0.01	NP

Upper Tolerance Limits - Appendix IV

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR Printed 1/13/2022, 3:11 PM

Constituent	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	<u>Bg N</u>	%NDs	Transform	<u>Alpha</u>	Method
Antimony (mg/L)	0.00102	n/a	n/a	n/a	n/a	40	97.5	n/a	0.1285	NP Inter
Arsenic (mg/L)	0.00614	n/a	n/a	n/a	n/a	40	42.5	n/a	0.1285	NP Inter
Barium (mg/L)	0.312	n/a	n/a	n/a	n/a	40	0	n/a	0.1285	NP Inter
Beryllium (mg/L)	0.00157	n/a	n/a	n/a	n/a	40	47.5	n/a	0.1285	NP Inter
Cadmium (mg/L)	0.00101	n/a	n/a	n/a	n/a	40	32.5	n/a	0.1285	NP Inter
Chromium (mg/L)	0.01	n/a	n/a	n/a	n/a	40	80	n/a	0.1285	NP Inter
Cobalt (mg/L)	0.056	n/a	n/a	n/a	n/a	40	27.5	n/a	0.1285	NP Inter
Combined Radium 226 + 228 (pCi/L)	2.01	n/a	n/a	n/a	n/a	33	0	n/a	0.184	NP Inter
Fluoride (mg/L)	0.23	n/a	n/a	n/a	n/a	43	34.88	n/a	0.1102	NP Inter
Lead (mg/L)	0.00258	n/a	n/a	n/a	n/a	40	50	n/a	0.1285	NP Inter
Lithium (mg/L)	0.02	n/a	n/a	n/a	n/a	40	77.5	n/a	0.1285	NP Inter
Mercury (mg/L)	0.000775	n/a	n/a	n/a	n/a	39	66.67	n/a	0.1353	NP Inter
Molybdenum (mg/L)	0.00507	n/a	n/a	n/a	n/a	40	75	n/a	0.1285	NP Inter
Selenium (mg/L)	0.0134	n/a	n/a	n/a	n/a	40	55	n/a	0.1285	NP Inter
Thallium (mg/L)	0.0002	n/a	n/a	n/a	n/a	40	100	n/a	0.1285	NP Inter

GADSDEN ASH POND GWPS											
Analyte	Units	Background	GWPS								
Antimony	mg/L	0.00102	0.006								
Arsenic	mg/L	0.00614	0.01								
Barium	mg/L	0.312	2								
Beryllium	mg/L	0.00157	0.004								
Cadmium	mg/L	0.00101	0.005								
Chromium	mg/L	0.01	0.1								
Cobalt	mg/L	0.056	0.056								
Combined Radium-226/228	pCi/L	2.01	5								
Fluoride	mg/L	0.23	4								
Lead	mg/L	0.00258	0.015								
Lithium	mg/L	0.02	0.04								
Mercury	mg/L	0.000775	0.002								
Molybdenum	mg/L	0.00507	0.1								
Selenium	mg/L	0.0134	0.05								
Thallium	mg/L	0.0002	0.002								

Notes:

- 1. mg/L Milligrams per liter
- 2. pCi/L Picocuries per liter
- 3. The background limits were used as the groundwater protection standard (GWPS) when appropriate under 40 CFR §257.95(h), ADEM Rule 335-13-15-.06(h), and the ADEM Variance.
- 4. GWPS established during first semi-annual sampling event in 2021.

Appendix IV - Confidence Intervals - Significant Results

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR Printed 1/11/2022, 3:53 PM

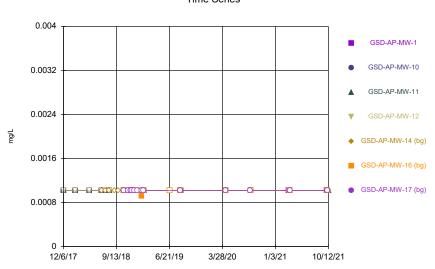
Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig. N	Std. Dev.	%NDs	Transform	<u>Alpha</u>	Method
Arsenic (mg/L)	GSD-AP-MW-2	0.8867	0.4825	0.01	Yes 8	0.1907	0	No	0.01	Param.
Arsenic (mg/L)	GSD-AP-MW-4	0.01443	0.01112	0.01	Yes 8	0.001561	0	No	0.01	Param.

Appendix IV - Confidence Intervals - All Results

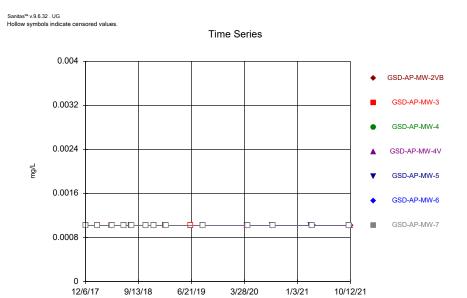
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR Printed 1/11/2022, 3:53 PM

0 (1)					۰		011.0	0/10	, · · · ·		
Constituent Antimony (mg/l.)	Well GSD-AP-PZ-5	Upper Lim.	Lower Lim. 0.00102	Compliance 0.006	Sig.		Std. Dev. 0.00004243	<u>%NDs</u>	<u>Transform</u> No	<u>Alpha</u> 0.004	Method
Antimony (mg/L) Antimony (mg/L)	GSD-AP-PZ-5 GSD-AP-PZ-6	0.00114 0.00181	0.00102	0.006	No No	8	0.00004243	87.5 87.5	No	0.004	NP (NDs) NP (NDs)
Arsenic (mg/L)	GSD-AP-MW-1	0.004635	0.00102	0.000	No	8	0.0002793	0	No	0.004	Param.
Arsenic (mg/L)	GSD-AP-MW-10	0.004055	0.003167	0.01	No	8	0.0000923	0	No	0.01	Param.
Arsenic (mg/L)	GSD-AP-MW-11	0.002875	0.002467	0.01	No	8	0.0001991	0	x^2	0.01	Param.
Arsenic (mg/L)	GSD-AP-MW-2	0.8867	0.4825	0.01	Yes		0.1907	0	No	0.01	Param.
Arsenic (mg/L)	GSD-AP-MW-3	0.00021	0.0002	0.01	No	8	0.000003536	75	No	0.004	NP (NDs)
Arsenic (mg/L)	GSD-AP-MW-4	0.01443	0.01112	0.01	Yes	8	0.001561	0	No	0.01	Param.
Arsenic (mg/L)	GSD-AP-MW-5	0.0002	0.0000817	0.01	No	8	0.00004545	75	No	0.004	NP (NDs)
Arsenic (mg/L)	GSD-AP-MW-7	0.0002	0.00007	0.01	No	8	0.00004596	87.5	No	0.004	NP (NDs)
Arsenic (mg/L)	GSD-AP-MW-8	0.003237	0.002685	0.01	No	8	0.0002603	0	No	0.01	Param.
Arsenic (mg/L)	GSD-AP-MW-9	0.00118	0.0002	0.01	No	8	0.0004166	50	No	0.004	NP (normality)
Arsenic (mg/L)	GSD-AP-PZ-2	0.0002	0.0000826	0.01	No	4	0.00006571	50	No	0.0625	NP (normality)
Arsenic (mg/L)	GSD-AP-PZ-5	0.0002	0.0000808	0.01	No	8	0.00004214	87.5	No	0.004	NP (NDs)
Barium (mg/L)	GSD-AP-MW-1	0.04302	0.03178	2	No	8	0.005302	0	No	0.01	Param.
Barium (mg/L)	GSD-AP-MW-10	0.3583	0.272	2	No	8	0.0407	0	No	0.01	Param.
Barium (mg/L)	GSD-AP-MW-11	0.331	0.165	2	No	8	0.07117	0	No	0.004	NP (normality)
Barium (mg/L)	GSD-AP-MW-12	0.05203	0.03202	2	No	8	0.009438	0	No	0.01	Param.
Barium (mg/L)	GSD-AP-MW-2	0.07826	0.04999	2	No	8	0.01334	0	No	0.01	Param.
Barium (mg/L)	GSD-AP-MW-3	0.0545	0.0344	2	No	8	0.00667	0	No	0.004	NP (normality)
Barium (mg/L)	GSD-AP-MW-4	0.208	0.1663	2	No	8	0.01968	0	No No	0.01	Param.
Barium (mg/L)	GSD-AP-MW-5 GSD-AP-MW-6	0.2509	0.2179	2	No	8	0.01556	0	No No	0.01	Param.
Barium (mg/L) Barium (mg/L)	GSD-AP-MW-7	0.07455 0.08968	0.0586	2	No No	8	0.007523	0	No No	0.01 0.01	Param.
Barium (mg/L)	GSD-AP-MW-8	0.06966	0.06367 0.1821	2	No	8	0.01227 0.03199	0	No	0.01	Param. Param.
Barium (mg/L)	GSD-AP-MW-9	0.1978	0.1021	2	No	8	0.02484	0	No	0.01	Param.
Barium (mg/L)	GSD-AP-PZ-1	0.09461	0.05414	2	No	8	0.01909	0	No	0.01	Param.
Barium (mg/L)	GSD-AP-PZ-2	0.1828	0.006264	2	No	4	0.03889	0	No	0.01	Param.
Barium (mg/L)	GSD-AP-PZ-5	0.126	0.0494	2	No	8	0.03219	0	No	0.004	NP (normality)
Barium (mg/L)	GSD-AP-PZ-6	0.0311	0.02888	2	No	8	0.001049	0	No	0.01	Param.
Cadmium (mg/L)	GSD-AP-MW-1	0.0002	0.0001	0.005	No	8	0.00004583	75	No	0.004	NP (NDs)
Cadmium (mg/L)	GSD-AP-MW-12	0.00069	0.0004022	0.005	No	8	0.0001357	0	No	0.01	Param.
Cadmium (mg/L)	GSD-AP-MW-2	0.0002	0.0000688	0.005	No	8	0.00004639	87.5	No	0.004	NP (NDs)
Cadmium (mg/L)	GSD-AP-MW-3	0.000438	0.0002	0.005	No	8	0.00009918	62.5	No	0.004	NP (NDs)
Cadmium (mg/L)	GSD-AP-MW-7	0.0002	0.000097	0.005	No	8	0.00003642	87.5	No	0.004	NP (NDs)
Cadmium (mg/L)	GSD-AP-MW-8	0.0002	0.0000832	0.005	No	8	0.0000413	87.5	No	0.004	NP (NDs)
Cadmium (mg/L)	GSD-AP-PZ-5	0.0002	0.00008	0.005	No	8	0.00004243	87.5	No	0.004	NP (NDs)
Chromium (mg/L)	GSD-AP-MW-1	0.00102	0.00023	0.1	No	8	0.0003342	75	No	0.004	NP (NDs)
Chromium (mg/L)	GSD-AP-MW-10	0.00102	0.00028	0.1	No	8	0.0003269	75	No	0.004	NP (NDs)
Chromium (mg/L)	GSD-AP-MW-11	0.00102	0.00027	0.1	No	8	0.0002981	75	No	0.004	NP (NDs)
Chromium (mg/L)	GSD-AP-MW-12	0.00102	0.00034	0.1	No	8	0.0002947	75	No	0.004	NP (NDs)
Chromium (mg/L)	GSD-AP-MW-2	0.00102	0.00047	0.1	No	8	0.0002523	75	No	0.004	NP (NDs)
Chromium (mg/L)	GSD-AP-MW-3	0.00285	0.00023	0.1	No	8	0.0008008	62.5	No	0.004	NP (NDs)
Chromium (mg/L)	GSD-AP-MW-4	0.00102	0.000323	0.1	No	8	0.0002464	87.5	No	0.004	NP (NDs)
Chromium (mg/L)	GSD-AP-MW-5	0.00102	0.00028	0.1	No	8	0.000317	75 75	No	0.004	NP (NDs)
Chromium (mg/L) Chromium (mg/L)	GSD-AP-MW-6 GSD-AP-MW-7	0.00102 0.00102	0.00025 0.00025	0.1 0.1	No No	8	0.0003369 0.000323	75 75	No No	0.004 0.004	NP (NDs) NP (NDs)
Chromium (mg/L)	GSD-AP-MW-8	0.00102	0.00023	0.1	No	8	0.000323	87.5	No	0.004	NP (NDs)
Chromium (mg/L)	GSD-AP-MW-9	0.00102	0.00031	0.1	No	8	0.0003042	75	No	0.004	NP (NDs)
Chromium (mg/L)	GSD-AP-PZ-1	0.00102	0.00035	0.1	No	8	0.0002899	75	No	0.004	NP (NDs)
Chromium (mg/L)	GSD-AP-PZ-2	0.001027	0.00008704	0.1	No	4	0.0003163	50	No	0.01	Param.
Chromium (mg/L)	GSD-AP-PZ-5	0.00102	0.00034	0.1	No	8	0.0002748	75	No	0.004	NP (NDs)
Chromium (mg/L)	GSD-AP-PZ-6	0.00102	0.00031	0.1	No	8	0.0002832	75	No	0.004	NP (NDs)
Cobalt (mg/L)	GSD-AP-MW-1	0.02458	0.0164	0.056	No	8	0.003859	0	No	0.01	Param.
Cobalt (mg/L)	GSD-AP-MW-10	0.00089	0.000203	0.056	No	8	0.0002416	75	No	0.004	NP (NDs)
Cobalt (mg/L)	GSD-AP-MW-11	0.00756	0.000203	0.056	No	8	0.003052	50	No	0.004	NP (normality)
Cobalt (mg/L)	GSD-AP-MW-12	0.005722	0.003605	0.056	No	8	0.0009986	0	No	0.01	Param.
Cobalt (mg/L)	GSD-AP-MW-2	0.04018	0.02285	0.056	No	8	0.008175	0	No	0.01	Param.
Cobalt (mg/L)	GSD-AP-MW-3	0.02557	0.01775	0.056	No	8	0.003689	0	No	0.01	Param.
Cobalt (mg/L)	GSD-AP-MW-4	0.0277	0.0231	0.056	No	8	0.002167	0	No	0.01	Param.
Cobalt (mg/L)	GSD-AP-MW-5	0.00233	0.000203	0.056	No	8	0.0007658	12.5	No	0.004	NP (normality)
Cobalt (mg/L)	GSD-AP-MW-6	0.00104	0.000203	0.056	No	8	0.0003829	75	No	0.004	NP (NDs)
Cobalt (mg/L)	GSD-AP-MW-7	0.00102	0.00018	0.056	No	8	0.0002901	75	No	0.004	NP (NDs)
Cobalt (mg/L)	GSD-AP-MW-8	0.003677	0.001444	0.056	No	8	0.001466	25	x^2	0.01	Param.
Cobalt (mg/L)	GSD-AP-MW-9	0.00113	0.000203	0.056	No	8	0.0004069	75 97 5	No No	0.004	NP (NDs)
Cobalt (mg/L)	GSD-AP-PZ-1	0.00044	0.000203 0.00006002	0.056	No	8	0.00008379	87.5	No No	0.004	NP (NDs)
Cobalt (mg/L) Cobalt (mg/L)	GSD-AP-PZ-2 GSD-AP-PZ-5	0.008085 0.00227	0.00008	0.056 0.056	No No	4 8	0.001767 0.0009513	0 50	No No	0.01 0.004	Param. NP (normality)
(····g·-)	2027 120	0.00221	5.55500	3.000	. •0	-	3.0000010			3.504	(normality)

Appendix IV - Confidence Intervals - All Results

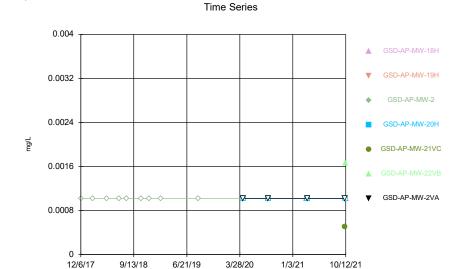

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR Printed 1/11/2022, 3:53 PM

Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig.		Std. Dev.	%NDs	Transform	<u>Alpha</u>	Method
Cobalt (mg/L)	GSD-AP-PZ-6	0.000203	0.000108	0.056	No	8	0.00003756	75	No	0.004	NP (NDs)
Combined Radium 226 + 228 (pCi/L)	GSD-AP-MW-1	0.9405	0.3485	5	No	8	0.2792	0	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GSD-AP-MW-10	2.742	0.0046	5	No	8	2.17	0	x^(1/3)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GSD-AP-MW-11	1.318	0.7526	5	No	8	0.2668	0	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GSD-AP-MW-12	1.226	0.1273	5	No	8	0.5182	0	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GSD-AP-MW-2	1.54	0.2978	5	No	8	0.6692	0	sqrt(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GSD-AP-MW-3	1.65	0.1921	5	No	8	0.9789	0	x^(1/3)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GSD-AP-MW-4	1.285	0.1217	5	No	8	0.5489	0	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GSD-AP-MW-5	1.235	0.3811	5	No	8	0.4027	0	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GSD-AP-MW-6	1.36	-0.086	5	No	8	0.4386	0	No	0.004	NP (normality)
Combined Radium 226 + 228 (pCi/L)	GSD-AP-MW-7	0.9326	0.07467	5	No	8	0.4047	0	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GSD-AP-MW-8	0.7288	0.2854	5	No	8	0.2092	0	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GSD-AP-MW-9	1.146	0.1025	5	No	8	0.4922	0	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GSD-AP-PZ-1	2.07	-0.129	5	No	8	0.678	0	No	0.004	NP (normality)
Combined Radium 226 + 228 (pCi/L)	GSD-AP-PZ-2	1.673	-0.496	5	No	4	0.4778	0	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GSD-AP-PZ-5	0.7655	0.172	5	No	8	0.28	0	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GSD-AP-PZ-6	1.116	0.003433	5	No	8	0.4985	0	x^(1/3)	0.01	Param.
Fluoride (mg/L)	GSD-AP-MW-1	0.1	0.04	4	No	8	0.026	62.5	No	0.004	NP (NDs)
Fluoride (mg/L)	GSD-AP-MW-10	0.1425	0.07281	4	No	8	0.04055	0	ln(x)	0.01	Param.
Fluoride (mg/L)	GSD-AP-MW-11	0.1109	0.06956	4	No	8	0.01912	37.5	No	0.01	Param.
Fluoride (mg/L)	GSD-AP-MW-12	0.1	0.1	4	No	8	0	100	No	0.004	NP (NDs)
Fluoride (mg/L)	GSD-AP-MW-2	0.2781	0.1802	4	No	8	0.04616	0	No	0.01	Param.
Fluoride (mg/L)	GSD-AP-MW-3	0.1	0.0592	4	No	8	0.01915	62.5	No	0.004	NP (NDs)
Fluoride (mg/L)	GSD-AP-MW-4	0.2536	0.2094	4	No	8	0.02083	0	No	0.01	Param.
Fluoride (mg/L)	GSD-AP-MW-5	0.0889	0.04612	4	No	8	0.02389	0	ln(x)	0.01	Param.
Fluoride (mg/L)	GSD-AP-MW-6	0.1	0.0581	4	No	8	0.0153	75	No	0.004	NP (NDs)
Fluoride (mg/L)	GSD-AP-MW-7	0.08844	0.06404	4	No	8	0.01568	37.5	No	0.01	Param.
Fluoride (mg/L)	GSD-AP-MW-8	0.1098	0.06858	4	No	8	0.01946	12.5	No	0.01	Param.
Fluoride (mg/L)	GSD-AP-MW-9	0.148	0.08501	4	No	8	0.03587	12.5	x^2	0.01	Param.
Fluoride (mg/L)	GSD-AP-PZ-1	0.1038	0.07601	4	No	8	0.0133	25	No	0.01	Param.
Fluoride (mg/L)	GSD-AP-PZ-5	0.1	0.1	4	No	8	0	100	No	0.004	NP (NDs)
Fluoride (mg/L)	GSD-AP-PZ-6	0.1	0.1	4	No	8	0	100	No	0.004	NP (NDs)
Lead (mg/L)	GSD-AP-MW-2	0.0002	0.00009	0.015	No	8	0.00003889	87.5	No	0.004	NP (NDs)
Lead (mg/L)	GSD-AP-PZ-2	0.0002	0.00012	0.015	No	4	0.00003873	50	No	0.0625	NP (normality)
Lead (mg/L)	GSD-AP-PZ-5	0.0002	0.00013	0.015	No	8	0.00002475	87.5	No	0.004	NP (NDs)
Lead (mg/L)	GSD-AP-PZ-6	0.0002	0.0000835	0.015	No	8	0.00004652	75	No	0.004	NP (NDs)
Lithium (mg/L)	GSD-AP-MW-2	0.06589	0.02824	0.04	No	8	0.01776	0	No	0.01	Param.
Mercury (mg/L)	GSD-AP-MW-10	0.0005	0.000302	0.002	No	8	0.00007	87.5	No	0.004	NP (NDs)
Mercury (mg/L)	GSD-AP-MW-7	0.0005	0.00034	0.002	No	8	0.00005657	87.5	No	0.004	NP (NDs)
Mercury (mg/L)	GSD-AP-MW-8	0.0005	0.000284	0.002	No	8	0.00007637	87.5	No	0.004	NP (NDs)
Molybdenum (mg/L)	GSD-AP-MW-10	0.00045	0.000203	0.1	No	8	0.00008728	75	No	0.004	NP (NDs)
Molybdenum (mg/L)	GSD-AP-MW-11	0.000203	0.000124	0.1	No	8	0.00003133	75	No	0.004	NP (NDs)
Molybdenum (mg/L)	GSD-AP-MW-2	0.02559	0.01494	0.1	No	8	0.005024	0	No	0.01	Param.
Molybdenum (mg/L)	GSD-AP-MW-4	0.00118	0.000203	0.1	No	8	0.0004365	75	No	0.004	NP (NDs)
Molybdenum (mg/L)	GSD-AP-MW-5	0.000203	0.00015	0.1	No	8	0.00001874	87.5	No	0.004	NP (NDs)
Molybdenum (mg/L)	GSD-AP-MW-7	0.000203	0.0001	0.1	No	8	0.00003642	87.5	No	0.004	NP (NDs)
Molybdenum (mg/L)	GSD-AP-MW-8	0.000357	0.000203	0.1	No	8	0.0000635	75	No	0.004	NP (NDs)
Molybdenum (mg/L)	GSD-AP-MW-9	0.00027	0.00018	0.1	No	8	0.00002612	75	No	0.004	NP (NDs)
Molybdenum (mg/L)	GSD-AP-PZ-1	0.000203	0.00007	0.1	No	8	0.00005544	75	No	0.004	NP (NDs)
Molybdenum (mg/L)	GSD-AP-PZ-2	0.00028	0.000203	0.1	No	4	0.0000385	75	No	0.0625	NP (NDs)
Thallium (mg/L)	GSD-AP-MW-1	0.0002	0.000112	0.002	No	8	0.00003111	87.5	No	0.004	NP (NDs)
Thallium (mg/L)	GSD-AP-MW-2	0.0003549	0.0002241	0.002	No	8	0.00006169	12.5	No	0.01	Param.
Thallium (mg/L)	GSD-AP-MW-3	0.0002	0.0002241	0.002	No	8	0.00003257	75	No	0.004	NP (NDs)
		0.0002	3.000 IZ I	3.002	0	J	3.00000201			5.504	()

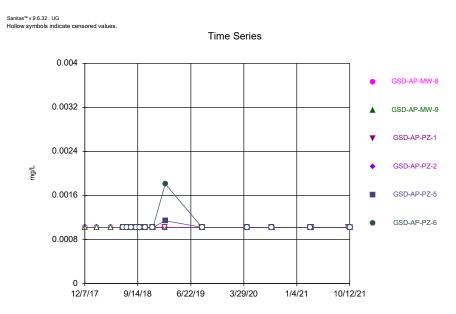

FIGURE A.

Sanitas™ v.9.6.32 . UG

Time Series

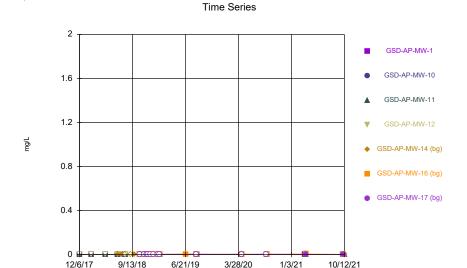


Constituent: Antimony Analysis Run 1/13/2022 1:45 PM Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

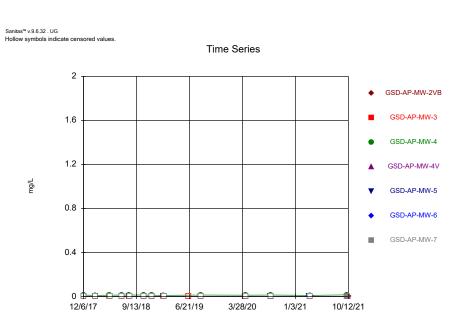


Constituent: Antimony Analysis Run 1/13/2022 1:45 PM Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.32 . UG

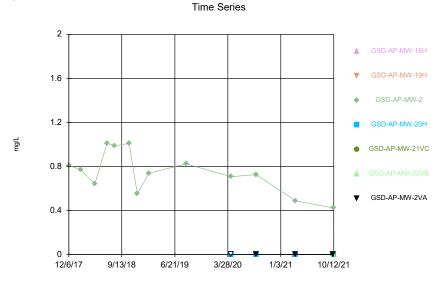


Constituent: Antimony Analysis Run 1/13/2022 1:45 PM Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

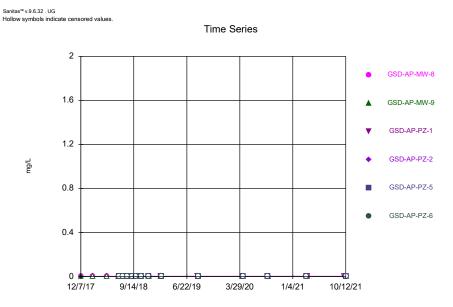


Constituent: Antimony Analysis Run 1/13/2022 1:45 PM Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.32 . UG

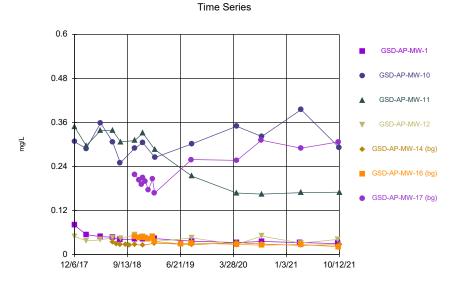


Constituent: Arsenic Analysis Run 1/13/2022 1:46 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

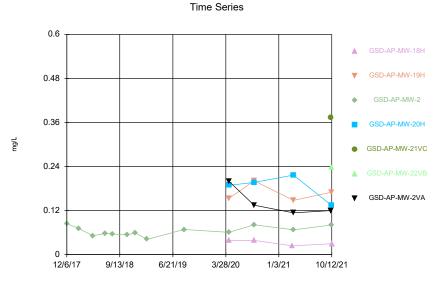


Constituent: Arsenic Analysis Run 1/13/2022 1:46 PM

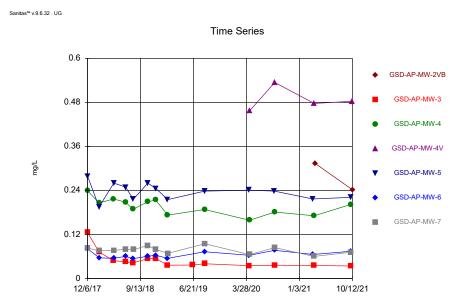
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Constituent: Arsenic Analysis Run 1/13/2022 1:46 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Constituent: Arsenic Analysis Run 1/13/2022 1:46 PM

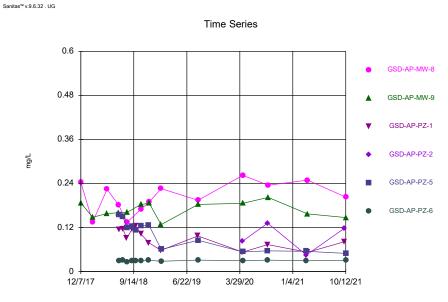

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.32 . UG Sanitas™ v.9.6.32 . UG



Constituent: Barium Analysis Run 1/13/2022 1:46 PM

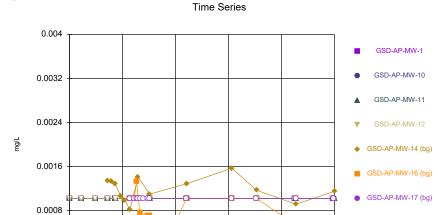
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR



Constituent: Barium Analysis Run 1/13/2022 1:46 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Constituent: Barium Analysis Run 1/13/2022 1:46 PM

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

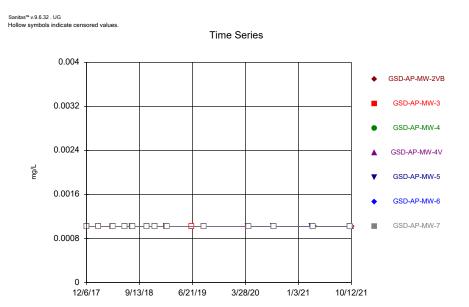

Constituent: Barium Analysis Run 1/13/2022 1:46 PM

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.32 . UG

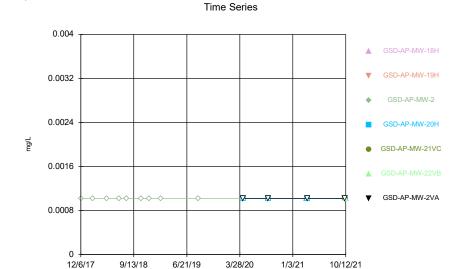
12/6/17

9/13/18

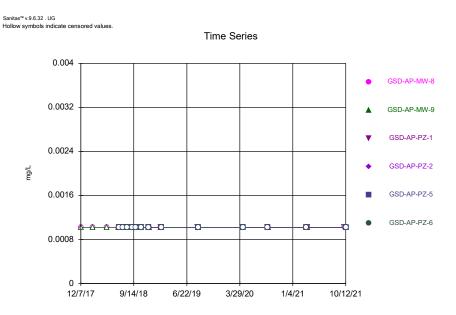

Constituent: Beryllium Analysis Run 1/13/2022 1:46 PM Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

3/28/20

1/3/21

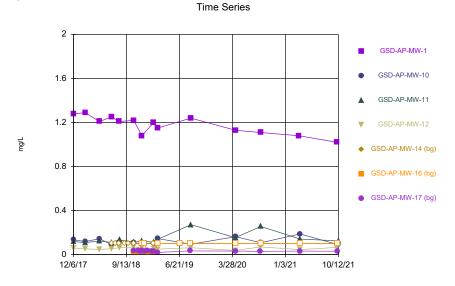

6/21/19

10/12/21

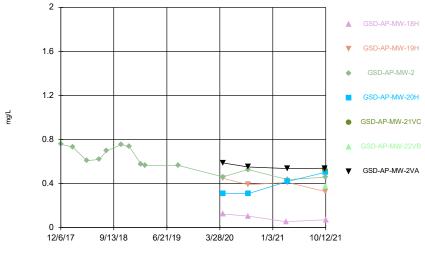


Constituent: Beryllium Analysis Run 1/13/2022 1:46 PM Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.32 . UG

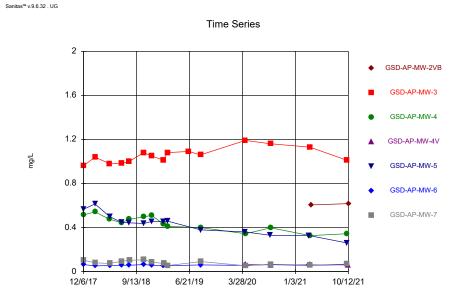


Constituent: Beryllium Analysis Run 1/13/2022 1:46 PM Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

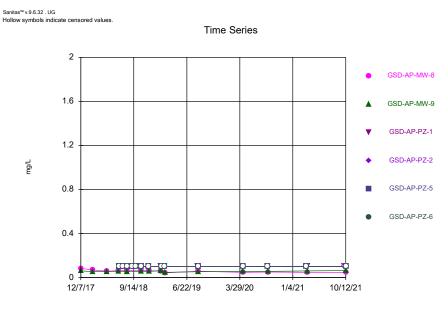


Constituent: Beryllium Analysis Run 1/13/2022 1:46 PM Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

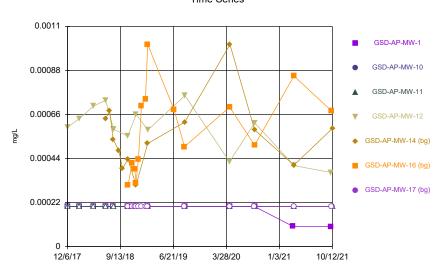
Sanitas™ v.9.6.32 . UG



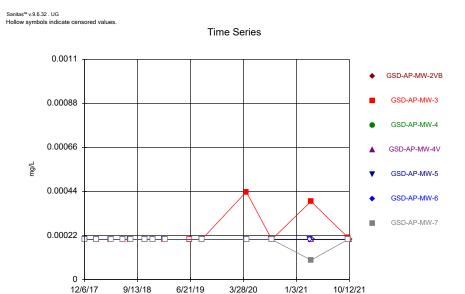
Constituent: Boron Analysis Run 1/13/2022 1:46 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Time Series

Constituent: Boron Analysis Run 1/13/2022 1:46 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

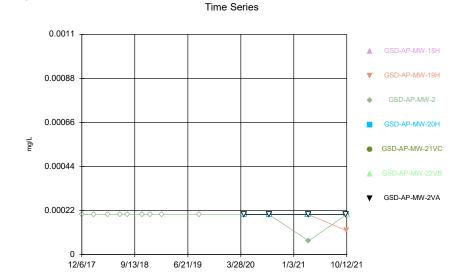

Constituent: Boron Analysis Run 1/13/2022 1:46 PM

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

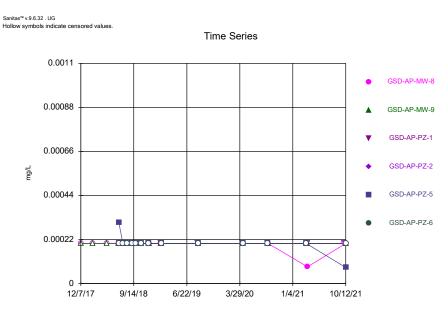


Constituent: Boron Analysis Run 1/13/2022 1:46 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Time Series

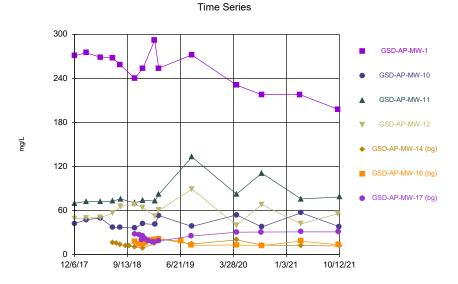


Constituent: Cadmium Analysis Run 1/13/2022 1:46 PM Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

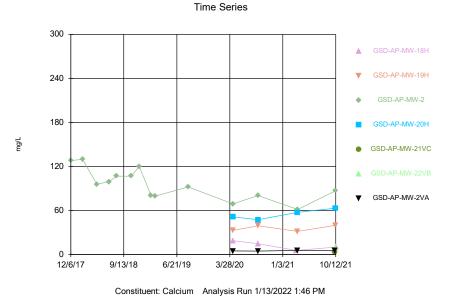


Constituent: Cadmium Analysis Run 1/13/2022 1:46 PM Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

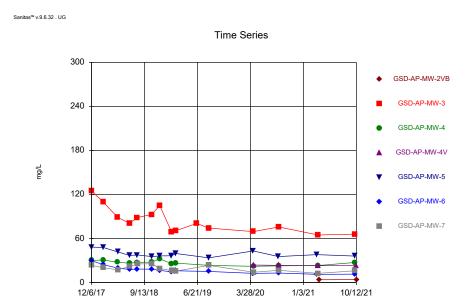
Sanitas™ v.9.6.32 . UG



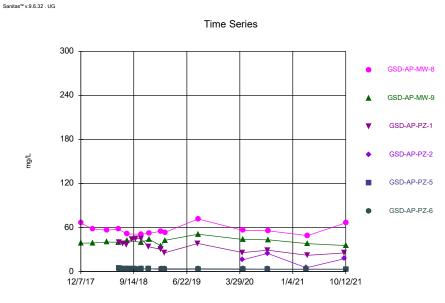
Constituent: Cadmium Analysis Run 1/13/2022 1:46 PM Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR



Constituent: Cadmium Analysis Run 1/13/2022 1:46 PM Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

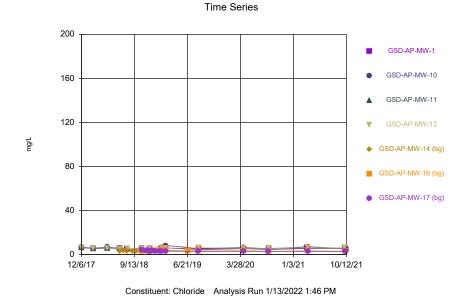

Sanitas™ v.9.6.32 . UG Sanitas™ v.9.6.32 . UG

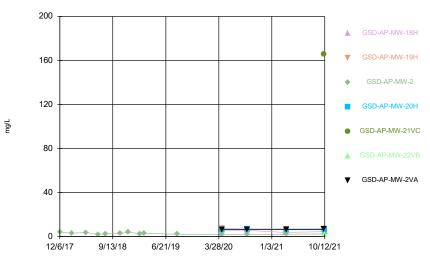
Constituent: Calcium Analysis Run 1/13/2022 1:46 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR



Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Constituent: Calcium Analysis Run 1/13/2022 1:46 PM


Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Constituent: Calcium Analysis Run 1/13/2022 1:46 PM

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas^w v.9.6.32 . UG Sanitas Sanit

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

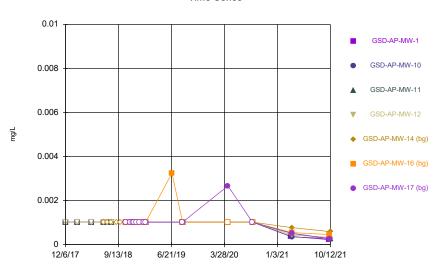
Time Series

Constituent: Chloride Analysis Run 1/13/2022 1:46 PM

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

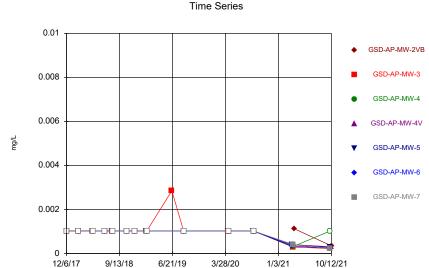
Time Series

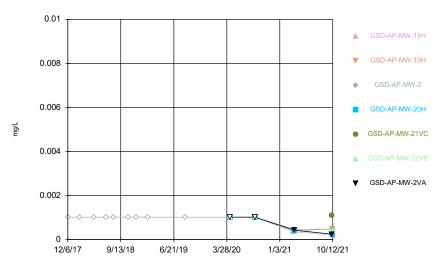
Sanitas™ v.9.6.32 . UG

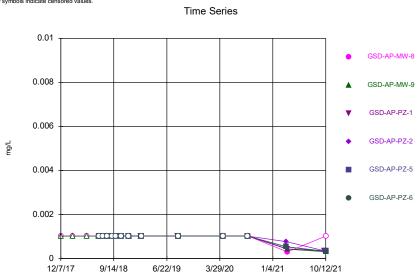

Sanitas™ v.9.6.32 . UG Time Series 200 GSD-AP-MW-2VB GSD-AP-MW-3 160 GSD-AP-MW-4 120 GSD-AP-MW-4V GSD-AP-MW-5 80 GSD-AP-MW-6 GSD-AP-MW-7 40 12/6/17 9/13/18 6/21/19 3/28/20 1/3/21 10/12/21

Constituent: Chloride Analysis Run 1/13/2022 1:46 PM

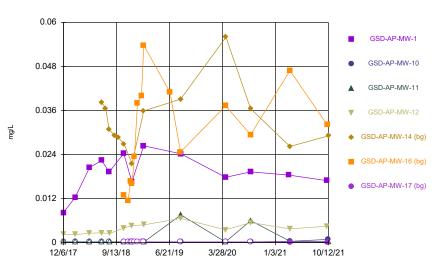
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


200 GSD-AP-MW-8 160 GSD-AP-MW-9 GSD-AP-PZ-1 120 GSD-AP-PZ-2 mg/L 80 GSD-AP-PZ-5 GSD-AP-PZ-6 40 12/7/17 9/14/18 6/22/19 3/29/20 1/4/21 10/12/21

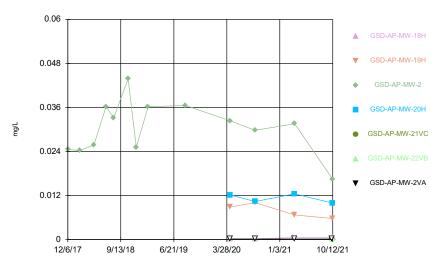

Constituent: Chromium Analysis Run 1/13/2022 1:46 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Constituent: Chromium Analysis Run 1/13/2022 1:46 PM

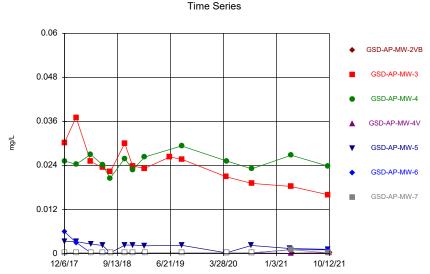
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Constituent: Chromium Analysis Run 1/13/2022 1:46 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.32 . UG Hollow symbols indicate censored values.

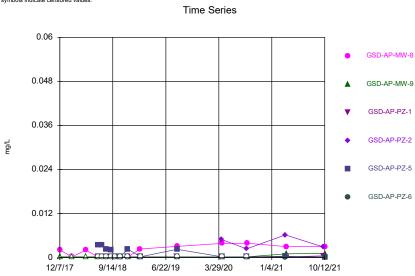

Constituent: Chromium Analysis Run 1/13/2022 1:46 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

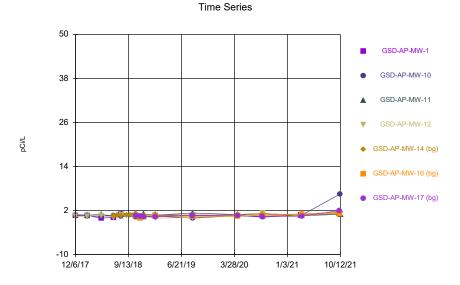
Constituent: Cobalt Analysis Run 1/13/2022 1:46 PM


Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

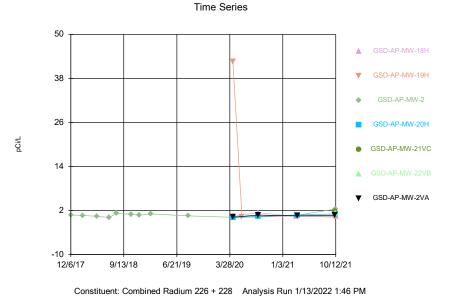
Constituent: Cobalt Analysis Run 1/13/2022 1:46 PM

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Sanitas™ v.9.6.32 . UG Hollow symbols indicate censored values.


Constituent: Cobalt Analysis Run 1/13/2022 1:46 PM

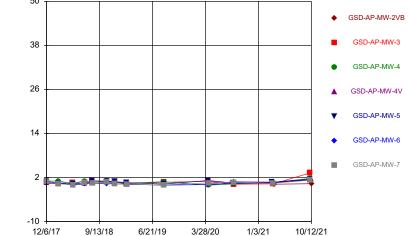
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Sanitas™ v.9.6.32 . UG Hollow symbols indicate censored values.

Sanitas™ v.9.6.32 . UG Sanitas™ v.9.6.32 . UG

Constituent: Combined Radium 226 + 228 Analysis Run 1/13/2022 1:46 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

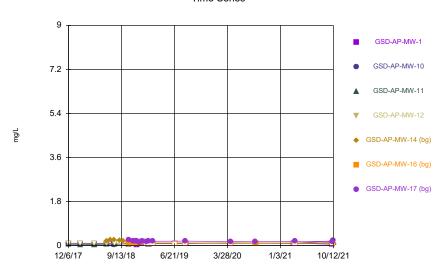

Sanitas™ v.9.6.32 . UG

Sanitas™ v.9.6.32 . UG

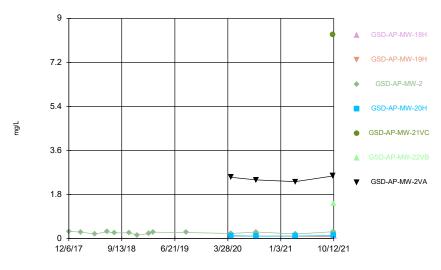
Time Series

GSD-AP-MW-2VB

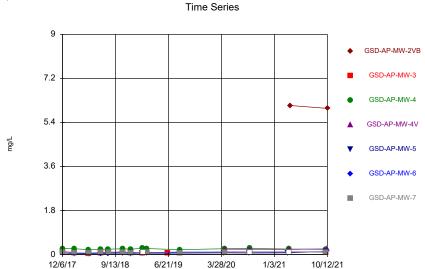
GSD-AP-MW-3


pCi/L

Constituent: Combined Radium 226 + 228 Analysis Run 1/13/2022 1:46 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

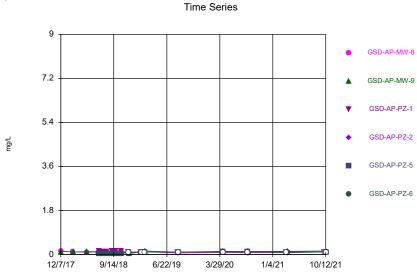

Time Series 50 GSD-AP-MW-8 38 GSD-AP-MW-9 GSD-AP-PZ-1 26 GSD-AP-PZ-2 pQ/L GSD-AP-PZ-5 GSD-AP-PZ-6 -10 12/7/17 9/14/18 6/22/19 3/29/20 1/4/21 10/12/21

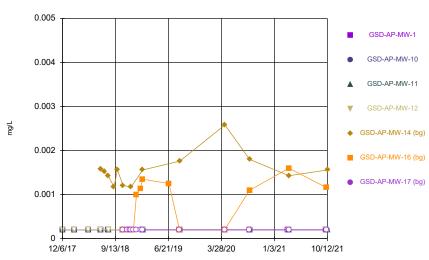
Constituent: Combined Radium 226 + 228 Analysis Run 1/13/2022 1:46 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Constituent: Fluoride Analysis Run 1/13/2022 1:46 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

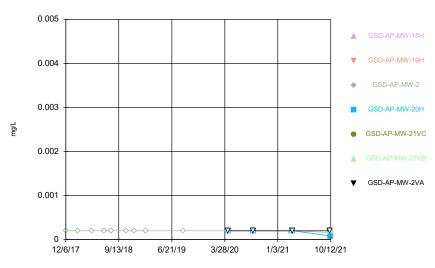
Constituent: Fluoride Analysis Run 1/13/2022 1:46 PM

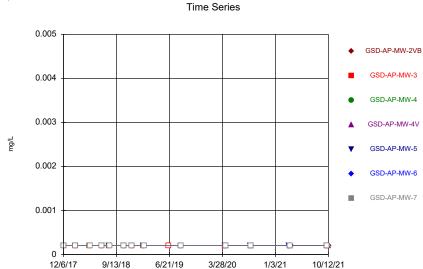
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Sanitas™ v.9.6.32 . UG Hollow symbols indicate censored values.

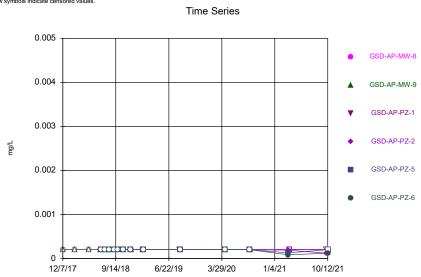

Constituent: Fluoride Analysis Run 1/13/2022 1:46 PM

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Sanitas™ v.9.6.32 . UG Hollow symbols indicate censored values.



Constituent: Lead Analysis Run 1/13/2022 1:46 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Constituent: Lead Analysis Run 1/13/2022 1:46 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

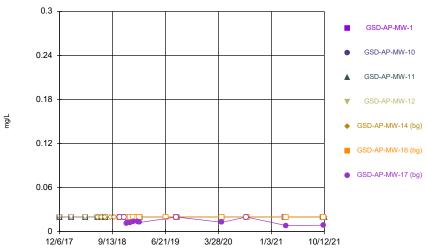
Sanitas™ v.9.6.32 . UG Hollow symbols indicate censored values.

Constituent: Lead Analysis Run 1/13/2022 1:46 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.32 . UG Hollow symbols indicate censored values.

0.3

0.24


0.18

0.12

0.06

mg/L

Time Series

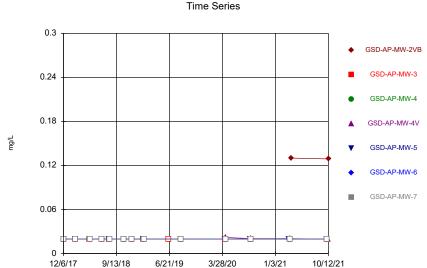
Constituent: Lithium Analysis Run 1/13/2022 1:46 PM Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Time Series

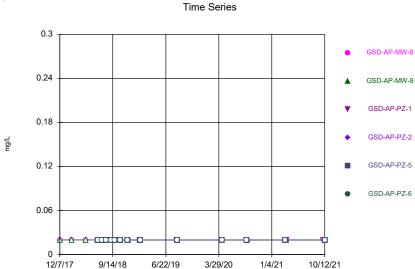
▲ GSD-AP-MW-18H

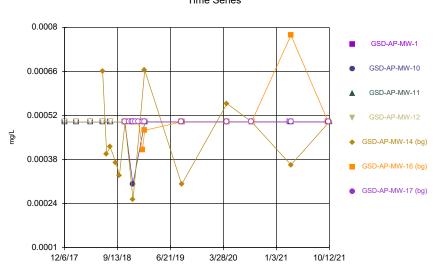
▼ GSD-AP-MW-19H


GSD-AP-MW-20H

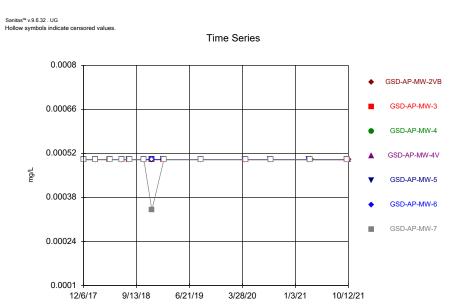
GSD-AP-MW-21VC

▲ GSD-AP-MW-22VB

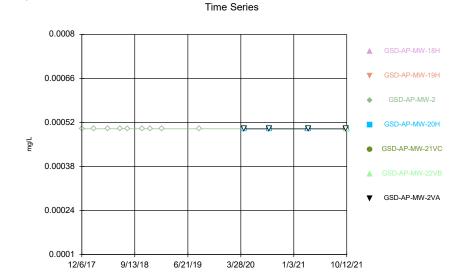

▼ GSD-AP-MW-2VA



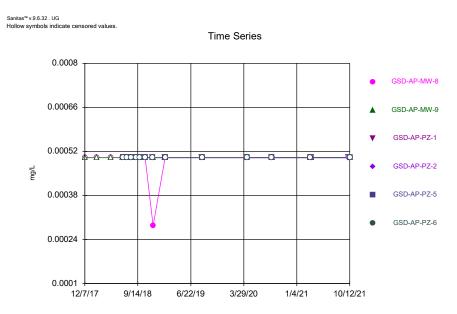
Constituent: Lithium Analysis Run 1/13/2022 1:46 PM Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Sanitas™ v.9.6.32 . UG Hollow symbols indicate censored values.

Hollow symbols indicate censored values Time Series

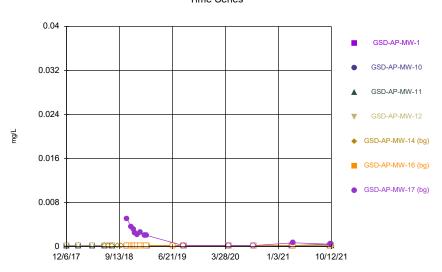


Constituent: Mercury Analysis Run 1/13/2022 1:46 PM Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

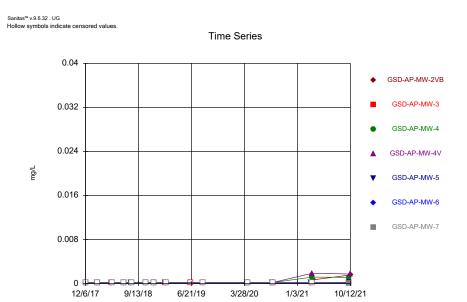


Constituent: Mercury Analysis Run 1/13/2022 1:46 PM Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.32 . UG

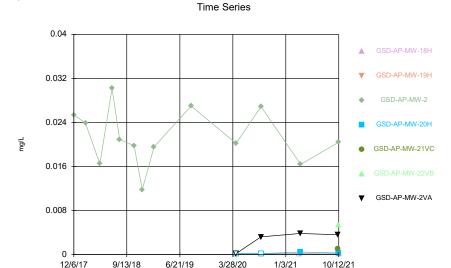


Constituent: Mercury Analysis Run 1/13/2022 1:46 PM Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

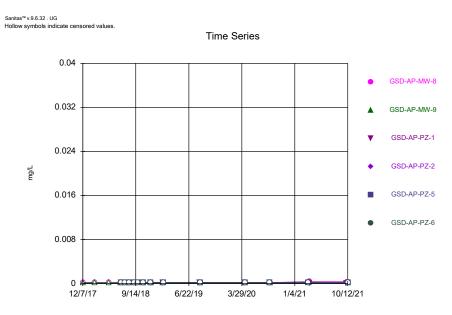


Constituent: Mercury Analysis Run 1/13/2022 1:46 PM Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Time Series

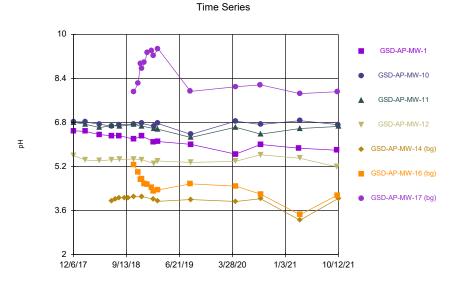


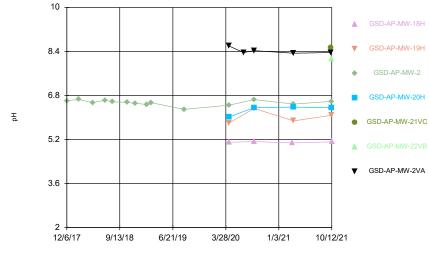
Constituent: Molybdenum Analysis Run 1/13/2022 1:46 PM Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR



Constituent: Molybdenum Analysis Run 1/13/2022 1:46 PM Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

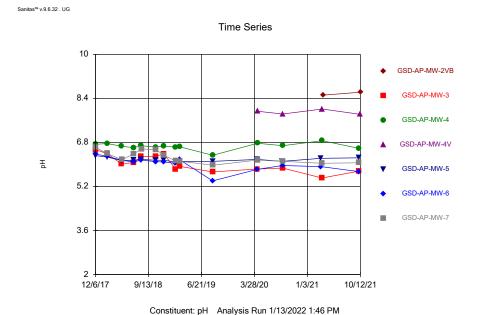
Sanitas™ v.9.6.32 . UG



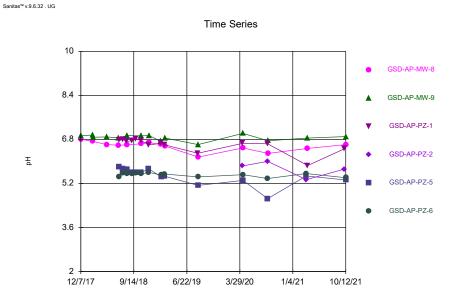

Constituent: Molybdenum Analysis Run 1/13/2022 1:46 PM Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Constituent: Molybdenum Analysis Run 1/13/2022 1:46 PM Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.32 . UG Sanitas™ v.9.6.32 . UG

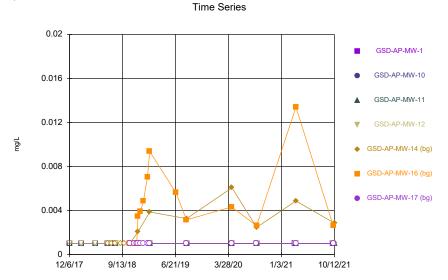


Time Series

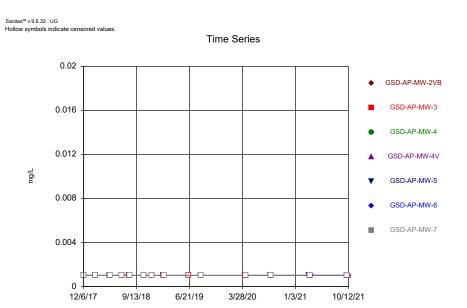

Constituent: pH Analysis Run 1/13/2022 1:46 PM

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR



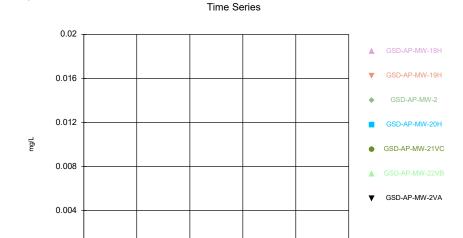
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR



Constituent: pH Analysis Run 1/13/2022 1:46 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

follow symbols indicate censored values.

Constituent: Selenium Analysis Run 1/13/2022 1:46 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR



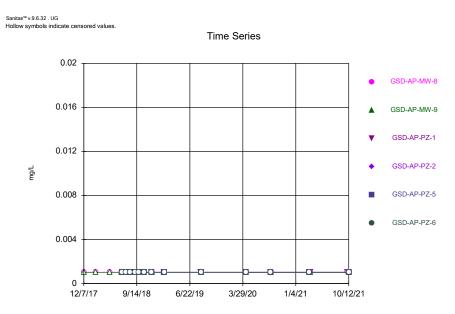
Constituent: Selenium Analysis Run 1/13/2022 1:46 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.32 . UG

12/6/17

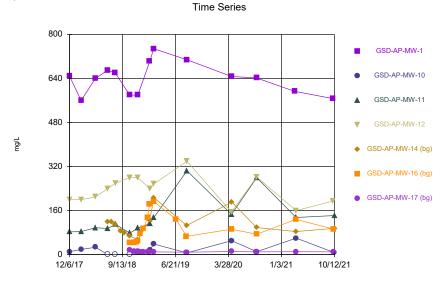
9/13/18

Constituent: Selenium Analysis Run 1/13/2022 1:46 PM

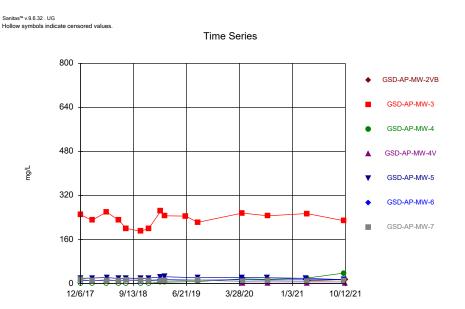

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

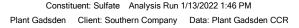
6/21/19

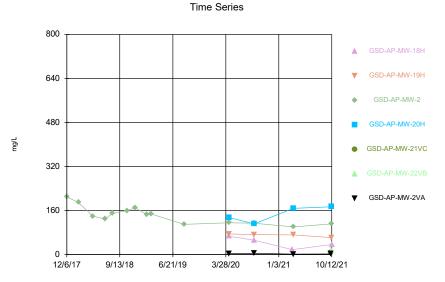
3/28/20

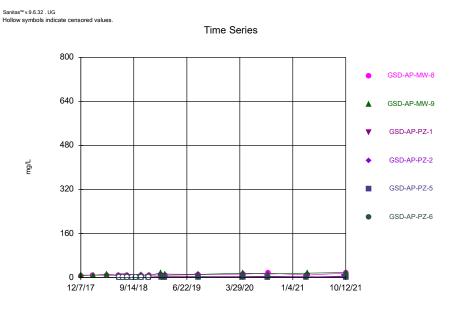

1/3/21

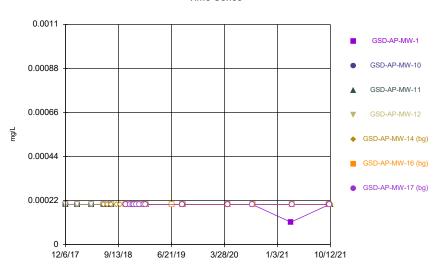
10/12/21




Constituent: Selenium Analysis Run 1/13/2022 1:46 PM


Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Constituent: Sulfate Analysis Run 1/13/2022 1:46 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Constituent: Sulfate Analysis Run 1/13/2022 1:46 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Constituent: Sulfate Analysis Run 1/13/2022 1:46 PM

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Time Series

Constituent: Thallium Analysis Run 1/13/2022 1:46 PM

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas* v.9.6.32. UG
Hollow symbols indicate censored values.

Time Series

GSD-AP-MW-2VB

GSD-AP-MW-3

GSD-AP-MW-4

GSD-AP-MW-4

✓ GSD-AP-MW-5

→ GSD-AP-MW-5

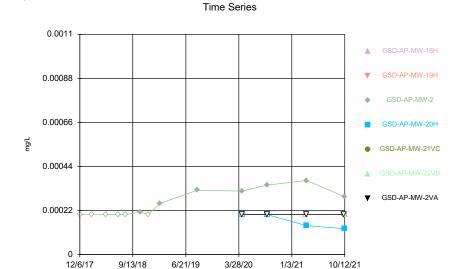
→ GSD-AP-MW-7

Constituent: Thallium Analysis Run 1/13/2022 1:46 PM

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

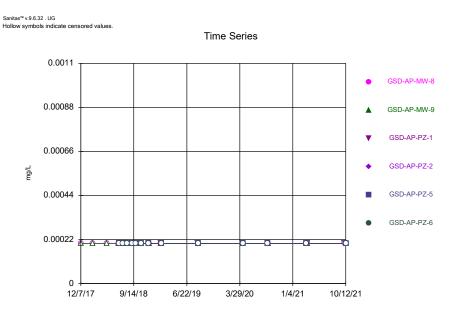
3/28/20

1/3/21


10/12/21

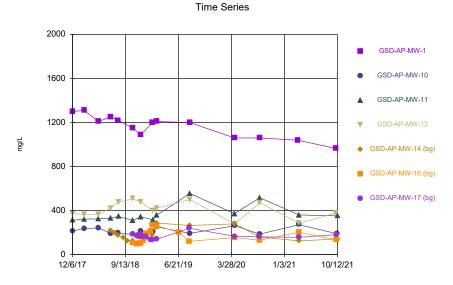
6/21/19

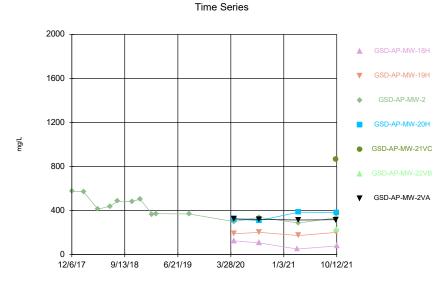
12/6/17


9/13/18

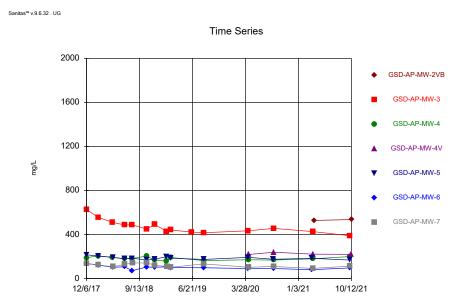
Sanitas™ v.9.6.32 . UG Hollow symbols indicate censored values

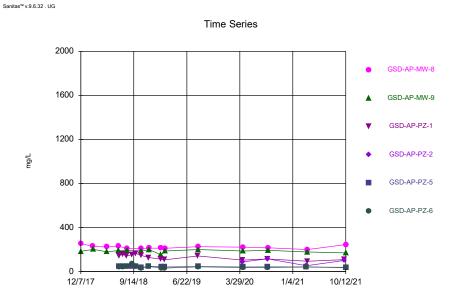
Constituent: Thallium Analysis Run 1/13/2022 1:46 PM


Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Constituent: Thallium Analysis Run 1/13/2022 1:46 PM

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Sanitas™ v.9.6.32 . UG Sanitas™ v.9.6.32 . UG


Constituent: Total Dissolved Solids Analysis Run 1/13/2022 1:46 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Constituent: Total Dissolved Solids Analysis Run 1/13/2022 1:46 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Constituent: Total Dissolved Solids Analysis Run 1/13/2022 1:46 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Constituent: Total Dissolved Solids Analysis Run 1/13/2022 1:46 PM

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

	000 AD MW 1	000 AD MW 10	000 AD MW 11	000 AD MW 10	000 AD MW 14	000 40 404/40	00D AD MW 17
10/0/0017	GSD-AP-MW-1	GSD-AP-MW-10	GSD-AP-MW-11		GSD-AP-MW-14	. GSD-AP-MW-16	. GSD-AP-MW-17
12/6/2017	<0.00102	<0.00102	<0.00102	<0.00102			
2/6/2018	<0.00102						
2/7/2018		<0.00102	<0.00102				
2/8/2018				<0.00102			
4/23/2018	<0.00102						
4/24/2018		<0.00102	<0.00102	<0.00102			
6/26/2018	<0.00102						
6/27/2018		<0.00102	<0.00102	<0.00102	<0.00102		
7/18/2018					<0.00102		
8/6/2018					<0.00102		
8/7/2018	<0.00102	<0.00102					
8/8/2018			<0.00102	<0.00102			
9/5/2018					<0.00102		
9/24/2018					<0.00102		
10/22/2018	<0.00102	<0.00102					
10/23/2018			<0.00102	<0.00102			
10/24/2018					<0.00102	<0.00102	<0.00102
11/14/2018						<0.00102	<0.00102
11/28/2018						<0.00102	<0.00102
12/4/2018	<0.00102	<0.00102	<0.00102				
12/5/2018				<0.00102	<0.00102	<0.00102	<0.00102
12/18/2018						<0.00102	<0.00102
1/3/2019						<0.00102	<0.00102
1/24/2019						0.000922 (J)	<0.00102
2/5/2019	<0.00102				<0.00102	<0.00102	<0.00102
2/6/2019		<0.00102	<0.00102	<0.00102			
6/24/2019						<0.00102	
8/19/2019						<0.00102	<0.00102
8/20/2019					<0.00102		
8/21/2019	<0.00102						
8/22/2019		<0.00102	<0.00102	<0.00102			
4/14/2020			<0.00102	<0.00102			
4/15/2020	<0.00102	<0.00102				<0.00102	
4/16/2020					<0.00102		<0.00102
8/24/2020							<0.00102
8/25/2020	<0.00102				<0.00102	<0.00102	
8/26/2020		<0.00102	<0.00102	<0.00102			
3/16/2021	<0.00102						
3/22/2021					<0.00102	<0.00102	<0.00102
3/23/2021		<0.00102	<0.00102	<0.00102			
10/5/2021	<0.00102			<0.00102			
10/6/2021						<0.00102	<0.00102
10/11/2021		<0.00102					
10/12/2021			<0.00102		<0.00102		

	GSD-AP-MW-1	8H GSD-AP-MW-	19H GSD-AP-MW-2	GSD-AP-MW-20)H GSD-AP-MW-21	VCGSD-AP-MW-	22VB GSD-AP-MW-2VA	
12/6/2017			<0.00102					
2/6/2018			<0.00102					
4/23/2018			<0.00102					
6/27/2018			<0.00102					
8/7/2018			<0.00102					
10/22/2018	3		<0.00102					
12/4/2018			<0.00102					
2/5/2019			<0.00102					
8/20/2019			<0.00102					
4/14/2020		<0.00102		<0.00102				
4/15/2020	<0.00102		<0.00102				<0.00102	
8/25/2020	<0.00102		<0.00102				<0.00102	
8/26/2020		<0.00102		<0.00102				
3/16/2021	<0.00102							
3/22/2021							<0.00102	
3/23/2021		<0.00102		<0.00102				
3/24/2021			<0.00102					
10/6/2021					0.00051 (J)		<0.00102	
10/11/2021	l	<0.00102	<0.00102	<0.00102		0.00167		
10/12/2021	<0.00102							

	GSD-AP-MW-2VB	GSD-AP-MW-3	GSD-AP-MW-4	GSD-AP-MW-4V	GSD-AP-MW-5	GSD-AP-MW-6	GSD-AP-MW-7
12/6/2017		<0.00102					
12/7/2017			<0.00102		<0.00102	<0.00102	<0.00102
2/6/2018		<0.00102	<0.00102		<0.00102		
2/8/2018						<0.00102	<0.00102
4/24/2018		<0.00102	<0.00102				
4/25/2018					<0.00102	<0.00102	<0.00102
6/26/2018			<0.00102			<0.00102	<0.00102
6/27/2018		<0.00102			<0.00102		
8/6/2018			<0.00102				
8/7/2018		<0.00102			<0.00102	<0.00102	
8/8/2018							<0.00102
10/22/2018		<0.00102	<0.00102				
10/23/2018					<0.00102	<0.00102	<0.00102
12/3/2018		<0.00102	<0.00102			<0.00102	
12/4/2018							<0.00102
12/5/2018					<0.00102		
2/5/2019		<0.00102	<0.00102		<0.00102	<0.00102	
2/6/2019							<0.00102
6/18/2019		<0.00102					
8/20/2019		<0.00102	<0.00102		<0.00102	<0.00102	
8/21/2019							<0.00102
4/13/2020		<0.00102			<0.00102	<0.00102	
4/15/2020			<0.00102	<0.00102			<0.00102
8/24/2020					<0.00102		
8/26/2020		<0.00102	<0.00102	<0.00102		<0.00102	<0.00102
3/16/2021					<0.00102		
3/17/2021						<0.00102	
3/22/2021		<0.00102					
3/23/2021							<0.00102
3/24/2021			<0.00102	<0.00102			
3/30/2021	<0.00102						
10/5/2021		<0.00102	<0.00102		<0.00102	<0.00102	<0.00102
10/11/2021				<0.00102			
10/12/2021	<0.00102						

	GSD-AP-MW-8	GSD-AP-MW-9	GSD-AP-PZ-1	GSD-AP-PZ-2	GSD-AP-PZ-5	GSD-AP-PZ-6
12/7/2017	<0.00102	<0.00102				
2/8/2018	<0.00102	<0.00102				
4/25/2018	<0.00102	<0.00102				
6/26/2018	<0.00102	<0.00102				
6/27/2018			<0.00102		<0.00102	<0.00102
7/18/2018			<0.00102		<0.00102	<0.00102
8/7/2018			<0.00102			
8/8/2018	<0.00102	<0.00102			<0.00102	<0.00102
9/5/2018			<0.00102		<0.00102	<0.00102
9/24/2018			<0.00102		<0.00102	<0.00102
10/22/2018			<0.00102			
10/23/2018	<0.00102	<0.00102			<0.00102	<0.00102
12/3/2018			<0.00102		<0.00102	<0.00102
12/4/2018	<0.00102					
12/5/2018		<0.00102				
2/5/2019			<0.00102			
2/6/2019	<0.00102	<0.00102				
2/7/2019					0.00114 (J)	0.00181 (J)
8/20/2019			<0.00102			
8/21/2019	<0.00102	<0.00102			<0.00102	<0.00102
4/13/2020			<0.00102	<0.00102		
4/14/2020	<0.00102	<0.00102				
4/15/2020					<0.00102	<0.00102
8/24/2020			<0.00102	<0.00102	<0.00102	<0.00102
8/26/2020	<0.00102	<0.00102				
3/16/2021					<0.00102	<0.00102
3/17/2021				<0.00102		
3/23/2021	<0.00102	<0.00102				
3/24/2021			<0.00102			
10/5/2021			<0.00102	<0.00102		
10/12/2021	<0.00102	<0.00102			<0.00102	<0.00102

	GSD-AP-MW-1	GSD-AP-MW-10	GSD-AP-MW-11	GSD-AP-MW-12	GSD-AP-MW-14.	GSD-AP-MW-16	GSD-AP-MW-17
12/6/2017	0.00179 (J)	0.00247 (J)	0.00279 (J)	<0.0002			
2/6/2018	0.00191 (J)						
2/7/2018		0.00192 (J)	0.00252 (J)				
2/8/2018				<0.0002			
4/23/2018	0.0023 (J)						
4/24/2018		0.00218 (J)	0.00283 (J)	<0.0002			
6/26/2018	0.00306 (J)						
6/27/2018		0.00419 (J)	0.00289 (J)	<0.0002	0.00165 (J)		
7/18/2018					0.00117 (J)		
8/6/2018					<0.0002		
8/7/2018	0.00336 (J)	0.00365 (J)					
8/8/2018			0.00265 (J)	<0.0002			
9/5/2018					<0.0002		
9/24/2018					0.00148 (J)		
10/22/2018	0.00451 (J)	0.00404 (J)					
10/23/2018			0.00287 (J)	<0.0002			
10/24/2018					<0.0002	<0.0002	<0.0002
11/14/2018						<0.0002	<0.0002
11/28/2018						0.00124 (J)	<0.0002
12/4/2018	0.00471 (J)	0.00332 (J)	0.00271 (J)				
12/5/2018				<0.0002	<0.0002	0.00113 (J)	<0.0002
12/18/2018						0.00113 (J)	<0.0002
1/3/2019						0.00175 (J)	<0.0002
1/24/2019						0.00257 (J)	<0.0002
2/5/2019	0.00365 (J)				0.00119 (J)	0.00355 (J)	<0.0002
2/6/2019		0.00333 (J)	0.00272 (J)	<0.0002			
6/24/2019						0.00474 (J)	
8/19/2019						0.00228 (J)	<0.0002
8/20/2019					0.00216 (J)		
8/21/2019	0.00444 (J)						
8/22/2019		0.00394 (J)	0.00229 (J)	<0.0002			
4/14/2020			0.00286 (J)	<0.0002			
4/15/2020	0.00309 (J)	0.00236 (J)				0.0034 (J)	
4/16/2020					0.00483 (J)		<0.0002
8/24/2020							<0.0002
8/25/2020	0.00435 (J)				0.002 (J)	0.00237 (J)	
8/26/2020		0.00422 (J)	0.00246 (J)	<0.0002			
3/16/2021	0.0029						
3/22/2021		0.00405	0.00075		0.00188	0.00614	0.00031
3/23/2021		0.00163	0.00275	<0.0002			
10/5/2021	0.00356			<0.0002		0.000-	0.0000
10/6/2021		0.0007				0.00207	0.00026
10/11/2021		0.0037	0.0076		0.00101		
10/12/2021			0.00272		0.00131		

	GSD-AP-MW-18H	GSD-AP-MW-19H	GSD-AP-MW-2	GSD-AP-MW-20H	GSD-AP-MW-21V	CGSD-AP-MW-22VE	B GSD-AP-MW-2VA
12/6/2017			0.809				
2/6/2018			0.774				
4/23/2018			0.643				
6/27/2018			1.01				
8/7/2018			0.988				
10/22/2018			1.01				
12/4/2018			0.553				
2/5/2019			0.74				
8/20/2019			0.825				
4/14/2020		<0.0002		0.00287 (J)			
4/15/2020	<0.0002		0.709				<0.0002
8/25/2020	<0.0002		0.727				0.00135 (J)
8/26/2020		<0.0002		0.00186 (J)			
3/16/2021	0.000136 (J)						
3/22/2021							0.00145
3/23/2021		0.000512		0.00226			
3/24/2021			0.489				
10/6/2021					0.00162		0.00139
10/11/2021		0.00085	0.424	0.00191		0.00408	
10/12/2021	0.00019 (J)						

	GSD-AP-MW-2VB	GSD-AP-MW-3	GSD-AP-MW-4	GSD-AP-MW-4V	GSD-AP-MW-5	GSD-AP-MW-6	GSD-AP-MW-7
12/6/2017		0.00101 (J)					
12/7/2017			0.0132		<0.0002	<0.0002	<0.0002
2/6/2018		<0.0002	0.0105		<0.0002		
2/8/2018						<0.0002	<0.0002
4/24/2018		<0.0002	0.0124				
4/25/2018					<0.0002	<0.0002	<0.0002
6/26/2018			0.0132			<0.0002	<0.0002
6/27/2018		<0.0002			<0.0002		
8/6/2018			0.013				
8/7/2018		<0.0002			<0.0002	<0.0002	
8/8/2018							<0.0002
10/22/2018		<0.0002	0.0144				
10/23/2018					<0.0002	<0.0002	<0.0002
12/3/2018		<0.0002	0.0119			<0.0002	
12/4/2018							<0.0002
12/5/2018					<0.0002		
2/5/2019		<0.0002	0.0107		<0.0002	<0.0002	
2/6/2019							<0.0002
6/18/2019		<0.0002					
8/20/2019		<0.0002	0.0141		<0.0002	<0.0002	
8/21/2019							<0.0002
4/13/2020		<0.0002			<0.0002	<0.0002	
4/15/2020			0.0121	<0.0002			<0.0002
8/24/2020					<0.0002		
8/26/2020		<0.0002	0.0133	<0.0002		<0.0002	<0.0002
3/16/2021					8.17E-05 (J)		
3/17/2021						<0.0002	
3/22/2021		0.0002 (J)					
3/23/2021							<0.0002
3/24/2021			0.011	0.00034			
3/30/2021	0.000278						
10/5/2021		0.00021	0.0147		0.00013 (J)	<0.0002	7E-05 (J)
10/11/2021				0.00037			
10/12/2021	0.00043						

	GSD-AP-MW-8	GSD-AP-MW-9	GSD-AP-PZ-1	GSD-AP-PZ-2	GSD-AP-PZ-5	GSD-AP-PZ-6
12/7/2017	0.00313 (J)	0.00112 (J)				
2/8/2018	0.00247 (J)	<0.0002				
4/25/2018	0.00291 (J)	<0.0002				
6/26/2018	0.00265 (J)	<0.0002				
6/27/2018			<0.0002		<0.0002	<0.0002
7/18/2018			<0.0002		<0.0002	<0.0002
8/7/2018			<0.0002			
8/8/2018	0.00203 (J)	<0.0002			<0.0002	<0.0002
9/5/2018			<0.0002		<0.0002	<0.0002
9/24/2018			<0.0002		<0.0002	<0.0002
10/22/2018			<0.0002			
10/23/2018	0.00246 (J)	<0.0002			<0.0002	<0.0002
12/3/2018			<0.0002		<0.0002	<0.0002
12/4/2018	0.00328 (J)					
12/5/2018		0.00111 (J)				
2/5/2019			<0.0002			
2/6/2019	0.00325 (J)	<0.0002				
2/7/2019					<0.0002	<0.0002
8/20/2019			<0.0002			
8/21/2019	0.00302 (J)	<0.0002			<0.0002	<0.0002
4/13/2020			<0.0002	<0.0002		
4/14/2020	0.00295 (J)	0.00118 (J)				
4/15/2020					<0.0002	<0.0002
8/24/2020			<0.0002	<0.0002	<0.0002	<0.0002
8/26/2020	0.00304 (J)	<0.0002				
3/16/2021					8.08E-05 (J)	<0.0002
3/17/2021				8.26E-05 (J)		
3/23/2021	0.00282	0.00063				
3/24/2021			<0.0002			
10/5/2021			<0.0002	9E-05 (J)		
10/12/2021	0.00287	0.00064			<0.0002	<0.0002

	GSD-AP-MW-1	GSD-AP-MW-10	GSD-AP-MW-11		GSD-AP-MW-14	. GSD-AP-MW-16	. GSD-AP-MW-17
12/6/2017	0.0807	0.308	0.349	0.0501			
2/6/2018	0.0546						
2/7/2018		0.289	0.297				
2/8/2018				0.0375			
4/23/2018	0.0488						
4/24/2018		0.359	0.338	0.0405			
6/26/2018	0.0479						
6/27/2018		0.307	0.338	0.0466	0.0338		
7/18/2018					0.03		
8/6/2018					0.0274		
8/7/2018	0.0402	0.25					
8/8/2018			0.307	0.0448			
9/5/2018					0.0275		
9/24/2018					0.0264		
10/22/2018	0.0427	0.29					
10/23/2018			0.311	0.054			
10/24/2018					0.0276	0.0499	0.218
11/14/2018						0.0458	0.203
11/28/2018						0.0476	0.191
12/4/2018	0.0434	0.305	0.331				
12/5/2018				0.0493	0.0256	0.0475	0.209
12/18/2018						0.0461	0.199
1/3/2019						0.0426	0.176
1/24/2019						0.0485	0.206
2/5/2019	0.0439				0.0314	0.0354	0.168
2/6/2019		0.265	0.286	0.036			
6/24/2019						0.0294	
8/19/2019						0.0314	0.259
8/20/2019					0.0274		
8/21/2019	0.037						
8/22/2019		0.302	0.214	0.0455			
4/14/2020			0.168	0.0279			
4/15/2020	0.0329	0.35				0.028	
4/16/2020					0.0327		0.257
8/24/2020							0.312
8/25/2020	0.0358				0.0291	0.0261	
8/26/2020		0.322	0.165	0.0503			
3/16/2021	0.0331						
3/22/2021					0.0254	0.0278	0.29
3/23/2021		0.395	0.169	0.0315			
10/5/2021	0.0304			0.0417			
10/6/2021				-		0.0215	0.307
10/11/2021		0.292					
10/12/2021		- 	0.17		0.0268		

	GSD-AP-MW-18H	GSD-AP-MW-19H	GSD-AP-MW-2	GSD-AP-MW-20H	GSD-AP-MW-21V0	GSD-AP-MW-22VB	GSD-AP-MW-2VA
12/6/2017			0.0842				
2/6/2018			0.0716				
4/23/2018			0.0518				
6/27/2018			0.0578				
8/7/2018			0.0566				
10/22/2018			0.0536				
12/4/2018			0.0589				
2/5/2019			0.0418				
8/20/2019			0.0685				
4/14/2020		0.153		0.189			
4/15/2020	0.0389		0.0607				0.2
8/25/2020	0.0388		0.0812				0.135
8/26/2020		0.201		0.197			
3/16/2021	0.0243						
3/22/2021							0.114
3/23/2021		0.148		0.217			
3/24/2021			0.0676				
10/6/2021					0.374		0.12
10/11/2021		0.17	0.0807	0.134		0.238	
10/12/2021	0.0298						

	GSD-AP-MW-2VB	GSD-AP-MW-3	GSD-AP-MW-4	GSD-AP-MW-4V	GSD-AP-MW-5	GSD-AP-MW-6	GSD-AP-MW-7
12/6/2017		0.126					
12/7/2017			0.239		0.279	0.0809	0.083
2/6/2018		0.0721	0.206		0.195		
2/8/2018						0.0566	0.0756
4/24/2018		0.0492	0.217				
4/25/2018					0.26	0.0553	0.0764
6/26/2018			0.208			0.0604	0.0799
6/27/2018		0.0453			0.249		
8/6/2018			0.189				
8/7/2018		0.0431			0.216	0.0542	
8/8/2018							0.0791
10/22/2018		0.0541	0.209				
10/23/2018					0.26	0.0608	0.0898
12/3/2018		0.0545	0.214			0.0633	
12/4/2018							0.0789
12/5/2018					0.245		
2/5/2019		0.0363	0.173		0.215	0.0551	
2/6/2019							0.0685
6/18/2019		0.0369					
8/20/2019		0.0405	0.188		0.238	0.0731	
8/21/2019							0.0946
4/13/2020		0.0349			0.241	0.0635	
4/15/2020			0.159	0.457			0.0653
8/24/2020					0.238		
8/26/2020		0.0363	0.181	0.534		0.0771	0.0845
3/16/2021					0.217		
3/17/2021						0.0656	
3/22/2021		0.0354					
3/23/2021							0.0602
3/24/2021			0.171	0.477			
3/30/2021	0.313						
10/5/2021		0.0344	0.202		0.221	0.0741	0.0716
10/11/2021				0.483			
10/12/2021	0.242						

	GSD-AP-MW-8	GSD-AP-MW-9	GSD-AP-PZ-1	GSD-AP-PZ-2	GSD-AP-PZ-5	GSD-AP-PZ-6
12/7/2017	0.244	0.187				
2/8/2018	0.135	0.148				
4/25/2018	0.224	0.158				
6/26/2018	0.181	0.16				
6/27/2018			0.115		0.154	0.0298
7/18/2018			0.116		0.15	0.0312
8/7/2018			0.0906			
8/8/2018	0.134	0.161			0.119	0.0265
9/5/2018			0.116		0.123	0.0291
9/24/2018			0.125		0.112	0.029
10/22/2018			0.102			
10/23/2018	0.17	0.183			0.125	0.0298
12/3/2018			0.0784		0.126	0.0307
12/4/2018	0.189					
12/5/2018		0.186				
2/5/2019			0.0578			
2/6/2019	0.226	0.128				
2/7/2019					0.0602	0.028
8/20/2019			0.097			
8/21/2019	0.194	0.183			0.085	0.0312
4/13/2020			0.0529	0.0832		
4/14/2020	0.262	0.186				
4/15/2020					0.0535	0.0296
8/24/2020			0.0733	0.132	0.0565	0.031
8/26/2020	0.235	0.202				
3/16/2021					0.0553	0.0293
3/17/2021				0.045		
3/23/2021	0.249	0.157				
3/24/2021			0.0525			
10/5/2021			0.0811	0.118		
10/12/2021	0.203	0.147			0.0494	0.0303

	000 40 404/4	000 40 1444 10	000 AD MW 11	000 AD MW 10	000 AD MM 14	000 AD MW 10	00D AD MM 17
10/0/0017	GSD-AP-MW-1	GSD-AP-MW-10	GSD-AP-MW-11		GSD-AP-MW-14.	GSD-AP-MW-16	. GSD-AP-MW-17
12/6/2017	<0.00102	<0.00102	<0.00102	<0.00102			
2/6/2018	<0.00102						
2/7/2018		<0.00102	<0.00102				
2/8/2018				<0.00102			
4/23/2018	<0.00102						
4/24/2018		<0.00102	<0.00102	<0.00102			
6/26/2018	<0.00102						
6/27/2018		<0.00102	<0.00102	<0.00102	0.00134 (J)		
7/18/2018					0.00133 (J)		
8/6/2018					0.00129 (J)		
8/7/2018	<0.00102	<0.00102					
8/8/2018			<0.00102	<0.00102			
9/5/2018					0.00106 (J)		
9/24/2018					0.000991 (J)		
10/22/2018	<0.00102	<0.00102					
10/23/2018			<0.00102	<0.00102			
10/24/2018					0.00082 (J)	<0.00102	<0.00102
11/14/2018						<0.00102	<0.00102
11/28/2018						0.00133 (J)	<0.00102
12/4/2018	<0.00102	<0.00102	<0.00102				
12/5/2018				<0.00102	0.00141 (J)	<0.00102	<0.00102
12/18/2018						0.000761 (J)	<0.00102
1/3/2019						0.000677 (J)	<0.00102
1/24/2019						0.000703 (J)	<0.00102
2/5/2019	<0.00102				0.0011 (J)	0.000711 (J)	<0.00102
2/6/2019		<0.00102	<0.00102	<0.00102			
6/24/2019						0.000605 (J)	
8/19/2019						<0.00102	<0.00102
8/20/2019					0.00129 (J)		
8/21/2019	<0.00102						
8/22/2019		<0.00102	<0.00102	<0.00102			
4/14/2020			<0.00102	<0.00102			
4/15/2020	<0.00102	<0.00102				<0.00102	
4/16/2020					0.00157 (J)		<0.00102
8/24/2020							<0.00102
8/25/2020	<0.00102				0.00117 (J)	<0.00102	
8/26/2020		<0.00102	<0.00102	<0.00102			
3/16/2021	<0.00102						
3/22/2021					0.000918 (J)	0.000537 (J)	<0.00102
3/23/2021		<0.00102	<0.00102	<0.00102			
10/5/2021	<0.00102			<0.00102			
10/6/2021						0.00049 (J)	<0.00102
10/11/2021		<0.00102					
10/12/2021			<0.00102		0.00115		

CSD-AP-MW-18H CSD-AP-MW-19H CSD-AP-MW-2 CSD-AP-MW-21VC GSD-AP-MW-22VB GSD-AP-MW-2VA 12/6/2018								
2/6/2018		GSD-AP-MW-18H	GSD-AP-MW-19H	GSD-AP-MW-2	GSD-AP-MW-20H	GSD-AP-MW-21V0	GSD-AP-MW-22VE	GSD-AP-MW-2VA
4/23/2018	12/6/2017			<0.00102				
6/27/2018	2/6/2018			<0.00102				
8/7/2018	4/23/2018			<0.00102				
10/22/2018	6/27/2018			<0.00102				
12/4/2018	8/7/2018			<0.00102				
2/5/2019	10/22/2018			<0.00102				
8/20/2019 <0.00102	12/4/2018			<0.00102				
4/14/2020 < 0.00102	2/5/2019			<0.00102				
4/15/2020 <0.00102	8/20/2019			<0.00102				
8/25/2020 <0.00102	4/14/2020		<0.00102		<0.00102			
8/26/2020 <0.00102	4/15/2020	<0.00102		<0.00102				<0.00102
3/16/2021 <0.00102 3/22/2021	8/25/2020	<0.00102		<0.00102				<0.00102
3/22/2021 <0.00102	8/26/2020		<0.00102		<0.00102			
3/23/2021 <0.00102 <0.00102 3/24/2021 <0.00102 10/6/2021 <0.00102 <0.00102 <0.00102 10/11/2021 <0.00102 <0.00102 <0.00102	3/16/2021	<0.00102						
3/24/2021 <0.00102 10/6/2021 <0.00102 <0.00102 <0.00102 10/11/2021 <0.00102 <0.00102 <0.00102	3/22/2021							<0.00102
10/6/2021 < 0.00102 < 0.00102 < 0.00102 10/11/2021 < 0.00102 < 0.00102 < 0.00102 < 0.00102	3/23/2021		<0.00102		<0.00102			
10/11/2021 <0.00102 <0.00102 <0.00102 <0.00102	3/24/2021			<0.00102				
	10/6/2021					<0.00102		<0.00102
10/12/2021 <0.00102	10/11/2021		<0.00102	<0.00102	<0.00102		<0.00102	
	10/12/2021	<0.00102						

	GSD-AP-MW-2VB	GSD-AP-MW-3	GSD-AP-MW-4	GSD-AP-MW-4V	GSD-AP-MW-5	GSD-AP-MW-6	GSD-AP-MW-7
12/6/2017		<0.00102					
12/7/2017			<0.00102		<0.00102	<0.00102	<0.00102
2/6/2018		<0.00102	<0.00102		<0.00102		
2/8/2018						<0.00102	<0.00102
4/24/2018		<0.00102	<0.00102				
4/25/2018					<0.00102	<0.00102	<0.00102
6/26/2018			<0.00102			<0.00102	<0.00102
6/27/2018		<0.00102			<0.00102		
8/6/2018			<0.00102				
8/7/2018		<0.00102			<0.00102	<0.00102	
8/8/2018							<0.00102
10/22/2018		<0.00102	<0.00102				
10/23/2018					<0.00102	<0.00102	<0.00102
12/3/2018		<0.00102	<0.00102			<0.00102	
12/4/2018							<0.00102
12/5/2018					<0.00102		
2/5/2019		<0.00102	<0.00102		<0.00102	<0.00102	
2/6/2019							<0.00102
6/18/2019		<0.00102					
8/20/2019		<0.00102	<0.00102		<0.00102	<0.00102	
8/21/2019							<0.00102
4/13/2020		<0.00102			<0.00102	<0.00102	
4/15/2020			<0.00102	<0.00102			<0.00102
8/24/2020					<0.00102		
8/26/2020		<0.00102	<0.00102	<0.00102		<0.00102	<0.00102
3/16/2021					<0.00102		
3/17/2021						<0.00102	
3/22/2021		<0.00102					
3/23/2021							<0.00102
3/24/2021			<0.00102	<0.00102			
3/30/2021	<0.00102						
10/5/2021		<0.00102	<0.00102		<0.00102	<0.00102	<0.00102
10/11/2021				<0.00102			
10/12/2021	<0.00102						

	GSD-AP-MW-8	GSD-AP-MW-9	GSD-AP-PZ-1	GSD-AP-PZ-2	GSD-AP-PZ-5	GSD-AP-PZ-6
12/7/2017	<0.00102	<0.00102				
2/8/2018	<0.00102	<0.00102				
4/25/2018	<0.00102	<0.00102				
6/26/2018	<0.00102	<0.00102				
6/27/2018			<0.00102		<0.00102	<0.00102
7/18/2018			<0.00102		<0.00102	<0.00102
8/7/2018			<0.00102			
8/8/2018	<0.00102	<0.00102			<0.00102	<0.00102
9/5/2018			<0.00102		<0.00102	<0.00102
9/24/2018			<0.00102		<0.00102	<0.00102
10/22/2018			<0.00102			
10/23/2018	<0.00102	<0.00102			<0.00102	<0.00102
12/3/2018			<0.00102		<0.00102	<0.00102
12/4/2018	<0.00102					
12/5/2018		<0.00102				
2/5/2019			<0.00102			
2/6/2019	<0.00102	<0.00102				
2/7/2019					<0.00102	<0.00102
8/20/2019			<0.00102			
8/21/2019	<0.00102	<0.00102			<0.00102	<0.00102
4/13/2020			<0.00102	<0.00102		
4/14/2020	<0.00102	<0.00102				
4/15/2020					<0.00102	<0.00102
8/24/2020			<0.00102	<0.00102	<0.00102	<0.00102
8/26/2020	<0.00102	<0.00102				
3/16/2021					<0.00102	<0.00102
3/17/2021				<0.00102		
3/23/2021	<0.00102	<0.00102				
3/24/2021			<0.00102			
10/5/2021			<0.00102	<0.00102		
10/12/2021	<0.00102	<0.00102			<0.00102	<0.00102

	GSD-AP-MW-1	GSD-AP-MW-10	GSD-AP-MW-11	GSD-AP-MW-12	GSD-AP-MW-14	. GSD-AP-MW-16	GSD-AP-MW-17
12/6/2017	1.28	0.135	0.12	0.0605 (J)			
2/6/2018	1.29						
2/7/2018		0.12	0.109				
2/8/2018				0.0527 (J)			
4/23/2018	1.21						
4/24/2018		0.144	0.124	0.0476 (J)			
6/26/2018	1.25			. ,			
6/27/2018		0.0903 (J)	0.111	0.0539 (J)	<0.1015		
7/18/2018					<0.1015		
8/6/2018					<0.1015		
8/7/2018	1.21	0.106					
8/8/2018			0.135	0.0637 (J)			
9/5/2018				, ,	<0.1015		
9/24/2018					<0.1015		
10/22/2018	1.22	0.107					
10/23/2018			0.114	0.0696 (J)			
10/24/2018				.,	<0.1015	0.0261 (J)	0.0357 (J)
11/14/2018						0.0209 (J)	0.0348 (J)
11/28/2018						0.0239 (J)	0.0313 (J)
12/4/2018	1.08	0.103	0.124			, ,	.,
12/5/2018				0.0652 (J)	<0.1015	<0.1015	0.0363 (J)
12/18/2018						<0.1015	0.033 (J)
1/3/2019						0.0209 (J)	0.036 (J)
1/24/2019						0.0271 (J)	0.0307 (J)
2/5/2019	1.2				<0.1015	0.0245 (J)	0.0306 (J)
2/6/2019		0.105	0.112	0.0511 (J)			
2/26/2019	1.15	0.146					
2/27/2019			0.14	0.0494 (J)			
2/28/2019					<0.1015	<0.1015	0.0206 (J)
6/24/2019						<0.1015	
8/19/2019						<0.1015	0.0341 (J)
8/20/2019					<0.1015		
8/21/2019	1.24						
8/22/2019		0.0951 (J)	0.272	0.0625 (J)			
4/14/2020			0.154	0.0377 (J)			
4/15/2020	1.13	0.164				<0.1015	
4/16/2020					<0.1015		0.0331 (J)
8/24/2020							0.0303 (J)
8/25/2020	1.11				<0.1015	<0.1015	
8/26/2020		0.108	0.257	0.0698 (J)			
3/16/2021	1.08						
3/22/2021					<0.1015	<0.1015	0.0333 (J)
3/23/2021		0.188	0.142	0.0452 (J)			
10/5/2021	1.02			0.0661 (J)			
10/6/2021						<0.1015	0.0305 (J)
10/11/2021		0.09 (J)					
10/12/2021			0.125		<0.1015		

	GSD-AP-MW-18H	GSD-AP-MW-19H	GSD-AP-MW-2	GSD-AP-MW-20H	GSD-AP-MW-21V0	CGSD-AP-MW-22VE	8 GSD-AP-MW-2VA
12/6/2017			0.758				
2/6/2018			0.733				
4/23/2018			0.608				
6/27/2018			0.619				
8/7/2018			0.697				
10/22/2018			0.754				
12/4/2018			0.737				
2/5/2019			0.575				
2/26/2019			0.566				
8/20/2019			0.566				
4/14/2020		0.448		0.308			
4/15/2020	0.124		0.461				0.587
8/25/2020	0.105		0.528				0.552
8/26/2020		0.39		0.308			
3/16/2021	0.0545 (J)						
3/22/2021							0.537
3/23/2021		0.41		0.419			
3/24/2021			0.437				
10/6/2021					0.532		0.54
10/11/2021		0.328	0.459	0.504		0.378	
10/12/2021	0.0717 (J)						

	GSD-AP-MW-2VB	GSD-AP-MW-3	GSD-AP-MW-4	GSD-AP-MW-4V	GSD-AP-MW-5	GSD-AP-MW-6	GSD-AP-MW-7
12/6/2017		0.959					
12/7/2017			0.515		0.566	0.063 (J)	0.102
2/6/2018		1.04	0.541		0.614		
2/8/2018						0.0508 (J)	0.0787 (J)
4/24/2018		0.979	0.475				
4/25/2018					0.498	0.0548 (J)	0.0734 (J)
6/26/2018			0.444			0.0571 (J)	0.094 (J)
6/27/2018		0.982			0.446		
8/6/2018			0.474				
8/7/2018		1			0.442	0.0571 (J)	
8/8/2018							0.103
10/22/2018		1.08	0.496				
10/23/2018					0.436	0.0636 (J)	0.106
12/3/2018		1.05	0.51			0.0568 (J)	
12/4/2018							0.085 (J)
12/5/2018					0.456		
2/5/2019		1.01	0.43		0.453	0.0509 (J)	
2/6/2019							0.0733 (J)
2/25/2019		1.08					
2/26/2019			0.411			0.0527 (J)	
2/27/2019					0.457		0.0548 (J)
6/18/2019		1.09					
8/20/2019		1.06	0.399		0.378	0.0608 (J)	
8/21/2019							0.091 (J)
4/13/2020		1.19			0.359	0.0561 (J)	
4/15/2020			0.344	0.0634 (J)			0.0534 (J)
8/24/2020					0.329		
8/26/2020		1.16	0.398	0.0611 (J)		0.0633 (J)	0.0665 (J)
3/16/2021					0.328		
3/17/2021						0.0563 (J)	
3/22/2021		1.13					
3/23/2021							0.0587 (J)
3/24/2021			0.326	0.0618 (J)			
3/30/2021	0.605						
10/5/2021		1.01	0.344		0.26	0.0649 (J)	0.0673 (J)
10/11/2021				0.0596 (J)			
10/12/2021	0.617						

·	GSD-AP-MW-8	GSD-AP-MW-9	GSD-AP-PZ-1	GSD-AP-PZ-2	GSD-AP-PZ-5	GSD-AP-PZ-6	
12/7/2017	0.0828 (J)	0.0614 (J)					
2/8/2018	0.0691 (J)	0.0531 (J)					
4/25/2018	0.0571 (J)	0.0551 (J)					
6/26/2018	0.0634 (J)	0.0568 (J)					
6/27/2018			<0.1015		<0.1015	<0.1015	
7/18/2018			<0.1015		<0.1015	<0.1015	
8/7/2018			<0.1015				
8/8/2018	0.0659 (J)	0.0524 (J)			<0.1015	<0.1015	
9/5/2018			<0.1015		<0.1015	<0.1015	
9/24/2018			<0.1015		<0.1015	<0.1015	
10/22/2018			<0.1015				
10/23/2018	0.0666 (J)	0.0576 (J)			<0.1015	<0.1015	
12/3/2018			<0.1015		<0.1015	<0.1015	
12/4/2018	0.0617 (J)						
12/5/2018		0.0561 (J)					
2/5/2019			<0.1015				
2/6/2019	0.0586 (J)	0.0627 (J)					
2/7/2019					<0.1015	<0.1015	
2/25/2019			<0.1015		<0.1015	<0.1015	
2/27/2019	0.0428 (J)	0.0474 (J)					
8/20/2019			<0.1015				
8/21/2019	0.0569 (J)	0.0524 (J)			<0.1015	<0.1015	
4/13/2020			<0.1015	<0.1015			
4/14/2020	0.0474 (J)	0.0562 (J)					
4/15/2020					<0.1015	<0.1015	
8/24/2020			<0.1015	<0.1015	<0.1015	<0.1015	
8/26/2020	0.0501 (J)	0.0565 (J)					
3/16/2021					<0.1015	<0.1015	
3/17/2021				<0.1015			
3/23/2021	0.0476 (J)	0.0609 (J)					
3/24/2021			<0.1015				
10/5/2021			<0.1015	<0.1015			
10/12/2021	0.0462 (J)	0.0632 (J)			<0.1015	<0.1015	

	GSD-AP-MW-1	GSD-AP-MW-10	GSD-AP-MW-11	GSD-AP-MW-12	GSD-AP-MW-14	GSD-AP-MW-16	. GSD-AP-MW-17
12/6/2017	<0.0002	<0.0002	<0.0002	0.000596 (J)			
2/6/2018	<0.0002			. ,			
2/7/2018		<0.0002	<0.0002				
2/8/2018				0.00064 (J)			
4/23/2018	<0.0002			(1)			
4/24/2018		<0.0002	<0.0002	0.000702 (J)			
6/26/2018	<0.0002						
6/27/2018		<0.0002	<0.0002	0.000732 (J)	0.00064 (J)		
7/18/2018				(-)	0.000679 (J)		
8/6/2018					0.000536 (J)		
8/7/2018	<0.0002	<0.0002					
8/8/2018	0.0002	0.0002	<0.0002	0.000587 (J)			
9/5/2018			0.0002	0.000007 (0)	0.000479 (J)		
9/24/2018					0.00039 (J)		
10/22/2018	<0.0002	<0.0002			0.00000 (0)		
10/23/2018	-0.0002	10.0002	<0.0002	0.000552 (J)			
10/24/2018			-0.0002	0.000002 (0)	0.000436 (J)	0.000307 (J)	<0.0002
11/14/2018					0.000 100 (0)	0.000417 (J)	<0.0002
11/28/2018						0.000387 (J)	<0.0002
12/4/2018	<0.0002	<0.0002	<0.0002			0.000307 (3)	-0.000Z
12/5/2018	-0.0002	10.0002	-0.0002	0.000661 (J)	0.000307 (J)	0.000317 (J)	<0.0002
12/18/2018				0.000001 (0)	0.000007 (0)	0.000438 (J)	<0.0002
1/3/2019						0.000703 (J)	<0.0002
1/24/2019						0.000736 (J)	<0.0002
2/5/2019	<0.0002				0.000515 (J)	0.00101	<0.0002
2/6/2019	-0.0002	<0.0002	<0.0002	0.000583 (J)	0.000010 (0)	0.00101	-0.0002
6/24/2019		-0.0002	-0.0002	0.000000 (0)		0.000686 (J)	
8/19/2019						0.000499 (J)	<0.0002
8/20/2019					0.000622 (J)	0.000400 (0)	-0.0002
8/21/2019	<0.0002				0.000022 (0)		
8/22/2019	~ 0.0002	<0.0002	<0.0002	0.000755 (J)			
4/14/2020		10.0002	<0.0002	0.000735 (J)			
4/15/2020	<0.0002	<0.0002	<0.000Z	0.000423 (3)		0.000697 (J)	
4/16/2020	~ 0.0002	<0.000Z			0.00101	0.000097 (3)	<0.0002
8/24/2020					0.00101		<0.0002
8/25/2020	<0.0002				0.000584 (J)	0.000507 (J)	V0.0002
8/26/2020	<0.000Z	<0.0002	<0.0002	0.000618 (J)	0.000364 (3)	0.000307 (3)	
	0.000102 (1)	<0.0002	<0.0002	0.000018 (3)			
3/16/2021 3/22/2021	0.000102 (J)				0.000407	0.000852	<0.0002
3/23/2021		<0.0002	<0.0002	0.000405	0.000407	0.000032	~U.UUUZ
	0.000171	~U.UUUZ	~U.UUUZ				
10/5/2021	0.0001 (J)			0.00037		0.00068	<0.0002
10/6/2021		<0.0002				0.00068	~U.UUUZ
10/11/2021		<0.0002	<0.0002		0.00050		
10/12/2021			<0.0002		0.00059		

	GSD-AP-MW-18H	GSD-AP-MW-19H	GSD-AP-MW-2	GSD-AP-MW-20H	GSD-AP-MW-21V0	GSD-AP-MW-22VB	GSD-AP-MW-2VA
12/6/2017			<0.0002				
2/6/2018			<0.0002				
4/23/2018			<0.0002				
6/27/2018			<0.0002				
8/7/2018			<0.0002				
10/22/2018			<0.0002				
12/4/2018			<0.0002				
2/5/2019			<0.0002				
8/20/2019			<0.0002				
4/14/2020		<0.0002		<0.0002			
4/15/2020	<0.0002		<0.0002				<0.0002
8/25/2020	<0.0002		<0.0002				<0.0002
8/26/2020		<0.0002		<0.0002			
3/16/2021	<0.0002						
3/22/2021							<0.0002
3/23/2021		<0.0002		<0.0002			
3/24/2021			6.88E-05 (J)				
10/6/2021					<0.0002		<0.0002
10/11/2021		0.00012 (J)	<0.0002	<0.0002		<0.0002	
10/12/2021	<0.0002						

	GSD-AP-MW-2VB	GSD-AP-MW-3	GSD-AP-MW-4	GSD-AP-MW-4V	GSD-AP-MW-5	GSD-AP-MW-6	GSD-AP-MW-7
12/6/2017		<0.0002					
12/7/2017			<0.0002		<0.0002	<0.0002	<0.0002
2/6/2018		<0.0002	<0.0002		<0.0002		
2/8/2018						<0.0002	<0.0002
4/24/2018		<0.0002	<0.0002				
4/25/2018					<0.0002	<0.0002	<0.0002
6/26/2018			<0.0002			<0.0002	<0.0002
6/27/2018		<0.0002			<0.0002		
8/6/2018			<0.0002				
8/7/2018		<0.0002			<0.0002	<0.0002	
8/8/2018							<0.0002
10/22/2018		<0.0002	<0.0002				
10/23/2018					<0.0002	<0.0002	<0.0002
12/3/2018		<0.0002	<0.0002			<0.0002	
12/4/2018							<0.0002
12/5/2018					<0.0002		
2/5/2019		<0.0002	<0.0002		<0.0002	<0.0002	
2/6/2019							<0.0002
6/18/2019		<0.0002					
8/20/2019		<0.0002	<0.0002		<0.0002	<0.0002	
8/21/2019							<0.0002
4/13/2020		0.000438 (J)			<0.0002	<0.0002	
4/15/2020			<0.0002	<0.0002			<0.0002
8/24/2020					<0.0002		
8/26/2020		<0.0002	<0.0002	<0.0002		<0.0002	<0.0002
3/16/2021					<0.0002		
3/17/2021						<0.0002	
3/22/2021		0.00039					
3/23/2021							9.7E-05 (J)
3/24/2021			<0.0002	<0.0002			
3/30/2021	<0.0002						
10/5/2021		0.00021	<0.0002		<0.0002	<0.0002	<0.0002
10/11/2021				<0.0002			
10/12/2021	<0.0002						

	GSD-AP-MW-8	GSD-AP-MW-9	GSD-AP-PZ-1	GSD-AP-PZ-2	GSD-AP-PZ-5	GSD-AP-PZ-6
12/7/2017	<0.0002	<0.0002				
2/8/2018	<0.0002	<0.0002				
4/25/2018	<0.0002	<0.0002				
6/26/2018	<0.0002	<0.0002				
6/27/2018			<0.0002		0.000304 (J)	<0.0002
7/18/2018			<0.0002		<0.0002	<0.0002
8/7/2018			<0.0002			
8/8/2018	<0.0002	<0.0002			<0.0002	<0.0002
9/5/2018			<0.0002		<0.0002	<0.0002
9/24/2018			<0.0002		<0.0002	<0.0002
10/22/2018			<0.0002			
10/23/2018	<0.0002	<0.0002			<0.0002	<0.0002
12/3/2018			<0.0002		<0.0002	<0.0002
12/4/2018	<0.0002					
12/5/2018		<0.0002				
2/5/2019			<0.0002			
2/6/2019	<0.0002	<0.0002				
2/7/2019					<0.0002	<0.0002
8/20/2019			<0.0002			
8/21/2019	<0.0002	<0.0002			<0.0002	<0.0002
4/13/2020			<0.0002	<0.0002		
4/14/2020	<0.0002	<0.0002				
4/15/2020					<0.0002	<0.0002
8/24/2020			<0.0002	<0.0002	<0.0002	<0.0002
8/26/2020	<0.0002	<0.0002				
3/16/2021					<0.0002	<0.0002
3/17/2021				<0.0002		
3/23/2021	8.32E-05 (J)	<0.0002				
3/24/2021			<0.0002			
10/5/2021			<0.0002	<0.0002		
10/12/2021	<0.0002	<0.0002			8E-05 (J)	<0.0002

	GSD-AP-MW-1	GSD-AP-MW-10	GSD-AP-MW-11	GSD-AP-MW-12	GSD-AP-MW-1/	GSD-AP-MW-16	. GSD-AP-MW-17
12/6/2017	271	42	70	49	GOD-AI -WW-14	. GOD-AI -WVV-10	. GOD-AI -WW-17
2/6/2018	275	42	70	49			
2/7/2018	273	47.6	72.4				
2/8/2018		47.0	72.4	FO			
	200			50			
4/23/2018	269	FO 1	70.0	50.5			
4/24/2018	000	50.1	72.3	50.5			
6/26/2018	268						
6/27/2018		37.1	73.1	56.3	16.6		
7/18/2018					15.3		
8/6/2018					13.8		
8/7/2018	259	37.4					
8/8/2018			76	65.7			
9/5/2018					12.1		
9/24/2018					11.8		
10/22/2018	240	36.3					
10/23/2018			70.2	68.3			
10/24/2018					10.2	18	28.3
11/14/2018						14.9	27.5
11/28/2018						14.8	20.7
12/4/2018	254	42.1	74				
12/5/2018				64.3	9.14	14.8	25.3
12/18/2018						16.4	20.9
1/3/2019						19.7	18.5
1/24/2019						19.6	17
2/5/2019	292				15.1	20.8	17.1
2/6/2019		41.3	73.1	52.2			
2/26/2019	254	53.3					
2/27/2019			82.2	60.2			
2/28/2019					21.4	21.5	18.6
6/24/2019						18.4	
8/19/2019						12.8	25.3
8/20/2019					14.4		
8/21/2019	272						
8/22/2019		38.5	133	89.4			
4/14/2020			82.4	40			
4/15/2020	231	54.1				13.1	
4/16/2020					20.1		30.7
8/24/2020							30.8
8/25/2020	218				13.1	12.2	
8/26/2020		37.8	111	68.4			
3/16/2021	218						
3/22/2021					12.2	18.4	31
3/23/2021		57	75.9	42			
10/5/2021	198			55.8			
10/6/2021						13.4	31
10/11/2021		38.2					
10/12/2021			78.6		11.8		

		GSD-AP-MW-18H	GSD-AP-MW-19H	GSD-AP-MW-2	GSD-AP-MW-20H	GSD-AP-MW-21V	CGSD-AP-MW-22VE	B GSD-AP-MW-2VA
12/6/2	017			128				
2/6/20	18			130				
4/23/2	018			95.9				
6/27/2	018			99.4				
8/7/20	18			107				
10/22/	2018			107				
12/4/2	018			120				
2/5/20	19			80.6				
2/26/2	019			79.6				
8/20/2	019			92.3				
4/14/2	020		32.9		51.5			
4/15/2	020	19.1		69.2				5
8/25/2	020	14.9		80.5				4.97
8/26/2	020		39.3		47.6			
3/16/2	021	5.77						
3/22/2	021							5.71
3/23/2	021		31.7		57.6			
3/24/2	021			61.5				
10/6/2	021					3.46		5.38
10/11/	2021		40	87.1	63.4		9.35	
10/12/	2021	10.3						

	GSD-AP-MW-2VB	GSD-AP-MW-3	GSD-AP-MW-4	GSD-AP-MW-4V	GSD-AP-MW-5	GSD-AP-MW-6	GSD-AP-MW-7
12/6/2017		125					
12/7/2017			30.1		48.2	29.8	23.4
2/6/2018		110	30.6		47.8		
2/8/2018						24.3	20.1
4/24/2018		88.8	27.8				
4/25/2018					41.8	19.8	17.4
6/26/2018			26.2			17.8	21.8
6/27/2018		80.8			36.9		
8/6/2018			27.5				
8/7/2018		88.5			37.6	18.3	
8/8/2018							25.4
10/22/2018		92.7	27.7				
10/23/2018					35.3	18.1	25.6
12/3/2018		105	32.3			16.6	
12/4/2018							19
12/5/2018					36.3		
2/5/2019		68.6	25.5		36.6	14.5	
2/6/2019							16.4
2/25/2019		70.6					
2/26/2019			26.4			16	
2/27/2019					39.6		15.6
6/18/2019		80.5					
8/20/2019		74.1	23.5		33.7	15.1	
8/21/2019							23.5
4/13/2020		69.5			43	12.5	
4/15/2020			22	23.9			14
8/24/2020					35.5		
8/26/2020		75.7	22.8	23.5		12.9	16.7
3/16/2021					38.1		
3/17/2021						11.3	
3/22/2021		64.9					
3/23/2021							12.5
3/24/2021			23.1	22.9			
3/30/2021	3.71						
10/5/2021		65.9	27.4		36	11.4	15.9
10/11/2021				23			
10/12/2021	3.96						

·	GSD-AP-MW-8	GSD-AP-MW-9	GSD-AP-PZ-1	GSD-AP-PZ-2	GSD-AP-PZ-5	GSD-AP-PZ-6
12/7/2017	66.1	38.7				
2/8/2018	58	38.8				
4/25/2018	56.3	40.3				
6/26/2018	57.7	39.9				
6/27/2018			39.4		4.56	3.89
7/18/2018			38.4		3.92	3.8
8/7/2018			36.7			
8/8/2018	51.2	42.3			3.74	3.89
9/5/2018			43.6		3.38	3.78
9/24/2018			44.5		3.25	3.73
10/22/2018			45			
10/23/2018	50.9	39.8			3.37	3.79
12/3/2018			33.7		3.67	3.79
12/4/2018	51.9					
12/5/2018		43.8				
2/5/2019			30.1			
2/6/2019	55	34.9				
2/7/2019					2.89	3.75
2/25/2019			25.6		2.95	3.81
2/27/2019	53.4	42.5				
8/20/2019			38.3			
8/21/2019	71.5	50.9			3.04	3.71
4/13/2020			25.9	16.1		
4/14/2020	56.2	43.6				
4/15/2020					2.93	3.56
8/24/2020			29	24.8	2.94	3.45
8/26/2020	55.5	43.2				
3/16/2021					2.9	3.44
3/17/2021				5.21		
3/23/2021	48.9	38.1				
3/24/2021			22.2			
10/5/2021			25.4	17.6		
10/12/2021	66.3	35.4			2.94	3.29

	GSD-AP-MW-1	GSD-AP-MW-10	GSD-AP-MW-11	GSD-AP-MW-12	GSD-AP-MW-14	GSD-AP-MW-16	. GSD-AP-MW-17
12/6/2017	6.2	6.9	6.3	6.2			
2/6/2018	5.9						
2/7/2018		6.1	5.4				
2/8/2018				6.1			
4/23/2018	5.9						
4/24/2018		6.9	5.7	5.9			
6/26/2018	5.7						
6/27/2018		5.6	5.4	5.5	3.1		
7/18/2018					3.4		
8/6/2018					2.8		
8/7/2018	5.3	5.1					
8/8/2018			5.2	5.3			
9/5/2018					2.8		
9/24/2018					3.1		
10/22/2018	5.6	5.5					
10/23/2018			5.4	5.8			
10/24/2018					2.8	3.3	4
11/14/2018						3.6	3.6
11/28/2018						3.5	3.5
12/4/2018	5.8	5.6	5.3				
12/5/2018				6	2.2	3.3	3.2
12/18/2018						3.6	3.4
1/3/2019						3.4	3.2
1/24/2019						3.91	3.15
2/5/2019	5.8				3.12	3.94	2.98
2/6/2019		6.24	5.89	5.95			
2/26/2019	5.92	8.28					
2/27/2019			6.2	5.88			
2/28/2019					3.45	4.15	3.05
6/24/2019						3.36 (D)	
8/19/2019						3.42	2.8
8/20/2019					3.27		
8/21/2019	5.26						
8/22/2019		5.66	4.64	6.31			
4/14/2020			5.46	5.74			
4/15/2020	5.5	6.49				3.39	
4/16/2020					3.74		2.93
8/24/2020							2.82
8/25/2020	5.59				3.03	2.94	
8/26/2020		5.39	4.74	5.91			
3/16/2021	6.2						
3/22/2021					3.15	3.61	2.94
3/23/2021		7.14	5.54	6.3			
10/5/2021	6.1			6.26			
10/6/2021						3.17	2.98
10/11/2021		5.72					
10/12/2021			5.8		2.87		

	GSD-AP-MW-18	H GSD-AP-MW-19H	GSD-AP-MW-2	GSD-AP-MW-20H	GSD-AP-MW-21V	CGSD-AP-MW-22V	B GSD-AP-MW-2VA
12/6/2017			4.1				
2/6/2018			3.1				
4/23/2018			3.7				
6/27/2018			2.2				
8/7/2018			2.6				
10/22/2018			2.8				
12/4/2018			4.1				
2/5/2019			2.56				
2/26/2019			3.03				
8/20/2019			2.24				
4/14/2020		7.35		6.64			
4/15/2020	6		2.16				6.47
8/25/2020	5.79		2				6.4
8/26/2020		7.03		6.73			
3/16/2021	3.85						
3/22/2021							6.65
3/23/2021		7.11		6.33			
3/24/2021			2.29				
10/6/2021					166		6.82
10/11/2021		7.04	2.43	6.37		1.72	
10/12/2021	4.59						

	GSD-AP-MW-2VB	GSD-AP-MW-3	GSD-AP-MW-4	GSD-AP-MW-4V	GSD-AP-MW-5	GSD-AP-MW-6	GSD-AP-MW-7
12/6/2017		7.6					
12/7/2017			8.5		8.7	10	7.9
2/6/2018		7.6	8.8		8.5		
2/8/2018						9.5	6.7
4/24/2018		7.5	8.4				
4/25/2018					7.6	9.1	7
6/26/2018			8.7			9.5	7.4
6/27/2018		7.3			7.1		
8/6/2018			11				
8/7/2018		7.6			6.9	9	
8/8/2018							7.7
10/22/2018		6.9	8.6				
10/23/2018					6.7	9.9	8
12/3/2018		6.8	9.1			8.7	
12/4/2018							6.7
12/5/2018					6.7		
2/5/2019		6.95	9.81		7.24	8.73	
2/6/2019							6.84
2/25/2019		6.55					
2/26/2019			13			8.66	
2/27/2019					7.38		6.21
6/18/2019		6.62					
8/20/2019		6.07	9.62		6.53	9.55	
8/21/2019							7.35
4/13/2020		5.95			6.48	8.6	
4/15/2020			9.27	5.16			4.99
8/24/2020					6.64		
8/26/2020		5.89	8.96	5.37		9.21	6.19
3/16/2021					7.14		
3/17/2021						8.59	
3/22/2021		5.26					
3/23/2021							4.87
3/24/2021			8.61	5.55			
3/30/2021	32						
10/5/2021		5.09	9.3		6.78	9.09	6.43
10/11/2021				5.65			
10/12/2021	38						

					. ,	
	GSD-AP-MW-8	GSD-AP-MW-9	GSD-AP-PZ-1	GSD-AP-PZ-2	GSD-AP-PZ-5	GSD-AP-PZ-6
12/7/2017	5.2	7				
2/8/2018	4.1					
2/12/2018		6.6				
4/25/2018	5.3	7.1				
6/26/2018	5	6.4				
6/27/2018			3.6		4.2	4.1
7/18/2018			3.8		4.1	4.3
8/7/2018			3.3			
8/8/2018	4.8	5.5			3.3	3.8
9/5/2018			3.4		3.7	3.9
9/24/2018			3.8		3.9	4.2
10/22/2018			3.3			
10/23/2018	4.4	6.7			4	4.1
12/3/2018			3.2		3.6	3.8
12/4/2018	4.2					
12/5/2018		5.9				
2/5/2019			3.78			
2/6/2019	5.84	7.26				
2/7/2019					3.72	4.15
2/25/2019			3.66		3.95	4.2
2/27/2019	6.52	6.77				
8/20/2019			3.52			
8/21/2019	5.89	6.16			3.85	4
4/13/2020			3.36	5.42		
4/14/2020	5.21	7.27				
4/15/2020					3.83	3.71
8/24/2020			3.35	5.46	3.96	3.59
8/26/2020	5.16	6.57				
3/16/2021					3.98	3.66
3/17/2021				5.53		
3/23/2021	5.3	7.42				
3/24/2021			3.45			
10/5/2021			3.23	5.79		
10/12/2021	5.6	7.78			4.07	3.68

	CCD AD MW 1	CCD AD MW 10	CCD AD MW 11	CCD AD MW 12	CCD AD MW 14	CCD AD MM 16	CCD AD MW 17
10/6/2017	GSD-AP-MW-1	GSD-AP-MW-10	GSD-AP-MW-11		GSD-AP-WW-14	. GSD-AP-WW-16	GSD-AP-MW-17
12/6/2017 2/6/2018	<0.00102 <0.00102	<0.00102	<0.00102	<0.00102			
	<0.00102	<0.00102	<0.00102				
2/7/2018		<0.00102	<0.00102	<0.00102			
2/8/2018	0.00100			<0.00102			
4/23/2018	<0.00102	0.00100	0.00100	0.00100			
4/24/2018		<0.00102	<0.00102	<0.00102			
6/26/2018	<0.00102						
6/27/2018		<0.00102	<0.00102	<0.00102	<0.00102		
7/18/2018					<0.00102		
8/6/2018					<0.00102		
8/7/2018	<0.00102	<0.00102					
8/8/2018			<0.00102	<0.00102			
9/5/2018					<0.00102		
9/24/2018					<0.00102		
10/22/2018	<0.00102	<0.00102					
10/23/2018			<0.00102	<0.00102			
10/24/2018					<0.00102	<0.00102	<0.00102
11/14/2018						<0.00102	<0.00102
11/28/2018						<0.00102	<0.00102
12/4/2018	<0.00102	<0.00102	<0.00102				
12/5/2018				<0.00102	<0.00102	<0.00102	<0.00102
12/18/2018						<0.00102	<0.00102
1/3/2019						<0.00102	<0.00102
1/24/2019						<0.00102	<0.00102
2/5/2019	<0.00102				<0.00102	<0.00102	<0.00102
2/6/2019		<0.00102	<0.00102	<0.00102			
6/24/2019						0.00325 (J)	
8/19/2019						<0.00102	<0.00102
8/20/2019					<0.00102		
8/21/2019	<0.00102						
8/22/2019		<0.00102	<0.00102	<0.00102			
4/14/2020			<0.00102	<0.00102			
4/15/2020	<0.00102	<0.00102				<0.00102	
4/16/2020					<0.00102		0.00267 (J)
8/24/2020							<0.00102
8/25/2020	<0.00102				<0.00102	<0.00102	
8/26/2020		<0.00102	<0.00102	<0.00102			
3/16/2021	0.000376 (J)						
3/22/2021					0.000771 (J)	0.000546 (J)	0.000509 (J)
3/23/2021		0.00035 (J)	0.000513 (J)	0.000431 (J)			
10/5/2021	0.00023 (J)			0.00034 (J)			
10/6/2021						0.00046 (J)	0.00027 (J)
10/11/2021		0.00028 (J)					
10/12/2021			0.00027 (J)		0.00059 (J)		

	GSD-AP-MW-18H	GSD-AP-MW-19H	GSD-AP-MW-2	GSD-AP-MW-20H	GSD-AP-MW-21V	CGSD-AP-MW-22VE	GSD-AP-MW-2VA
12/6/2017			<0.00102				
2/6/2018			<0.00102				
4/23/2018			<0.00102				
6/27/2018			<0.00102				
8/7/2018			<0.00102				
10/22/2018			<0.00102				
12/4/2018			<0.00102				
2/5/2019			<0.00102				
8/20/2019			<0.00102				
4/14/2020		<0.00102		<0.00102			
4/15/2020	<0.00102		<0.00102				<0.00102
8/25/2020	<0.00102		<0.00102				<0.00102
8/26/2020		<0.00102		<0.00102			
3/16/2021	0.000363 (J)						
3/22/2021							0.000433 (J)
3/23/2021		0.000404 (J)		0.000417 (J)			
3/24/2021			0.00047 (J)				
10/6/2021					0.00111		0.00025 (J)
10/11/2021		0.00048 (J)	0.00048 (J)	0.00025 (J)		0.00041 (J)	
10/12/2021	0.00021 (J)						

	GSD-AP-MW-2VB	GSD-AP-MW-3	GSD-AP-MW-4	GSD-AP-MW-4V	GSD-AP-MW-5	GSD-AP-MW-6	GSD-AP-MW-7
12/6/2017		<0.00102					
12/7/2017			<0.00102		<0.00102	<0.00102	<0.00102
2/6/2018		<0.00102	<0.00102		<0.00102		
2/8/2018						<0.00102	<0.00102
4/24/2018		<0.00102	<0.00102				
4/25/2018					<0.00102	<0.00102	<0.00102
6/26/2018			<0.00102			<0.00102	<0.00102
6/27/2018		<0.00102			<0.00102		
8/6/2018			<0.00102				
8/7/2018		<0.00102			<0.00102	<0.00102	
8/8/2018							<0.00102
10/22/2018		<0.00102	<0.00102				
10/23/2018					<0.00102	<0.00102	<0.00102
12/3/2018		<0.00102	<0.00102			<0.00102	
12/4/2018							<0.00102
12/5/2018					<0.00102		
2/5/2019		<0.00102	<0.00102		<0.00102	<0.00102	
2/6/2019							<0.00102
6/18/2019		0.00285 (J)					
8/20/2019		<0.00102	<0.00102		<0.00102	<0.00102	
8/21/2019							<0.00102
4/13/2020		<0.00102			<0.00102	<0.00102	
4/15/2020			<0.00102	<0.00102			<0.00102
8/24/2020					<0.00102		
8/26/2020		<0.00102	<0.00102	<0.00102		<0.00102	<0.00102
3/16/2021					0.000397 (J)		
3/17/2021						0.000338 (J)	
3/22/2021		0.000293 (J)					
3/23/2021							0.000406 (J)
3/24/2021			0.000323 (J)	0.000402 (J)			
3/30/2021	0.00112						
10/5/2021		0.00023 (J)	<0.00102		0.00028 (J)	0.00025 (J)	0.00025 (J)
10/11/2021				0.00031 (J)			
10/12/2021	0.00035 (J)						

	GSD-AP-MW-8	GSD-AP-MW-9	GSD-AP-PZ-1	GSD-AP-PZ-2	GSD-AP-PZ-5	GSD-AP-PZ-6
12/7/2017	<0.00102	<0.00102				
2/8/2018	<0.00102	<0.00102				
4/25/2018	<0.00102	<0.00102				
6/26/2018	<0.00102	<0.00102				
6/27/2018			<0.00102		<0.00102	<0.00102
7/18/2018			<0.00102		<0.00102	<0.00102
8/7/2018			<0.00102			
8/8/2018	<0.00102	<0.00102			<0.00102	<0.00102
9/5/2018			<0.00102		<0.00102	<0.00102
9/24/2018			<0.00102		<0.00102	<0.00102
10/22/2018			<0.00102			
10/23/2018	<0.00102	<0.00102			<0.00102	<0.00102
12/3/2018			<0.00102		<0.00102	<0.00102
12/4/2018	<0.00102					
12/5/2018		<0.00102				
2/5/2019			<0.00102			
2/6/2019	<0.00102	<0.00102				
2/7/2019					<0.00102	<0.00102
8/20/2019			<0.00102			
8/21/2019	<0.00102	<0.00102			<0.00102	<0.00102
4/13/2020			<0.00102	<0.00102		
4/14/2020	<0.00102	<0.00102				
4/15/2020					<0.00102	<0.00102
8/24/2020			<0.00102	<0.00102	<0.00102	<0.00102
8/26/2020	<0.00102	<0.00102				
3/16/2021					0.000534 (J)	0.000534 (J)
3/17/2021				0.000764 (J)		
3/23/2021	0.0003 (J)	0.000422 (J)				
3/24/2021			0.000442 (J)			
10/5/2021			0.00035 (J)	0.00035 (J)		
10/12/2021	<0.00102	0.00031 (J)			0.00034 (J)	0.00031 (J)

	GSD-AP-MW-1	GSD-AP-MW-10	GSD-AP-MW-11	GSD-AP-MW-12	GSD-AP-MW-14	. GSD-AP-MW-16	GSD-AP-MW-17
12/6/2017	0.00818 (J)	<0.0002	<0.0002	0.00221 (J)			
2/6/2018	0.0123						
2/7/2018		<0.0002	<0.0002				
2/8/2018				0.00221 (J)			
4/23/2018	0.0204						
4/24/2018		<0.0002	<0.0002	0.00257 (J)			
6/26/2018	0.0224						
6/27/2018		<0.0002	<0.0002	0.00266 (J)	0.0382		
7/18/2018					0.0366		
8/6/2018					0.0308		
8/7/2018	0.0193	<0.0002					
8/8/2018			<0.0002	0.00251 (J)			
9/5/2018					0.0291		
9/24/2018					0.0286		
10/22/2018	0.0243	<0.0002					
10/23/2018			<0.0002	0.00399 (J)			
10/24/2018					0.0269	0.0129	<0.0002
11/14/2018						0.0114	<0.0002
11/28/2018						0.0168	<0.0002
12/4/2018	0.0166	<0.0002	<0.0002				
12/5/2018				0.00466 (J)	0.0215	0.0161	<0.0002
12/18/2018						0.0234	<0.0002
1/3/2019						0.038	<0.0002
1/24/2019						0.04	<0.0002
2/5/2019	0.0264				0.0359	0.0538	<0.0002
2/6/2019		<0.0002	<0.0002	0.00485 (J)			
6/24/2019						0.041	
8/19/2019						0.0247	<0.0002
8/20/2019					0.0391		
8/21/2019	0.0242						
8/22/2019		<0.0002	0.00756	0.00658			
4/14/2020			<0.0002	0.0035 (J)			
4/15/2020	0.0178	<0.0002				0.0373	
4/16/2020					0.056		<0.0002
8/24/2020							<0.0002
8/25/2020	0.0193				0.0365	0.0294	
8/26/2020		<0.0002	0.00599	0.00547			
3/16/2021	0.0184						
3/22/2021					0.0262	0.0469	0.000133 (J)
3/23/2021		0.00037	0.000388	0.00378			
10/5/2021	0.0169			0.00448			
10/6/2021						0.0321	0.00013 (J)
10/11/2021		0.00089					
10/12/2021			0.00027		0.0291		

	GSD-AP-MW-18H	GSD-AP-MW-19H	GSD-AP-MW-2	GSD-AP-MW-20H	GSD-AP-MW-21VC	GSD-AP-MW-22VB	GSD-AP-MW-2VA
12/6/2017			0.0246				
2/6/2018			0.0243				
4/23/2018			0.0258				
6/27/2018			0.0362				
8/7/2018			0.0332				
10/22/2018			0.0438				
12/4/2018			0.0252				
2/5/2019			0.0362				
8/20/2019			0.0366				
4/14/2020		0.00886		0.0122			
4/15/2020	<0.0002		0.0324				<0.0002
8/25/2020	<0.0002		0.0298				<0.0002
8/26/2020		0.0101		0.0104			
3/16/2021	0.000577						
3/22/2021							<0.0002
3/23/2021		0.00674		0.0125			
3/24/2021			0.0316				
10/6/2021					0.00021		<0.0002
10/11/2021		0.00579	0.0165	0.00995		<0.0002	
10/12/2021	0.00062						

	GSD-AP-MW-2VB	GSD-AP-MW-3	GSD-AP-MW-4	GSD-AP-MW-4V	GSD-AP-MW-5	GSD-AP-MW-6	GSD-AP-MW-7
12/6/2017		0.0302					
12/7/2017			0.0252		0.00331 (J)	0.00592 (J)	<0.0002
2/6/2018		0.0371	0.0243		0.00323 (J)		
2/8/2018						0.00297 (J)	<0.0002
4/24/2018		0.0251	0.027				
4/25/2018					0.00258 (J)	<0.0002	<0.0002
6/26/2018			0.0242			<0.0002	<0.0002
6/27/2018		0.0234			0.00218 (J)		
8/6/2018			0.0205				
8/7/2018		0.0223			<0.0002	<0.0002	
8/8/2018							<0.0002
10/22/2018		0.03	0.0259				
10/23/2018					0.0023 (J)	<0.0002	<0.0002
12/3/2018		0.0238	0.0228			<0.0002	
12/4/2018							<0.0002
12/5/2018					0.00233 (J)		
2/5/2019		0.0232	0.0263		0.0021 (J)	<0.0002	
2/6/2019							<0.0002
6/18/2019		0.0263					
8/20/2019		0.0257	0.0293		0.00223 (J)	<0.0002	
8/21/2019							<0.0002
4/13/2020		0.0209			<0.0002	<0.0002	
4/15/2020			0.0252	<0.0002			<0.0002
8/24/2020					0.00222 (J)		
8/26/2020		0.0191	0.0231	<0.0002		<0.0002	<0.0002
3/16/2021					0.00136		
3/17/2021						0.00102	
3/22/2021		0.0183					
3/23/2021							0.00102
3/24/2021			0.0268	8.16E-05 (J)			
3/30/2021	0.000116 (J)						
10/5/2021		0.016	0.0238		0.00116	0.00104	0.00018 (J)
10/11/2021				<0.0002			
10/12/2021	<0.0002						

	GSD-AP-MW-8	GSD-AP-MW-9	GSD-AP-PZ-1	GSD-AP-PZ-2	GSD-AP-PZ-5	GSD-AP-PZ-6
12/7/2017	0.00212 (J)	<0.0002				
2/8/2018	<0.0002	<0.0002				
4/25/2018	0.00204 (J)	<0.0002				
6/26/2018	<0.0002	<0.0002				
6/27/2018			<0.0002		0.00341 (J)	<0.0002
7/18/2018			<0.0002		0.00341 (J)	<0.0002
8/7/2018			<0.0002			
8/8/2018	<0.0002	<0.0002			0.00221 (J)	<0.0002
9/5/2018			<0.0002		0.00202 (J)	<0.0002
9/24/2018			<0.0002		<0.0002	<0.0002
10/22/2018			<0.0002			
10/23/2018	<0.0002	<0.0002			<0.0002	<0.0002
12/3/2018			<0.0002		0.00227 (J)	<0.0002
12/4/2018	<0.0002					
12/5/2018		<0.0002				
2/5/2019			<0.0002			
2/6/2019	0.00232 (J)	<0.0002				
2/7/2019					<0.0002	<0.0002
8/20/2019			<0.0002			
8/21/2019	0.00303 (J)	<0.0002			0.00225 (J)	<0.0002
4/13/2020			<0.0002	0.00489 (J)		
4/14/2020	0.00385 (J)	<0.0002				
4/15/2020					<0.0002	<0.0002
8/24/2020			<0.0002	0.00237 (J)	<0.0002	<0.0002
8/26/2020	0.00388 (J)	<0.0002				
3/16/2021					0.000384	0.000108 (J)
3/17/2021				0.00616		
3/23/2021	0.003	0.00103				
3/24/2021			<0.0002			
10/5/2021			0.00044	0.00287		
10/12/2021	0.00298	0.00113			8E-05 (J)	0.00014 (J)

	GSD-AP-MW-1	GSD-AP-MW-10	GSD-AP-MW-11	GSD-AP-MW-12	GSD-AP-MW-14	. GSD-AP-MW-16	. GSD-AP-MW-17
12/6/2017	0.694	0.585	0.891	0.435 (U)			
2/6/2018	0.641						
2/7/2018		0.474	0.786				
2/8/2018				0.477			
4/23/2018	-0.0527 (U)						
4/24/2018		0.463 (U)	0.935	0.695			
6/26/2018	0.162 (U)						
6/27/2018		0.678	0.537	0.183 (U)	0.616		
7/18/2018					0.859		
8/6/2018					0.654		
8/7/2018	0.87	0.495 (U)					
8/8/2018			1.28	0.817			
9/5/2018					0.855		
9/24/2018					0.787		
10/22/2018	0.691	0.36 (U)					
10/23/2018			1.3	0.796			
10/24/2018					1.14	0.564	0.694
11/14/2018						-0.0027 (U)	0.398 (U)
11/28/2018						0.222 (U)	0.428 (U)
12/4/2018	0.213 (U)	0.407 (U)	1.05				
12/5/2018				0.498 (U)	0.64	0.288 (U)	0.302 (U)
2/5/2019	0.637				0.873	0.431 (U)	0.307 (U)
2/6/2019		0.537	0.779	-0.0241 (U)			
8/19/2019						0.377 (U)	0.683
8/20/2019					0.774		
8/21/2019	0.643 (U)						
8/22/2019		-0.021 (U)	1.34 (U)	0.145 (U)			
4/14/2020			0.922 (U)	0.643 (U)			
4/15/2020	0.538 (U)	0.64 (U)				0.449 (U)	
4/16/2020					0.865		0.603
8/24/2020							0.404 (U)
8/25/2020	0.502 (U)				0.976	0.851	
8/26/2020		0.221 (U)	1.28	1.31			
3/16/2021	0.722 (U)						
3/22/2021					1.04	0.942 (U)	0.497 (U)
3/23/2021		0.83 (U)	0.592 (U)	0.565 (U)			
10/5/2021	1.21			1.48			
10/6/2021						1.16 (U)	2.01
10/11/2021		6.52					
10/12/2021			1.02 (U)		1.61		

	GSD-AP-MW-18H	GSD-AP-MW-19H	GSD-AP-MW-2	GSD-AP-MW-20H	GSD-AP-MW-21VC	CGSD-AP-MW-22VE	GSD-AP-MW-2VA
12/6/2017			0.772				
2/6/2018			0.679				
4/23/2018			0.447 (U)				
6/27/2018			0.117 (U)				
8/7/2018			1.22				
10/22/2018			0.996				
12/4/2018			0.739				
2/5/2019			1.09				
8/20/2019			0.553 (U)				
4/14/2020		42.6		0.0962 (U)			
4/15/2020	0.419 (U)		0.182 (U)				0.231 (U)
6/1/2020		0.215 (U)					
8/25/2020	1.45		0.43 (U)				0.807
8/26/2020		0.265 (U)		0.413 (U)			
3/16/2021	0.405 (U)						
3/22/2021							0.58 (U)
3/23/2021		0.562 (U)		0.847 (U)			
3/24/2021			0.769 (U)				
10/6/2021					1.78		0.746 (U)
10/11/2021		0.202 (U)	2.38	1.09 (U)		1.29	
10/12/2021	0.383 (U)						

	GSD-AP-MW-2VB	GSD-AP-MW-3	GSD-AP-MW-4	GSD-AP-MW-4V	GSD-AP-MW-5	GSD-AP-MW-6	GSD-AP-MW-7
12/6/2017		0.643					
12/7/2017			1.04		0.885	0.394 (U)	0.895
2/6/2018		0.209 (U)	0.989		0.524		
2/8/2018						0.489	0.322 (U)
4/24/2018		0.596	0.405 (U)				
4/25/2018					0.341 (U)	-0.0902 (U)	0.0097 (U)
6/26/2018			1.03			0.245 (U)	0.587
6/27/2018		0.363 (U)			0.546		
8/6/2018			0.622				
8/7/2018		0.788			1.09	0.439 (U)	
8/8/2018							0.364 (U)
10/22/2018		0.749	1.06				
10/23/2018					1.01	0.243 (U)	0.703
12/3/2018		0.749	0.697			0.304 (U)	
12/4/2018							0.325 (U)
12/5/2018					0.876		
2/5/2019		0.299 (U)	0.467 (U)		0.551 (U)	0.196 (U)	
2/6/2019							0.0774 (U)
8/20/2019		0.709 (U)	0.814		0.206 (U)	-0.086 (U)	
8/21/2019							-0.0134 (U)
4/13/2020		0.942 (U)			1.19	0.0901 (U)	
4/15/2020			-0.0841 (U)	0.329 (U)			0.526 (U)
8/24/2020					0.482 (U)		
8/26/2020		0.177 (U)	0.26 (U)	0.839		0.416 (U)	0.691 (U)
3/16/2021					0.709 (U)		
3/17/2021						0.539 (U)	
3/22/2021		0.263 (U)					
3/23/2021							0.45 (U)
3/24/2021			0.664 (U)	0.725 (U)			
3/30/2021	0.185 (U)						
10/5/2021		3.21	1.75		1.44	1.36	1.27
10/11/2021				1.58			
10/12/2021	0.323 (U)						

	GSD-AP-MW-8	GSD-AP-MW-9	GSD-AP-PZ-1	GSD-AP-PZ-2	GSD-AP-PZ-5	GSD-AP-PZ-6
12/7/2017	7.45 (o)	0.226 (U)				
2/8/2018	0.549	0.071 (U)				
4/25/2018	0.65	0.569				
6/26/2018	0.436 (U)	0.43 (U)				
6/27/2018			0.188 (U)		0.259 (U)	0.231 (U)
7/18/2018			0.314 (U)		0.434	0.676
8/7/2018			0.279 (U)			
8/8/2018	0.486 (U)	0.656			0.763	0.496
9/5/2018			0.589		0.631	0.62
9/24/2018			0.772		0.588	-0.12 (U)
10/22/2018			0.621			
10/23/2018	0.319 (U)	0.395 (U)			0.383 (U)	0.352 (U)
12/3/2018			0.188 (U)		0.736	0.238 (U)
12/4/2018	0.875					
12/5/2018		0.52 (U)				
2/5/2019			0.274 (U)			
2/6/2019	0.378 (U)	0.244 (U)				
2/7/2019					0.0202 (U)	0.395 (U)
8/20/2019			0.663			
8/21/2019	0.552 (U)	1.53 (U)			0.442 (U)	-0.00256 (U)
4/13/2020			-0.129 (U)	0.472 (U)		
4/14/2020	0.641 (U)	0.119 (U)				
4/15/2020					0.432 (U)	0.000738 (U)
8/24/2020			0.177 (U)	-0.00312 (U)	0.454 (U)	0.404 (U)
8/26/2020	0.339 (U)	1.18				
3/16/2021					0.32 (U)	0.589 (U)
3/17/2021				0.756 (U)		
3/23/2021	0.662 (U)	0.694 (U)				
3/24/2021			0.245 (U)			
10/5/2021			2.07	1.13		
10/12/2021	0.291 (U)	0.311 (U)			0.963 (U)	1.57

	CSD AD MW 1	CSD AD MW 10	CSD AD MW 11	GSD-AP-MW-12	CSD AD MW 14	CSD AD MW 16	CSD AD MW 17
12/6/2017	GSD-AP-MW-1	GSD-AP-MW-10	GSD-AP-MW-11		GSD-AF-IVIVV-14.	G3D-AP-WW-10 .	GSD-AP-MW-17
12/6/2017 2/6/2018	0.1	0.09 (J)	0.06 (J)	<0.1			
	0.08 (J)	0.09 (1)	0.05 (1)				
2/7/2018		0.08 (J)	0.05 (J)	-0.1			
2/8/2018	0.07.41			<0.1			
4/23/2018	0.07 (J)						
4/24/2018		0.08 (J)	0.05 (J)	<0.1			
6/26/2018	0.08 (J)						
6/27/2018		0.09 (J)	0.06 (J)	<0.1	0.18		
7/18/2018					0.23		
8/6/2018					0.23		
8/7/2018	0.07 (J)	0.04 (J)					
8/8/2018			0.06 (J)	<0.1			
9/5/2018					0.22		
9/24/2018					0.2		
10/22/2018	0.07 (J)	0.1					
10/23/2018			0.06 (J)	0.04 (J)			
10/24/2018					0.14	0.11	0.23
11/14/2018						0.1	0.2
11/28/2018						0.1	0.19
12/4/2018	0.04 (J)	0.07 (J)	<0.1				
12/5/2018				<0.1	0.07 (J)	0.11	0.19
12/18/2018						0.14	0.15
1/3/2019						0.16	0.19
1/24/2019						<0.1	0.168
2/5/2019	0.0525 (J)				<0.1	<0.1	0.192
2/6/2019		0.107	0.0678 (J)	<0.1			
2/26/2019	<0.1	0.0813 (J)					
2/27/2019			0.0985 (J)	<0.1			
2/28/2019					<0.1	<0.1	0.182
6/24/2019						<0.1 (D)	
8/19/2019						<0.1	0.187
8/20/2019					<0.1		
8/21/2019	<0.1						
8/22/2019		0.084 (J)	<0.1	<0.1			
4/14/2020		. ,	0.0878 (J)	<0.1			
4/15/2020	<0.1	0.112	.,			<0.1	
4/16/2020					<0.1		0.166
8/24/2020							0.163
8/25/2020	<0.1				<0.1	0.0863 (J)	
8/26/2020		0.0997 (J)	<0.1	<0.1			
3/16/2021	<0.1	, (0)					
3/22/2021	· · ·				<0.1	<0.1	0.18
3/23/2021		0.101	0.0819 (J)	<0.1	···		
10/5/2021	0.0601 (J)	5.101	3.0010 (0)	<0.1			
10/5/2021	0.0001 (0)			-0.1		<0.1	0.175
10/11/2021		0.201					5.170
10/11/2021		J.201	0.134		<0.1		
10/12/2021			0.134		~U. I		

	GSD-AP-MW-18H	GSD-AP-MW-19H	GSD-AP-MW-2	GSD-AP-MW-20H	GSD-AP-MW-21V0	CGSD-AP-MW-22VE	B GSD-AP-MW-2VA
12/6/2017			0.3				
2/6/2018			0.27				
4/23/2018			0.19				
6/27/2018			0.28				
8/7/2018			0.24				
10/22/2018			0.24				
12/4/2018			0.15				
2/5/2019			0.207				
2/26/2019			0.264				
8/20/2019			0.252				
4/14/2020		<0.1		0.125			
4/15/2020	<0.1		0.21				2.51
8/25/2020	<0.1		0.273				2.4
8/26/2020		<0.1		0.103			
3/16/2021	<0.1						
3/22/2021							2.33
3/23/2021		<0.1		0.108			
3/24/2021			0.194				
10/6/2021					8.34		2.56
10/11/2021		0.0779 (J)	0.283	0.127		1.43	
10/12/2021	<0.1						

	GSD-AP-MW-2VB	GSD-AP-MW-3	GSD-AP-MW-4	GSD-AP-MW-4V	GSD-AP-MW-5	GSD-AP-MW-6	GSD-AP-MW-7
12/6/2017		0.13					
12/7/2017			0.25		0.06 (J)	0.06 (J)	0.09 (J)
2/6/2018		0.08 (J)	0.24		0.05 (J)		
2/8/2018						0.04 (J)	0.07 (J)
4/24/2018		0.05 (J)	0.2				
4/25/2018					0.05 (J)	0.04 (J)	0.07 (J)
6/26/2018			0.22			0.05 (J)	0.09 (J)
6/27/2018		0.07 (J)			0.06 (J)		
8/6/2018			0.22				
8/7/2018		0.09 (J)			0.06 (J)	0.05 (J)	
8/8/2018							0.1
10/22/2018		0.11	0.24				
10/23/2018					0.07 (J)	0.06 (J)	0.1
12/3/2018		0.08 (J)	0.22			<0.1	
12/4/2018							0.06 (J)
12/5/2018					0.04 (J)		
2/5/2019		0.064 (J)	0.259		0.0651 (J)	0.0581 (J)	
2/6/2019							<0.1
2/25/2019		<0.1					
2/26/2019			0.246			0.0816 (J)	
2/27/2019					0.0578 (J)		0.0824 (J)
6/18/2019		0.0664 (J)					
8/20/2019		0.0592 (J)	0.197		0.0567 (J)	<0.1	
8/21/2019							0.068 (J)
4/13/2020		<0.1			0.0688 (J)	<0.1	
4/15/2020			0.238	0.218			0.0775 (J)
8/24/2020					0.0607 (J)		
8/26/2020		<0.1	0.251	0.217		<0.1	<0.1
3/16/2021					0.065 (J)		
3/17/2021						<0.1	
3/22/2021		<0.1					
3/23/2021							<0.1
3/24/2021			0.227	0.212			
3/30/2021	6.09						
10/5/2021		<0.1	0.214		0.122	<0.1	0.0933 (J)
10/11/2021				0.23			
10/12/2021	5.97						

	GSD-AP-MW-8	GSD-AP-MW-9	GSD-AP-PZ-1	GSD-AP-PZ-2	GSD-AP-PZ-5	GSD-AP-PZ-6
12/7/2017	0.14	0.12				
2/8/2018	0.11					
2/12/2018		0.11				
4/25/2018	0.09 (J)	0.12				
6/26/2018	0.1	0.13				
6/27/2018			0.13		0.05 (J)	0.04 (J)
7/18/2018			0.11		0.04 (J)	0.04 (J)
8/7/2018			0.11			
8/8/2018	0.1	0.12			0.04 (J)	0.04 (J)
9/5/2018			0.13		0.04 (J)	0.04 (J)
9/24/2018			0.13		0.04 (J)	0.04 (J)
10/22/2018			0.13			
10/23/2018	0.11	0.13			0.04 (J)	0.04 (J)
12/3/2018			0.08 (J)		<0.1	<0.1
12/4/2018	0.08 (J)					
12/5/2018		0.04 (J)				
2/5/2019			0.0934 (J)			
2/6/2019	<0.1	<0.1				
2/7/2019					<0.1	<0.1
2/25/2019			<0.1		<0.1	<0.1
2/27/2019	0.108	0.147				
8/20/2019			0.0889 (J)			
8/21/2019	0.0648 (J)	0.0984 (J)			<0.1	<0.1
4/13/2020			0.103	<0.1		
4/14/2020	0.0845 (J)	0.133				
4/15/2020					<0.1	<0.1
8/24/2020			0.114	<0.1	<0.1	<0.1
8/26/2020	0.0732 (J)	0.13				
3/16/2021					<0.1	<0.1
3/17/2021				<0.1		
3/23/2021	0.0802 (J)	0.132				
3/24/2021			0.0725 (J)			
10/5/2021			<0.1	<0.1		
10/12/2021	0.123	0.147			<0.1	<0.1

	GSD-AP-MW-1	GSD-AP-MW-10	GSD-AP-MW-11	GSD-AP-MW-12	CSD AD MW 14	GSD AD MW 16	. GSD-AP-MW-17
12/6/2017	<0.0002	<0.0002	<0.0002	<0.0002	G3D-AF-WW-14.	GSD-AF-WW-10	GSD-AF-WW-17
2/6/2018	<0.0002	~0.0002	\0.0002	~0.0002			
2/7/2018	~0.0002	<0.0002	<0.0002				
		<0.0002	<0.0002	<0.0000			
2/8/2018	-0.0000			<0.0002			
4/23/2018	<0.0002	-0.0000	-0.0000	-0.0000			
4/24/2018		<0.0002	<0.0002	<0.0002			
6/26/2018	<0.0002						
6/27/2018		<0.0002	<0.0002	<0.0002	0.00158 (J)		
7/18/2018					0.00152 (J)		
8/6/2018					0.00143 (J)		
8/7/2018	<0.0002	<0.0002					
8/8/2018			<0.0002	<0.0002			
9/5/2018					0.00118 (J)		
9/24/2018					0.00156 (J)		
10/22/2018	<0.0002	<0.0002					
10/23/2018			<0.0002	<0.0002			
10/24/2018					0.00121 (J)	<0.0002	<0.0002
11/14/2018						<0.0002	<0.0002
11/28/2018						<0.0002	<0.0002
12/4/2018	<0.0002	<0.0002	<0.0002				
12/5/2018				<0.0002	0.00117 (J)	<0.0002	<0.0002
12/18/2018						<0.0002	<0.0002
1/3/2019						0.001 (J)	<0.0002
1/24/2019						0.00114 (J)	<0.0002
2/5/2019	<0.0002				0.00156 (J)	0.00135 (J)	<0.0002
2/6/2019		<0.0002	<0.0002	<0.0002			
6/24/2019						0.00125 (J)	
8/19/2019						<0.0002	<0.0002
8/20/2019					0.00176 (J)		
8/21/2019	<0.0002						
8/22/2019		<0.0002	<0.0002	<0.0002			
4/14/2020			<0.0002	<0.0002			
4/15/2020	<0.0002	<0.0002				<0.0002	
4/16/2020					0.00258 (J)		<0.0002
8/24/2020							<0.0002
8/25/2020	<0.0002				0.0018 (J)	0.0011 (J)	
8/26/2020		<0.0002	<0.0002	<0.0002			
3/16/2021	<0.0002						
3/22/2021					0.00143	0.0016	<0.0002
3/23/2021		<0.0002	<0.0002	<0.0002			
10/5/2021	<0.0002			<0.0002			
10/6/2021						0.00116	<0.0002
10/11/2021		<0.0002					
10/12/2021			<0.0002		0.00156		

	GSD-AP-MW-18H	GSD-AP-MW-19H	GSD-AP-MW-2	GSD-AP-MW-20H	GSD-AP-MW-21VC	GSD-AP-MW-22VE	GSD-AP-MW-2VA
12/6/2017			<0.0002				
2/6/2018			<0.0002				
4/23/2018			<0.0002				
6/27/2018			<0.0002				
8/7/2018			<0.0002				
10/22/2018			<0.0002				
12/4/2018			<0.0002				
2/5/2019			<0.0002				
8/20/2019			<0.0002				
4/14/2020		<0.0002		<0.0002			
4/15/2020	<0.0002		<0.0002				<0.0002
8/25/2020	<0.0002		<0.0002				<0.0002
8/26/2020		<0.0002		<0.0002			
3/16/2021	<0.0002						
3/22/2021							<0.0002
3/23/2021		0.000201 (J)		<0.0002			
3/24/2021			<0.0002				
10/6/2021					0.00022		<0.0002
10/11/2021		0.00016 (J)	9E-05 (J)	8E-05 (J)		<0.0002	
10/12/2021	<0.0002						

	GSD-AP-MW-2VB	GSD-AP-MW-3	GSD-AP-MW-4	GSD-AP-MW-4V	GSD-AP-MW-5	GSD-AP-MW-6	GSD-AP-MW-7
12/6/2017		<0.0002					
12/7/2017			<0.0002		<0.0002	<0.0002	<0.0002
2/6/2018		<0.0002	<0.0002		<0.0002		
2/8/2018						<0.0002	<0.0002
4/24/2018		<0.0002	<0.0002				
4/25/2018					<0.0002	<0.0002	<0.0002
6/26/2018			<0.0002			<0.0002	<0.0002
6/27/2018		<0.0002			<0.0002		
8/6/2018			<0.0002				
8/7/2018		<0.0002			<0.0002	<0.0002	
8/8/2018							<0.0002
10/22/2018		<0.0002	<0.0002				
10/23/2018					<0.0002	<0.0002	<0.0002
12/3/2018		<0.0002	<0.0002			<0.0002	
12/4/2018							<0.0002
12/5/2018					<0.0002		
2/5/2019		<0.0002	<0.0002		<0.0002	<0.0002	
2/6/2019							<0.0002
6/18/2019		<0.0002					
8/20/2019		<0.0002	<0.0002		<0.0002	<0.0002	
8/21/2019							<0.0002
4/13/2020		<0.0002			<0.0002	<0.0002	
4/15/2020			<0.0002	<0.0002			<0.0002
8/24/2020					<0.0002		
8/26/2020		<0.0002	<0.0002	<0.0002		<0.0002	<0.0002
3/16/2021					<0.0002		
3/17/2021						<0.0002	
3/22/2021		<0.0002					
3/23/2021							<0.0002
3/24/2021			<0.0002	<0.0002			
3/30/2021	<0.0002						
10/5/2021		<0.0002	<0.0002		<0.0002	<0.0002	<0.0002
10/11/2021				<0.0002			
10/12/2021	<0.0002						

12/7/2017							
2/8/2018		GSD-AP-MW-8	GSD-AP-MW-9	GSD-AP-PZ-1	GSD-AP-PZ-2	GSD-AP-PZ-5	GSD-AP-PZ-6
4/25/2018	12/7/2017	<0.0002	<0.0002				
6/26/2018 < 0.0002	2/8/2018	<0.0002	<0.0002				
6/27/2018	4/25/2018	<0.0002	<0.0002				
7/18/2018	6/26/2018	<0.0002	<0.0002				
8/7/2018	6/27/2018			<0.0002		<0.0002	<0.0002
8/8/2018	7/18/2018			<0.0002		<0.0002	<0.0002
9/5/2018	8/7/2018			<0.0002			
9/24/2018	8/8/2018	<0.0002	<0.0002			<0.0002	<0.0002
10/22/2018	9/5/2018			<0.0002		<0.0002	<0.0002
10/23/2018 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <	9/24/2018			<0.0002		<0.0002	<0.0002
12/3/2018	10/22/2018			<0.0002			
12/4/2018 < 0.0002	10/23/2018	<0.0002	<0.0002			<0.0002	<0.0002
12/5/2018	12/3/2018			<0.0002		<0.0002	<0.0002
2/5/2019	12/4/2018	<0.0002					
2/6/2019 <0.0002	12/5/2018		<0.0002				
2/7/2019	2/5/2019			<0.0002			
8/20/2019 < 0.0002 < 0.0002	2/6/2019	<0.0002	<0.0002				
8/21/2019 <0.0002	2/7/2019					<0.0002	<0.0002
4/13/2020 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.000191 (J)	8/20/2019			<0.0002			
4/14/2020 < 0.0002 < 0.0002 4/15/2020	8/21/2019	<0.0002	<0.0002			<0.0002	<0.0002
4/15/2020	4/13/2020			<0.0002	<0.0002		
8/24/2020 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 8/26/2020 < 0.0002 < 0.0002 3/16/2021	4/14/2020	<0.0002	<0.0002				
8/26/2020 <0.0002 <0.0002 3/16/2021 0.00013 (J) 8.35E-05 (J) 3/17/2021 0.0002 <0.0002 3/23/2021 <0.0002 <0.0002 3/24/2021 <0.0002 0.0002 (J)	4/15/2020					<0.0002	<0.0002
3/16/2021 0.00013 (J) 8.35E-05 (J) 3/17/2021 0.0002 0.0002 3/24/2021 <0.0002 <0.0002 10/5/2021 <0.0002 0.00012 (J)	8/24/2020			<0.0002	<0.0002	<0.0002	<0.0002
3/17/2021 0.000191 (J) 3/23/2021 <0.0002 <0.0002 3/24/2021 <0.0002	8/26/2020	<0.0002	<0.0002				
3/23/2021 <0.0002 <0.0002 3/24/2021 <0.0002 10/5/2021 <0.0002 0.00012 (J)	3/16/2021					0.00013 (J)	8.35E-05 (J)
3/24/2021 <0.0002 10/5/2021 <0.0002 0.00012 (J)	3/17/2021				0.000191 (J)		
10/5/2021 <0.0002 0.00012 (J)	3/23/2021	<0.0002	<0.0002				
.,	3/24/2021			<0.0002			
10/12/2021 <0.0002 <0.0002 <0.0002 0.00012 (J)	10/5/2021			<0.0002	0.00012 (J)		
	10/12/2021	<0.0002	<0.0002			<0.0002	0.00012 (J)

	GSD-AP-MW-1	GSD-AP-MW-10	GSD-AP-MW-11		GSD-AP-MW-14	. GSD-AP-MW-16	. GSD-AP-MW-17
12/6/2017	<0.02	<0.02	<0.02	<0.02			
2/6/2018	<0.02						
2/7/2018		<0.02	<0.02				
2/8/2018				<0.02			
4/23/2018	<0.02						
4/24/2018		<0.02	<0.02	<0.02			
6/26/2018	<0.02						
6/27/2018		<0.02	<0.02	<0.02	<0.02		
7/18/2018					<0.02		
8/6/2018					<0.02		
8/7/2018	<0.02	<0.02					
8/8/2018			<0.02	<0.02			
9/5/2018					<0.02		
9/24/2018					<0.02		
10/22/2018	<0.02	<0.02					
10/23/2018			<0.02	<0.02			
10/24/2018					<0.02	<0.02	<0.02
11/14/2018						<0.02	<0.02
11/28/2018						<0.02	0.0111 (J)
12/4/2018	<0.02	<0.02	<0.02				
12/5/2018				<0.02	<0.02	<0.02	0.0124 (J)
12/18/2018						<0.02	0.0121 (J)
1/3/2019						<0.02	0.0137 (J)
1/24/2019						<0.02	0.0134 (J)
2/5/2019	<0.02				<0.02	<0.02	0.0126 (J)
2/6/2019		<0.02	<0.02	<0.02			
6/24/2019						<0.02	
8/19/2019						<0.02	<0.02
8/20/2019					<0.02		
8/21/2019	<0.02						
8/22/2019		<0.02	<0.02	<0.02			
4/14/2020			<0.02	<0.02			
4/15/2020	<0.02	<0.02				<0.02	
4/16/2020					<0.02		0.0127 (J)
8/24/2020							<0.02
8/25/2020	<0.02				<0.02	<0.02	
8/26/2020	0.02	<0.02	<0.02	<0.02	0.02	0.02	
3/16/2021	<0.02	0.02	0.02	0.02			
3/22/2021	5.02				<0.02	<0.02	0.0083 (J)
3/23/2021		<0.02	<0.02	<0.02	5.0 <u>2</u>	0.0 <u>L</u>	0.0000 (0)
10/5/2021	<0.02	J.UL	5.02	<0.02			
10/6/2021	-0.02			-0.02		<0.02	0.00881 (J)
10/11/2021		<0.02				-0.02	0.00001 (0)
10/11/2021		-0.02	<0.02		<0.02		
10/12/2021			~U.UZ		~U.UZ		

	GSD-AP-MW-18H	GSD-AP-MW-19H	GSD-AP-MW-2	GSD-AP-MW-20H	GSD-AP-MW-21VC	GSD-AP-MW-22VE	GSD-AP-MW-2VA
12/6/2017			0.092				
2/6/2018			0.0817				
4/23/2018			0.051				
6/27/2018			0.0734				
8/7/2018			0.0764				
10/22/2018			0.0804				
12/4/2018			0.0474				
2/5/2019			0.0545				
8/20/2019			0.0583				
4/14/2020		<0.02		<0.02			
4/15/2020	<0.02		0.0406				0.0783
7/1/2020							0.069
8/25/2020	<0.02		0.041				0.0666
8/26/2020		<0.02		<0.02			
3/16/2021	<0.02						
3/22/2021							0.0666
3/23/2021		<0.02		<0.02			
3/24/2021			0.0318				
10/6/2021					0.227		0.0685
10/11/2021		<0.02	0.0225	<0.02		0.0544	
10/12/2021	<0.02						

	GSD-AP-MW-2VB	GSD-AP-MW-3	GSD-AP-MW-4	GSD-AP-MW-4V	GSD-AP-MW-5	GSD-AP-MW-6	GSD-AP-MW-7
12/6/2017		<0.02					
12/7/2017			<0.02		<0.02	<0.02	<0.02
2/6/2018		<0.02	<0.02		<0.02		
2/8/2018						<0.02	<0.02
4/24/2018		<0.02	<0.02				
4/25/2018					<0.02	<0.02	<0.02
6/26/2018			<0.02			<0.02	<0.02
6/27/2018		<0.02			<0.02		
8/6/2018			<0.02				
8/7/2018		<0.02			<0.02	<0.02	
8/8/2018							<0.02
10/22/2018		<0.02	<0.02				
10/23/2018					<0.02	<0.02	<0.02
12/3/2018		<0.02	<0.02			<0.02	
12/4/2018							<0.02
12/5/2018					<0.02		
2/5/2019		<0.02	<0.02		<0.02	<0.02	
2/6/2019							<0.02
6/18/2019		<0.02					
8/20/2019		<0.02	<0.02		<0.02	<0.02	
8/21/2019							<0.02
4/13/2020		<0.02			<0.02	<0.02	
4/15/2020			<0.02	0.0219			<0.02
8/24/2020					<0.02		
8/26/2020		<0.02	<0.02	0.0203		<0.02	<0.02
3/16/2021					<0.02		
3/17/2021						<0.02	
3/22/2021		<0.02					
3/23/2021							<0.02
3/24/2021			<0.02	0.0203			
3/30/2021	0.13						
10/5/2021		<0.02	<0.02		<0.02	<0.02	<0.02
10/11/2021				0.0198 (J)			
10/12/2021	0.129						

	GSD-AP-MW-8	GSD-AP-MW-9	GSD-AP-PZ-1	GSD-AP-PZ-2	GSD-AP-PZ-5	GSD-AP-PZ-6
12/7/2017	<0.02	<0.02				
2/8/2018	<0.02	<0.02				
4/25/2018	<0.02	<0.02				
6/26/2018	<0.02	<0.02				
6/27/2018			<0.02		<0.02	<0.02
7/18/2018			<0.02		<0.02	<0.02
8/7/2018			<0.02			
8/8/2018	<0.02	<0.02			<0.02	<0.02
9/5/2018			<0.02		<0.02	<0.02
9/24/2018			<0.02		<0.02	<0.02
10/22/2018			<0.02			
10/23/2018	<0.02	<0.02			<0.02	<0.02
12/3/2018			<0.02		<0.02	<0.02
12/4/2018	<0.02					
12/5/2018		<0.02				
2/5/2019			<0.02			
2/6/2019	<0.02	<0.02				
2/7/2019					<0.02	<0.02
8/20/2019			<0.02			
8/21/2019	<0.02	<0.02			<0.02	<0.02
4/13/2020			<0.02	<0.02		
4/14/2020	<0.02	<0.02				
4/15/2020					<0.02	<0.02
8/24/2020			<0.02	<0.02	<0.02	<0.02
8/26/2020	<0.02	<0.02				
3/16/2021					<0.02	<0.02
3/17/2021				<0.02		
3/23/2021	<0.02	<0.02				
3/24/2021			<0.02			
10/5/2021			<0.02	<0.02		
10/12/2021	<0.02	<0.02			<0.02	<0.02

		GSD-AP-MW-1	GSD-AP-MW-10	GSD-AP-MW-11	GSD-AP-MW-12	GSD-AP-MW-14	. GSD-AP-MW-16	GSD-AP-MW-17
12/6/2	2017	<0.0005	<0.0005	<0.0005	<0.0005			
2/6/20)18	<0.0005						
2/7/20)18		<0.0005	<0.0005				
2/8/20)18				<0.0005			
4/23/2	2018	<0.0005						
4/24/2	2018		<0.0005	<0.0005	<0.0005			
6/26/2	2018	<0.0005						
6/27/2	2018		<0.0005	<0.0005	<0.0005	0.000661		
7/18/2	2018					0.000398 (J)		
8/6/20)18					0.00042 (J)		
8/7/20)18	<0.0005	<0.0005					
8/8/20)18			<0.0005	<0.0005			
9/5/20)18					0.00037 (J)		
9/24/2	2018					0.000329 (J)		
10/22	/2018	<0.0005	<0.0005					
10/23	/2018			<0.0005	<0.0005			
10/24	/2018					<0.0005	<0.0005	<0.0005
11/14	/2018						<0.0005	<0.0005
11/28	/2018						<0.0005	<0.0005
12/4/2	2018	<0.0005	0.000302 (J)	<0.0005				
12/5/2	2018				<0.0005	0.000253 (J)	<0.0005	<0.0005
12/18	/2018						<0.0005	<0.0005
1/3/20	19						<0.0005	<0.0005
1/24/2	2019						0.000411 (J)	<0.0005
2/5/20	19	<0.0005				0.000664	0.000473 (J)	<0.0005
2/6/20	19		<0.0005	<0.0005	<0.0005			
8/19/2	2019						<0.0005	<0.0005
8/20/2	2019					0.000301 (J)		
8/21/2	2019	<0.0005						
8/22/2	2019		<0.0005	<0.0005	<0.0005			
4/14/2	2020			<0.0005	<0.0005			
4/15/2	2020	<0.0005	<0.0005				<0.0005	
4/16/2	2020					0.000558		<0.0005
8/24/2	2020							<0.0005
8/25/2	2020	<0.0005				<0.0005	<0.0005	
8/26/2	2020		<0.0005	<0.0005	<0.0005			
3/16/2	2021	<0.0005						
3/22/2	2021					0.000363 (J)	0.000775	<0.0005
3/23/2	2021		<0.0005	<0.0005	<0.0005			
10/5/2	2021	<0.0005			<0.0005			
10/6/2	2021						<0.0005	<0.0005
10/11/	/2021		<0.0005					
10/12/	/2021			<0.0005		<0.0005		

	GSD-AP-MW-18H	GSD-AP-MW-19H	GSD-AP-MW-2	GSD-AP-MW-20H	GSD-AP-MW-21V	CGSD-AP-MW-22VE	BGSD-AP-MW-2VA
12/6/2017			<0.0005				
2/6/2018			<0.0005				
4/23/2018			<0.0005				
6/27/2018			<0.0005				
8/7/2018			<0.0005				
10/22/2018			<0.0005				
12/4/2018			<0.0005				
2/5/2019			<0.0005				
8/20/2019			<0.0005				
4/14/2020		<0.0005		<0.0005			
4/15/2020	<0.0005		<0.0005				<0.0005
8/25/2020	<0.0005		<0.0005				<0.0005
8/26/2020		<0.0005		<0.0005			
3/16/2021	<0.0005						
3/22/2021							<0.0005
3/23/2021		<0.0005		<0.0005			
3/24/2021			<0.0005				
10/6/2021					<0.0005		<0.0005
10/11/2021		<0.0005	<0.0005	<0.0005		<0.0005	
10/12/2021	<0.0005						

	GSD-AP-MW-2VB	GSD-AP-MW-3	GSD-AP-MW-4	GSD-AP-MW-4V	GSD-AP-MW-5	GSD-AP-MW-6	GSD-AP-MW-7
12/6/2017		<0.0005					
12/7/2017			<0.0005		<0.0005	<0.0005	<0.0005
2/6/2018		<0.0005	<0.0005		<0.0005		
2/8/2018						<0.0005	<0.0005
4/24/2018		<0.0005	<0.0005				
4/25/2018					<0.0005	<0.0005	<0.0005
6/26/2018			<0.0005			<0.0005	<0.0005
6/27/2018		<0.0005			<0.0005		
8/6/2018			<0.0005				
8/7/2018		<0.0005			<0.0005	<0.0005	
8/8/2018							<0.0005
10/22/2018		<0.0005	<0.0005				
10/23/2018					<0.0005	<0.0005	<0.0005
12/3/2018		<0.0005	<0.0005			<0.0005	
12/4/2018							0.00034 (J)
12/5/2018					<0.0005		
2/5/2019		<0.0005	<0.0005		<0.0005	<0.0005	
2/6/2019							<0.0005
8/20/2019		<0.0005	<0.0005		<0.0005	<0.0005	
8/21/2019							<0.0005
4/13/2020		<0.0005			<0.0005	<0.0005	
4/15/2020			<0.0005	<0.0005			<0.0005
8/24/2020					<0.0005		
8/26/2020		<0.0005	<0.0005	<0.0005		<0.0005	<0.0005
3/16/2021					<0.0005		
3/17/2021						<0.0005	
3/22/2021		<0.0005					
3/23/2021							<0.0005
3/24/2021			<0.0005	<0.0005			
3/30/2021	<0.0005						
10/5/2021		<0.0005	<0.0005		<0.0005	<0.0005	<0.0005
10/11/2021				<0.0005			
10/12/2021	<0.0005						

	GSD-AP-MW-8	GSD-AP-MW-9	GSD-AP-PZ-1	GSD-AP-PZ-2	GSD-AP-PZ-5	GSD-AP-PZ-6
12/7/2017	<0.0005	<0.0005				
2/8/2018	<0.0005	<0.0005				
4/25/2018	<0.0005	<0.0005				
6/26/2018	<0.0005	<0.0005				
6/27/2018			<0.0005		<0.0005	<0.0005
7/18/2018			<0.0005		<0.0005	<0.0005
8/7/2018			<0.0005			
8/8/2018	<0.0005	<0.0005			<0.0005	<0.0005
9/5/2018			<0.0005		<0.0005	<0.0005
9/24/2018			<0.0005		<0.0005	<0.0005
10/22/2018			<0.0005			
10/23/2018	<0.0005	<0.0005			<0.0005	<0.0005
12/3/2018			<0.0005		<0.0005	<0.0005
12/4/2018	0.000284 (J)					
12/5/2018		<0.0005				
2/5/2019			<0.0005			
2/6/2019	<0.0005	<0.0005				
2/7/2019					<0.0005	<0.0005
8/20/2019			<0.0005			
8/21/2019	<0.0005	<0.0005			<0.0005	<0.0005
4/13/2020			<0.0005	<0.0005		
4/14/2020	<0.0005	<0.0005				
4/15/2020					<0.0005	<0.0005
8/24/2020			<0.0005	<0.0005	<0.0005	<0.0005
8/26/2020	<0.0005	<0.0005				
3/16/2021					<0.0005	<0.0005
3/17/2021				<0.0005		
3/23/2021	<0.0005	<0.0005				
3/24/2021			<0.0005			
10/5/2021			<0.0005	<0.0005		
10/12/2021	<0.0005	<0.0005			<0.0005	<0.0005

	000 40 1044	000 40 104 40	000 40 104 11	000 40 404 40	000 40 404 44	000 40 404 40	000 40 404 47
	GSD-AP-MW-1	GSD-AP-MW-10	GSD-AP-MW-11		GSD-AP-MW-14	GSD-AP-MW-16	. GSD-AP-MW-17
12/6/2017	<0.0002	<0.0002	<0.0002	<0.0002			
2/6/2018	<0.0002						
2/7/2018		<0.0002	<0.0002				
2/8/2018				<0.0002			
4/23/2018	<0.0002						
4/24/2018		<0.0002	<0.0002	<0.0002			
6/26/2018	<0.0002						
6/27/2018		<0.0002	<0.0002	<0.0002	<0.0002		
7/18/2018					<0.0002		
8/6/2018					<0.0002		
8/7/2018	<0.0002	<0.0002					
8/8/2018			<0.0002	<0.0002			
9/5/2018					<0.0002		
9/24/2018					<0.0002		
10/22/2018	<0.0002	<0.0002					
10/23/2018			<0.0002	<0.0002			
10/24/2018					<0.0002	<0.0002	0.00507 (J)
11/14/2018						<0.0002	0.00358 (J)
11/28/2018						<0.0002	0.00322 (J)
12/4/2018	<0.0002	<0.0002	<0.0002				
12/5/2018				<0.0002	<0.0002	<0.0002	0.00256 (J)
12/18/2018						<0.0002	0.00215 (J)
1/3/2019						<0.0002	0.00257 (J)
1/24/2019						<0.0002	0.00211 (J)
2/5/2019	<0.0002				<0.0002	<0.0002	0.00205 (J)
2/6/2019		<0.0002	<0.0002	<0.0002			
6/24/2019						<0.0002	
8/19/2019						<0.0002	<0.0002
8/20/2019					<0.0002		
8/21/2019	<0.0002						
8/22/2019		<0.0002	<0.0002	<0.0002			
4/14/2020			<0.0002	<0.0002			
4/15/2020	<0.0002	<0.0002				<0.0002	
4/16/2020					<0.0002		<0.0002
8/24/2020							<0.0002
8/25/2020	<0.0002				<0.0002	<0.0002	
8/26/2020		<0.0002	<0.0002	<0.0002			
3/16/2021	<0.0002						
3/22/2021					<0.0002	<0.0002	0.000723
3/23/2021		0.000204	0.000124 (J)	<0.0002			
10/5/2021	<0.0002			<0.0002			
10/6/2021						<0.0002	0.00045
10/11/2021		0.00045					
10/12/2021			0.00015 (J)		<0.0002		
			` '				

	GSD-AP-MW-18H	GSD-AP-MW-19H	GSD-AP-MW-2	GSD-AP-MW-20H	GSD-AP-MW-21V	CGSD-AP-MW-22VE	B GSD-AP-MW-2VA
12/6/2017			0.0254				
2/6/2018			0.0239				
4/23/2018			0.0165				
6/27/2018			0.0302				
8/7/2018			0.0209				
10/22/2018			0.0198				
12/4/2018			0.0118				
2/5/2019			0.0196				
8/20/2019			0.027				
4/14/2020		<0.0002		<0.0002			
4/15/2020	<0.0002		0.0202				<0.0002
8/25/2020	<0.0002		0.0269				0.00323 (J)
8/26/2020		<0.0002		<0.0002			
3/16/2021	<0.0002						
3/22/2021							0.00386
3/23/2021		<0.0002		0.000481			
3/24/2021			0.0164				
10/6/2021					0.00107		0.00363
10/11/2021		0.00012 (J)	0.0204	0.00031		0.00538	
10/12/2021	<0.0002						

	GSD-AP-MW-2VB	GSD-AP-MW-3	GSD-AP-MW-4	GSD-AP-MW-4V	GSD-AP-MW-5	GSD-AP-MW-6	GSD-AP-MW-7
12/6/2017		<0.0002					
12/7/2017			<0.0002		<0.0002	<0.0002	<0.0002
2/6/2018		<0.0002	<0.0002		<0.0002		
2/8/2018						<0.0002	<0.0002
4/24/2018		<0.0002	<0.0002				
4/25/2018					<0.0002	<0.0002	<0.0002
6/26/2018			<0.0002			<0.0002	<0.0002
6/27/2018		<0.0002			<0.0002		
8/6/2018			<0.0002				
8/7/2018		<0.0002			<0.0002	<0.0002	
8/8/2018							<0.0002
10/22/2018		<0.0002	<0.0002				
10/23/2018					<0.0002	<0.0002	<0.0002
12/3/2018		<0.0002	<0.0002			<0.0002	
12/4/2018							<0.0002
12/5/2018					<0.0002		
2/5/2019		<0.0002	<0.0002		<0.0002	<0.0002	
2/6/2019							<0.0002
6/18/2019		<0.0002					
8/20/2019		<0.0002	<0.0002		<0.0002	<0.0002	
8/21/2019							<0.0002
4/13/2020		<0.0002			<0.0002	<0.0002	
4/15/2020			<0.0002	<0.0002			<0.0002
8/24/2020					<0.0002		
8/26/2020		<0.0002	<0.0002	<0.0002		<0.0002	<0.0002
3/16/2021					<0.0002		
3/17/2021						<0.0002	
3/22/2021		<0.0002					
3/23/2021							<0.0002
3/24/2021			0.00118	0.00188			
3/30/2021	0.000673						
10/5/2021		<0.0002	0.00111		0.00015 (J)	<0.0002	0.0001 (J)
10/11/2021				0.00173			
10/12/2021	0.00156						

	GSD-AP-MW-8	GSD-AP-MW-9	GSD-AP-PZ-1	GSD-AP-PZ-2	GSD-AP-PZ-5	GSD-AP-PZ-6
12/7/2017	<0.0002	<0.0002				
2/8/2018	<0.0002	<0.0002				
4/25/2018	<0.0002	<0.0002				
6/26/2018	<0.0002	<0.0002				
6/27/2018			<0.0002		<0.0002	<0.0002
7/18/2018			<0.0002		<0.0002	<0.0002
8/7/2018			<0.0002			
8/8/2018	<0.0002	<0.0002			<0.0002	<0.0002
9/5/2018			<0.0002		<0.0002	<0.0002
9/24/2018			<0.0002		<0.0002	<0.0002
10/22/2018			<0.0002			
10/23/2018	<0.0002	<0.0002			<0.0002	<0.0002
12/3/2018			<0.0002		<0.0002	<0.0002
12/4/2018	<0.0002					
12/5/2018		<0.0002				
2/5/2019			<0.0002			
2/6/2019	<0.0002	<0.0002				
2/7/2019					<0.0002	<0.0002
8/20/2019			<0.0002			
8/21/2019	<0.0002	<0.0002			<0.0002	<0.0002
4/13/2020			<0.0002	<0.0002		
4/14/2020	<0.0002	<0.0002				
4/15/2020					<0.0002	<0.0002
8/24/2020			<0.0002	<0.0002	<0.0002	<0.0002
8/26/2020	<0.0002	<0.0002				
3/16/2021					<0.0002	<0.0002
3/17/2021				<0.0002		
3/23/2021	0.000357	0.00027				
3/24/2021			9.88E-05 (J)			
10/5/2021			7E-05 (J)	0.00028		
10/12/2021	0.00032	0.00018 (J)			<0.0002	<0.0002

	GSD-AP-MW-1	GSD-AP-MW-10	GSD-AP-MW-11	GSD-AP-MW-12	GSD-AP-MW-14	GSD-AP-MW-16	GSD-AP-MW-17
12/6/2017	6.5	6.83	6.81	5.6	GG2 711 11117 1 7 1.1		36574 1007 17 111
2/6/2018	6.48	0.00	0.01	0.0			
2/7/2018	0.40	6.82	6.74				
2/8/2018		0.02	0.74	5.44			
4/23/2018	6 26			3.44			
	6.36	6 74	6.62	E 41			
4/24/2018	6.22	6.74	6.62	5.41			
6/26/2018	6.32	0.07	0.00	E 4E	2.05		
6/27/2018		6.67	6.69	5.45	3.95		
7/18/2018					4.02		
8/6/2018					4.07		
8/7/2018	6.32	6.72					
8/8/2018			6.67	5.46			
9/5/2018					4.07		
9/24/2018					4.07		
10/22/2018	6.2	6.73					
10/23/2018			6.73	5.47			
10/24/2018					4.1	5.27	7.92
11/14/2018						4.99	8.23
11/28/2018						4.74	8.95
12/4/2018	6.31	6.77	6.67				
12/5/2018				5.45	4.1	4.76	8.77
12/18/2018						4.57	8.99
1/3/2019						4.56	9.35
1/24/2019						4.45	9.42
2/5/2019	6.1				4.02	4.3	9.23
2/6/2019		6.67	6.58	5.31			
2/26/2019	6.11	6.77					
2/27/2019			6.56	5.4			
2/28/2019					3.94 (E)	4.35	9.48
8/19/2019						4.57	7.93
8/20/2019					4		
8/21/2019	6.01						
8/22/2019		6.37	6.26	5.35			
4/14/2020			6.63	5.39			
4/15/2020	5.65	6.85				4.49	
4/16/2020					3.93		8.1
8/24/2020							8.17
8/25/2020	6				4.03	4.2	
8/26/2020		6.73	6.38	5.63			
3/16/2021	5.87						
3/22/2021					3.25	3.45	7.85
3/23/2021		6.87	6.58	5.5			
10/5/2021	5.79			5.19			
10/6/2021						4.16	7.92
10/11/2021		6.72					
10/12/2021			6.66		4.04		

		GSD-AP-MW-18H	GSD-AP-MW-19H	GSD-AP-MW-2	GSD-AP-MW-20H	GSD-AP-MW-21V	CGSD-AP-MW-22VI	B GSD-AP-MW-2VA
12/6/20	017			6.61				
2/6/20	18			6.66				
4/23/20	018			6.54				
6/27/20	018			6.63				
8/7/20	18			6.57				
10/22/2	2018			6.55				
12/4/20	018			6.52				
2/5/20	19			6.47				
2/26/20	019			6.54				
8/20/2	019			6.3				
4/14/20	020		5.79		6.02			
4/15/20	020	5.1		6.45				8.6
7/1/20:	20							8.36
8/25/20	020	5.13		6.65				8.43
8/26/20	020		6.33		6.36			
3/16/20	021	5.08						
3/22/20	021							8.34
3/23/20	021		5.88		6.38			
3/24/20	021			6.49				
10/6/20	021					8.53		8.36
10/11/2	2021		6.08	6.59	6.36		8.13	
10/12/2	2021	5.12						

	GSD-AP-MW-2VB	GSD-AP-MW-3	GSD-AP-MW-4	GSD-AP-MW-4V	GSD-AP-MW-5	GSD-AP-MW-6	GSD-AP-MW-7
12/6/2017		6.54					
12/7/2017			6.73		6.32	6.38	6.62
2/6/2018		6.39	6.76		6.27		
2/8/2018						6.29	6.39
4/24/2018		6.02	6.66				
4/25/2018					6.14	6.15	6.17
6/26/2018			6.61			6.09	6.38
6/27/2018		6.07			6.15		
8/6/2018			6.68				
8/7/2018		6.28			6.18	6.16	
8/8/2018							6.56
10/22/2018		6.3	6.63				
10/23/2018					6.15	6.1	6.54
12/3/2018		6.38	6.67			6.09	
12/4/2018							6.33
12/5/2018					6.15		
2/5/2019		5.83	6.63		6.08	6.04	
2/6/2019							6.13
2/25/2019		5.93					
2/26/2019			6.64			6.17	
2/27/2019					6.11		6.12
8/20/2019		5.73	6.33		6.11	5.4	
8/21/2019							5.97
4/13/2020		5.83			6.18	5.82	
4/15/2020			6.77	7.93			6.16
8/24/2020					6.11		
8/26/2020		5.87	6.68	7.83		5.96	6.11
3/16/2021					6.22		
3/17/2021						5.92	
3/22/2021		5.51					
3/23/2021							6.04
3/24/2021			6.86	8.01			
3/30/2021	8.52						
10/5/2021		5.76	6.58		6.24	5.74	6.06
10/11/2021				7.82			
10/12/2021	8.62						

	GSD-AP-MW-8	GSD-AP-MW-9	GSD-AP-PZ-1	GSD-AP-PZ-2	GSD-AP-PZ-5	GSD-AP-PZ-6
12/7/2017	6.81	6.93				
2/8/2018	6.73	6.96				
2/12/2018		6.88				
4/25/2018	6.61	6.89				
6/26/2018	6.59	6.85				
6/27/2018			6.79		5.81	5.44
7/18/2018			6.8		5.74	5.58
8/7/2018			6.73			
8/8/2018	6.6	6.94			5.7	5.55
9/5/2018			6.75		5.61	5.56
9/24/2018			6.83		5.59	5.57
10/22/2018			6.76			
10/23/2018	6.64	6.93			5.6	5.55
12/3/2018			6.6		5.73	5.6
12/4/2018	6.68					
12/5/2018		6.94				
2/5/2019			6.66			
2/6/2019	6.62	6.73				
2/7/2019					5.44	5.51
2/25/2019			6.6		5.46	5.54
2/27/2019	6.56	6.85				
8/20/2019			6.3			
8/21/2019	6.16	6.61			5.13	5.44
4/13/2020			6.66	5.84		
4/14/2020	6.49	7.02				
4/15/2020					5.31	5.52
8/24/2020			6.64	6	4.65	5.38
8/26/2020	6.29	6.75				
3/16/2021					5.47	5.56
3/17/2021				5.34		
3/23/2021	6.47	6.85				
3/24/2021			5.85			
10/5/2021			6.46	5.72		
10/12/2021	6.61	6.9	- -	- -	5.33	5.41

	CCD AD MW 1	CCD AD MW 10	CCD AD MW 11	CCD AD MW 12	CCD AD MW 14	CCD AD MM 16	CCD AD MW 17
12/6/2017	GSD-AP-MW-1	GSD-AP-MW-10	GSD-AP-MW-11		G5D-AP-IVIVV-14 .	GSD-AP-WW-16 .	GSD-AP-MW-17
12/6/2017	<0.00102 <0.00102	<0.00102	<0.00102	<0.00102			
2/6/2018	<0.00102	<0.00102	<0.00102				
2/7/2018		<0.00102	<0.00102	-0.00100			
2/8/2018	.0.0100			<0.00102			
4/23/2018	<0.00102						
4/24/2018		<0.00102	<0.00102	<0.00102			
6/26/2018	<0.00102						
6/27/2018		<0.00102	<0.00102	<0.00102	<0.00102		
7/18/2018					<0.00102		
8/6/2018					<0.00102		
8/7/2018	<0.00102	<0.00102					
8/8/2018			<0.00102	<0.00102			
9/5/2018					<0.00102		
9/24/2018					<0.00102		
10/22/2018	<0.00102	<0.00102					
10/23/2018			<0.00102	<0.00102			
10/24/2018					<0.00102	<0.00102	<0.00102
11/14/2018						<0.00102	<0.00102
11/28/2018						<0.00102	<0.00102
12/4/2018	<0.00102	<0.00102	<0.00102				
12/5/2018				<0.00102	0.00208 (J)	0.00349 (J)	<0.00102
12/18/2018						0.00395 (J)	<0.00102
1/3/2019						0.00488 (J)	<0.00102
1/24/2019						0.00707 (J)	<0.00102
2/5/2019	<0.00102				0.00387 (J)	0.00938 (J)	<0.00102
2/6/2019		<0.00102	<0.00102	<0.00102			
6/24/2019						0.00563 (J)	
8/19/2019						0.00316 (J)	<0.00102
8/20/2019					0.00328 (J)		
8/21/2019	<0.00102						
8/22/2019		<0.00102	<0.00102	<0.00102			
4/14/2020			<0.00102	<0.00102			
4/15/2020	<0.00102	<0.00102				0.00434 (J)	
4/16/2020					0.00608 (J)		<0.00102
8/24/2020							<0.00102
8/25/2020	<0.00102				0.00247 (J)	0.00262 (J)	
8/26/2020		<0.00102	<0.00102	<0.00102			
3/16/2021	<0.00102						
3/22/2021					0.00488	0.0134	<0.00102
3/23/2021		<0.00102	<0.00102	<0.00102			
10/5/2021	<0.00102			<0.00102			
10/6/2021						0.00262	<0.00102
10/11/2021		<0.00102					
10/12/2021			<0.00102		0.00287		

								_
	GSD-AP-MW-18H	GSD-AP-MW-19H	GSD-AP-MW-2	GSD-AP-MW-20H	GSD-AP-MW-21VC	GSD-AP-MW-22VE	B GSD-AP-MW-2VA	
12/6/2017			<0.00102					
2/6/2018			<0.00102					
4/23/2018			<0.00102					
6/27/2018			<0.00102					
8/7/2018			<0.00102					
10/22/2018			<0.00102					
12/4/2018			<0.00102					
2/5/2019			<0.00102					
8/20/2019			<0.00102					
4/14/2020		<0.00102		<0.00102				
4/15/2020	<0.00102		<0.00102				<0.00102	
8/25/2020	<0.00102		<0.00102				<0.00102	
8/26/2020		<0.00102		<0.00102				
3/16/2021	0.000935 (J)							
3/22/2021							<0.00102	
3/23/2021		<0.00102		<0.00102				
3/24/2021			<0.00102					
10/6/2021					<0.00102		<0.00102	
10/11/2021		<0.00102	<0.00102	<0.00102		<0.00102		
10/12/2021	0.00068 (J)							

	GSD-AP-MW-2VB	GSD-AP-MW-3	GSD-AP-MW-4	GSD-AP-MW-4V	GSD-AP-MW-5	GSD-AP-MW-6	GSD-AP-MW-7
12/6/2017		<0.00102					
12/7/2017			<0.00102		<0.00102	<0.00102	<0.00102
2/6/2018		<0.00102	<0.00102		<0.00102		
2/8/2018						<0.00102	<0.00102
4/24/2018		<0.00102	<0.00102				
4/25/2018					<0.00102	<0.00102	<0.00102
6/26/2018			<0.00102			<0.00102	<0.00102
6/27/2018		<0.00102			<0.00102		
8/6/2018			<0.00102				
8/7/2018		<0.00102			<0.00102	<0.00102	
8/8/2018							<0.00102
10/22/2018		<0.00102	<0.00102				
10/23/2018					<0.00102	<0.00102	<0.00102
12/3/2018		<0.00102	<0.00102			<0.00102	
12/4/2018							<0.00102
12/5/2018					<0.00102		
2/5/2019		<0.00102	<0.00102		<0.00102	<0.00102	
2/6/2019							<0.00102
6/18/2019		<0.00102					
8/20/2019		<0.00102	<0.00102		<0.00102	<0.00102	
8/21/2019							<0.00102
4/13/2020		<0.00102			<0.00102	<0.00102	
4/15/2020			<0.00102	<0.00102			<0.00102
8/24/2020					<0.00102		
8/26/2020		<0.00102	<0.00102	<0.00102		<0.00102	<0.00102
3/16/2021					<0.00102		
3/17/2021						<0.00102	
3/22/2021		<0.00102					
3/23/2021							<0.00102
3/24/2021			<0.00102	<0.00102			
3/30/2021	<0.00102						
10/5/2021		<0.00102	<0.00102		<0.00102	<0.00102	<0.00102
10/11/2021				<0.00102			
10/12/2021	<0.00102						

	GSD-AP-MW-8	GSD-AP-MW-9	GSD-AP-PZ-1	GSD-AP-PZ-2	GSD-AP-PZ-5	GSD-AP-PZ-6
12/7/2017	<0.00102	<0.00102				
2/8/2018	<0.00102	<0.00102				
4/25/2018	<0.00102	<0.00102				
6/26/2018	<0.00102	<0.00102				
6/27/2018			<0.00102		<0.00102	<0.00102
7/18/2018			<0.00102		<0.00102	<0.00102
8/7/2018			<0.00102			
8/8/2018	<0.00102	<0.00102			<0.00102	<0.00102
9/5/2018			<0.00102		<0.00102	<0.00102
9/24/2018			<0.00102		<0.00102	<0.00102
10/22/2018			<0.00102			
10/23/2018	<0.00102	<0.00102			<0.00102	<0.00102
12/3/2018			<0.00102		<0.00102	<0.00102
12/4/2018	<0.00102					
12/5/2018		<0.00102				
2/5/2019			<0.00102			
2/6/2019	<0.00102	<0.00102				
2/7/2019					<0.00102	<0.00102
8/20/2019			<0.00102			
8/21/2019	<0.00102	<0.00102			<0.00102	<0.00102
4/13/2020			<0.00102	<0.00102		
4/14/2020	<0.00102	<0.00102				
4/15/2020					<0.00102	<0.00102
8/24/2020			<0.00102	<0.00102	<0.00102	<0.00102
8/26/2020	<0.00102	<0.00102				
3/16/2021					<0.00102	<0.00102
3/17/2021				<0.00102		
3/23/2021	<0.00102	<0.00102				
3/24/2021			<0.00102			
10/5/2021			<0.00102	<0.00102		
10/12/2021	<0.00102	<0.00102			<0.00102	<0.00102

	GSD-AP-MW-1	GSD-AP-MW-10	GSD-AP-MW-11	GSD-AP-MW-12	GSD-AP-MW-14 .	GSD-AP-MW-16 .	GSD-AP-MW-17
12/6/2017	650	11	83	200			
2/6/2018	560						
2/7/2018		19	84				
2/8/2018				200			
4/23/2018	640						
4/24/2018		27	98	210			
6/26/2018	670						
6/27/2018		<1	95	240	120		
7/18/2018					120		
8/6/2018					110		
8/7/2018	660	<1					
8/8/2018			110	260			
9/5/2018					86		
9/24/2018					80		
10/22/2018	580	<1					
10/23/2018			78	280			
10/24/2018					68	44	16
11/14/2018						44	13
11/28/2018						46	11
12/4/2018	580	11	97				
12/5/2018				280	54	51	12
12/18/2018						76	11
1/3/2019						94	10
1/24/2019						135	10.2
2/5/2019	702				126	183	10.4
2/6/2019		16.8	113	239			
2/26/2019	748	38.4					
2/27/2019			135	257			
2/28/2019					207	192	9.86
6/24/2019						129 (D)	
8/19/2019						66.6	8.74
8/20/2019					106		
8/21/2019	708						
8/22/2019		6.74	305	339			
4/14/2020			146	155			
4/15/2020	647	50.7				92.8	
4/16/2020					191		11.5
8/24/2020							10
8/25/2020	642				98.4	74.1	
8/26/2020		10.5	280	282			
3/16/2021	593						
3/22/2021					83.8	128	10.6
3/23/2021		60.1	135	160			
10/5/2021	567			195			
10/6/2021						93.5	10.2
10/11/2021		7.75					
10/12/2021			142		95.7		

	GSD-AP-MW-18H	GSD-AP-MW-19H	GSD-AP-MW-2	GSD-AP-MW-20H	GSD-AP-MW-21VC	GSD-AP-MW-22VE	B GSD-AP-MW-2VA
12/6/2017			210				
2/6/2018			190				
4/23/2018			140				
6/27/2018			130				
8/7/2018			150				
10/22/2018			160				
12/4/2018			170				
2/5/2019			145				
2/26/2019			148				
8/20/2019			110				
4/14/2020		75.3		135			
4/15/2020	67.1		116				4.18
8/25/2020	52.6		114				4.83
8/26/2020		72.9		112			
3/16/2021	18.5						
3/22/2021							2.04
3/23/2021		71.8		168			
3/24/2021			101				
10/6/2021					8.35		2.44
10/11/2021		61.7	112	174		13.8	
10/12/2021	36.7						

	GSD-AP-MW-2VB	GSD-AP-MW-3	GSD-AP-MW-4	GSD-AP-MW-4V	GSD-AP-MW-5	GSD-AP-MW-6	GSD-AP-MW-7
12/6/2017		250					
12/7/2017			<1		19	10	14
2/6/2018		230	<1		20		
2/8/2018						11	10
4/24/2018		260	<1				
4/25/2018					22	13	11
6/26/2018			<1			11	11
6/27/2018		230			18		
8/6/2018			<1				
8/7/2018		200			20	12	
8/8/2018							13
10/22/2018		190	<1				
10/23/2018					18	11	13
12/3/2018		200	<1			12	
12/4/2018							9.8
12/5/2018					20		
2/5/2019		263	5.38		24.3	13.9	
2/6/2019							10.8
2/25/2019		246					
2/26/2019			5.1			14.1	
2/27/2019					24.7		8.98
6/18/2019		245					
8/20/2019		222	7.34		21.3	12.3	
8/21/2019							11.8
4/13/2020		256			21.9	13.9	
4/15/2020			17.2	1.25			7.95
8/24/2020					21.2		
8/26/2020		246	15.5	1.21		13.1	9.19
3/16/2021					18.8		
3/17/2021						13.7	
3/22/2021		254					
3/23/2021							8.08
3/24/2021			19.9	1.39			
3/30/2021	10.3						
10/5/2021		228	37.8		14.4	14.2	9.19
10/11/2021				1.7			
10/12/2021	15.2						

	GSD-AP-MW-8	GSD-AP-MW-9	GSD-AP-PZ-1	GSD-AP-PZ-2	GSD-AP-PZ-5	GSD-AP-PZ-6
12/7/2017	6.5	9				
2/8/2018	8.9					
2/12/2018		8.3				
4/25/2018	7.9	12				
6/26/2018	7.5	8.5				
6/27/2018			2.2 (J)		<1	<1
7/18/2018			2.5 (J)		<1	<1
8/7/2018			<1			
8/8/2018	7.3	6.7			<1	<1
9/5/2018			1.4 (J)		<1	<1
9/24/2018			<1		<1	<1
10/22/2018			1.7 (J)			
10/23/2018	7.8	9.4			<1	<1
12/3/2018			2.1 (J)		<1	<1
12/4/2018	8.2					
12/5/2018		7.8				
2/5/2019			3.99			
2/6/2019	9.53	17				
2/7/2019					0.639 (J)	1.69
2/25/2019			4.01		<1	1.53
2/27/2019	8.25	12.4				
8/20/2019			3.73			
8/21/2019	10.8	11.3			1.21	1.62
4/13/2020			3.83	1.48		
4/14/2020	12.5	15.9				
4/15/2020					0.554 (J)	1.68
8/24/2020			4.16	3.88	<1	1.31
8/26/2020	16.1	12.9				
3/16/2021					1.02	1.7
3/17/2021				1.64		
3/23/2021	9.21	15.7				
3/24/2021			2.88			
10/5/2021			2.17	5.29		
10/12/2021	16	18			0.895 (J)	1.34

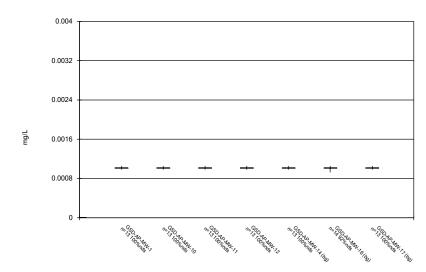
	CCD AD MIN 1	CCD AD MW 10	CCD AD MW 11	CCD AD MW 12	CCD AD MW 14	CCD AD MIN 16	CCD AD MIN 17
12/6/2017	GSD-AP-MW-1	GSD-AP-MW-10	GSD-AP-MW-11		GSD-AP-MW-14	. GSD-AP-WW-16	GSD-AP-MW-17
12/6/2017	<0.0002 <0.0002	<0.0002	<0.0002	<0.0002			
2/6/2018	<0.0002	<0.0002	<0.0002				
2/7/2018		<0.0002	<0.0002	<0.0002			
2/8/2018				<0.0002			
4/23/2018	<0.0002	.0.000	.0.000				
4/24/2018	0.0000	<0.0002	<0.0002	<0.0002			
6/26/2018	<0.0002						
6/27/2018		<0.0002	<0.0002	<0.0002	<0.0002		
7/18/2018					<0.0002		
8/6/2018					<0.0002		
8/7/2018	<0.0002	<0.0002					
8/8/2018			<0.0002	<0.0002			
9/5/2018					<0.0002		
9/24/2018					<0.0002		
10/22/2018	<0.0002	<0.0002					
10/23/2018			<0.0002	<0.0002			
10/24/2018					<0.0002	<0.0002	<0.0002
11/14/2018						<0.0002	<0.0002
11/28/2018						<0.0002	<0.0002
12/4/2018	<0.0002	<0.0002	<0.0002				
12/5/2018				<0.0002	<0.0002	<0.0002	<0.0002
12/18/2018						<0.0002	<0.0002
1/3/2019						<0.0002	<0.0002
1/24/2019						<0.0002	<0.0002
2/5/2019	<0.0002				<0.0002	<0.0002	<0.0002
2/6/2019		<0.0002	<0.0002	<0.0002			
6/24/2019						<0.0002	
8/19/2019						<0.0002	<0.0002
8/20/2019					<0.0002		
8/21/2019	<0.0002						
8/22/2019		<0.0002	<0.0002	<0.0002			
4/14/2020			<0.0002	<0.0002			
4/15/2020	<0.0002	<0.0002				<0.0002	
4/16/2020					<0.0002		<0.0002
8/24/2020							<0.0002
8/25/2020	<0.0002				<0.0002	<0.0002	
8/26/2020		<0.0002	<0.0002	<0.0002			
3/16/2021	0.000112 (J)						
3/22/2021					<0.0002	<0.0002	<0.0002
3/23/2021		<0.0002	<0.0002	<0.0002			
10/5/2021	<0.0002			<0.0002			
10/6/2021						<0.0002	<0.0002
10/11/2021		<0.0002					
10/12/2021			<0.0002		<0.0002		

	GSD-AP-MW-18H	GSD-AP-MW-19H	GSD-AP-MW-2	GSD-AP-MW-20H	GSD-AP-MW-21V	CGSD-AP-MW-22VE	GSD-AP-MW-2VA
12/6/2017			<0.0002				
2/6/2018			<0.0002				
4/23/2018			<0.0002				
6/27/2018			<0.0002				
8/7/2018			<0.0002				
10/22/2018			0.000213 (J)				
12/4/2018			<0.0002				
2/5/2019			0.000256 (J)				
8/20/2019			0.000322 (J)				
4/14/2020		<0.0002		<0.0002			
4/15/2020	<0.0002		0.000318 (J)				<0.0002
8/25/2020	<0.0002		0.000347 (J)				<0.0002
8/26/2020		<0.0002		<0.0002			
3/16/2021	<0.0002						
3/22/2021							<0.0002
3/23/2021		<0.0002		0.000145 (J)			
3/24/2021			0.00037				
10/6/2021					<0.0002		<0.0002
10/11/2021		<0.0002	0.00029	0.00013 (J)		<0.0002	
10/12/2021	<0.0002						

	GSD-AP-MW-2VB	GSD-AP-MW-3	GSD-AP-MW-4	GSD-AP-MW-4V	GSD-AP-MW-5	GSD-AP-MW-6	GSD-AP-MW-7
12/6/2017		<0.0002					
12/7/2017			<0.0002		<0.0002	<0.0002	<0.0002
2/6/2018		<0.0002	<0.0002		<0.0002		
2/8/2018						<0.0002	<0.0002
4/24/2018		<0.0002	<0.0002				
4/25/2018					<0.0002	<0.0002	<0.0002
6/26/2018			<0.0002			<0.0002	<0.0002
6/27/2018		<0.0002			<0.0002		
8/6/2018			<0.0002				
8/7/2018		<0.0002			<0.0002	<0.0002	
8/8/2018							<0.0002
10/22/2018		<0.0002	<0.0002				
10/23/2018					<0.0002	<0.0002	<0.0002
12/3/2018		<0.0002	<0.0002			<0.0002	
12/4/2018							<0.0002
12/5/2018					<0.0002		
2/5/2019		<0.0002	<0.0002		<0.0002	<0.0002	
2/6/2019							<0.0002
6/18/2019		<0.0002					
8/20/2019		<0.0002	<0.0002		<0.0002	<0.0002	
8/21/2019							<0.0002
4/13/2020		<0.0002			<0.0002	<0.0002	
4/15/2020			<0.0002	<0.0002			<0.0002
8/24/2020					<0.0002		
8/26/2020		<0.0002	<0.0002	<0.0002		<0.0002	<0.0002
3/16/2021					<0.0002		
3/17/2021						<0.0002	
3/22/2021		0.000121 (J)					
3/23/2021							<0.0002
3/24/2021			<0.0002	<0.0002			
3/30/2021	<0.0002						
10/5/2021		0.00014 (J)	<0.0002		<0.0002	<0.0002	<0.0002
10/11/2021				<0.0002			
10/12/2021	<0.0002						

	GSD-AP-MW-8	GSD-AP-MW-9	GSD-AP-PZ-1	GSD-AP-PZ-2	GSD-AP-PZ-5	GSD-AP-PZ-6
12/7/2017	<0.0002	<0.0002				
2/8/2018	<0.0002	<0.0002				
4/25/2018	<0.0002	<0.0002				
6/26/2018	<0.0002	<0.0002				
6/27/2018			<0.0002		<0.0002	<0.0002
7/18/2018			<0.0002		<0.0002	<0.0002
8/7/2018			<0.0002			
8/8/2018	<0.0002	<0.0002			<0.0002	<0.0002
9/5/2018			<0.0002		<0.0002	<0.0002
9/24/2018			<0.0002		<0.0002	<0.0002
10/22/2018			<0.0002			
10/23/2018	<0.0002	<0.0002			<0.0002	<0.0002
12/3/2018			<0.0002		<0.0002	<0.0002
12/4/2018	<0.0002					
12/5/2018		<0.0002				
2/5/2019			<0.0002			
2/6/2019	<0.0002	<0.0002				
2/7/2019					<0.0002	<0.0002
8/20/2019			<0.0002			
8/21/2019	<0.0002	<0.0002			<0.0002	<0.0002
4/13/2020			<0.0002	<0.0002		
4/14/2020	<0.0002	<0.0002				
4/15/2020					<0.0002	<0.0002
8/24/2020			<0.0002	<0.0002	<0.0002	<0.0002
8/26/2020	<0.0002	<0.0002				
3/16/2021					<0.0002	<0.0002
3/17/2021				<0.0002		
3/23/2021	<0.0002	<0.0002				
3/24/2021			<0.0002			
10/5/2021			<0.0002	<0.0002		
10/12/2021	<0.0002	<0.0002			<0.0002	<0.0002

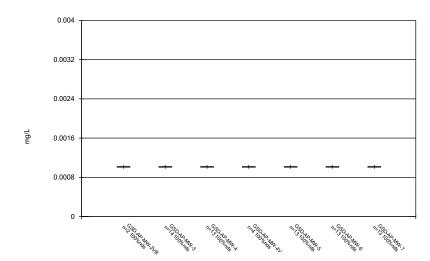
	GSD-AP-MW-1	GSD-AP-MW-10	GSD-AP-MW-11	GSD-AP-MW-12	GSD-AP-MW-14.	GSD-AP-MW-16 .	GSD-AP-MW-17
12/6/2017	1300	215	312	371			
2/6/2018	1310						
2/7/2018		237	323				
2/8/2018				367			
4/23/2018	1210						
4/24/2018		242	324	365			
6/26/2018	1250						
6/27/2018		194	333	421	219		
7/18/2018					195		
8/6/2018					175		
8/7/2018	1220	195					
8/8/2018			346	479			
9/5/2018					153		
9/24/2018					127		
10/22/2018	1150	184					
10/23/2018			311	507			
10/24/2018					125	107	184
11/14/2018						96.7	170
11/28/2018						102	167
12/4/2018	1090	215	343				
12/5/2018				479	101	103	185
12/18/2018						126	164
1/3/2019						191	167
1/24/2019						212	137
2/5/2019	1200				180	269	138
2/6/2019		208	317	399			
2/26/2019	1210	252					
2/27/2019			360	422			
2/28/2019					287	261	140
6/24/2019						203.5 (D)	
8/19/2019						121	240
8/20/2019					265		
8/21/2019	1200						
8/22/2019		194	555	501			
4/14/2020			372	278			
4/15/2020	1060	262				155	
4/16/2020					280		166
8/24/2020							162
8/25/2020	1060				160	131	
8/26/2020		186	517	472			
3/16/2021	1040						
3/22/2021					126	204	157
3/23/2021		273	361	286			
10/5/2021	964			378			
10/6/2021						136	182
10/11/2021		190					
10/12/2021			352		142		


	GSD-AP-MW-18H	GSD-AP-MW-19H	GSD-AP-MW-2	GSD-AP-MW-20H	GSD-AP-MW-21V	CGSD-AP-MW-22VE	GSD-AP-MW-2VA
12/6/2017			574				
2/6/2018			572				
4/23/2018			414				
6/27/2018			440				
8/7/2018			485				
10/22/2018			484				
12/4/2018			504				
2/5/2019			366				
2/26/2019			372				
8/20/2019			369				
4/14/2020		190		323			
4/15/2020	126		300				324
8/25/2020	107		339				321
8/26/2020		202		310			
3/16/2021	52						
3/22/2021							314
3/23/2021		174		385			
3/24/2021			287				
10/6/2021					864		317
10/11/2021		202	337	384		230	
10/12/2021	78.7						

	GSD-AP-MW-2VB	GSD-AP-MW-3	GSD-AP-MW-4	GSD-AP-MW-4V	GSD-AP-MW-5	GSD-AP-MW-6	GSD-AP-MW-7
12/6/2017		628					
12/7/2017			189		215	136	137
2/6/2018		556	206		204		
2/8/2018						122	124
4/24/2018		510	193				
4/25/2018					192	102	106
6/26/2018			180			106	129
6/27/2018		486			180		
8/6/2018			182				
8/7/2018		487			183	71.3	
8/8/2018							142
10/22/2018		450	204				
10/23/2018					169	105	142
12/3/2018		492	168			102	
12/4/2018							121
12/5/2018					177		
2/5/2019		428	158		198	107	
2/6/2019							108
2/25/2019		441					
2/26/2019			191			99.3	
2/27/2019					185		103
6/18/2019		422					
8/20/2019		416	164		174	98.7	
8/21/2019							133
4/13/2020		433			192	90.7	
4/15/2020			170	218			102
8/24/2020					175		
8/26/2020		455	168	239		91.3	109
3/16/2021					184		
3/17/2021						80	
3/22/2021		427					
3/23/2021							92.7
3/24/2021			180	222			
3/30/2021	528						
10/5/2021		389	200		168	96.7	113
10/11/2021				220			
10/12/2021	536						

	GSD-AP-MW-8	GSD-AP-MW-9	GSD-AP-PZ-1	GSD-AP-PZ-2	GSD-AP-PZ-5	GSD-AP-PZ-6
12/7/2017	253	183				
2/8/2018	229					
2/12/2018		201				
4/25/2018	223	180				
6/26/2018	232	191				
6/27/2018			144		48.7	44
7/18/2018			156		46	42.7
8/7/2018			140			
8/8/2018	208	192			48	46
9/5/2018			154		47.3	67.3
9/24/2018			165		44.7	49.3
10/22/2018			148			
10/23/2018	209	185			35.3	31.3
12/3/2018			127		48.7	46
12/4/2018	213					
12/5/2018		200				
2/5/2019			113			
2/6/2019	212	151				
2/7/2019					42.7	32.7
2/25/2019			106		40.7	31.3
2/27/2019	211	186				
8/20/2019			141			
8/21/2019	226	200			46	42.7
4/13/2020			104	88		
4/14/2020	222	187				
4/15/2020					41.3	37.3
8/24/2020			114	115	42.7	37.3
8/26/2020	215	192				
3/16/2021					42	41.3
3/17/2021				53.3		
3/23/2021	200	178				
3/24/2021			94			
10/5/2021			108	101		
10/12/2021	245	169			38.7	35.3

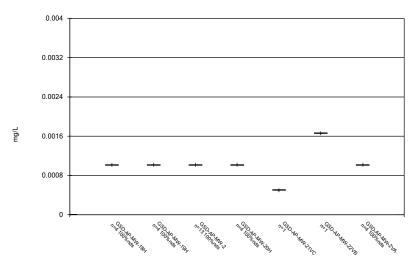
FIGURE B.



Constituent: Antimony Analysis Run 1/13/2022 1:52 PM

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

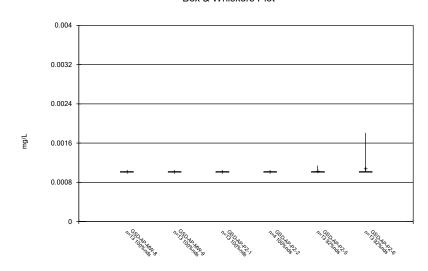
Sanitas™ v.9.6.32 . UG


Box & Whiskers Plot

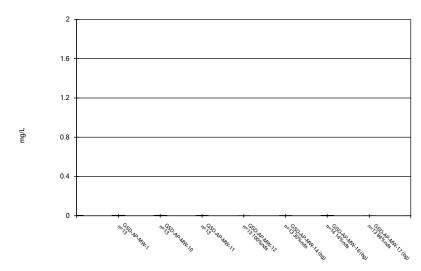
Constituent: Antimony Analysis Run 1/13/2022 1:52 PM

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Box & Whiskers Plot

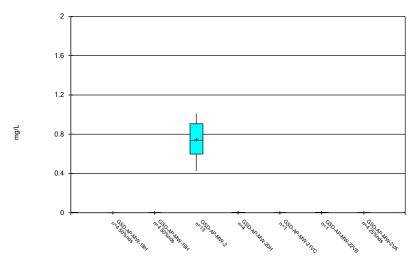

Constituent: Antimony Analysis Run 1/13/2022 1:52 PM

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

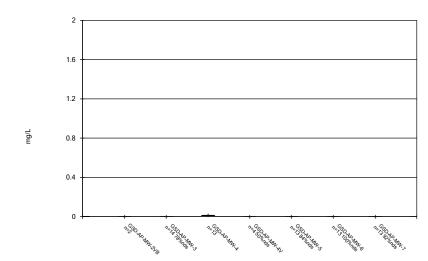

Sanitas™ v.9.6.32 . UG

Sanitas™ v.9.6.32 . UG

Box & Whiskers Plot



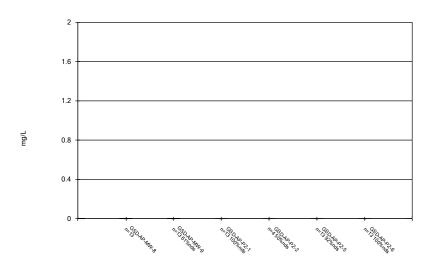
Constituent: Arsenic Analysis Run 1/13/2022 1:52 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Box & Whiskers Plot

Constituent: Arsenic Analysis Run 1/13/2022 1:52 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

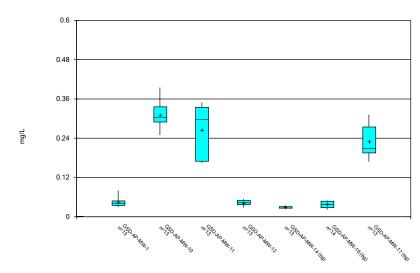
Sanitas™ v.9.6.32 . UG

Box & Whiskers Plot

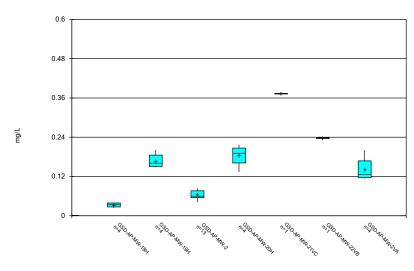


Constituent: Arsenic Analysis Run 1/13/2022 1:52 PM

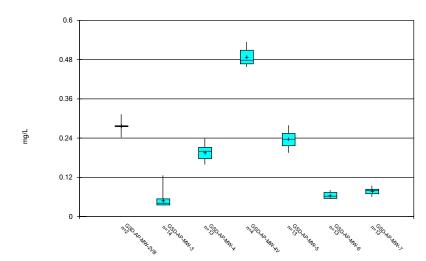
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Sanitas™ v.9.6.32 . UG

Box & Whiskers Plot


Sanitas™ v.9.6.32 . UG Sanitas™ v.9.6.32 . UG

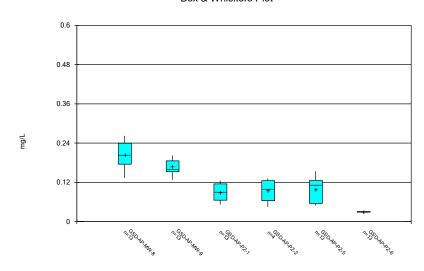
Constituent: Barium Analysis Run 1/13/2022 1:52 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Box & Whiskers Plot

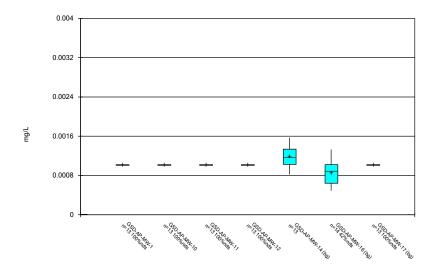
Constituent: Barium Analysis Run 1/13/2022 1:52 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.32 . UG

Box & Whiskers Plot

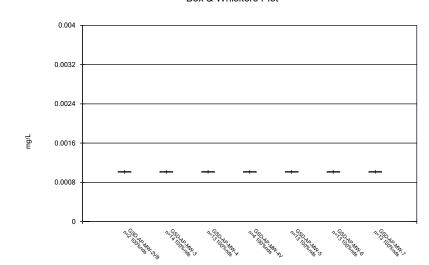


Constituent: Barium Analysis Run 1/13/2022 1:52 PM


Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.32 . UG

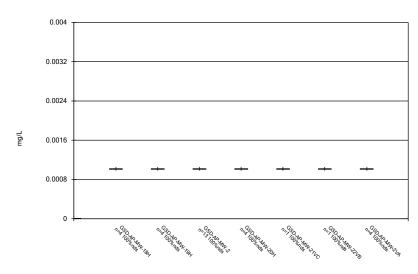
Box & Whiskers Plot



Constituent: Beryllium Analysis Run 1/13/2022 1:52 PM

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

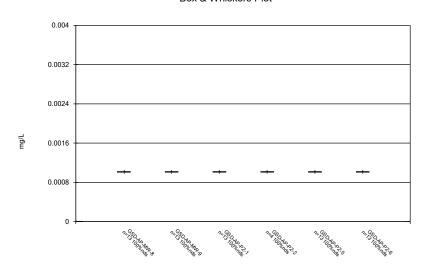
Sanitas™ v.9.6.32 . UG


Box & Whiskers Plot

Constituent: Beryllium Analysis Run 1/13/2022 1:52 PM

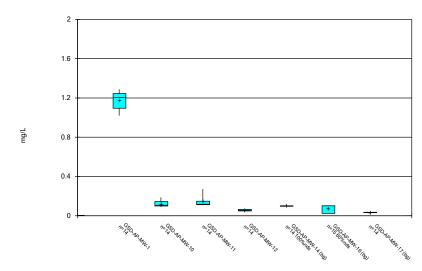
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Box & Whiskers Plot

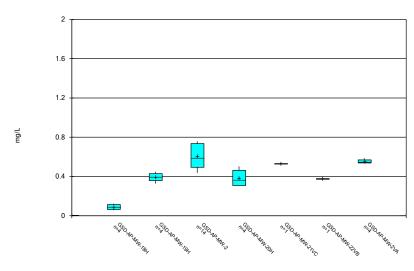


Constituent: Beryllium Analysis Run 1/13/2022 1:52 PM

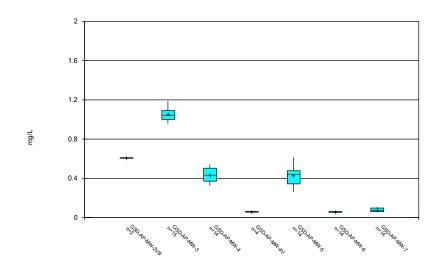
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Sanitas™ v.9.6.32 . UG

Box & Whiskers Plot


Constituent: Beryllium Analysis Run 1/13/2022 1:52 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

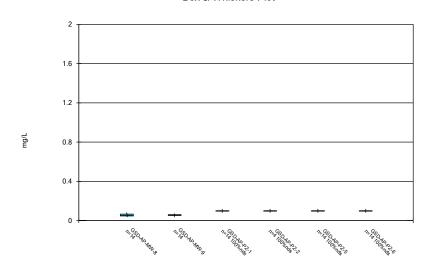
Constituent: Boron Analysis Run 1/13/2022 1:52 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Box & Whiskers Plot

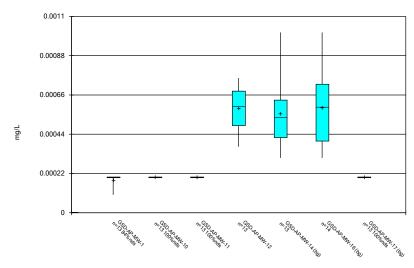
Constituent: Boron Analysis Run 1/13/2022 1:52 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.32 . UG

Box & Whiskers Plot

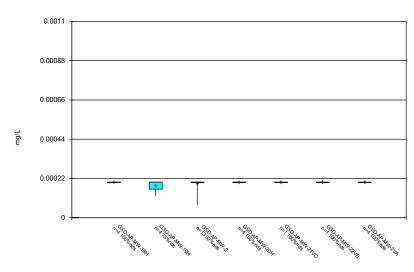


Constituent: Boron Analysis Run 1/13/2022 1:52 PM


Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.32 . UG

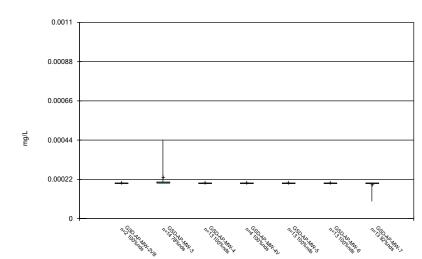
Box & Whiskers Plot


Box & Whiskers Plot

Constituent: Cadmium Analysis Run 1/13/2022 1:52 PM

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Box & Whiskers Plot

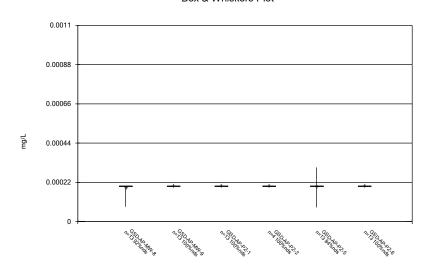


Constituent: Cadmium Analysis Run 1/13/2022 1:53 PM

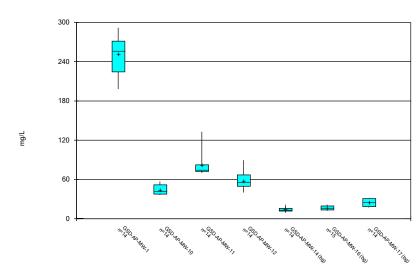
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.32 . UG

Box & Whiskers Plot

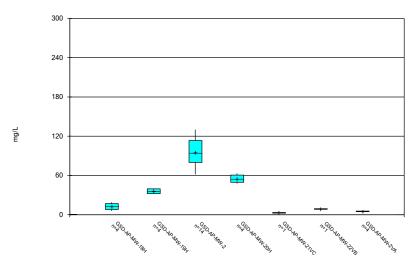


Constituent: Cadmium Analysis Run 1/13/2022 1:53 PM


Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

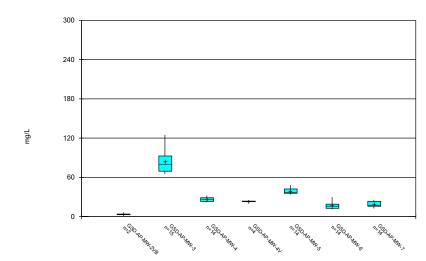
Sanitas™ v.9.6.32 . UG

Box & Whiskers Plot



Constituent: Calcium Analysis Run 1/13/2022 1:53 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Box & Whiskers Plot

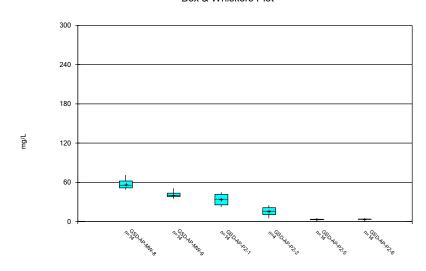


Constituent: Calcium Analysis Run 1/13/2022 1:53 PM

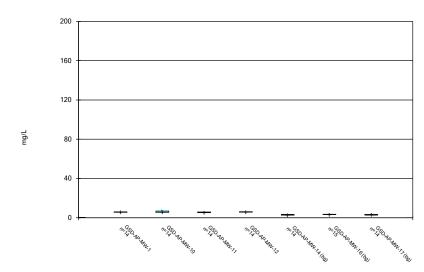
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.32 . UG

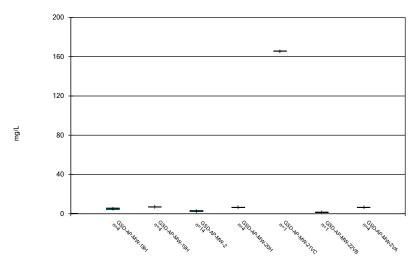
Box & Whiskers Plot



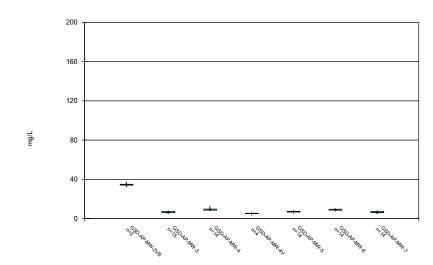
Constituent: Calcium Analysis Run 1/13/2022 1:53 PM


Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.32 . UG


Box & Whiskers Plot

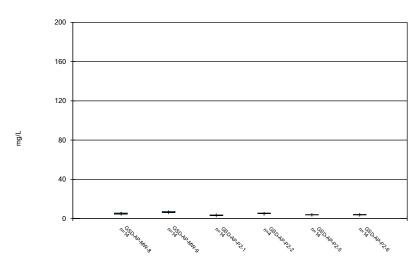
Constituent: Chloride Analysis Run 1/13/2022 1:53 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR



Constituent: Chloride Analysis Run 1/13/2022 1:53 PM

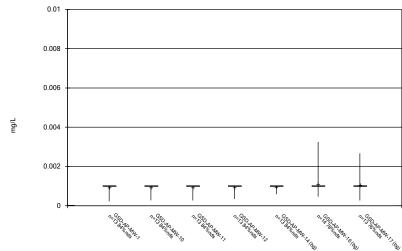
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

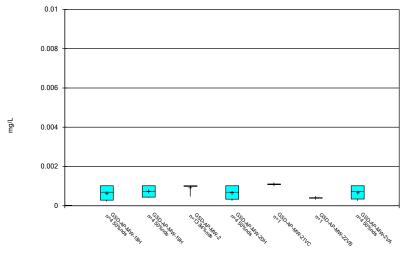
Sanitas™ v.9.6.32 . UG


Box & Whiskers Plot

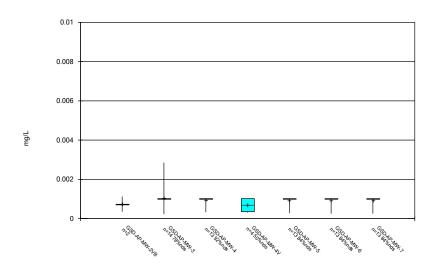
Constituent: Chloride Analysis Run 1/13/2022 1:53 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.32 . UG


Box & Whiskers Plot


Constituent: Chloride Analysis Run 1/13/2022 1:53 PM

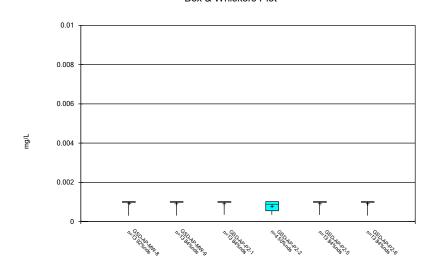
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Constituent: Chromium Analysis Run 1/13/2022 1:53 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Constituent: Chromium Analysis Run 1/13/2022 1:53 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.32 . UG

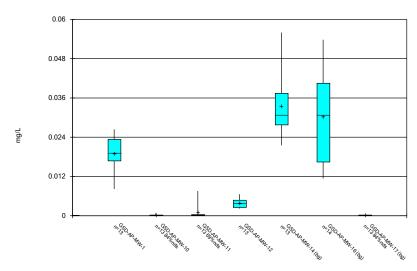
Box & Whiskers Plot



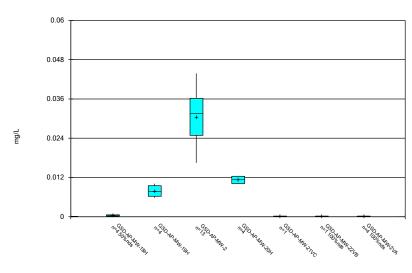
Constituent: Chromium Analysis Run 1/13/2022 1:53 PM

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.32 . UG

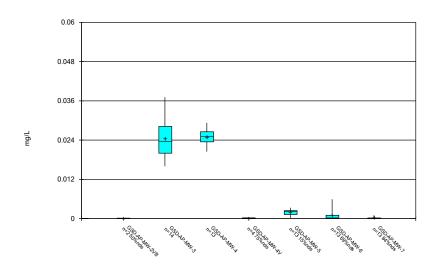

Box & Whiskers Plot

Constituent: Chromium Analysis Run 1/13/2022 1:53 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Sanitas™ v.9.6.32 . UG Sanitas™ v.9.6.32 . UG

Constituent: Cobalt Analysis Run 1/13/2022 1:53 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Box & Whiskers Plot

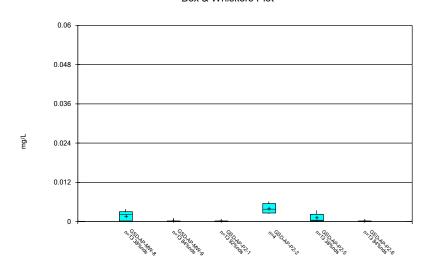


Constituent: Cobalt Analysis Run 1/13/2022 1:53 PM

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.32 . UG

Box & Whiskers Plot

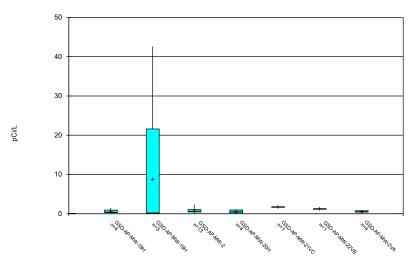


Constituent: Cobalt Analysis Run 1/13/2022 1:53 PM

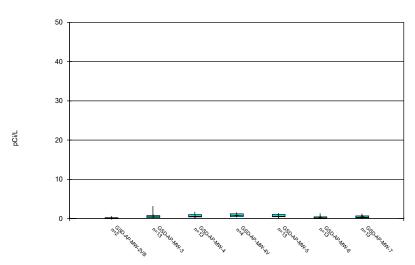
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.32 . UG

Box & Whiskers Plot

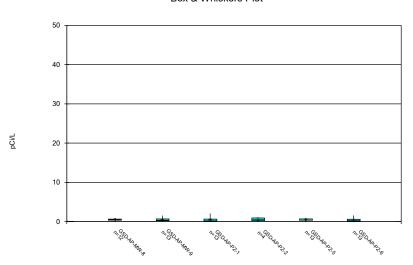

Constituent: Cobalt Analysis Run 1/13/2022 1:53 PM

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Constituent: Combined Radium 226 + 228 Analysis Run 1/13/2022 1:53 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

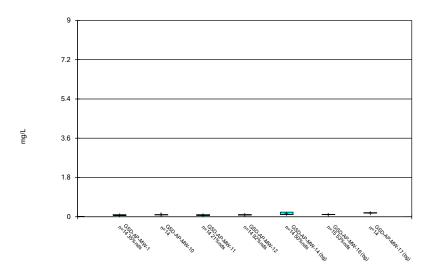
Constituent: Combined Radium 226 + 228 Analysis Run 1/13/2022 1:53 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

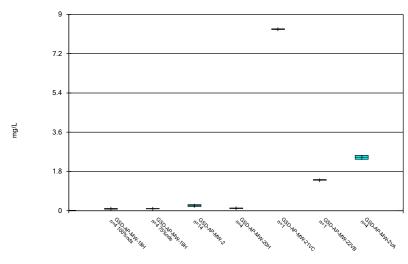
Sanitas™ v.9.6.32 . UG


Box & Whiskers Plot

Constituent: Combined Radium 226 + 228 Analysis Run 1/13/2022 1:53 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

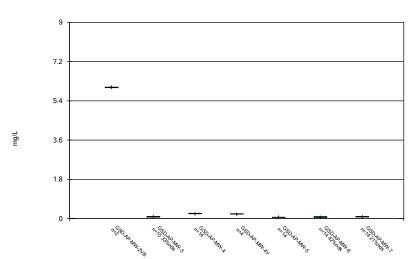
Sanitas™ v.9.6.32 . UG


Box & Whiskers Plot


Constituent: Combined Radium 226 + 228 Analysis Run 1/13/2022 1:53 PM

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Constituent: Fluoride Analysis Run 1/13/2022 1:53 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

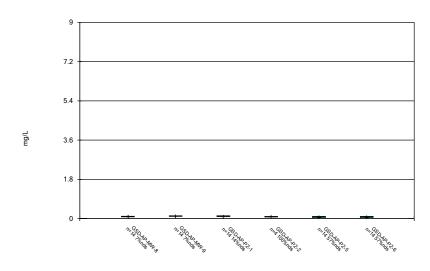


Constituent: Fluoride Analysis Run 1/13/2022 1:53 PM

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.32 . UG

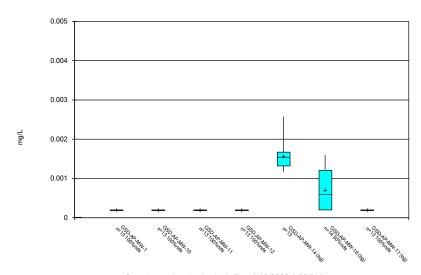
Box & Whiskers Plot



Constituent: Fluoride Analysis Run 1/13/2022 1:53 PM

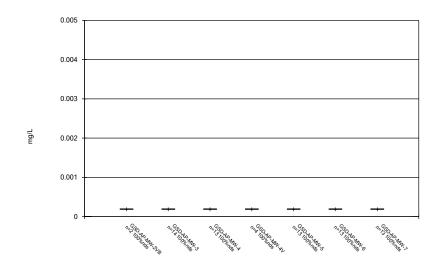
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.32 . UG

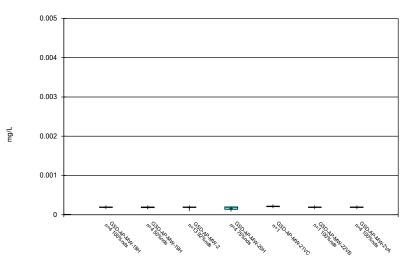

Box & Whiskers Plot

Constituent: Fluoride Analysis Run 1/13/2022 1:53 PM

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

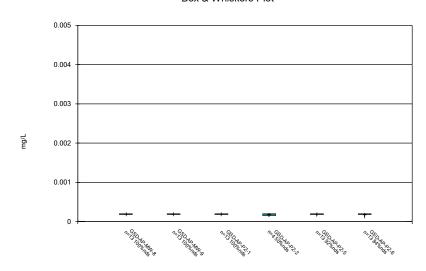


Constituent: Lead Analysis Run 1/13/2022 1:53 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Sanitas™ v.9.6.32 . UG

Box & Whiskers Plot

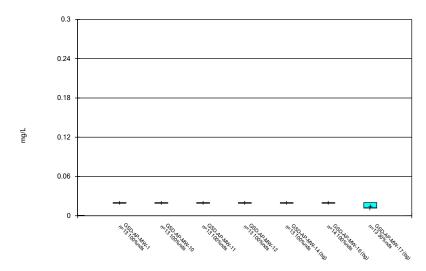
Constituent: Lead Analysis Run 1/13/2022 1:53 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Box & Whiskers Plot

Constituent: Lead Analysis Run 1/13/2022 1:53 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

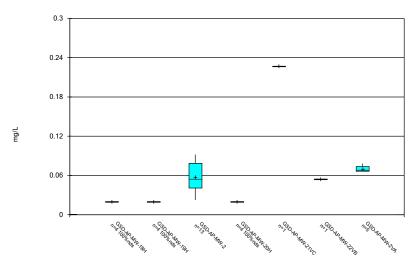
Sanitas™ v.9.6.32 . UG

Box & Whiskers Plot



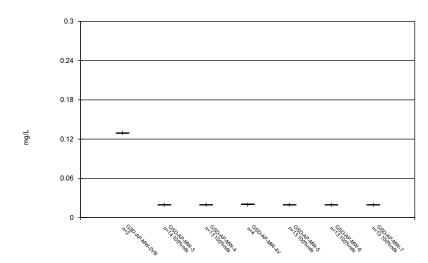
Constituent: Lead Analysis Run 1/13/2022 1:53 PM

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Sanitas™ v.9.6.32 . UG Sanitas™ v.9.6.32 . UG

Constituent: Lithium Analysis Run 1/13/2022 1:53 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Box & Whiskers Plot

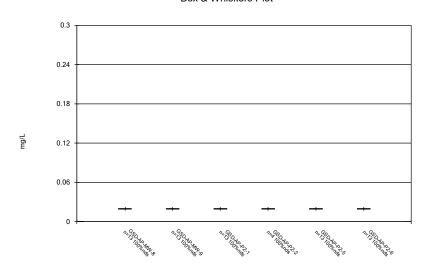


Constituent: Lithium Analysis Run 1/13/2022 1:53 PM

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.32 . UG

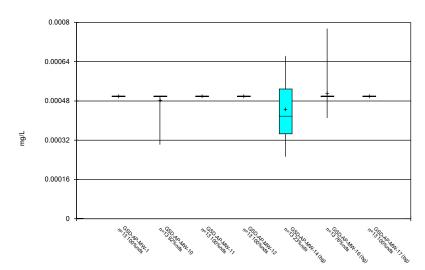
Box & Whiskers Plot



Constituent: Lithium Analysis Run 1/13/2022 1:53 PM

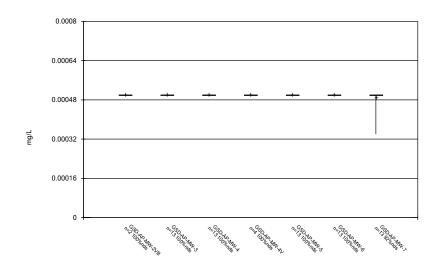
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.32 . UG


Box & Whiskers Plot

Constituent: Lithium Analysis Run 1/13/2022 1:53 PM

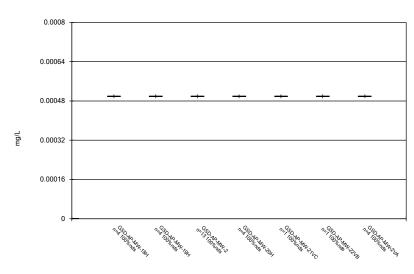
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR



Constituent: Mercury Analysis Run 1/13/2022 1:53 PM

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

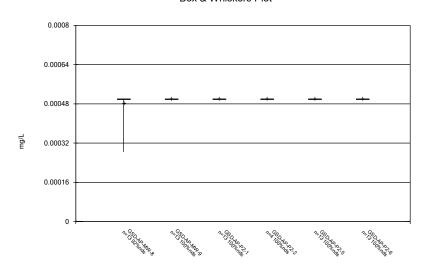
Sanitas™ v.9.6.32 . UG


Box & Whiskers Plot

Constituent: Mercury Analysis Run 1/13/2022 1:53 PM

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

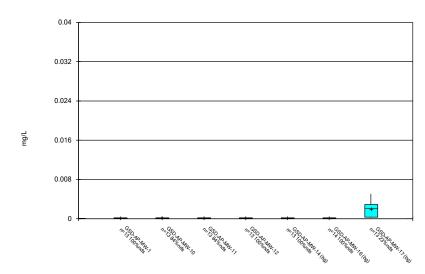
Box & Whiskers Plot

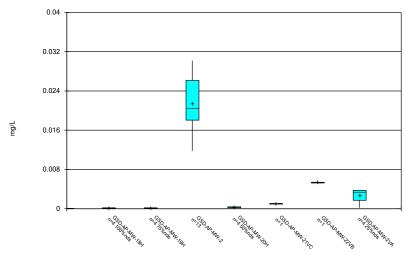

Constituent: Mercury Analysis Run 1/13/2022 1:53 PM

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

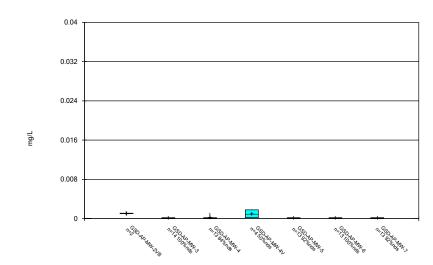
Sanitas™ v.9.6.32 . UG

Sanitas™ v.9.6.32 . UG


Box & Whiskers Plot


Constituent: Mercury Analysis Run 1/13/2022 1:53 PM

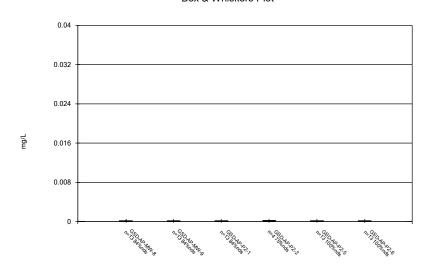
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Constituent: Molybdenum Analysis Run 1/13/2022 1:53 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Constituent: Molybdenum Analysis Run 1/13/2022 1:53 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

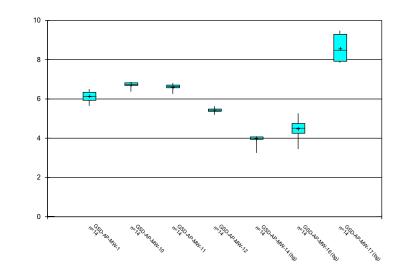
Sanitas™ v.9.6.32 . UG

Box & Whiskers Plot

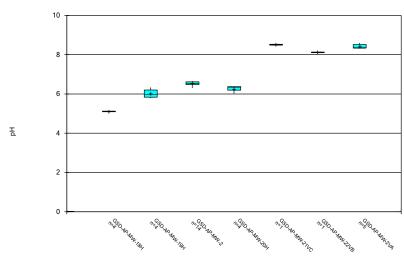


Constituent: Molybdenum Analysis Run 1/13/2022 1:53 PM

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

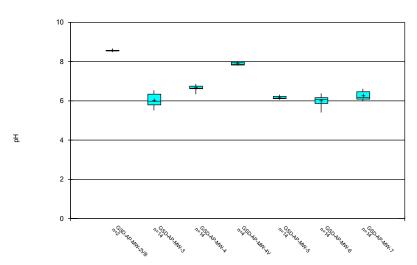

Sanitas™ v.9.6.32 . UG

Box & Whiskers Plot



Constituent: Molybdenum Analysis Run 1/13/2022 1:53 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Constituent: pH Analysis Run 1/13/2022 1:53 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR



Constituent: pH Analysis Run 1/13/2022 1:53 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

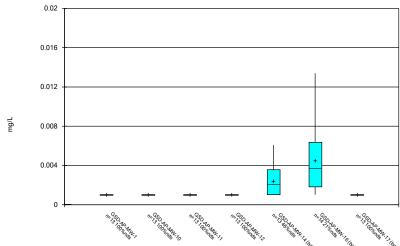
Sanitas™ v.9.6.32 . UG

Ħ

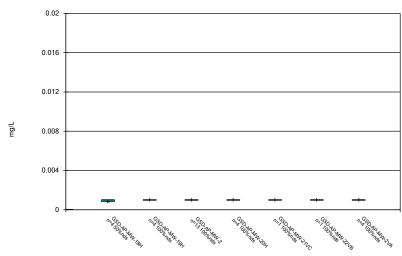
Box & Whiskers Plot

Constituent: pH Analysis Run 1/13/2022 1:53 PM

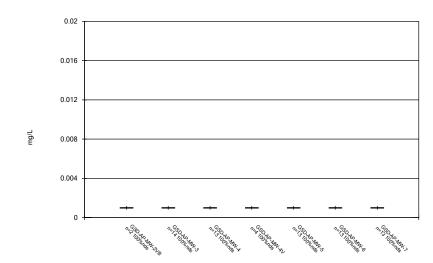
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Sanitas™ v.9.6.32 . UG

Box & Whiskers Plot

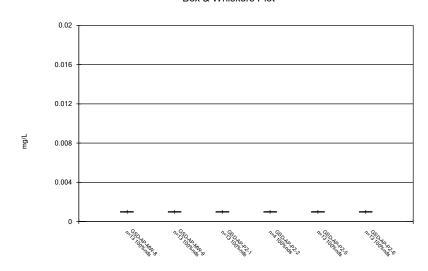

Constituent: pH Analysis Run 1/13/2022 1:53 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Constituent: Selenium Analysis Run 1/13/2022 1:53 PM Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

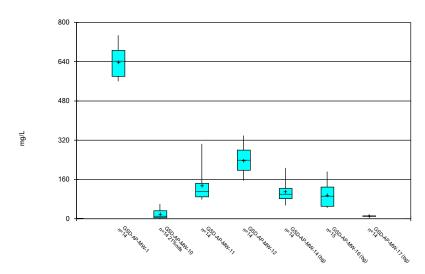


Constituent: Selenium Analysis Run 1/13/2022 1:53 PM Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

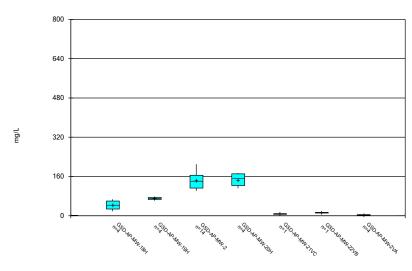
Sanitas™ v.9.6.32 . UG


Box & Whiskers Plot

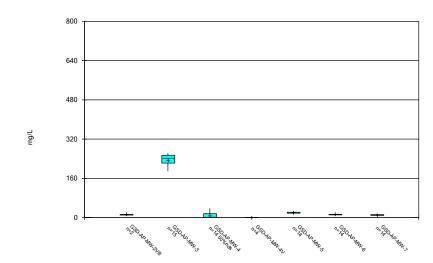
Constituent: Selenium Analysis Run 1/13/2022 1:53 PM Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Sanitas™ v.9.6.32 . UG

Box & Whiskers Plot



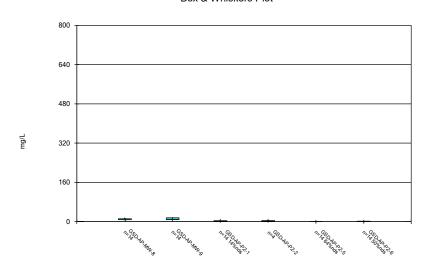
Constituent: Selenium Analysis Run 1/13/2022 1:53 PM Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Constituent: Sulfate Analysis Run 1/13/2022 1:53 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Constituent: Sulfate Analysis Run 1/13/2022 1:53 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.32 . UG

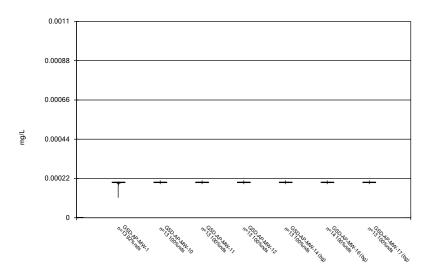
Box & Whiskers Plot



Constituent: Sulfate Analysis Run 1/13/2022 1:53 PM

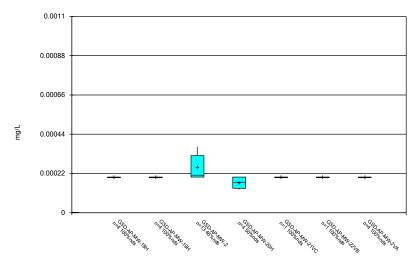
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.32 . UG


Box & Whiskers Plot

Constituent: Sulfate Analysis Run 1/13/2022 1:53 PM

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Box & Whiskers Plot

Constituent: Thallium Analysis Run 1/13/2022 1:53 PM

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

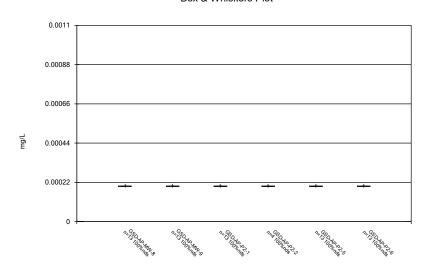
Box & Whiskers Plot

Constituent: Thallium Analysis Run 1/13/2022 1:53 PM

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.32 . UG

Box & Whiskers Plot

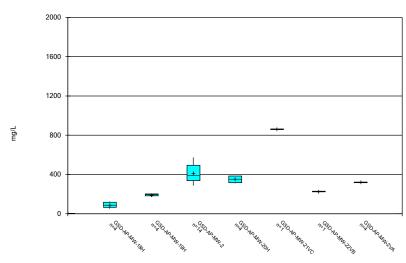


Constituent: Thallium Analysis Run 1/13/2022 1:53 PM

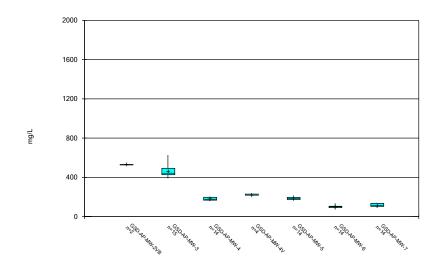
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.32 . UG

Box & Whiskers Plot

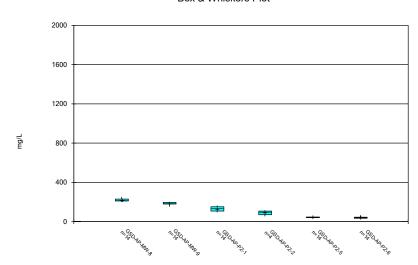

Constituent: Thallium Analysis Run 1/13/2022 1:53 PM

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Constituent: Total Dissolved Solids Analysis Run 1/13/2022 1:53 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Constituent: Total Dissolved Solids Analysis Run 1/13/2022 1:53 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.32 . UG


Box & Whiskers Plot

Constituent: Total Dissolved Solids Analysis Run 1/13/2022 1:53 PM
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.32 . UG

Box & Whiskers Plot

Constituent: Total Dissolved Solids Analysis Run 1/13/2022 1:53 PM

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

FIGURE C.

Outlier Summary

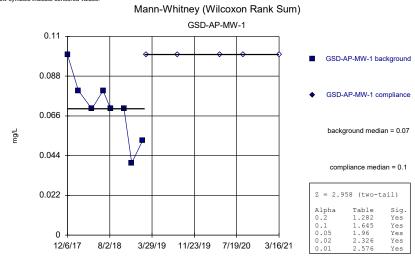
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR Printed 1/11/2022, 1:50 PM

GSD-AP-MW-8 Combined Radium 226 + 228 (pCi/L)

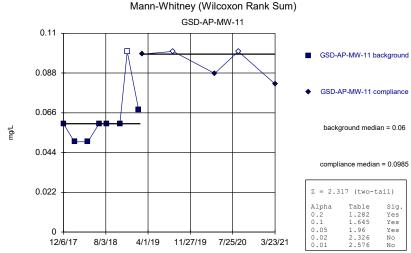
12/7/2017 7.45 (o)

FIGURE D.

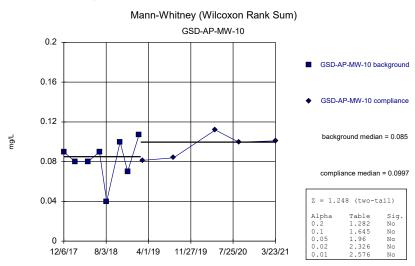
Appendix III Welch's t-test/Mann-Whitney - Significant Results


Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR Printed 7/16/2021, 2:09 PM

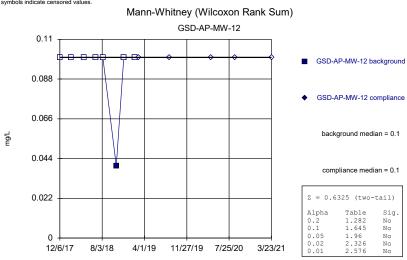
Constituent	Well	Calc.	<u>0.01</u>	Method
Fluoride (mg/L)	GSD-AP-MW-1	2.958	Yes	Mann-W
pH (pH)	GSD-AP-MW-1	-2.858	Yes	Mann-W
pH (pH)	GSD-AP-MW-11	-2.642	Yes	Mann-W
pH (pH)	GSD-AP-MW-3	-2.639	Yes	Mann-W
pH (pH)	GSD-AP-MW-7	-2.855	Yes	Mann-W
pH (pH)	GSD-AP-MW-8	-3.001	Yes	Mann-W
pH (pH)	GSD-AP-PZ-5	-2.708	Yes	Mann-W


Appendix III Welch's t-test/Mann-Whitney - All Results

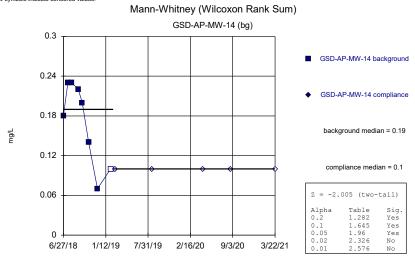
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR Printed 7/16/2021, 2:09 PM


	Plant Gaustien	Client. Southern Company	Data. Plant Gaustien CCR	Fillited	7/16/2021, 2.09 PI	VI	
Constituent		We	ell		Calc.	<u>0.01</u>	Method
Fluoride (mg/L)		GS	D-AP-MW-1		2.958	Yes	Mann-W
Fluoride (mg/L)		GS	D-AP-MW-10		1.248	No	Mann-W
Fluoride (mg/L)		GS	D-AP-MW-11		2.317	No	Mann-W
Fluoride (mg/L)		GS	D-AP-MW-12		0.6325	No	Mann-W
Fluoride (mg/L)		GS	D-AP-MW-14 (bg)		-2.005	No	Mann-W
Fluoride (mg/L)		GS	D-AP-MW-16 (bg)		-1.313	No	Mann-W
Fluoride (mg/L)		GS	D-AP-MW-17 (bg)		-1.84	No	Mann-W
Fluoride (mg/L)		GS	D-AP-MW-2		0.07329	No	Mann-W
Fluoride (mg/L)		GS	D-AP-MW-3		0.3267	No	Mann-W
Fluoride (mg/L)		GS	D-AP-MW-4		0.0737	No	Mann-W
Fluoride (mg/L)		GS	D-AP-MW-5		0.6633	No	Mann-W
Fluoride (mg/L)		GS	D-AP-MW-6		2.495	No	Mann-W
Fluoride (mg/L)		GS	D-AP-MW-7		0.2217	No	Mann-W
Fluoride (mg/L)		GS	D-AP-MW-8		-1.982	No	Mann-W
Fluoride (mg/L)		GS	D-AP-MW-9		1.702	No	Mann-W
Fluoride (mg/L)		GS	D-AP-PZ-1		-1.709	No	Mann-W
Fluoride (mg/L)		GS	D-AP-PZ-5		2.386	No	Mann-W
Fluoride (mg/L)		GS	D-AP-PZ-6		2.451	No	Mann-W
pH (pH)		GS	D-AP-MW-1		-2.858	Yes	Mann-W
pH (pH)		GS	D-AP-MW-10		0.6615	No	Mann-W
pH (pH)		GS	D-AP-MW-11		-2.642	Yes	Mann-W
pH (pH)		GS	D-AP-MW-12		-0.3665	No	Mann-W
pH (pH)		GS	D-AP-MW-14 (bg)		-2.436	No	Mann-W
pH (pH)		GS	D-AP-MW-16 (bg)		-2.052	No	Mann-W
pH (pH)		GS	D-AP-MW-17 (bg)		-1.391	No	Mann-W
pH (pH)		GS	D-AP-MW-2		-1.466	No	Mann-W
pH (pH)		GS	D-AP-MW-3		-2.639	Yes	Mann-W
pH (pH)		GS	D-AP-MW-4		0.5872	No	Mann-W
pH (pH)		GS	D-AP-MW-5		-0.8894	No	Mann-W
pH (pH)		GS	D-AP-MW-6		-2.126	No	Mann-W
pH (pH)		GS	D-AP-MW-7		-2.855	Yes	Mann-W
pH (pH)		GS	D-AP-MW-8		-3.001	Yes	Mann-W
pH (pH)		GS	D-AP-MW-9		-2.014	No	Mann-W
pH (pH)		GS	D-AP-PZ-1		-2.569	No	Mann-W
рН (рН)		GS	D-AP-PZ-5		-2.708	Yes	Mann-W
pH (pH)		GS	D-AP-PZ-6		-1.69	No	Mann-W

Sanitas™ v.9.6.30 Groundwater Stats Consulting, UG Hollow symbols indicate censored values.

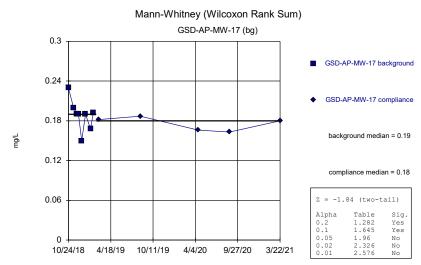


Constituent: Fluoride Analysis Run 7/16/2021 2:06 PM View: Appendix III - Intrawell Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

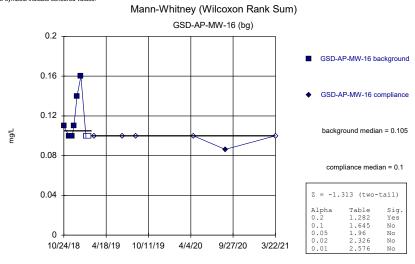


Constituent: Fluoride Analysis Run 7/16/2021 2:06 PM View: Appendix III - Intrawell
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

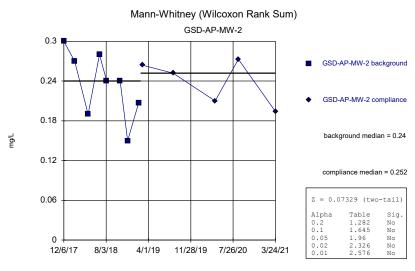
Sanitas™ v.9.6.30 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

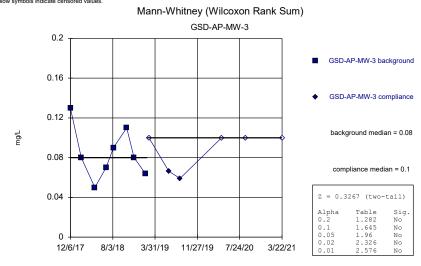


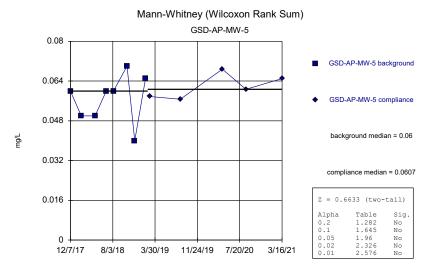
Sanitas™ v.9.6.30 Groundwater Stats Consulting. UG


Constituent: Fluoride Analysis Run 7/16/2021 2:06 PM View: Appendix III - Intrawell Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

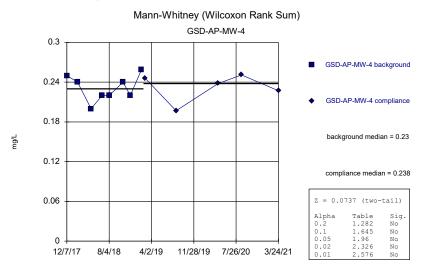
Sanitas™ v.9.6.30 Groundwater Stats Consulting. UG


Constituent: Fluoride Analysis Run 7/16/2021 2:06 PM View: Appendix III - Intrawell Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

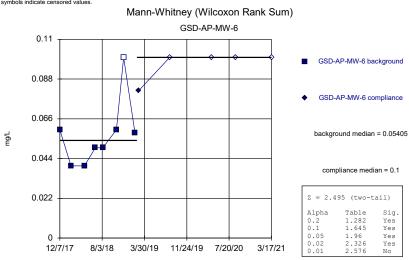

Sanitas™ v.9.6.30 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

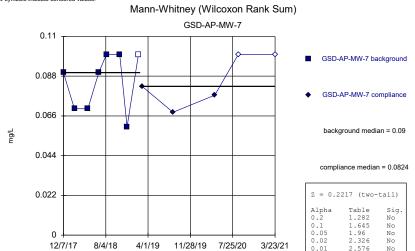

Constituent: Fluoride Analysis Run 7/16/2021 2:06 PM View: Appendix III - Intrawell
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

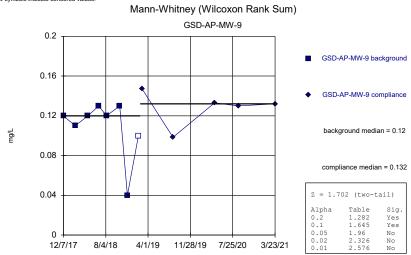
Sanitas™ v.9.6.30 Groundwater Stats Consulting. UG



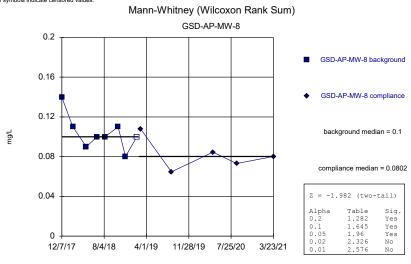
Sanitas™ v.9.6.30 Groundwater Stats Consulting. UG



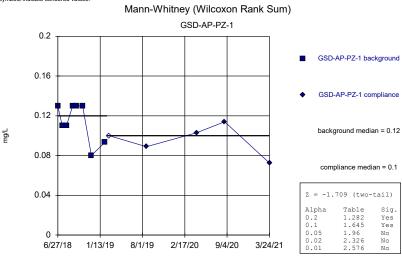

Constituent: Fluoride Analysis Run 7/16/2021 2:06 PM View: Appendix III - Intrawell Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Constituent: Fluoride Analysis Run 7/16/2021 2:06 PM View: Appendix III - Intrawell
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.30 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Sanitas™ v.9.6.30 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Fluoride Analysis Run 7/16/2021 2:06 PM View: Appendix III - Intrawell Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.30 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Fluoride Analysis Run 7/16/2021 2:06 PM View: Appendix III - Intrawell
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.30 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

8/29/20

3/16/21

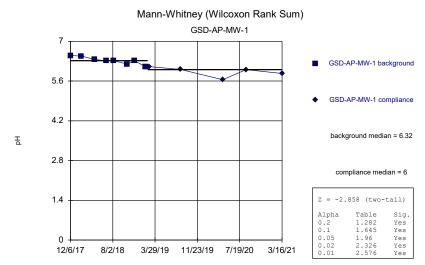
2/12/20

7/29/19

0.02

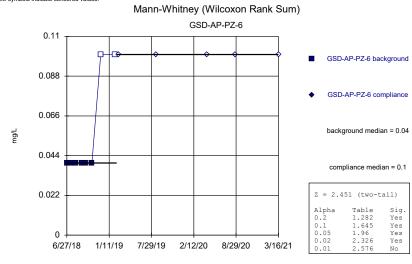
2.326

2.576

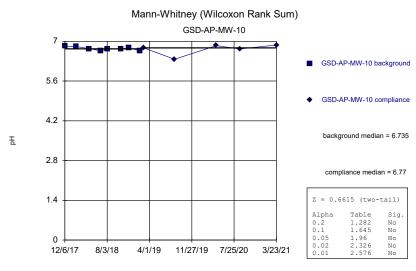

Yes

No

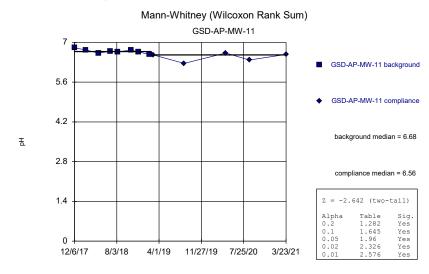
Sanitas™ v.9.6.30 Groundwater Stats Consulting. UG


6/27/18

1/11/19

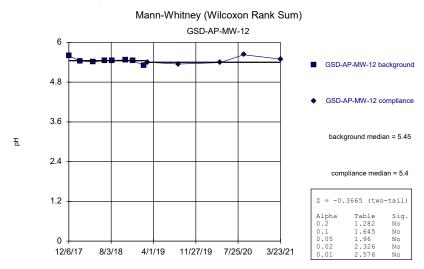

Constituent: pH Analysis Run 7/16/2021 2:06 PM View: Appendix III - Intrawell Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.30 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

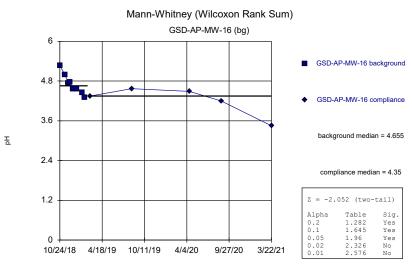


Constituent: Fluoride Analysis Run 7/16/2021 2:06 PM View: Appendix III - Intrawell
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.30 Groundwater Stats Consulting. UG

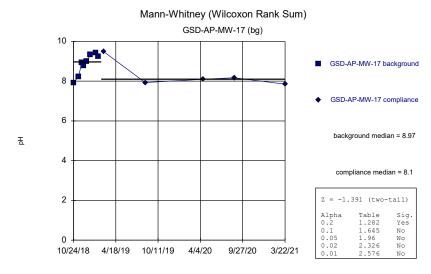

Sanitas™ v.9.6.30 Groundwater Stats Consulting. UG

Constituent: pH Analysis Run 7/16/2021 2:06 PM View: Appendix III - Intrawell Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Mann-Whitney (Wilcoxon Rank Sum) GSD-AP-MW-14 (bg) ■ GSD-AP-MW-14 background ◆ GSD-AP-MW-14 compliance 3 background median = 4.07 Ħ 2 compliance median = 3.94 Z = -2.436 (two-tail) Alpha Table Sig. 0.2 1.282 Yes 1.645 Yes 0.05 1.96 Yes 0.02 3/22/21 6/27/18 1/12/19 7/31/19 2/16/20 9/3/20 2.576

Constituent: pH Analysis Run 7/16/2021 2:06 PM View: Appendix III - Intrawell Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Constituent: pH Analysis Run 7/16/2021 2:06 PM View: Appendix III - Intrawell Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Sanitas™ v.9.6.30 Groundwater Stats Consulting. UG

Constituent: pH Analysis Run 7/16/2021 2:06 PM View: Appendix III - Intrawell
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

12/6/17

8/3/18

Constituent: pH Analysis Run 7/16/2021 2:06 PM View: Appendix III - Intrawell Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

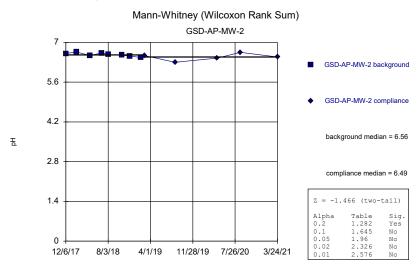
Sanitas™ v.9.6.30 Groundwater Stats Consulting. UG Mann-Whitney (Wilcoxon Rank Sum) GSD-AP-MW-3 ■ GSD-AP-MW-3 background 5.6 GSD-AP-MW-3 compliance 4.2 background median = 6.29 Ħ 2.8 compliance median = 5.83 Z = -2.639 (two-tail) 1.4 Alpha Table Sig. 0.2 1.282 Yes 1.645

Constituent: pH Analysis Run 7/16/2021 2:07 PM View: Appendix III - Intrawell Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

3/31/19 11/27/19 7/24/20

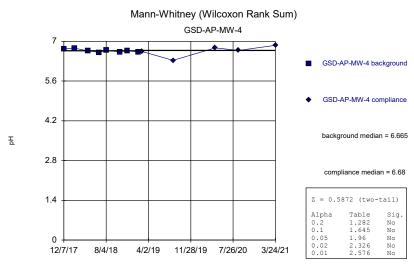
Yes

Yes

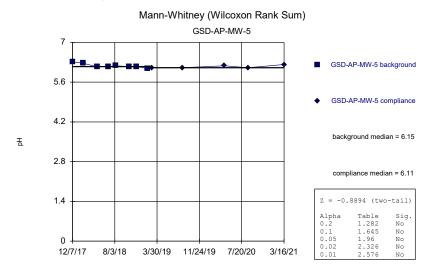

1.96

2.576

0.05

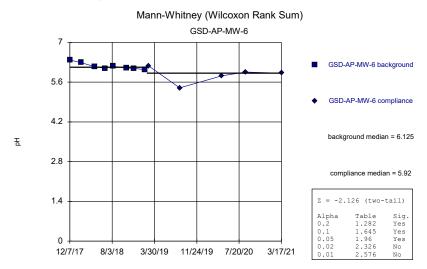

0.02

3/22/21

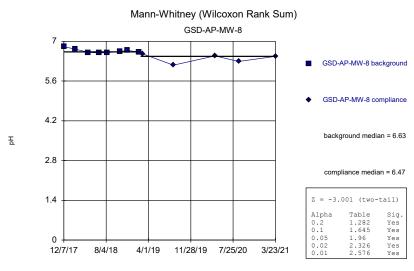

Constituent: pH Analysis Run 7/16/2021 2:06 PM View: Appendix III - Intrawell Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.30 Groundwater Stats Consulting. UG

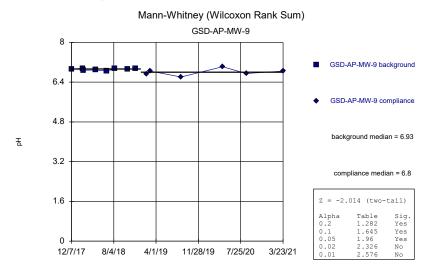
Constituent: pH Analysis Run 7/16/2021 2:07 PM View: Appendix III - Intrawell Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Sanitas™ v.9.6.30 Groundwater Stats Consulting. UG

Constituent: pH Analysis Run 7/16/2021 2:07 PM View: Appendix III - Intrawell Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Mann-Whitney (Wilcoxon Rank Sum) GSD-AP-MW-7 ■ GSD-AP-MW-7 background 5.6 GSD-AP-MW-7 compliance 4.2 background median = 6.385 Ħ 2.8 compliance median = 6.11 Z = -2.855 (two-tail) 1.4 Alpha Table Sig. 0.2 1.282 Yes 1.645 Yes 0.05 1.96 Yes 0.02 3/23/21 12/7/17 8/4/18 4/1/19 11/28/19 7/25/20 2.576

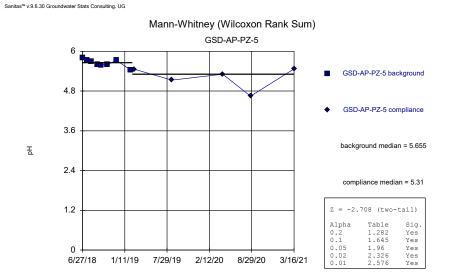
Constituent: pH Analysis Run 7/16/2021 2:07 PM View: Appendix III - Intrawell Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR



Constituent: pH Analysis Run 7/16/2021 2:07 PM View: Appendix III - Intrawell Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.30 Groundwater Stats Consulting. UG

Sanitas™ v.9.6.30 Groundwater Stats Consulting. UG


Constituent: pH Analysis Run 7/16/2021 2:07 PM View: Appendix III - Intrawell Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

GSD-AP-PZ-1 background 5.6 GSD-AP-PZ-1 compliance 4.2 background median = 6.755 표 2.8 compliance median = 6.6 Z = -2.569 (two-tail) Alpha 0.2 Table Sig. Yes 1.282 0.1 Yes Yes 0.02 2.326 Yes 6/27/18 2/17/20 9/4/20 3/24/21 1/13/19 8/1/19 No Constituent: pH Analysis Run 7/16/2021 2:07 PM View: Appendix III - Intrawell

Mann-Whitney (Wilcoxon Rank Sum)

GSD-AP-PZ-1

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Constituent: pH Analysis Run 7/16/2021 2:07 PM View: Appendix III - Intrawell

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

GSD-AP-PZ-6 GSD-AP-PZ-6 background GSD-AP-PZ-6 compliance 3.6 background median = 5.555 표 2.4 compliance median = 5.52 1.2 Z = -1.69 (two-tail) Alpha Table Sig. 0.2 1.282 Yes 1.645 Yes 0.05 1.96 No No 3/16/21 6/27/18 1/11/19 7/29/19 2/12/20 8/29/20 0.01 2.576 No

Mann-Whitney (Wilcoxon Rank Sum)

Constituent: pH Analysis Run 7/16/2021 2:07 PM View: Appendix III - Intrawell
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

	GSD-AP-MW-1	GSD-AP-MW-1
12/6/2017	0.1	
2/6/2018	0.08 (J)	
4/23/2018	0.07 (J)	
6/26/2018	0.08 (J)	
8/7/2018	0.07 (J)	
10/22/2018	0.07 (J)	
12/4/2018	0.04 (J)	
2/5/2019	0.0525 (J)	
2/26/2019		<0.1
8/21/2019		<0.1
4/15/2020		<0.1
8/25/2020		<0.1
3/16/2021		<0.1

	GSD-AP-MW-10	GSD-AP-MW-10
12/6/2017	0.09 (J)	
2/7/2018	0.08 (J)	
4/24/2018	0.08 (J)	
6/27/2018	0.09 (J)	
8/7/2018	0.04 (J)	
10/22/2018	0.1	
12/4/2018	0.07 (J)	
2/6/2019	0.107	
2/26/2019		0.0813 (J)
8/22/2019		0.084 (J)
4/15/2020		0.112
8/26/2020		0.0997 (J)
3/23/2021		0.101

	GSD-AP-MW-11	GSD-AP-MW-11
12/6/2017	0.06 (J)	
2/7/2018	0.05 (J)	
4/24/2018	0.05 (J)	
6/27/2018	0.06 (J)	
8/8/2018	0.06 (J)	
10/23/2018	0.06 (J)	
12/4/2018	<0.1	
2/6/2019	0.0678 (J)	
2/27/2019		0.0985 (J)
8/22/2019		<0.1
4/14/2020		0.0878 (J)
8/26/2020		<0.1
3/23/2021		0.0819 (J)

	GSD-AP-MW-12	GSD-AP-MW-12
12/6/2017	<0.1	
2/8/2018	<0.1	
4/24/2018	<0.1	
6/27/2018	<0.1	
8/8/2018	<0.1	
10/23/2018	0.04 (J)	
12/5/2018	<0.1	
2/6/2019	<0.1	
2/27/2019		<0.1
8/22/2019		<0.1
4/14/2020		<0.1
8/26/2020		<0.1
3/23/2021		<0.1

	GSD-AP-MW-14	GSD-AP-MW-14
6/27/2018	0.18	
7/18/2018	0.23	
8/6/2018	0.23	
9/5/2018	0.22	
9/24/2018	0.2	
10/24/2018	0.14	
12/5/2018	0.07 (J)	
2/5/2019	<0.1	
2/28/2019		<0.1
8/20/2019		<0.1
4/16/2020		<0.1
8/25/2020		<0.1
3/22/2021		<0.1

	GSD-AP-MW-16	GSD-AP-MW-16
10/24/2018	0.11	
11/14/2018	0.1	
11/28/2018	0.1	
12/5/2018	0.11	
12/18/2018	0.14	
1/3/2019	0.16	
1/24/2019	<0.1	
2/5/2019	<0.1	
2/28/2019		<0.1
6/24/2019		<0.1 (D)
8/19/2019		<0.1
4/15/2020		<0.1
8/25/2020		0.0863 (J)
3/22/2021		<0.1

	GSD-AP-MW-17	GSD-AP-MW-17
10/24/2018	0.23	
11/14/2018	0.2	
11/28/2018	0.19	
12/5/2018	0.19	
12/18/2018	0.15	
1/3/2019	0.19	
1/24/2019	0.168	
2/5/2019	0.192	
2/28/2019		0.182
8/19/2019		0.187
4/16/2020		0.166
8/24/2020		0.163
3/22/2021		0.18

	GSD-AP-MW-2	GSD-AP-MW-2
12/6/2017	0.3	
2/6/2018	0.27	
4/23/2018	0.19	
6/27/2018	0.28	
8/7/2018	0.24	
10/22/2018	0.24	
12/4/2018	0.15	
2/5/2019	0.207	
2/26/2019		0.264
8/20/2019		0.252
4/15/2020		0.21
8/25/2020		0.273
3/24/2021		0.194

	GSD-AP-MW-3	GSD-AP-MW-3
12/6/2017	0.13	
2/6/2018	0.08 (J)	
4/24/2018	0.05 (J)	
6/27/2018	0.07 (J)	
8/7/2018	0.09 (J)	
10/22/2018	0.11	
12/3/2018	0.08 (J)	
2/5/2019	0.064 (J)	
2/25/2019		<0.1
6/18/2019		0.0664 (J)
8/20/2019		0.0592 (J)
4/13/2020		<0.1
8/26/2020		<0.1
3/22/2021		<0.1

	GSD-AP-MW-4	GSD-AP-MW-4
12/7/2017	0.25	
2/6/2018	0.24	
4/24/2018	0.2	
6/26/2018	0.22	
8/6/2018	0.22	
10/22/2018	0.24	
12/3/2018	0.22	
2/5/2019	0.259	
2/26/2019		0.246
8/20/2019		0.197
4/15/2020		0.238
8/26/2020		0.251
3/24/2021		0.227

	GSD-AP-MW-5	GSD-AP-MW-5
12/7/2017	0.06 (J)	
2/6/2018	0.05 (J)	
4/25/2018	0.05 (J)	
6/27/2018	0.06 (J)	
8/7/2018	0.06 (J)	
10/23/2018	0.07 (J)	
12/5/2018	0.04 (J)	
2/5/2019	0.0651 (J)	
2/27/2019		0.0578 (J)
8/20/2019		0.0567 (J)
4/13/2020		0.0688 (J)
8/24/2020		0.0607 (J)
3/16/2021		0.065 (J)

	GSD-AP-MW-6	GSD-AP-MW-6
12/7/2017	0.06 (J)	
2/8/2018	0.04 (J)	
4/25/2018	0.04 (J)	
6/26/2018	0.05 (J)	
8/7/2018	0.05 (J)	
10/23/2018	0.06 (J)	
12/3/2018	<0.1	
2/5/2019	0.0581 (J)	
2/26/2019		0.0816 (J)
8/20/2019		<0.1
4/13/2020		<0.1
8/26/2020		<0.1
3/17/2021		<0.1

	GSD-AP-MW-7	GSD-AP-MW-7
12/7/2017	0.09 (J)	
2/8/2018	0.07 (J)	
4/25/2018	0.07 (J)	
6/26/2018	0.09 (J)	
8/8/2018	0.1	
10/23/2018	0.1	
12/4/2018	0.06 (J)	
2/6/2019	<0.1	
2/27/2019		0.0824 (J)
8/21/2019		0.068 (J)
4/15/2020		0.0775 (J)
8/26/2020		<0.1
3/23/2021		<0.1

	GSD-AP-MW-8	GSD-AP-MW-8
12/7/2017	0.14	
2/8/2018	0.11	
4/25/2018	0.09 (J)	
6/26/2018	0.1	
8/8/2018	0.1	
10/23/2018	0.11	
12/4/2018	0.08 (J)	
2/6/2019	<0.1	
2/27/2019		0.108
8/21/2019		0.0648 (J)
4/14/2020		0.0845 (J)
8/26/2020		0.0732 (J)
3/23/2021		0.0802 (J)

	GSD-AP-MW-9	GSD-AP-MW-9
12/7/2017	0.12	
2/12/2018	0.11	
4/25/2018	0.12	
6/26/2018	0.13	
8/8/2018	0.12	
10/23/2018	0.13	
12/5/2018	0.04 (J)	
2/6/2019	<0.1	
2/27/2019		0.147
8/21/2019		0.0984 (J)
4/14/2020		0.133
8/26/2020		0.13
3/23/2021		0.132

	GSD-AP-PZ-1	GSD-AP-PZ-1
6/27/2018	0.13	
7/18/2018	0.11	
8/7/2018	0.11	
9/5/2018	0.13	
9/24/2018	0.13	
10/22/2018	0.13	
12/3/2018	0.08 (J)	
2/5/2019	0.0934 (J)	
2/25/2019		<0.1
8/20/2019		0.0889 (J)
4/13/2020		0.103
8/24/2020		0.114
3/24/2021		0.0725 (J)

	GSD-AP-PZ-5	GSD-AP-PZ-5
6/27/2018	0.05 (J)	
7/18/2018	0.04 (J)	
8/8/2018	0.04 (J)	
9/5/2018	0.04 (J)	
9/24/2018	0.04 (J)	
10/23/2018	0.04 (J)	
12/3/2018	<0.1	
2/7/2019	<0.1	
2/25/2019		<0.1
8/21/2019		<0.1
4/15/2020		<0.1
8/24/2020		<0.1
3/16/2021		<0.1
	7/18/2018 8/8/2018 9/5/2018 9/24/2018 10/23/2018 12/3/2018 2/7/2019 2/25/2019 8/21/2019 4/15/2020 8/24/2020	6/27/2018

	GSD-AP-PZ-6	GSD-AP-PZ-6
6/27/2018	0.04 (J)	
7/18/2018	0.04 (J)	
8/8/2018	0.04 (J)	
9/5/2018	0.04 (J)	
9/24/2018	0.04 (J)	
10/23/2018	0.04 (J)	
12/3/2018	<0.1	
2/7/2019	<0.1	
2/25/2019		<0.1
8/21/2019		<0.1
4/15/2020		<0.1
8/24/2020		<0.1
3/16/2021		<0.1

	GSD-AP-MW-1	GSD-AP-MW-1
12/6/2017	6.5	
2/6/2018	6.48	
4/23/2018	6.36	
6/26/2018	6.32	
8/7/2018	6.32	
10/22/2018	6.2	
12/4/2018	6.31	
2/5/2019	6.1	
2/26/2019		6.11
8/21/2019		6.01
4/15/2020		5.65
8/25/2020		6
3/16/2021		5.87

	GSD-AP-MW-10	GSD-AP-MW-10
12/6/2017	6.83	
2/7/2018	6.82	
4/24/2018	6.74	
6/27/2018	6.67	
8/7/2018	6.72	
10/22/2018	6.73	
12/4/2018	6.77	
2/6/2019	6.67	
2/26/2019		6.77
8/22/2019		6.37
4/15/2020		6.85
8/26/2020		6.73
3/23/2021		6.87

	GSD-AP-MW-11	GSD-AP-MW-11
12/6/2017	6.81	
2/7/2018	6.74	
4/24/2018	6.62	
6/27/2018	6.69	
8/8/2018	6.67	
10/23/2018	6.73	
12/4/2018	6.67	
2/6/2019	6.58	
2/27/2019		6.56
8/22/2019		6.26
4/14/2020		6.63
8/26/2020		6.38
3/23/2021		6.58

	GSD-AP-MW-12	GSD-AP-MW-12
12/6/2017	5.6	
2/8/2018	5.44	
4/24/2018	5.41	
6/27/2018	5.45	
8/8/2018	5.46	
10/23/2018	5.47	
12/5/2018	5.45	
2/6/2019	5.31	
2/27/2019		5.4
8/22/2019		5.35
4/14/2020		5.39
8/26/2020		5.63
3/23/2021		5.5

	GSD-AP-MW-14	GSD-AP-MW-14
6/27/2018	3.95	
7/18/2018	4.02	
8/6/2018	4.07	
9/5/2018	4.07	
9/24/2018	4.07	
10/24/2018	4.1	
12/5/2018	4.1	
2/5/2019	4.02	
2/28/2019		3.94 (E)
8/20/2019		4
4/16/2020		3.93
8/25/2020		4.03
3/22/2021		3.25

	GSD-AP-MW-16	GSD-AP-MW-16
10/24/2018	5.27	
11/14/2018	4.99	
11/28/2018	4.74	
12/5/2018	4.76	
12/18/2018	4.57	
1/3/2019	4.56	
1/24/2019	4.45	
2/5/2019	4.3	
2/28/2019		4.35
8/19/2019		4.57
4/15/2020		4.49
8/25/2020		4.2
3/22/2021		3.45

	GSD-AP-MW-17	GSD-AP-MW-17
10/24/2018	7.92	
11/14/2018	8.23	
11/28/2018	8.95	
12/5/2018	8.77	
12/18/2018	8.99	
1/3/2019	9.35	
1/24/2019	9.42	
2/5/2019	9.23	
2/28/2019		9.48
8/19/2019		7.93
4/16/2020		8.1
8/24/2020		8.17
3/22/2021		7.85

	GSD-AP-MW-2	GSD-AP-MW-2
12/6/2017	6.61	
2/6/2018	6.66	
4/23/2018	6.54	
6/27/2018	6.63	
8/7/2018	6.57	
10/22/2018	6.55	
12/4/2018	6.52	
2/5/2019	6.47	
2/26/2019		6.54
8/20/2019		6.3
4/15/2020		6.45
8/25/2020		6.65
3/24/2021		6.49

	GSD-AP-MW-3	GSD-AP-MW-3
12/6/2017	6.54	
2/6/2018	6.39	
4/24/2018	6.02	
6/27/2018	6.07	
8/7/2018	6.28	
10/22/2018	6.3	
12/3/2018	6.38	
2/5/2019	5.83	
2/25/2019		5.93
8/20/2019		5.73
4/13/2020		5.83
8/26/2020		5.87
3/22/2021		5.51

	GSD-AP-MW-4	GSD-AP-MW-4
12/7/2017	6.73	
2/6/2018	6.76	
4/24/2018	6.66	
6/26/2018	6.61	
8/6/2018	6.68	
10/22/2018	6.63	
12/3/2018	6.67	
2/5/2019	6.63	
2/26/2019		6.64
8/20/2019		6.33
4/15/2020		6.77
8/26/2020		6.68
3/24/2021		6.86

	GSD-AP-MW-5	GSD-AP-MW-5
12/7/2017	6.32	
2/6/2018	6.27	
4/25/2018	6.14	
6/27/2018	6.15	
8/7/2018	6.18	
10/23/2018	6.15	
12/5/2018	6.15	
2/5/2019	6.08	
2/27/2019		6.11
8/20/2019		6.11
4/13/2020		6.18
8/24/2020		6.11
3/16/2021		6.22

	GSD-AP-MW-6	GSD-AP-MW-6
12/7/2017	6.38	
2/8/2018	6.29	
4/25/2018	6.15	
6/26/2018	6.09	
8/7/2018	6.16	
10/23/2018	6.1	
12/3/2018	6.09	
2/5/2019	6.04	
2/26/2019		6.17
8/20/2019		5.4
4/13/2020		5.82
8/26/2020		5.96
3/17/2021		5.92

	GSD-AP-MW-7	GSD-AP-MW-7
12/7/2017	6.62	
2/8/2018	6.39	
4/25/2018	6.17	
6/26/2018	6.38	
8/8/2018	6.56	
10/23/2018	6.54	
12/4/2018	6.33	
2/6/2019	6.13	
2/27/2019		6.12
8/21/2019		5.97
4/15/2020		6.16
8/26/2020		6.11
3/23/2021		6.04

	GSD-AP-MW-8	GSD-AP-MW-8
12/7/2017	6.81	
2/8/2018	6.73	
4/25/2018	6.61	
6/26/2018	6.59	
8/8/2018	6.6	
10/23/2018	6.64	
12/4/2018	6.68	
2/6/2019	6.62	
2/27/2019		6.56
8/21/2019		6.16
4/14/2020		6.49
8/26/2020		6.29
3/23/2021		6.47

	GSD-AP-MW-9	GSD-AP-MW-9				
12/7/2017	6.93					
2/8/2018	6.96					
2/12/2018	6.88					
4/25/2018	6.89					
6/26/2018	6.85					
8/8/2018	6.94					
10/23/2018	6.93					
12/5/2018	6.94					
2/6/2019		6.73				
2/27/2019		6.85				
8/21/2019		6.61				
4/14/2020		7.02				
8/26/2020		6.75				
3/23/2021		6.85				

	GSD-AP-PZ-1	GSD-AP-PZ-1
6/27/2018	6.79	
7/18/2018	6.8	
8/7/2018	6.73	
9/5/2018	6.75	
9/24/2018	6.83	
10/22/2018	6.76	
12/3/2018	6.6	
2/5/2019	6.66	
2/25/2019		6.6
8/20/2019		6.3
4/13/2020		6.66
8/24/2020		6.64
3/24/2021		5.85

	GSD-AP-PZ-5	GSD-AP-PZ-5
6/27/2018	5.81	
7/18/2018	5.74	
8/8/2018	5.7	
9/5/2018	5.61	
9/24/2018	5.59	
10/23/2018	5.6	
12/3/2018	5.73	
2/7/2019	5.44	
2/25/2019		5.46
8/21/2019		5.13
4/15/2020		5.31
8/24/2020		4.65
3/16/2021		5.47

	GSD-AP-PZ-6	GSD-AP-PZ-6
6/27/2018	5.44	
7/18/2018	5.58	
8/8/2018	5.55	
9/5/2018	5.56	
9/24/2018	5.57	
10/23/2018	5.55	
12/3/2018	5.6	
2/7/2019	5.51	
2/25/2019		5.54
8/21/2019		5.44
4/15/2020		5.52
8/24/2020		5.38
3/16/2021		5.56

FIGURE E.

Appendix III - Upgradient Well Trend Tests - Significant Results

GSD-AP-MW-17 (bg) -0.412

Constituent

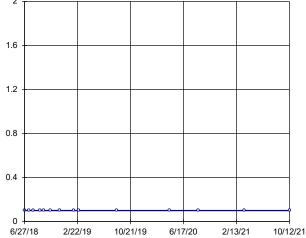
Chloride (mg/L)

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR Printed 1/13/2022, 2:29 PM

Well Slope Calc. Critical Sig. N %NDs Normality Xform Alpha Method

-67 -48 Yes 14 0 n/a

0.01


Appendix III - Upgradient Well Trend Tests - All Results

	Plant Gadsden	Client: Southern Company		Data: Plant Gadsden CCR		R Printed	Printed 1/13/2022, 2:29 PM				
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron (mg/L)	GSD-AP-MW-14 (bg)	0	0	48	No	14	100	n/a	n/a	0.01	NP
Boron (mg/L)	GSD-AP-MW-16 (bg)	0.02049	44	53	No	15	60	n/a	n/a	0.01	NP
Boron (mg/L)	GSD-AP-MW-17 (bg)	-0.001687	-35	-48	No	14	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GSD-AP-MW-14 (bg)	-1.044	-16	-48	No	14	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GSD-AP-MW-16 (bg)	-0.5887	-13	-53	No	15	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GSD-AP-MW-17 (bg)	1.622	25	48	No	14	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GSD-AP-MW-14 (bg)	0.02255	13	48	No	14	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GSD-AP-MW-16 (bg)	-0.04562	-7	-53	No	15	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GSD-AP-MW-17 (bg)	-0.412	-67	-48	Yes	14	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GSD-AP-MW-14 (bg)	-4.795	-10	-48	No	14	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GSD-AP-MW-16 (bg)	29.67	42	53	No	15	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GSD-AP-MW-17 (bg)	-1.162	-42	-48	No	14	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	GSD-AP-MW-14 (bg)	-10.61	-11	-48	No	14	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	GSD-AP-MW-16 (bg)	26.27	37	53	No	15	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	GSD-AP-MW-17 (bg)	-3.097	-18	-48	No	14	0	n/a	n/a	0.01	NP

Sanitas™ v.9.6.32 . UG Hollow symbols indicate censored values

Sen's Slope Estimator

GSD-AP-MW-14 (bg)

Slope = 0

units per year

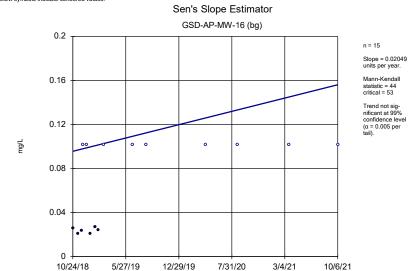
Mann-Kendall

Trend not significant at 99% confidence level

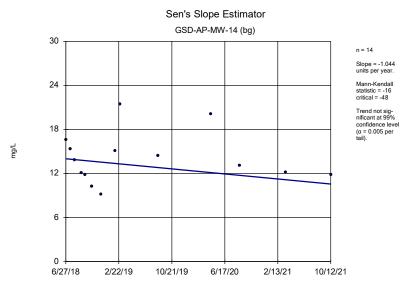

(α = 0.005 per tail).

statistic = 0 critical = 48

Constituent: Boron Analysis Run 1/13/2022 2:28 PM View: Appendix III - Upgradient Wells
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

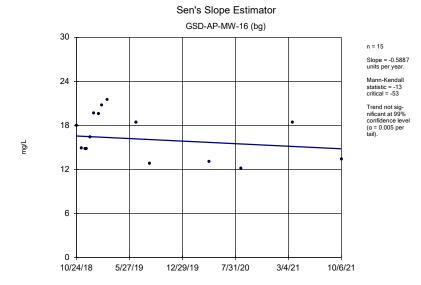

Sanitas™ v.9.6.32 . UG

mg/L



Constituent: Boron Analysis Run 1/13/2022 2:28 PM View: Appendix III - Upgradient Wells
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

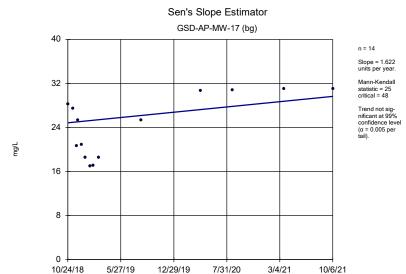
Sanitas™ v.9.6.32 . UG Hollow symbols indicate censored values.



Constituent: Boron Analysis Run 1/13/2022 2:28 PM View: Appendix III - Upgradient Wells
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Constituent: Calcium Analysis Run 1/13/2022 2:28 PM View: Appendix III - Upgradient Wells
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas** v.9.6.32 . UG

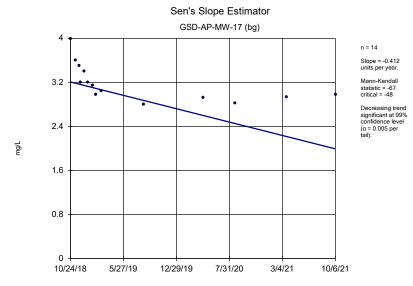


Constituent: Calcium Analysis Run 1/13/2022 2:28 PM View: Appendix III - Upgradient Wells
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

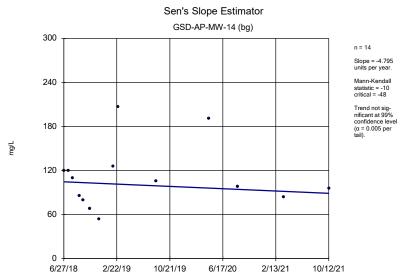
Sen's Slope Estimator GSD-AP-MW-14 (bg) n = 14 Slope = 0.02255 units per year. Mann-Kendall 3.2 critical = 48 Trend not sig-nificant at 99% confidence level 2.4 (α = 0.005 per tail). 1.6 0.8 6/27/18 2/22/19 10/21/19 6/17/20 2/13/21 10/12/21


Constituent: Chloride Analysis Run 1/13/2022 2:28 PM View: Appendix III - Upgradient Wells

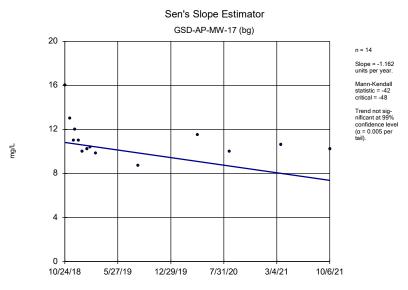
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Constituent: Calcium Analysis Run 1/13/2022 2:28 PM View: Appendix III - Upgradient Wells
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

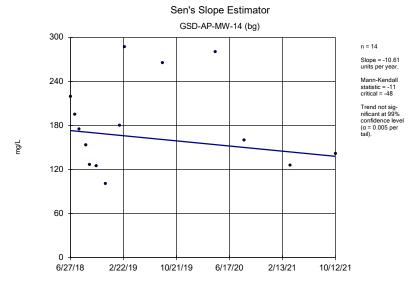
Constituent: Chloride Analysis Run 1/13/2022 2:28 PM View: Appendix III - Upgradient Wells
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

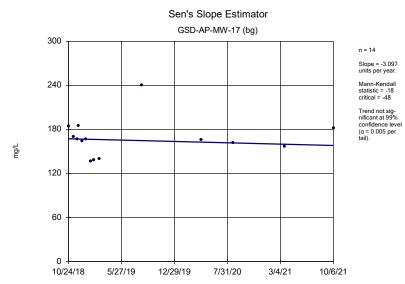

Sanitas™ v.9.6.32 . UG

Constituent: Chloride Analysis Run 1/13/2022 2:28 PM View: Appendix III - Upgradient Wells
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

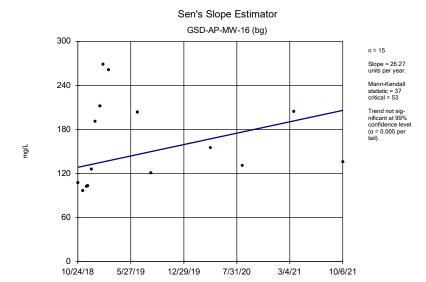

Sen's Slope Estimator GSD-AP-MW-16 (bg) 200 n = 15 Slope = 29.67 units per year. Mann-Kendall 160 statistic = 42 critical = 53 Trend not sig-nificant at 99% confidence level 120 (α = 0.005 per tail). mg/L 80 40 10/24/18 5/27/19 12/29/19 7/31/20 3/4/21 10/6/21

Constituent: Sulfate Analysis Run 1/13/2022 2:28 PM View: Appendix III - Upgradient Wells
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Constituent: Sulfate Analysis Run 1/13/2022 2:28 PM View: Appendix III - Upgradient Wells
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Constituent: Sulfate Analysis Run 1/13/2022 2:28 PM View: Appendix III - Upgradient Wells
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.32 . UG



Constituent: Total Dissolved Solids Analysis Run 1/13/2022 2:28 PM View: Appendix III - Upgradient Well Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.32 . UG

Constituent: Total Dissolved Solids Analysis Run 1/13/2022 2:28 PM View: Appendix III - Upgradient Well Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Constituent: Total Dissolved Solids Analysis Run 1/13/2022 2:28 PM View: Appendix III - Upgradient Well Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

FIGURE F.

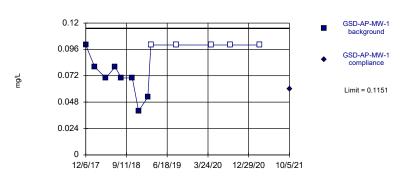
Appendix III - Intrawell Prediction Limits - Significant Results

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR Printed 1/13/2022, 2:23 PM

Constituent	<u>Well</u>	Upper Lin	n. Lower Lim	n. Date	Observ.	Sig.	Bg N	N Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	Alpha	Method
Fluoride (mg/L)	GSD-AP-MW-10	0.1381	n/a	10/11/2021	0.201	Yes	13	0.08731	0.01872	0	None	No	0.0005016	Param Intra 1 of 2
Fluoride (mg/L)	GSD-AP-MW-11	0.1122	n/a	10/12/2021	0.134	Yes	13	0.0646	0.01756	23.08	Kaplan-Meier	No	0.0005016	Param Intra 1 of 2
Fluoride (mg/L)	GSD-AP-MW-5	0.08126	n/a	10/5/2021	0.122	Yes	13	0.05878	0.008293	0	None	No	0.0005016	Param Intra 1 of 2
pH (pH)	GSD-AP-MW-12	5.692	5.209	10/5/2021	5.19	Yes	13	5.451	0.08911	0	None	No	0.0002508	Param Intra 1 of 2

Appendix III - Intrawell Prediction Limits - All Results

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR Printed 1/13/2022, 2:23 PM


Constituent	<u>Well</u>	Upper Lin	n. Lower Lin	n. <u>Date</u>	Observ.	Sig.	Bg 1	N Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Fluoride (mg/L)	GSD-AP-MW-1	0.1151	n/a	10/5/2021	0.0601J	No	13	0.06075	0.02003	38.46	Kaplan-Meier	No	0.0005016	Param Intra 1 of 2
Fluoride (mg/L)	GSD-AP-MW-10	0.1381	n/a	10/11/2021	0.201	Yes	13	0.08731	0.01872	0	None	No	0.0005016	Param Intra 1 of 2
Fluoride (mg/L)	GSD-AP-MW-11	0.1122	n/a	10/12/2021	0.134	Yes	13	0.0646	0.01756	23.08	Kaplan-Meier	No	0.0005016	Param Intra 1 of 2
Fluoride (mg/L)	GSD-AP-MW-12	0.1	n/a	10/5/2021	0.1ND	No	13	n/a	n/a	92.31	n/a	n/a	0.009692	NP Intra (NDs) 1 of 2
Fluoride (mg/L)	GSD-AP-MW-14	0.2947	n/a	10/12/2021	0.1ND	No	13	0.1209	0.06411	46.15	Kaplan-Meier	No	0.0005016	Param Intra 1 of 2
Fluoride (mg/L)	GSD-AP-MW-16	0.16	n/a	10/6/2021	0.1ND	No	14	n/a	n/a	50	n/a	n/a	0.008612	NP Intra (normality) 1 of 2
Fluoride (mg/L)	GSD-AP-MW-17	0.2376	n/a	10/6/2021	0.175	No	13	0.1837	0.01989	0	None	No	0.0005016	Param Intra 1 of 2
Fluoride (mg/L)	GSD-AP-MW-2	0.3534	n/a	10/11/2021	0.283	No	13	0.2362	0.04323	0	None	No	0.0005016	Param Intra 1 of 2
Fluoride (mg/L)	GSD-AP-MW-3	0.1327	n/a	10/5/2021	0.1ND	No	14	0.07516	0.0217	28.57	Kaplan-Meier	No	0.0005016	Param Intra 1 of 2
Fluoride (mg/L)	GSD-AP-MW-4	0.2837	n/a	10/5/2021	0.214	No	13	0.2314	0.01931	0	None	No	0.0005016	Param Intra 1 of 2
Fluoride (mg/L)	GSD-AP-MW-5	0.08126	n/a	10/5/2021	0.122	Yes	13	0.05878	0.008293	0	None	No	0.0005016	Param Intra 1 of 2
Fluoride (mg/L)	GSD-AP-MW-6	0.08914	n/a	10/5/2021	0.1ND	No	13	0.05192	0.01373	38.46	Kaplan-Meier	No	0.0005016	Param Intra 1 of 2
Fluoride (mg/L)	GSD-AP-MW-7	0.109	n/a	10/5/2021	0.0933J	No	13	0.0755	0.01236	23.08	Kaplan-Meier	No	0.0005016	Param Intra 1 of 2
Fluoride (mg/L)	GSD-AP-MW-8	0.149	n/a	10/12/2021	0.123	No	13	0.09544	0.01975	7.692	None	No	0.0005016	Param Intra 1 of 2
Fluoride (mg/L)	GSD-AP-MW-9	0.1665	n/a	10/12/2021	0.147	No	13	0.01415	0.005005	7.692	None	x^2	0.0005016	Param Intra 1 of 2
Fluoride (mg/L)	GSD-AP-PZ-1	0.1606	n/a	10/5/2021	0.1ND	No	13	0.1071	0.01975	7.692	None	No	0.0005016	Param Intra 1 of 2
Fluoride (mg/L)	GSD-AP-PZ-5	0.1	n/a	10/12/2021	0.1ND	No	13	n/a	n/a	53.85	n/a	n/a	0.009692	NP Intra (NDs) 1 of 2
Fluoride (mg/L)	GSD-AP-PZ-6	0.1	n/a	10/12/2021	0.1ND	No	13	n/a	n/a	53.85	n/a	n/a	0.009692	NP Intra (NDs) 1 of 2
pH (pH)	GSD-AP-MW-1	6.84	5.503	10/5/2021	5.79	No	13	6.172	0.2466	0	None	No	0.0002508	Param Intra 1 of 2
pH (pH)	GSD-AP-MW-10	7.042	6.384	10/11/2021	6.72	No	13	2060	147.3	0	None	x^4	0.0002508	Param Intra 1 of 2
pH (pH)	GSD-AP-MW-11	7.012	6.206	10/12/2021	6.66	No	13	6.609	0.1486	0	None	No	0.0002508	Param Intra 1 of 2
pH (pH)	GSD-AP-MW-12	5.692	5.209	10/5/2021	5.19	Yes	13	5.451	0.08911	0	None	No	0.0002508	Param Intra 1 of 2
pH (pH)	GSD-AP-MW-14	4.1	3.25	10/12/2021	4.04	No	13	n/a	n/a	0	n/a	n/a	0.01938	NP Intra (normality) 1 of 2
pH (pH)	GSD-AP-MW-16	5.683	3.348	10/6/2021	4.16	No	13	4.515	0.4307	0	None	No	0.0002508	Param Intra 1 of 2
pH (pH)	GSD-AP-MW-17	10.35	6.943	10/6/2021	7.92	No	13	8.645	0.6277	0	None	No	0.0002508	Param Intra 1 of 2
pH (pH)	GSD-AP-MW-2	6.801	6.273	10/11/2021	6.59	No	13	6.537	0.09742	0	None	No	0.0002508	Param Intra 1 of 2
pH (pH)	GSD-AP-MW-3	6.88	5.224	10/5/2021	5.76	No	13	6.052	0.3053	0	None	No	0.0002508	Param Intra 1 of 2
pH (pH)	GSD-AP-MW-4	6.998	6.332	10/5/2021	6.58	No	13	6.665	0.1229	0	None	No	0.0002508	Param Intra 1 of 2
pH (pH)	GSD-AP-MW-5	6.352	5.982	10/5/2021	6.24	No	13	6.167	0.06836	0	None	No	0.0002508	Param Intra 1 of 2
pH (pH)	GSD-AP-MW-6	6.703	5.385	10/5/2021	5.74	No	13	6.044	0.243	0	None	No	0.0002508	Param Intra 1 of 2
pH (pH)	GSD-AP-MW-7	6.847	5.694	10/5/2021	6.06	No	13	6.271	0.2126	0	None	No	0.0002508	Param Intra 1 of 2
pH (pH)	GSD-AP-MW-8	7.032	6.084	10/12/2021	6.61	No	13	6.558	0.1748	0	None	No	0.0002508	Param Intra 1 of 2
pH (pH)	GSD-AP-MW-9	7.152	6.581	10/12/2021	6.9	No	14	6.866	0.1077	0	None	No	0.0002508	Param Intra 1 of 2
pH (pH)	GSD-AP-PZ-1	6.83	5.85	10/5/2021	6.46	No	13	n/a	n/a	0	n/a	n/a	0.01938	NP Intra (normality) 1 of 2
pH (pH)	GSD-AP-PZ-5	6.328	4.632	10/12/2021	5.33	No	13	5.48	0.3127	0	None	No	0.0002508	Param Intra 1 of 2
pH (pH)	GSD-AP-PZ-6	5.699	5.348	10/12/2021	5.41	No	13	5.523	0.06473	0	None	No	0.0002508	Param Intra 1 of 2

Within Limit

Sanitas™ v.9.6.32 . UG

Hollow symbols indicate censored values

Prediction Limit
Intrawell Parametric

Background Data Summary (after Kaplan-Meier Adjustment): Mean=0.06075, Std. Dev.=0.02003, n=13, 38.46% NDs. Normality test: Shapiro Wilk (@alpha = 0.01, calculated = 0.8338, critical = 0.814. Kappa = 2.711 (c=7, w=15, 1 of 2, event alpha = 0.05132). Report alpha = 0.005016.

Constituent: Fluoride Analysis Run 1/13/2022 2:20 PM View: Appendix III - Intrawell
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Exceeds Limit

Intrawell Parametric

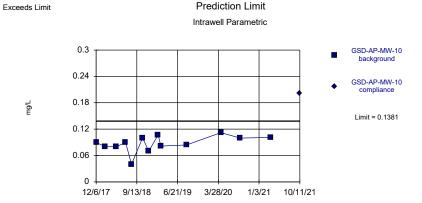
O.2

O.16

O.10

GSD-AP-MW-11
background

GSD-AP-MW-11
compliance

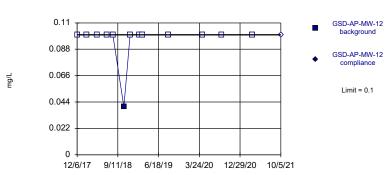

Limit = 0.1122

12/6/17 9/13/18 6/21/19 3/28/20

Background Data Summary (after Kaplan-Meier Adjustment): Mean=0.0646, Std. Dev.=0.01756, n=13, 23.08% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8429, critical = 0.814. Kappa = 2.711 (c=7, w=15, 1 of 2, event alpha = 0.05132). Report alpha = 0.005016.

1/3/21 10/12/21

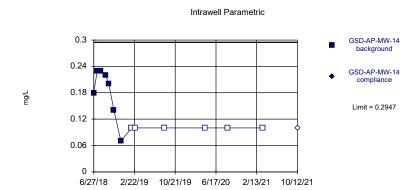
Sanitas™ v.9.6.32 . UG



Background Data Summary: Mean=0.08731, Std. Dev.=0.01872, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9056, critical = 0.814. Kappa = 2.711 (c=7, w=15, 1 of 2, event alpha = 0.05132). Report alpha = 0.0005016.

Constituent: Fluoride Analysis Run 1/13/2022 2:20 PM View: Appendix III - Intrawell Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

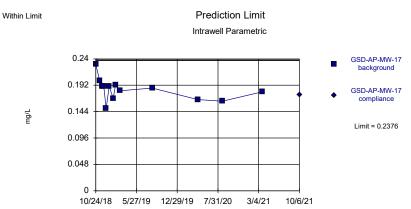
Sanitas™ v.9.6.32 . UG Hollow symbols indicate censored values. Within Limit


Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 13 background values. 92.31% NDs. Well-constituent pair annual alpha = 0.01929. Individual comparison alpha = 0.009692 (1 of 2).

Sanitas™ v.9.6.32 . UG Hollow symbols indicate censored values

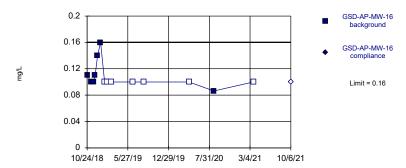
Within Limit



Prediction Limit

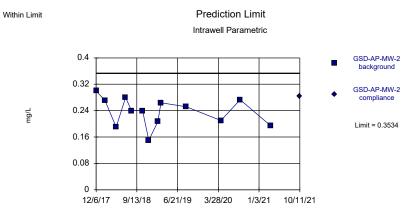
Background Data Summary (after Kaplan-Meier Adjustment): Mean=0.1209, Std. Dev.=0.06411, n=13, 46.15% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.821, critical = 0.814. Kappa = 2.711 (c=7, w=15, 1 of 2, event alpha = 0.05132). Report alpha = 0.005016.

Constituent: Fluoride Analysis Run 1/13/2022 2:20 PM View: Appendix III - Intrawell Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Sanitas™ v.9.6.32 . UG

Background Data Summary: Mean=0.1837, Std. Dev.=0.01989, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9377, critical = 0.814. Kappa = 2.711 (c=7, w=15, 1 of 2, event alpha = 0.05132). Report alpha = 0.0005016.

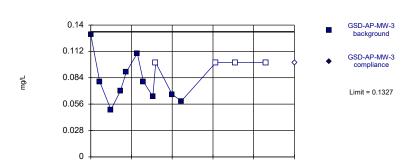
Sanitas™ v.9.6.32 . UG Hollow symbols indicate censored values. Within Limit


Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 14 background values. 50% NDs. Well-constituent pair annual alpha = 0.01715. Individual comparison alpha = 0.008612 (1 of 2).

Constituent: Fluoride Analysis Run 1/13/2022 2:20 PM View: Appendix III - Intrawell Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.32 . UG

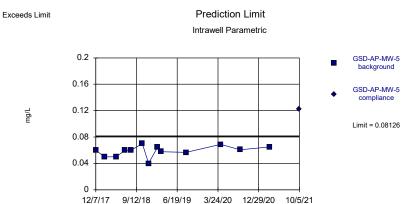


Background Data Summary: Mean=0.2362, Std. Dev.=0.04323, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9598, critical = 0.814. Kappa = 2.711 (c=7, w=15, 1 of 2, event alpha = 0.05132). Report alpha = 0.0005016.

Within Limit

Prediction Limit

Intrawell Parametric



Background Data Summary (after Kaplan-Meier Adjustment): Mean=0.07516, Std. Dev.=0.0217, n=14, 28.57% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9616, critical = 0.825. Kappa = 2.651 (c=7, w=15, 1 of 2, event alpha = 0.05132). Report alpha = 0.005016.

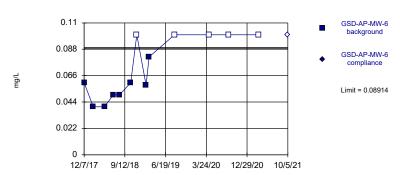
12/6/17 9/11/18 6/18/19 3/24/20 12/29/20 10/5/21

Constituent: Fluoride Analysis Run 1/13/2022 2:20 PM View: Appendix III - Intrawell
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.32 . UG

Background Data Summary: Mean=0,05878, Std. Dev.=0.008293, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9302, critical = 0.814. Kappa = 2.711 (c=7, w=15, 1 of 2, event alpha = 0.05132). Report alpha = 0.0005016.

Sanitas™ v.9.6.32 . UG



Background Data Summary: Mean=0.2314, Std. Dev.=0.01931, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.937, critical = 0.814. Kappa = 2.711 (c=7, w=15, 1 of 2, event alpha = 0.05132). Report alpha = 0.0005016.

Constituent: Fluoride Analysis Run 1/13/2022 2:20 PM View: Appendix III - Intrawell Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.32 . UG Hollow symbols indicate censored values. Within Limit

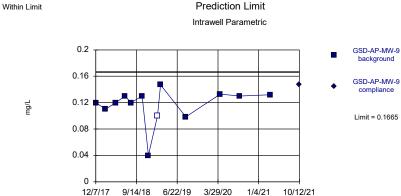
Prediction Limit
Intrawell Parametric

Background Data Summary (after Kaplan-Meier Adjustment): Mean=0.05192, Std. Dev.=0.01373, n=13, 38.46% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8201, critical = 0.814. Kappa = 2.711 (c=7, w=15, 1 of 2, event alpha = 0.05132). Report alpha = 0.0005016.

Sanitas™ v.9.6.32 . UG Hollow symbols indicate censored values

Within Limit

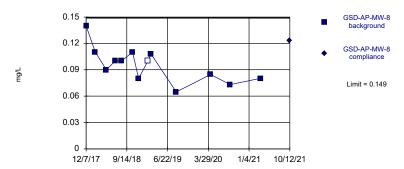
0.11
0.088
0.066
0.044
0.022
0.002


Prediction Limit

Background Data Summary (after Kaplan-Meier Adjustment): Mean=0.0755, Std. Dev.=0.01236, n=13, 23.08% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8606, critical = 0.814. Kappa = 2.711 (c=7, w=15, 1 of 2, event alpha = 0.05132). Report alpha = 0.005016.

12/7/17 9/12/18 6/19/19 3/24/20 12/29/20 10/5/21

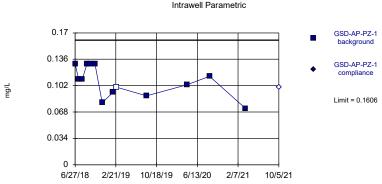
Constituent: Fluoride Analysis Run 1/13/2022 2:20 PM View: Appendix III - Intrawell Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Sanitas™ v.9.6.32 . UG Hollow symbols indicate censored values.

Background Data Summary (based on square transformation): Mean=0.01415, Std. Dev.=0.005005, n=13, 7.692% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8951, critical = 0.814. Kappa = 2.711 (c=7, w=15, 1 of 2, event alpha = 0.05132). Report alpha = 0.0005016.

Sanitas™ v.9.6.32 . UG Hollow symbols indicate censored values. Within Limit

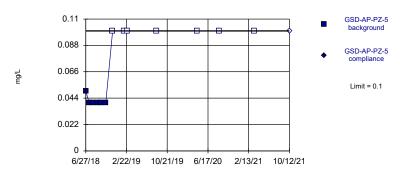
Prediction Limit
Intrawell Parametric



Background Data Summary: Mean=0.09544, Std. Dev.=0.01975, n=13, 7.692% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9517, critical = 0.814. Kappa = 2.711 (c=7, w=15, 1 of 2, event alpha = 0.005132). Report alpha = 0.005016.

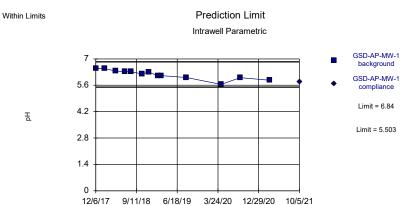
Constituent: Fluoride Analysis Run 1/13/2022 2:20 PM View: Appendix III - Intrawell Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.32 . UG Hollow symbols indicate censored values. Within Limit


Prediction Limit

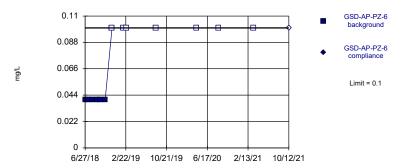
Background Data Summary: Mean=0.1071, Std. Dev.=0.01975, n=13, 7.692% NDs. Normality test: Shapiro Wilk @lpha = 0.01, calculated = 0.9172, critical = 0.814. Kappa = 2.711 (c=7, w=15, 1 of 2, event alpha = 0.005016.

Sanitas™ v.9.6.32 . UG Hollow symbols indicate censored values


Prediction Limit Within Limit Intrawell Non-parametric

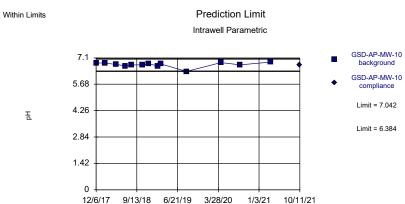
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 13 background values. 53.85% NDs. Well-constituent pair annual alpha = 0.01929. Individual comparison alpha =

> Constituent: Fluoride Analysis Run 1/13/2022 2:20 PM View: Appendix III - Intrawell Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Sanitas™ v.9.6.32 . UG

Background Data Summary: Mean=6.172, Std. Dev.=0.2466, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9507, critical = 0.814. Kappa = 2.711 (c=7, w=15, 1 of 2, event alpha = 0.05132). Report alpha =

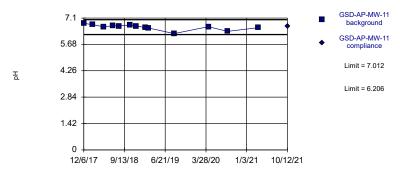
Sanitas™ v.9.6.32 . UG Hollow symbols indicate censored values. Within Limit


Prediction Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 13 background values. 53.85% NDs. Well-constituent pair annual alpha = 0.01929. Individual comparison alpha = 0.009692 (1 of 2).

> Constituent: Fluoride Analysis Run 1/13/2022 2:20 PM View: Appendix III - Intrawell Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

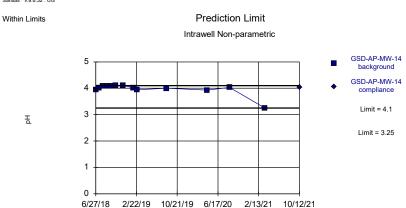
Sanitas™ v.9.6.32 . UG



Background Data Summary (based on x⁴ transformation): Mean=2060, Std. Dev.=147.3, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8204, critical = 0.814. Kappa = 2.711 (c=7, w=15, 1 of 2, event alpha = 0.05132). Report alpha = 0.0005016.

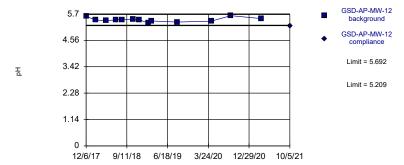
1/3/21 10/11/21

Within Limits Prediction Limit


Intrawell Parametric

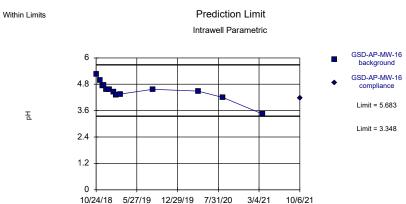
Background Data Summary: Mean=6.609, Std. Dev.=0.1486, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.894, critical = 0.814. Kappa = 2.711 (c=7, w=15, 1 of 2, event alpha = 0.05132). Report alpha = 0.005132.

Constituent: pH Analysis Run 1/13/2022 2:20 PM View: Appendix III - Intrawell Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

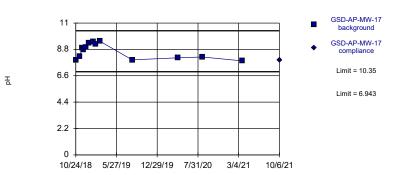

Sanitas™ v.9.6.32 . UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 13 background values. Well-constituent pair annual alpha = 0.03858. Individual comparison alpha = 0.01938 (1 of 2).

Sanitas™ v.9.6.32 . UG

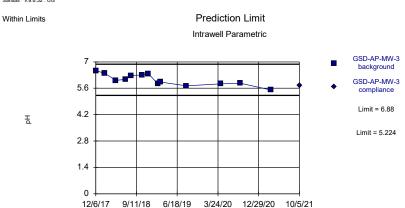


Background Data Summary: Mean=5.451, Std. Dev.=0.08911, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.939, critical = 0.814. Kappa = 2.711 (c=7, w=15, 1 of 2, event alpha = 0.05132). Report alpha = 0.0005016.


Constituent: pH Analysis Run 1/13/2022 2:20 PM View: Appendix III - Intrawell Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

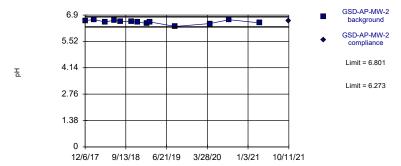
Sanitas™ v.9.6.32 . UG

Background Data Summary: Mean=4.515, Std. Dev.=0.4307, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9225, critical = 0.814. Kappa = 2.711 (c=7, w=15, 1 of 2, event alpha = 0.05132). Report alpha = 0.0005016.


Within Limits Prediction Limit
Intrawell Parametric

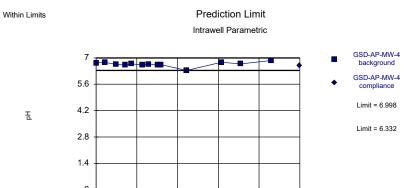
Background Data Summary: Mean=8.645, Std. Dev.=0.6277, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8772, critical = 0.814. Kappa = 2.711 (c=7, w=15, 1 of 2, event alpha = 0.05132). Report alpha = 0.005132).

Constituent: pH Analysis Run 1/13/2022 2:20 PM View: Appendix III - Intrawell Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Sanitas™ v.9.6.32 . UG

Background Data Summary: Mean=6.052, Std. Dev.=0.3053, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.961, critical = 0.814. Kappa = 2.711 (c=7, w=15, 1 of 2, event alpha = 0.05132). Report alpha = 0.0005016.

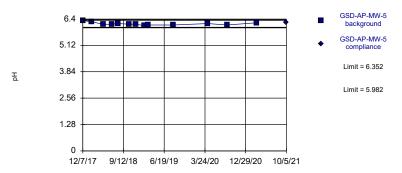
Sanitas™ v.9.6.32 . UG



Background Data Summary: Mean=6.537, Std. Dev.=0.09742, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9249, critical = 0.814. Kappa = 2.711 (c=7, w=15, 1 of 2, event alpha = 0.055132). Report alpha = 0.0005016.

Constituent: pH Analysis Run 1/13/2022 2:20 PM View: Appendix III - Intrawell Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

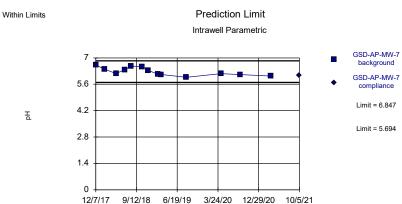
Sanitas™ v.9.6.32 . UG



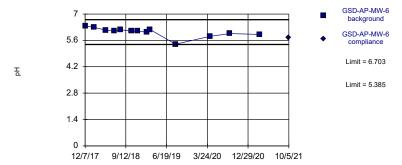
Background Data Summary: Mean=6.665, Std. Dev.=0.1229, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8446, critical = 0.814. Kappa = 2.711 (c=7, w=15, 1 of 2, event alpha = 0.05132). Report alpha = 0.0005016.

12/7/17 9/12/18 6/19/19 3/24/20 12/29/20 10/5/21

Prediction Limit Within Limits

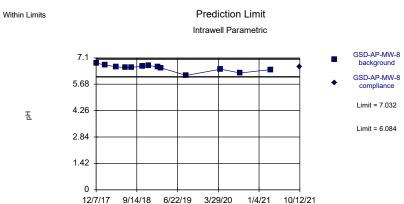

Intrawell Parametric

Background Data Summary: Mean=6.167, Std. Dev.=0.06836, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9003, critical = 0.814. Kappa = 2.711 (c=7, w=15, 1 of 2, event alpha = 0.05132). Report alpha =

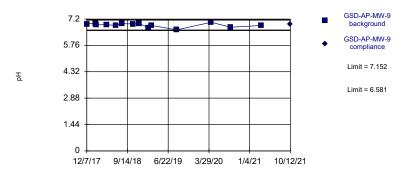

> Constituent: pH Analysis Run 1/13/2022 2:21 PM View: Appendix III - Intrawell Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.32 . UG

Background Data Summary: Mean=6.271, Std. Dev.=0.2126, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9235, critical = 0.814. Kappa = 2.711 (c=7, w=15, 1 of 2, event alpha = 0.05132). Report alpha = Sanitas™ v.9.6.32 . UG

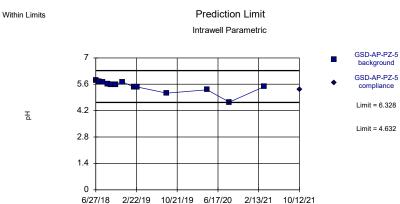


Background Data Summary: Mean=6.044, Std. Dev.=0.243, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8773, critical = 0.814. Kappa = 2.711 (c=7, w=15, 1 of 2, event alpha = 0.05132). Report alpha = 0.0005016.


> Constituent: pH Analysis Run 1/13/2022 2:21 PM View: Appendix III - Intrawell Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

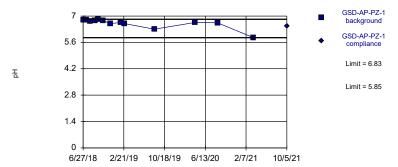
Sanitas™ v.9.6.32 . UG

Background Data Summary: Mean=6.558, Std. Dev.=0.1748, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.913, critical = 0.814. Kappa = 2.711 (c=7, w=15, 1 of 2, event alpha = 0.05132). Report alpha = 0.0005016.


Within Limits Prediction Limit
Intrawell Parametric

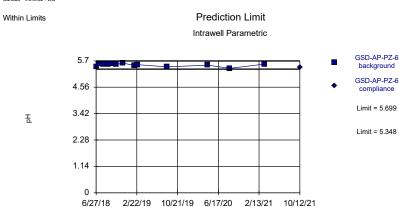
Background Data Summary: Mean=6.866, Std. Dev.=0.1077, n=14. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9109, critical = 0.825. Kappa = 2.651 (c=7, w=15, 1 of 2, event alpha = 0.05132). Report alpha = 0.005132).

Constituent: pH Analysis Run 1/13/2022 2:21 PM View: Appendix III - Intrawell Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Sanitas™ v.9.6.32 . UG

Background Data Summary: Mean=5.48, Std. Dev.=0.3127, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8416, critical = 0.814. Kappa = 2.711 (c=7, w=15, 1 of 2, event alpha = 0.05132). Report alpha = 0.0005016.

Sanitas™ v.9.6.32 . UG


Within Limits Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 13 background values. Well-constituent pair annual alpha = 0.03858. Individual comparison alpha = 0.01938 (1 of 2).

Constituent: pH Analysis Run 1/13/2022 2:21 PM View: Appendix III - Intrawell Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.32 . UG

Background Data Summary: Mean=5.523, Std. Dev.=0.06473, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8711, critical = 0.814. Kappa = 2.711 (c=7, w=15, 1 of 2, event alpha = 0.05132). Report alpha = 0.0005016.

	GSD-AP-MW-1	GSD-AP-MW-1
12/6/2017	0.1	
2/6/2018	0.08 (J)	
4/23/2018	0.07 (J)	
6/26/2018	0.08 (J)	
8/7/2018	0.07 (J)	
10/22/2018	0.07 (J)	
12/4/2018	0.04 (J)	
2/5/2019	0.0525 (J)	
2/26/2019	<0.1	
8/21/2019	<0.1	
4/15/2020	<0.1	
8/25/2020	<0.1	
3/16/2021	<0.1	
10/5/2021		0.0601 (J)

	GSD-AP-MW-10	GSD-AP-MW-10
12/6/2017	0.09 (J)	
2/7/2018	0.08 (J)	
4/24/2018	0.08 (J)	
6/27/2018	0.09 (J)	
8/7/2018	0.04 (J)	
10/22/2018	0.1	
12/4/2018	0.07 (J)	
2/6/2019	0.107	
2/26/2019	0.0813 (J)	
8/22/2019	0.084 (J)	
4/15/2020	0.112	
8/26/2020	0.0997 (J)	
3/23/2021	0.101	
10/11/2021		0.201

	GSD-AP-MW-11	GSD-AP-MW-11
12/6/2017	0.06 (J)	
2/7/2018	0.05 (J)	
4/24/2018	0.05 (J)	
6/27/2018	0.06 (J)	
8/8/2018	0.06 (J)	
10/23/2018	0.06 (J)	
12/4/2018	<0.1	
2/6/2019	0.0678 (J)	
2/27/2019	0.0985 (J)	
8/22/2019	<0.1	
4/14/2020	0.0878 (J)	
8/26/2020	<0.1	
3/23/2021	0.0819 (J)	
10/12/2021		0.134

	GSD-AP-MW-12	GSD-AP-MW-12
12/6/2017	<0.1	
2/8/2018	<0.1	
4/24/2018	<0.1	
6/27/2018	<0.1	
8/8/2018	<0.1	
10/23/2018	0.04 (J)	
12/5/2018	<0.1	
2/6/2019	<0.1	
2/27/2019	<0.1	
8/22/2019	<0.1	
4/14/2020	<0.1	
8/26/2020	<0.1	
3/23/2021	<0.1	
10/5/2021		<0.1

	GSD-AP-MW-14	GSD-AP-MW-14
6/27/2018	0.18	
7/18/2018	0.23	
8/6/2018	0.23	
9/5/2018	0.22	
9/24/2018	0.2	
10/24/2018	0.14	
12/5/2018	0.07 (J)	
2/5/2019	<0.1	
2/28/2019	<0.1	
8/20/2019	<0.1	
4/16/2020	<0.1	
8/25/2020	<0.1	
3/22/2021	<0.1	
10/12/2021		<0.1

	GSD-AP-MW-16	GSD-AP-MW-16
10/24/2018	0.11	
11/14/2018	0.1	
11/28/2018	0.1	
12/5/2018	0.11	
12/18/2018	0.14	
1/3/2019	0.16	
1/24/2019	<0.1	
2/5/2019	<0.1	
2/28/2019	<0.1	
6/24/2019	<0.1 (D)	
8/19/2019	<0.1	
4/15/2020	<0.1	
8/25/2020	0.0863 (J)	
3/22/2021	<0.1	
10/6/2021		<0.1

	GSD-AP-MW-17	GSD-AP-MW-17
10/24/2018	0.23	
11/14/2018	0.2	
11/28/2018	0.19	
12/5/2018	0.19	
12/18/2018	0.15	
1/3/2019	0.19	
1/24/2019	0.168	
2/5/2019	0.192	
2/28/2019	0.182	
8/19/2019	0.187	
4/16/2020	0.166	
8/24/2020	0.163	
3/22/2021	0.18	
10/6/2021		0.175

	GSD-AP-MW-2	GSD-AP-MW-2
12/6/2017	0.3	
2/6/2018	0.27	
4/23/2018	0.19	
6/27/2018	0.28	
8/7/2018	0.24	
10/22/2018	0.24	
12/4/2018	0.15	
2/5/2019	0.207	
2/26/2019	0.264	
8/20/2019	0.252	
4/15/2020	0.21	
8/25/2020	0.273	
3/24/2021	0.194	
10/11/2021		0.283

	GSD-AP-MW-3	GSD-AP-MW-3
12/6/2017	0.13	
2/6/2018	0.08 (J)	
4/24/2018	0.05 (J)	
6/27/2018	0.07 (J)	
8/7/2018	0.09 (J)	
10/22/2018	0.11	
12/3/2018	0.08 (J)	
2/5/2019	0.064 (J)	
2/25/2019	<0.1	
6/18/2019	0.0664 (J)	
8/20/2019	0.0592 (J)	
4/13/2020	<0.1	
8/26/2020	<0.1	
3/22/2021	<0.1	
10/5/2021		<0.1

	GSD-AP-MW-4	GSD-AP-MW-4
12/7/2017	0.25	
2/6/2018	0.24	
4/24/2018	0.2	
6/26/2018	0.22	
8/6/2018	0.22	
10/22/2018	0.24	
12/3/2018	0.22	
2/5/2019	0.259	
2/26/2019	0.246	
8/20/2019	0.197	
4/15/2020	0.238	
8/26/2020	0.251	
3/24/2021	0.227	
10/5/2021		0.214

	GSD-AP-MW-5	GSD-AP-MW-5
12/7/2017	0.06 (J)	
2/6/2018	0.05 (J)	
4/25/2018	0.05 (J)	
6/27/2018	0.06 (J)	
8/7/2018	0.06 (J)	
10/23/2018	0.07 (J)	
12/5/2018	0.04 (J)	
2/5/2019	0.0651 (J)	
2/27/2019	0.0578 (J)	
8/20/2019	0.0567 (J)	
4/13/2020	0.0688 (J)	
8/24/2020	0.0607 (J)	
3/16/2021	0.065 (J)	
10/5/2021		0.122

	GSD-AP-MW-6	GSD-AP-MW-6
12/7/2017	0.06 (J)	
2/8/2018	0.04 (J)	
4/25/2018	0.04 (J)	
6/26/2018	0.05 (J)	
8/7/2018	0.05 (J)	
10/23/2018	0.06 (J)	
12/3/2018	<0.1	
2/5/2019	0.0581 (J)	
2/26/2019	0.0816 (J)	
8/20/2019	<0.1	
4/13/2020	<0.1	
8/26/2020	<0.1	
3/17/2021	<0.1	
10/5/2021		<0.1

	GSD-AP-MW-7	GSD-AP-MW-7
12/7/2017	0.09 (J)	
2/8/2018	0.07 (J)	
4/25/2018	0.07 (J)	
6/26/2018	0.09 (J)	
8/8/2018	0.1	
10/23/2018	0.1	
12/4/2018	0.06 (J)	
2/6/2019	<0.1	
2/27/2019	0.0824 (J)	
8/21/2019	0.068 (J)	
4/15/2020	0.0775 (J)	
8/26/2020	<0.1	
3/23/2021	<0.1	
10/5/2021		0.0933 (J)

	GSD-AP-MW-8	GSD-AP-MW-8
12/7/2017	0.14	
2/8/2018	0.11	
4/25/2018	0.09 (J)	
6/26/2018	0.1	
8/8/2018	0.1	
10/23/2018	0.11	
12/4/2018	0.08 (J)	
2/6/2019	<0.1	
2/27/2019	0.108	
8/21/2019	0.0648 (J)	
4/14/2020	0.0845 (J)	
8/26/2020	0.0732 (J)	
3/23/2021	0.0802 (J)	
10/12/2021		0.123

	GSD-AP-MW-9	GSD-AP-MW-9
12/7/2017	0.12	
2/12/2018	0.11	
4/25/2018	0.12	
6/26/2018	0.13	
8/8/2018	0.12	
10/23/2018	0.13	
12/5/2018	0.04 (J)	
2/6/2019	<0.1	
2/27/2019	0.147	
8/21/2019	0.0984 (J)	
4/14/2020	0.133	
8/26/2020	0.13	
3/23/2021	0.132	
10/12/2021		0.147

	GSD-AP-PZ-1	GSD-AP-PZ-1
6/27/2018	0.13	
7/18/2018	0.11	
8/7/2018	0.11	
9/5/2018	0.13	
9/24/2018	0.13	
10/22/2018	0.13	
12/3/2018	0.08 (J)	
2/5/2019	0.0934 (J)	
2/25/2019	<0.1	
8/20/2019	0.0889 (J)	
4/13/2020	0.103	
8/24/2020	0.114	
3/24/2021	0.0725 (J)	
10/5/2021		<0.1

	GSD-AP-PZ-5	GSD-AP-PZ-5
6/27/2018	0.05 (J)	
7/18/2018	0.04 (J)	
8/8/2018	0.04 (J)	
9/5/2018	0.04 (J)	
9/24/2018	0.04 (J)	
10/23/2018	0.04 (J)	
12/3/2018	<0.1	
2/7/2019	<0.1	
2/25/2019	<0.1	
8/21/2019	<0.1	
4/15/2020	<0.1	
8/24/2020	<0.1	
3/16/2021	<0.1	
10/12/2021		<0.1

	GSD-AP-PZ-6	GSD-AP-PZ-6
6/27/2018	0.04 (J)	
7/18/2018	0.04 (J)	
8/8/2018	0.04 (J)	
9/5/2018	0.04 (J)	
9/24/2018	0.04 (J)	
10/23/2018	0.04 (J)	
12/3/2018	<0.1	
2/7/2019	<0.1	
2/25/2019	<0.1	
8/21/2019	<0.1	
4/15/2020	<0.1	
8/24/2020	<0.1	
3/16/2021	<0.1	
10/12/2021		<0.1

GSD-AP-MW-1	GSD-AP-MW-1
6.5	
6.48	
6.36	
6.32	
6.32	
6.2	
6.31	
6.1	
6.11	
6.01	
5.65	
6	
5.87	
	5.79
	6.5 6.48 6.36 6.32 6.32 6.32 6.31 6.1 6.11 6.01 5.65

	GSD-AP-MW-10	GSD-AP-MW-10
12/6/2017	6.83	
2/7/2018	6.82	
4/24/2018	6.74	
6/27/2018	6.67	
8/7/2018	6.72	
10/22/2018	6.73	
12/4/2018	6.77	
2/6/2019	6.67	
2/26/2019	6.77	
8/22/2019	6.37	
4/15/2020	6.85	
8/26/2020	6.73	
3/23/2021	6.87	
10/11/2021		6.72

	GSD-AP-MW-11	GSD-AP-MW-11
12/6/2017	6.81	
2/7/2018	6.74	
4/24/2018	6.62	
6/27/2018	6.69	
8/8/2018	6.67	
10/23/2018	6.73	
12/4/2018	6.67	
2/6/2019	6.58	
2/27/2019	6.56	
8/22/2019	6.26	
4/14/2020	6.63	
8/26/2020	6.38	
3/23/2021	6.58	
10/12/2021		6.66

	GSD-AP-MW-12	GSD-AP-MW-12
12/6/2017	5.6	
2/8/2018	5.44	
4/24/2018	5.41	
6/27/2018	5.45	
8/8/2018	5.46	
10/23/2018	5.47	
12/5/2018	5.45	
2/6/2019	5.31	
2/27/2019	5.4	
8/22/2019	5.35	
4/14/2020	5.39	
8/26/2020	5.63	
3/23/2021	5.5	
10/5/2021		5.19

	GSD-AP-MW-14	GSD-AP-MW-14
6/27/2018	3.95	
7/18/2018	4.02	
8/6/2018	4.07	
9/5/2018	4.07	
9/24/2018	4.07	
10/24/2018	4.1	
12/5/2018	4.1	
2/5/2019	4.02	
2/28/2019	3.94 (E)	
8/20/2019	4	
4/16/2020	3.93	
8/25/2020	4.03	
3/22/2021	3.25	
10/12/2021		4.04

	GSD-AP-MW-16	GSD-AP-MW-16
10/24/2018	5.27	
11/14/2018	4.99	
11/28/2018	4.74	
12/5/2018	4.76	
12/18/2018	4.57	
1/3/2019	4.56	
1/24/2019	4.45	
2/5/2019	4.3	
2/28/2019	4.35	
8/19/2019	4.57	
4/15/2020	4.49	
8/25/2020	4.2	
3/22/2021	3.45	
10/6/2021		4.16

	GSD-AP-MW-17	GSD-AP-MW-17
10/24/2018	7.92	
11/14/2018	8.23	
11/28/2018	8.95	
12/5/2018	8.77	
12/18/2018	8.99	
1/3/2019	9.35	
1/24/2019	9.42	
2/5/2019	9.23	
2/28/2019	9.48	
8/19/2019	7.93	
4/16/2020	8.1	
8/24/2020	8.17	
3/22/2021	7.85	
10/6/2021		7.92

	GSD-AP-MW-2	GSD-AP-MW-2
12/6/2017	6.61	
2/6/2018	6.66	
4/23/2018	6.54	
6/27/2018	6.63	
8/7/2018	6.57	
10/22/2018	6.55	
12/4/2018	6.52	
2/5/2019	6.47	
2/26/2019	6.54	
8/20/2019	6.3	
4/15/2020	6.45	
8/25/2020	6.65	
3/24/2021	6.49	
10/11/2021		6.59

	GSD-AP-MW-3	GSD-AP-MW-3
12/6/2017	6.54	
2/6/2018	6.39	
4/24/2018	6.02	
6/27/2018	6.07	
8/7/2018	6.28	
10/22/2018	6.3	
12/3/2018	6.38	
2/5/2019	5.83	
2/25/2019	5.93	
8/20/2019	5.73	
4/13/2020	5.83	
8/26/2020	5.87	
3/22/2021	5.51	
10/5/2021		5.76

	GSD-AP-MW-4	GSD-AP-MW-4
12/7/2017	6.73	
2/6/2018	6.76	
4/24/2018	6.66	
6/26/2018	6.61	
8/6/2018	6.68	
10/22/2018	6.63	
12/3/2018	6.67	
2/5/2019	6.63	
2/26/2019	6.64	
8/20/2019	6.33	
4/15/2020	6.77	
8/26/2020	6.68	
3/24/2021	6.86	
10/5/2021		6.58

	GSD-AP-MW-5	GSD-AP-MW-5
12/7/2017	6.32	
2/6/2018	6.27	
4/25/2018	6.14	
6/27/2018	6.15	
8/7/2018	6.18	
10/23/2018	6.15	
12/5/2018	6.15	
2/5/2019	6.08	
2/27/2019	6.11	
8/20/2019	6.11	
4/13/2020	6.18	
8/24/2020	6.11	
3/16/2021	6.22	
10/5/2021		6.24

	GSD-AP-MW-6	GSD-AP-MW-6
12/7/2017	6.38	
2/8/2018	6.29	
4/25/2018	6.15	
6/26/2018	6.09	
8/7/2018	6.16	
10/23/2018	6.1	
12/3/2018	6.09	
2/5/2019	6.04	
2/26/2019	6.17	
8/20/2019	5.4	
4/13/2020	5.82	
8/26/2020	5.96	
3/17/2021	5.92	
10/5/2021		5.74

	GSD-AP-MW-7	GSD-AP-MW-7
12/7/2017	6.62	
2/8/2018	6.39	
4/25/2018	6.17	
6/26/2018	6.38	
8/8/2018	6.56	
10/23/2018	6.54	
12/4/2018	6.33	
2/6/2019	6.13	
2/27/2019	6.12	
8/21/2019	5.97	
4/15/2020	6.16	
8/26/2020	6.11	
3/23/2021	6.04	
10/5/2021		6.06

	GSD-AP-MW-8	GSD-AP-MW-8
12/7/2017	6.81	
2/8/2018	6.73	
4/25/2018	6.61	
6/26/2018	6.59	
8/8/2018	6.6	
10/23/2018	6.64	
12/4/2018	6.68	
2/6/2019	6.62	
2/27/2019	6.56	
8/21/2019	6.16	
4/14/2020	6.49	
8/26/2020	6.29	
3/23/2021	6.47	
10/12/2021		6.61

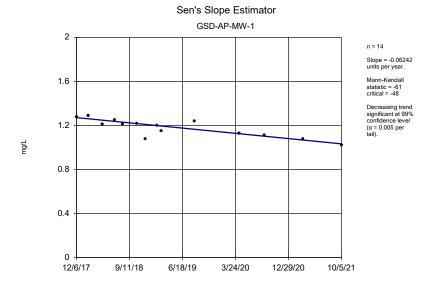
	GSD-AP-MW-9	GSD-AP-MW-9
12/7/2017	6.93	
2/8/2018	6.96	
2/12/2018	6.88	
4/25/2018	6.89	
6/26/2018	6.85	
8/8/2018	6.94	
10/23/2018	6.93	
12/5/2018	6.94	
2/6/2019	6.73	
2/27/2019	6.85	
8/21/2019	6.61	
4/14/2020	7.02	
8/26/2020	6.75	
3/23/2021	6.85	
10/12/2021		6.9

	GSD-AP-PZ-1	GSD-AP-PZ-1
6/27/2018	6.79	
7/18/2018	6.8	
8/7/2018	6.73	
9/5/2018	6.75	
9/24/2018	6.83	
10/22/2018	6.76	
12/3/2018	6.6	
2/5/2019	6.66	
2/25/2019	6.6	
8/20/2019	6.3	
4/13/2020	6.66	
8/24/2020	6.64	
3/24/2021	5.85	
10/5/2021		6.46

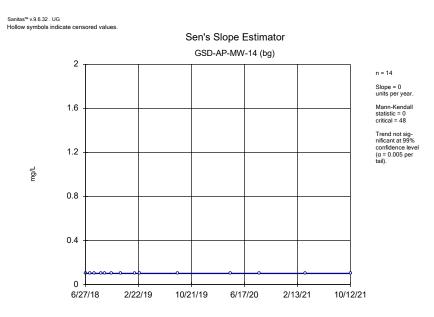
	GSD-AP-PZ-5	GSD-AP-PZ-5
6/27/2018	5.81	
7/18/2018	5.74	
8/8/2018	5.7	
9/5/2018	5.61	
9/24/2018	5.59	
10/23/2018	5.6	
12/3/2018	5.73	
2/7/2019	5.44	
2/25/2019	5.46	
8/21/2019	5.13	
4/15/2020	5.31	
8/24/2020	4.65	
3/16/2021	5.47	
10/12/2021		5.33

	GSD-AP-PZ-6	GSD-AP-PZ-6
6/27/2018	5.44	
7/18/2018	5.58	
8/8/2018	5.55	
9/5/2018	5.56	
9/24/2018	5.57	
10/23/2018	5.55	
12/3/2018	5.6	
2/7/2019	5.51	
2/25/2019	5.54	
8/21/2019	5.44	
4/15/2020	5.52	
8/24/2020	5.38	
3/16/2021	5.56	
10/12/2021		5.41

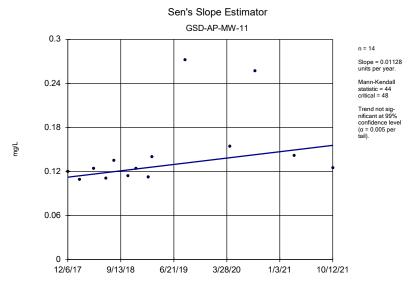
FIGURE G.

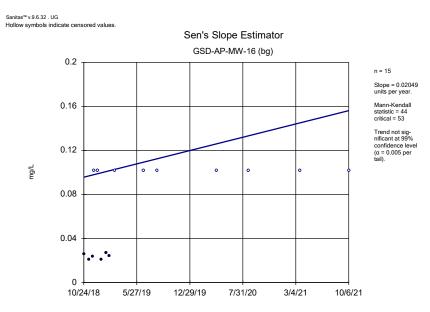

FIGURE H.

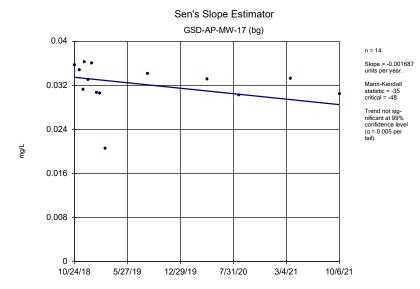
Appendix III - Prediction Limit Exceedances Trend Test - Significant Results


	Plant Gadsden	Client: Southern Company		Data: Plant Gadsden CCR		R Printed	Printed 1/13/2022, 3:06 PM				
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	Alpha	Method
Boron (mg/L)	GSD-AP-MW-1	-0.06242	-61	-48	Yes	14	0	n/a	n/a	0.01	NP
Boron (mg/L)	GSD-AP-MW-2	-0.08037	-64	-48	Yes	14	0	n/a	n/a	0.01	NP
Boron (mg/L)	GSD-AP-MW-3	0.05252	59	53	Yes	15	0	n/a	n/a	0.01	NP
Boron (mg/L)	GSD-AP-MW-4	-0.056	-68	-48	Yes	14	0	n/a	n/a	0.01	NP
Boron (mg/L)	GSD-AP-MW-5	-0.069	-67	-48	Yes	14	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GSD-AP-MW-1	-18.36	-55	-48	Yes	14	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GSD-AP-MW-11	4.022	52	48	Yes	14	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GSD-AP-MW-2	-14.19	-52	-48	Yes	14	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GSD-AP-MW-3	-11.11	-67	-53	Yes	15	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GSD-AP-MW-17 (bg)	-0.412	-67	-48	Yes	14	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GSD-AP-MW-3	-0.7197	-92	-53	Yes	15	0	n/a	n/a	0.01	NP
Fluoride (mg/L)	GSD-AP-MW-11	0.01846	57	48	Yes	14	21.43	n/a	n/a	0.01	NP
pH (pH)	GSD-AP-MW-16 (bg)	-0.5008	-70	-48	Yes	14	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	GSD-AP-MW-1	-81.47	-68	-48	Yes	14	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	GSD-AP-MW-11	22.44	49	48	Yes	14	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	GSD-AP-MW-2	-63.87	-63	-48	Yes	14	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	GSD-AP-MW-3	-43.33	-73	-53	Yes	15	0	n/a	n/a	0.01	NP

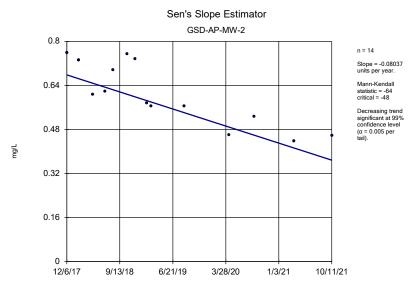
Appendix III - Prediction Limit Exceedances Trend Test - All Results Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR Printed 1/13/2022, 3:06 PM


	Plant Gadsden	Client: Southern Company		Data: Plant Gadsden CCR		R Printe	Printed 1/13/2022, 3:06				
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron (mg/L)	GSD-AP-MW-1	-0.06242	-61	-48	Yes	14	0	n/a	n/a	0.01	NP
Boron (mg/L)	GSD-AP-MW-11	0.01128	44	48	No	14	0	n/a	n/a	0.01	NP
Boron (mg/L)	GSD-AP-MW-14 (bg)	0	0	48	No	14	100	n/a	n/a	0.01	NP
Boron (mg/L)	GSD-AP-MW-16 (bg)	0.02049	44	53	No	15	60	n/a	n/a	0.01	NP
Boron (mg/L)	GSD-AP-MW-17 (bg)	-0.001687	-35	-48	No	14	0	n/a	n/a	0.01	NP
Boron (mg/L)	GSD-AP-MW-2	-0.08037	-64	-48	Yes	14	0	n/a	n/a	0.01	NP
Boron (mg/L)	GSD-AP-MW-3	0.05252	59	53	Yes	15	0	n/a	n/a	0.01	NP
Boron (mg/L)	GSD-AP-MW-4	-0.056	-68	-48	Yes	14	0	n/a	n/a	0.01	NP
Boron (mg/L)	GSD-AP-MW-5	-0.069	-67	-48	Yes	14	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GSD-AP-MW-1	-18.36	-55	-48	Yes	14	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GSD-AP-MW-10	0.3552	11	48	No	14	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GSD-AP-MW-11	4.022	52	48	Yes	14	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GSD-AP-MW-12	2.155	15	48	No	14	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GSD-AP-MW-14 (bg)	-1.044	-16	-48	No	14	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GSD-AP-MW-16 (bg)	-0.5887	-13	-53	No	15	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GSD-AP-MW-17 (bg)	1.622	25	48	No	14	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GSD-AP-MW-2	-14.19	-52	-48	Yes	14	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GSD-AP-MW-3	-11.11	-67	-53	Yes	15	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GSD-AP-MW-5	-2.198	-33	-48	No	14	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GSD-AP-MW-8	-0.8321	-11	-48	No	14	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GSD-AP-MW-9	0.7715	11	48	No	14	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GSD-AP-MW-1	-0.02609	-6	-48	No	14	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GSD-AP-MW-10	0.02804	3	48	No	14	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GSD-AP-MW-11	-0.05489	-6	-48	No	14	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GSD-AP-MW-12	0.06337	13	48	No	14	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GSD-AP-MW-14 (bg)	0.02255	13	48	No	14	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GSD-AP-MW-16 (bg)	-0.04562	-7	-53	No	15	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GSD-AP-MW-17 (bg)	-0.412	-67	-48	Yes	14	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GSD-AP-MW-3	-0.7197	-92	-53	Yes	15	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GSD-AP-MW-4	0.183	23	48	No	14	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GSD-AP-MW-5	-0.3869	-44	-48	No	14	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GSD-AP-MW-6	-0.2376	-40	-48	No	14	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GSD-AP-MW-7	-0.5316	-44	-48	No	14	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GSD-AP-MW-8	0.1905	26	48	No	14	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GSD-AP-MW-9	0.2026	27	48	No	14	0	n/a	n/a	0.01	NP
Fluoride (mg/L)	GSD-AP-MW-10	0.01072	41	48	No	14	0	n/a	n/a	0.01	NP
Fluoride (mg/L)	GSD-AP-MW-11	0.01846	57	48	Yes	14	21.43	n/a	n/a	0.01	NP
Fluoride (mg/L)	GSD-AP-MW-14 (bg)	-0.04431	-47	-48	No	14	50	n/a	n/a	0.01	NP
Fluoride (mg/L)	GSD-AP-MW-16 (bg)	0	-33	-53	No	15	53.33	n/a	n/a	0.01	NP
Fluoride (mg/L)	GSD-AP-MW-17 (bg)	-0.009217	-44	-48	No	14	0	n/a	n/a	0.01	NP
Fluoride (mg/L)	GSD-AP-MW-5	0.004584	33	48	No	14	0	n/a	n/a	0.01	NP
pH (pH)	GSD-AP-MW-12	-0.04154	-18	-48	No	14	0	n/a	n/a	0.01	NP
pH (pH)	GSD-AP-MW-14 (bg)	-0.01834	-18	-48	No	14	0	n/a	n/a	0.01	NP
pH (pH)	GSD-AP-MW-16 (bg)	-0.5008	-70	-48	Yes	14	0	n/a	n/a	0.01	NP
pH (pH)	GSD-AP-MW-17 (bg)	-0.09143	-10	-48	No	14	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GSD-AP-MW-1	-1.272	-2	-48	No	14	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GSD-AP-MW-14 (bg)	-4.795 20.67	-10	-48	No No	14	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GSD-AP-MW-16 (bg)	29.67	42	53	No No	15	0	n/a	n/a	0.01	NP ND
Sulfate (mg/L)	GSD-AP-MW-17 (bg)	-1.162	-42 4	-48 53	No No	14	0	n/a	n/a	0.01	NP ND
Sulfate (mg/L)	GSD-AP-MW-3	0.8391	4 60	53	No Voc	15 14	0	n/a	n/a	0.01	NP ND
Total Dissolved Solids (mg/L) Total Dissolved Solids (mg/L)	GSD-AP-MW-11	-81.47 22.44	-68 49	-48 48	Yes	14	0	n/a n/a	n/a n/a	0.01	NP ND
Total Dissolved Solids (mg/L) Total Dissolved Solids (mg/L)	GSD-AP-MW-11 GSD-AP-MW-12	22.44 0	49 0	48 48	Yes No	14 14	0	n/a n/a	n/a n/a	0.01 0.01	NP NP
Total Dissolved Solids (mg/L) Total Dissolved Solids (mg/L)	GSD-AP-MW-12 GSD-AP-MW-14 (bg)	-10.61	-11	-48	No	14	0	n/a n/a	n/a n/a	0.01	NP NP
Total Dissolved Solids (mg/L) Total Dissolved Solids (mg/L)	GSD-AP-MW-16 (bg)	26.27	37	53	No	15	0	n/a n/a	n/a n/a	0.01	NP
Total Dissolved Solids (mg/L) Total Dissolved Solids (mg/L)	GSD-AP-MW-17 (bg)	-3.097	-18	-48	No	14	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L) Total Dissolved Solids (mg/L)	GSD-AP-MW-2	-63.87	-63	-48	Yes	14	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	GSD-AP-MW-3	-43.33	-73	-53	Yes	15	0	n/a	n/a	0.01	NP
······································			. •				-				

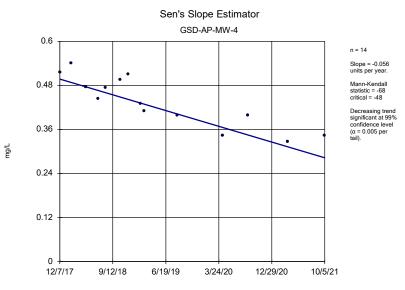

Constituent: Boron Analysis Run 1/13/2022 2:46 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Constituent: Boron Analysis Run 1/13/2022 2:46 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

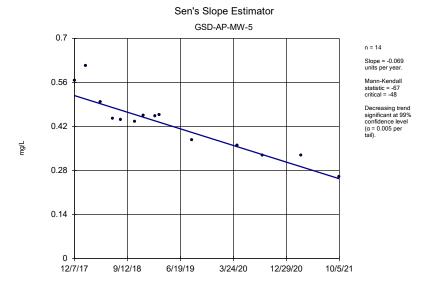
Constituent: Boron Analysis Run 1/13/2022 2:46 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Constituent: Boron Analysis Run 1/13/2022 2:46 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

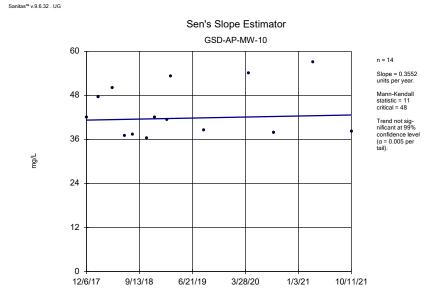
Constituent: Boron Analysis Run 1/13/2022 2:46 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

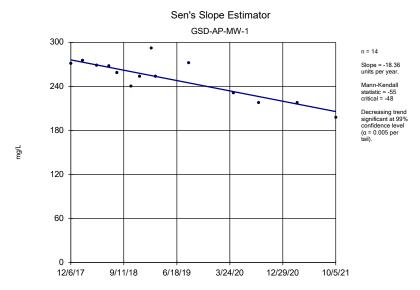

Sen's Slope Estimator GSD-AP-MW-3 2 Slope = 0.05252 units per year. Mann-Kendall 1.6 statistic = 59 critical = 53 Increasing trend significant at 99% confidence level 1.2 (α = 0.005 per tail). 0.8 0.4 12/6/17 9/11/18 6/18/19 3/24/20 12/29/20 10/5/21

Constituent: Boron Analysis Run 1/13/2022 2:46 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

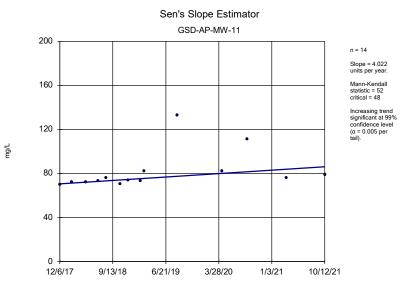


Constituent: Boron Analysis Run 1/13/2022 2:46 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

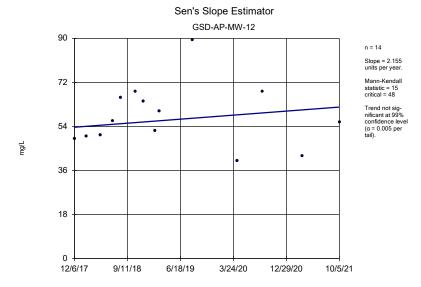



Constituent: Boron Analysis Run 1/13/2022 2:46 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

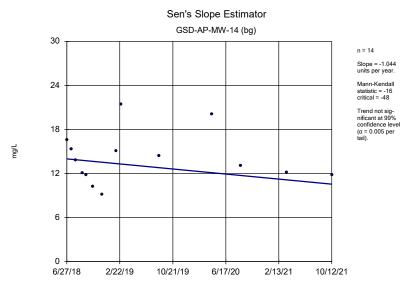
Constituent: Boron Analysis Run 1/13/2022 2:46 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR



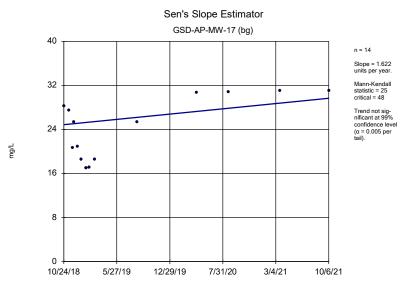
Constituent: Calcium Analysis Run 1/13/2022 2:46 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR



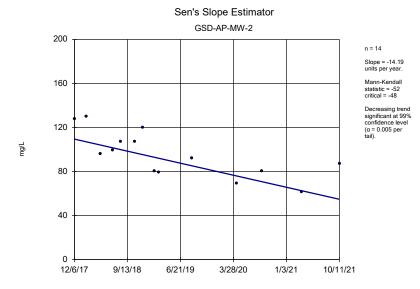
Constituent: Calcium Analysis Run 1/13/2022 2:46 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Constituent: Calcium Analysis Run 1/13/2022 2:46 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

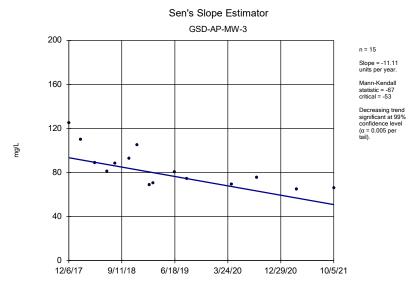
Constituent: Calcium Analysis Run 1/13/2022 2:46 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Sen's Slope Estimator GSD-AP-MW-16 (bg) 30 Slope = -0.5887 units per year. 24 Mann-Kendall critical = -53 Trend not sig-nificant at 99% confidence level (α = 0.005 per tail). 12 6 10/24/18 5/27/19 12/29/19 7/31/20 3/4/21 10/6/21

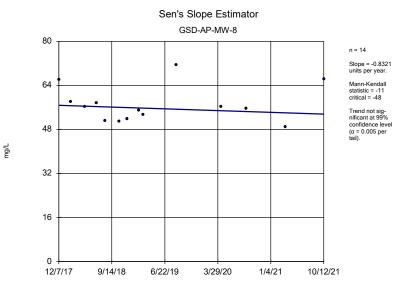
Constituent: Calcium Analysis Run 1/13/2022 2:46 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR



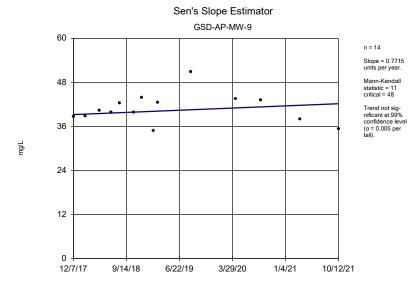
Constituent: Calcium Analysis Run 1/13/2022 2:46 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Constituent: Calcium Analysis Run 1/13/2022 2:46 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

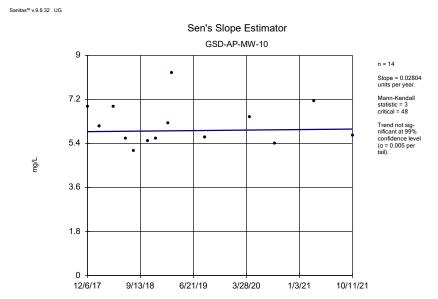
Constituent: Calcium Analysis Run 1/13/2022 2:46 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

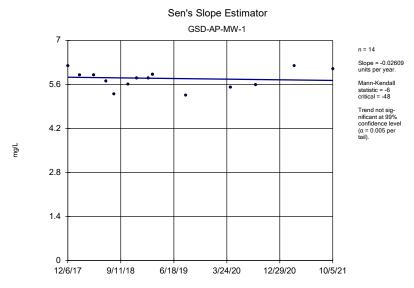

Sen's Slope Estimator GSD-AP-MW-5 50 n = 14 Slope = -2.198 units per year. Mann-Kendall 40 critical = -48 Trend not sig-nificant at 99% confidence level 30 (α = 0.005 per tail). 20 10 12/7/17 9/12/18 6/19/19 3/24/20 12/29/20 10/5/21

Constituent: Calcium Analysis Run 1/13/2022 2:46 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

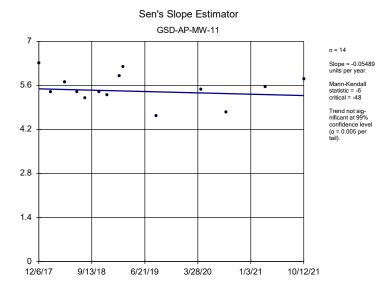


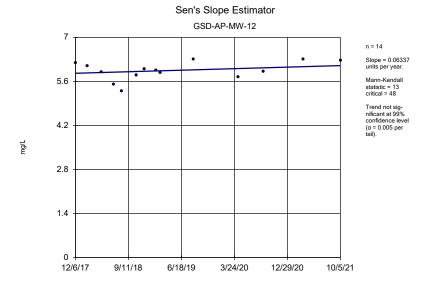
Constituent: Calcium Analysis Run 1/13/2022 2:46 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR



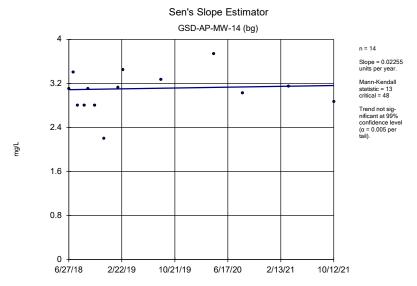

Constituent: Calcium Analysis Run 1/13/2022 2:46 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Constituent: Calcium Analysis Run 1/13/2022 2:46 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

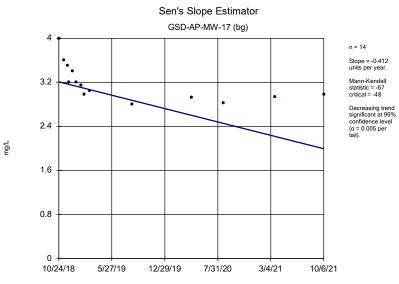

Constituent: Chloride Analysis Run 1/13/2022 2:46 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Constituent: Chloride Analysis Run 1/13/2022 2:46 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

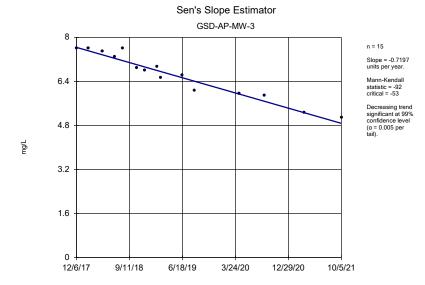
mg/L


Constituent: Chloride Analysis Run 1/13/2022 2:46 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

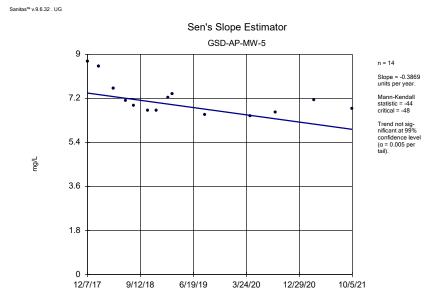
Constituent: Chloride Analysis Run 1/13/2022 2:46 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

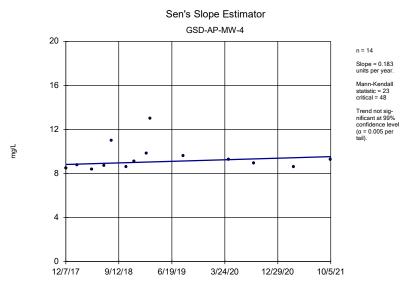

Sen's Slope Estimator GSD-AP-MW-16 (bg) Slope = -0.04562 units per year. Mann-Kendall statistic = -7 critical = -53 Trend not sig-nificant at 99% confidence level (α = 0.005 per tail). 2 10/24/18 5/27/19 12/29/19 7/31/20 3/4/21 10/6/21

Constituent: Chloride Analysis Run 1/13/2022 2:46 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

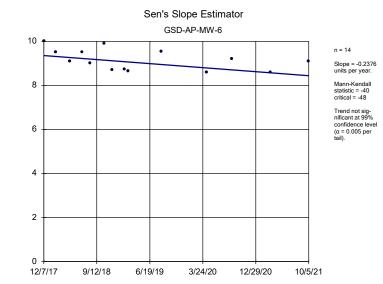


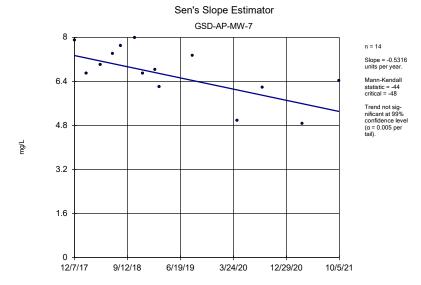
Constituent: Chloride Analysis Run 1/13/2022 2:46 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

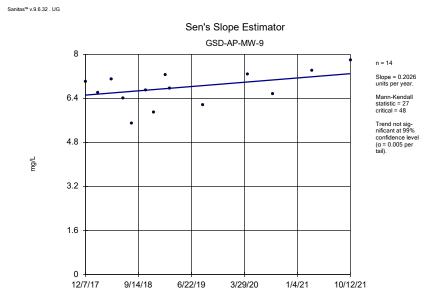


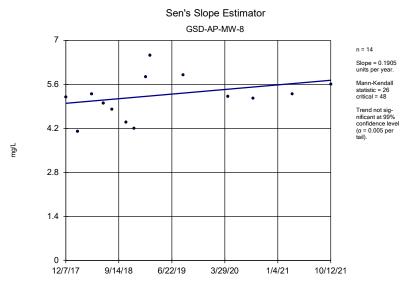

Constituent: Chloride Analysis Run 1/13/2022 2:46 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Constituent: Chloride Analysis Run 1/13/2022 2:46 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

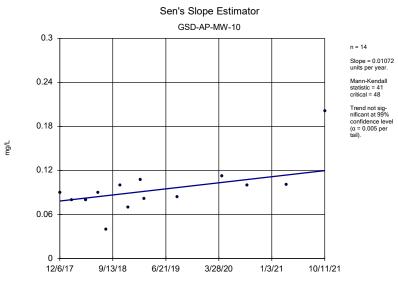

Constituent: Chloride Analysis Run 1/13/2022 2:46 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Constituent: Chloride Analysis Run 1/13/2022 2:46 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

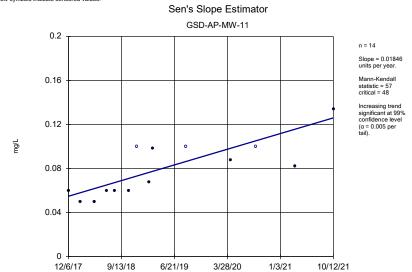

mg/L

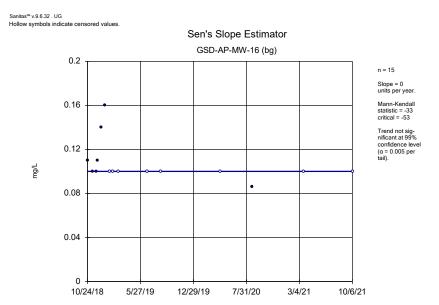

Constituent: Chloride Analysis Run 1/13/2022 2:46 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Constituent: Chloride Analysis Run 1/13/2022 2:46 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR



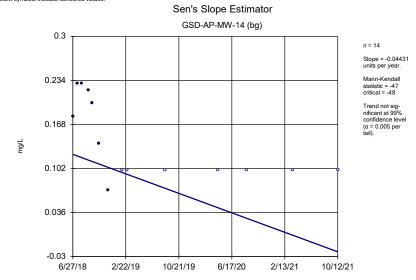
Constituent: Chloride Analysis Run 1/13/2022 2:46 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Constituent: Chloride Analysis Run 1/13/2022 2:46 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

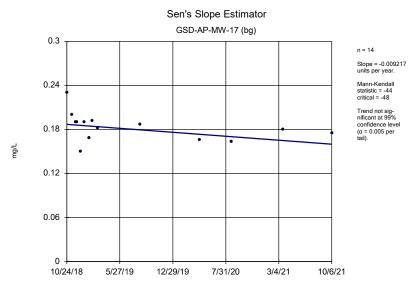


Constituent: Fluoride Analysis Run 1/13/2022 2:46 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.32 . UG Hollow symbols indicate censored values

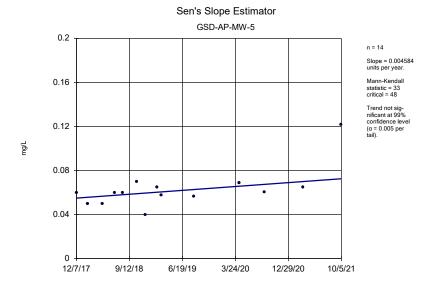


Constituent: Fluoride Analysis Run 1/13/2022 2:46 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR



Constituent: Fluoride Analysis Run 1/13/2022 2:46 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.32 . UG Hollow symbols indicate censored values.


Constituent: Fluoride Analysis Run 1/13/2022 2:46 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Constituent: Fluoride Analysis Run 1/13/2022 2:46 PM View: Appendix III - Trend Tests

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.32 . UG Sanitas™ v.9.6.32 . UG

Constituent: Fluoride Analysis Run 1/13/2022 2:46 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

n = 14 Slope = -0.04154 units per year. Mann-Kendall 4.8 statistic = -18 critical = -48 Trend not sig-nificant at 99% confidence level 3.6 (α = 0.005 per tail). 표 2.4 1.2 12/6/17 9/11/18 6/18/19 3/24/20 12/29/20 10/5/21

Sen's Slope Estimator

GSD-AP-MW-12

Constituent: pH Analysis Run 1/13/2022 2:46 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sen's Slope Estimator

GSD-AP-MW-16 (bg)

n = 14

Slope = -0.5008

units per year.

Mann-Kendall

Decreasing trend significant at 99% confidence level

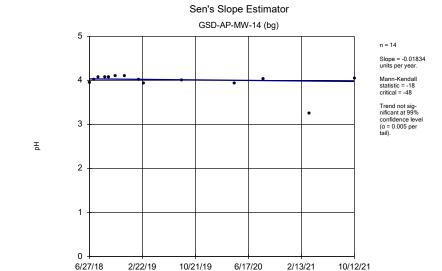
 $(\alpha = 0.005 per$

statistic = -70 critical = -48

Sanitas™ v.9.6.32 . UG

Ħ

4.8


3.6

2.4

1.2

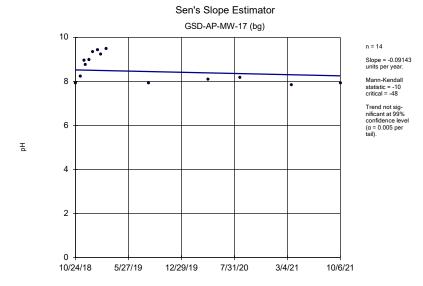
10/24/18

5/27/19

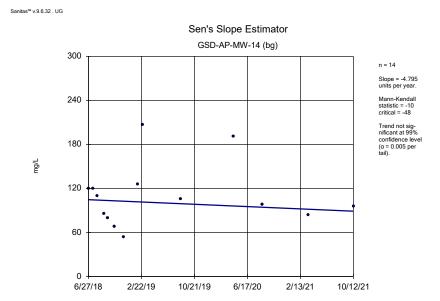
Constituent: pH Analysis Run 1/13/2022 2:46 PM View: Appendix III - Trend Tests

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

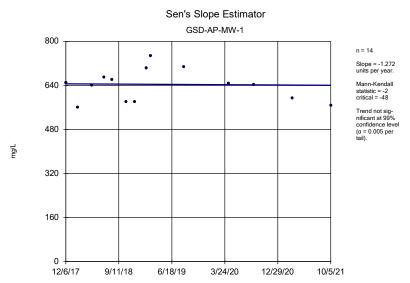
Sanitas™ v.9.6.32 . UG


Constituent: pH Analysis Run 1/13/2022 2:46 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

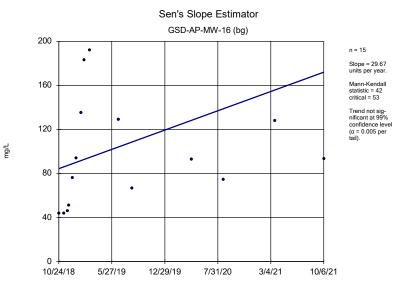
7/31/20


3/4/21

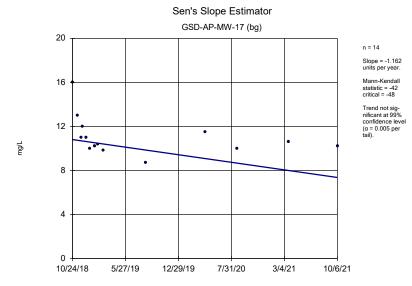
10/6/21


12/29/19

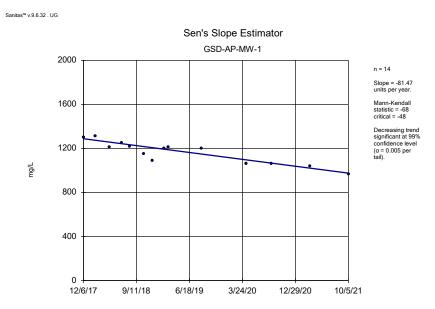
Constituent: pH Analysis Run 1/13/2022 2:46 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

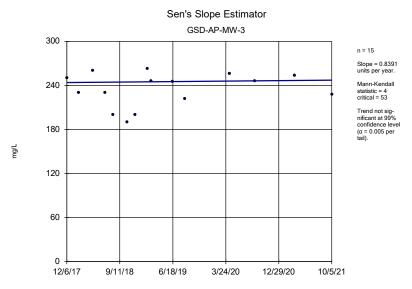


Constituent: Sulfate Analysis Run 1/13/2022 2:47 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

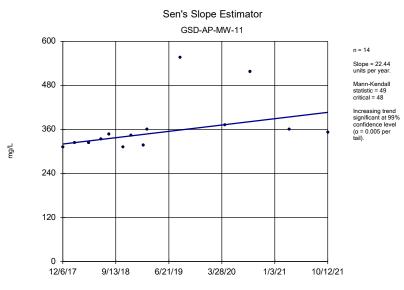


Constituent: Sulfate Analysis Run 1/13/2022 2:46 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

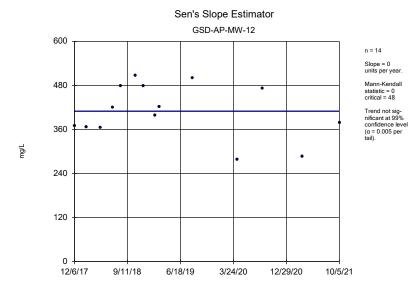



Constituent: Sulfate Analysis Run 1/13/2022 2:47 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

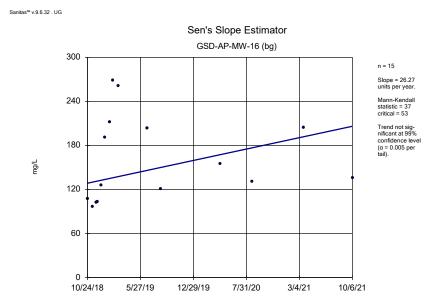
Constituent: Sulfate Analysis Run 1/13/2022 2:47 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

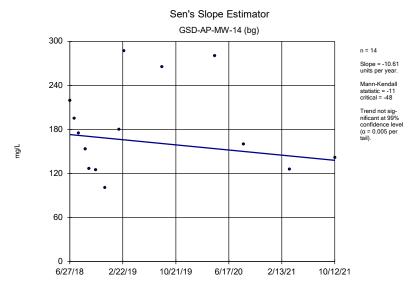


Constituent: Total Dissolved Solids Analysis Run 1/13/2022 2:47 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

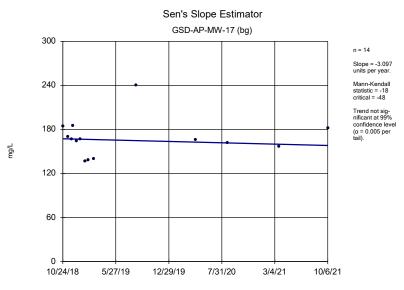


Constituent: Sulfate Analysis Run 1/13/2022 2:47 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

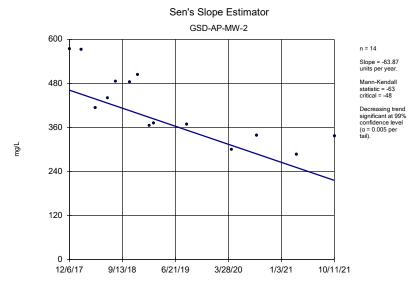



Constituent: Total Dissolved Solids Analysis Run 1/13/2022 2:47 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

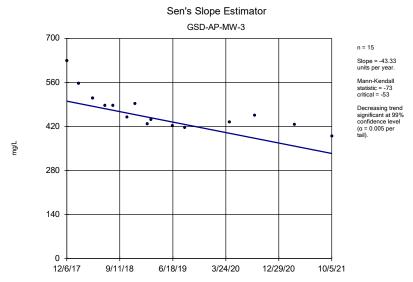
Constituent: Total Dissolved Solids Analysis Run 1/13/2022 2:47 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR



Constituent: Total Dissolved Solids Analysis Run 1/13/2022 2:47 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR



Constituent: Total Dissolved Solids Analysis Run 1/13/2022 2:47 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR



Constituent: Total Dissolved Solids Analysis Run 1/13/2022 2:47 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Constituent: Total Dissolved Solids Analysis Run 1/13/2022 2:47 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Constituent: Total Dissolved Solids Analysis Run 1/13/2022 2:47 PM View: Appendix III - Trend Tests
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

FIGURE I.

Upper Tolerance Limits - Appendix IV

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR Printed 1/13/2022, 3:11 PM

Constituent	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	<u>Bg N</u>	%NDs	Transform	<u>Alpha</u>	Method
Antimony (mg/L)	0.00102	n/a	n/a	n/a	n/a	40	97.5	n/a	0.1285	NP Inter
Arsenic (mg/L)	0.00614	n/a	n/a	n/a	n/a	40	42.5	n/a	0.1285	NP Inter
Barium (mg/L)	0.312	n/a	n/a	n/a	n/a	40	0	n/a	0.1285	NP Inter
Beryllium (mg/L)	0.00157	n/a	n/a	n/a	n/a	40	47.5	n/a	0.1285	NP Inter
Cadmium (mg/L)	0.00101	n/a	n/a	n/a	n/a	40	32.5	n/a	0.1285	NP Inter
Chromium (mg/L)	0.01	n/a	n/a	n/a	n/a	40	80	n/a	0.1285	NP Inter
Cobalt (mg/L)	0.056	n/a	n/a	n/a	n/a	40	27.5	n/a	0.1285	NP Inter
Combined Radium 226 + 228 (pCi/L)	2.01	n/a	n/a	n/a	n/a	33	0	n/a	0.184	NP Inter
Fluoride (mg/L)	0.23	n/a	n/a	n/a	n/a	43	34.88	n/a	0.1102	NP Inter
Lead (mg/L)	0.00258	n/a	n/a	n/a	n/a	40	50	n/a	0.1285	NP Inter
Lithium (mg/L)	0.02	n/a	n/a	n/a	n/a	40	77.5	n/a	0.1285	NP Inter
Mercury (mg/L)	0.000775	n/a	n/a	n/a	n/a	39	66.67	n/a	0.1353	NP Inter
Molybdenum (mg/L)	0.00507	n/a	n/a	n/a	n/a	40	75	n/a	0.1285	NP Inter
Selenium (mg/L)	0.0134	n/a	n/a	n/a	n/a	40	55	n/a	0.1285	NP Inter
Thallium (mg/L)	0.0002	n/a	n/a	n/a	n/a	40	100	n/a	0.1285	NP Inter

FIGURE J.

GADSDEN ASH POND GWPS									
Analyte	Units	Background	GWPS						
Antimony	mg/L	0.00102	0.006						
Arsenic	mg/L	0.00614	0.01						
Barium	mg/L	0.312	2						
Beryllium	mg/L	0.00157	0.004						
Cadmium	mg/L	0.00101	0.005						
Chromium	mg/L	0.01	0.1						
Cobalt	mg/L	0.056	0.056						
Combined Radium-226/228	pCi/L	2.01	5						
Fluoride	mg/L	0.23	4						
Lead	mg/L	0.00258	0.015						
Lithium	mg/L	0.02	0.04						
Mercury	mg/L	0.000775	0.002						
Molybdenum	mg/L	0.00507	0.1						
Selenium	mg/L	0.0134	0.05						
Thallium	mg/L	0.0002	0.002						

Notes:

- 1. mg/L Milligrams per liter
- 2. pCi/L Picocuries per liter
- 3. The background limits were used as the groundwater protection standard (GWPS) when appropriate under 40 CFR §257.95(h), ADEM Rule 335-13-15-.06(h), and the ADEM Variance.
- 4. GWPS established during first semi-annual sampling event in 2021.

FIGURE K.

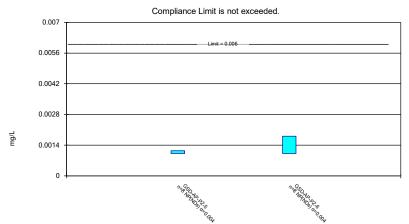
Appendix IV - Confidence Intervals - Significant Results

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR Printed 1/11/2022, 3:53 PM

Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig. N	Std. Dev.	%NDs	Transform	<u>Alpha</u>	Method
Arsenic (mg/L)	GSD-AP-MW-2	0.8867	0.4825	0.01	Yes 8	0.1907	0	No	0.01	Param.
Arsenic (mg/L)	GSD-AP-MW-4	0.01443	0.01112	0.01	Yes 8	0.001561	0	No	0.01	Param.

Appendix IV - Confidence Intervals - All Results

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR Printed 1/11/2022, 3:53 PM

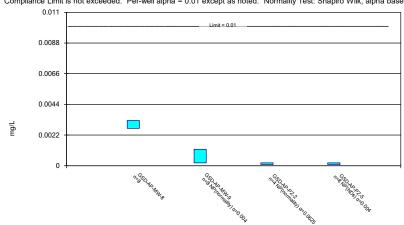

0 (1)					۰		011.0	0/10	, · · · ·		
Constituent Antimony (mg/l.)	Well GSD-AP-PZ-5	Upper Lim.	Lower Lim. 0.00102	Compliance 0.006	Sig.		Std. Dev. 0.00004243	<u>%NDs</u>	<u>Transform</u> No	<u>Alpha</u> 0.004	Method
Antimony (mg/L) Antimony (mg/L)	GSD-AP-PZ-5 GSD-AP-PZ-6	0.00114 0.00181	0.00102	0.006	No No	8	0.00004243	87.5 87.5	No	0.004	NP (NDs) NP (NDs)
Arsenic (mg/L)	GSD-AP-MW-1	0.004635	0.00102	0.000	No	8	0.0002793	0	No	0.004	Param.
Arsenic (mg/L)	GSD-AP-MW-10	0.004055	0.003167	0.01	No	8	0.0000923	0	No	0.01	Param.
Arsenic (mg/L)	GSD-AP-MW-11	0.002875	0.002467	0.01	No	8	0.0001991	0	x^2	0.01	Param.
Arsenic (mg/L)	GSD-AP-MW-2	0.8867	0.4825	0.01	Yes		0.1907	0	No	0.01	Param.
Arsenic (mg/L)	GSD-AP-MW-3	0.00021	0.0002	0.01	No	8	0.000003536	75	No	0.004	NP (NDs)
Arsenic (mg/L)	GSD-AP-MW-4	0.01443	0.01112	0.01	Yes	8	0.001561	0	No	0.01	Param.
Arsenic (mg/L)	GSD-AP-MW-5	0.0002	0.0000817	0.01	No	8	0.00004545	75	No	0.004	NP (NDs)
Arsenic (mg/L)	GSD-AP-MW-7	0.0002	0.00007	0.01	No	8	0.00004596	87.5	No	0.004	NP (NDs)
Arsenic (mg/L)	GSD-AP-MW-8	0.003237	0.002685	0.01	No	8	0.0002603	0	No	0.01	Param.
Arsenic (mg/L)	GSD-AP-MW-9	0.00118	0.0002	0.01	No	8	0.0004166	50	No	0.004	NP (normality)
Arsenic (mg/L)	GSD-AP-PZ-2	0.0002	0.0000826	0.01	No	4	0.00006571	50	No	0.0625	NP (normality)
Arsenic (mg/L)	GSD-AP-PZ-5	0.0002	0.0000808	0.01	No	8	0.00004214	87.5	No	0.004	NP (NDs)
Barium (mg/L)	GSD-AP-MW-1	0.04302	0.03178	2	No	8	0.005302	0	No	0.01	Param.
Barium (mg/L)	GSD-AP-MW-10	0.3583	0.272	2	No	8	0.0407	0	No	0.01	Param.
Barium (mg/L)	GSD-AP-MW-11	0.331	0.165	2	No	8	0.07117	0	No	0.004	NP (normality)
Barium (mg/L)	GSD-AP-MW-12	0.05203	0.03202	2	No	8	0.009438	0	No	0.01	Param.
Barium (mg/L)	GSD-AP-MW-2	0.07826	0.04999	2	No	8	0.01334	0	No	0.01	Param.
Barium (mg/L)	GSD-AP-MW-3	0.0545	0.0344	2	No	8	0.00667	0	No	0.004	NP (normality)
Barium (mg/L)	GSD-AP-MW-4	0.208	0.1663	2	No	8	0.01968	0	No No	0.01	Param.
Barium (mg/L)	GSD-AP-MW-5 GSD-AP-MW-6	0.2509	0.2179	2	No	8	0.01556	0	No No	0.01	Param.
Barium (mg/L) Barium (mg/L)	GSD-AP-MW-7	0.07455 0.08968	0.0586	2	No No	8	0.007523	0	No No	0.01 0.01	Param.
Barium (mg/L)	GSD-AP-MW-8	0.06966	0.06367 0.1821	2	No	8	0.01227 0.03199	0	No	0.01	Param. Param.
Barium (mg/L)	GSD-AP-MW-9	0.1978	0.1021	2	No	8	0.02484	0	No	0.01	Param.
Barium (mg/L)	GSD-AP-PZ-1	0.09461	0.05414	2	No	8	0.01909	0	No	0.01	Param.
Barium (mg/L)	GSD-AP-PZ-2	0.1828	0.006264	2	No	4	0.03889	0	No	0.01	Param.
Barium (mg/L)	GSD-AP-PZ-5	0.126	0.0494	2	No	8	0.03219	0	No	0.004	NP (normality)
Barium (mg/L)	GSD-AP-PZ-6	0.0311	0.02888	2	No	8	0.001049	0	No	0.01	Param.
Cadmium (mg/L)	GSD-AP-MW-1	0.0002	0.0001	0.005	No	8	0.00004583	75	No	0.004	NP (NDs)
Cadmium (mg/L)	GSD-AP-MW-12	0.00069	0.0004022	0.005	No	8	0.0001357	0	No	0.01	Param.
Cadmium (mg/L)	GSD-AP-MW-2	0.0002	0.0000688	0.005	No	8	0.00004639	87.5	No	0.004	NP (NDs)
Cadmium (mg/L)	GSD-AP-MW-3	0.000438	0.0002	0.005	No	8	0.00009918	62.5	No	0.004	NP (NDs)
Cadmium (mg/L)	GSD-AP-MW-7	0.0002	0.000097	0.005	No	8	0.00003642	87.5	No	0.004	NP (NDs)
Cadmium (mg/L)	GSD-AP-MW-8	0.0002	0.0000832	0.005	No	8	0.0000413	87.5	No	0.004	NP (NDs)
Cadmium (mg/L)	GSD-AP-PZ-5	0.0002	0.00008	0.005	No	8	0.00004243	87.5	No	0.004	NP (NDs)
Chromium (mg/L)	GSD-AP-MW-1	0.00102	0.00023	0.1	No	8	0.0003342	75	No	0.004	NP (NDs)
Chromium (mg/L)	GSD-AP-MW-10	0.00102	0.00028	0.1	No	8	0.0003269	75	No	0.004	NP (NDs)
Chromium (mg/L)	GSD-AP-MW-11	0.00102	0.00027	0.1	No	8	0.0002981	75	No	0.004	NP (NDs)
Chromium (mg/L)	GSD-AP-MW-12	0.00102	0.00034	0.1	No	8	0.0002947	75	No	0.004	NP (NDs)
Chromium (mg/L)	GSD-AP-MW-2	0.00102	0.00047	0.1	No	8	0.0002523	75	No	0.004	NP (NDs)
Chromium (mg/L)	GSD-AP-MW-3	0.00285	0.00023	0.1	No	8	0.0008008	62.5	No	0.004	NP (NDs)
Chromium (mg/L)	GSD-AP-MW-4	0.00102	0.000323	0.1	No	8	0.0002464	87.5	No	0.004	NP (NDs)
Chromium (mg/L)	GSD-AP-MW-5	0.00102	0.00028	0.1	No	8	0.000317	75 75	No	0.004	NP (NDs)
Chromium (mg/L) Chromium (mg/L)	GSD-AP-MW-6 GSD-AP-MW-7	0.00102 0.00102	0.00025 0.00025	0.1 0.1	No No	8	0.0003369 0.000323	75 75	No No	0.004 0.004	NP (NDs) NP (NDs)
Chromium (mg/L)	GSD-AP-MW-8	0.00102	0.00023	0.1	No	8	0.000323	87.5	No	0.004	NP (NDs)
Chromium (mg/L)	GSD-AP-MW-9	0.00102	0.00031	0.1	No	8	0.0003042	75	No	0.004	NP (NDs)
Chromium (mg/L)	GSD-AP-PZ-1	0.00102	0.00035	0.1	No	8	0.0002899	75	No	0.004	NP (NDs)
Chromium (mg/L)	GSD-AP-PZ-2	0.001027	0.00008704	0.1	No	4	0.0003163	50	No	0.01	Param.
Chromium (mg/L)	GSD-AP-PZ-5	0.00102	0.00034	0.1	No	8	0.0002748	75	No	0.004	NP (NDs)
Chromium (mg/L)	GSD-AP-PZ-6	0.00102	0.00031	0.1	No	8	0.0002832	75	No	0.004	NP (NDs)
Cobalt (mg/L)	GSD-AP-MW-1	0.02458	0.0164	0.056	No	8	0.003859	0	No	0.01	Param.
Cobalt (mg/L)	GSD-AP-MW-10	0.00089	0.000203	0.056	No	8	0.0002416	75	No	0.004	NP (NDs)
Cobalt (mg/L)	GSD-AP-MW-11	0.00756	0.000203	0.056	No	8	0.003052	50	No	0.004	NP (normality)
Cobalt (mg/L)	GSD-AP-MW-12	0.005722	0.003605	0.056	No	8	0.0009986	0	No	0.01	Param.
Cobalt (mg/L)	GSD-AP-MW-2	0.04018	0.02285	0.056	No	8	0.008175	0	No	0.01	Param.
Cobalt (mg/L)	GSD-AP-MW-3	0.02557	0.01775	0.056	No	8	0.003689	0	No	0.01	Param.
Cobalt (mg/L)	GSD-AP-MW-4	0.0277	0.0231	0.056	No	8	0.002167	0	No	0.01	Param.
Cobalt (mg/L)	GSD-AP-MW-5	0.00233	0.000203	0.056	No	8	0.0007658	12.5	No	0.004	NP (normality)
Cobalt (mg/L)	GSD-AP-MW-6	0.00104	0.000203	0.056	No	8	0.0003829	75	No	0.004	NP (NDs)
Cobalt (mg/L)	GSD-AP-MW-7	0.00102	0.00018	0.056	No	8	0.0002901	75	No	0.004	NP (NDs)
Cobalt (mg/L)	GSD-AP-MW-8	0.003677	0.001444	0.056	No	8	0.001466	25	x^2	0.01	Param.
Cobalt (mg/L)	GSD-AP-MW-9	0.00113	0.000203	0.056	No	8	0.0004069	75 97 5	No No	0.004	NP (NDs)
Cobalt (mg/L)	GSD-AP-PZ-1	0.00044	0.000203 0.00006002	0.056	No	8	0.00008379	87.5	No No	0.004	NP (NDs)
Cobalt (mg/L) Cobalt (mg/L)	GSD-AP-PZ-2 GSD-AP-PZ-5	0.008085 0.00227	0.00008	0.056 0.056	No No	4 8	0.001767 0.0009513	0 50	No No	0.01 0.004	Param. NP (normality)
(····g· =)	2027 120	0.00221	5.55500	3.000	. •0	-	3.0000010			3.504	(normality)

Appendix IV - Confidence Intervals - All Results

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR Printed 1/11/2022, 3:53 PM

Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig.		Std. Dev.	%NDs	Transform	<u>Alpha</u>	Method
Cobalt (mg/L)	GSD-AP-PZ-6	0.000203	0.000108	0.056	No	8	0.00003756	75	No	0.004	NP (NDs)
Combined Radium 226 + 228 (pCi/L)	GSD-AP-MW-1	0.9405	0.3485	5	No	8	0.2792	0	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GSD-AP-MW-10	2.742	0.0046	5	No	8	2.17	0	x^(1/3)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GSD-AP-MW-11	1.318	0.7526	5	No	8	0.2668	0	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GSD-AP-MW-12	1.226	0.1273	5	No	8	0.5182	0	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GSD-AP-MW-2	1.54	0.2978	5	No	8	0.6692	0	sqrt(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GSD-AP-MW-3	1.65	0.1921	5	No	8	0.9789	0	x^(1/3)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GSD-AP-MW-4	1.285	0.1217	5	No	8	0.5489	0	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GSD-AP-MW-5	1.235	0.3811	5	No	8	0.4027	0	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GSD-AP-MW-6	1.36	-0.086	5	No	8	0.4386	0	No	0.004	NP (normality)
Combined Radium 226 + 228 (pCi/L)	GSD-AP-MW-7	0.9326	0.07467	5	No	8	0.4047	0	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GSD-AP-MW-8	0.7288	0.2854	5	No	8	0.2092	0	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GSD-AP-MW-9	1.146	0.1025	5	No	8	0.4922	0	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GSD-AP-PZ-1	2.07	-0.129	5	No	8	0.678	0	No	0.004	NP (normality)
Combined Radium 226 + 228 (pCi/L)	GSD-AP-PZ-2	1.673	-0.496	5	No	4	0.4778	0	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GSD-AP-PZ-5	0.7655	0.172	5	No	8	0.28	0	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GSD-AP-PZ-6	1.116	0.003433	5	No	8	0.4985	0	x^(1/3)	0.01	Param.
Fluoride (mg/L)	GSD-AP-MW-1	0.1	0.04	4	No	8	0.026	62.5	No	0.004	NP (NDs)
Fluoride (mg/L)	GSD-AP-MW-10	0.1425	0.07281	4	No	8	0.04055	0	ln(x)	0.01	Param.
Fluoride (mg/L)	GSD-AP-MW-11	0.1109	0.06956	4	No	8	0.01912	37.5	No	0.01	Param.
Fluoride (mg/L)	GSD-AP-MW-12	0.1	0.1	4	No	8	0	100	No	0.004	NP (NDs)
Fluoride (mg/L)	GSD-AP-MW-2	0.2781	0.1802	4	No	8	0.04616	0	No	0.01	Param.
Fluoride (mg/L)	GSD-AP-MW-3	0.1	0.0592	4	No	8	0.01915	62.5	No	0.004	NP (NDs)
Fluoride (mg/L)	GSD-AP-MW-4	0.2536	0.2094	4	No	8	0.02083	0	No	0.01	Param.
Fluoride (mg/L)	GSD-AP-MW-5	0.0889	0.04612	4	No	8	0.02389	0	ln(x)	0.01	Param.
Fluoride (mg/L)	GSD-AP-MW-6	0.1	0.0581	4	No	8	0.0153	75	No	0.004	NP (NDs)
Fluoride (mg/L)	GSD-AP-MW-7	0.08844	0.06404	4	No	8	0.01568	37.5	No	0.01	Param.
Fluoride (mg/L)	GSD-AP-MW-8	0.1098	0.06858	4	No	8	0.01946	12.5	No	0.01	Param.
Fluoride (mg/L)	GSD-AP-MW-9	0.148	0.08501	4	No	8	0.03587	12.5	x^2	0.01	Param.
Fluoride (mg/L)	GSD-AP-PZ-1	0.1038	0.07601	4	No	8	0.0133	25	No	0.01	Param.
Fluoride (mg/L)	GSD-AP-PZ-5	0.1	0.1	4	No	8	0	100	No	0.004	NP (NDs)
Fluoride (mg/L)	GSD-AP-PZ-6	0.1	0.1	4	No	8	0	100	No	0.004	NP (NDs)
Lead (mg/L)	GSD-AP-MW-2	0.0002	0.00009	0.015	No	8	0.00003889	87.5	No	0.004	NP (NDs)
Lead (mg/L)	GSD-AP-PZ-2	0.0002	0.00012	0.015	No	4	0.00003873	50	No	0.0625	NP (normality)
Lead (mg/L)	GSD-AP-PZ-5	0.0002	0.00013	0.015	No	8	0.00002475	87.5	No	0.004	NP (NDs)
Lead (mg/L)	GSD-AP-PZ-6	0.0002	0.0000835	0.015	No	8	0.00004652	75	No	0.004	NP (NDs)
Lithium (mg/L)	GSD-AP-MW-2	0.06589	0.02824	0.04	No	8	0.01776	0	No	0.01	Param.
Mercury (mg/L)	GSD-AP-MW-10	0.0005	0.000302	0.002	No	8	0.00007	87.5	No	0.004	NP (NDs)
Mercury (mg/L)	GSD-AP-MW-7	0.0005	0.00034	0.002	No	8	0.00005657	87.5	No	0.004	NP (NDs)
Mercury (mg/L)	GSD-AP-MW-8	0.0005	0.000284	0.002	No	8	0.00007637	87.5	No	0.004	NP (NDs)
Molybdenum (mg/L)	GSD-AP-MW-10	0.00045	0.000203	0.1	No	8	0.00008728	75	No	0.004	NP (NDs)
Molybdenum (mg/L)	GSD-AP-MW-11	0.000203	0.000124	0.1	No	8	0.00003133	75	No	0.004	NP (NDs)
Molybdenum (mg/L)	GSD-AP-MW-2	0.02559	0.01494	0.1	No	8	0.005024	0	No	0.01	Param.
Molybdenum (mg/L)	GSD-AP-MW-4	0.00118	0.000203	0.1	No	8	0.0004365	75	No	0.004	NP (NDs)
Molybdenum (mg/L)	GSD-AP-MW-5	0.000203	0.00015	0.1	No	8	0.00001874	87.5	No	0.004	NP (NDs)
Molybdenum (mg/L)	GSD-AP-MW-7	0.000203	0.0001	0.1	No	8	0.00003642	87.5	No	0.004	NP (NDs)
Molybdenum (mg/L)	GSD-AP-MW-8	0.000357	0.000203	0.1	No	8	0.0000635	75	No	0.004	NP (NDs)
Molybdenum (mg/L)	GSD-AP-MW-9	0.00027	0.00018	0.1	No	8	0.00002612	75	No	0.004	NP (NDs)
Molybdenum (mg/L)	GSD-AP-PZ-1	0.000203	0.00007	0.1	No	8	0.00005544	75	No	0.004	NP (NDs)
Molybdenum (mg/L)	GSD-AP-PZ-2	0.00028	0.000203	0.1	No	4	0.0000385	75	No	0.0625	NP (NDs)
Thallium (mg/L)	GSD-AP-MW-1	0.0002	0.000112	0.002	No	8	0.00003111	87.5	No	0.004	NP (NDs)
Thallium (mg/L)	GSD-AP-MW-2	0.0003549	0.0002241	0.002	No	8	0.00006169	12.5	No	0.01	Param.
Thallium (mg/L)	GSD-AP-MW-3	0.0002	0.000121	0.002	No	8	0.00003257	75	No	0.004	NP (NDs)
·-··· (···· 3 · –/		-				-					(

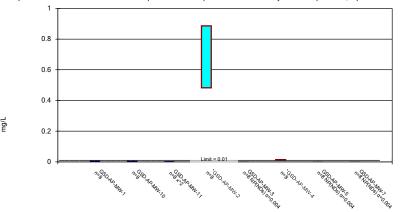
Non-Parametric Confidence Interval



Constituent: Antimony Analysis Run 1/11/2022 3:49 PM View: Confidence Intervals
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.32 . UG

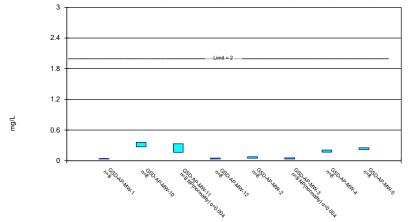
Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Arsenic Analysis Run 1/11/2022 3:49 PM View: Confidence Intervals
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Parametric and Non-Parametric (NP) Confidence Interval

Compliance limit is exceeded.* Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

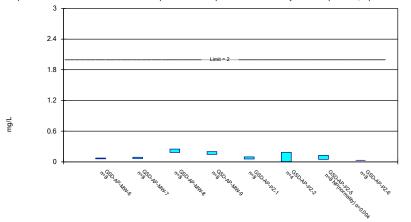


Constituent: Arsenic Analysis Run 1/11/2022 3:49 PM View: Confidence Intervals
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.32 . UG

Parametric and Non-Parametric (NP) Confidence Interval

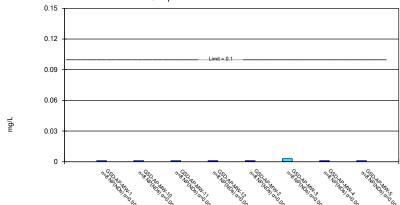
Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Barium Analysis Run 1/11/2022 3:49 PM View: Confidence Intervals
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

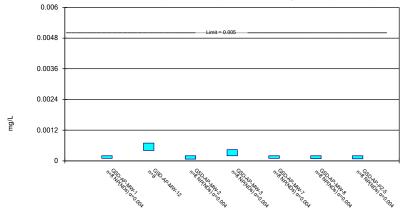
Sanitas™ v.9.6.32 . UG

Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Barium Analysis Run 1/11/2022 3:49 PM View: Confidence Intervals
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

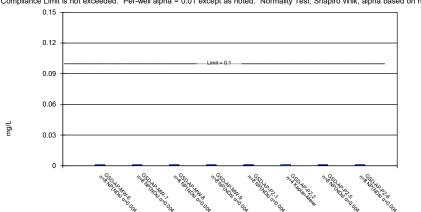
Sanitas™ v.9.6.32 . UG


Non-Parametric Confidence Interval Compliance Limit is not exceeded.

Constituent: Chromium Analysis Run 1/11/2022 3:49 PM View: Confidence Intervals
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

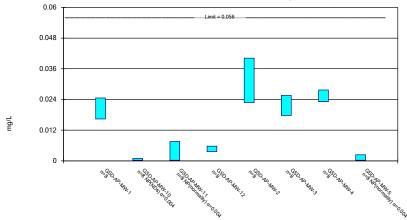


Constituent: Cadmium Analysis Run 1/11/2022 3:49 PM View: Confidence Intervals
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.32 . UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

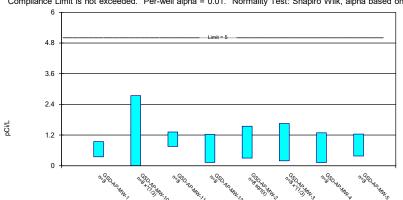


Constituent: Chromium Analysis Run 1/11/2022 3:49 PM View: Confidence Intervals
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.32 . UG

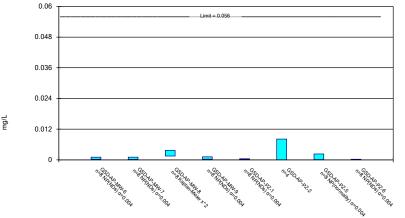
Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Cobalt Analysis Run 1/11/2022 3:50 PM View: Confidence Intervals
Plant Gadsden CIlient: Southern Company Data: Plant Gadsden CCR

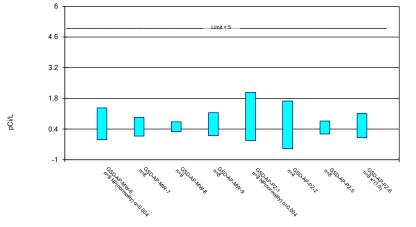
Sanitas™ v.9.6.32 . UG


Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Parametric and Non-Parametric (NP) Confidence Interval

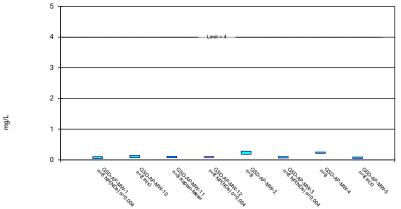
Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Cobalt Analysis Run 1/11/2022 3:50 PM View: Confidence Intervals
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.32 . UG

Parametric and Non-Parametric (NP) Confidence Interval

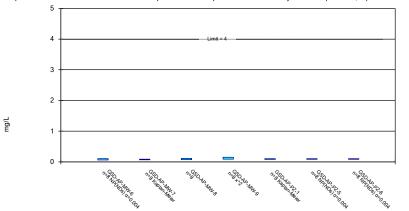

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Sanitas™ v.9.6.32 . UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Fluoride Analysis Run 1/11/2022 3:50 PM View: Confidence Intervals
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

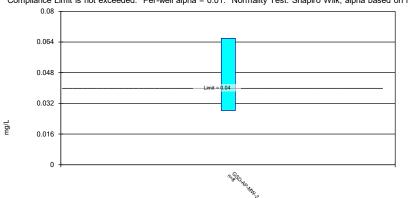

Sanitas™ v.9.6.32 . UG

Non-Parametric Confidence Interval Compliance Limit is not exceeded. 0.02 0.016 0.012 0.008 0.004 0.

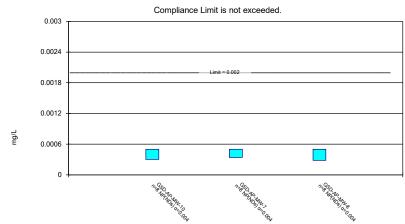
Constituent: Lead Analysis Run 1/11/2022 3:50 PM View: Confidence Intervals
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

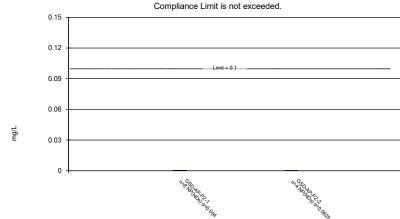


Constituent: Fluoride Analysis Run 1/11/2022 3:50 PM View: Confidence Intervals
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR


Sanitas™ v.9.6.32 . UG

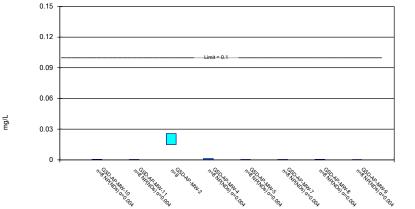
Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.


Non-Parametric Confidence Interval

Constituent: Mercury Analysis Run 1/11/2022 3:50 PM View: Confidence Intervals
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

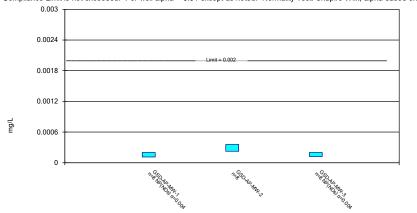
Sanitas™ v.9.6.32 . UG


Non-Parametric Confidence Interval

Constituent: Molybdenum Analysis Run 1/11/2022 3:50 PM View: Confidence Intervals
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Molybdenum Analysis Run 1/11/2022 3:50 PM View: Confidence Intervals
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

Sanitas™ v.9.6.32 . UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Antimony (mg/L) Analysis Run 1/11/2022 3:53 PM View: Confidence Intervals Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

	GSD-AP-PZ-5	GSD-AP-PZ-6
10/23/2018	<0.00102	<0.00102
12/3/2018	<0.00102	<0.00102
2/7/2019	0.00114 (J)	0.00181 (J)
8/21/2019	<0.00102	<0.00102
4/15/2020	<0.00102	<0.00102
8/24/2020	<0.00102	<0.00102
3/16/2021	<0.00102	<0.00102
10/12/2021	<0.00102	<0.00102
Mean	0.001035	0.001119
Std. Dev.	4.243E-05	0.0002793
Upper Lim.	0.00114	0.00181
Lower Lim.	0.00102	0.00102

Constituent: Arsenic (mg/L) Analysis Run 1/11/2022 3:53 PM View: Confidence Intervals
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

	GSD-AP-MW-1	GSD-AP-MW-10	GSD-AP-MW-11	GSD-AP-MW-2	GSD-AP-MW-3	GSD-AP-MW-4	GSD-AP-MW-5	GSD-AP-MW-7
10/22/2018	0.00451 (J)	0.00404 (J)		1.01		0.0144		
10/23/2018			0.00287 (J)				<0.0002	<0.0002
12/3/2018					<0.0002	0.0119		
12/4/2018	0.00471 (J)	0.00332 (J)	0.00271 (J)	0.553				<0.0002
12/5/2018							<0.0002	
2/5/2019	0.00365 (J)			0.74	<0.0002	0.0107	<0.0002	
2/6/2019		0.00333 (J)	0.00272 (J)					<0.0002
6/18/2019					<0.0002			
8/20/2019				0.825	<0.0002	0.0141	<0.0002	
8/21/2019	0.00444 (J)							<0.0002
8/22/2019		0.00394 (J)	0.00229 (J)					
4/13/2020					<0.0002		<0.0002	
4/14/2020			0.00286 (J)					
4/15/2020	0.00309 (J)	0.00236 (J)		0.709		0.0121		<0.0002
8/24/2020							<0.0002	
8/25/2020	0.00435 (J)			0.727				
8/26/2020		0.00422 (J)	0.00246 (J)		<0.0002	0.0133		<0.0002
3/16/2021	0.0029						8.17E-05 (J)	
3/22/2021					0.0002 (J)			
3/23/2021		0.00163	0.00275					<0.0002
3/24/2021				0.489		0.011		
10/5/2021	0.00356				0.00021	0.0147	0.00013 (J)	7E-05 (J)
10/11/2021		0.0037		0.424				
10/12/2021			0.00272					
Mean	0.003901	0.003318	0.002673	0.6846	0.0002012	0.01278	0.0001765	0.0001837
Std. Dev.	0.0006925	0.0008972	0.0001991	0.1907	3.536E-06	0.001561	4.545E-05	4.596E-05
Upper Lim.	0.004635	0.004268	0.002875	0.8867	0.00021	0.01443	0.0002	0.0002
Lower Lim.	0.003167	0.002367	0.002467	0.4825	0.0002	0.01112	8.17E-05	7E-05

Constituent: Arsenic (mg/L) Analysis Run 1/11/2022 3:53 PM View: Confidence Intervals
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

	GSD-AP-MW-8	GSD-AP-MW-9	GSD-AP-PZ-2	GSD-AP-PZ-5
10/23/2018	0.00246 (J)	<0.0002		<0.0002
12/3/2018				<0.0002
12/4/2018	0.00328 (J)			
12/5/2018		0.00111 (J)		
2/6/2019	0.00325 (J)	<0.0002		
2/7/2019				<0.0002
8/21/2019	0.00302 (J)	<0.0002		<0.0002
4/13/2020			<0.0002	
4/14/2020	0.00295 (J)	0.00118 (J)		
4/15/2020				<0.0002
8/24/2020			<0.0002	<0.0002
8/26/2020	0.00304 (J)	<0.0002		
3/16/2021				8.08E-05 (J)
3/17/2021			8.26E-05 (J)	
3/23/2021	0.00282	0.00063		
10/5/2021			9E-05 (J)	
10/12/2021	0.00287	0.00064		<0.0002
Mean	0.002961	0.000545	0.0001431	0.0001851
Std. Dev.	0.0002603	0.0004166	6.571E-05	4.214E-05
Upper Lim.	0.003237	0.00118	0.0002	0.0002
Lower Lim.	0.002685	0.0002	8.26E-05	8.08E-05

Constituent: Barium (mg/L) Analysis Run 1/11/2022 3:53 PM View: Confidence Intervals
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

	GSD-AP-MW-1	GSD-AP-MW-10	GSD-AP-MW-11	GSD-AP-MW-12	GSD-AP-MW-2	GSD-AP-MW-3	GSD-AP-MW-4	GSD-AP-MW-5
10/22/2018	0.0427	0.29			0.0536		0.209	
10/23/2018			0.311	0.054				0.26
12/3/2018						0.0545	0.214	
12/4/2018	0.0434	0.305	0.331		0.0589			
12/5/2018				0.0493				0.245
2/5/2019	0.0439				0.0418	0.0363	0.173	0.215
2/6/2019		0.265	0.286	0.036				
6/18/2019						0.0369		
8/20/2019					0.0685	0.0405	0.188	0.238
8/21/2019	0.037							
8/22/2019		0.302	0.214	0.0455				
4/13/2020						0.0349		0.241
4/14/2020			0.168	0.0279				
4/15/2020	0.0329	0.35			0.0607		0.159	
8/24/2020								0.238
8/25/2020	0.0358				0.0812			
8/26/2020		0.322	0.165	0.0503		0.0363	0.181	
3/16/2021	0.0331							0.217
3/22/2021						0.0354		
3/23/2021		0.395	0.169	0.0315				
3/24/2021					0.0676		0.171	
10/5/2021	0.0304			0.0417		0.0344	0.202	0.221
10/11/2021		0.292			0.0807			
10/12/2021			0.17					
Mean	0.0374	0.3151	0.2268	0.04203	0.06413	0.03865	0.1871	0.2344
Std. Dev.	0.005302	0.0407	0.07117	0.009438	0.01334	0.00667	0.01968	0.01556
Upper Lim.	0.04302	0.3583	0.331	0.05203	0.07826	0.0545	0.208	0.2509
Lower Lim.	0.03178	0.272	0.165	0.03202	0.04999	0.0344	0.1663	0.2179

Constituent: Barium (mg/L) Analysis Run 1/11/2022 3:53 PM View: Confidence Intervals
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

	GSD-AP-MW-6	GSD-AP-MW-7	GSD-AP-MW-8	GSD-AP-MW-9	GSD-AP-PZ-1	GSD-AP-PZ-2	GSD-AP-PZ-5	GSD-AP-PZ-6
10/22/2018					0.102			
10/23/2018	0.0608	0.0898	0.17	0.183			0.125	0.0298
12/3/2018	0.0633				0.0784		0.126	0.0307
12/4/2018		0.0789	0.189					
12/5/2018				0.186				
2/5/2019	0.0551				0.0578			
2/6/2019		0.0685	0.226	0.128				
2/7/2019							0.0602	0.028
8/20/2019	0.0731				0.097			
8/21/2019		0.0946	0.194	0.183			0.085	0.0312
4/13/2020	0.0635				0.0529	0.0832		
4/14/2020			0.262	0.186				
4/15/2020		0.0653					0.0535	0.0296
8/24/2020					0.0733	0.132	0.0565	0.031
8/26/2020	0.0771	0.0845	0.235	0.202				
3/16/2021							0.0553	0.0293
3/17/2021	0.0656					0.045		
3/23/2021		0.0602	0.249	0.157				
3/24/2021					0.0525			
10/5/2021	0.0741	0.0716			0.0811	0.118		
10/12/2021			0.203	0.147			0.0494	0.0303
Mean	0.06658	0.07668	0.216	0.1715	0.07438	0.09455	0.07636	0.02999
Std. Dev.	0.007523	0.01227	0.03199	0.02484	0.01909	0.03889	0.03219	0.001049
Upper Lim.	0.07455	0.08968	0.2499	0.1978	0.09461	0.1828	0.126	0.0311
Lower Lim.	0.0586	0.06367	0.1821	0.1452	0.05414	0.006264	0.0494	0.02888

Constituent: Cadmium (mg/L) Analysis Run 1/11/2022 3:53 PM View: Confidence Intervals Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

	GSD-AP-MW-1	GSD-AP-MW-12	GSD-AP-MW-2	GSD-AP-MW-3	GSD-AP-MW-7	GSD-AP-MW-8	GSD-AP-PZ-5
10/22/2018	<0.0002	/ !!	<0.0002				
10/23/2018		0.000552 (J)			<0.0002	<0.0002	<0.0002
12/3/2018				<0.0002			<0.0002
12/4/2018	<0.0002		<0.0002		<0.0002	<0.0002	
12/5/2018		0.000661 (J)					
2/5/2019	<0.0002		<0.0002	<0.0002			
2/6/2019		0.000583 (J)			<0.0002	<0.0002	
2/7/2019							<0.0002
6/18/2019				<0.0002			
8/20/2019			<0.0002	<0.0002			
8/21/2019	<0.0002				<0.0002	<0.0002	<0.0002
8/22/2019		0.000755 (J)					
4/13/2020				0.000438 (J)			
4/14/2020		0.000425 (J)				<0.0002	
4/15/2020	<0.0002		<0.0002		<0.0002		<0.0002
8/24/2020							<0.0002
8/25/2020	<0.0002		<0.0002				
8/26/2020		0.000618 (J)		<0.0002	<0.0002	<0.0002	
3/16/2021	0.000102 (J)						<0.0002
3/22/2021				0.00039			
3/23/2021		0.000405			9.7E-05 (J)	8.32E-05 (J)	
3/24/2021			6.88E-05 (J)				
10/5/2021	0.0001 (J)	0.00037		0.00021	<0.0002		
10/11/2021			<0.0002				
10/12/2021						<0.0002	8E-05 (J)
Mean	0.0001752	0.0005461	0.0001836	0.0002547	0.0001871	0.0001854	0.000185
Std. Dev.	4.583E-05	0.0001357	4.639E-05	9.918E-05	3.642E-05	4.13E-05	4.243E-05
Upper Lim.	0.0002	0.00069	0.0002	0.000438	0.0002	0.0002	0.0002
Lower Lim.	0.0001	0.0004022	6.88E-05	0.0002	9.7E-05	8.32E-05	8E-05

Constituent: Chromium (mg/L) Analysis Run 1/11/2022 3:53 PM View: Confidence Intervals Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

	GSD-AP-MW-1	GSD-AP-MW-10	GSD-AP-MW-11	GSD-AP-MW-12	GSD-AP-MW-2	GSD-AP-MW-3	GSD-AP-MW-4	GSD-AP-MW-5
10/22/2018	<0.00102	<0.00102			<0.00102		<0.00102	
10/23/2018			<0.00102	<0.00102				<0.00102
12/3/2018						<0.00102	<0.00102	
12/4/2018	<0.00102	<0.00102	<0.00102		<0.00102			
12/5/2018				<0.00102				<0.00102
2/5/2019	<0.00102				<0.00102	<0.00102	<0.00102	<0.00102
2/6/2019		<0.00102	<0.00102	<0.00102				
6/18/2019						0.00285 (J)		
8/20/2019					<0.00102	<0.00102	<0.00102	<0.00102
8/21/2019	<0.00102							
8/22/2019		<0.00102	<0.00102	<0.00102				
4/13/2020						<0.00102		<0.00102
4/14/2020			<0.00102	<0.00102				
4/15/2020	<0.00102	<0.00102			<0.00102		<0.00102	
8/24/2020								<0.00102
8/25/2020	<0.00102				<0.00102			
8/26/2020		<0.00102	<0.00102	<0.00102		<0.00102	<0.00102	
3/16/2021	0.000376 (J)							0.000397 (J)
3/22/2021						0.000293 (J)		
3/23/2021		0.00035 (J)	0.000513 (J)	0.000431 (J)				
3/24/2021					0.00047 (J)		0.000323 (J)	
10/5/2021	0.00023 (J)			0.00034 (J)		0.00023 (J)	<0.00102	0.00028 (J)
10/11/2021		0.00028 (J)			0.00048 (J)			
10/12/2021			0.00027 (J)					
Mean	0.0008407	0.0008437	0.0008629	0.0008614	0.0008837	0.001059	0.0009329	0.0008496
Std. Dev.	0.0003342	0.0003269	0.0002981	0.0002947	0.0002523	0.0008008	0.0002464	0.000317
Upper Lim.	0.00102	0.00102	0.00102	0.00102	0.00102	0.00285	0.00102	0.00102
Lower Lim.	0.00023	0.00028	0.00027	0.00034	0.00047	0.00023	0.000323	0.00028

Constituent: Chromium (mg/L) Analysis Run 1/11/2022 3:53 PM View: Confidence Intervals Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

	GSD-AP-MW-6	GSD-AP-MW-7	GSD-AP-MW-8	GSD-AP-MW-9	GSD-AP-PZ-1	GSD-AP-PZ-2	GSD-AP-PZ-5	GSD-AP-PZ-6
10/22/2018					<0.00102			
10/23/2018	<0.00102	<0.00102	<0.00102	<0.00102			<0.00102	<0.00102
12/3/2018	<0.00102				<0.00102		<0.00102	<0.00102
12/4/2018		<0.00102	<0.00102					
12/5/2018				<0.00102				
2/5/2019	<0.00102				<0.00102			
2/6/2019		<0.00102	<0.00102	<0.00102				
2/7/2019							<0.00102	<0.00102
8/20/2019	<0.00102				<0.00102			
8/21/2019		<0.00102	<0.00102	<0.00102			<0.00102	<0.00102
4/13/2020	<0.00102				<0.00102	<0.00102		
4/14/2020			<0.00102	<0.00102				
4/15/2020		<0.00102					<0.00102	<0.00102
8/24/2020					<0.00102	<0.00102	<0.00102	<0.00102
8/26/2020	<0.00102	<0.00102	<0.00102	<0.00102				
3/16/2021							0.000534 (J)	0.000534 (J)
3/17/2021	0.000338 (J)					0.000764 (J)		
3/23/2021		0.000406 (J)	0.0003 (J)	0.000422 (J)				
3/24/2021					0.000442 (J)			
10/5/2021	0.00025 (J)	0.00025 (J)			0.00035 (J)	0.00035 (J)		
10/12/2021			<0.00102	0.00031 (J)			0.00034 (J)	0.00031 (J)
Mean	0.0008385	0.000847	0.00093	0.0008565	0.000864	0.0007885	0.0008742	0.0008705
Std. Dev.	0.0003369	0.000323	0.0002546	0.0003042	0.0002899	0.0003163	0.0002748	0.0002832
Upper Lim.	0.00102	0.00102	0.00102	0.00102	0.00102	0.001027	0.00102	0.00102
Lower Lim.	0.00025	0.00025	0.0003	0.00031	0.00035	8.704E-05	0.00034	0.00031

Constituent: Cobalt (mg/L) Analysis Run 1/11/2022 3:53 PM View: Confidence Intervals
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

10/22/2018	GSD-AP-MW-1	GSD-AP-MW-10	GSD-AP-MW-11	GSD-AP-MW-12	GSD-AP-MW-2 0.0438	GSD-AP-MW-3	GSD-AP-MW-4 0.0259	GSD-AP-MW-5
10/22/2018	0.0243	<0.000203	<0.000203	0.00200 (1)	0.0438		0.0259	0.0022 (1)
			<0.000203	0.00399 (J)		0.0228	0.0228	0.0023 (J)
12/3/2018	0.0100				0.0050	0.0238	0.0228	
12/4/2018	0.0166	<0.000203	<0.000203		0.0252			
12/5/2018	0.0004			0.00466 (J)	0.000	0.000	0.0000	0.00233 (J)
2/5/2019	0.0264				0.0362	0.0232	0.0263	0.0021 (J)
2/6/2019		<0.000203	<0.000203	0.00485 (J)				
6/18/2019						0.0263		
8/20/2019					0.0366	0.0257	0.0293	0.00223 (J)
8/21/2019	0.0242							
8/22/2019		<0.000203	0.00756	0.00658				
4/13/2020						0.0209		<0.000203
4/14/2020			<0.000203	0.0035 (J)				
4/15/2020	0.0178	<0.000203			0.0324		0.0252	
8/24/2020								0.00222 (J)
8/25/2020	0.0193				0.0298			
8/26/2020		<0.000203	0.00599	0.00547		0.0191	0.0231	
3/16/2021	0.0184							0.00136
3/22/2021						0.0183		
3/23/2021		0.00037	0.000388	0.00378				
3/24/2021					0.0316		0.0268	
10/5/2021	0.0169			0.00448		0.016	0.0238	0.00116
10/11/2021		0.00089			0.0165			
10/12/2021			0.00027					
Mean	0.02049	0.0003098	0.001878	0.004664	0.03151	0.02166	0.0254	0.001738
Std. Dev.	0.003859	0.0002416	0.003052	0.0009986	0.008175	0.003689	0.002167	0.0007658
Upper Lim.	0.02458	0.00089	0.00756	0.005722	0.04018	0.02557	0.0277	0.00233
Lower Lim.	0.0164	0.000203	0.000203	0.003605	0.02285	0.01775	0.0231	0.000203

Constituent: Cobalt (mg/L) Analysis Run 1/11/2022 3:53 PM View: Confidence Intervals
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

	GSD-AP-MW-6	GSD-AP-MW-7	GSD-AP-MW-8	GSD-AP-MW-9	GSD-AP-PZ-1	GSD-AP-PZ-2	GSD-AP-PZ-5	GSD-AP-PZ-6
10/22/2018					<0.000203			
10/23/2018	<0.000203	<0.000203	<0.000203	<0.000203			<0.000203	<0.000203
12/3/2018	<0.000203				<0.000203		0.00227 (J)	<0.000203
12/4/2018		<0.000203	<0.000203					
12/5/2018				<0.000203				
2/5/2019	<0.000203				<0.000203			
2/6/2019		<0.000203	0.00232 (J)	<0.000203				
2/7/2019							<0.000203	<0.000203
8/20/2019	<0.000203				<0.000203			
8/21/2019		<0.000203	0.00303 (J)	<0.000203			0.00225 (J)	<0.000203
4/13/2020	<0.000203				<0.000203	0.00489 (J)		
4/14/2020			0.00385 (J)	<0.000203				
4/15/2020		<0.000203					<0.000203	<0.000203
8/24/2020					<0.000203	0.00237 (J)	<0.000203	<0.000203
8/26/2020	<0.000203	<0.000203	0.00388 (J)	<0.000203				
3/16/2021							0.000384	0.000108 (J)
3/17/2021	0.00102					0.00616		
3/23/2021		0.00102	0.003	0.00103				
3/24/2021					<0.000203			
10/5/2021	0.00104	0.00018 (J)			0.00044	0.00287		
10/12/2021			0.00298	0.00113			8E-05 (J)	0.00014 (J)
Mean	0.0004098	0.0003023	0.002433	0.0004223	0.0002326	0.004073	0.0007245	0.0001833
Std. Dev.	0.0003829	0.0002901	0.001466	0.0004069	8.379E-05	0.001767	0.0009513	3.756E-05
Upper Lim.	0.00104	0.00102	0.003677	0.00113	0.00044	0.008085	0.00227	0.000203
Lower Lim.	0.000203	0.00018	0.001444	0.000203	0.000203	6.002E-05	8E-05	0.000108

Constituent: Combined Radium 226 + 228 (pCi/L) Analysis Run 1/11/2022 3:53 PM View: Confidence Intervals

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

	GSD-AP-MW-1	GSD-AP-MW-10	GSD-AP-MW-11	GSD-AP-MW-12	GSD-AP-MW-2	GSD-AP-MW-3	GSD-AP-MW-4	GSD-AP-MW-5
10/22/2018	0.691	0.36 (U)			0.996	0.749	1.06	
10/23/2018			1.3	0.796				1.01
12/3/2018						0.749	0.697	
12/4/2018	0.213 (U)	0.407 (U)	1.05		0.739			
12/5/2018				0.498 (U)				0.876
2/5/2019	0.637				1.09	0.299 (U)	0.467 (U)	0.551 (U)
2/6/2019		0.537	0.779	-0.0241 (U)				
8/20/2019					0.553 (U)	0.709 (U)	0.814	0.206 (U)
8/21/2019	0.643 (U)							
8/22/2019		-0.021 (U)	1.34 (U)	0.145 (U)				
4/13/2020						0.942 (U)		1.19
4/14/2020			0.922 (U)	0.643 (U)				
4/15/2020	0.538 (U)	0.64 (U)			0.182 (U)		-0.0841 (U)	
8/24/2020								0.482 (U)
8/25/2020	0.502 (U)				0.43 (U)			
8/26/2020		0.221 (U)	1.28	1.31		0.177 (U)	0.26 (U)	
3/16/2021	0.722 (U)							0.709 (U)
3/22/2021						0.263 (U)		
3/23/2021		0.83 (U)	0.592 (U)	0.565 (U)				
3/24/2021					0.769 (U)		0.664 (U)	
10/5/2021	1.21			1.48		3.21	1.75	1.44
10/11/2021		6.52			2.38			
10/12/2021			1.02 (U)					
Mean	0.6445	1.187	1.035	0.6766	0.8924	0.8873	0.7035	0.808
Std. Dev.	0.2792	2.17	0.2668	0.5182	0.6692	0.9789	0.5489	0.4027
Upper Lim.	0.9405	2.742	1.318	1.226	1.54	1.65	1.285	1.235
Lower Lim.	0.3485	0.0046	0.7526	0.1273	0.2978	0.1921	0.1217	0.3811

Constituent: Combined Radium 226 + 228 (pCi/L) Analysis Run 1/11/2022 3:53 PM View: Confidence Intervals

Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

	000 40 404 0	000 40 444 7	000 40 4444 0	000 40 4444 0	000 40 07 4	000 40 07.0	000 40 07 5	000 40 07 0
10/00/0010	GSD-AP-MW-6	GSD-AP-MW-7	GSD-AP-MW-8	GSD-AP-MW-9	GSD-AP-PZ-1	GSD-AP-PZ-2	GSD-AP-PZ-5	GSD-AP-PZ-6
10/22/2018					0.621			
10/23/2018	0.243 (U)	0.703	0.319 (U)	0.395 (U)			0.383 (U)	0.352 (U)
12/3/2018	0.304 (U)				0.188 (U)		0.736	0.238 (U)
12/4/2018		0.325 (U)	0.875					
12/5/2018				0.52 (U)				
2/5/2019	0.196 (U)				0.274 (U)			
2/6/2019		0.0774 (U)	0.378 (U)	0.244 (U)				
2/7/2019							0.0202 (U)	0.395 (U)
8/20/2019	-0.086 (U)				0.663			
8/21/2019		-0.0134 (U)	0.552 (U)	1.53 (U)			0.442 (U)	-0.00256 (U)
4/13/2020	0.0901 (U)				-0.129 (U)	0.472 (U)		
4/14/2020			0.641 (U)	0.119 (U)				
4/15/2020		0.526 (U)					0.432 (U)	0.000738 (U)
8/24/2020					0.177 (U)	-0.00312 (U)	0.454 (U)	0.404 (U)
8/26/2020	0.416 (U)	0.691 (U)	0.339 (U)	1.18				
3/16/2021							0.32 (U)	0.589 (U)
3/17/2021	0.539 (U)					0.756 (U)		
3/23/2021		0.45 (U)	0.662 (U)	0.694 (U)				
3/24/2021					0.245 (U)			
10/5/2021	1.36	1.27			2.07	1.13		
10/12/2021			0.291 (U)	0.311 (U)			0.963 (U)	1.57
Mean	0.3828	0.5036	0.5071	0.6241	0.5136	0.5887	0.4688	0.4433
Std. Dev.	0.4386	0.4047	0.2092	0.4922	0.678	0.4778	0.28	0.4985
Upper Lim.	1.36	0.9326	0.7288	1.146	2.07	1.673	0.7655	1.116
		0.9326						
Lower Lim.	-0.086	0.07407	0.2854	0.1025	-0.129	-0.496	0.172	0.003433

Constituent: Fluoride (mg/L) Analysis Run 1/11/2022 3:53 PM View: Confidence Intervals
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

	GSD-AP-MW-1	GSD-AP-MW-10	GSD-AP-MW-11	GSD-AP-MW-12	GSD-AP-MW-2	GSD-AP-MW-3	GSD-AP-MW-4	GSD-AP-MW-5
12/3/2018							0.22	
12/4/2018	0.04 (J)	0.07 (J)	<0.1		0.15			
12/5/2018				<0.1				0.04 (J)
2/5/2019	0.0525 (J)				0.207	0.064 (J)	0.259	0.0651 (J)
2/6/2019		0.107	0.0678 (J)	<0.1				
2/25/2019						<0.1		
2/26/2019	<0.1	0.0813 (J)			0.264		0.246	
2/27/2019			0.0985 (J)	<0.1				0.0578 (J)
6/18/2019						0.0664 (J)		
8/20/2019					0.252	0.0592 (J)	0.197	0.0567 (J)
8/21/2019	<0.1							
8/22/2019		0.084 (J)	<0.1	<0.1				
4/13/2020						<0.1		0.0688 (J)
4/14/2020			0.0878 (J)	<0.1				
4/15/2020	<0.1	0.112			0.21		0.238	
8/24/2020								0.0607 (J)
8/25/2020	<0.1				0.273			
8/26/2020		0.0997 (J)	<0.1	<0.1		<0.1	0.251	
3/16/2021	<0.1							0.065 (J)
3/22/2021						<0.1		
3/23/2021		0.101	0.0819 (J)	<0.1				
3/24/2021					0.194		0.227	
10/5/2021	0.0601 (J)			<0.1		<0.1	0.214	0.122
10/11/2021		0.201			0.283			
10/12/2021			0.134					
Mean	0.08158	0.107	0.09625	0.1	0.2291	0.0862	0.2315	0.06701
Std. Dev.	0.026	0.04055	0.01912	0	0.04616	0.01915	0.02083	0.02389
Upper Lim.	0.1	0.1425	0.1109	0.1	0.2781	0.1	0.2536	0.0889
Lower Lim.	0.04	0.07281	0.06956	0.1	0.1802	0.0592	0.2094	0.04612

Constituent: Fluoride (mg/L) Analysis Run 1/11/2022 3:53 PM View: Confidence Intervals
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

	GSD-AP-MW-6	GSD-AP-MW-7	GSD-AP-MW-8	GSD-AP-MW-9	GSD-AP-PZ-1	GSD-AP-PZ-5	GSD-AP-PZ-6
12/3/2018	<0.1				0.08 (J)	<0.1	<0.1
12/4/2018		0.06 (J)	0.08 (J)				
12/5/2018				0.04 (J)			
2/5/2019	0.0581 (J)				0.0934 (J)		
2/6/2019		<0.1	<0.1	<0.1			
2/7/2019						<0.1	<0.1
2/25/2019					<0.1	<0.1	<0.1
2/26/2019	0.0816 (J)						
2/27/2019		0.0824 (J)	0.108	0.147			
8/20/2019	<0.1				0.0889 (J)		
8/21/2019		0.068 (J)	0.0648 (J)	0.0984 (J)		<0.1	<0.1
4/13/2020	<0.1				0.103		
4/14/2020			0.0845 (J)	0.133			
4/15/2020		0.0775 (J)				<0.1	<0.1
8/24/2020					0.114	<0.1	<0.1
8/26/2020	<0.1	<0.1	0.0732 (J)	0.13			
3/16/2021						<0.1	<0.1
3/17/2021	<0.1						
3/23/2021		<0.1	0.0802 (J)	0.132			
3/24/2021					0.0725 (J)		
10/5/2021	<0.1	0.0933 (J)			<0.1		
10/12/2021			0.123	0.147		<0.1	<0.1
Mean	0.09246	0.08515	0.08921	0.1159	0.09398	0.1	0.1
Std. Dev.	0.0153	0.01568	0.01946	0.03587	0.0133	0	0
Upper Lim.	0.1	0.08844	0.1098	0.148	0.1038	0.1	0.1
Lower Lim.	0.0581	0.06404	0.06858	0.08501	0.07601	0.1	0.1

Constituent: Lead (mg/L) Analysis Run 1/11/2022 3:53 PM View: Confidence Intervals
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

	GSD-AP-MW-2	GSD-AP-PZ-2	GSD-AP-PZ-5	GSD-AP-PZ-6
10/22/2018	<0.0002			
10/23/2018			<0.0002	<0.0002
12/3/2018			<0.0002	<0.0002
12/4/2018	<0.0002			
2/5/2019	<0.0002			
2/7/2019			<0.0002	<0.0002
8/20/2019	<0.0002			
8/21/2019			<0.0002	<0.0002
4/13/2020		<0.0002		
4/15/2020	<0.0002		<0.0002	<0.0002
8/24/2020		<0.0002	<0.0002	<0.0002
8/25/2020	<0.0002			
3/16/2021			0.00013 (J)	8.35E-05 (J)
3/17/2021		0.000191 (J)		
3/24/2021	<0.0002			
10/5/2021		0.00012 (J)		
10/11/2021	9E-05 (J)			
10/12/2021			<0.0002	0.00012 (J)
Mean	0.0001862	0.0001777	0.0001912	0.0001754
Std. Dev.	3.889E-05	3.873E-05	2.475E-05	4.652E-05
Upper Lim.	0.0002	0.0002	0.0002	0.0002
Lower Lim.	9E-05	0.00012	0.00013	8.35E-05

Constituent: Lithium (mg/L) Analysis Run 1/11/2022 3:53 PM View: Confidence Intervals
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

	GSD-AP-MW-2
10/22/2018	0.0804
12/4/2018	0.0474
2/5/2019	0.0545
8/20/2019	0.0583
4/15/2020	0.0406
8/25/2020	0.041
3/24/2021	0.0318
10/11/2021	0.0225
Mean	0.04706
Std. Dev.	0.01776
Upper Lim.	0.06589
Lower Lim.	0.02824

Constituent: Mercury (mg/L) Analysis Run 1/11/2022 3:53 PM View: Confidence Intervals
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

	GSD-AP-MW-10	GSD-AP-MW-7	GSD-AP-MW-8
10/22/2018	<0.0005		
10/23/2018		<0.0005	<0.0005
12/4/2018	0.000302 (J)	0.00034 (J)	0.000284 (J)
2/6/2019	<0.0005	<0.0005	<0.0005
8/21/2019		<0.0005	<0.0005
8/22/2019	<0.0005		
4/14/2020			<0.0005
4/15/2020	<0.0005	<0.0005	
8/26/2020	<0.0005	<0.0005	<0.0005
3/23/2021	<0.0005	<0.0005	<0.0005
10/5/2021		<0.0005	
10/11/2021	<0.0005		
10/12/2021			<0.0005
Mean	0.0004753	0.00048	0.000473
Std. Dev.	7E-05	5.657E-05	7.637E-05
Upper Lim.	0.0005	0.0005	0.0005
Lower Lim.	0.000302	0.00034	0.000284

 $\label{lem:constituent: Molybdenum (mg/L)} Constituent: \ Molybdenum (mg/L) \quad Analysis \ Run \ 1/11/2022 \ 3:53 \ PM \quad View: Confidence \ Intervals \\ Plant \ Gadsden \quad Client: \ Southern \ Company \quad Data: \ Plant \ Gadsden \ CCR$

	GSD-AP-MW-10	GSD-AP-MW-11	GSD-AP-MW-2	GSD-AP-MW-4	GSD-AP-MW-5	GSD-AP-MW-7	GSD-AP-MW-8	GSD-AP-MW-9
10/22/2018	<0.000203		0.0198	<0.000203				
10/23/2018		<0.000203			<0.000203	<0.000203	<0.000203	<0.000203
12/3/2018				<0.000203				
12/4/2018	<0.000203	<0.000203	0.0118			<0.000203	<0.000203	
12/5/2018					<0.000203			<0.000203
2/5/2019			0.0196	<0.000203	<0.000203			
2/6/2019	<0.000203	<0.000203				<0.000203	<0.000203	<0.000203
8/20/2019			0.027	<0.000203	<0.000203			
8/21/2019						<0.000203	<0.000203	<0.000203
8/22/2019	<0.000203	<0.000203						
4/13/2020					<0.000203			
4/14/2020		<0.000203					<0.000203	<0.000203
4/15/2020	<0.000203		0.0202	<0.000203		<0.000203		
8/24/2020					<0.000203			
8/25/2020			0.0269					
8/26/2020	<0.000203	<0.000203		<0.000203		<0.000203	<0.000203	<0.000203
3/16/2021					<0.000203			
3/23/2021	0.000204	0.000124 (J)				<0.000203	0.000357	0.00027
3/24/2021			0.0164	0.00118				
10/5/2021				0.00111	0.00015 (J)	0.0001 (J)		
10/11/2021	0.00045		0.0204					
10/12/2021		0.00015 (J)					0.00032	0.00018 (J)
Mean	0.000234	0.0001865	0.02026	0.0004385	0.0001964	0.0001901	0.0002369	0.0002085
Std. Dev.	8.728E-05	3.133E-05	0.005024	0.0004365	1.874E-05	3.642E-05	6.35E-05	2.612E-05
Upper Lim.	0.00045	0.000203	0.02559	0.00118	0.000203	0.000203	0.000357	0.00027
Lower Lim.	0.000203	0.000124	0.01494	0.000203	0.00015	0.0001	0.000203	0.00018

 $\label{lem:constituent: Molybdenum (mg/L)} Constituent: \ Molybdenum (mg/L) \quad Analysis \ Run \ 1/11/2022 \ 3:53 \ PM \quad View: Confidence \ Intervals \\ Plant \ Gadsden \quad Client: \ Southern \ Company \quad Data: \ Plant \ Gadsden \ CCR$

	GSD-AP-PZ-1	GSD-AP-PZ-2
10/22/2018	<0.000203	
12/3/2018	<0.000203	
2/5/2019	<0.000203	
8/20/2019	<0.000203	
4/13/2020	<0.000203	<0.000203
8/24/2020	<0.000203	<0.000203
3/17/2021		<0.000203
3/24/2021	9.88E-05 (J)	
10/5/2021	7E-05 (J)	0.00028
Mean	0.0001734	0.0002223
Std. Dev.	5.544E-05	3.85E-05
Upper Lim.	0.000203	0.00028
Lower Lim.	7E-05	0.000203

Constituent: Thallium (mg/L) Analysis Run 1/11/2022 3:53 PM View: Confidence Intervals
Plant Gadsden Client: Southern Company Data: Plant Gadsden CCR

	GSD-AP-MW-1	GSD-AP-MW-2	GSD-AP-MW-3
10/22/2018	<0.0002	0.000213 (J)	
12/3/2018			<0.0002
12/4/2018	<0.0002	<0.0002	
2/5/2019	<0.0002	0.000256 (J)	<0.0002
6/18/2019			<0.0002
8/20/2019		0.000322 (J)	<0.0002
8/21/2019	<0.0002		
4/13/2020			<0.0002
4/15/2020	<0.0002	0.000318 (J)	
8/25/2020	<0.0002	0.000347 (J)	
8/26/2020			<0.0002
3/16/2021	0.000112 (J)		
3/22/2021			0.000121 (J)
3/24/2021		0.00037	
10/5/2021	<0.0002		0.00014 (J)
10/11/2021		0.00029	
Mean	0.000189	0.0002895	0.0001826
Std. Dev.	3.111E-05	6.169E-05	3.257E-05
Upper Lim.	0.0002	0.0003549	0.0002
Lower Lim.	0.000112	0.0002241	0.000121